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Abstract 
We present a shape recovery technique in 2D and 3D with specific applications in 

modeling anatomical shapes from medical images. This algorithm models ext;remely 
corrugated structures like the brain, is topologically adaptable, and runs in 0( N log N) 
time where N is the total number of points in the domain: Our technique is based on 
the level set shape recovery scheme introduced in [14, 15] and the fast .marching method 
in [22] for computing solutions to static Hamilton-Jacobi equations. 

Index Terms: Hamilton-Jacobi Equation, Eikonal Equation,- Shape Recovery, Shape 

Modeling, Medical Image Analysis, Level Sets 

1 Introduction 

In many medical applications such as cardiac boundary detection and tracking, tumor volume 

quantification etc., accurately extracting shapes in 2D and 3D from medical images becomes 

an important task. These shapes are implicitly present in noisy images and the idea is 

to construct their boundary descriptions. Visualization and further processing like volume 

computation is then possible. In this paper, we present a fast shape modeling technique with 

specific applications in medical image analysis. 

*Supported in part by the Applied Mathematical Sciences Subprogram of the Office of Energy ~esearch, 
U.S. Dept. of Energy under Contract DE-AC03-76:SF00098 and by the NSF ARPA under grant DMS-8919074. 
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Active contour models [7] and surface models [27] have been used by many researchers to 

segment objects from medical image data. These models are based on deforming a trial shape 

towards the boundary of the desired object. The deformation is achieved via solving Euler

Lagrange equations which attempt to minimize an energy functional. As an alternative, 

implicit surface evolution models have been introduced by Malladi, Sethian, and Vemuri 

[14, 15]; readers are also referred to Caselles et al. [3] for a related effort. In these models, 

the curve and surface models evolve under an implicit speed law containing two terms, one 

that attracts it to the object boundary and the other that is closely related to the regularity 

of the shape. 

One of the challenges in shape recovery is to account for changes in topology as the shapes 

evolve. In the Lagrangian perspective, this can be done by reparameterizing the curve once 

every few time steps and to monitor the merge/split of various curves based on some criteria; 

see [18]. However, some problems still remain in 3D where the issue of monitoring topological 

transformations calls for an elegant solution. In [14, 15], the authors have modeled anatomical 

shapes as propagating fronts moving under a curvature dependent speed function [21]. They 

adopted the level set formulation of interface motion due to Osher and Sethian [19]. The 

central idea here is to represent a curve as the zero level set of a higher dimensional function; 

the motion of the curve is then embedded within the motion of the higher dimensional 

surface. As shown in [19], this approach offers several advantages. First, although the 

higher dimensional function remains a function, its zero level set can change topology, and 

form sha~p corners. Second, a discrete grid can be used together with finite differences to 

devise a numerical scheme to approximate the solution. Third, intrinsic geometric quantities 

like normal and curvature of the curve can be easily extracted from the higher dimensional 

function. Finally, everything extends directly to moving surfaces in three dimensions. 

In order to isolate shapes from images, an artificial speed term has been synthesized and 

applied to the front which causes it to stop near object boundaries; see [14, 15] for details. 

In [4, 8], this work has been improved by adding an additional term to the governing equa-
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tion. That 'Work views the object detection problem as computation, of curves of minimal 

(weighted) distance. The extra term is a projection of an attractive force- vector on the curve 

normal. Subsequently the level set based schemes for shape recovery have been extended to 

3D in [10, 5] and geometric measurements from detected anatomical shapes were made in 

[16]. Finally, interested readers are referred to [8, 25, 28, 13, 16] for closely related efforts. 

One drawback of the level set methodology stems from computational expense. By em

bedding a curve as the zero-level set of a higher dimensional function, we have turned a 

two-dimensional problem into a three-dimensional one. Reducing the added computational 
J 

expense without sacrificing the other advantages of level set schemes has been· the focus of 
. ) 

some recent work. Tube or narrow-band methods both in 2D and 3D have been developed 

and used in [6, 15, 1, 10]. The main idea of the tube method is to modify the level set 

method so that it only affects points close to the region of interest, namely the cells where 

the front is located. Another way to reduce the complexity of level set method is adaptive 

mesh refinement. This is precisely what Milne [17] has done in his theSis. The basic idea here 

is to start with a relatively coarse grid and adaptively refine the grid based on proximity to 

the zero level set or at places with high curvature. In both these cases it is possible to reduce 
,-

computational expense from 0( M 3) to 0( M 2) per time step in the case of a moving surface, 

where M is the number of points in each coordinate direction. Multi-scale implementation 

has also been considered as a possibility for fast solution of the level set equation [28]. 

In this paper, we solve the shape modeling problem by using the fast marching methods 

devised recently by Sethian [22, 23] and ex"tended to a wider class of Hamilton-Jacobi equa

tions in [2]. The marching method is a numerical technique for solving the Eikonal equation, 

and results fr?,m combining upwind schemes for viscosity solutions of Hamilton-Jacobi equa

tions, narrow-band level set methods, and a min-heap data structure. It results in a time 

complexity of O(N log N), where N is the_ total number of points in the domain. The rest of 

this paper is organized as follows: section 2 introduces the fast marching method; section 3 

explains shape recovery with the marching method and how it ties together with the level set 
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method [15, 10]; section 4 presents some results in 2D and 3D. We note that an abbreviated 

version of this paper was reported in Malladi and Sethian [9]. 

2 The Fast Marching Method 

We now briefly discuss the fast marching algorithm introduced in [22], which we shall need 

for shape recovery. Let r be the initial position of a hypersurface and let F be its speed 

in the normal direction. In the level set perspective, one views r as the zero level set of a 

higher dimensional function '1/J(x, y, z ). Then, by chain rule, an evolution equation for the 

moving hypersurface can be produced [19], namely 

'1/Jt + F(x, y, z) I \7'1/J I= 0, (1) 

Consider the special case of a monotonically advancing surface, i.e. a surface moving with 

speed F(x, y, z) that is always positive (or negative). Now, let T(x, y, z) be the time at which 

the surface crosses a given point (x, y, z ). The function T(x, y, z) then satisfies the equation 

I \lT IF= 1; (2) 

this simply says that the gradient of arrival time is inversely proportional to the speed of the 

surface. Broadly speaking, there are two ways of approximating the position of the moving 

surface; iteration towards the solution by numerically approximating the derivatives in Eqn. 

1 on a fixed Cartesian grid, or explicit construction of the solution function T(x, y, z) from 

Eqn. 2. Our marching algorithm relies on the latter approach. 

For the following discussion, we limit ourselves to a two-dimensional problem. Using the 

correct "entropy" satisfying [21, 19] approximation to the gradient, we are therefore looking 

for a solution in the domain to the following equation: 

[max(D~fT, 0) 2 + min(DtfT, 0) 2 + max(DZJT, 0) 2 + min(DtJT, 0) 2
]
112 = 1/ Fi,j, (3) 

where n- and n+ are backward and forward difference operators. Since the above equation 

is in essence a quadratic equation for the value at each grid point, we can iterate until 
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convergence by solving the equation at each grid point and selecting the largest possible 

value as the solution. This is in accordance with obtaining the correct viscosity solution. 

2.1 The Algorithm 

The key to constructing the fast algorithm is the observation that the upwind difference 

structure of Eqn. 3 means that information propagates from smaller values of T to larger 

values. Hence, the algorithm rests on building a solution to Eqn. 3 outwards from the 

smallest T value. Motivated by the methods in [1, 15], the "building zone" is confined to a 

narrow band around the front. The idea is to sweep the front ahead in an upwind fashion by 
I ' 

considering a set of points in the narrow band around the current front, and to march this 

narrow band forward. We explain this algorithmically: 

To illustrate, imagine that one wants to solve the Eikonal equation on an M by M grid on 

the unit box [0, 1] x [0, 1] with right-hand-side Fi,j > 0; furthermore, we are given an initial 

set T = 0 along the top of the box. 

1. Initialize 

(a) (Alive Points): Let Alive be the set of all grid points at which the value ofT is 

fixed. In our example, Alive= {(i,j) : i E {1, .. , M},j = M}. 

(b) (Narrow Band Points): Let NarrowBand be the set of all grid points in the narrow 

band. For our example NarrowBand= {(i,j): i E {1, .. ,M},j = M -1}, also 

set Ti,M _1 = dy j Fij, where dy is the spatial step size along y axis. 

(c) (Far Away Points): Let FarAway be the set of all the rest of the grid points 

{(i,j): j < M- 1}, set Ti,j = oo for all points in FarAway. 

2. Marching Forwards 

(a) Begin Loop: Let (imin,imin) be the point in NarrowBand with the smallest value 

forT. 
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(b) Add the point (imin,imin) to Alive; remove it from NarrowBand. 

(c) Tag as neighbors any points (imin - 1,jmin), Cimin + 1,jmin), Cimin,imin - 1), 

Cimin,imin + 1) that are not Alive; if the neighbor is in FarAway, remove it 

from that set and add it to the NarrowBand set. 

(d) Recompute the values ofT at all neighbors according to Equation (3), solving the 

quadratic equation given by our scheme. 

(e) Return to top of Loop. 

For more general initial conditions, and for a proof that the above algorithm produces a 

viable solution, see [2, 24]. 

2.2 The Min-Heap Data Structure 

An efficient version of the above technique relies on a fast way of locating the grid point 

in the narrow band with the smallest value forT. We use a variation on a heap algorithm 

(see Segdewick [20]) with back ppinters to store the T values. 

Specifically, we use a min-heap data structure. In an abstract sense, a min-heap is a 

"complete binary tree" with a property that the value at_ any given node is less than or equal 

to the values at its children. In practice, it is more efficient to represent a heap sequentially 

as an array by storing a node at location k and its children at locations 2k and 2k + 1. From 

this definition, the parent of a given node at k is located at l~J. Therefore, the root which 

contains the smallest element is stored at location k = 1 in the array. Finding the parent or 

children of a given element are simple array accesses which take 0(1) time. 

We store the values of T together with the indices which give their location in the grid 

structure. Our marching algorithm works by first looking for the smallest element in the 

NarrowBand; this FindSmallest operation involves deleting the root and one sweep of 

Do~eap to ensure that the remaining elements satisfy the heap property. The algorithm 

proceeds by tagging the neighboring points that are not Alive. The Far Away neighbors 

are added to the heap using an Insert operation and values at the remaining points are 
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T = 1.3(3, 5) 

T = 2.0(4,5) 

T = 1.3(3, 5) 

T = 2.0(4, 5) 

T = 1.3(3, 5) 

Step 1: Change T value at (2, 7) 

Step 2: New value at (2,7); UpHeap 

Heap property restored 

T = 2.3(6, 8) 

T = 2.9(3, 2) 

T = 2.9(3, 2) 

T = 2.0(2, 7) 

T = 2.9(3, 2) 

Figure 1: Heap structure and the UpHeap operation 

updated using Equation 3. Insert works by increasing the heap size by one and trickling 

the new element upward to its correct location using an UpHeap operation. Lastly, to ensure 

that the updated T values do not violate the heap property, we need to perform a UpHeap 

operation starting at that location and proceeding up the tree. 

The Dowm.Heap and UpHeap operations (in the worst case) carry an element all the way from 

root to bottom or vice versa. Therefore, this takes O(log M) time assuming there are M 

elements in the heap. It is important to note that the heap which is a complete binary tree is 

always guaranteed to remain balanced. This leaves us with the operation of searching for the 

NarrowBand neighbors of the smallest element in the heap. We make this 0(1) in time by 
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maintaining back pointers from the grid to the heap array. Without the back pointers, the 

above search takes O(M) in the worst case. The example in Fig. 1 shows the heap structure 

as the value at location (2, 7) changes from 3.1 to 2.0. 

3 Shape Recovery from Medical Images 

Given a noisy image function I(x), X E n2 for a 2D image and X E n3 in 3D, the objective 

in shape modeling is to extract mathematical descriptions of certain anatomical shapes con

tained in it. We are interested in recovering boundary representation of these shapes with 

minimal user interaction. In general, our approach consists of starting from user-defined 

"seed points" in the image domain and to grow trial shape models from these points. These 

surfaces are made to propagate in the normal direction with a speed F(x). 

Shape recovery is possible if we synthesize a special image-based speed function which is 

defined as a decreasing function of image gradient I \7 I ( x) I· The image-based speed function, 

say k1, controls the outward propagation of an initial surface (an interior point or a set 

of interior points) such that the shape model stops in the vicinity of shape boundaries. 

Mathematically this procedure corresponds to solving a static Hamilton-Jacobi equation 

(see Eqn. 1) which, when recast in the arrival time framework, is 

1 
I V'T(x) I= k

1
. (4) 

The speed function defined as 

F(x) = k1(x) = e-afV'G,.•J(x)J, a > 0, (5) 

has values very close to zero near high image gradients, i.e., possible edges. False gradients 

due to noise can be avoided by applying a Gaussian smoothing filter or more sophisticated 

edge-preserving smoothing schemes (see [11, 12, 13, 10, 26]). 

As an example, we consider the problem of reconstructing the entire cortical structure of 

the human brain from a dense MRI data set. The data is given as intensity values on a 
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256 x 256 x 124 grid. We start by defining "seed" points in the domain. The value of T 

at these points is set to zero and the initial heap is constructed from their neighbors. The 

fast marching algorithm in 3D is then employed to march ahead to fill the grid with time 

values according to Eqn. 2. We visualize various stages of our reconstruction by rendering 

particular level surfaces of the final time function T(x, y, z ). These stages are shown in Fig. 

2. The corrugated structure shown in Fig. 2(f) is our final shape. In the Fig. 4(a)-(d), we 

render the same {T(x, y, z) = 0.75} surface from different perspectives. Finally, in Fig. 4(e), 

we slice the surface parallel to the xy plane and superimpose the resulting contours on the 

corresponding image (see Fig. 4(f)). The timings for various stages of calculation on a Sun 

SPARC 1000 machine are shown in Fig. 3. 

With this model, the surface does not always stop near the shape boundary unless the 

speed values are very close to zero. More often than not, there are variations in the gradient 

along the object boundary which can cause the shape to "over-shoot". In large part, the 

definition of Eqn. 5 ensures that the speed F goes to zero rapidly and minimizes the over

shoot effect. However, to be further accurate, we now follow the ideas in [14, 15, 4, 10] and 

outline how additional constraints can be imposed on the surface motion. 

3.1 Level set method 

First, note that the shape model is represented implicitly as a particular level set of a 

function '1/J(x) defined in the image domain. As shown in section 2, an evolution equation 

can be written for the function 'ljJ such that it contains the motion of the surface embedded in 

it. Let the surface move under a simple speed law F = 1- £K, where K(x) is the curvature 

and € > 0. The constant component ofF causes the model to seek object boundaries and the 

curvature component controls the regularity of the deforming shape. Geometric quantities 

like surface normal and curvature can be extracted from the higher dimensional function 'lj;; 

for example 

(6) 
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(a) {T(z,y,z) = 0.01} (b) {T(z,y,z) = 0.035} 

(c) {T(z,y,z) = 0.075} (d) {T(z,y,z) = 0.125} 

(e) {T(z, y, z) = 0.25} (f) {T(z,y,z) = 0.75} 

Figure 2: Evolutionary sequence showing the brain reconstruction. 
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I Grid Size I Time to Load Speed File I Time to Propagate Surface I Total Time I 
I 256 x 256 x 124 I 8.61 sees I 74.92 sees I 83.53 sees I 

Figure 3: Timing for Marching to T=O. 75: Sun SPARC 1000 

in 2D and in 3D the mean curvature is giv~n by the expression 

K _ 1/J:c:c('l/J; + ¢;) + 1/Jyy('l/J; + ¢;) + 1/Jzz('l/J; + 1/J;)- 21/J:cy'l/J:c'l/Jy- 21/Jyz'l/Jy'l/Jz- 21/Jz:c'l/Jz'l/J:c 
- (1/J~ + 1/J~ + ¢;)3/2 

(7) 

The driving force that molds the initial surface into desired anatomical shapes comes from 

two image-based terms. The first one is similar to Eqn. 5 and the second term attracts the 

surface towards the object boundaries; the latter term has a stabilizing effect especially when 
~ 

there is a large variation in the image gradient value. Specifically, the equation of motion is 

1/Jt + 9I(1 - EK)IV''l/JI - f3V' p. V''lj; = 0. (8) 

where, 
1 

gi(x) = 1+ I V'Gu * I(x) 1· (9) 

The second term V' P · V''lj; denotes the projection of an (attractive) force vector on the 

surface normal. This force which is realized as the gradient of a potential field (see [4]) 

P(x) = -IV'Gu * J(x)l, (10) 

attracts the surface to the edges in the image; coefficient f3 controls the strength of this 

attraction. 

In this work, we adopt the following two stage approach when necessary. We first construct 

the arrival time function using our marching algorithm. If a more accurate reconstruction 

is desired, we treat the final T(x) function as an initial condition to our full model. In 

other words, we solve Eqn. 8 for a few time steps using explicit finite-differencing with 

'!j;(x; t = 0) = T(x). This too can be done very efficiently in the narrow band framework 

[15, 1]. Finally, the above initial condition is a valid one since the surface of interest is a 

particular level set of the final time function T. 
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(a) View# 1 (b) View# 2 

(c) View# 3 (d) View# 4 

(e) Slice (f) Superposition 

Figure 4: Cortical structure rendered from different perspectives; part (e) & (f) depict a slice 
of the surface on the corresponding image. 
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4 Results 

In this section, we present some shape recovery results from 2D and 3D medical images 

using tpe two-stage procedure we described in the previous section. We begin by defining 

seed points inside the region of interest; in most cases one mouse click will suffice. The · 

value of T(x) at these points is set to zero and the initial heap in order to start the marching 

method is constructed from their neighbors. We then employ the marching method to march 

until a fixed time or until the size of heap doesn't change very much between two successive 

time increments. This ends stage #1 of our scheme. We pass the final T(x) function as the 

initial state to Eqn. 8 which is then solved for a few time steps. In 2D, this whole procedure 

takes less than a second on a typical Sun SPARC workstation and to recover a 3D shape, 

the method executes in few tens of seconds. 

First, we present some results in 2D. In Fig. 5(a), we show a 256 x 256 image of the 

thoracic region along with the user-defined seed point inside the liver cross-section. The 

marching method is run until T(x, y) = 0.90; Fig. 5(b) depicts the level set {T = 0.75}. 

This function is then treated as the initial state to our full method, Eqn. 8, and the final 

shape, the level set {w = 0.75}, is shown in Fig. 5(c). In Figs. 5(d)-(f), we show the same 

sequence with the same parameters to reconstruct the shape of left ventricle from a different 

image. Finally, in Figs. 5(g)-(i), we show the final shapes of left ventricle cross-sections from 

three other images. 

In the next set of figures, we present examples in 3D. Figure 6 shows the reconstruction 

of spleen from a 3D CT image of size 256 x 256 x 64. We begin by initializing stage # 1 

with a set of mouse clicks in the image domain; see Fig. 6(a). As we did before in Fig. 

2, we render various isosurfaces of the final time function T(x, y, z). Note that the shading 

model and colors used are purely artificial and have no relation to the real organ. The time 

function Tis passed as an initial state to the level set shape recovery equation which is then 

solved for a few steps in a narrow-band around the level surface {w = 0.1}. The result is 

shown in Fig. 6(e). As shown in Fig. 6(d), the level surface {T = 0.1} that marks the end of 
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(a) Initial mouse click (b) End of Stage #1 (c) End of Stage #2 

(d) Initial mouse click (e) End of Stage#l (f) End of Stage#2 

(g) End of Stage#2 (h) End of Stage#2 (i) End of Stage#2 

Figure 5: 2D examples of our two-stage shape recovery scheme. 
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stage # 1, is noisy and is stopped a little further away from the object boundary compared 

to the final reconstruction in Fig. 6(e). This is because the speed function in Eqn. 5 falls 

to zero rapidly. To check the fidelity of the surface, we slice it parallel to the xy plane and 

superimpose the resulting contour on the corresponding image slice; see Fig. 7. Finally, in 

Fig. 8 we show two views of reconstructed shapes of liver, heart chambers , and the spleen 

from 256 x 256 x 64 medical images. 
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Figure 8: More examples of 3D shape recovery. 
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