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Abstract—Heavy-duty trucks are a major source of 

transportation-related greenhouse gas and criteria 

pollutant emissions. One approach to reducing the climate 

and health impacts of these trucks is to transition them to 

zero-emission technologies such as battery electric trucks 

(BETs). To date, BETs have been deployed mostly in 

drayage application. As the performance of BETs has 

improved in recent years, there is increasing interest in 

using BETs also in regional haul application. This paper 

examines real-world activity patterns of 15 heavy-duty 

BETs in regional haul application using data collected 

from early deployments of these trucks across eight 

different fleets in Southern California. The results show 

that the BETs are typically used on routes (or tours) that 

are much shorter than their driving ranges. They often 

make one or two tours per day, and are usually charged 

at the end of each tour. Due to the variation in the time of 

day that the BETs are operated, they are charged at 

different times of day, spreading the charging load 

throughout the day. In addition, the results indicate that 

about half of the BET’s operations on average occur in or 

around disadvantaged communities, providing emission 

reduction benefits to these communities. 

Keywords—Battery electric truck, vehicle activity, energy 

consumption, charging. 

I. INTRODUCTION 

Medium-duty and heavy-duty trucks are used primarily in 
freight transportation, which is an important economic driver 
in the U.S. In 2021, trucking contributed $389.3 billion or 
1.7% of the total gross domestic product to the U.S. economy 
[1]. However, medium-duty and heavy-duty trucks, most of 
which are powered by diesel engines, are also a major source 
of greenhouse gas (GHG) emissions, accounting for 23% of 
GHG emissions from the U.S. transportation sector in 2021 
[2]. In the South Coast Air Basin of Southern California, diesel 
emissions from these trucks accounted for about 23% of oxide 
of nitrogen and 4% of fine particulate matter emissions in 
2018, contributing to the poor air quality in the region [3]. In 
addition, these diesel emissions are concentrated near freight 
hubs such as ports, railyards, and warehouses, causing 
disproportionate burdens on nearby environmental justice or 
disadvantaged communities. 

To address the emission impacts of trucking, efforts have 
been made to accelerate the development and deployment of 
zero-emission trucks. For example, California has set 
aggressive targets for the sales of zero-emission trucks in the 
state, and has required all medium-duty and heavy-duty trucks 
operating in the state to be zero-emission by 2045 [4,5]. Based 
on the current state of zero-emission truck technologies, most 
zero-emission trucks on the roads today are battery electric 
trucks (BETs). To date, these trucks have been deployed 
primarily in drayage application because drayage trucks tend 
to travel a limited number of miles per day, return to their 
homebases every night (so that they can be charged at the 
homebases), and spend a large amount of time creeping and 
idling (which consume relatively much less energy than 
driving). Many studies have been conducted on the operation 
of BETs in drayage application with different focuses, for 
example, feasibility analysis [6,7], charging infrastructure 
planning [8,9], en-route charging opportunity assessment 
[10,11], and charging optimization [12,13]. 

As the performance of BETs has improved in recent years, 
it has been argued that BETs could also be deployed in 
regional haul and even long haul applications [14]. However, 
studies of BET deployment and operation in regional haul 
application are limited, and most of them rely on the modeling 
and analysis of data collected from conventional diesel or 
natural gas trucks [15,16]. This paper addresses this research 
gap by examining real-world activity patterns of BETs in 
regional haul application using data collected from early 
deployments of these trucks in Southern California. 
Understanding these real-world activity patterns is important 
for identifying challenges and opportunities associated with 
electrifying heavy-duty regional haul trucks. Such information 
will be useful for developing various intelligent transportation 
system applications, such as vehicle dispatching [17], eco-
routing [18], range estimation [19], and charging reservation 
[20], to specifically support BET operations. 

This paper presents real-world activity patterns of 15 
heavy-duty BETs that are part of early deployments across 
eight different regional distribution fleets in Southern 
California. Section II describes the vehicle and fleet 
characteristics as well as the data collection, processing, and 
analysis procedures. Then, Section III presents the trip 
characteristics and charging patterns of these BETs. It also 
examines the environmental justice implications of deploying 
the BETs. Finally, Section IV provides conclusions and 
discusses future work. 
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II. METHODOLOGY 

A. Vehicle and Fleet Characteristics 

This study examined activity and energy consumption of 
15 battery electric trucks (BETs) deployed across eight fleets 
in Southern California. All 15 BETs are of 2021 model year 
with 264 kWh nominal battery capacity. Five of them are Class 
7 (having gross vehicle weight rating or GVWR of 26,001– 
33,000 lbs) with an estimated range of 150 miles while the 
other 10 trucks are Class 8 (having GVWR of 33,001–80,000 
lbs) with an estimated range of 120 miles. All the truck fleets 
run a variety of regional distribution operations within 
Southern California, such as less-than-truckload, food 
distribution, beverage distribution, among others. 

B. Data Collection and Processing 

Data were collected from the BETs using a commercial 
telematics service between April 2021 and September 2023. 
However, the start and end dates of the data collection period 
for each BET varied. The raw data collected from each BET 
include timestamp, vehicle location (latitude and longitude), 
vehicle speed, key on/off status, odometer, energy out (total 
energy flowing out of the battery while driving), energy in 
(total energy flowing into the battery while driving), and 
battery state of charge (SOC). All data items have 3-minute 
interval except for energy out and energy in, which have 1-day 
interval. By subtracting energy in from energy out, the net 
energy consumption during each interval can be calculated. 

Since the data fields were logged at different frequencies, 
they were first synchronized and some of them were 
interpolated to fill the data gaps. Specifically, the timestamp of 
vehicle location was used as the basis for vehicle activity. 
Then, vehicle speed and odometer were interpolated based on 
time. Subsequently, energy out and energy in were 
interpolated based on odometer, after which net energy 
consumption was calculated. Finally, SOC was interpolated 
based on net energy consumption. 

Additionally, the vehicle location data were analyzed to 
determine whether the BET was traveling inside or outside 
disadvantaged communities (DACs). DACs are based on 
census tracts and represented as polygons on maps. To perform 
this spatial analysis, first a buffer of 40 m was created along 
the boundary of each DAC to account for the potential 
inaccuracy of vehicle location data obtained via GPS. Then, 
each vehicle location was placed on the map of DACs with the 
buffer according to its latitude and longitude. A BET would be 
deemed to be traveling inside DAC if its location was matched 
to DAC polygon(s) only. It would be deemed to be traveling 
outside DAC if its location was matched to non-DAC 
polygon(s) only. Lastly, the BET would be considered to be 
traveling around DAC (i.e., along the border between DAC 
and non-DAC) if its location was matched to both DAC and 
non-DAC polygons. 

C. Data Aggregation and Analysis 

Using the processed data, four types of activity event 

below were identified and stored in an Activity Event table 

chronologically. Moving, Idling, and Stopped are mutually 

exclusive. However, Charging is a subet of Stopped. 

 Moving – key on and vehicle speed ≥ 3 kph 
 Idling – key on and vehicle speed < 3 kph 

 Stopped – key off 

 Charging – key off and ending SOC > starting SOC 

Then, the Activity Event table was used to determine trips 

accordingly to the trip definition in Fig. 1, which were then 

stored in a Trip table chronologically. After that, the start and 

end locations of each trip were indexed as either homebase or 
non-homebase. Finally, the Trip table was used to identify 

tours. A tour consists of a series of consecutive trips that starts 

with an outbound trip (starting from homebase and ending 

outside), optionally one or more trips with start and end 

locations outside of homebase, and finally an inbound trip 

(starting from outside of homebase and ending inside). The 

identified tours were stored in a Tour table chronologically. 

Figure 1. Illustration of trip definition. 

For each of the Activity Event, Trip, and Tour tables, 
descriptive statistics of travel distance, travel time, and energy 
consumption were calculated. These descriptive statistics were 
also differentiated between inside, around, and outside DACs. 
Also, other metrics such as idle fraction and energy efficiency 
(kWh per mile) were derived. 

III. RESULTS AND DISCUSSION 

Table 1 provides summary statistics of the collected data. 
The rows are color-coded by fleet. They are also split into two 
groups. The first five rows (EV01 to EV05) are for Class 7 
BETs and the remaining rows (EV06 to EV15) are for Class 8 
BETs. For most of the BETs, data were collected for about two 
years. Cumulatively, the data represent almost 300,000 miles 
of driving and over 25,000 hours of operation. 

The Class 7 and Class 8 BETs have a sample average 
energy efficiency of 1.5 kWh and 1.7 kWh per mile, 
respectively. Assuming a usable battery capacity to be 80% of 
the nominal battery capacity, or 0.8*264 = 211 kWh, then the 
average real-world range of the Class 7 BETs is 141 miles, 
which is slightly lower than the manufacturer-estimated range 
of 150 miles. On the other hand, the average real-world range 

Trip 



TABLE 1. SUMMARY STATISTICS OF COLLECTED DATA 

Truck 

ID 

Fleet 

ID 

Days 

Total 

Days 

Dri-

ven 

Total 

Miles 

Ope-

rating 

Hrs 

Dri-

ven 

Hrs 

Idle 

Frac-

tion 

Total 

Energy 

(kWh) 

kWh 

per 

Mile 

EV01 FL01 631 309 23,859 1,333 913 32% 39,427 1.7 

EV02 FL02 763 372 29,620 1,357 1,065 22% 41,541 1.4 

EV03 FL03 760 394 15,936 2,957 1,164 61% 27,045 1.7 

EV04 FL03 757 326 13,349 3,257 1,060 67% 21,998 1.6 

EV05 FL03 426 126 5,636 742 353 52% 6,626 1.2 

EV06 FL04 734 194 13,246 996 482 52% 22,367 1.7 

EV07 FL04 729 223 15,997 686 574 16% 27,980 1.7 

EV08 FL05 763 378 24,380 1,573 1,082 31% 34,284 1.4 

EV09 FL05 763 406 27,095 1,671 1,150 31% 39,609 1.5 

EV10 FL06 734 401 25,844 3,553 1,573 56% 37,260 1.4 

EV11 FL06 734 417 39,047 3,076 2,093 32% 67,917 1.7 

EV12 FL06 371 59 4,316 377 208 45% 7,736 1.8 

EV13 FL07 722 181 11,541 849 610 28% 21,514 1.9 

EV14 FL07 751 178 8,953 505 361 29% 13,572 1.5 

EV15 FL08 779 721 37,598 2,465 1,802 27% 77,249 2.1 

Days Total: Total number of days between first and last data dates 

Day Driven: Total number of days with at least 1 miles of distance traveled 

Total Miles: Total number of miles traveled 

Operating Hrs: Total number of hours when the vehicle was on 

Driven Hrs: Total number of hours when the vehicle speed ≥ 3 kph 
Idle Fraction: Fraction of operating hours when the vehicle was idled 

Total Energy: Total energy consumption (kWh) 

kWh per Mile: Average vehicle energy efficiency 

of the Class 8 BETs is 124 miles, which is slightly higher 

than the manufacturer-estimated range of 120 miles. 
The idle fraction of the BETs in this study ranges from 

16% to 67%, with a sample average of 43%. This is in line 
with what was reported in [21] for conventional diesel trucks 
in California. Idling emissions from heavy-duty diesel trucks 
have long been a subject of air quality and public health 
concerns, especially in environmental justice communities 
near freight hubs where there usually is a high concentration 
of idling trucks. Since BETs have no tailpipe emissions, they 
can help abate some of these concerns. The following 
subsections explore the different aspects of the real-world 
operation of the BETs in this study. 

A. Trip and Tour Characteristics 

Table 2 provides statistics related to trips and tours. The 
average number of trips per tour ranged from two (i.e., making 
only one stop) to 14. The majority of the BETs made one or 
two tours per day with the average tour distances of 35-80 
miles. Most of the BETs were charged about once after each 
tour, having an average charging per tour of 0.9-1.1. However, 
some BETs had an average charging per tour of 0.7, indicating 
that they occasionally completed two or more tours before 
needing to be charged. All the BETs were charged mostly at 
their homebases, with only a small fraction of their charging 
sessions occurring outside of their homebases. This is not 
surprising given the current lack of charging infrastructure for 
heavy-duty BETs. One exception was EV12, which had 23% 
of its charging sessions off-site. However, this was a special 
case where the BET was frequently charged at a dealership 
nearby its homebase. 

TABLE 2. TRIP, TOUR, AND CHARGING STATISTICS 

Truck 

ID 

Fleet 

ID 

Total 

Trips 

Total 

Tours 

Trips 

per 

Tour 

Tours 

per 

Day 

Miles 

per 

Tour 

Charg-

ing 

Sessions 

Charg-

ing 

per Tour 

Charg-

ing 

off-site 

EV01 FL01 1,656 618 3 2.0 39 457 0.7 1% 

EV02 FL02 1,970 369 5 1.0 80 390 1.1 6% 

EV03 FL03 3,741 409 9 1.0 39 389 1.0 2% 

EV04 FL03 3,217 324 10 1.0 41 332 1.0 2% 

EV05 FL03 935 126 7 1.0 45 125 1.0 5% 

EV06 FL04 655 178 4 0.9 74 172 1.0 6% 

EV07 FL04 752 217 3 1.0 74 204 0.9 4% 

EV08 FL05 1,284 689 2 1.8 35 512 0.7 2% 

EV09 FL05 1,362 735 2 1.8 37 529 0.7 4% 

EV10 FL06 4,084 591 7 1.5 44 446 0.8 2% 

EV11 FL06 3,832 798 5 1.9 49 717 0.9 3% 

EV12 FL06 357 55 6 0.9 78 47 0.9 23% 

EV13 FL07 779 191 4 1.1 60 213 1.1 4% 

EV14 FL07 667 132 5 0.7 68 151 1.1 5% 

EV15 FL08 8,893 655 14 0.9 57 734 1.1 7% 

While the average tour distances made by the BETs were 
well below the manufacturer-estimated ranges of 150 miles 
and 120 miles for Class 7 and Class 8 BETs, respectively, 
some of the tours were longer than those ranges. Fig. 2 shows 
the longest tour made by each BET. It can be seen that the 
longest tour made by EV07 and EV12 exceeded the 
manufacturer-estimated range by a wide margin. These tours 
were possible due to off-site charging. This is illustrated in Fig. 
3 for EV07. The BET started the tour with 98% SOC. It made 
two stops, after which the SOC dropped to about 26%, which 
would not be sufficient for it to return to the homebase. Thus, 
it made a trip to a charging station instead. When it arrived at 
the charging station, the SOC was only 11%. There, the BET 
was charged for about 1.5 hours, which increased its SOC from 
11% to 96%. After that, the BET traveled back to its 
homebase, arriving at the homebase with an SOC of 58%. Out 
of the 156 miles of this tour, 52 miles or about one-third were 
deadhead miles for the BET to travel to and from the off-site 
charging station. These deadhead miles would not have been 
necessary if the BET had a longer range, or if there was a 
charging station at either Stop #1 or Stop #2 for the BET to be 
charged while there. 

Figure 2. Longest tour traveled by each BET 
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Figure 3. Longest tour of EV07 (156 miles) 

B. Charging Patterns 

In addition to understanding how often and where the 
BETs were charged, it is also important to examine when they 

were charged. Traditionally, with a fleet of diesel trucks, the 
fleet operator only has to worry about optimizing the routes 
and schedules of its trucks to serve its customers. However, 
with a BET fleet, the fleet operator will also have to optimize 
the charging of the BETs, taking into account the operation 
schedule of the BETs, time-of-use electricity rates, the BET-
to-charging station ratio, and other factors. 

Fig. 4 shows the frequency distribution of charging by time 
of day for each of the BETs. It is interesting to see that the 
charging patterns vary greatly where some BETs were charged 
predominantly at night while other BETs were charged mostly 
during the day. This finding is contrary to the belief that most 
heavy-duty trucks, once transitioned to BETs, would be 
charged at night, creating a large amount of charging load 
during those hours. However, as shown here in this study as 
well as in [22], heavy-duty trucks are quite diverse in their 
operations and many of them operate in the nighttime. In 
California, BETs that operate at night and are charged during 
the day can take advantage of solar energy, whose production 
peaks in the daytime. Therefore, a large deployment of these 
BETs can help reduce the amount of curtailed solar energy, 
which has been increasing in the last several years [23]. 

Truck ID EV01 EV02 EV03 EV04 EV05 EV06 EV07 EV08 EV09 EV10 EV11 EV12 EV13 EV14 EV15 

# of Hours 2.73 5.41 7.34 5.17 1.05 3.46 3.37 1.36 1.41 3.71 1.06 1.66 2.74 1.44 2.84 

Time of Day 

0 0.50 11.96 8.24 7.65 6.34 3.32 3.64 3.79 3.99 8.94 2.96 0.15 5.46 2.34 3.42 

1 0.17 10.92 8.78 10.13 5.14 3.44 3.47 2.99 3.74 8.98 3.66 0.00 6.70 1.72 4.01 

2 0.03 8.81 9.19 11.03 3.85 4.18 3.63 2.91 3.63 9.03 4.77 0.00 5.93 1.34 4.00 

3 0.83 1.69 9.50 11.45 5.88 4.12 3.57 5.33 4.70 9.03 6.28 0.05 4.67 1.34 3.89 

4 1.06 0.57 10.14 11.44 6.79 4.46 3.83 5.77 5.16 9.06 7.90 0.00 4.29 1.69 6.18 

5 0.99 0.58 10.76 11.82 2.82 4.59 3.82 5.29 4.48 8.76 8.90 0.23 3.42 3.43 8.62 

6 5.36 0.39 10.78 11.92 4.60 4.72 3.18 5.13 3.63 5.28 9.26 2.90 2.70 5.28 9.35 

7 7.16 0.36 9.96 8.71 4.58 3.82 2.43 5.21 3.64 0.79 9.34 3.14 2.10 4.27 8.17 

8 8.92 0.31 3.50 1.37 5.92 3.47 2.57 5.68 3.52 0.35 8.64 3.89 2.89 3.24 5.51 

9 6.46 0.34 0.54 0.25 2.78 1.65 2.85 4.57 3.42 0.32 2.68 3.39 3.29 2.83 4.23 

10 7.19 0.29 0.17 0.42 0.41 1.62 4.82 3.13 2.88 0.30 0.98 5.20 3.24 2.74 4.33 

11 8.40 0.24 0.09 0.33 0.00 1.54 4.58 3.60 2.85 0.18 0.88 4.77 3.87 3.25 5.18 

12 7.89 0.34 0.06 0.06 0.00 2.23 5.45 2.98 3.17 0.10 0.76 3.75 5.34 5.63 5.95 

13 7.67 0.32 0.09 0.09 0.51 5.33 4.72 4.46 4.52 0.09 0.62 3.59 6.62 7.58 6.95 

14 7.51 0.36 0.05 0.20 0.04 7.74 4.79 4.34 4.60 0.14 0.92 3.26 7.79 12.84 8.09 

15 7.46 0.55 0.12 0.24 0.37 7.81 4.92 4.97 5.84 0.41 1.04 3.94 7.69 13.55 6.79 

16 4.04 0.84 0.43 0.22 0.77 8.26 4.69 4.76 5.97 1.09 2.45 3.39 7.38 8.32 1.95 

17 1.38 3.00 1.49 0.20 2.56 6.99 4.76 4.57 6.47 1.23 6.94 3.77 4.87 4.56 0.50 

18 0.40 5.82 1.52 0.59 5.75 5.14 4.79 4.56 6.69 2.18 8.94 6.79 1.69 2.09 0.22 

19 1.52 7.68 1.03 0.81 7.06 3.47 4.26 3.83 4.31 3.77 3.75 14.95 0.99 2.27 0.06 

20 5.12 9.07 1.16 1.18 8.41 3.09 4.44 2.60 2.94 5.73 1.53 16.28 1.47 3.00 0.05 

21 5.73 10.54 2.03 2.08 8.23 3.28 5.14 2.78 2.98 7.32 2.36 11.15 1.73 2.06 0.07 

22 3.36 12.09 3.84 3.01 8.57 2.92 5.47 3.34 3.51 8.22 2.20 4.80 2.45 2.63 0.37 

23 0.84 12.94 6.54 4.78 8.62 2.78 4.21 3.41 3.37 8.70 2.25 0.63 3.42 2.01 2.11 

Figure 4. Charging activity of each BET by time of day 

C. Environmental Justice Implications 

As noted earlier, the deployment of BETs can bring about 

emission reduction and other environmental benefits to 

environmental justice communities that have been heavily 

impacted by truck traffic. The level of benefits will vary 

depending on the extent to which the conventional diesel 

trucks that the BETs replace travel in or around these 

communities. Fig. 5 shows the fraction of vehicle operation, 

in terms of both vehicle miles traveled (VMT) and vehicles 

hours traveled (VHT), in or around DACs for each BET in 

this study. The fraction varies considerably, ranging from 

23% to 85% (with a weighted average of 54%) for VMT and 

from 12% to 88% (with a weighted average of 47%) for VHT. 

The variation is apparent across BETs from different fleets, 

but there is variation among BETs from the same fleets as 

well, albiet to a lesser degree. 
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Figure 5. Fraction of vehicle miles traveled (VMT) and vehicle hours 

traveled (VHT) in or around DACs for each BET in this study. 

The extent to which a BET operates in or around DACs 

depends on a few factors including whether or not its 

homebase is located inside a DAC, the locations of its trip 

destinations (e.g., customer locations), and the travel routes it 

takes when making the trips. Fig. 6 shows the operation 

footprints of the BETs EV01 and EV15 as examples. The 

homebase of EV01 is located inside a DAC, and this BET 

operates mostly within 25 miles from its homebase. During 

the data collection period, 81% of the total VMT and 88% of 

the total VHT for this BET were in or around DACs, thus 

significantly reducing diesel emissions that woud have 

otherwise been released into these communities. While the 

homebase of EV15 is located inside a DAC and this BET also 

operates mostly within 25 miles from its homebase, it often 

travels on freeway corridors that do not pass through DACs. 

Therefore, only 26% of its total VMT and 24% of its total 

VHT during the data collection period were in or around 

DACs. These examples illustrate the fact that the emission 

reduction benefit to DACs as a result of replacing 

conventional diesel trucks with BETs can vary greatly 

depending on the travel patterns of those trucks. 

Since the dispersion of vehicular emissions is primarily 

within 500 meters from roadways [24], the contribution to 

near-road air quality improvements would be higher for BETs 

that travel through populated areas more frequently, and those 

improvements in near-road air quality will be espeically 

beneficial for environmental justice populations. At the same 

time, the deployment of BETs in place of conventional trucks 

that consume fossil fuel, irrespective of their local travel 

patterns, can also help improve regional air quality and reduce 

greenhouse gas emissions from freight transportation. 

In addition to emission reduction, BETs are also reported 

to generate lower levels of noise than their diesel counterparts 

[25]. This can reduce the level of noise pollution experienced 

by the truck drivers as well as the communities where BETs 

travel through, especially during nighttime. As an example, 

the data for EV01 in Fig. 4 implies that this BET operated 

mostly between 4 p.m. and 6 a.m. Given that 81% of this 

BET’s VMT were in or around DACs, the deployment of this 
BET not only provided emission reduction benefit but also 

reduced noise pollution for these DACs. 

Figure 6. Operation footprints of EV01 (top) and EV15 (bottom) 

displayed as red shades. Darker red indicates higher density of VMT. Blue 

stars represent the locations of the BETs’ homebases. Grey polygons 

represent the census tracts designated as DACs. 

IV. CONCLUSIONS AND FUTURE WORK 

This paper presents real-world activity patterns of 15 heavy-
duty BETs that are part of early deployments across eight 
different regional distribution fleets in Southern California. 
The results show that the BETs are typically used on routes (or 
tours) that are much shorter than their driving ranges. They 
often make one or two tours per day, and are usually charged 
at the end of each tour. Due to the variation in the time of day 
that the BETs are operated, they are charged at different times 
of day, spreading the charging load throughout the day. In 
addition, the results indicate that about half of the BET’s 
operations on average occur in or around disadvantaged 
communities, providing emission reduction benefits to these 
communities. While BETs are being promoted primarily as a 
way to decarbonize freight transportation, they can bring about 
several air quality and public health co-benefits due to the fact 
that they have no tailpipe emissions. This is especially 
important for urban freight transportation where trucks usually 
travel in highly populated urban areas. 

On the other hand, there are still many barriers to the 
adoption of BETs such as the lack of charging infrastructure 
to support the future demand of heavy-duty BET charging. In 
addition, there could be unintended consequences that should 
be proactively considered in the efforts to electrify heavy-duty 
trucks. For example, the development of charging 
infrastructure network should consider the potential increase 
in truck VMT due to BETs having to make deadhead trips to 
and from charging stations. One area of future work is thus the 
design of charging infrastructure network that minimizes such 
trips. In addition, the development of charging stations should 
also consider the traffic congestion and safety impacts of 
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heavy-duty truck traffic that the charging stations will attract. 
Stakeholders and communities should be engaged during the 
process so that their inputs can be taken into account in the 
siting, design, and construction of the charging stations. 
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