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Abstract

Harmonic Activation and Transport

by

Jacob S. Calvert

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Alan Hammond, Chair

Harmonic activation and transport (HAT) is a random process which rearranges a set, one element
at a time. More precisely, for integers n > 2 and d > 1, and given an n-element subset U of Zd,
HAT is a Markov chain with the following dynamics. HAT removes x from U according to the
harmonic measure of x in U , and then adds y according to the probability that a simple random
walk from x, conditioned to hit the remaining set, leaves from y when it first does so. This process
is then repeated for the resulting set, and so on. We are primarily interested in the classification of
HAT as recurrent or transient, as the dimension d and number of elements n in the initial set vary.

Chapter 2 concerns HAT in two dimensions. When d = 2, HAT exhibits a phenomenon we
call collapse: Informally, the diameter shrinks to its logarithm over a number of steps which is
comparable to this logarithm. Collapse implies the existence of the stationary distribution of HAT,
where configurations are viewed up to translation, and the exponential tightness of diameter at
stationarity. Additionally, collapse produces a renewal structure with which we establish that the
center of mass process, properly rescaled, converges in distribution to two-dimensional Brownian
motion.

To characterize the phenomenon of collapse, we address fundamental questions about the extremal
behavior of harmonic measure and escape probabilities. Among n-element subsets of Z2, what is
the least positive value of harmonic measure? What is the probability of escape from the set to a
distance of, say, r? Concerning the former, examples abound for which the harmonic measure is
exponentially small in n. We prove that it can be no smaller than exponential in n log n. Regarding
the latter, the escape probability is at most the reciprocal of log r, up to a constant factor. We prove
it is always at least this much, up to an n-dependent factor.

Chapter 3 concerns HAT in higher dimensions. When d > 5 and n > 4, HAT is transient. We prove
that, remarkably, transience occurs in only one “way”: The initial state fragments into clusters of
two or three elements—but no other number—which then grow indefinitely separated. We call
these clusters dimers and trimers. Underlying this characterization of transience is the fact that,
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from any state, HAT reaches a state consisting exclusively of dimers and trimers, in a number of
steps and with at least a probability which depend on d and n only.

Together, our results establish that HAT exhibits a phase transition in both d and n, in the sense that
HAT is positive recurrent when d 6 2 or n 6 3, but transient when d > 5 and n > 4. Specifically,
the phase boundary has a “corner”: There are d > 3 and n > 4 for which HAT is transient, but
HAT is positive recurrent for any smaller d or n.
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Chapter 1

Introduction

Harmonic activation and transport (HAT) is a random process which rearranges a set, one element
at a time. HAT exhibits a remarkable phase transition, wherein the addition of just one element can
alter its long-term behavior from stationarity to transience. Although HAT is not a growth model, it
is connected to the class of Laplacian growth models, which describe the motion of many physical
interfaces. This chapter defines HAT, describes its phase transition, and details its connection to
Laplacian growth.

1.1 Harmonic activation and transport
More precisely, HAT is a Markov chain (U0, U1, . . . ) with a distribution P, the initial state of
which can be any configuration—an n-element subset of Zd, for a number of elements n > 2 and
a dimension d > 1. A generic step of the HAT dynamics is defined as

Ut+1 =
(
Ut \ {X}

)
∪ {Y }, (1.1)

whereX is the first site in Ut that a simple random walk “from infinity” visits, and Y is the site that
it steps from when it first visits Ut \ {X}. In fact, we condition this simple random walk to visit
Ut and then Ut \ {X}, to counteract its transience in dimension d > 3. We say that HAT activates
the element at X and then transports it to Y (Figure 1.1).

We define the distribution of X in terms of harmonic measure. To define harmonic measure,
we denote by Pz the distribution of simple random walk (S0, S1, . . . ) from z ∈ Zd. For A ⊆ Zd,
we use τA to denote the first time that simple random walk returns to A, i.e.,

τA = inf{t > 1 : St ∈ A}.
Definition 1.1.1 (Harmonic measure). Let A be a finite, nonempty subset of Zd. The harmonic
measure (from infinity) of A is the function HA : Zd → [0, 1] defined by

HA(x) = lim
z→∞

Pz(SτA = x | τA <∞). (1.2)

This limit exists (see, e.g., [Law13, Chapter 2]), so HA is well defined.
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Ut Ut+1

U U \ {x}

xx

∈ ∂U ∈ U ∈ ∂(U \ {x}) ∈ U \ {x}

A B

C D

Figure 1.1: The HAT dynamics in Z2. (A) An element (indicated by a solid, red circle) in the
configuration Ut is activated according to harmonic measure. (B) The activated element (following
the solid, red path) hits another element (indicated by a solid, blue circle); it is then fixed at the site
visited during the previous step (indicated by a solid, red circle), giving Ut+1. (C) An element of
U (indicated by a red circle) is activated and (D) if it tries to move into U\{x}, the element will be
transported back to x.

Harmonic measure gets its name from the fact that, for fixed x, the conditional probability in
(1.2) is a harmonic function, in the following sense. We will write y ∼ z if z and y are neighbors
in Zd—that is, if y, z ∈ Zd and if ‖y− z‖ = 1, where ‖·‖ is the Euclidean norm. The Laplacian of
a function f : Zd → R is defined by

∆f(z) =
1

2d

∑
y∼z

f(y)− f(z).

The function f is said to be (discrete) harmonic on B ⊆ Zd if ∆f(z) = 0 for each z ∈ B. For
fixed x, the conditional probability in (1.2) is a harmonic function of z, outside of the closure of
A, defined as A = A ∪ ∂A, where ∂A = {y /∈ A : y ∼ x for some x ∈ A} denotes the boundary
of A.

The distributions of X and Y , hence the activation and transport components of the HAT dy-
namics, are harmonic in essentially the same sense as the harmonic measure. For X , this is simply
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because the conditional distribution of X given Ut is HUt . For Y , this is because the conditional
distribution of Y given Ut and X is

PX
(
Sτ−1 = y

∣∣ τ <∞),
where τ abbreviates τUt\{X}. For fixed y, when X = x, this conditional probability is a harmonic
function of x, outside of the closure of Ut\{x}.

We conclude this section by formally stating the transition probabilities of HAT. According to
(1.1), given Ut, the probability that activation occurs at x ∈ Zd and transport occurs to y ∈ Zd at
time t is

pUt(x, y) = HUt(x)Px(Sτ−1 = y | τ <∞), (1.3)

where τ again abbreviates τUt\{x}. We define HAT in terms of pUt in the following way.

Definition 1.1.2 (HAT). Given a configuration U0 ⊂ Zd, HAT is the Markov chain (U0, U1, . . . )
with transition probabilities

P
(
Ut+1 = (Ut \ {x}) ∪ {y}

∣∣ Ut) =

{
pUt(x, y) if x 6= y, and∑

z∈Zd pUt(z, z) if x = y,
(1.4)

for t ∈ Z>0 and x, y ∈ Zd.

Remark 1.1.3. We use the random time τ − 1 in (1.3) as opposed to, say, the first hitting time of
the boundary of Ut\{x}, for the following reason. For the scenario depicted in Figure 1.1C–D,
wherein x neighbors elements of Ut\{x}, this hitting time would be zero and therefore Ut+1 would
necessarily equal Ut. This possibility would complicate arguments in Section 2.7 and is therefore
undesirable.

1.2 Classification of HAT
Having stated the activation and transport dynamics and explained the sense in which they are
harmonic, we turn to the focus of this thesis: the classification of HAT as recurrent or transient,
for different values of d and n (Figure 1.2). We organize our study of HAT’s classification in this
way because d and n are fixed by U0—if U0 is an n-element subset of Zd, then Ut will be too. The
work we discuss concerning HAT in Z2 comes from a paper with Shirshendu Ganguly and Alan
Hammond [CGH21]; work concerning HAT in higher dimensions comes from [Cal21].

To discuss the classification of HAT, we must first identify the sets that HAT can reach (i.e.,
form as Ut at some time t > 1). According to (1.1), the element Y must have a neighbor in Ut+1.
Moreover, it is easy to see that HUt+1(Y ) must be positive. Hence, it cannot be that every element
of Ut+1 with positive harmonic measure is neighborless. This observation implies that HAT cannot
reach sets for which every element with positive harmonic measure is neighborless. In fact, we
will later prove that these are the only sets that HAT cannot reach, and we give them a name.
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Positive recurrent

Transient

d

n

Figure 1.2: The phase diagram for HAT in the d–n grid. HAT is positive recurrent on N̂onIsod,n in
the blue-shaded region and transient in the red-shaded region. The classification of HAT has not
been established in the unshaded region.

Definition 1.2.1 (Exposed elements, isolated and non-isolated sets). We say that an element x of
finite A ⊂ Zd is exposed in A if HA(x) > 0. We say that an n-element A ⊂ Zd is isolated if
every exposed x in A has no neighbor in A, and we denote the collection of such sets by Isod,n.
We denote the collection of all other n-element subsets of Zd by NonIsod,n and call its members
non-isolated.

We also observe that the HAT dynamics is invariant under the symmetries of Zd. If Ut is an n-
element subset of Zd and if Gd denotes the symmetry group of Zd, then the transition probabilities
satisfy

P(Ut+1 = V | Ut) = P( gUt+1 = gV | gUt),
for every n-element V ⊂ Zd and g ∈ Gd. Accordingly, to each such V , we can associate the
equivalence class

V̂ =
{
W ⊂ Zd : W = gV for some g ∈ Gd

}
.

We denote the collection of equivalence classes of isolated and non-isolated sets by Îsod,n and
N̂onIsod,n. For brevity, we will often refer to an equivalence class of configurations as a configu-
ration.

The fact that the HAT dynamics is irreducible on the collection of non-isolated sets and invari-
ant under the symmetries of Zd suggests that, if HAT did have a stationary distribution, it would
naturally be supported on N̂onIsod,n. The main result of Chapter 2 states that HAT in Z2 has a
unique stationary distribution, supported on N̂onIso2,n, to which the distribution of Ut converges,
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from any n-element configuration in Z2. In particular, HAT is positive recurrent on N̂onIso2,n.
We will prove this result largely as a consequence of a phenomenon called collapse, which HAT
exhibits in Z2.

Informally, collapse occurs when the diameter of a configuration is reduced to its logarithm
over a number of steps proportional to this logarithm. Our characterization of collapse is essen-
tially a quantitative version of a basic aspect of the HAT dynamics—the asymmetric behavior of
diameter. Specifically, while the diameter of the HAT configuration can increase by at most one
with each step, its diameter can decrease in one step by an amount which is nearly this diameter.
For example, a configuration consisting of two elements separated by a large distance will have an
equally large diameter that is reduced to one after the next step.

Chapter 2 features two other consequences of collapse. The first is a tail bound on the diam-
eter of the HAT configuration under the stationary distribution, which is nearly exponential in the
diameter. The second is the fact that, properly rescaled, the center of mass process converges to
two-dimensional Brownian motion. Chapter 2 also proves a lower bound of harmonic measure,
which is needed for our characterization of collapse and which may be of independent interest.
Indeed, this bound has implications for a model of Laplacian growth, which we discuss in the next
section.

In Chapter 3, our focus turns to HAT in higher dimensions. The main result of the chapter is that
HAT is transient when d > 5 and n > 4. Remarkably, transience occurs in only one “way.” The
initial set fragments into clusters of two or three elements—but no other number—which then grow
indefinitely separated. We call these clusters dimers and trimers. Underlying this characterization
of transience is the fact that, from any set, HAT reaches a set consisting exclusively of dimers and
trimers, in a number of steps and with at least a probability which depend on d and n only.

Taken together, the results of Chapters 2 and 3 establish that HAT exhibits a kind of phase
transition in its long-term behavior, which is mediated not by a continuous parameter but by two
discrete ones—d and n (Figure 1.2). Moreover, although we do not complete the phase diagram,
these results suffice to show that the phase diagram exhibits a “corner”: there are d > 3 and n > 4
for which HAT is transient, but HAT is positive recurrent on N̂onIsod−1,n and N̂onIsod,n−1.

1.3 Connection to Laplacian growth
While HAT is not a growth model (indeed, it conserves the number of elements in a set), it is
related by harmonic measure to a class of interfacial growth models, known as Laplacian growth
models. In this context, “Laplacian” refers to the fact that each point of such an interface advances
with a velocity or probability proportional to the gradient of a harmonic field, i.e., a field that satis-
fies the Laplace equation [BDLP01]. For example, Laplacian growth can describe the motion of an
interface in response to gradients in pressure, temperature, or an electric field, which connects it to
diverse natural phenomena such as finger formation between viscous fluids [ST58], dendritic crys-
tal growth [LMK78], branched discharges in dielectric breakdown [NPW84], lung and vascular
morphogenesis [LM95, FS99], the formation of river networks [PDSR13], and many others.
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The connection between HAT and Laplacian growth arises from the fact that the harmonic
measure of a finite set A is proportional to the gradient of a field which is harmonic outside of A,
as we now explain. Let d > 3, A ⊆ Zd, and f : A→ R. The gradient of f at x ∈ A is the function

∇f(x) =
1

2d

∑
y∼x, y∈∂A

(
f(y)− f(x)

)
.

We also define the escape probability gA(x) = Px(σA = ∞) for x ∈ Zd, where σA = inf{t > 0 :
St ∈ A} denotes the first hitting time of A by simple random walk. Note that gA(x) is harmonic,
in the sense that ∆gA(x) = 0, for x outside of A. In these terms, if A is finite, then

HA(x) =
∇gA(x)∑
y∈A∇gA(y)

[Law13, Exercise 2.2.7]. For Z2, there is an analogous expression for harmonic measure, where
gA is defined differently, but remains harmonic outside of A [Law13, Proposition 2.3.2].

In this way, models of interfaces which grow in proportion to harmonic measure are Lapla-
cian. Paradigmatic models of Laplacian growth include diffusion-limited aggregation (DLA)
[WJS81, WS83], internal DLA [MD86, DF91], the Hastings-Levitov model [HL98], and the
Abelian sandpile model [BTW87, Dha90, BLS91].

Definition 1.3.1 (DLA). Let o denote the origin in Zd and let D0 = {o}. DLA is the Markov chain
(D0, D1, . . . ), a generic step of which is defined by

Dt+1 = Dt ∪ {X},

where the distribution of X is H∂Dt .

Whereas HAT rearranges a set, DLA grows one. The simplicity of its definition belies the
challenge DLA presents to rigorous analysis. Despite being introduced over 40 years ago, there
are only two rigorous results about DLA in Z2, the original setting of its study [WJS81]. The
potential value of rigorous contributions is underscored by the discrepancies between predictions
about DLA from non-rigorous analytical approximations and simulation studies. In Chapter 2,
we elaborate this point and prove a lower bound of harmonic measure which, although originally
motivated by our analysis of HAT, effectively rules-out a prediction about DLA from the physics
literature.
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Chapter 2

HAT in two dimensions

This chapter is based on joint work with Shirshendu Ganguly and Alan Hammond [CGH21].

2.1 Main results
In this chapter, because we will exclusively work in Z2, we will repurpose d to denote a diameter
instead of a dimension.

The variable connectivity of HAT configurations and concomitant opportunity for unchecked
diameter growth would seem to jeopardize the positive recurrence of the HAT dynamics. Indeed,
if the diameter were to grow unabatedly, the HAT dynamics could not return to a configuration
or equivalence class thereof, and would therefore be doomed to transience. However, due to the
asymmetric behavior of diameter under the HAT dynamics, this will not be the case. For an arbi-
trary initial configuration of n > 2 particles, we will prove—up to a factor depending on n—sharp
bounds on the “collapse” time which, informally, is the first time the diameter is at most a certain
function of n.

Definition 2.1.1. For a positive real number R, we define the level-R collapse time to be T (R) =
inf{t > 0 : diam(Ut) 6 R}.

For a real number r > 0, we define θm = θm(r) through

θ0 = r and θm = θm−1 + eθm−1 for m > 1. (2.1)

In particular, θn(r) is approximately the nth iterated exponential of r.

Theorem 2.1.2 (Collapse). Let U be a finite subset of Z2 with n > 2 elements and denote the
diameter of U by d. There exists a universal positive constant c such that, if d exceeds θ4n(cn),
then

PU

(
T (θ4n(cn)) 6 (log d)1+on(1)

)
> 1− e−n.

For the sake of concreteness, this is true with n−4 in the place of on(1).
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In words, for a given n, it typically takes (log d)1+on(1) steps before the configuration of initial
diameter d reaches a configuration with a diameter of no more than a large function of n.

Recall the definition of non-isolated configurations (Definition 1.2.1). As a consequence of
Theorem 2.1.2 and the preceding discussion, it will follow that the HAT dynamics constitutes an
aperiodic, irreducible, and positive recurrent Markov chain on N̂onIso2,n. In particular, this means
that, from any configuration of N̂onIso2,n, the time it takes for the HAT dynamics to return to that
configuration is finite in expectation. Aperiodicity, irreducibility, and positive recurrence imply
the existence and uniqueness of the stationary distribution πn, to which HAT converges from any
n-element configuration. Moreover—again, due to Theorem 2.1.2—the stationary distribution is
exponentially tight.

Theorem 2.1.3 (Existence of the stationary distribution). For every n > 2, from any n-element
subset of Z2, HAT converges to a unique probability measure πn supported on N̂onIso2,n. More-
over, πn satisfies the following tightness estimate. There exists a universal positive constant c such
that, for any r > 2θ4n(cn),

πn
(
diam(Û) ≥ r

)
≤ exp

(
− r

(log r)1+on(1)

)
.

In particular, this is true with 6n−4 in the place of on(1).

As a further consequence of Theorem 2.1.2, we will find that the HAT dynamics exhibits a
renewal structure which underlies the diffusive behavior of the corresponding center of mass pro-
cess.

Definition 2.1.4. For a sequence of configurations (Ut)t∈N, define the corresponding center of
mass process (Mt)t>0 by Mt = |Ut|−1

∑
x∈Ut x.

For the following statement, denote by C([0, 1]) the continuous functions f : [0, 1] → R2 with
f(0) = (0, 0), equipped with the topology induced by the supremum norm ‖f‖∞ = sup06t61 ‖f(t)‖.

Theorem 2.1.5 (Convergence to two-dimensional Brownian motion). If Mt is linearly interpo-
lated, then the law of the process

(
t−1/2Mst, s ∈ [0, 1]

)
, viewed as a measure on C([0, 1]), con-

verges weakly as t→∞ to two-dimensional Brownian motion on [0, 1] with coordinate diffusivity
χ2 = χ2(n). Moreover, for a universal positive constant c, χ2 satisfies:

θ5n(cn)−1 ≤ χ2 6 θ5n(cn).

We have not tried to optimize the bounds on χ2; indeed, they primarily serve to show that χ2 is
positive and finite.

As we elaborate in Section 2.2, the timescale of diameter collapse in Theorem 2.1.2 arises
from novel estimates of harmonic measure and hitting probabilities, which control the activation
and transport dynamics of HAT. Beyond their relevance to HAT, these results further the charac-
terization of the extremal behavior of harmonic measure.
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Estimates of harmonic measure often apply only to connected sets or depend on the diameter
of the set. The discrete analogues of Beurling’s projection theorem [Kes87]—which was used to
prove the upper bound on the growth rate of DLA in [Kes90]—and Makarov’s theorem [Law93]
are notable examples. Furthermore, estimates of hitting probabilities often approximate sets by
disks which contain them (for example, the estimates in Chapter 2 of [Law13]). Such approxi-
mations work well for connected sets, but not for sets which are “sparse” in the sense that they
have large diameters relative to their cardinality; we provide examples to support this claim in
Section 2.2.2. For the purpose of controlling the HAT dynamics, which adopts such sparse config-
urations, existing estimates of harmonic and hitting measures are either inapplicable or suboptimal.

To highlight the difference in the behavior of harmonic measure for general (i.e., potentially
sparse) and connected sets, consider a finite subset A of Z2 with n > 2 elements. We ask: What
is the greatest value of HA(x)? If we assume no more about A, then we can say no more than
HA(x) 6 1

2
(see Section 2.5 of [Law13] for an example). However, if A is connected, then the

discrete analogue of Beurling’s projection theorem [Kes87] provides a finite constant c such that

HA(x) 6 cn−1/2.

This upper bound is realized (up to a constant factor) when A is a line segment and x is one of its
endpoints.

Our next result provides lower bounds of harmonic measure to complement the preceding upper
bounds, addressing the question: What is the least positive value of HA(x)?

Theorem 2.1.6 (Lower bound of harmonic measure). There exists a universal positive constant c
such that, if A is a subset of Z2 with n > 1 elements, then either HA(x) = 0 or

HA(x) > e−cn logn. (2.2)

If A is connected, then (2.2) can be replaced by

HA(x) > e−cn. (2.3)

The lower bound of (2.3) is optimal in terms of its dependence on n, as we can choose A to
be a narrow, rectangular “tunnel” with a depth of order n, in which case the harmonic measure at
the “bottom” of the tunnel is exponentially small in n; we will shortly discuss a related example in
greater detail. We expect that the bound in (2.2) can be improved to an exponential decay with a
rate of order n instead of n log n.

If one could improve (2.2) as we anticipate, we believe that the resulting lower bound would
be realized by the harmonic measure of the innermost element of a square spiral (Figure 2.1). The
virtue of the square spiral is that, essentially, with each additional element, the shortest path to the
innermost element lengthens by two steps. This heuristic suggests that the least positive value of
harmonic measure should decay no faster than 4−2n, as n → ∞. Indeed, Example 2.1.8 suggests
an asymptotic decay rate of (2 +

√
3)−2n. We formalize this observation as a conjecture. To state

it, denote the origin by o = (0, 0) and let Hn be the collection of n-element subsets A of Z2 such
that HA(o) > 0.
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Conjecture 2.1.7. Asymptotically, the square spiral of Figure 2.1 realizes the least positive value
of harmonic measure, in the sense that

lim
n→∞

− 1

n
log inf

A∈Hn

HA(o) = 2 log(2 +
√

3).

Example 2.1.8. Figure 2.1 depicts the construction of an increasing sequence of sets (A1, A2, . . . )
such that, for all n > 1, An is an element of Hn, and the shortest path Γ = (Γ1,Γ2, . . . ,Γ|Γ|) from
the exterior boundary of An ∪ ∂An to the origin, which satisfies Γi /∈ An for 1 6 i 6 |Γ| − 1, has
a length of 2(1− on(1))n.

Since Γ1 separates the origin from infinity in Acn, we have

HAn(o) = HAn∪{Γ1}(Γ1) · PΓ1

(
SτAn = o

)
. (2.4)

Concerning the first factor of (2.4), one can show that there exist positive constants b, c < ∞
such that, for all sufficiently large n,

cn−b 6 HAn∪{Γ1}(Γ1) 6 1.

To address the second factor of (2.4), we observe that

PΓ1

(
SτAn = o

)
= PΓ1

(
S1 = Γ2

∣∣ τAn < τΓ1

)
· PΓ2

(
SσAn = o

∣∣ σAn < σΓ1

)
. (2.5)

It is easy to see that the first factor of (2.5) satisfies

1

2
6 PΓ1

(
S1 = Γ2

∣∣ τAn < τΓ1

)
6 1.

The second factor of (2.5) can be explicitly calculated using a system of difference equations. To
this end, we define

f(i) = PΓi

(
SσAn = o

∣∣ σAn < σΓ1

)
∀ 1 6 i 6 |Γ|,

which satisfies:

f(1) = 0, f(|Γ|) = 1, and f(i) =
1

4
f(i+ 1) +

1

4
f(i− 1) ∀ 2 6 i 6 |Γ| − 1.

The solution of this system yields

PΓ2

(
SσAn = o

∣∣ σAn < σΓ1

)
=

2
√

3

(2 +
√

3)|Γ|−1 − (2−
√

3)|Γ|−1
. (2.6)

Combining (2.4) through (2.6), we find that, for all sufficiently large n,

1
2
cn−b

(2 +
√

3)|Γ|−1
6 HAn(o) 6

1

(2 +
√

3)|Γ|−2
. (2.7)
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Γ1

o

Figure 2.1: A square spiral. The shortest path Γ (red) from Γ1 to the origin, which first hits An
(black and gray dots) at the origin, has a length of approximately 2n. Some elements (gray dots)
of An could be used to continue the spiral pattern (indicated by the black dots), but are presently
placed to facilitate a calculation in Example 2.1.8.

Substituting |Γ| = 2(1− on(1))n into (2.7) and simplifying, we obtain

(2 +
√

3)−2(1+on(1))n 6 HAn(o) 6 (2 +
√

3)−2(1−on(1))n,

which implies

lim
n→∞

− 1

n
logHAn(o) = 2 log(2 +

√
3).

The problem of estimating HA(x) is connected to an extensive literature on the supposed mul-
tifractal nature of DLA aggregates. In this context, the use of “multifractal” is an assertion that
the harmonic measure on the boundaries of DLA configurations obeys power-law scaling with the
linear size L of the aggregate [Mea87, HJK+87] (see [Mak98] for a detailed mathematical formal-
ism). To maintain the notation prevalent in this literature, we respectively denote by pmax(n) and
pmin(n) the greatest and least positive values of harmonic measure on the boundary of a typical
DLA configuration at time n. We note that, to make “typical” precise, we could write

pmax(n) = exp
(
E
[
log max

x
H∂Un(x)

])
, (2.8)

where the expectation is with respect to the DLA dynamics and where the minimum is over x with
positive H∂Un(x); we could define pmin in an analogous fashion. Alternative definitions of pmax

and pmin appear in the literature, but we will conflate them as the distinction is unimportant to the
present discussion.
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Suppose, for example, that there is a β ∈ (0, 1) such that linear size of a DLA configuration at
time n satisfies L = Θ(nβ) as n→∞, a.s. Then the assumption of multifractality with respect to
L implies the existence of finite exponents αmin < αmax such that

pmax(n) = Θ
(
n−β αmin

)
and pmin(n) = Θ

(
n−β αmax

)
. (2.9)

To test the hypothesis that DLA configurations are multifractal, a number of studies have es-
timated the quantities in (2.9). Virtually every analytical approximation has concluded that β is 3

5

[Mea83, Mut85, BBRT85, TS85, HL92], while almost every simulation study suggests a slightly
smaller value of approximately 1

1.71
[WS83, HMP86, TM89, Wol91, DHO+99, DP00, DLP00].

Additionally, there appears to be a consensus that αmin is approximately 2
3

[TS85, HMP86, Wol91,
HL92, JMP03]. Regarding mathematically rigorous constraints on β and αmin, Kesten’s bound on
the growth rate of DLA guarantees β 6 2

3
[Kes90] and the discrete analogue of Beurling’s projec-

tion theorem [Kes87] concludes that the greatest value of the harmonic measure of any connected
set of linear size L is O(L−1/2). In this case, we must have pmax(n) = O(n−β/2) which, by (2.9),
implies αmin > 1

2
. Thus, the conjectured values for β and αmin are permitted by mathematically

rigorous bounds.
In contrast with the apparent consensus on the value of αmin, the value of αmax and the validity

of the multifractal form (2.9) for pmin(n) are controversial. Concerning the latter, many studies
have suggested that pmin(n) may decay more rapidly in n than a power law, ultimately corre-
sponding to the failure of (2.9) [LS88, BA89, SLB+90, ME90, EJM91, Wol91, Hen92, Man04a,
Man04b]. For example, the authors of [LS88] found− log pmin(n) to be Θ

(
n2β
)
, while the authors

of [BA89] suggested Θ(na) for an unspecified a > 0. In fact, because DLA configurations are con-
nected, Theorem 2.1.6 shows that a rate of exponential decay exceeding O(n) is impossible. In
particular, as β is accepted to be larger than 1

2
(i.e., DLA is not a disk), Theorem 2.1.6 effectively

rules-out the prediction of [LS88] concerning pmin(n), as well as the rate in [BA89] for a > 1.
While our results have consequences for pmin(n), they do not undermine the supposed mul-

tifractality of DLA. In fact, a pair of studies [JLMP02, ASSZ09] claimed to have definitively
established a finite value of αmax on the basis of an iterated conformal map approximation of DLA
over roughly 104 steps and off-lattice DLA simulations over 106 steps, respectively. However, this
conclusion may be influenced by insufficient simulation length and inherent biases in the corre-
sponding simulation methods [Loh14, GB17]. Indeed, a state of the art, on-lattice simulation of
DLA over 108 steps [GB17] produces a cluster which differs qualitatively from those of [JLMP02]
and [ASSZ09], and which appears to exhibit fjords similar to those suggested in [SLB+90] to lead
to a violation of (2.9). If multifractality is ultimately violated, extremal harmonic measure esti-
mates may play an important role in a refined understanding of the scaling of harmonic measure
on DLA configurations.

We conclude the discussion of our main results by stating an estimate of hitting probabilities of
the form Px (τ∂Ad < τA), for x ∈ A and where Ad is the set of all elements of Z2 within distance
d of A; we will call these escape probabilities from A. Among n-element subsets A of Z2, when
d is sufficiently large relative to the diameter of A, the greatest escape probability to a distance d
from A is at most the reciprocal of log d, up to a constant factor. We find that, in general, it is at
least this much, up to an n-dependent factor.
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Theorem 2.1.9 (Lower bound of escape probability). There exists a universal positive constant c
such that, if A is a finite subset of Z2 with n > 2 elements and if d > 2 diam(A), then, for any
x ∈ A,

Px(τ∂Ad < τA) >
cHA(x)

n log d
. (2.10)

In particular,
max
x∈A

Px (τ∂Ad < τA) >
c

n2 log d
. (2.11)

In the context of the HAT dynamics, we will use (2.11) to control the transport step, ultimately
producing the log d timescale appearing in Theorem 2.1.2. In the setting of its application, A and
d will respectively represent a subset of a HAT configuration and the separation of A from the rest
of the configuration. Reflecting the potential sparsity of HAT configurations, d may be arbitrarily
large relative to n.

Organization
HAT motivates the development of new estimates of harmonic measure and escape probabilities.
We attend to these estimates in Section 2.3, after we provide a conceptual overview of the proofs
of Theorems 2.1.2 and 2.1.3 in Section 2.2. To analyze configurations of large diameter, we will
decompose them into well separated “clusters,” using a construction introduced in Section 2.5 and
used throughout Section 2.6. The estimates of Section 2.3 control the activation and transport steps
of the dynamics and serve as the critical inputs to Section 2.6, in which we analyze the “collapse”
of HAT configurations. We then identify the class of configurations to which the HAT dynamics
can return and prove the existence of a stationary distribution supported on this class; this is the
primary focus of Section 2.7. The final section, Section 2.8, uses an exponential tail bound on
the diameter of configurations under the stationary distribution—a result we obtain at the end of
Section 2.7—to show that the center of mass process, properly rescaled, converges in distribution
to two-dimensional Brownian motion.

2.2 Conceptual overview

2.2.1 Estimating the collapse time and proving the existence of the
stationary distribution

Before providing precise details, we discuss some of the key steps in the proofs of Theorems 2.1.2
and 2.1.3. Since the initial configuration U of n particles is arbitrary, it will be advantageous to
decompose any such configuration into clusters such that the separation between any two clusters
is at least exponentially large relative to their diameters. For the purpose of illustration, let us
start by assuming that U consists of just two clusters with separation d and hence the individual
diameters of the clusters are no greater than log d (Figure 2.2).
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d

log d log d

Figure 2.2: Exponentially separated clusters.

The first step in our analysis is to show that in time comparable to log d, the diameter of U
will shrink to log d. This is the phenomenon we call collapse. Theorem 2.1.6 implies that every
particle with positive harmonic measure has harmonic measure of at least e−cn logn. In particular,
the particle in each cluster with the greatest escape probability from that cluster has at least this
harmonic measure. Our choice of clustering will ensure that each cluster is separated by a distance
which is at least twice its diameter and has positive harmonic measure. Accordingly, we will
treat each cluster as the entire configuration and Theorem 2.1.9 will imply that the greatest escape
probability from each cluster will be at least (log d)−1, up to a factor depending upon n.

Together, these results will imply that, in On(log d) steps, with a probability depending only
upon n, all the particles from one of the clusters in Figure 2.2 will move to the other cluster.
Moreover, since the diameter of a cluster grows at most linearly in time, the final configuration
will have diameter which is no greater than the diameter of the surviving cluster plus On(log d).
Essentially, we will iterate this estimate—by clustering anew the surviving cluster of Figure 2.2—
each time obtaining a cluster with a diameter which is the logarithm of the original diameter,
until d becomes smaller than a deterministic function θ4n, which is approximately the 4nth iterated
exponential of cn, for a constant c.

Let us denote the corresponding stopping time by T (below θ4n). In the setting of the applica-
tion, there may be multiple clusters and we collapse them one by one, reasoning as above. If any
such collapse step fails, we abandon the experiment and repeat it. Of course, with each failure,
the set we attempt to collapse may have a diameter which is additively larger by On(log d). Ulti-
mately, our estimates allow us to conclude that the attempt to collapse is successful within the first
(log d)1+on(1) tries with a high probability.

The preceding discussion roughly implies the following result, uniformly in the initial config-
uration U :

PU

(
T (below θ4n) ≤ (log d)1+on(1)

)
≥ 1− e−n.

At this stage, we prove that, given any configuration Û and any configuration V̂ ∈ N̂onIso2,n,
if K is sufficiently large in terms of n and the diameters of Û and V̂ , then

PÛ

(
T (hits V̂ ) 6 K5

)
> 1− e−K ,

where T (hits V̂ ) is the first time the configuration is V̂ . This estimate is obtained by observing
that the particles of Û form a line segment of length n in K3 steps with high probability, and
then showing by induction on n that any other non-isolated configuration V̂ is reachable from
the line segment in K5 steps, with high probability. In addition to implying irreducibility of the
HAT dynamics on N̂onIso2,n, we use this result to obtain a finite upper bound on the expected
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return time to any non-isolated configuration (i.e., it proves the positive recurrence of HAT on
N̂onIso2,n). Irreducibility and positive recurrence on N̂onIso2,n imply the existence and uniqueness
of the stationary distribution.

2.2.2 Improved estimates of hitting probabilities for sparse sets
HAT configurations may include subsets with large diameters relative to the number of elements
they contain, and in this sense they are sparse. Two such cases are depicted in Figure 2.3. A key
component of the proofs of Theorems 2.1.6 and 2.1.9 is a method which improves two standard
estimates of hitting probabilities when applied to sparse sets, as summarized by Table 2.1.

×x

(A)R

C(r)

C(2r)

C(R+ r)

×
x

C(R)

C(R3 )o

Figure 2.3: Sparse sets like ones which appear in the proofs of Theorems 2.1.6 (left) and 2.1.9
(right). The elements of A are represented by dark green dots. On the left, A\{o} is a subset of
D(R)c. On the right, A is a subset of D(r) and the R-fattening of A (shaded green) is a subset of
D(R + r). The figure is not to scale, as R > en on the left, while R > er on the right.

Table 2.1: Summary of improvements to standard estimates in sparse settings. The origin is de-
noted by o and AR denotes the set of all points in Zd within a distance R of A.

Setting Quantity Standard estimate New estimate

Fig. 2.3 (left), R > en Px(τo < τA∩D(R)c) Ω
(

1
logR

)
Ω
(

1
n

)
Fig. 2.3 (right), R > er Px(τ∂AR < τA) Ωn

(
1

logR

)
Ωn

(
log r
logR

)
For the scenario depicted in Figure 2.3 (left), we estimate the probability that a random walk

from x ∈ C(R
3

) hits the origin before any element of A\{o}. Since C(R) separates x from A\{o},
this probability is at least Px(τo < τC(R)). We can calculate this lower bound by combining the
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fact that the potential kernel (defined in Section 2.3) is harmonic away from the origin with the
optional stopping theorem (e.g., Proposition 1.6.7 of [Law13]):

Px
(
τo < τC(R)

)
=

logR− log ‖x‖+O(R−1)

logR +O(R−1)
.

This implies Px(τo < τA∩D(R)c) = Ω( 1
logR

), since x ∈ C(R
3

) and R > en.
We can improve the lower bound to Ω( 1

n
) by using the sparsity of A. We define the random

variable W =
∑

y∈A\{o} 1 (τy < τo) and write

Px
(
τo < τA\{o}

)
= Px (W = 0) = 1− ExW

Ex[W
∣∣ W > 0]

.

We will show that Ex[W
∣∣ W > 0] > ExW + δ for some δ which is uniformly positive in A and n.

We will be able to find such a δ because random walk from x hits a given element of A\{o} before
o with a probability of at most 1/2, so conditioning on {W > 0} effectively increases W by 1/2.
Then

Px
(
τo < τA\{o}

)
> 1− ExW

ExW + δ
> 1− n

n+ δ
= Ω( 1

n
).

The second inequality follows from the monotonicity of ExW
ExW+δ

in ExW and the fact that |A| 6 n,
so ExW 6 n. This is a better lower bound than Ω( 1

logR
) when R is at least en.

A variation of this method also improves a standard estimate for the scenario depicted in Fig-
ure 2.3 (right). In this case, we estimate the probability that a random walk from x ∈ C(2r)
hits ∂AR before A, where A is contained in D(r) and AR consists of all elements of Z2 within a
distance R > er of A. We can bound below this probability using the fact that

Px (τ∂AR < τA) > Px(τC(R+r) < τC(r)).

A standard calculation using the potential kernel of random walk (e.g., Exercise 1.6.8 of [Law13])
shows that this lower bound is Ωn( 1

logR
), since R > er and r = Ω(n1/2).

We can improve the lower bound to Ωn( log r
logR

) by using the sparsity of A. We define W ′ =∑
y∈A 1 (τy < τ∂AR) and write

Px (τ∂AR < τA) = 1− ExW ′

Ex[W ′
∣∣ W ′ > 0]

> 1− nα

1 + (n− 1)β
,

where α bounds above Px (τy < τ∂AR) and β bounds below Pz (τy < τ∂AR), uniformly for x ∈
C(2r) and distinct y, z ∈ A. We will show that α 6 β and β 6 1 − log(2r)

logR
. The former is

plausible because ‖x − y‖ is at least as great as ‖y − z‖; the latter because dist(z, A) > R while
‖y − z‖ 6 2r, and because of (2.14). We apply these facts to the preceding display to conclude

Px (τ∂AR < τA) > n−1(1− β) = Ωn( log r
logR

).

This is a better lower bound than Ωn( 1
logR

) because r can be as large as logR.
In summary, by analyzing certain conditional expectations, we can better estimate hitting prob-

abilities for sparse sets than we can by applying standard results. This approach may be useful in
obtaining other sparse analogues of hitting probability estimates.
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2.3 Harmonic measure estimates
The purpose of this section is to prove Theorem 2.1.6. We will describe the proof strategy in Sec-
tion 2.3.1, before proving several estimates in Section 2.3.2 which will streamline the presentation
of the proof in Section 2.3.3. The majority of our effort is devoted to the proof of (2.2); we will
obtain (2.3) as a corollary of a geometric lemma in Section 2.3.2.

Consider a subset A of Z2 with n > 2 elements, which satisfies HA(o) > 0 (i.e., A ∈ Hn).
We frame the proof of Theorem 2.1.6—in particular, the proof of (2.2)—in terms of “advancing”
a random walk from infinity to the origin in three or four stages, while avoiding all other elements
of A. These stages are defined in terms of a sequence of annuli which partition Z2.

Denote the disk of radius r about x by Dx(r) = {y ∈ Z2 : ‖x − y‖ < r}, or D(r) if
x = o, and denote its boundary by Cx(r) = ∂Dx(r), or C(r) if x = o. Additionally, denote by
A(r, R) = D(R)\D(r) the annulus with inner radius r and outer radius R. We will frequently
need to reference the subset of A which lies within or beyond a disk. We denote A<r = A ∩D(r)
and A>r = A ∩D(r)c.

Define radii R1, R2, . . . and annuli A1,A2, . . . through R1 = 105, and R` = R`
1 and A` =

A(R`, R`+1) for ` > 1. We fix δ = 10−2 for use in intermediate scales, like C(δR`+1) ⊂ A`.
Additionally, we denote by n0, n`, m`, and n>J the number of elements of A in D(R1), A`,
A` ∪ A`+1, and D(RJ+1)c, respectively.

We will split the proof of (2.2) into an easy case when n0 = n and a difficult case when n0 6= n.
If n0 6= n, then A>R1 is nonempty and the following indices I = I(A) and J = J(A) are well
defined:

I = min{` > 1 : A` contains an element of A\{o}}, and
J = min{` > I : A` contains no element of A\{o}}.

We explain the roles of I and J in the following subsection.

2.3.1 Strategy for the proof of Theorem 2.1.6
This section outlines a proof of (2.2) by induction on n. The induction step is easy when n0 = n;
the following strategy concerns the difficult case when n0 6= n. The proof of (2.3) is a simple
consequence of an input to the proof of (2.2), so we address it separately, in Section 2.3.2.

Stage 1: Advancing to C(RJ). Assume n0 6= n and n > 3. By the induction hypothesis, there
is universal constant c1 such that the harmonic measure at the origin is at least e−c1k log k, for any
set in Hk, 1 6 k < n. Denote the law of random walk from∞ by P (without a subscript) and let
k = n>J + 1. Because a random walk from∞ which hits the origin before A>RJ also hits C(RJ)
before A, the induction hypothesis applied to A>RJ ∪ {o} ∈Hk implies that P(τC(RJ ) < τA) is no
smaller than exponential in k log k. Note that k < n because A<RI+1

has at least two elements by
the definition of I .

The reason we advance the random walk to C(RJ) instead of the boundary of a smaller disk
is that an adversarial choice of A could produce a “choke point” which likely dooms the walk to
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be intercepted by A\{o} in the second stage of advancement (Figure 2.4). To avoid a choke point
when advancing to the boundary of a disk D, it suffices for the conditional hitting distribution of
∂D given {τ∂D < τA} to be comparable to the uniform hitting distribution on ∂D. To prove this
comparison, the annular region immediately beyond D and extending to a radius at least twice that
of D must be empty of A, hence the need for exponentially growing radii and for AJ to be empty
of A.

∂D C(RJ)

Figure 2.4: An example of a “choke point” (left) and a strategy for avoiding it (right). The hitting
distribution of a random walk conditioned to reach ∂D before A (green dots) may favor the avoid-
ance of A ∩ Dc in a way which localizes the walk (e.g., as indicated by the dark red arc of ∂D)
prohibitively close to A ∩ D. The hitting distribution on C(RJ) will be approximately uniform
if the radii grow exponentially. The random walk can then avoid the choke point by “tunneling”
through it (e.g., by passing through the tan-shaded region).

Stage 2: Advancing into AI−1. For notational convenience, assume I > 2 so that AI−1 is
defined; the argument is the same when I = 1. Each annulus A`, ` ∈ {I, . . . , J − 1}, contains
one or more elements of A, which the random walk must avoid on its journey to AI−1. We build
an overlapping sequence of rectangular and annular tunnels, through and between each annulus,
which are empty of A and through which the walk can enterAI−1 (Figure 2.5). (In fact, depending
on A, we may not be able to tunnel into AI−1, but this case will be easier; we address it at the
end of this subsection.) Specifically, the walk reaches a particular subset ArcI−1 in AI−1 at the
conclusion of the tunneling process. We will define ArcI−1 in Lemma 2.3.2 as an arc of a circle in
AI−1.

By the pigeonhole principle applied to the radial coordinate, for each ` > I + 1, there is a
sector of aspect ratio m` = n` + n`−1, from the lower “δth” of A` to that of A`−1, which contains
no element of A (Figure 2.5). To reach the entrance of the analogous tunnel between A`−1 and
A`−2, the random walk may need to circle the lower δth ofA`−1. We apply the pigeonhole principle
to the angular coordinate to conclude that there is an annular region contained in the lower δth of
A`−1, with an aspect ratio of n`−1, which contains no element of A.

The probability that the random walk reaches the annular tunnel before exiting the rectangular
tunnel from A` to A`−1 is no smaller than exponential in m`. Similarly, the random walk reaches
the rectangular tunnel from A`−1 to A`−2 before exiting the annular tunnel in A`−1 with a prob-
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ability no smaller than exponential in n`−1. Overall, we conclude that the random walk reaches
ArcI−1 without leaving the union of tunnels—and therefore without hitting an element of A—with
a probability no smaller than exponential in

∑J−1
`=I n`.

C(R1) C(δRI) C(RJ)

AI

AJ

Figure 2.5: Tunneling through nonempty annuli. We construct a contiguous series of sectors (tan)
and annuli (blue) which contain no elements of A (green dots) and through which the random walk
may advance from C(RJ−1) to C(δRI−1) (dashed).

Stage 3: Advancing to C(R1). Figure 2.3 (left) essentially depicts the setting of the random
walk upon reaching x ∈ ArcI−1, except with C(RI) in the place of C(R) and the circle containing
ArcI−1 in the place of C(R

3
), and except for the possibility that D(R1) contains other elements of

A. Nevertheless, if the radius of ArcI−1 is at least en, then by pretending that A<R1 = {o}, the
method highlighted in Section 2.2.2 will show that Px(τC(R1) < τA) = Ω( 1

n
). A simple calculation

will give the same lower bound (for a potentially smaller constant) in the case when the radius is
less than en.

Stage 4: Advancing to the origin. Once the random walk reaches C(R1), we are in the setting
of Lemma 2.3.12. There can be no more than O(R2

1) elements of A<R1 , so there is a path of length
O(R2

1) to the origin which avoids all other elements of A, and a corresponding probability of at
least a constant that the random walk follows it.

Conclusion of Stages 1–4. The lower bounds from the four stages imply that there are universal
constants c1 through c4 such that

HA(o) > e−c1k log k−c2
∑J−1
`=I n`−log(c3n)−log c4 > e−c1n logn.

It is easy to show that the second inequality holds if c1 > 8 max{1, c2, log c3, log c4}, using the fact
that n − k =

∑J−1
`=I n` > 1 and log n > 1. We are free to adjust c1 to satisfy this bound, because

c2 through c4 do not depend on the induction hypothesis. This concludes the induction step.
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A complication in Stage 2. If R` is not sufficiently large relative to m`, then we cannot tunnel
the random walk through A` into A`−1. We formalize this through the failure of the condition

δR` > R1(m` + 1). (2.12)

The problem is that, if (2.12) fails, then there are too many elements of A in A` and A`−1, and we
cannot guarantee that there is a tunnel between the annuli which avoids A. We note that, while it
may seem that this problem could be avoided by choosing R1 in proportion to n, this choice would
ultimately worsen (2.2) to e−cn2 .

Accordingly, we will stop Stage 2 tunneling once the random walk reaches a particular subset
ArcK−1 of a circle in AK−1, where AK−1 is the outermost annulus which fails to satisfy (2.12).
Specifically, we define K as:

K =

{
I, if (2.12) holds for ` ∈ {I, . . . , J};
min{k ∈ {I, . . . , J} : (2.12) holds for ` ∈ {k, . . . , J}}, otherwise.

(2.13)
The failure of (2.12) for ` = K − 1 when K 6= I will imply that there is a path of length

O(
∑K−1

`=I n`) from ArcK−1 to the origin which otherwise avoids A. In this case, Stage 3 consists
of random walk from ArcK−1 following this path to the origin with a probability no smaller than
exponential in

∑K−1
`=I n`, and there is no Stage 4.

Overall, if K 6= I , Stages 2,3 contribute a rate of
∑J−1

`=I n`. This rate is smaller than the one
contributed by Stages 2–4 when K = I , so the preceding conclusion holds.

2.3.2 Preparation for the proof of Theorem 2.1.6
First, we introduce some conventions, notation, and some objects associated with random walk.

All universal constants will be positive and finite. For subsets B and elements x of Z2, we will
denote corresponding hitting times by σB = inf{t > 0 : St ∈ B} or σx. For r > 0, we will denote
the r-fattening of B by Br = {x ∈ Z2 : dist(x,B) < r}. We will use rad(C) to denote the radius
of a circle C (e.g., rad(C(r)) = r). We will denote the minimum of random times τ1 and τ2 by
τ1 ∧ τ2.

We will use the potential kernel associated with random walk on Z2. We denote the former by
a. It has the form

a(x) =
2

π
log ‖x‖+ κ+O

(
‖x‖−2

)
, (2.14)

where κ ∈ (1.02, 1.03) is an explicit constant. The potential kernel satisfies a(o) = 0 and is
harmonic on Z2\{o}. As shown in [KS04], the constant hidden in the error term, which we call λ,
is less than 0.06882. In some instances, we will want to apply a to an element which belongs to
C(r). It will be convenient to denote, for r > 0,

a′(r) =
2

π
log r + κ.
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Input to Stage 1

Let A ∈Hn. Like in Section 2.3.1, we assume that n0 6= n (i.e., A>R1 6= ∅) and defer the simpler
complementary case to Section 2.3.3. The annulusAJ is important because of the following result.
To state it, denote the uniform distribution on C(RJ) by µJ .

Lemma 2.3.1. There is a constant c1 such that, for every z ∈ C(RJ),

P
(
SτC(RJ )

= z
∣∣ τC(RJ ) < τA

)
> c1µJ(z). (2.15)

Under the conditioning in (2.15), the random walk reaches C(δRJ+1) before hitting A, and
typically proceeds to hit C(RJ) before returning to C(RJ+1). The inequality (2.15) then follows
from the fact that harmonic measure on C(RJ) is comparable to µJ .

Proof of Lemma 2.3.1. Under the conditioning, the random walk must reach C(δRJ+1) before
C(RJ). It therefore suffices to prove that there exists a positive constant c1 such that, uniformly
for all x ∈ C(δRJ+1) and z ∈ C(RJ),

Px
(
Sη = z

∣∣ τC(RJ ) < τA
)
> c1µRJ (z), (2.16)

where η = τC(RJ ) ∧ τA. Because ∂AJ separates x from A, the conditional probability in (2.16) is
at least

Px
(
Sη = z

∣∣ τC(RJ ) < τC(RJ+1), τC(RJ ) < τA
)
Px
(
τC(RJ ) < τC(RJ+1)

)
. (2.17)

The first factor of (2.17) simplifies to

Px
(
SτC(RJ )

= z
∣∣ τC(RJ ) < τC(RJ+1)

)
, (2.18)

which we will bound below using Lemma 2.9.4.
We will verify the hypotheses of Lemma 2.9.4 with ε = δ and R = RJ+1. The first hypothesis

is R > 10ε−2, which is satisfied because RJ+1 > R1 = 10δ−2. The second hypothesis is (2.163)
which, in our case, can be written as

max
x∈C(δRJ+1)

Px
(
τC(RJ+1) < τC(RJ )

)
< 9

10
. (2.19)

Exercise 1.6.8 of [Law13] states that

Px
(
τC(RJ+1) < τC(RJ )

)
=

log(‖x‖
RJ

) +O(R−1
J )

log(RJ+1

RJ
) +O(R−1

J +R−1
J+1)

, (2.20)

where the implicit constants are at most 2 (i.e., theO(R−1
J ) term is at most 2R−1

J ). For the moment,
ignore the error terms and assume ‖x‖ = δRJ+1, in which case (2.20) evaluates to 5 log 10−log 25

5 log 10
<

0.73. Because RJ > 105, even after allowing ‖x‖ up to δRJ+1 + 1 and accounting for the error
terms, (2.20) is less than 9

10
, which implies (2.19).

Applying Lemma 2.9.4 to (2.18), we obtain a constant c2 such that

Px
(
SτC(RJ )

= z
∣∣ τC(RJ ) < τC(RJ+1)

)
> c2µJ(z). (2.21)

By (2.19), the second factor of (2.17) is bounded below by 1
10

. We conclude the claim of (2.16) by
combining this bound and (2.21) with (2.17), and by setting c1 = 1

10
c2.
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Inputs to Stage 2

We continue to assume that n0 6= n, so that I , J , and K are well defined; the n0 = n case is easy
and we address it in Section 2.3.3. In this subsection, we will prove an estimate of the probability
that a random walk passes through annuliAJ−1 toAK without hittingA. First, in Lemma 2.3.2, we
will identify a sequence of “tunnels” through the nonempty annuli, which are empty of A. Second,
in Lemma 2.3.3 and Lemma 2.3.4, we will show that random walk traverses these tunnels through
a series of rectangles, with a probability which is no smaller than exponential in the number of
elements in AK , . . . ,AJ−1. We will combine these estimates in Lemma 2.3.5.

Recall from Section 2.3.1 that AK is the last annulus before the random walk encounters an
annulus which fails to satisfy (2.12). We call the set of such ` by I = {K, . . . , J}. For each ` ∈ I,
we define the annulus B` = A(R`−1, δR`+1). The inner radius of B` is at least R1 because

` ∈ I =⇒ R` > δ−1R1(m` + 1) > 107 =⇒ ` > 2.

The first implication is due to (2.12) and (2.13); the second is due to the fact that R` = 105`.
The following lemma identifies subsets of B` which are empty of A (Figure 2.6). Recall that

m` = n` + n`−1.

Sec
`

A`

A`−1

Ann`−1

Ar
c`−1

Sec̀
−
1

R`−1 δ′R`R` δ′R`+1

B`

Figure 2.6: The regions identified in Lemma 2.3.2.

Lemma 2.3.2. Let ` ∈ I. Denote ε` = (m` + 1)−1 and δ′ = δ/10. For every ` ∈ I, there is an
angle ϑ` ∈ [0, 2π) and a radius a`−1 ∈ [10R`−1, δ

′R`) such that the following regions contain no
element of A:
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• the sector of B` subtending the angular interval [ϑ`, ϑ` + 2πε`) and, in particular, the “mid-
dle third” sub-sector

Sec` = [R`, δ
′R`+1)×

[
ϑ` + 2π

3
ε`, ϑ` + 4π

3
ε`
)

; and

• the sub-annulus Ann`−1 = A(a`−1, b`−1) of B`, where we define

b`−1 = a`−1 + ∆`−1 for ∆`−1 = δ′ε`R` (2.22)

and, in particular, the circle Circ`−1 = C
(a`−1+b`−1

2

)
and the “arc”

Arc`−1 = Circ`−1 ∩
{
x ∈ Z2 : arg x ∈ [ϑ`, ϑ` + 2πε`)

}
.

We take a moment to explain the parameters and regions. Aside from B`, which overlaps A`
and A`−1, the subscripts of the regions indicate which annulus contains them (e.g., Sec` ⊂ A` and
Ann`−1 ⊂ A`−1). The proof uses the pigeonhole principle to identify regions which contain none
of the m` elements of A in B` and Ann`−1; this motivates our choice of ε`. The key aspect of
Sec` is that it is separated from ∂B` by a distance of at least R`−1. We also need the inner radius
of Ann`−1 to be at least R`−1 greater than that of B`, hence the lower bound on a`−1. The other
key aspect of Ann`−1 is its overlap with Sec`−1. The specific constants (e.g., 2π

3
, 10, and δ′) are

otherwise unimportant.

Proof of Lemma 2.3.2. Fix ` ∈ I. For j ∈ {0, . . . ,m`}, form the intervals

2πε` [j, j + 1) and 10R`−1 + ∆`−1[j, j + 1).

B` contains at most m` elements of A, so the pigeonhole principle implies that there are j1 and j2

in this range and such that, if ϑ` = j12πε` and if a`−1 = 10R`−1 + j2∆`−1, then

B` ∩
{
x ∈ Z2 : arg x ∈

[
ϑ`, ϑ` + 2πε`

)}
∩ A = ∅, and A(a`−1, a`−1 + ∆`−1) ∩ A = ∅.

Because B` ⊇ Sec` and Ann`−1 ⊇ Arc`−1, for these choices of ϑ` and a`−1, we also have Sec` ∩
A = ∅ and Arc`−1 ∩ A = ∅.

The next result bounds below the probability that the random walk tunnels “down” from Sec`
to Arc`−1. We defer its proof to Section 2.9.5, as it is a simple consequence of the fact that random
walk exits a rectangle through its far side with a probability which is no smaller than exponential
in the aspect ratio of the rectangle (Lemma 2.9.5). In this case, the aspect ratio is O(m`).

Lemma 2.3.3. There is a constant c such that, for any ` ∈ I and every y ∈ Sec`,

Py
(
τArc`−1

< τA
)
> cm` .

The following lemma bounds below the probability that the random walk tunnels “around”
Ann`−1, from Arc`−1 to Sec`−1. Like Lemma 2.3.3, we defer its proof to Section 2.9.6 because
it is a simple consequence of Lemma 2.9.5. Indeed, random walk from Arc`−1 can reach Sec`−1

without exiting Ann`−1 by appropriately exiting each rectangle in a sequence of O(m`) rectangles
of aspect ratio O(1). Applying Lemma 2.9.5 then implies (2.23).
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Lemma 2.3.4. There is a constant c such that, for any ` ∈ I and every z ∈ Arc`−1,

Pz
(
τSec`−1

< τA
)
> cm` . (2.23)

The next result combines Lemma 2.3.3 and Lemma 2.3.4 to tunnel from AJ into AK−1. Be-
cause the random walk tunnels from A` to A`−1 with a probability no smaller than exponential
in m` = n` + n`−1, the bound in (2.24) is no smaller than exponential in

∑J−1
`=K−1 n` (recall that

nJ = 0).

Lemma 2.3.5. There is a constant c such that

PµJ

(
τArcK−1

< τA
)
> c

∑J−1
`=K−1 n` . (2.24)

Proof. Denote by G the event{
τArcJ−1

< τSecJ−1
< τArcJ−2

< · · · < τArcK < τSecK < τArcK−1
< τA

}
.

Lemma 2.3.3 and Lemma 2.3.4 imply that there is a constant c1 such that

Pz(G) > c
∑J−1
`=K−1 n`

1 for z ∈ C(RJ) ∩ SecJ . (2.25)

The intersection of SecJ and C(RJ) subtends an angle of at least n−1
J−1, so there is a constant c2

such that
µJ(SecJ) > c2n

−1
J−1. (2.26)

The inequality (2.24) follows from G ⊆ {τArcK−1
< τA}, and (2.25) and (2.26):

PµJ

(
τArcK−1

< τA
)
> PµJ (G) > c2n

−1
J−1 · c

∑J−1
`=K−1 n`

1 > c
∑J−1
`=K−1 n`

3 .

For the third inequality, we take c3 = (c1c2)2.

Inputs to Stage 3 when K = I

We continue to assume that n0 6= n, as the alternative case is addressed in Section 2.3.3. Addi-
tionally, we assume K = I . We briefly recall some important context. When K = I , at the end of
Stage 2, the random walk has reached CircI−1 ⊆ AI−1, where CircI−1 is a circle with a radius in
[RI−1, δ

′RI). SinceAI is the innermost annulus which contains an element of A, the random walk
from ArcI−1 must simply reach the origin before hitting A>RI . In this subsection, we estimate this
probability.

We will need the following standard hitting probability estimate (see, for example, Proposi-
tion 1.6.7 of [Law13]), which we state as a lemma because we will use it in other sections as
well.
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Lemma 2.3.6. Let y ∈ Dx(r) for r > 2(‖x‖+ 1) and assume y 6= o. Then

Py
(
τo < τCx(r)

)
=

a′(r)− a(y) +O
(
‖x‖+1
r

)
a′(r) +O

(
‖x‖+1
r

) . (2.27)

The implicit constants in the error terms are less than one.

If RI < e4n, then no further machinery is needed to prove the Stage 3 estimate.

Lemma 2.3.7. There exists a constant c such that, if RI < e4n, then

P
(
τC(R1) < τA

∣∣ τCircI−1
< τA

)
>
c

n
.

The bound holds because the random walk must exit D(RI) to hit A>RI . By a standard hitting
estimate, the probability that the random walk hits the origin first is inversely proportional to logRI

which is O(n) when RI < e4n.

Proof of Lemma 2.3.7. Uniformly for y ∈ CircI−1, we have

Py
(
τC(R1) < τA

)
> Py

(
τo < τC(RI)

)
>

a′(RI)− a′(δRI−1)− 1
RI
− 1

δRI

a′(RI) + 1
RI

>
1

a′(RI)
. (2.28)

The first inequality follows from the observation that C(R1) and C(RI) separate y from o and
A. The second inequality is due to Lemma 2.3.6, where we have replaced a(y) by a′(δRI) + 1

δRI
using (2.27) of Lemma 2.9.2 and the fact that ‖y‖ 6 δRI . The third inequality follows from
δRI > 103. To conclude, we substitute a′(RI) = 2

π
logRI + κ into (2.28) and use assumption that

RI < e4n.

We will use the rest of this subsection to prove the bound of Lemma 2.3.7, but under the
complementary assumption RI > e4n. This is one of the two estimates we highlighted in Section
2.2.2.

Next is a standard result, which enables us to express certain hitting probabilities in terms of
the potential kernel. We include a short proof for completeness.

Lemma 2.3.8. For any pair of points x, y ∈ Z2, define

Mx,y(z) =
a(x− z)− a(y − z)

2a(x− y)
+

1

2
.

Then Mx,y(z) = Pz(σy < σx).

Proof. Fix x, y ∈ Z2. Theorem 1.4.8 of [Law13] states that for any proper subset B of Z2 (includ-
ing infinite B) and bounded function F : ∂B → R, the unique bounded function f : B ∪ ∂B → R
which is harmonic in B and equals F on ∂B is f(z) = Ez[F (Sσ∂B)]. Setting B = Z2\{x, y} and
F (z) = 1(z = y), we have f(z) = Pz(σy < σx). Since Mx,y is bounded, harmonic on B, and
agrees with f on ∂B, the uniqueness of f implies Mx,y(z) = f(z).
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The next two results partly implement the first estimate that we discussed in Section 2.2.2.

Lemma 2.3.9. For any z, z′ ∈ CircI−1 and y ∈ D(RI)
c,

Pz(τy < τo) ≤
1

2
and |Pz(τy < τo)− Pz′(τy < τo)| 6

1

logRI

. (2.29)

The first inequality in (2.29) holds because z is appreciably closer to the origin than it is to y.
The second inequality holds because a Taylor expansion of the numerator of Mz,y(o) −Mz′,y(o)
shows that it is O(1), while the denominator of 2a(y) is at least logRI .

Proof of Lemma 2.3.9. By Lemma 2.3.8,

Pz(τy < τo) =
1

2
+

a(z)− a(y − z)

2a(y)
.

The first inequality of (2.29) holds because a(y−z) > a(z). Indeed, CircI−1 is a subset ofD(δRI),
so ‖z‖ 6 δRI + 1 and ‖y − z‖ > (1 − δ)RI − 1 by assumption. The latter is at least twice the
former and ‖z‖ > 2, so by (1) of Lemma 2.9.1, a(y − z) > a(z).

Using Lemma 2.3.8, the difference in (2.29) can be written as

|Mz,y(o)−Mz′,y(o)| =
|a(y − z′)− a(y − z)|

2a(y)
. (2.30)

Concerning the denominator, ‖y‖ is at least one, so a(y) is at least 2
π

log ‖y‖ > 2
π

logRI by (2)
of Lemma 2.9.1. We apply (3) of Lemma 2.9.1 with R = RI and r = rad(CircI−1) 6 δRI to
bound the numerator by 4

π
. Substituting these bounds into (2.30) gives the second inequality in

(2.29).

Label the k elements in A>R1 by xi for 1 6 i 6 k. Then let Yi = 1(τxi < τo) and W =∑k
i=1 Yi. In words, W counts the number of elements of A>R1 which have been visited before the

random walk returns to the origin.

Lemma 2.3.10. If RI > e4n, then, for all z ∈ CircI−1,

Ez[W | W > 0] ≥ EzW +
1

4
. (2.31)

The constant 1
4

in (2.31) is unimportant, aside from being positive, independently of n. The
inequality holds because random walk from CircI−1 hits a given element of A>R1 before the origin
with a probability of at most 1

2
. Consequently, given that some such element is hit, the conditional

expectation of W is essentially larger than its unconditional one by a constant.

Proof of Lemma 2.3.10. Fix z ∈ CircI−1. When {W > 0} occurs, some labeled element, xf , is
hit first. After τxf , the random walk may proceed to hit other xi before returning to CircI−1 at a
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time η = min
{
t > τxf : St ∈ CircI−1

}
. Let V be the collection of labeled elements that the walk

visits before time η, {i : τxi < η}. In terms of V and η, the conditional expectation of W is

Ez[W | W > 0] = Ez
[
|V|+ ESη

∑
i/∈V

Yi

∣∣∣ W > 0
]
. (2.32)

Let V be a nonempty subset of the labeled elements and let z′ ∈ CircI−1. We have∣∣∣Ez∑
i/∈V

Yi − Ez′
∑
i/∈V

Yi

∣∣∣ 6 n

logRI

6
1

4
.

The first inequality is due to Lemma 2.3.9 and the fact that there are at most n labeled elements
outside of V . The second inequality follows from the assumption that RI > e4n.

We use this bound to replace Sη in (2.32) with z:

Ez[W
∣∣ W > 0] > Ez

[
|V|+ Ez

∑
i/∈V

Yi

∣∣∣ W > 0
]
− 1

4
. (2.33)

By Lemma 2.3.9, Pz(τxi < τo) 6 1
2
. Accordingly, for a nonempty subset V of labeled elements,

Ez
∑
i/∈V

Yi > EzW −
1

2
|V |.

Substituting this into the inner expectation of (2.33), we find

Ez[W
∣∣ W > 0] > Ez

[
|V|+ EzW −

1

2
|V|
∣∣∣ W > 0

]
− 1

4

> EzW + Ez
[

1

2
|V|
∣∣∣ W > 0

]
− 1

4
.

Since {W > 0} = {|V| > 1}, this lower bound is at least EzW + 1
4
.

We use the preceding lemma to prove the analogue of Lemma 2.3.7 when RI > e4n. The proof
uses the method highlighted in Section 2.2.2 and Figure 2.3 (left).

Lemma 2.3.11. There exists a constant c such that, if RI > e4n, then

P
(
τC(R1) < τA

∣∣ τCircI−1
< τA

)
>
c

n
. (2.34)

Proof. Conditionally on {τCircI−1
< τA}, let the random walk hit CircI−1 at z. Denote the positions

of the k 6 n particles in A>R1 as xi for 1 6 i 6 k. Let Yi = 1(τxi < τo) and W =
∑k

i=1 Yi, just
as we did for Lemma 2.3.10. The claimed bound (2.34) follows from

Pz(τC(R1) < τA) > Pz(W > 0) =
EzW

Ez[W | W > 0]
6

EzW
EzW + 1/4

6
n

n+ 1/4
6 1− 1

5n
.

The first inequality follows from the fact that C(R1) separates z from the origin. The second
inequality is due to Lemma 2.3.10, which applies becauseRI > e4n. Since the resulting expression
increases with EzW , we obtain the third inequality by substituting n for EzW , as EzW 6 n. The
fourth inequality follows from n > 1.
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Inputs to Stage 4 when K = I and Stage 3 when K 6= I

The results in this subsection address the last stage of advancement in the two sub-cases of the
case n0 6= n: K = I and K 6= I . In the former sub-case, the random walk has reached C(R1); in
the latter sub-case, it has reached CircK−1. Both sub-cases will be addressed by corollaries of the
following geometric lemma.

Lemma 2.3.12. Let A ∈ Hn and r > 0. From any x ∈ C(r)\A, there is a path Γ in (A\{o})c
from Γ1 = x to Γ|Γ| = o with a length of at most 10 max{r, n}. Moreover, if A ⊆ D(r), then Γ lies
in D(r + 2).

We choose the constant factor of 10 for convenience; it has no special significance. We use a
radius of r + 2 in D(r + 2) to contain D(r) and its ∗-visible boundary, defined as follows. Let m
be a positive integer and denote by Zm∗ the graph with vertex set Zm and with an edge between
distinct x, y ∈ Zm when x and y differ by at most one in each coordinate. For A ⊆ Zm, we define
the ∗-visible boundary ∂visA as

∂visA =
{
x ∈ Zm : x is adjacent in Zm∗ to some y ∈ A

and there is a path from∞ to x disjoint from A
}
. (2.35)

To prove Lemma 2.3.12, we need the following result, due to Kesten [Kes86] (alternatively, Theo-
rem 4 of [Tim13]).

Lemma 2.3.13 (Lemma 2.23 of [Kes86]). Let m be a positive integer. If A is a finite, ∗-connected
subset of Zm, then ∂visA is connected in Zm.

Proof of Lemma 2.3.12. Let {B`}` be the collection of ∗-connected components of A\{o}. By
Lemma 2.3.13, because B` is finite and ∗-connected, ∂∗extB` is connected.

Fix r > 0 and x ∈ C(r)\A. Let Γ be the shortest path from x to the origin. If Γ is disjoint
from A\{o}, then we are done, as |Γ| is no greater than 2r. Otherwise, let `1 be the label of the
first ∗-connected component intersected by Γ. Let i and j be the first and last indices such that Γ
intersects ∂∗extB`1 , respectively. Because ∂∗extB`1 is connected, there is a path Λ in ∂∗extB`1 from Γi
to Γj . We then edit Γ to form Γ′ as

Γ′ =
(
Γ1, . . . ,Γi−1,Λ1, . . . ,Λ|Λ|,Γj+1, . . . ,Γ|Γ|

)
.

If Γ′ is disjoint from A\{o}, then we are done, as Γ′ is contained in the union of Γ and⋃
` ∂
∗
extB`. Since

⋃
`B` has at most n elements,

⋃
` ∂
∗
extB` has at most 8n elements. Accordingly,

the length of Γ′ is at most 2r+8n 6 10 max{r, n}. Otherwise, if Γ′ intersects another ∗-connected
component of A\{o}, we can simply relabel the preceding argument to continue inductively and
obtain the same bound.

Lastly, if A ⊆ D(r), then
⋃
` ∂
∗
extB` is contained in D(r + 2). Since Γ is also contained in

D(r + 2), this implies that Γ′ is contained in D(r + 2).
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We now state three corollaries of Lemma 2.3.12. The first corollary addresses Stage 4 when
K = I . It follows from |A<R1| = O(R2

1) and A>R1 ⊆ D(R1 + 2)c.

Corollary 2.3.14. There is a constant c such that

P(τo 6 τA | τC(R1) < τA) > c. (2.36)

The second corollary addresses Stage 3 when K 6= I .

Corollary 2.3.15. Assume that n0 = 1 and K 6= I . There is a constant c such that

P(τo 6 τA | τCircK−1
< τA) > c

∑K−1
`=I n` . (2.37)

The bound (2.37) follows from Lemma 2.3.12 because K 6= I implies that the radius r of
CircK−1 is at most a constant factor times |A<r|. Lemma 2.3.12 then implies that there is a path Γ
from CircK−1 to the origin with a length of O(|A<r|), which remains in D(r + 2) and otherwise
avoids the elements of A<r. In fact, because CircK−1 is a subset of AnnK−1, which contains no
elements of A, by remaining in D(r + 2), Γ avoids A>r as well. This implies (2.37).

The third corollary implies (2.3) of Theorem 2.1.6 because any connected set belonging to Hn

is contained in D(n).

Corollary 2.3.16. Let n > 1. There is a constant c such that, for any connected A ∈Hn,

HA(o) > e−cn.

2.3.3 Proof of Theorem 2.1.6
We only need to prove (2.2), because Corollary 2.3.16 establishes (2.3). The proof is by induction
on n. Since (2.2) clearly holds for n = 1 and n = 2, we assume n > 3.

Let A ∈ Hn. There are three cases: n0 = n, n0 6= n and K = I , and n0 6= n and K 6= I . The
first of these cases is easy: When n0 = n, A is contained in D(R1), so Corollary 2.36 implies that
HA(o) is at least a universal constant. Accordingly, in what follows, we assume that n0 6= n and
address the two sub-cases K = I and K 6= I .

First sub-case: K = I . If K = I , then we write

HA(o) = P(τo 6 τA) > P(τC(RJ ) < τCircI−1
< τC(R1) < τo 6 τA).

Because C(RJ), CircI−1, and C(R1) respectively separate CircI−1, C(R1), and the origin from
∞, we can express the lower bound as the following product:

HA(o) > P(τC(RJ ) < τA)× P
(
τCircI−1

< τA
∣∣ τC(RJ ) < τA

)
× P

(
τC(R1) < τA

∣∣ τCircI−1
< τA

)
× P

(
τo 6 τA

∣∣ τC(R1) < τA
)
. (2.38)

We address the four factors of (2.38) in turn. First, by the induction hypothesis, there is a
constant c1 such that

P(τC(RJ ) < τA) > e−c1k log k,
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where k = n>J + 1. Second, by the strong Markov property applied to τC(RJ ) and Lemma 2.3.1,
and then by Lemma 2.3.5, there are constants c2 and c3 such that

P
(
τCircI−1

< τA
∣∣ τC(RJ ) < τA

)
> c2PµJ

(
τArcI−1

< τA
)
> e−c3

∑J−1
`=I n` . (2.39)

Third and fourth, by Lemma 2.3.7 and Lemma 2.3.11, and by Corollary 2.3.14, there are constants
c4 and c5 such that

P
(
τC(R1) 6 τA

∣∣ τCircI−1
< τA

)
> (c4n)−1 and P

(
τo 6 τA

∣∣ τC(R1) 6 τA
)
> c5.

Substituting the preceding bounds into (2.38) completes the induction step for this sub-case:

HA(o) > e−c1k log k−c3
∑J−1
`=I n`−log(c4n)+log c5 > e−c1n logn.

The second inequality follows from n − k =
∑J−1

`=I n` > 1 and log n > 1, and from potentially
adjusting c1 to satisfy c1 > 8 max{1, c3, log c4,− log c5}. We are free to adjust c1 in this way, since
the other constants do not arise from the use of the induction hypothesis.

Second sub-case: K 6= I . If K 6= I , then we write HA(o) > P(τC(RJ ) < τCircK−1
< τo 6 τA).

Because C(RJ) and CircK−1 separate CircK−1 and the origin from∞, we can express the lower
bound as:

HA(o) > P(τC(RJ ) < τA)×P
(
τCircK−1

< τA
∣∣ τC(RJ ) < τA

)
×P
(
τo 6 τA

∣∣ τCircK−1
< τA

)
. (2.40)

As in the first sub-case, the first factor is addressed by the induction hypothesis and the lower
bound (2.39) applies to the second factor of (2.40) with K in the place of I . Concerning the third
factor, corollary 2.3.14 implies that there is a constant c6 such that

P
(
τo 6 τA

∣∣ τCircK−1
< τA

)
> e−c6

∑K−1
`=I n` .

Substituting the three bounds into (2.40) concludes the induction step in this sub-case:

HA(o) > e−c1k log k−c3
∑J−1
`=K n`−c6

∑K−1
`=I n` > e−c1n logn.

The second inequality follows from potentially adjusting c1 to satisfy c1 > 8 max{1, c3, c6}.
This completes the induction and establishes (2.2).

2.4 Escape probability estimates
The purpose of this section is to prove Theorem 2.1.9. It suffices to prove the escape probability
lower bound (2.10), as (2.11) follows from (2.10) by the pigeonhole principle. Let A be an n-
element subset of Z2 with at least two elements. We assume w.l.o.g. that o ∈ A. Denote b =
diam(A), and suppose d > 2b. We aim to show that there is a constant c such that, if d > 2b, then,
for every x ∈ A,

Px(τ∂Ad < τA) >
cHA(x)

n log d
.
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In fact, by adjusting c, we can reduce to the case when d > kb for k = 200 and when b is at least
a large universal constant, b′. We proceed to prove (2.10) when d > 200b, for sufficiently large
b. Since C(kb) separates A from ∂Ad, we can write the escape probability as the product of two
factors:

Px(τ∂Ad < τA) = Px(τC(kb) < τA)Px
(
τ∂Ad < τA

∣∣ τC(kb) < τA
)
. (2.41)

Concerning the first factor of (2.41), we have the following lemma.

Lemma 2.4.1. Let x ∈ A. Then

Px(τC(kb) < τA) >
HA(x)

4 log(kb)
. (2.42)

The factor of log(kb) arises from evaluating the potential kernel at elements ofC(kb); the factor
of 4 is unimportant. The proof is an application of the optional stopping theorem to the martingale
a(Sj∧τo).

Proof of Lemma 2.4.1. Let x ∈ A. By conditioning on the first step, we have

Px(τC(kb) < τA) =
1

4

∑
y/∈A,y∼x

Py(τC(kb) < τA), (2.43)

where y ∼ x means ‖x − y‖ = 1. We apply the optional stopping theorem to the martingale
a(Sj∧τo) with the stopping time τA ∧ τC(kb) to find:

1

4

∑
y/∈A,y∼x

Py(τC(kb) < τA) =
1

4

∑
y/∈A,y∼x

a(y)− Eya(SτA)

Ey
[
a(SτC(kb)

)− a(SτA)
∣∣ τC(kb) < τA

] . (2.44)

We need two facts. First, HA(x) can be expressed as 1
4

∑
y/∈A,y∼x

(
a(y) − Eya(SτA)

)
[Pop21,

Definition 3.15, Theorem 3.16]. Second, for any z ∈ C(kb), a(z) 6 4 log(kb) by Lemma 2.9.1.
Applying these facts to (2.44), and the result to (2.43), we find

Px(τC(kb) < τA) >
1

4 log(kb)
· 1

4

∑
y/∈A,y∼x

(
a(y)− Eya(SτA)

)
=

HA(x)

4 log(kb)
.

Concerning the second factor of (2.41), given that {τC(kb) < τA} occurs, we are essentially in
the setting depicted on the right side of Figure 2.3, with x = SτC(kb)

, r = b, kb in the place of 2r,
and R = d. The argument highlighted in Section 2.2.2 suggests that the second factor of (2.41)
is at least proportional to log b

n log d
. We will prove this lower bound and combine it with (2.41) and

(2.42) to obtain (2.10) of Theorem 2.1.9.

Lemma 2.4.2. Let y ∈ C(kb). If d > kb and if b is sufficiently large, then

Py(τ∂Ad < τA) >
log b

2n log d
. (2.45)
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Proof. Let y ∈ C(kb). We will follow the argument of Section 2.2.2. Label the points of A as
x1, x2, . . . , xn and define

Yi = 1 (τxi < τ∂Ad) and W =
n∑
i=1

Yi.

From the definition of W , we see that {W = 0} = {τ∂Ad < τA}. Thus to obtain the lower bound
in (2.45), it suffices to get a complementary upper bound on

Py(W > 0) =
EyW

Ey[W | W > 0]
. (2.46)

We will find α and β such that, uniformly for y ∈ C(kb) and xi, xj ∈ A,

Py (τxi < τ∂Ad) 6 α and Pxi
(
τxj < τ∂Ad

)
> β. (2.47)

Moreover, α and β will satisfy

α 6 β and 1− β >
log b

2 log d
. (2.48)

The requirement that α 6 β prevents us from choosing β = 0. Essentially, we will be able to
satisfy (2.47) and the first condition of (2.48) because ‖xi − xj‖ is smaller than ‖y − xi‖. We will
be able to satisfy the second condition because dist(xi, ∂Ad) > d while ‖xi − xj‖ 6 b, which
implies that Pxi(τxj < τ∂Ad) is roughly 1− log b

log d
.

If α, β satisfy (2.47), then we can bound (2.46) as

Py(W > 0) 6
nα

1 + (n− 1)β
. (2.49)

Additionally, when α and β satisfy (2.48), (2.49) implies

Py(W = 0) >
(1− β) + n(β − α)

(1− β) + nβ
>

1− β
n

>
log b

2n log d
,

which gives the claimed bound (2.45).
Identifying α. We now find the α promised in (2.47). Denote Fi = Cxi(d + b) (Figure 2.7).

Since ∂Ad separates y from Fi, we have

Py (τxi < τ∂Ad) 6 Py (τxi < τFi) = Py−xi
(
τo < τC(d+b)

)
. (2.50)

The hypotheses of Lemma 2.3.6 are met because y − xi 6= o and y − xi ∈ D(d + b). Hence
(2.27) applies as

Py−xi
(
τo < τC(d+b)

)
=

a′(d+ b)− a(y − xi) +O (‖y − xi‖−1)

a′(d+ b) +O (‖y − xi‖−1)
. (2.51)
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x1

x3

x2
C(kb)

×
y

F1

F3

F2

Ad

Figure 2.7: Escape to ∂Ad, for n = 3. Each Fi is a circle centered on xi ∈ A, separating Ad from
infinity. Lemma 2.3.6 bounds above the probability that the walk hits xi before Fi, uniformly for
y ∈ C(kb).

Ignoring the error terms, the expression in (2.51) is at most log(d+b)−log(kb)
log(d+b)

. A more careful calcu-
lation gives

Py−xi
(
τo < τC(d+b)

)
=

log(d+ b)− log(kb)

log(d+ b)
+ δ1 6

(1 + ε) log d− log(kb)

log d
+ δ1 =: α,

where δ1 = (πκ
2

+ O(b−1))(log d)−1 and ε = b
d log d

. The inequality results from applying the
inequality log(1 + x) 6 x, which holds for x > −1, to the log(d + b) term in the numerator, and
reducing log(d+ b) to log d in the denominator. By (2.50), α satisfies (2.47).

Identifying β. We now find a suitable β. Since Cxi(d) separates A from ∂Ad, we have

Pxi
(
τxj < τ∂Ad

)
> Pxi

(
τxj < τCxi (d)

)
= Pxi−xj

(
τo < τC(d)

)
. (2.52)

The hypotheses of Lemma 2.3.6 are met because xi − xj 6= o and xi − xj ∈ D(d). Hence (2.27)
applies as

Pxi−xj
(
τo < τC(d)

)
=

a′(d)− a(xi − xj) +O(‖xi − xj‖−1)

a′(d) +O(‖xi − xj‖−1)
. (2.53)

Ignoring the error terms, (2.53) is at least log d−log b
log d+κ

. A more careful calculation gives

Pxi−xj
(
τo < τC(d)

)
=

log d− log b

log d
− δ2 =: β,
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where δ2 = (πκ
2

+O(b−1))(log d)−1. By (2.52), β satisfies (2.47).
Verifying (2.48). To verify the first condition of (2.48), we calculate

(β − α) log d = log k − b
d
− πκ+O(b−1) > 1 +O(b−1).

The inequality is due to k = 200, b
d
6 0.5, and πκ < 3.5. If b is sufficiently large, then 1 +O(b−1)

is nonnegative, which verifies (2.48).
Concerning the second condition of (2.48), if b is sufficiently large, then

1− β =
log b+ 1

log d
6

log b

2 log d
.

We have identified α, β which satisfy (2.47) and (2.48) for sufficiently large b. By the preceding
discussion, this proves (2.45).

Proof of Theorem 2.1.9. By (2.41), Lemma 2.4.1, and Lemma 2.4.2, we have

Px(τ∂Ad < τA) >
HA(x)

4 log(kb)
· log b

2n log d
>

HA(x)

16n log d
, (2.54)

whenever x ∈ A and d > kb, for sufficiently large b. The second inequality is due to the fact that
log(kb) 6 2 log b for sufficiently large b.

By the reductions discussed at the beginning of this section, (2.54) implies that there is a
constant c such that (2.10) holds for x ∈ A if A has at least two elements and if d > 2 diam(A).
(2.11) follows from (2.10) because, by the pigeonhole principle, some element of A has harmonic
measure of at least n−1.

2.5 Clustering sets of relatively large diameter
When a HAT configuration has a large diameter relative to the number of particles, we can decom-
pose the configuration into clusters of particles, which are well separated in a sense. This is the
content of Lemma 2.5.2, which will be a key input to the results in Section 2.6.

Definition 2.5.1 (Exponential clustering). For a finite A ⊂ Z2 with |A| = n, an exponential
clustering of A with parameter r > 0, denoted A 7→r {Ai, xi, θ(i)}ki=1, is a partition of A into
clusters A1, A2, . . . , Ak with 1 6 k 6 n, such that each cluster arises as Ai = A ∩ Dxi(θ

(i)) for
xi ∈ Z2, with θ(i) > r, and

dist(Ai, Aj) > exp
(

max
{
θ(i), θ(j)

})
for i 6= j. (2.55)

We will call xi the center of cluster i. In some instances, the values of r, xi, or θ(i) will be irrelevant
and we will omit them from our notation. For example, A 7→ {Ai}ki=1.
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An exponential clustering ofAwith parameter r always exists because, ifA1 = A, x1 ∈ A, and
θ(1) > max{r, diam(A)}, then A 7→r {A1, x1, θ

(1)} is such a clustering. However, to ensure that
there is an exponential clustering of A (with parameter r) with more than one cluster, we require
that the diameter of A exceeds 2θn−1(r). Recall that we defined θm(r) in (2.1) through θ0(r) = 0
and θm(r) = θm−1(r) + eθm−1(r) for m > 1.

Lemma 2.5.2. Let |A| = n. If diam(A) > 2θn−1(r), then there exists an exponential clustering of
A with parameter r into k > 1 clusters.

To prove the lemma, we will identify disks with radii of at most θn−1(r), which cover A.
Although it is not required of an exponential clustering, the disks will be centered at elements of
A. These disks will give rise to at least two clusters, since diam(A) exceeds 2θn−1(r). The disks
will be surrounded by large annuli which are empty of A, which will imply that the clusters are
exponentially separated.

Proof of Lemma 2.5.2. For each x ∈ A andm > 1, consider the annulusAx(θm) = Dx(θm)\Dx(θm−1).
For each x, identify the smallest m such that Ax(θm) ∩ A is empty and call it mx. Note that since
|A| = n, mx can be no more than n and hence θmx ≤ θn. Call the corresponding annulus A∗x, and
denote D∗x = Dx(θmx−1). For convenience, we label the elements of A as x1, x2, . . . , xn.

For xi ∈ A, we collect those disks D∗xj which contain it as

E(xi) =
{
D∗xj : xi ∈ D∗xj , 1 6 j 6 n

}
.

We observe that E(xi) is always nonempty, as it contains D∗xi . Now observe that, for any two
distinct D∗xj , D

∗
x`
∈ E(xi), it must be that

D∗xj ∩ A ⊆ D∗x` ∩ A or D∗x` ∩ A ⊆ D∗xj ∩ A. (2.56)

To see why, assume for the purpose of deriving a contradiction that each disk contains an element
of A which the other does not. Without loss of generality, suppose θmxj > θmx` and let y` ∈
(D∗x`\D∗xj)∩A. Because each disk must contain xi, we have ‖y`−xi‖ 6 2θmx`−1 and ‖xi−xj‖ 6
θmxj−1. The triangle inequality implies

‖y` − xj‖ 6 θmxj−1 + 2θmx`−1 6 θmxj =⇒ y` ∈ Dxj(θmxj ) ∩ A.

By assumption, y` is not in Dxj(θmxj−1) ∩ A, so y` must be an element of Axj(θmxj ) ∩ A, which
contradicts the construction of mxj .

By (2.56), we may totally order the elements of E(xi) by inclusion of intersection with A. For
each xi, we select the element of E(xi) which is greatest in this ordering. If we have not already
established it as a cluster, we do so. After we have identified a cluster for each xi, we discard those
D∗xj which were not selected for any xi. For the remainder of the proof, we only refer to those D∗xj
which were established as clusters, and we relabel the xi so that the clusters can be expressed as
the collection

{
D∗xj
}k
j=1

, for some 1 6 k 6 n. We will show that k is strictly greater than one.
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The collection of clusters contains all elements of A, and is associated to the collection of
annuli

{
A∗xj
}k
j=1

, which contain no elements of A. We observe that, for some distinct xj and x`, it
may be thatA∗xj ∩D∗x` 6= ∅. However, because the annuli contain no elements of A, it must be that

dist(D∗xj ∩ A,D∗x` ∩ A) > max
{
θmxj − θmxj−1

, θmx` − θmx`−1

}
= max

{
e
θmxj−1 , eθmx`−1

}
= exp

(
max

{
rad(D∗xj), rad(D∗x`)

})
,

where we use rad to indicate the radius of a disk. As D∗xj ∩ A ⊆ D∗xj for any xj in question,
we conclude the desired separation of clusters by setting Ai = D∗xi ∩ A for each 1 6 i 6 k.
Furthermore, since mxj 6 n for all j, rad(D∗xj) ≤ θn−1 for all j. Since A is contained in the union
of the clusters, if diam(A) > 2θn−1, then there must be at least two clusters. Lastly, as mxj > 0
for all j, rad(D∗xj) > r for all j.

2.6 Estimates of the time of collapse
We proceed to prove the main collapse result, Theorem 2.1.2. As the proof requires several steps,
we begin by discussing the organization of the section and introducing some key definitions. We
avoid discussing the proof strategy in detail before making necessary definitions; an in-depth proof
strategy is covered in Section 2.6.2.

Briefly, to estimate the time until the diameter of the configuration falls below a given function
of n, we will perform exponential clustering and consider the more manageable task of (i) esti-
mating the time until some cluster loses all of its particles to the other clusters. By iterating this
estimate, we can (ii) control the time it takes for the clusters to consolidate into a single cluster.
We will find that the surviving cluster has a diameter which is approximately the logarithm of the
original diameter. Then, by repeatedly applying this estimate, we can (iii) control the time it takes
for the diameter of the configuration to collapse.

The purpose of Section 2.6.1 is to wield (ii) in the form of Proposition 2.6.3 and prove The-
orem 2.1.2, thus completing (iii). The remaining subsections are dedicated to proving the propo-
sition. An overview of our strategy will be detailed in Section 2.6.2. In particular, we describe
how the key harmonic measure estimate of Theorem 2.1.6 and the key escape probability estimate
of Theorem 2.1.9 contribute to addressing (i). We then develop basic properties of cluster separa-
tion and explore the geometric consequences of timely cluster collapse in Section 2.6.3. Lastly, in
Section 2.6.4, we prove a series of propositions which collectively control the timing of individual
cluster collapse, culminating in the proof of Proposition 2.6.3.

Implicit in this discussion is a notion of “cluster” which persists over several steps of the dy-
namics. We now make this precise in terms of an exponential clustering. Recall that an exponential
clustering U0 7→ {U i

0, xi, θ
(i)}ki=1 of U0 is defined such that: {U i

0}ki=1 partitions U0; each U i
0 equals

U0 ∩Dxi(θ
(i)); and every distinct pair of clusters U i

0, U j
0 satisfies dist(U i

0, U
j
0 ) > emax{θ(i),θ(j)}.
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Definition 2.6.1. Let U0 have an exponential clustering U0 7→ {U i
0, xi, θ

(i)}ki=1. For any time
t > 1, if Ut is obtained from t steps of the HAT dynamics from initial configuration U0, then we
recursively define {U i

t}ki=1 as
U i
t = Ut ∩

(
U i
t−1 ∪ ∂U i

t−1

)
. (2.57)

In principle, after many steps of the dynamics, clusters defined according to (2.57) may inter-
sect one another. However, in our application, clusters will be disjoint.

Definition 2.6.2 (Cluster collapse times). SupposeU0 has the exponential clusteringU0 7→ {U i
0}ki=1.

We define the `-cluster collapse time as

T` = inf
{
t > 0 : U j1

t = U j2
t = · · · = U j`

t = ∅, for 1 6 j1 < j2 < · · · < j` 6 k
}
.

We adopt the convention that T0 ≡ 0.

By (2.57), if for some time t the cluster U i
t is empty, then U i

t′ is empty for all times t′ > t.
Consequently, the collapse times are ordered: T1 6 T2 6 · · · 6 T`.

2.6.1 Proving Theorem 2.1.2
We now state the proposition to which most of the effort in this section is devoted and, assuming
it, prove Theorem 2.1.2. We will denote by

• n, the number of elements of U0;

• Φ(r), the inverse function of θn(r) for all r > 0 (θn(r) is an increasing function of r > 0 for
every n); and

• Ft, the sigma algebra generated by the initial configuration U0, the first t activation sites
X0, X1, . . . , Xt−1, and the first t random walks S0, S1, . . . , St−1, which accomplish the
transport component of the dynamics.

We note that Φ is defined so that, if r = Φ(diam(U0)), then diam(U0) > 2θn−1(r) and, by
Lemma 2.5.2, exponential clustering of U0 with parameter r will produce at least two clusters.

Proposition 2.6.3. There is a constant c such that, if the diameter d of U0 exceeds θ4n(cn), then
for any number of clusters k resulting from exponential clustering of U0 with parameter r = Φ(d)
and with δ = (2n)−4, we have

PU0

(
Tk−1 6 (log d)1+7δ

)
> 1− exp

(
−2nrδ

)
. (2.58)

In words, if U0 has a diameter of d, it takes no more than (log d)1+on(1) steps to observe the
collapse of all but one cluster, with high probability. Because no cluster begins with a diameter
greater than log d (by exponential clustering) and, as the diameter of a cluster increases at most
linearly in time, the remaining cluster at time Tk−1 has a diameter of no more than (log d)1+on(1).
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We will obtain Theorem 2.1.2 by repeatedly applying Proposition 2.6.3. We prove the theorem
here, assuming the proposition, and then prove the proposition in the following subsections.

Our argument takes the form of Algorithm 1 and an analysis of its outputs. We organize the
proof in this way because it more compact and direct than the alternative. In the context of a
configuration with k` clusters, we will set E` =

{
Tk`−1 6 (log d`)

1+7δ
}

. The variable Tk`−1 is
the time it takes for the k` clusters to collapse into one cluster. The algorithm takes as input an
initial configuration U with number of elements n and diameter d. It defines variables V`, d`, and
r`, which are the configuration, diameter, and clustering parameter after `− 1 collapses. We set V1

equal to U ; d1 equal to d; r1 to be Φ(d); two counting variables, ` and T , equal to one and zero;
and an indicator called flag to zero.

During the `th “loop,” the algorithm performs exponential clustering with parameter r` on con-
figuration V` to obtain k` clusters and checks the occurrence of Ec

` . If Ec
` occurs, the algorithm

sets flag to one and “breaks” out of the current loop, upon which the algorithm terminates. If E`
occurs, the algorithm assigns values for the configuration V`+1, diameter d`+1, and clustering pa-
rameter r`+1, which will be used in the next loop (if another loop is entered). Additionally, the
algorithm updates T to account for the Tk`−1 steps of the HAT dynamics and updates ` to `+ 1 so
that the next loop uses the new configuration, diameter, and clustering parameter.

The algorithm terminates if, at the beginning of the `th loop, the current HAT configuration
V` has a diameter d` less than or equal to θ4n(cn) or if, at any time, flag = 1, indicating the
occurrence ofEc

`−1. If the algorithm terminates with flag = 0, then it must have terminated because
d` 6 θ4n(cn) and therefore the value of T returned by the algorithm is at least T (θ4n(cn)). If the
algorithm terminates with flag = 1, then we are unable to provide a bound on T (θ4n(cn)) in terms
of T .

Proof of Theorem 2.1.2. In the context of the preceding discussion, it suffices to show that, with a
probability of at least 1− e−n, the algorithm terminates with flag = 0 and T which satisfies

T 6 (log d)1+on(1). (2.59)

By Proposition 2.6.3, letting δ = (2n)−4, we have PV`(E
c
` ) 6 e−2nrδ` for any `. Consequently,

if N is the number of loops (i.e., the number of times the while statement executes) before the
algorithm terminates, then the procedure terminates with flag = 0 unless ∪N`=1E

c
` occurs, which

has a probability no greater than

PU

(
∪N`=1E

c
`

)
6

N∑
`=1

e−2nrδ` = e−2nrδN

N∑
`=1

e−2n(rδ`−rδN ). (2.60)

For all ` < N , the event E` occurs which implies (by some algebra) that d`+1 is less than
(log d`)

1+8δ. Using this bound and the fact that d` is at least θ4n(cn), some simple but cumbersome
algebra shows

rδ` − rδ`+1 = Φ(d`)
δ − Φ(d`+1)δ > 1.
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Algorithm 1
Input : Configuration U , number of elements n, diameter d = diam(U)
Output: Indicator of failed collapse time estimate flag, total collapse time T
/* Assign initial values of parameters. */

V1 ← U , d1 ← d, r1 ← Φ(d), `← 1, T ← 0, and flag← 0
/* While the diameter is large and preceding collapse time estimates

have succeeded ... */

while d` > θ4n(cn) and flag = 0 do
/* Perform exponential clustering. */

V` 7→r` {U i
0}k`i=1

/* Try to observe the collapse of a cluster. */

if Ec
` occurs then
flag← 1 // If collapse takes too long, indicate this with flag and

terminate.

break
else

V`+1 ← UTk`−1
, d`+1 ← diam(V`+1), r`+1 ← Φ(d`+1) // Else, prepare

the next loop.

end
T ← T + Tk`−1, `← `+ 1 // Restart the loop with the new

configuration.

end
return flag, T

Using (2.60), this implies

PU

(
∪N`=1E

c
`

)
6 e−2nrδN

N−1∑
`=0

e−2n` 6 2e−2nrδN 6 e−n.

This establishes that the algorithm terminates with flag = 0 with a probability of at least 1− e−n.
It remains to establish (2.59) when ∩N`=1E` occurs.

Again, because d`+1 is less than (log d`)
1+8δ and by the lower bound on d`, the ratio of log d`+1

to log d` is at most 1/2. In fact, it is much smaller, but this suffices to establish

T =
N∑
`=1

Tk`−1 6
N∑
`=1

(log d`)
1+7δ 6 (log d1)1+7δ

N−1∑
`=0

2−` 6 (log d1)1+8δ.

Because d1 = d, we conclude (2.59) with 8δ 6 n−4 in the place of on(1).

For applications in Section 2.7, we extend Theorem 2.1.2 to a more general tail bound of
T (θ4n).
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Corollary 2.6.4 (Corollary of Theorem 2.1.2). Let U be an n-element subset of Z2 with a diameter
of d. There exists a universal positive constant c such that

PU

(
T (θ4n(cn)) > t(log max{t, d})1+on(1)

)
6 e−t (2.61)

for all t > 1. For the sake of concreteness, this is true with 2n−4 in the place of on(1).

In the proof of the corollary, it will be convenient to have notation for the timescale of collapse
after j failed collapses, starting from a diameter of d. Because diameter increases at most linearly
in time, if the initial configuration has a diameter of d and collapse does not occur in the next
(log d)1+on(1) steps, then the diameter after this period of time is at most d + (log d)1+on(1). In
our next attempt to observe collapse, we would wait at most

(
log(d+ (log d)1+on(1))

)1+on(1) steps.
This discussion motivates the definition of the functions gj = gj(d, ε) by

g0 = (log d)1+ε and gj =
(

log
(
d+

j−1∑
i=0

gi
))1+ε

∀ j > 1.

We will use tj = tj(d, ε) to denote the cumulative time
∑j

i=0 gi.

Proof of Corollary 2.6.4. Let ε = n−4 and use this as the ε parameter for the collapse timescales gj
and cumulative times tj . Additionally, denote θ = θ4n(cn) for the constant c from Theorem 2.1.2
(this will also be the constant in the statement of the corollary). The bound (2.61) clearly holds
when d is at most θ, so we assume d > θ.

Because the diameter of U is d and as diameter grows at most linearly in time, conditionally
on Fj = {T (θ) > tj}, the diameter of Utj is at most d+ tj . Consequently, by the Markov property
applied to time tj , and by Theorem 2.1.2 (the diameter is at least θ) and the fact that n > 1, the
conditional probability PU(Fj+1|Fj) satisfies

PU(Fj+1|Fj) = EU

[
PUtj

(T (θ) > gj+1)
1Fj

PU(Fj)

]
6 e−1 for any j > 0. (2.62)

In fact, Theorem 2.1.2 implies that the inequality holds with e−n in the place of e−1, but this will
make no difference to us.

If the cumulative time tJ is at most t for an integer J , then there are at least J consecutive
collapse attempts which must fail in order for T (θ4n) to exceed t. Hence, for any such J , by
(2.62),

PU(T (θ) > t) 6
J−1∏
i=0

PU(Fi+1|Fi) 6 e−J . (2.63)

We now bound below J to obtain a further upper bound of (2.63) in terms of t. We have

J >
tJ − gJ
gJ

>
t− 2gJ
gJ

>
t− 2

(
log(d+ t)

)1+ε(
log(d+ t)

)1+ε . (2.64)
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The first inequality holds because tJ is at most (J + 1)gJ ; the second because tJ is within gJ
of t; and the third because, when the cumulative time tJ is at most t, the corresponding collapse
timescale gJ is at most

(
log(d+ t)

)1+ε. Applying (2.64) to (2.63), we find

PU(T (θ) > t) 6 e
− t−2(log(d+t))1+ε

(log(d+t))1+ε .

We obtain (2.61) by replacing t with t
(

log max{t, d}
)1+2ε in the preceding inequality and noting

that, because d > θ and ε < 1, the resulting bound is at most e−t.

2.6.2 Proof strategy for Proposition 2.6.3
We turn our attention to the proof of Proposition 2.6.3, which finds a high-probability bound on the
time it takes for all but one cluster to collapse. Heuristically, if there are only two clusters, separated
by a distance ρ1, then one of the clusters will lose all its particles to the other cluster in log ρ1 steps
(up to factors depending on n), due to the harmonic measure and escape probability lower bounds
of Theorems 2.1.6 and 2.1.9. This heuristic suggests that, among k clusters, we should observe the
collapse of some cluster on a timescale which depends on the smallest separation between any two
of the k clusters. Similarly, at the time the `th cluster collapses, if the least separation among the
remaining clusters is ρ`+1, then we expect to wait log ρ`+1 steps for the (`+ 1)st collapse.

If the timescale of collapse is small relative to the separation between clusters, the pairwise
separation and diameters of clusters cannot appreciably change while collapse occurs. In particular,
the separation between any two clusters will not significantly exceed the initial diameter d of the
configuration, which suggests an overall bound of order (log d)1+on(1) steps for all but one cluster
to collapse, where the on(1) factor accounts for various n-dependent factors. This is the upper
bound we establish.

We now highlight some key aspects of the proof.

Expiry time

As described above, over the timescale typical of collapse, the diameters and separation of clusters
will not change appreciably. Because these quantities determine the probability with which the
least separated cluster loses a particle, we will be able to obtain estimates of this probability which
hold uniformly from the time T`−1 of the (` − 1)st cluster collapse and until the next time T` that
some cluster collapses, unless T` − T`−1 is atypically large. Indeed, if T` − T`−1 is as large as the
separation ρ` of the least separated cluster at time T`−1, then two clusters may intersect. We avoid
this by defining a FT`−1

-measurable expiry time t` (which will effectively be (log ρ`)
2) and restrict-

ing our estimates to the interval from T`−1 to the minimum of T`−1 + t` and T`. An expiry time of
(log ρ`)

2 is short enough that the relative separation of clusters will not change significantly before
it, but long enough so that some cluster will collapse before it with overwhelming probability.
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Midway point

From time T`−1 to time T` or until expiry, we will track activated particles which reach a circle
of radius 1

2
ρ` surrounding one of the least separated clusters, which we call the watched cluster.

We will use this circle, called the midway point, to organize our argument with the following three
estimates, which will hold uniformly over this interval of time (Figure 2.8).

1. Activated particles which reach the midway point deposit at the watched cluster with a prob-
ability of at most 0.51.

2. With a probability of at least (log ρ`)
−1−on(1), the activated particle reaches the midway point.

3. Conditionally on the activated particle reaching the midway point, the probability that it
originated at the watched cluster is at least (log log ρ`)

−1.

U i
t

(log ρ`)
2

ρ`/2

log ρ`

U j
t

T`−1 T` ∧ t`
× × ××

t

−1 0 +1 +1

Figure 2.8: Setting of the proof of Proposition 2.6.3. Least separated clusters i and j (cluster i is
the watched cluster), each with a diameter of approximately log ρ`, are separated by a distance ρ`
at time T`−1. The diameters of the clusters grow at most linearly in time, so over approximately
(log ρ`)

2 steps, the clusters remain within the dotted circles. Crosses on the timeline indicate times
before collapse and expiry at which an activated particle reaches the midway point (solid circle).
At these times, the number of particles in the watched cluster may remain the same or increase
or decrease by one (indicated by 0,±1 above the crosses). At time t, the watched cluster gains a
particle from cluster j.
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To explain the third estimate, we make two observations. First, consider a cluster j separated
from the watched cluster by a distance of ρ. In the relevant context, cluster j will essentially be
exponentially separated, so its diameter will be at most log ρ. Consequently, a particle activated at
cluster j reaches the midway point with a probability of at most log log ρ

log ρ
. Because this probability

is decreasing in ρ and because ρ > ρ`, log log ρ`
log ρ`

further bounds above it. Second, the probability
that a particle activated at the watched cluster reaches the midway point is at least (log ρ`)

−1,
up to a factor depending on n. Combining these two observations with Bayes’s rule, a particle
which reaches the midway point was activated at the watched cluster with a probability of at least
(log log ρ`)

−1, up to an n-dependent factor.

Coupling with random walk

Each time an activated particle reaches the midway point, there is a chance of at least (log log ρ`)
−1

up to an n-dependent factor that the particle originated at the watched cluster and will ultimately
deposit at another cluster. When this occurs, the watched cluster loses a particle. Alternatively, the
activated particle may return to its cluster of origin—in which case the watched cluster retains its
particles—or it deposits at the watched cluster, having originated at a different one—in which case
the watched cluster gains a particle (Figure 2.8).

We will couple the number of elements in the watched cluster with a lazy, one-dimensional
random walk, which will never exceed n and never hit zero before the size of the watched cluster
does. It will take no more than (log log ρ`)

n instances of the activated particle reaching the midway
point, for the random walk to make n consecutive down-steps. This is a coarse estimate; with more
effort, we could improve the n-dependence of this term, but it would not qualitatively change the
result. On a high probability event, ρ` will be sufficiently large to ensure that (log log ρ`)

n =
(log ρ`)

on(1). Then, because it will typically take no more than (log ρ`)
1+on(1) steps to observe a

visit to the midway point, we will wait a number of steps on the same order to observe the collapse
of a cluster.

2.6.3 Basic properties of clusters and collapse times
We will work in the following setting.

• For brevity, if we write θm with no parenthetical argument, we will mean θm(γn) for the
constant γ given by

γ = 18 max{c1, c
−1
2 }+ 36, (2.65)

where c1 and c2 are the constants in Theorems 2.1.6 and 2.1.9. Any constant larger than γ
would also work in its place.

• U0 has n > 2 elements and diam(U0) is at least θ4n.

• The clustering parameter r equals Φ(diam(U0)), where we continue to denote by Φ(·) the
inverse function of θn(·). In particular, r satisfies

r > Φ(θ4n) = θ3n > en. (2.66)
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• We will assume that the initial configuration is exponentially clustered with parameter r
as U0 7→r {U i

0, xi, θ
(i)}ki=1. In particular, we assume that clustering produces k clusters.

We note that the choice of r guarantees diam(U0) > 2θn−1(r) which, by Lemma 2.5.2,
guarantees that k > 1.

• We denote a generic element of {1, 2, . . . , k − 1} by `.

Properties of cluster separation and diameter

We will use the following terms to describe the separation of clusters.

Definition 2.6.5. We define pairwise cluster separation and the least separation by

sep (U i
t ) = min

j 6=i
dist(U i

t , U
j
t ) and sep (Ut) = min

i
sep (U i

t ).

(By convention, the distance to an empty set is∞, so the separation of a cluster is∞ at all times
following its collapse.) If U i

t satisfies sep(U i
t ) = sep(Ut), then we say that U i

t is least separated.
Whenever there are at least two clusters, at least two clusters will be least separated. The least
separation at a cluster collapse time will be an important quantity; we will denote it by

ρ` = sep(UT`−1
).

Next, we introduce the expiry time t` and the truncated collapse time T −` . As discussed in
Section 2.6.2, if at time T`−1 the least separation is ρ`, then we will obtain a lower bound on the
probability that a least separated cluster loses a particle, which holds uniformly from time T`−1 to
the first of T`−1 + t` and T` − 1 (i.e., the time immediately preceding the `th collapse), which we
call the truncated collapse time, T −` . Here, t` is an FT`−1

-measurable random variable which will
effectively be (log ρ`)

2. It will be rare for T` to exceed T`−1 + t`, so T −` can be thought of as T`−1.

Definition 2.6.6. Given the FT`−1
data (in particular ρ` and T`−1), we define the expiry time t` to

be
t` = (log ρ`)

2 − 4 log (ρ` + T`−1)− T`−1.

We emphasize that t` should be thought of as (log ρ`)
2; the other terms will be much smaller and

are included to simplify calculations which follow. Additionally, we define the truncated `th cluster
collapse time to be

T −` = (T`−1 + t`) ∧ (T` − 1).

Cluster diameter and separation have complementary behavior in the sense that diameter in-
creases at most linearly in time but may decrease abruptly, while separation decreases at most
linearly in time but may increase abruptly. We will not need a bound on decrease in diameter; we
express the other properties in the following lemma.

Lemma 2.6.7. Cluster diameter and separation obey the following properties.
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1. Cluster diameter increases by at most one each step:

diam(U i
t ) 6 diam(U i

t−1) + 1. (2.67)

2. Cluster separation decreases by at most one each step:

dist(U i
t , U

j
t ) > dist(U i

t−1, U
j
t−1)− 1 and sep(U i

t ) > sep(U i
t−1)− 1. (2.68)

3. For any two times s and t satisfying T`−1 6 s < t < T` and any two clusters i and j:

dist(U i
t , U

j
t ) 6 dist(U i

s, U
j
s ) + diam(U i

s) + diam(U j
s ) + (t− s).

Proof. The first two properties are obvious; we prove the third. Let i, j label two clusters which
are nonempty at time T`−1 and let s, t satisfy the hypotheses. If there are mi activations at the ith

cluster from time s to time t, then for any x′ in U i
t , there is an x in U i

s such that ‖x − x′‖ 6 mi.
The same is true of any y′ in the j th cluster with mj in the place of mi. Since the sum of mi and
mj is at most t− s, two uses of the triangle inequality give

dist(U i
t , U

j
t ) 6 max

x′∈U it , y′∈U
j
t

‖x′ − y′‖ 6 max
x∈U is, y∈Ujs

‖x− y‖+ t− s.

This implies property (3) because, by two more uses of the triangle inequality,

max
x∈U is, y∈Ujs

‖x− y‖ 6 dist(U i
s, U

j
s ) + diam(U i

s) + diam(U j
s ).

Consequences of timely collapse

If clusters collapse before their expiry times—i.e., if the event

Timely(`) = ∩`m=1{Tm − Tm−1 6 tm}
occurs—then we will be able to control the separation (Lemma 2.6.8) and diameters (Lemma
2.6.10) of the clusters by combining the initial exponential separation of the clusters with the
properties of Lemma 2.6.7.

The next lemma states that, when cluster collapses are timely, cluster separation decreases little.
To state it, we recall that sep(U i

t ) is the distance between U i
t and the nearest other cluster, and that

ρ` is the least of these distances among all pairs of distinct clusters at time T`−1. In particular,
sep(U i

T`−1
) > ρ` for each i.

Lemma 2.6.8. For any cluster i, when Timely(`− 1) occurs and when t is at most T −` ,

sep
(
U i
t

)
> (1− e−n) sep

(
U i
T`−1

)
. (2.69)

Additionally, when Timely(`− 1) occurs,

ρ` > 1
2
ρ1 > eθ2n . (2.70)
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The factor of 1 − e−n in (2.69) does not have special significance; other factors of 1 − on(1)
would work, too. (2.69) and the first inequality in (2.70) are consequences of the fact (2.68) that
separation decreases at most linearly in time and, when Timely(`−1) occurs, T`−1 is small relative
to the separation of the remaining clusters. The second inequality in (2.70) follows from our choice
of r in (2.66).

Proof Lemma 2.6.8. We will prove (2.69) by induction, using the fact that separation decreases at
most linearly in time (2.68) and that (by the definition of T −` ) at most t` steps elapse between T`−1

and T −` .
For the base case, take ` = 1. Suppose cluster i is nonempty at time T`−1. We must show that,

when t 6 T −1 ,
sep
(
U i
t

)
> (1− e−n) sep

(
U i

0

)
.

Because separation decreases at most linearly in time (2.68) and because t 6 T −1 ,

sep(U i
t ) > sep(U i

0)− t > sep(U i
0)− T −1 .

This implies (2.69) for ` = 1 because

sep(U i
0)− T −1 >

(
1− (log ρ1)2

ρ1

)
sep(U i

0) > (1− e2ne−e
n

) sep(U i
0) > (1− e−n) sep(U i

0).

The first inequality is a consequence of the definitions of T −1 , t1, and ρ1, which imply T −1 6 t1 6
(log ρ1)2 and sep(U i

0) > ρ1. Since the ratio of (log ρ1)2 to ρ1 decreases as ρ1 increases, the second
inequality follows from the bound ρ1 > ee

n , which is implied by the fact that U0 satisfies the
exponential separation property (2.55) with parameter r > en (2.66). The third inequality is due to
the fact that en > 3n when n > 2.

The argument for ` > 1 is similar. Assume (2.69) holds for `− 1. We have

sep(U i
t ) > sep(U i

T`−1
)− (t− T`−1) > sep(U i

T`−1
)− t` >

(
1− (log ρ`)

2

ρ`

)
sep(U i

T`−1
). (2.71)

The first inequality is implied by (2.68). The second inequality follows from the definitions of T −`
and t`, which imply T −` − T`−1 6 t` 6 (log ρ`)

2, and t 6 T −` . The third inequality is due to the
same upper bound on t` and the fact that sep(U i

T`−1
) > ρ` by definition.

We will bound below ρ` to complete the induction step with (2.71), because the ratio of (log ρ`)
2

to ρ` decreases as ρ` increases. Specifically, we will prove (2.70). By definition, when Timely(`−1)
occurs, so too does Timely(` − 2). Accordingly, the induction hypothesis applies and we apply it
`− 1 times:

ρ`−1 = min
i

sep(U i
T`−2

) > (1− e−n)`−1 min
i

sep(U i
0) = (1− e−n)`−1ρ1.

The equalities follow from the definitions of ρ`−1 and ρ1. We also have

ρ` > ρ`−1 − t`−1 >
(
1− (log ρ`−1)2

ρ`−1

)
ρ`−1 > (1− e−n)ρ`−1.
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The first inequality is due to (2.68) and the fact that at most t`−1 steps elapse between T`−2 and
T`−1 when Timely(` − 1) occurs. The second inequality is due to t`−1 6 (log ρ`−1)2 and the third
is due to the fact that the ratio of (log ρ`−1)2 to ρ`−1 decreases as ρ`−1 increases.

Combining the two preceding displays and then using the fact that ` 6 n and ρ1 > ee
n , and the

inequality (1 + x)r > 1 + rx, which holds for x > −1 and r > 1, we find

ρ` > (1− e−n)`ρ1 > (1− ne−n)ρ1.

Because ne−n 6 1
2

when n > 2, this proves ρ` > 1
2
ρ1, which is the first inequality of (2.70). To

prove the second inequality in (2.70), we note that ρ1 is at least θ3n by (2.66).
We now apply ρ` > 1

2
ρ1 to the ratio in (2.71):

(log ρ`)
2

ρ`
6

2(log ρ1)2

ρ1

6 e−n.

The second inequality uses ρ1 > ee
n . We complete the induction step, proving (2.69), by substi-

tuting this bound into (2.71).

When cluster collapses are timely, T −` is at most (log ρ`)
2, up to a factor depending on n.

Lemma 2.6.9. When Timely(`− 1) occurs,

T −` 6 2n(log ρ`)
2. (2.72)

The factor of 2 is for brevity; it could be replaced by 1 + on(1). The lower bound on the least
separation ρ` at time T`−1 in (2.70) indicates that, while ρ` may be much larger than ρ1, it is at
least half of ρ1. Since the expiry time t` is approximately (log ρ`)

2, the truncated collapse time
T −` —which is at most the sum of the first ` expiry times—should be of the same order, up to a
factor depending on ` (which we will replace with n since ` 6 n).

Proof of Lemma 2.6.9. We write

T −` = T −` − T`−1 +
`−1∑
m=1

(Tm − Tm−1) 6
∑̀
m=1

tm 6
∑̀
m=1

(log ρm)2.

The first inequality follows from the fact that, when Timely(` − 1) occurs, Tm − Tm−1 6 tm for
m 6 `−1, and T −` −T`−1 6 t`. The second inequality holds because tm 6 (log ρm)2 by definition.

Next, assume w.l.o.g. that cluster i is least separated at time T`−1, meaning ρ` = sep(U i
T`−1

).
Since Timely(`− 1) occurs, Lemma 2.6.8 applies and with its repeated use we establish (2.72):

∑̀
m=1

(log ρm)2 6
∑̀
m=1

(
log sep(U i

Tm−1
)
)2

6
∑̀
m=1

(
log
(
(1+ e−n

1−e−n )`−mρ`
))2

6 `(log(2ρ`))
2 6 2n(log ρ`)

2.
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The first inequality is due to the definition of ρm as the least separation at time Tm−1. This step
is helpful because it replaces each summand with one concerning the ith cluster. The second
inequality holds because, by Lemma 2.6.8,

ρ` = sep(U i
T`−1

) > (1− e−n)`−msep(U i
Tm−1

) =⇒ sep(U i
Tm−1

) 6
(
1 + e−n

1−e−n
)`−m

ρ`.

The third inequality follows from ` 6 n and (1 + e−n
1−e−n )n 6 2 when n > 2. The fourth inequality

is due to ` 6 n and ρ` > eθ2n from (2.70). (The factor of 2 could be replaced by 1 + on(1).)
Combining the displays proves (2.72).

When cluster collapse is timely, we can bound cluster diameter at time t ∈ [T`−1, T −` ] from
above, in terms of its separation at time T`−1 or at time t.

Lemma 2.6.10. For any cluster i, when Timely(`− 1) occurs and when t is at most T −` ,

diam(U i
t ) 6

(
log sep(U i

T`−1
)
)2
. (2.73)

Additionally, if xi is the center of the ith cluster resulting from the exponential clustering of U0,
then when t is at most T −` ,

U i
t ⊆ Dxi

((
log sep(U i

T`−1
)
)2
)

and Ut\U i
t ⊆ Dxi

(
0.99 sep(U i

T`−1
)
)c
. (2.74)

Lastly, if i, j label any two clusters which are nonempty at time T`−1, then when t is at most T −` ,

log diam(U i
t )

log dist(U i
t , U

j
t )

6
2.1 log log ρ`

log ρ`
. (2.75)

We use factors of 0.99 and 2.1 for concreteness; they could be replaced by 1 − on(1) and
2 + on(1). Lemma 2.6.10 implements the diameter and separation bounds we discussed in Section
2.6.2 (there, we used ρ in the place of sep(U i

T`−1
)). Before proving the lemma, we discuss some

heuristics which explain (2.73) through (2.75).
If a cluster is initially separated by a distance ρ, then it has a diameter of at most 2 log ρ

by (2.55), which is negligible relative to an expiry time of order (log ρ)2. Diameter increases at
most linearly in time by (2.67), so when cluster collapse is timely the diameter of U i

t is at most(
log sep(U i

T`−1
)
)2. In fact, the definition of the expiry time subtracts the lower order terms, so the

bound will be exactly this quantity. Moreover, since (log ρ)2 is negligible relative to the separation
ρ, and as separation decreases at most linearly in time by (2.68), the separation of U i

t should be at
least sep(U i

T`−1
), up to a constant which is nearly one.

Combining these bounds on diameter and separation suggests that the ratio of the diameter
of U i

t to its separation from another cluster U j
t should be roughly the ratio of

(
log sep(U i

T`−1
)
)2 to

sep(U i
T`−1

), up to a constant factor. Because this ratio is decreasing in the separation (for separation

exceeding, say, e2) and because the separation at time T`−1 is at least ρ`, the ratio (log ρ`)
2

ρ`
should

provide a further upper bound, again up to a constant factor. These three observations correspond
to (2.73) through (2.75).
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Proof of Lemma 2.6.10. We first address (2.73) and use it to prove (2.74). We then combine the
results to prove (2.75). We bound diam(U i

t ) from above in terms of diam(U i
0) as

diam(U i
t ) 6 diam(U i

0) + T −` 6 diam(U i
0) + T`−1 + t`. (2.76)

The first inequality holds because diameter grows at most linearly in time (2.67) and because t is
at most T −` . The second inequality is due to the definition of T −` . We then bound diam(U i

0) from
above in terms of sep(U i

T`−1
) as

diam(U i
0) 6 2 log sep(U i

0) 6 2 log
(
sep(U i

T`−1
) + T`−1

)
. (2.77)

The exponential separation property (2.55) implies the first inequality and (2.68) implies the sec-
ond.

Combining the two preceding displays, we find

diam(U i
t ) 6 2 log

(
sep(U i

T`−1
) + T`−1

)
+ T`−1 + t`.

Substituting the definition of t`, the right-hand side becomes

2 log
(
sep(U i

T`−1
) + T`−1

)
+ (log ρ`)

2 − 4 log(ρ` + T`−1).

By definition, ρ` is the least separation at time T`−1, so we can further bound diam(U i
t ) from above

by substituting sep(U i
T`−1

) for ρ`:

diam(U i
t ) 6

(
log sep(U i

T`−1
)
)2 − 2 log

(
sep(U i

T`−1
) + T`−1

)
. (2.78)

Dropping the negative term gives (2.73).
We turn our attention to (2.74). To obtain the first inclusion of (2.74), we observe that U i

t is
contained in the disk Dxi

(
diam(U i

0) + T`−1 + t`
)
, the radius of which is the quantity in (2.76) that

we ultimately bounded above by
(

log sep(U i
T`−1

)
)2.

Concerning the second inclusion of (2.74), we observe that for any y in Ut\U i
t , there is some y′

in UT`−1
\U i
T`−1

such that ‖y − y′‖ is at most t`, because t is at most T −` . By the triangle inequality
and the bound on ‖y − y′‖,

‖xi − y‖ > ‖xi − y′‖ − ‖y − y′‖ > ‖xi − y′‖ − t`.

Next, we observe that the distance between xi and y′ is at least

‖xi − y′‖ > sep(U i
T`−1

)− diam(U i
0).

The two preceding displays and (2.77) imply

‖xi − y‖ > sep(U i
T`−1

)− 2 log
(
sep(U i

T`−1
) + T`−1

)
− t`. (2.79)
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We continue (2.79) with

‖xi−y‖ > sep(U i
T`−1

)−
(

log sep(U i
T`−1

)
)2

>
(
1− (log ρ`)

2

ρ`

)
sep(U i

T`−1
) > 0.99 sep(U i

T`−1
). (2.80)

The first inequality follows from substituting the definition of t` into (2.79) and from sep(U i
T`−1

) >

ρ`. The second inequality holds because the ratio of
(

log sep(U i
T`−1

)
)2 to sep(U i

T`−1
) decreases as

sep(U i
T`−1

) increases and because sep(U i
T`−1

) > ρ`. The fact (2.70) that ρ` is at least eθ2n when
Timely(` − 1) occurs implies that the ratio in (2.80) is at most 0.01, which justifies the third
inequality. (2.80) proves the second inclusion of (2.74).

Lastly, to address (2.75), we observe that any element x inU i
t is within a distance

(
log sep(U i

T`−1
)
)2

of xi by (2.78). So, by (2.80) and simplifying with ρ` > eθ2n , the distance between U i
t and U j

t is at
least

sep(U i
T`−1

)− 2
(

log sep(U i
T`−1

)
)2

> 0.99 sep(U i
T`−1

).

Combining this with (2.73), and then using the fact that sep(U i
T`−1

) is at least ρ`, gives

log diam(U i
t )

log dist(U i
t , U

j
t )

6
2 log log sep(U i

T`−1
)

log
(
0.99 sep(U i

T`−1
)
) 6

2.1 log log ρ`
log ρ`

.

The next lemma concerns two properties of the midway point introduced in Section 2.6.2. We
recall that the midway point (for the period beginning at time T`−1 and continuing until T −` ) is a
circle of radius 1

2
ρ`, centered on the center xi (given by the initial exponential clustering of U0) of

a cluster i which is least separated at time T`−1. The first property is the simple fact that, when
collapse is timely, the midway point separates U i

t from the rest of Ut until time T −` . This is clear
because the midway point is a distance of 1

2
ρ` from UT`−1

and T −` is no more than (log ρ`)
2 steps

away from T`−1 when collapse is timely. The second property is the fact that a random walk from
anywhere in the midway point hits U i

t before the rest of Ut (excluding the site of the activated
particle) with a probability of at most 0.51, which is reasonable because the random walk begins
effectively halfway between U i

t and the rest of Ut. In terms of notation, when activation occurs at
u, the bound applies to the probability of the event{

τU it\{u} < τUt\(U it ∪{u})
}
.

We will stipulate that u belongs to a cluster in Ut which is not a singleton as, otherwise, its activa-
tion at time t necessitates t = T`.

Lemma 2.6.11. Suppose cluster i is least separated at time T`−1 and recall that xi denotes the
center of the ith cluster, determined by the exponential clustering of U0. When Timely(` − 1)
occurs and when t is at most T −` :

1. the midway point C(i; `) = Cxi
(

1
2
ρ`
)

separates U i
t from Ut\U i

t , and
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2. for any u in Ut which does not belong to a singleton cluster and any y in C(i; `),

Py
(
τU it\{u} < τUt\(U it ∪{u})

)
6 0.51. (2.81)

Proof. Property (1) is an immediate consequence of (2.74) of Lemma 2.6.10, since 1
2
ρ` is at least

(log ρ`)
2 and less than 0.99ρ`.

Now let u and y satisfy the hypotheses, denote the center of the ith cluster by xi, and denote
C((log ρ`)

2) by B. To prove property (2), we will establish

Py−xi (τB < τz−xi) 6 0.51, (2.82)

for some z ∈ Ut\(U i
t ∪ {u}). This bound implies (2.81) because, by (2.74), B separates U i

t from
the rest of Ut.

We can express the probability in (2.82) in terms of hitting probabilities involving only three
points:

Py−xi(τB < τz−xi) = Py−xi(τo < τz−xi) + Ey−xi
[
PSτB (τz−xi < τo)1(τB < τz−xi)

]
6 Py−xi(τo < τz−xi) + max

v∈B
Pv(τz−xi < τo)Py−xi(τB < τz−xi).

Rearranging, we find

Py−xi(τB < τz−xi) 6
(

1−max
v∈B

Pv(τz−xi < τo)
)−1

Py−xi(τo < τz−xi). (2.83)

We will choose z so that the points y − xi and z − xi will be at comparable distances from the
origin and, consequently, Py−xi(τo < τz−xi) will be nearly 1/2. In contrast, every element of B
will be far nearer to the origin than to z − xi, so Pv(τz−xi < τo) will be nearly zero for every v in
B. We will write these probabilities in terms of the potential kernel using Lemma 2.3.8. We will
need bounds on the distances ‖z − xi‖ and ‖z − y‖ to simplify the potential kernel terms; we take
care of this now.

Suppose cluster j was nearest to cluster i at time T`−1. We then choose z to be the element of
U j
t nearest to U i

t . Note that such an element exists because, when t is at most T −` , every cluster
surviving until time T`−1 survives until time t. By (2.74) of Lemma 2.6.10,

‖z − xi‖ > 0.99ρ`.

Part (2) of Lemma 2.9.1 then gives the lower bound

a(z − xi) >
2

π
log(0.99ρ`). (2.84)

In the inter-collapse period before T −` , the separation between z and y (initially 1
2
ρ`) can grow

by at most t` + diam(U j
T`−1

):

‖z − y‖ 6 1
2
ρ` + t` + diam(U j

T`−1
).
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By (2.73), the diameter of cluster j at time T`−1 is at most (log ρ`)
2; this upper bound applies to t`

as well, so

‖z − y‖ 6 1
2
ρ` + 2(log ρ`)

2 6 0.51ρ`.

We obtained the second inequality using the fact (2.70) that, when Timely(` − 1) occurs, ρ` is at
least eθ2n . (In what follows, we will use this fact without restating it.)

Accordingly, the difference between a(z − y) and a(y − xi) satisfies

a(z − y)− a(y − xi) 6
2

π
log(2 · 0.51) + 4λρ−2

` 6
2

π
. (2.85)

By Lemma 2.3.8, the first term of (2.83) equals

Py−xi(τo < τz−xi) =
1

2
+

a(z − y)− a(y − xi)
2a(z − xi)

. (2.86)

Substituting (2.84) and (2.85) into (2.86), we find

Py−xi(τo < τz−xi) 6
1

2
+

1

log ρ`
6 0.501. (2.87)

We turn our attention to bounding above the maximum of Pv(τz−xi < τo) over v in B. For any
such v, Lemma 2.3.8 gives

Pv(τz−xi < τo) =
1

2
+

a(v)− a(z − xi − v)

2a(z − xi)
. (2.88)

By Lemma 2.9.2, a(v) is at most a′((log ρ`)
2) + 2(log ρ`)

−2. Then, since

‖z − xi − v‖ > 0.99ρ` − (log ρ`)
2 > 0.98ρ`,

we have

a(z−xi−v)−a(v) >
2

π
log(0.98ρ`)−

4

π
log log ρ`−4(log ρ`)

−2 >
2 · 0.99

π
log(0.99ρ`). (2.89)

Substituting (2.84) and (2.89) into (2.88), we find

Pv(τz−xi < τo) 6
1

2
− 0.99

2
6 0.005.

This bound holds uniformly over v in B. Applying it and (2.87) to (2.83), we find

Py−xi(τB < τz−xi) 6 (1− 0.005)−10.501 6 0.51.
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Combined with the separation lower bound (2.70) of Lemma 2.6.8, the inclusions (2.74) of
Lemma 2.6.10 ensure that, when Timely(`−1) occurs, nonempty clusters at time t ∈ [T`−1, T −` ] are
contained in well separated disks. A natural consequence is that, when Timely(`−1) occurs, every
nonempty cluster has positive harmonic measure in Ut. Later, we will use this fact in conjunction
with Theorem 2.1.6 to control the activation step of the HAT dynamics.

Lemma 2.6.12. Let I` be the set of indices of nonempty clusters at time T`−1. When Timely(`− 1)
occurs and when t is at most T −` , HUt(U

i
t ) > 0 for every i ∈ I`.

The proof is similar to that of Lemma 2.3.12. Recall the definition of the ∗-visible boundary
(2.35) and define the disk Di to be the one from (2.74)

Di = Dxi

((
log sep(U i

T`−1
)
)2) for each i ∈ I`. (2.90)

For simplicity, assume 1 ∈ I`. Most of the proof is devoted to showing that there is a path Γ from
∂∗extD

1 to a large circle C about Ut, which avoids ∪i∈I`Di and thus avoids Ut. To do so, we will
specify a candidate path from ∂∗extD

1 to C, and modify it as follows. If the path encounters a disk
Di, then we will reroute the path around ∂∗extD

i (which will be connected and will not intersect
another disk). The modified path encounters one fewer disk. We will iterate this argument until
the path avoids every disk and therefore never returns to Ut.

Proof of Lemma 2.6.12. Suppose Timely(` − 1) occurs and t ∈ [T`−1, T −` ], and assume w.l.o.g.
that 1 ∈ I`. Let y ∈ U1

t satisfy HU1
t
(y) > 0. For each i ∈ I`, let Di be the disk defined in (2.90).

As HU1
t
(y) is positive, there is a path from y to ∂∗extD

1 which does not return to U1
t . In a moment,

we will show that ∂∗extD
1 is connected, so it will suffice to prove that there is a subsequent path

from ∂∗extD
1 to C = Cx1(2 diam(Ut)) which does not return to E = ∪i∈I`Di. This suffices when

Timely(`− 1) occurs because then, by Lemma 2.6.10, U i
t ⊆ Di for each i ∈ I`, so Ut ⊆ E.

We make two observations. First, because each Di is finite and ∗-connected, Lemma 2.3.13
states that each ∂∗extD

i is connected. Second, ∂∗extD
i is disjoint from E when Timely(`−1) occurs;

this is an easy consequence of (2.74) and the separation lower bound (2.70).
We now specify a candidate path from ∂∗extD

1 to C and, if necessary, modify it to ensure that
it does not return to E. Because HU1

t
(y) is positive, there is a shortest path Γ from ∂∗extD

1 to C,
which does not return to U1

t . Let L be the set of labels of disks encountered by Γ. If L is empty,
then we are done. Otherwise, let i be the label of the first disk encountered by Γ, and let Γa and
Γb be the first and last elements of Γ which intersect ∂∗extD

i. By our first observation, ∂∗extD
i is

connected, so there is a shortest path Λ in ∂∗extD
i from Γa to Γb. When edit Γ to form Γ′ as

Γ′ =
(
Γ1, . . . ,Γa−1,Λ1, . . . ,Λ|Λ|,Γb+1, . . . ,Γ|Γ|

)
.

Because Γb was the last element of Γ which intersected ∂∗extD
i, Γ′ avoids Di. Additionally, by

our second observation, Λ avoids E, so if L′ is the set of labels of disks encountered by Γ′, then
|L′| 6 |L| − 1. If L′ is empty, then we are done. Otherwise, we can relabel Γ to Γ′ and L to L′

in the preceding argument to continue inductively, obtaining Γ′′ and |L′′| 6 |L| − 2, and so on.
Because |L| 6 n, we need to modify the path at most n times before the resulting path from y to
C does not return to E.
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The last result of this section bounds above escape probabilities; we will shortly specialize
it for our setting. Note that ∂Aρ denotes the exterior boundary of the ρ-fattening of A, not the
ρ-fattening of ∂A.

Lemma 2.6.13. If A is a subset of Z2 with at least two elements and if ρ is at least twice the
diameter of A, then, for x in A,

Px
(
τ∂(A\{x})ρ < τA\{x}

)
6

log diam(A) + 2

log ρ
. (2.91)

The added 2 in (2.91) is unimportant. Note that, if A was a singleton set, then the probability
in question would be proportional to (log ρ)−1. The log diam(A) term arises from the fact that, if
|A| > 2, then a random walk from x must avoid at least one element in A\{x}, at a distance of at
most diam(A) from x.

Proof of Lemma 2.6.13. We will replace the event in (2.91) with a more probable but simpler event
and bound above its probability instead.

By hypothesis, A has at least two elements, so for any x in A, there is some y in A\{x} nearest
to x. To escape to ∂(A\{x})ρ without hitting A\{x} it is necessary to escape to Cy(ρ) without
hitting y. Accordingly, for a random walk from x, the following inclusion holds

{τ∂(A\{x})ρ < τA\{x}} ⊆ {τCy(ρ) < τy}. (2.92)

To prove (2.91) it therefore suffices to obtain the same bound for the larger event.
The hypothesis ρ > 2 diam(A) ensures that x − y lies in D(ρ), so we can apply the optional

stopping theorem to the martingale a(Sj∧τo) at the stopping time τC(ρ). Doing so, we find

Px(τCy(ρ) < τy) = Px−y(τC(ρ) < τo) =
a(x− y)

Ex−y[a(SτC(ρ)
)
∣∣ τC(ρ) < τo]

. (2.93)

We apply Lemma 2.9.2 with r = ρ and x = o to find

Ex−y[a(SτC(ρ)
)
∣∣ τC(ρ) < τo] > a′(ρ)− ρ−1 >

2

π
log ρ. (2.94)

By (2.14) and the facts that 1 6 ‖x− y‖ 6 diam(A) and κ+ λ 6 1.1, the numerator of (2.93), is
at most

a(x− y) 6
2

π
log ‖x− y‖+ κ+ λ‖x− y‖−2 6

2

π
log diam(A) + 1.1. (2.95)

Substituting (2.94) and (2.95) into (2.93), and simplifying with 1.1π
2

6 2, we find

Px(τCy(ρ) < τy) 6
log diam(A) + 2

log ρ
.

Due to the inclusion (2.92), this implies (2.91).
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2.6.4 Proof of Proposition 2.6.3
Recall that, for t ∈ [T`−1, T −` ], the midway point is a circle which surrounds one of the clusters
which is least separated at time T`−1. We call this cluster the watched cluster, to distinguish it from
other clusters which are least separated at T`−1. The results of this section are phrased in these
terms and through the following events.

Definition 2.6.14. For any x ∈ Z2, time t > 0, and any 1 6 i 6 k, define the activation events

Act(x, t) = {x is activated at time t} and Act(i, t) =
⋃
x∈U it

Act(x, t).

Additionally, define the deposition event

Dep(i, t) =
⋃
x∈Ut

Act(x, t) ∩
{
τU it \ {x} < τUt \ (U it ∪{x})

}
.

In words, the deposition event requires that, at time t, the activated particle deposits at the ith

cluster.
When Timely(` − 1) occurs, if the ith cluster is the watched cluster at time T`−1, then for any

time t ∈
[
T`−1, T −`

]
, define the “midway” event as

Mid(i, t; `) =
⋃
x∈Ut

Act(x, t) ∩
{
τC(i;`) < τUt\{x}

}
.

In words, the midway event specifies that, at time t, the activated particle reaches C(i; `) before
deposition.

We will now use the results of the preceding subsection to bound below the probability that
activation occurs at the watched cluster and that the activated particle subsequently reaches the
midway point. Essentially, Theorem 2.1.6 addresses the former probability and Theorem 2.1.9
addresses the latter. However, it is necessary to first ensure that the watched cluster has positive
harmonic measure, so that at least one of its particles can be activated and the lower bound (2.2) of
Theorem 2.1.6 can apply. This is handled by Lemma 2.6.12, the hypotheses of which are satisfied
whenever Timely(` − 1) occurs and t ∈ [T`−1, T −` ]. The hypotheses of Theorem 2.1.9 will be
satisfied in this context so long as we estimate the probability of escape to a distance ρ which is
at least twice the cluster diameter. The distance from the watched cluster to the midway point is
roughly ρ`, while the cluster diameter is at most (log ρ`)

2 by (2.74) of Lemma 2.6.10, so this will
be the case.

The lower bounds from Theorems 2.1.6 and 2.1.9 will imply that a particle with positive har-
monic measure is activated and reaches the midway point with a probability of at least

exp(−c1n log n+ log(c2n
−2)) · (log ρ`)

−1

for constants c1, c2. From our choice of γ (2.65), the first factor in the preceding display is at least

αn = eγn logn. (2.96)
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Proposition 2.6.15. Let cluster i be least separated at time T`−1. When Timely(`− 1) occurs and
when t ∈

[
T`−1, T −`

]
, we have

P
(
Mid(i, t; `) ∩ Act(i, t)

∣∣ Ft) > (αn log ρ`)
−1. (2.97)

Proof. Fix `, suppose the ith cluster is least separated at time T`−1 and Timely(` − 1) occurs, and
let t ∈

[
T`−1, T −`

]
. For any x ∈ U i

t , we have

P(Mid(i, t; `) ∩ Act(i, t)
∣∣ Ft) > P

(
Mid(i, t; `)

∣∣ Act(x, t), Ft
)
P(Act(x, t)

∣∣ Ft). (2.98)

Let B denote the set of all points within distance ρ` of U i
t . We have the following inclusion when

Act(x, t) occurs: {
τ∂B < τU it

}
⊆
{
τC(i;`) < τUt\{x}

}
= Mid(i, t; `). (2.99)

From (2.99), we have

P
(
Mid(i, t; `)

∣∣ Act(x, t), Ft
)
> P

(
τ∂B < τU it

∣∣∣ Act(x, t), Ft
)

= Px
(
τ∂B < τU it

)
. (2.100)

Now let x be an element ofU i
t which is exposed and which maximizes (2.100). Such an element

must exist because, by Lemma 2.6.12, when Timely(` − 1) occurs and when t ∈ [T`−1, T −` ],
HUt(U

i
t ) is positive. We aim to apply Theorem 2.1.9 to bound below the probability in (2.100).

The hypotheses of Theorem 2.1.9 require |U i
t | > 2 and ρ` > 2 diam(U i

t ). First, the cluster U i
t must

contain at least two elements as, otherwise, activation at x would necessitate t = T`. Second, ρ` is
indeed at least twice the diameter of U i

t because, when Timely(`− 1) occurs, U i
t is contained in a

disk of radius (log ρ`)
2 by (2.74). Theorem 2.1.9 therefore applies to (2.100), giving

P
(
Mid(i, t; `)

∣∣ Act(x, t), Ft
)
> c2(n2 log ρ`)

−1. (2.101)

The harmonic measure lower bound (2.2) of Theorem 2.1.6 applies because x has positive
harmonic measure. According to (2.2), the harmonic measure of x is at least

P
(
Act(x, t)

∣∣ Ft) = HUt(x) > e−c1n logn. (2.102)

Combining (2.101) and (2.102), we find

P(Mid(i, t; `) ∩ Act(i, t)
∣∣ Ft) > c2(n2 log ρ`)

−1 · e−c1n logn > (αn log ρ`)
−1.

The second inequality is due to the definition of αn (2.96).

Next, we will bound below the conditional probability that activation occurs at the watched
cluster, given that the activated particle reaches the midway point.

Proposition 2.6.16. Let cluster i be the watched cluster at time T`−1. When Timely(`− 1) occurs
and when t ∈

[
T`−1, T −`

]
, we have

P
(
Act(i, t)

∣∣ Mid(i, t; `), Ft
)
> (3αn log log ρ`)

−1. (2.103)
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Proof. Suppose t ∈ [T`−1, T −` ] and Timely(` − 1) occurs. If we obtain a lower bound p1 on

P
(
Mid(i, t; `) ∩ Act(i, t)

∣∣ Ft) and an upper bound p2 on P
(⋃

j 6=i Mid(i, t; `) ∩ Act(j, t)
∣∣ Ft),

then
P
(
Act(i, t)

∣∣ Mid(i, t; `), Ft
)
>

p1

p1 + p2

. (2.104)

First, the probability P
(
Mid(i, t; `) ∩ Act(i, t)

∣∣ Ft) is precisely the one we used to establish
(2.98) in the proof of Proposition 2.6.15; p1 is therefore at least (αn log ρ`)

−1.
Second, for any j 6= i, we use the trivial upper bound P(Act(j, t)

∣∣ Ft) 6 1 and address the
midway component by writing

P
(
Mid(i, t; `)

∣∣ Act(j, t), Ft
)

= E
[
PX
(
τC(i;`) < τUt\{X}

) ∣∣ Act(j, t), Ft
]
. (2.105)

Use ρ to denote dist(U i
T`−1

, U j
T`−1

) and B to denote the set of all points within a distance ρ of
U j
t \{X}. (We use ρ instead of ρ` because j is not necessarily the cluster nearest cluster i.) We can

use Lemma 2.6.13 to bound the probability in (2.105) because, for any random walk from X , the
following inclusion holds:

{τC(i;`) < τUt\{X}} ⊆
{
τB < τUjt \{X}

}
.

Because the cluster U j
t has at least two elements and because ρ is at least twice its diameter, an

application of Lemma 2.6.13 with A = U j
t and ρ yields

Px
(
τB < τUjt \{x}

)
6

log diam(U j
t ) + 2

log ρ
6

2.2 log log ρ`
log ρ`

,

uniformly for x in U j
t . The second inequality follows from (2.75), which bounds the ratio of

log diam(U j
t ) to log ρ by 2.1 log log ρ`

log ρ`
.

Applying the preceding bound to (2.105), we find

P(Mid(i, t; `)
∣∣ Act(j, t), Ft) 6

2.2 log log ρ`
log ρ`

=: p2.

Then, substituting p1 and p2 in (2.104), we conclude

P
(
Act(i, t)

∣∣ Mid(i, t; `), Ft
)
> (1 + 2.2αn log log ρ`)

−1 > (3αn log log ρ`)
−1.

We now use Lemma 2.6.11 to establish that an activated particle, upon reaching the midway
point, deposits at the watched cluster with a probability of no more than 0.51.

Proposition 2.6.17. Let cluster i be the watched cluster at time T`−1. When Timely(`− 1) occurs
and when t ∈

[
T`−1, T −`

]
, for x in Ut, we have

P
(

Dep(i, t)
∣∣∣ Mid(i, t; `), Act(x, t), Ft

)
6 0.51. (2.106)
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Proof. Using the definitions of Dep(i, t) and Mid(i, t; `), we write

P
(
Dep(i, t)

∣∣ Mid(i, t; `), Act(x, t), Ft
)

= P

(⋃
y∈Ut

Act(y, t) ∩
{
τU it \ {y} < τUt \ (U it ∪{y})

} ∣∣∣∣∣ ⋃
y∈Ut

Act(y, t) ∩
{
τC(i;`) < τUt\{y}

}
, Act(x, t), Ft

)
.

Because Act(y, t) only occurs for one particle y in U i
t at any given time t, the right-hand side

simplifies to

E
[
Px
(
τU it \ {x} < τUt \ (U it ∪{x})

∣∣∣ τC(i;`) < τUt\{x}
) ∣∣∣ Act(x, t), Ft

]
.

We then apply the strong Markov property to τC(i;`) to find that the previous display equals

E
[
PSτC(i;`)

(
τU it \ {x} < τUt \ (U it ∪{x})

) ∣∣∣ Act(x, t), Ft
]
6 0.51,

where the inequality follows from the estimate (2.81).

The preceding three propositions realize the strategy of Section 2.6.2. We proceed to implement
the strategy of Section 2.6.2. In brief, we will compare the number of particles in the watched
cluster to a random walk and bound the collapse time using the hitting time of zero of the walk.

Let cluster i be the watched cluster at time T`−1 and denote by (η`(m))m>0 the consecutive
times at which the midway event Mid(i, ·; `) occurs. Set η`(0) ≡ T`−1− 1 and for all m > 1 define

η`(m) = inf{t > η`(m− 1) : Mid(i, t; `) occurs}.

Additionally, we denote the number of midway event occurrences by time t as

N`(t) =
∞∑
m=1

1 (η`(m) 6 t) .

The number of elements in cluster i viewed at these times can be coupled to a lazy random
walk (Wm)m>0 on {0, . . . , n} from W0 ≡

∣∣U i
T`−1

∣∣, which takes down-steps with probability qW =

(7αn log log ρ`)
−1 and up-steps with probability 1 − qW , unless it attempts to take a down-step at

Wm = 0 or an up-step at Wm = n, in which case it remains where it is.
When Timely(` − 1) occurs, at each time η`(·), the watched cluster has a chance of losing a

particle of at least 0.49(3αn log log ρ`)
−1 > qW (Propositions 2.6.15 and 2.6.16). The standard

coupling of |U i
η`(m)+1| and Wm will then guarantee |U i

η`(m)+1| 6 Wm. However, this inequality
will only hold when m 6 N`(T −` ).

Lemma 2.6.18. Let cluster i be the watched cluster at time T`−1. There is a coupling of
(∣∣U i

η`(m)+1

∣∣)
m>0

and (Wm)m>0 such that, when Timely(` − 1) and {N`(T −` ) > M} occur,
∣∣U i

η`(m)

∣∣ 6 Wm for all
m 6M .
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Proof. Define

q(m) = P

(
Act(i, η`(m)) ∩

⋃
j 6=i

Dep(j, η`(m))

∣∣∣∣∣ Fη`(m)

)
.

In words, the event in the previous display is the occurrence of Mid(i, η`(m); `), preceded by
activation at cluster i and followed by deposition at cluster j 6= i; this is the probability that the
watched cluster loses a particle.

Couple
(∣∣U i

η`(m)+1

∣∣)
m>0

and (Wm)m>0 in the standard way. When Timely(` − 1) occurs, by
Propositions 2.6.16 and 2.6.17, the estimates (2.103) and (2.106) hold for all t ∈ [T`−1, T −` ]. In
particular, these estimates hold at time η`(m) for any m 6 M when {N`(T −` ) > M} occurs.
Accordingly, for any such m, we have q(m) > 0.49(3αn log log ρ`)

−1 > qW .

Denote by τU0 and τW0 the first hitting times of zero for
(∣∣U i

η`(m)+1

∣∣)
m>0

and (Wm)m>0. Under
the coupling, τW0 cannot precede τU0 . So an upper bound on τW0 ofm implies τU0 6 m and therefore
it takes no more than m occurrences of the midway event after T`−1 for the collapse of the watched
cluster to occur. In other words, T` − T`−1 is at most η`(m) + 1.

Lemma 2.6.19. Let cluster i be the watched cluster at time T`−1. When Timely(` − 1) and
{N`(T −` ) >M} occur, {

τW0 6M
}
⊆ {T` − T`−1 6 η`(M) + 1} . (2.107)

Proof. From Lemma 2.6.18, there is a coupling of
(∣∣U i

η(m)+1

∣∣)
m>0

and (Wm)m>0 such that, when
Timely(`− 1) and {N`(T −` ) >M} occur,

∣∣U i
η(m)+1

∣∣ 6 Wm for all m 6M . In particular,

{τW0 6M} ⊆ {τU0 6M}.

If {τU0 6 M} occurs, cluster i is empty after the time of the M th occurrence of the midway
event, η`(M) + 1. That is, we have the inclusion

{τU0 6M} ⊆ {T` − T`−1 6 η`(M) + 1},

which implies (2.107).

We now show that τW0 , the hitting time of zero for Wm, is not more than log(log ρ`)
n, up to

a factor depending on n, with high probability. With more effort, we could prove a much better
bound (in terms of dependence on n), but this improvement would not affect the conclusion of
Proposition 2.6.3. By Lemma 2.6.19, the bound on τW0 will imply a bound on T` − T`−1 in terms
of η`(·). For brevity, denote βn = (8αn)n.

Lemma 2.6.20. Let cluster i be the watched cluster at time T`−1 and let K > 1. If Timely(`− 1)
and {N`(T −` ) > K · βn(log log ρ`)

n} occur, then

P
(
T` − T`−1 6 η`(K · βn(log log ρ`)

n) + 1
∣∣ FT`−1

)
> 1− e−K . (2.108)
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The factor (log log ρ`)
n appears because (Wm)m>0 takes down-steps with a probability which

is the reciprocal of On(log log ρ`), and we will require it to take n consecutive down-steps. Note
that the event involving K cannot occur if K is large enough, because N`(T −` ) cannot exceed
T −` − T`−1 6 (log ρ`)

2 (i.e., there can be no more occurrences of the midway event than there are
HAT steps). The implicit bound on K is (log ρ`)

2−on(1). We will apply the lemma with a K of
approximately (log ρ`)

δ for a δ ∈ (0, 1).

Proof of Lemma 2.6.20. Set M = K · bβn(log log ρ`)
nc and denote the distribution of (Wm)m>0

by PW . If Timely(`− 1) and {N`(T −` ) >M} occur, then by Lemma 2.6.19, we have the inclusion
(2.107):

{τW0 6M} ⊆ {T` − T`−1 6 η`(M) + 1}.
Since (Wm)m>0 is never greater than n, it never takes more than n down-steps for Wm to hit

zero. Since Wm+1 = Wm − 1 with a probability of qW whenever m 6M − n, we have

PW
(
τW0 > m+ n

∣∣ τW0 > m
)
6 1− qnW .

Applying this to all m 6M − n, we find

PW
(
τW0 > M

)
6 (1− qnW )M 6 e−K .

For the second inequality, we used the fact that bβn(log log ρ`)
nc is at least q−nW and therefore M is

at least K · q−nW . Combining this with (2.107) gives (2.108).

To conclude Proposition 2.6.3 from Lemma 2.6.20, we will show that if T` − T`−1 exceeds,
say, (log ρ`)

1+2δ, then with high probability there are many—at least (log ρ`)
δ—occurrences of

the midway event (and therefore steps of the walk Wm), with high probability, for an appropriate
choice of δ. Reflecting this aim, we define the event

Manyδ =
{
η`
(
(log ρ`)

δ
)
6 (log ρ`)

1+2δ
}
.

When Manyδ occurs, we will find that T` − T`−1 > (log ρ`)
1+2δ is unlikely, as the walk Wm will

hit zero with high probability after (log ρ`)
δ steps.

For convenience, in what follows, we will treat terms of the form (log ρ`)
δ as integers, as the

distinction will be unimportant.

Proposition 2.6.21. Let cluster i be the watched cluster at time T`−1 and let δ = (2n)−4. If
Timely(`− 1) and {T` − T`−1 > (log ρ`)

1+6δ} occur, then

P
(
Many3δ

∣∣ FT`−1

)
> 1− e−5n(log ρ`)

2δ

. (2.109)

Proof. By Proposition 2.6.15, the estimate (2.97) holds for any t ∈ [T`−1, T −` ]. Accordingly, when{
T` − T`−1 > (log ρ`)

1+6δ
}

occurs, (2.97) applies to every time t up to (log ρ`)
1+6δ:

P(Mid(i, t; `)
∣∣ Ft) > (αn log ρ`)

−1. (2.110)
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Define the time
s`(δ) = 6nαn(log ρ`)

1+2δ.

Suppose that the number of occurrencesM of the midway event is such that the time η`(M)+s`(δ)
is at most (log ρ`)

1+6δ. We then define, for any m 6 M the event that the mth and (m + 1)st

occurrences of the midway event are “close” in time:

Closeδ(m) = {η`(m+ 1)− η`(m) 6 s`(δ)} .

In order for Closeδ(m) to fail to occur, we must fail to observe the occurrence of Mid(i, t; `) in
s`(δ)-many consecutive steps. Using the Markov property and the bound (2.110), we find that

P
(
Closeδ(m)c

∣∣ Fη`(m)

)
6

(
1− 1

αn log ρ`

)s`(δ)

6 e−6n(log ρ`)
2δ

. (2.111)

Denote Closeδ =
⋂(log ρ`)

3δ−1
m=0 Closeδ(m). We claim that Closeδ is a subset of Manyδ and that

P(Closeδ
∣∣ FT`−1

) > 1− e−5n(log ρ`)
2δ

, (2.112)

which implies (2.109).
To prove the inclusion, we note that when Closeδ occurs, because ρ` is at least eθ2n when

Timely(`− 1) occurs (2.70), we have

η`
(
(log ρ`)

3δ
)
6 6nαn(log ρ`)

1+5δ 6 (log ρ`)
1+6δ.

Specifically, the first bound holds due to the definitions of Closeδ and s`(δ), and the second holds
because 6nαn 6 (log ρ`)

δ when ρ` > eθ2n and δ = (2n)−4. This implies that Closeδ is a subset of
Manyδ.

To prove (2.112) we use a union bound over the (log ρ`)
3δ-many constituent events of Closeδ

and (2.111), finding that

P(Closeδ
∣∣ FT`−1

) > 1− (log ρ`)
3δe−6n(log ρ`)

2δ

> 1− e−5n log(ρ`)
2δ

.

We now have all the inputs required to complete the proof of Proposition 2.6.3.

Proof of Proposition 2.6.3. Let δ = (2n)−4. We will show that it is rare for T` − T`−1 to exceed
(log ρ`)

1+6δ by arguing that, if it does, then with high probability there are many occurrences of
the midway event—and correspondingly many steps of the coupled random walk—over which the
coupled random walk must avoid hitting zero.

In terms of notation, we will call this rare event Fδ:

Fδ =
k−1⋂
`=1

F`,δ where F`,δ =
{
T` − T`−1 6 (log ρ`)

1+6δ
}
.
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The event which bounds T` − T`−1 in terms of the number of occurrences of the midway event is

G`,δ =
{
T` − T`−1 6 η`((log ρ`)

3δ) + 1
}
.

The event G`,δ will be probable because, by Lemma 2.6.20, T` − T`−1 typically does not exceed
the time it takes for the midway event to occur βn(log log ρ`)

n = (log ρ`)
on(1) times. We will also

use the probable event that there are approximately as many occurrences of the midway event as
Proposition 2.6.15 suggests there should be:

Many`,δ =
{
η`
(
(log ρ`)

3δ
)
6 (log ρ`)

1+6δ
}
.

We will be able to bound the probability of F c
`,δ for each ` in terms of the probabilities of the

rare events Gc
`,δ and Manyc`,δ because of the following inclusion:

F`,δ ⊆ G`,δ ∩Many`,δ. (2.113)

We will then apply Lemma 2.6.20 and Proposition 2.6.21 to bound the probabilities of Gc
`,δ and

Manyc`,δ. After bounding the probability of each event F`,δ, we will use a union bound to bound the
probability of Fδ.

Consider ` = 1. (Assumptions of the occurrence of Timely(` − 1) are satisfied automatically
when ` = 1.) Due to (2.113),

P
(
F c

1,δ

∣∣ F0

)
6 P

(
F c

1,δ ∩Gc
1,δ ∩Many1,δ

∣∣ F0

)
+ P

(
F c

1,δ ∩Manyc1,δ
∣∣ F0

)
. (2.114)

We apply Lemma 2.6.20 to bound the first term on the right-hand side of (2.114). It is easy to
check that, because ρ1 is at least eθ2n ,

(log ρ1)δ > 5n · βn(log log ρ1)n. (2.115)

Here, βn = (8αn)n is the same quantity which appears in the statement of Lemma 2.6.20. By
(2.115), the quantity (log ρ1)3δ which appears in the definition of G1,δ satisfies

(log ρ1)3δ > 5n · βn(log log ρ1)n · (log ρ1)2δ.

When F c
1,δ ∩Many1,δ occurs, there are at least (log ρ1)3δ occurrences of the midway event. In the

terminology of Lemma 2.6.20, N1(T −1 ) > (log ρ1)3δ which, by (2.115), means we can take K as
large as 5n(log ρ1)2δ. We apply the bound of Lemma 2.6.20 with K = 5n(log ρ1)2δ, finding that

P
(
F c

1,δ ∩Gc
1,δ ∩Many1,δ

∣∣ F0

)
6 e−5n(log ρ1)2δ .

Next, we can apply Proposition 2.6.21 directly to the second term on the right-hand side of
(2.114):

P
(
F c

1,δ ∩Manyc1,δ
∣∣ F0

)
6 e−5n(log ρ1)2δ .

Substituting the bounds for the terms in (2.114), we find

P
(
F c

1,δ

∣∣ F0

)
6 2e−5n(log ρ1)2δ .
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Continuing inductively, suppose
⋂`
i=1 Fi,δ occurs. It is easy to show that⋂̀

i=1

Fi,δ =
⋂̀
i=1

{
T` − T`−1 6 (log ρ`)

1+6δ
}
⊆ Timely(`).

Accordingly, the hypotheses of Lemma 2.6.20 and Proposition 2.6.21 involving Timely(`− 1) are
satisfied.

By Lemma 2.6.8, ρ`+1 is at least eθ2n , so (2.115) holds analogously. Furthermore, by Lemma 2.6.8,
for any `′ up to `+ 1, we have ρ`′ > ρ1/2. An argument identical to the ` = 1 case establishes

P
(
F c
`+1,δ

∣∣ FT`)1( ∩`i=1 Fi,δ
)
6 2e−5n log(ρ`+1)2δ 6 2e−5n log(ρ1/2)2δ 6 e−3n(log ρ1)2δ .

By a union bound and the preceding display,

P
(
F c
δ

∣∣ F0

)
= P

(
∪k−1
i=1

{
∩i−1
j=1Fj,δ ∩ F c

i,δ

} ∣∣∣ F0

)
6

k−1∑
i=1

P
(
∩i−1
j=1Fj,δ ∩ F c

i,δ

∣∣∣ F0

)
6

k−1∑
i=1

E
[
e−3n(log ρ1)2δ1

(
∩i−1
j=1Fj,δ

) ∣∣∣ F0

]
6

k−1∑
i=1

e−3n(log ρ1)2δ 6 e−2n(log ρ1)2δ .

(2.116)

It remains to bound the time Tk−1 when Fδ occurs. One can show that, when Fδ occurs, ρ` is
never more than twice the diameter d of the initial configuration U0. We write

Tk−1 =
k−1∑
`=1

(T` − T`−1) 6
k−1∑
`=1

(log ρ`)
1+6δ 6 2n(log d)1+6δ 6 (log d)1+7δ.

The preceding display and (2.116) establish (2.58).

2.7 Existence of the stationary distribution
In this section, we will prove Theorem 2.1.3, which has two parts. The first part states the existence
of a unique stationary distribution, πn, supported on the equivalence classes of non-isolated con-
figurations, N̂onIso2,n, to which the HAT dynamics converges from any n-element configuration.
The second part provides a tail bound on the diameter of configurations under πn. We will prove
these parts separately, as the following two propositions.

Proposition 2.7.1. For all n > 1, from any n-element subset U , HAT converges to a unique
stationary distribution πn on N̂onIso2,n, given by

πn(Û) =
1

EÛTÛ
, for Û ∈ N̂onIso2,n, (2.117)

in terms of the return time TÛ = inf{t > 1 : Ût = Û}.
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Proposition 2.7.2. For any d > 2θ4n,

πn
(
diam(Û) ≥ d

)
≤ exp

(
− d

(log d)1+on(1)

)
. (2.118)

For the sake of concreteness, this is true with 6n−4 in the place of on(1).

Proof of Theorem 2.1.3. Combine Propositions 2.7.1 and 2.7.2.

It will be relatively easy to establish Proposition 2.7.2 using the inputs to the proof of Propo-
sition 2.7.1 and Corollary 2.6.4, so we focus on presenting the key components of the proof of
Proposition 2.7.1.

By standard theory for countable state space Markov chains, to prove Proposition 2.7.1, we
must prove that the HAT dynamics is positive recurrent, irreducible, and aperiodic. We address
each of these in turn.

Proposition 2.7.3 (Positive recurrent). For any U ∈ NonIso2,n, EÛTÛ <∞.

To prove Proposition 2.7.3, we will estimate the return time to an arbitrary n-element config-
uration Û by separately estimating the time it takes to reach the line segment L̂n from Û , where
Ln = {y e2 : y ∈ {0, 1, . . . , n− 1}}, and the time it takes to hit Û from L̂n. The first estimate is
the content of the following result.

Proposition 2.7.4. There is a constant c such that, if U is a configuration in NonIso2,n with a
diameter of R, then, for all K > max{R, θ4n(cn)},

PU

(
TL̂n 6 K3

)
> 1− e−K . (2.119)

The second estimate is provided by the next proposition.

Proposition 2.7.5. There is a constant c such that, if U is a configuration in NonIso2,n with a
diameter of R, then, for all K > max{eR2.1

, θ4n(cn)},

PL̂n

(
TÛ 6 K5

)
> 1− e−K . (2.120)

The proof of Proposition 2.7.3 applies (2.119) and (2.120) to the tail sum formula for EÛTÛ .

Proof of Proposition 2.7.3. Let U ∈ NonIso2,n. We have

EÛTÛ =
∞∑
t=0

PÛ

(
TÛ > t

)
6

∞∑
t=0

(
PÛ

(
TL̂n >

t
2

)
+ PL̂n

(
TÛ > t

2

))
. (2.121)

Suppose U has a diameter of at most R and let J = max{eR2.1
, θ4n(cn)}, where c is the larger of

the constants from Propositions 2.7.4 and 2.7.5. We group the sum (2.121) over t into blocks:

EÛTÛ 6 O(J5) +
∞∑

K=J

2(K+1)5∑
t=2K5

(
PÛ

(
TL̂n >

t
2

)
+ PL̂n

(
TÛ > t

2

))
.
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By (2.119) and (2.120) of Propositions 2.7.4 and 2.7.5, each of the O(K4) summands in the K th

block is at most
PÛ

(
TL̂n > K5

)
+ PL̂n

(
TÛ > K5

)
6 2e−K . (2.122)

Substituting (2.122) into (2.121), we find

EÛTÛ 6 O(J5) +O(1)
∞∑

K=J

K4e−K <∞.

Propositions 2.7.4 and 2.7.5 also imply irreducibility.

Proposition 2.7.6 (Irreducible). For any n > 1, HAT is irreducible on N̂onIso2,n.

Proof. Let Û , V̂ ∈ N̂onIso2,n. It suffices to show that HAT reaches V̂ from Û in a finite number
of steps with positive probability. By Propositions 2.7.4 and 2.7.5, there is a finite number of steps
K = K(U, V ) such that

PU

(
TL̂n < K

)
> 0 and PLn

(
TV̂ < K

)
> 0.

By the Markov property applied to TL̂n , the preceding bounds imply that PÛ(TV̂ < 2K) > 0.

Lastly, because aperiodicity is a class property, it follows from irreducibility and the simple
fact that L̂n is aperiodic.

Proposition 2.7.7 (Aperiodic). L̂n is aperiodic.

Proof. We claim that PLn(U1 = Ln) > 1
4
, which implies that PL̂n

(
Û1 = L̂n

)
> 1

4
> 0. Indeed,

every element of Ln neighbors another, so, regardless of which one is activated, we can dictate one
random walk step which results in transport to the site of activation and U1 = Ln.

The preceding results constitute a proof of Proposition 2.7.1.

Proof of Proposition 2.7.1. Combine Propositions 2.7.3, 2.7.6, and 2.7.7.

The subsections are organized as follows. In Section 2.7.1, we prove some preliminary results,
including a key lemma which states that it is possible to reach any configuration U ∈ NonIso2,n

from Ln, in a number of steps depending only on n and diam(U). These results support the proofs
of Propositions 2.7.4 and 2.7.5 in Sections 2.7.2 and Sections 2.7.3, respectively. In Section 2.7.4,
we prove Proposition 2.7.2.
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2.7.1 Preliminaries of hitting estimates for configurations
The purpose of this section is to estimate the probability that HAT forms a given configuration V̂
from L̂n. We accomplish this primarily through Lemma 2.7.9, which guarantees the existence of a
sequence configurations from L̂n to V̂ , which can be realized by HAT in a way which is amenable
to estimates.

In this section, we will say that an element x of a configuration V is exposed if HV (x) > 0
and we will denote the exposed elements of a configuration V by ∂expV . Additionally, we will
continute to denote the radius of a set A by rad(A) = sup{‖x‖ : x ∈ A}.

First, we have a consequence of Theorems 2.1.6 and 2.1.9.

Lemma 2.7.8. There is a constant c such that, if V0 is a subset of Z2 with n > 2 elements and a
radius of at most r > 1, and if V1 is such that PV0(U1 = V1) > 0, then

PV0(U1 = V1) > e−cn logn(log r)−1. (2.123)

Proof. We will prove (2.123) by factoring PV0(U1 = V1) into activation and transport components,
and separately estimating the components with Theorems 2.1.6 and 2.1.9.

Let V0 and V1 satisfy the hypotheses. Because PV0(U1 = V1) is positive, there are exposed
elements x of V0 and y of ∂(V0\{x}) such that V1 = V0 ∪ {y}\{x}. Denote W = V0\{x}. We
write

PV0(U1 = V1) > HV0(x)Px
(
SτW−1 = y

)
> e−c1n lognPx

(
SτW−1 = y

)
. (2.124)

Note that, for the first inequality to be an equality, we would need to sum the right-hand side over
all x, y such that V1 = V0 ∪ {y}\{x}. The second inequality is implied by (2.2) of Theorem 2.1.6,
because x is exposed in V0, which has n elements.

In terms of a distance d (which we will specify shortly) and ∂Wd, the exterior boundary of the
d-fattening of W , we address the second factor of (2.124) as

Px
(
SτW−1 = y

)
>

1

4
Px(τ∂Wd

< τ∂W )Ex
[
PSτ∂Wd (Sτ∂W = y)

∣∣ τ∂Wd
< τ∂W

]
. (2.125)

In words, the probability that a random walk from x first steps into W from y is at least the
probability that it does so after first reaching ∂Wd. We choose this lower bound because the factors
of (2.125) can be addressed by our escape probability and harmonic measure estimates. The factor
of 1

4
arises from forcing the walk to hit W in the next step, after reaching y at time τ∂W .

To replace the hitting probability with harmonic measure, we recall a standard result. Theorem
2.1.3 of [Law13] states that there are constants c2 and m such that, if A is a subset of Z2 contained
in D(r′), if z ∈ A, and if y ∈ D(mr′)c, then

HA(z, y) > c2HA(y).

We apply this fact with A = ∂W and r′ = r, where r > 1 is an upper bound on the radius of V0.
Note that W and ∂W are contained in D(r + 1). Hence, if d is at least (m+ 1)(r + 1), then ∂Wd

is contained in D(m(r + 1))c. This implies

Pz(Sτ∂W = y) > c2H∂W (y) > e−c3n logn for every z ∈ ∂Wd. (2.126)
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The second inequality is implied by (2.2) of Theorem 2.1.6, because y is exposed in a set of
|∂W | 6 4n elements.

We will now use (2.11) of Theorem 2.1.9 to bound the escape probability in (2.125). Recall
that if A has at least two elements and if d′ > 2 diam(A), then (2.11) states

Px(τ∂Ad′ < τA) >
c4HA(x)

n log(d′)
for every x ∈ A.

We apply this fact with A = ∂W and d′ = 4d to find

Px(τ∂Wd
< τ∂W ) > Px(τ∂Ad′ < τA) >

c4H∂W (x)

2n log(4d)
> e−c5n logn(log d)−1. (2.127)

The first inequality holds becauseA has a diameter of at most 2(r+1) and so, if d > (m+1)(r+1),
then d + 2(r + 1) 6 4d and hence ∂Wd separates A from ∂A4d. The second inequality is due to
(2.11), which applies because 4d > 2 diam(A). The third inequality is due to (2.2), which applies
because x is exposed in V0, an n-element set.

Substituting (2.126) and (2.127) into (2.125), and replacing d with (m+ 1)(r + 1), we find

Px
(
SτW−1 = y

)
> e−c6n logn(log r)−1.

Lastly, applying this bound to (2.124), we find (2.123):

PV0(U1 = V1) > e−c7n logn(log r)−1.

The preceding lemma will help us bound below the probability of realizing a given configura-
tion V as Ut for some time t and from some initial configuration V0. However, to apply the lemma,
we need an upper bound on the number of HAT steps it takes to form V from V0. Supplying such an
upper bound is the purpose of the next result, which is a key input to the proof of Proposition 2.7.5.

Lemma 2.7.9. For any number of elements n > 2 and configuration V in NonIso2,n, if the radius of
V is at most an integer r > 10n, then there is a sequence of k 6 100nr activation sites x1, . . . , xk
and transport sites y1, . . . , yk which can be “realized” by HAT from V0 = Ln to Vk = V in the
following sense: if we set Vi = Vi−1 ∪ {yi}\{xi} for each i ∈ {1, . . . , k}, then each transition
probability PVi−1

(Ui = Vi) is positive. Additionally, each Vi is contained in D(r + 10n).

The factors of 10 and 100 in the lemma statement are for convenience and have no further sig-
nificance. We will prove Lemma 2.7.9 by induction on n. Informally, we will remove one element
of Ln to facilitate the use of the induction hypothesis, forming most of V before returning the re-
moved element. There is a complication in this step, as we cannot allow the induction hypothesis
to “interact” with the removed element. We will resolve this problem by proving a slightly stronger
claim than the lemma requires.
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The proof will overcome two main challenges. First, removing an element from a configuration
V in NonIso2,n can produce a configuration in Iso2,n−1, in which case the induction hypothesis will
not apply. Indeed, there are configurations of NonIso2,n for which the removal of any exposed,
non-isolated element produces a configuration of Iso2,n−1 (such a V is depicted in Figure 2.9).
Second, if an isolated element is removed alone, it cannot be returned to form V by a single step
of the HAT dynamics. To see how these difficulties interact, suppose ∂expV contains only one
non-isolated element (say, at v), which is part of a two-element connected component of V . We
cannot remove it and still apply the induction hypothesis, as V \{v} belongs to Iso2,n−1. We then
have no choice but to remove an isolated element.

When we are forced to remove an isolated element, we will apply the induction hypothesis to
form a configuration for which the removed element can be “treadmilled” to its proper location,
chaperoned by a element which is non-isolated in the final configuration and so can be returned
once the removed element reaches its destination.

We briefly explain what we mean by treadmilling a pair of elements. Consider elements v1 and
v1 + e2 of a configuration V . If HV (v1) is positive and if there is a path from v1 to v1 + 2e2 which
lies outside of V \{v1}, then we can activate at v1 and transport to v1 + 2e2. The result is that the
pair {v1, v1 + 2e2} has shifted by e2. Call the new configuration V ′. If v1 + e2 is exposed in V ′

and if there is a path from v1 + e2 to v1 + 3e2 in V ′\{v1 + e2}, we can analogously shift the pair
{v1 + e2, v1 + 2e2} by another e2.

Proof of Lemma 2.7.9. The proof is by induction on n > 2. We will actually prove a stronger
claim, because it facilitates the induction step. To state the claim, we denote by Wi = Vi−1\{xi}
the HAT configuration “in between” Vi−1 and Vi and by Ei the event that, during the transition
from Vi−1 to Vi, the transport step takes place inside of Bi = D(r + 10n)\Wi:

Ei =
{
{S0, . . . , SτWi} ⊆ Bi

}
.

We claim that Lemma 2.7.9 is true even if the conclusion PVi−1
(Ui = Vi) > 0 is replaced by

PVi−1
(Ui = Vi, Ei) > 0.

To prove this claim, we will show that, for any V satisfying the hypotheses, there are sequences
of at most 100nr activation sites x1, . . . , xk, transport sites y1, . . . , yk, and random walk paths
Γ1, . . . ,Γk such that the activation and transport sites can be realized by HAT from V0 = Ln
to Vk = V , and such that each Γi is a finite random walk path from xi to yi which lies in Bi.
While it is possible to explicitly list these sequences of sites and paths in the proof which follows,
the depictions in upcoming Figures 2.9 and 2.10 are easier to understand and so we omit some
cumbersome details regarding them.

Concerning the base case of n = 2, note that NonIso2,2 has the same elements as the equiva-
lence class L̂2, so x1 = e2, y1 = e2, Γ1 = ∅ works. Suppose the claim holds up to n− 1 for n > 3.
There are two cases:

1. There is a non-isolated v in ∂expV such that V \{v} belongs to NonIso2,n−1.

2. For every non-isolated v in ∂expV , V \{v} belongs to Iso2,n−1.
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It will be easy to form V using the induction hypothesis in Case 1. In Case 2, we will need to use
the induction hypothesis to form a set related to V , and subsequently form V from this related set.
An instance of Case 2 is depicted in Figure 2.9.

vsw

vne

uV

vsw − e2

V ′

Figure 2.9: An instance of Case 2. If any non-isolated element of ∂expV is removed, the resulting
set is isolated. We use the induction hypothesis to form V ′ = (V \{vne, u}) ∪ {vsw − e2}. The
subsequent steps to obtain V from V ′ are depicted in Figure 2.10.

Case 1. Let r be an integer exceeding 10n and the radius of V and denote R = r + 10(n− 1).
Recall that V0 = Ln. Our strategy is to place one element of Ln outside ofD(R) and then apply the
induction hypothesis to Ln−1 to form most of V . This explains the role of the event Ei—it ensures
that the element outside of the disk does not interfere with our use of the induction hypothesis.

To remove an element of Ln to D(R)c, we treadmill (see the explanation following the lemma
statement) the pair {(n − 2)e2, (n − 1)e2} to {Re2, (R + 1)e2}, after which we activate at Re2

and transport to (n − 2)e2. This process requires R − n + 2 steps. It is clear that every transport
step can occur via a finite random walk path which lies in D(r + 10n). Call a = (R + 1)e2. The
resulting configuration is Ln−1 ∪ {a}.

We will now apply induction hypothesis. Choose a non-isolated element v of ∂expV such that
V ′ = V \{v} belongs to NonIso2,n−1. Such a v exists because we are in Case 1. By the induction
hypothesis and because the radius of V ′ is at most r, there are sequences of at most 100(n − 1)r
activation and transport sites, which can be realized by HAT from Ln−1 ∪ {a} to V ′ ∪ {a}, and a
corresponding sequence of finite random walk paths which lie in D(R).

To complete this case, we activate at a and transport to v, which is possible because v was
exposed and non-isolated in V . The existence of a random walk path from a to v which lies
outside of V ′ is a consequence of Lemma 2.3.12. Recall that Lemma 2.3.12 applies only to sets in
Hn (n-element sets which contain an exposed origin). If A = V ∪{a}, then A− v belongs to Hn.
By Lemma 2.3.12, there is a finite random walk path from a to v which does not hit V ′ and which
is contained in D(R + 3) ⊆ D(r + 10n).

In summary, there are sequences of at most (R − n + 2) + 100(n − 1)r + 1 6 100nr (the
inequality follows from the assumption that r > 10n) activation and transport sites which can be
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realized by HAT from Ln to V , as well as corresponding finite random walk paths which remain
within D(r + 10n). This proves the claim in Case 1.

D
activate

transport

Qsw

Qne

treadmill

activate

transport

Figure 2.10: An instance of Case 2 (continued). On the left, we depict the configuration which
results from the use of the induction hypothesis. The element outside of the disk D (the boundary
of which is the orange circle) is transported to vsw − 2e2 (unfilled circle). In the middle, we depict
the treadmilling of the pair {vsw−e2, vsw−2e2} through the quadrantQsw, aroundDc, and through
the quadrant Qne, until one of the treadmilled elements is at vne. The quadrants are depicted by
dashed lines. On the right, the other element is returned to u (unfilled circle). The resulting
configuration is V (see Figure 2.9).

Case 2. In this case, the removal of any non-isolated element v of ∂expV results in an isolated
set V \{v}, hence we cannot form such a set using the induction hypothesis. Instead, we will form
a related, non-isolated set.

The first R− n+ 2 steps, which produce Ln−1 ∪ {a} from Ln, are identical to those of Case 1.
We apply the induction hypothesis to form the set

V ′ = (V \{vne, u}) ∪ {vsw − e2},

which is depicted in Figure 2.9. Here, vne is the easternmost of the northernmost elements of V ,
vsw is the westernmost of the southernmost elements of V , and u is any non-isolated element of
∂expV (e.g., u = vne is allowed if vne is non-isolated).

The remaining steps are depicted in Figure 2.10. By the induction hypothesis and because the
radius of V ′ is at most r + 1, there are sequences of at most 100(n − 1)(r + 1) activation and
transport sites, which can be realized by HAT from Ln−1 ∪ {a} to V ′ ∪ {a}, and a corresponding
sequence of finite random walk paths which lie in D(R + 1).
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Next, we activate at a and transport to vsw − 2e2, which is possible because vsw − 2e2 is
exposed and non-isolated in V ′. Like in Case 1, the existence of a finite random walk path from a
to vsw − 2e2 which lies in D(R + 3)\V ′ ⊆ D(r + 10n) is implied by Lemma 2.3.12. Denote the
resulting configuration by V ′′.

The choice of vsw ensures that vsw − e2 and vsw − 2e2 are the only elements of V ′′ which lie in
the quadrant defined by

Qsw = (vsw − e2) + {v ∈ Z2 : v · e1 6 0, v · e2 6 0}.

Additionally, the quadrant defined by

Qne = vne + {v ∈ Z2 : v · e1 > 0, v · e2 > 0}

contains no elements of V ′′. As depicted in Figure 2.10, this enables us to treadmill the pair
{vsw − e2, vsw − 2e2} from Qsw to D(R + 3)c and then to {vne, vne + e2} in Qne, without the pair
encountering the remaining elements of V ′′. It is clear that this can be accomplished by fewer than
10(R+ 3) activation and transport sites, with corresponding finite random walk paths which lie in
D(R + 6). The resulting configuration is V ′′′ = V ∪ {vne + e2}\{u}.

Lastly, we activate at vne + e2 and transport to u, which is possible because the former is
exposed in V ′′′ and the latter is exposed and non-isolated in V . As before, the fact that there is a
finite random walk path in D(r + 10n) which accomplishes the transport step is a consequence of
Lemma 2.3.12. The resulting configuration is V .

In summary, there are sequences of fewer than (R−n+2)+100(n−1)(r+1)+10(R+3)+2 6
100nr (the inequality follows from the assumption that r > 10n) activation and transport sites
which can be realized by HAT from Ln to V , as well as corresponding finite random walk paths
which remain in D(r + 10n). This proves the claim in Case 2.

We can combine Lemma 2.7.8 and Lemma 2.7.9 to bound below the probability of forming a
configuration from a line.

Lemma 2.7.10. There is a constant c such that, if V is a configuration in NonIso2,n with n > 2
and a diameter of at most R > 10n, then

PL̂n

(
TV̂ 6 200nR

)
> e−cn

3R2

.

Proof. The hypotheses of Lemma 2.7.9 require an integer upper bound r on the radius of V of at
least 10n. We are free to assume that V contains the origin, in which case a choice of r = bRc+ 1
works, due to the assumption R > 10n. We apply Lemma 2.7.9 with r to find that there is a
sequence of configurations V0 = Ln, V1, . . . , Vk−1, Vk = V such that k 6 100nr, and such that
Vi ⊆ D(r + 10n) and PVi−1

(Ui = Vi) > 0 for each i.
Because the transition probabilities are positive and because they concern sets Vi−1 in the disk

of radius r + 10n, Lemma 2.7.8 implies that each transition probability is at least

e−c1n logn(log(r + 10n))−1 > e−c2n
2R
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for a constant c1. The inequality follows from coarse bounds of n log n = O(n2) and log r = O(R).
We use this fact in the following string of inequalities:

PLn(TV̂ 6 200nR) > PLn(TV̂ 6 k) > PLn

(
Ûk = V̂

)
> e−100nr·c2n2R > e−c3n

3R2

.

The first inequality holds because k 6 100nr 6 200nR; the second because {Ûk = V̂ } ⊆ {TV̂ 6
k}; the third follows from the Markov property, k 6 100nr, and the preceding bound from Lemma
2.7.8; the fourth from 100nr 6 200nR.

2.7.2 Proof of Proposition 2.7.4
We now use Lemma 2.7.8 to obtain a tail bound on the time it takes for a given configuration to
reach L̂n. Our strategy is to repeatedly attempt to observe the formation of L̂n in n consecutive
steps. If the attempt fails then, because the diameter of the resulting set may be larger—worsening
the estimate (2.123)—we will wait until the diameter becomes smaller before the next attempt.

Proof of Proposition 2.7.4. To avoid confusion of U and Ut, we will use V0 instead of U . We
introduce a sequence of times, with consecutive times separated by at least n steps (which is
enough time to attempt to form L̂n) and at which the diameter of the configuration is at most
θ1 = θ4n(c1n) (where c1 is the constant in Corollary 2.6.4). These will be the times at which we
attempt to observe the formation of L̂n. Define η0 = inf{t > 0 : diam(Ut) 6 θ1} and, for all
i > 1, the times

ηi = inf{t > ηi−1 + n : diam(Ut) 6 θ1}.
We use these times to define three events. Two of the events use a parameter K which we

assume is at least the maximum of R and θ2, where θ2 equals θ4n(cn) with c = c1 + 2c2 and c2 is
the constant guaranteed by Lemma 2.7.8. (The constant c is the one which appears in the statement
of the proposition.) In particular, K is at least the maximum diameter θ1 + n of a configuration at
time ηi−1 + n.

The first is the event that it takes an unusually long time for the diameter to fall below θ1 for
the first time:

E1(K) =
{
η0 > 3K

(
log(3K)

)1+ε
}
,

where ε = 2n−4 is the on(1) term from Corollary 2.6.4. The second is the event that an unusually
long time elapses between ηi−1 + n and ηi for some 1 6 i 6 m:

E2(m,K) =
m⋃
i=1

{
ηi − (ηi−1 + n) > 3K

(
log(3K)

)1+ε
}
.

The third is the event that we do not observe the formation of L̂n in m > 1 attempts:

E3(m) =
m⋂
i=1

{
TL̂n > ηi−1 + n

}
.
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CallE(m,K) = E1(K)∪E2(m,K)∪E3(m). When none of these events occur, we can bound
TL̂n:

TL̂n1E(m,K)c 6

(
η0 +

m∑
i=1

(ηi − (ηi−1 + n))

)
1E(m,K)c + n(m+ 1)

6 3K
(

log(3K)
)1+ε

+ 3mK
(

log(3K)
)1+ε

+ n(m+ 1). (2.128)

We will show that if m is taken to be 3K(log θ2)n, then PV0(E(m,K)) is at most e−K . Substi-
tuting this choice of m into (2.128) and using (log θ2)2n 6 θ2 6 K to simplify, we obtain a further
upper bound of

TL̂n1E(m,K)c 6 K3. (2.129)

By (2.129), if we show PV0(E(m,K)) 6 e−K , then we are done. We start with a bound
on PV0(E1(K)). Applying Corollary 2.6.4 with 3K in the place of t, r in the place of d, and
3K = max{3K,R} in the place of max{t, d}, gives

PV0(E1(K)) 6 e−3K . (2.130)

We will use Corollary 2.6.4 and a union bound to bound PV0(E2(m,K)). Because diame-
ter grows at most linearly in time, the diameter of Uηi−1+n ∈ Fηi−1

is at most θ1 + n 6 3K.
Consequently, Corollary 2.6.4 implies

PV0

(
ηi − (ηi−1 + n) > 3K

(
log(3K)

)1+ε
∣∣∣ Fηi−1+n

)
6 e−3K . (2.131)

A union bound over the constituent events of E2(m,K) and (2.131) give

PV0(E2(m,K)) 6 me−3K . (2.132)

To bound the probability of E3(m), we will use Lemma 2.7.8. First, we need to identify a
suitable sequence of HAT transitions. For any 0 6 j 6 m − 1, given Fηj , set V ′0 = Uηj ∈ Fηj .
There are pairs {(xi, yi) : 1 6 i 6 n} such that, setting V ′i = V ′i−1∪{yi}\{xi} for 1 6 i 6 n, each
transition probability PV ′i−1

(Ui = V ′i ) is positive and V ′n ∈ L̂n. By Lemma 2.7.8, each transition
probability is at least

PV ′i−1
(Ui = V ′i ) > e−c2n logn

(
log(θ1 + n)

)−1
> (log θ2)−1. (2.133)

For the first inequality we used the fact that the diameter of V ′0 is at most θ1, so after i 6 n steps it
is at most θ1 + n.

By the strong Markov property and (2.133),

PV0

(
TL̂n 6 ηj + n

∣∣∣ Fηj) > PV0

(
Uηj+1 = V ′1 , . . . , Uηj+n = V ′n

∣∣∣ Fηj)
>

n∏
i=1

PV ′i−1
(Ui = V ′i ) > (log θ2)−n. (2.134)
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Because E3(j) ∈ Fηj , (2.134) implies

PV0

(
TL̂n 6 ηj + n

∣∣∣ E3(j)
)
> (log θ2)−n. (2.135)

Using (2.135), we calculate

PV0(E3(m)) =
m−1∏
j=0

PV0

(
TL̂n > ηj + n

∣∣∣ E3(j)
)
6

m−1∏
j=0

(
1− (log θ2)−n

)
6 e−3K . (2.136)

Combining (2.130), (2.132), and (2.136), and simplifying using the fact that K > θ2, we find

PV0(E(m,K)) 6 (m+ 2)e−3K 6 e−K .

2.7.3 Proof of Proposition 2.7.5
To prove this proposition, we will attempt to observe the formation of Û from L̂n and wait for the
set to collapse if its diameter becomes too large, as we did in proving Proposition 2.7.4. However,
there is an added complication: at the time that the set collapses, it does not necessarily form L̂n,
so we will need to use Proposition 2.7.4 to return to L̂n before another attempt at forming Û . For
convenience, we package these steps together in the following lemma.

Lemma 2.7.11. There is a constant c such that, if V0 is a configuration in NonIso2,n with a diameter
of R, then for any K > max{R, θ4n(cn)},

PV0

(
TL̂n 6 9K3

)
> 1− e−K . (2.137)

Proof. Call θ = θ4n(cn) where c is the constant guaranteed by Proposition 2.7.4. First, we wait
until the diameter falls to θ. By Corollary 2.6.4,

PV0

(
T (θ) 6 2K

(
log(2K)

)1+ε
)
> 1− e−2K , (2.138)

where ε = 2n−4 is the on(1) term from Corollary 2.6.4. Second, from UT (θ), we wait until the
configuration forms a line. By Proposition 2.7.4, for any K > θ,

PUT (θ)

(
TL̂n 6 8K3

)
> 1− e−2K . (2.139)

Simplifying with K > θ, we have

2K
(

log(2K)
)1+ε

+ 8K3 6 9K3.

Combining this bound with (2.138) and (2.139) gives (2.137).
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Proof of Proposition 2.7.5. We will use V to denote the target configuration instead of U , to avoid
confusion with Ut. Recall that, for any configuration V in NonIso2,n with a diameter upper bound
of r > 10n, Lemma 2.7.10 gives a constant c1 such that

PL̂n
(TV̂ 6 200nr) > e−c1n

3r2 .

Since 10nR > 10n is a diameter upper bound on V , we can apply the preceding inequality with
r = 10nR:

PL̂n

(
TV̂ 6 2000n2R

)
> e−c1n

4R2

. (2.140)

With this result in mind, we denote k = 2000n2R and define a sequence of times by

ζ0 ≡ 0 and ζi = inf{t > ζi−1 + k : Ût = L̂n} for all i > 1.

Here, the buffer of k steps is the period during which we attempt to observe the formation of
V . After each failed attempt, because the diameter increases by at most one with each step, the
diameter of Uζi+k may be no larger than k + n.

We define two rare events in terms of these times and a parameter K, which we assume to be
at least max{eR2.1

, θ4n(c2n)}, where c2 is the greater of c1 and the constant from Lemma 2.7.11.
In particular, under this assumption, K is greater than e4c1n4R2 and k+ n—a fact we will use later.

The first rare event is the event that an unusually long time elapses between ζi−1 + k and ζi, for
some i 6 m:

F1(m,K) =
m⋃
i=1

{
ζi − (ζi−1 + k) > 72K3

}
.

The second is the event that we do not observe the formation of V̂ in m > 1 attempts:

F2(m) =
m⋂
i=1

{
TV̂ > ζi−1 + k

}
.

Call F (m,K) = F1(m,K) ∪ F2(m). When F (m,K)c occurs, we can bound TV̂ as

TV̂ 1F (m,K)c =
m−1∑
i=0

(ζi − (ζi−1 + k))1E(m,K)c +mk 6 72mK3 +mk. (2.141)

We will show that if m is taken to be 2Kec1n
4R2 , then PL̂n

(F (m,K)) is at most e−K . Substituting
this value of m into (2.141) and simplifying with K > k and then K > e4c1n4R2 gives

TV̂ 1F (m,K)c 6 K4e2c1n4R2

6 K5. (2.142)

By (2.142), if we prove PL̂n
(F (m,K)c) 6 e−K , then we are done. We start with a bound on

PL̂n
(F1(m,K)). By the strong Markov property applied to the stopping time ζi−1 + k,

PL̂n

(
ζi − (ζi−1 + k) > 72K3

∣∣∣ Fζi−1+k

)
= PUζi−1+k

(
ζ1 > 72K3

)
6 e−2K . (2.143)
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The inequality is due to Lemma 2.7.11, which applies to Uζi−1+k and K because Uζi−1+k is a non-
isolated configuration with a diameter of at most k + n and because K > max{k + n, θ4n(c2n)}.
From a union bound over the events which comprise F1(m,K) and (2.143), we find

PL̂n
(F1(m,K)) 6 me−2K . (2.144)

To bound PL̂n
(F2(m)), we apply the strong Markov property to ζj and use (2.140):

PL̂n

(
TV̂ 6 ζj + k

∣∣∣ Fζj) > PL̂n

(
TV̂ 6 k

)
> 1− e−c1n4R2

. (2.145)

Then, because F2(j) ∈ Fζj and by (2.145),

PL̂n

(
TV̂ 6 ζj + k

∣∣∣ F2(j)
)
> 1− e−c1n4R2

. (2.146)

We use (2.146) to calculate

PL̂n
(F2(m)) =

m−1∏
j=0

PL̂n

(
TV̂ > ζj + k

∣∣∣ F2(j)
)
6

m−1∏
j=0

(1− e−c1n4R2

) 6 e−2K . (2.147)

The second inequality is due to the choice m = 2Kec1n
4R2 .

Recall that F (m,K) is the union of F1(m,K) and F2(m). We have

PL̂n
(F (m,K)) 6 PL̂n

(F1(m,K)) + PL̂n
(F2(m)) 6 me−2K + e−2K 6 e−K .

The first inequality is a union bound; the second is due to (2.144) and (2.147); the third holds
because m+ 1 6 eK .

2.7.4 Proof of Proposition 2.7.2
We now prove a tightness estimate for the stationary distribution—that is, an upper bound on
πn
(
diam(Û) > d

)
. By Proposition 2.7.1, the stationary probability πn(Û) of any non-isolated,

n-element coniguration Û is the reciprocal of EÛTÛ . When d is large (relative to θ4n), this ex-
pected return time will be at least exponentially large in d

(log d)1+on(1) . This exponent arises from
the consideration that, for a configuration with a diameter below θ4n to increase its diameter to d,
it must avoid collapse over the timescale for which it is typical (i.e., (log d)1+on(1)) approximately

d
(log d)1+on(1) times consecutively. Because the number of n-element configurations with a diameter
of approximately d is negligible relative to their expected return times, the collective weight under
πn of such configurations will be exponentially small in d

(log d)1+on(1) .
We note that, while there are abstract results which relate hitting times to the stationary dis-

tribution (e.g., [GLPP17, Lemma 4]), we cannot directly apply results which require bounds on
hitting times which hold uniformly for any initial configuration. This is because hitting times from
V̂ depend on its diameter. We could apply such results after partitioning N̂onIso2,n by diameter,
but we would then save little effort from their use.
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Proof of Proposition 2.7.2. Let d be at least 2θ4n and take ε = 2n−4. We claim that, for any
configuration Û with a diameter in [2jd, 2j+1d) for an integer j > 0, the expected return time to Û
satsfies

EÛTÛ > exp

(
2jd

(log(2jd))1+2ε

)
. (2.148)

We can use (2.148) to prove (2.118) in the following way. We write {diam(Û) > d} as a disjoint
union of events of the form Hj = {2j 6 diam(Û) < 2j+1d} for j > 0. Because a disk with a
diameter of at most 2j+1d contains fewer than b4j+1d2c elements of Z2, the number of non-isolated,
n-element configurations with a diameter of at most 2j+1d satisfies

∣∣{Û in N̂onIso2,n with 2jd 6 diam(Û) < 2j+1d
}∣∣ 6 (b4j+1d2c

n

)
6 (4j+1d2)n. (2.149)

We use (2.117) with (2.148) and (2.149) to estimate

πn
(
diam(Û) > d

)
=
∞∑
j=0

πn(Hj) =
∞∑
j=0

∑
Û∈Hj

πn(Û) 6
∞∑
j=0

(4j+1d2)ne
− 2jd

(log(2jd))1+2ε . (2.150)

Using the fact that d > 2θ4n, it is easy to check that the ratio of the (j + 1)st summand to the j th

summand in (2.150) is at most e−j−1, for all j > 0. Accordingly, we have

πn
(
diam(Û) > d

)
6 (4d2)ne

− d
(log d)1+2ε

∞∑
j=0

e−j 6 e
− d

(log d)1+3ε ,

where the second inequality is justified by the fact that d > 2θ4n. This proves (2.118) when the
claimed bound (2.148) holds.

We will prove (2.148) by making a comparison with a geometric random variable on {0, 1, . . . }
with a “success” probability of e−

d
(log d)1+ε (or with 2jd in place of d). This geometric random

variable will model the number of visits to configurations with diameters below θ4n before reaching
a diameter of d, and the success probability arises from the fact that, for a configuration to increase
its diameter to d from θ4n, it must avoid collapse over d − θ4n steps. By Corollary 2.6.4, this
happens with a probability which is exponentially small in d

(log d)1+ε
.

Let Û be a non-isolated, n-element configuration with a diameter in [2jd, 2j+1d). Additionally,
let V̂ minimize EV̂ TÛ among V̂ , the configurations in NonIso2,n with a diameter of at most θ4n.
Denoting by N the number of visits to configurations in V̂ before TÛ , we claim

EÛTÛ > (log(2j+1d))−2nEV̂N. (2.151)

By (2.133),
PÛ(TL̂n < TÛ) >

(
log(2j+1d)

)−2n
.
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By this bound and the strong Markov property (applied to TL̂n), and due to our choice of V̂ ,

EÛTÛ >
(

log(2j+1d)
)−2n

EL̂n
TÛ >

(
log(2j+1d)

)−2n
EV̂ TÛ . (2.152)

The time it takes to reach Û from V̂ is at least the number N of visits Ut makes to V̂ before TÛ , so
(2.152) implies (2.151).

The virtue of the lower bound (2.151) is that we can bound below EV̂N as

EV̂N = PV̂ (TV̂ < TÛ)
(
1 + EV̂

[
N
∣∣ TV̂ < TÛ]) > PV̂ (TV̂ < TÛ)

(
1 + EV̂N

)
.

This bound implies that EV̂N is at least the expected value of a geometric random variable on
{0, 1, . . . } with success parameter p of PV̂ (TÛ < TV̂):

EV̂N > (1− p)p−1. (2.153)

It remains to obtain an upper bound on p.
Because diameter increases at most linearly in time, TÛ is at least 2jd− θ4n under PV̂ . Conse-

quently,
PV̂ (TÛ < TV̂) 6 PV̂

(
T (θ4n) > 2jd− θ4n

)
. (2.154)

We apply Corollary 2.6.4 with t equal to 2jd−θ4n
(log(2jd))1+ε

, finding

PV̂ (T (θ4n) > 2jd− θ4n) 6 exp

(
− 2jd− θ4n

(log(2jd))1+ε

)
.

By (2.154), this is also an upper bound on p < 1
2

and so, by (2.153), EV̂N is at least (2p)−1.
Substituting these bounds into (2.151) and simplifying with the fact that d > 2θ4n, we find that the
expected return time to Û satisfies (2.148):

EÛTÛ > 1
2

(
log(2j+1d)

)−2n
exp

(
2jd− θ4n(

log(2jd)
)1+ε

)
> exp

(
2jd(

log(2jd)
)1+2ε

)
.

2.8 Motion of the center of mass
As a consequence of the results of Section 2.7 and standard renewal theory, the center of mass
process (Mt)t>0, after linear interpolation and rescaling (t−1/2Mst)s∈[0,1], and when viewed as a
measure on C([0, 1]), converges weakly to two-dimensional Brownian motion as t → ∞. This is
the content of Theorem 2.1.5.

We will use the following lemma to bound the coordinate variances of the Brownian motion
limit. To state it, we denote by τi = inf{t > τi−1 : Ût = L̂n} the ith return time to L̂n.
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Lemma 2.8.1. Let c be the constant from Proposition 2.7.5 and abbreviate θ4n(cn) by θ. If, for
some i > 0, X is one of the random variables

τi+1 − τi, ‖Mτi+1
−Mτi‖, or ‖Mt −Mτi‖1(τi 6 t 6 τi+1),

then the distribution of X satisfies the following tail bound

PL̂n

(
X > K5

)
6 e−K , K > θ. (2.155)

Consequently,
EL̂n

X 6 2θ6 and VarL̂nX 6 2θ12. (2.156)

Proof. Because the diameter of L̂n is at most n, for any K > θ, Proposition 2.7.5 implies

PL̂n
(τ1 > K5) 6 e−K .

Applying the strong Markov property to τi, we find (2.155) for X = τi+1 − τi. Using (2.155) with
the tail sum formulas for the first and second moments gives (2.156) for this X . The other cases of
X then follow from ∥∥Mτi+1

−Mτi

∥∥ 6 τi+1 − τi.

Proof of Theorem 2.1.5. Standard arguments (e.g., Section 8 of [Bil99]) combined with the re-
newal theorem show that

(
t−1/2Mst

)
t>1

is a tight sequence of functions. We claim that the finite-
dimensional distributions of the rescaled process converge as t→∞ to those of two-dimensional
Brownian motion.

For any m > 1 and times 0 = s0 6 s1 < s2 < · · · < sm 6 1, form the random vector

t−1/2
(
Ms1t, Ms2t −Ms1t, . . . , Msmt −Msm−1t

)
. (2.157)

For s in [0, 1], we denote by I(s) the number of returns to L̂n by time st. Lemma 2.8.1 and
Markov’s inequality imply that ‖Msit−MτI(si)

‖ → 0 in probability as t→∞, hence, by Slutsky’s
theorem, the distributions of (2.157) and

t−1/2
(
MτI(s1)

, MτI(s2)
−MτI(s1)+1

, . . . , MτI(sm)
−MτI(sm−1)+1

)
(2.158)

have the same t → ∞ limit. By the renewal theorem, I(s1) < I(s2) < · · · < I(sm) for all
sufficiently large t, so the strong Markov property implies the independence of the entries in (2.158)
for all such t.

A generic entry in (2.158) is a sum of independent increments of the form Mτi+1
−Mτi . As

noted in Section 2.1, the transition probabilities are unchanged when configurations are multiplied
by elements of the symmetry group G of Z2. This implies

EL̂n

[
Mτi+1

−Mτi

]
= o and Σ = ν2I,
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where Σ is the variance-covariance matrix of Mτi+1
−Mτi and ν is a constant which, by Lemma

2.8.1, is finite. The renewal theorem implies that the scaled variance t−1ν2(I(si)− I(si−1)) of the
ith entry converges almost surely to (si − si−1)χ2 where χ2 = ν2/EL̂n

[τ1], hence, by Slutsky’s
theorem, we can replace the scaled variance of each entry in (2.158) with its almost-sure limit,
without affecting the limiting distribution of the vector.

By the central limit theorem,

1

χ
√
t

(
MτI(si)

−MτI(si−1)+1

)
d−→ N (o, (si − si−1)I) ,

which, by the independence of the entries in (2.158) for all sufficiently large t, implies

1

χ
√
t

(
Ms1t, Ms2t −Ms1t, . . . , Msmt −Msm−1t

)
d−→ (B(s1),B(s2 − s1), . . . ,B(sm − sm−1)) , (2.159)

as t→∞. Becausem and the {si}mi=1 were arbitrary, the continuous mapping theorem and (2.159)
imply the convergence of the finite-dimensional distributions of

(
1

χ
√
t
Mst, 0 6 s 6 1

)
to those of

(B(s), 0 6 s 6 1). This proves the weak convergence component of Theorem 2.1.5.
It remains to bound χ2, which we do by estimating EL̂n

[τ1] and ν2. EL̂n
[τ1] is bounded above

by 2θ5, due to Lemma 2.8.1, and below by 1. Here, θ = θ4n(c1n) and c1 is the constant from
Proposition 2.7.5. To bound below ν2, denote the e2 component of Mτi+1

−Mτi by X and observe
that PL̂n

(X = n−1) is at least the probability that, from Ln, the element at o is activated and
subsequently deposited at (0, n) (recall that Ln is the segment from o to (0, n − 1)), resulting in
τ1 = 1 and Mτ1 = M0 + n−1e2. This probability is at least e−c2n for a constant c2. Markov’s
inequality applied to X2 then gives

VarL̂nX > PL̂n
(X2 > n−2) > n−2e−c2n > e−c3n.

By Lemma 2.8.1, ν2 is at most 2θ10. In summary,

1 6 EL̂n
[τ1] 6 2θ5 and e−c3n 6 ν2 6 2θ10,

which implies
θ5n(cn)−1 6 e−c3n(2θ5)−1 6 χ2 6 2θ10 6 θ5n(cn),

with c = max{c1, c3}.

2.9 Proofs deferred from Section 2.3
In this section, we collect some results which support the proof of Theorem 2.1.6 in Section 2.3.
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2.9.1 Potential kernel bounds
The following lemma states several facts about the potential kernel. As each fact is a simple
consequence of (2.14), we omit its proof.

Lemma 2.9.1. In what follows, x, y, z, z′ are elements of Z2.

1. For a(y) to be at least a(x), it suffices to have

‖y‖ > ‖x‖(1 + πλ‖x‖−2 + (πλ)2‖x‖−4).

In particular, if ‖x‖ > 2, then ‖y‖ > 1.06‖x‖ suffices.

2. When ‖x‖ > 1, a(x) is at least 2
π

log ‖x‖. When ‖x‖ > 2, a(x) is at most 4 log ‖x‖.

3. If z, z′ ∈ C(r) and y ∈ D(R)c for r 6 1
100
R and R > 100, then

|a(y − z)− a(y − z′)| 6 4
π
.

4. If x and y satisfy ‖x‖, ‖y‖ > 1 and K−1 6 ‖y‖
‖x‖ 6 K for some K > 2, then

a(y)− a(x) 6 logK.

5. Let x, y ∈ Z2 with ‖x‖ > 8‖y‖ and ‖y‖ > 10. Then

|a(x+ y)− a(x)| 6 0.7
‖y‖
‖x‖ .

6. Let R > 10r and r > 10. Then, uniformly for x ∈ C(R) and y ∈ C(r), we have

0.56 log(R/r) 6 a(x)− a(y) 6 log(R/r).

In the next section, we will need the following comparison of a and a′.

Lemma 2.9.2. Let µ be any probability measure on Cx(r). Suppose r > 2(‖x‖+ 1). Then∣∣∣ ∑
y∈Cx(r)

µ(y)a(y)− a′(r)
∣∣∣ 6 ( 5

2π
+ 2λ

)(‖x‖+ 1

r

)
.

Proof. We recall that, for any x ∈ Z2, the potential kernel has the form specified in (2.14) where
the error term conceals a constant of λ, which is no more than 0.07 [KS04]. That is,∣∣∣a(x)− 2

π
log ‖x‖ − κ

∣∣∣ 6 λ‖x‖−2.
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For y ∈ Cx(r), we have r − ‖x‖ − 1 6 ‖y‖ 6 r + ‖x‖+ 1. Accordingly,

a(y) 6
2

π
log |r + ‖x‖+ 1|+ κ+O(|r − ‖x‖ − 1|−2)

=
2

π
log r + κ+

2

π
log

(
1 +
‖x‖+ 1

r

)
+O(|r − ‖x‖ − 1|−2).

Using the assumption (‖x‖+ 1)/r ∈ (0, 1/2) with Taylor’s remainder theorem gives

a(y) 6 a′(r) +
2

π

(
‖x‖+ 1

r
+

1

2

(‖x‖+ 1

r

)2
)

+O(|r − ‖x‖ − 1|−2).

Simplifying with r > 2(‖x‖+ 1) and r > 2 leads to

a(y) 6 a′(r) +
2

π

(
5

4
+ πλ

)(‖x‖+ 1

r

)
= a′(r) +

(
5

2π
+ 2λ

)(‖x‖+ 1

r

)
.

The lower bound is similar. Because this holds for any y ∈ Cx(r), for any probability measure µ
on Cx(r), we have ∣∣∣ ∑

y∈Cx(r)

µ(y)a(y)− a′(r)
∣∣∣ 6 ( 5

2π
+ 2λ

)(‖x‖+ 1

r

)
.

2.9.2 Comparison between harmonic measure and hitting probabilities
To prove Lemma 2.3.1, we require a comparison (Lemma 2.9.3) between certain values of har-
monic measure and hitting probabilities. In fact, we need additional quantification of an error term
which appears in standard versions of this result (e.g. [Law13, Theorem 2.1.3]). Effectively, this
additional quantification comes from a bound on λ, the implicit constant in (2.14). The proof is
similar to that of Theorem 3.17 in [Pop21].

Lemma 2.9.3. Let x ∈ D(R)c for R > 100r and r > 10. Then

0.93HC(r)(y) 6 HC(r)(x, y) 6 1.04HC(r)(y). (2.160)

Proof. We have

HC(r)(x, y)−HC(r)(y) = −a(y − x) +
∑
z∈C(r)

Py
(
SτC(r)

= z
)
a(z − x). (2.161)
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Since C(10r) separates x from C(r), the optional stopping theorem applied to σC(10r) ∧ τC(r) and
the martingale a (St∧τx − x) gives

a(y − x) =
∑
z∈C(r)

Py
(
SτC(r)

= z
)
a(z − x)

+ Ey
[
a
(
SσC(10r)

− x
)
− a

(
SτC(r)

− x
) ∣∣∣ σC(10r) < τC(r)

]
Py
(
σC(10r) < τC(r)

)
. (2.162)

In the second term of (2.162), we analyze the difference in potentials by observing

SσC(10r)
− x−

(
SτC(r)

− x
)

= SσC(10r)
− SτC(r)

.

Accordingly, letting u = SτC(r)
− x and v = SσC(10r)

− SτC(r)
,

a
(
SσC(10r)

− x
)
− a

(
SτC(r)

− x
)

= a(u+ v)− a(u).

We observe that ‖v‖ 6 11r + 2 and ‖u‖ > 99r − 2, so ‖u‖ > 8‖v‖. Since we also have
‖v‖ > 9r − 2 > 10, (5) of Lemma 2.9.1 applies to give

a(u+ v)− a(u) 6 0.7
‖v‖
‖u‖ 6

2

25
.

We analyze the other factor of (2.162) as

Py
(
σC(10r) < τC(r)

)
=

1

4

∑
z /∈C(r):z∼y

Pz
(
σC(10r) < τC(r)

)

=
1

4

∑
z /∈C(r):z∼y

a(z − z0)− Eza
(
SτC(r)

− z0

)
Ez
[
a
(
SσC(10r)

)
− a
(
SτC(r)

) ∣∣∣ σC(10r) < σC(r)

] ,
where z0 ∈ A. To obtain an upper bound on the potential difference in the denominator, we apply
(6) of Lemma 2.9.1, which gives

Py
(
σC(10r) < τC(r)

)
6

1

0.6 log 10
HC(r)(y).

Combining this with the other estimate for the second term of (2.162), we find

a(y − x) 6
∑
z∈C(r)

Py
(
SτC(r)

= z
)
a(z − x) +

2

25
· 1

0.56 log 10︸ ︷︷ ︸
60.063

HC(r)(y).

Substituting this into (2.161), we have

HC(r)(x, y)−HC(r)(y) > −0.063HC(r)(y) =⇒ HC(r)(x, y) > 0.93HC(r)(y).
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We again apply (5) and (6) of Lemma 2.9.1 to bound the factors in the second term of 2.162 as

a(u+ v)− a(u) > −0.0875 and Py
(
σC(10r) < τC(r)

)
>

1

log 10
HC(r)(y).

Substituting these into (2.162), we find

a(y − x) >
∑
z∈C(r)

Py
(
SτC(r)

= z
)
a(z − x)− 0.0875 · 1

log 10
HC(r)(y).

Consequently, (2.161) becomes

HC(r)(x, y)−HC(r)(y) 6
0.0875

log 10
HC(r)(y) 6

1

25
HC(r)(y).

Rearranging, we find
HC(r)(x, y) 6 1.04HC(r)(y).

2.9.3 Uniform lower bound on a conditional entrance measure
We now use Lemma 2.9.3 to prove an inequality which is needed for the proof of Lemma 2.3.1. It
is similar to Lemma 2.1 in [DPRZ06].

Lemma 2.9.4. Let ε > 0, denote η = τC(R) ∧ τC(εR), and denote by µ the uniform measure on
C(εR). There is a constant c such that, if ε 6 1

100
and R > 10ε−2, and if

min
x∈C(εR)

Px
(
τC(ε2R) < τC(R)

)
>

1

10
, (2.163)

then, uniformly for x ∈ C(εR) and y ∈ C(ε2R),

Px
(
Sη = y, τC(ε2R) < τC(R)

)
> cµ(y)Px

(
τC(ε2R) < τC(R)

)
.

Proof. Fix ε and R which satisfy the hypotheses. Let x ∈ C(εR) and y ∈ C(ε2R). We have

Px
(
SτC(ε2R)

= y, τC(ε2R) < τC(R)

)
= HC(ε2R)(x, y)− Px

(
SτC(ε2R)

= y, τC(ε2R) > τC(R)

)
.

(2.164)
By the strong Markov property applied to τC(R),

Px
(
SτC(ε2R)

= y, τC(ε2R) > τC(R)

)
= Ex

[
HC(ε2R)

(
SτC(R)

, y
)
; τC(ε2R) > τC(R)

]
. (2.165)

We will now use Lemma 2.9.3 to uniformly bound the terms of the form HC(ε2R)(·, y) appearing
in (2.164) and (2.165).
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For any w ∈ C(R), the hypotheses of Lemma 2.9.3 are satisfied with ε2R in the place of r and
R as presently defined, because then r > 10 and R > 100ε2R. Therefore, by (2.160), uniformly
for w ∈ C(R),

HC(ε2R)(w, y) 6 1.04HC(ε2R)(y). (2.166)

Now, for any x ∈ C(εR), the hypotheses of Lemma 2.9.3 are again satisfied with the same r
and with εR in the place of R, as εR > 100ε2R by assumption. We apply (2.160) to find

HC(ε2R)(x, y) > 0.93HC(ε2R)(y). (2.167)

Substituting (2.166) into (2.165), we find

Px
(
SτC(ε2R)

= y, τC(ε2R) > τC(R)

)
6 1.04HC(ε2R)(y)Px

(
τC(ε2R) > τC(R)

)
.

Similarly, substituting (2.167) into (2.164) and using the previous display, we find

Px
(
SτC(ε2R)

= y, τC(ε2R) < τC(R)

)
> 0.93HC(ε2R)(y)Px

(
τC(ε2R) < τC(R)

)
− (1.04− 0.93) HC(ε2R)(y)Px

(
τC(ε2R) > τC(R)

)
.

Applying hypothesis (2.163), we find that the right-hand side is at least

c1 HC(ε2R)(y)Px
(
τC(ε2R) < τC(R)

)
,

for a positive constant c1. The result then follows the existence of a positive constant c2 such that
HC(ε2R)(y) > c2µ(y) for any y ∈ C(ε2R).

2.9.4 Estimate for the exit distribution of a rectangle
The purpose of this section is to prove an estimate which is needed in the proofs of Lemma 2.3.3
and Lemma 2.3.4. Informally, this estimate says that the probability that a random walk from one
end of a rectangle (which may not be aligned with the coordinate axes) exits through the opposite
end is no smaller than exponential in the aspect ratio of the rectangle. We believe this estimate is
known but, as we are unable to find a reference for it, we prove it here. In brief, the proof uses an
adaptive algorithm for constructing a sequence of squares which remain inside the rectangle and
the sides of which are aligned with the axes. We then bound below the probability that the walk
follows the path determined by the squares until exiting the opposite end of the rectangle.

Recall that Rec(φ,w, `) denotes the rectangle of width w, centered along the line segment from
−eiφw to eiφ`, intersected with Z2 (see Figure 2.11).

Lemma 2.9.5. For any 24 6 w 6 ` and any φ, let Rec = Rec(φ,w, `) and Rec+ = Rec(φ,w, `+
w). Then,

Po (τ∂Rec < τ∂Rec+) > c`/w,

for a universal positive constant c < 1.
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I
w

w

l

w

φ

o

Rec

Rec+\Rec

Figure 2.11: On the left, we depict the rectangles Rec = Rec(φ,w, l) (shaded blue) and Rec+ =
Rec(φ,w, l + w) (union of blue- and red-shaded regions) for φ = π/4, w = 4

√
2, and ` = 11

√
2.

I denotes Rec ∩ ∂(Rec+\Rec).

We use the hypothesis w > 24 to deal with the effects of discreteness; the constant 24 is
otherwise unimportant, and many choices would work in its place.

Proof of Lemma 2.9.5. We will first define a square, centered at the origin and with each corner in
Z2, which lies in Rec+. We will then translate it to form a sequence of squares through which we
will guide the walk to Rec+\Rec without leaving Rec+ (see Figure 2.11). We split the proof into
three steps: (1) constructing the squares; (2) proving that they lie in Rec+; and (3) establishing
a lower bound on the probability that the walk hits ∂Rec before hitting the interior boundary of
Rec+.

Step 1: Construction of the squares. Without loss of generality, assume 0 6 φ < π/2. For
x ∈ Z2, we will denote its first coordinate by x1 and its second coordinate by x2. We will use this
convention only for this proof. Let l be equal to bw

8
c if it is even and equal to bw

8
c − 1 otherwise.

With this choice, we define

Q = {x ∈ Z2 : max{x1, x2} 6 l}.

Since l is even, the translates of Q by integer multiples of 1
2
l are also subsets of Z2.

We construct a sequence of squares Qi in the following way, where we make reference to the
line L∞φ = eiφR. Let y1 = o and Q1 = y1 +Q. For i > 1, let

yi+1 =

{
yi + 1

2
l (0, 1) if yi lies on or below L∞φ

yi + 1
2
l (1, 0) if yi lies above L∞φ

and Qi+1 = yi+1 +Q.
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L∞
φ

Qi+1

Mi+1 Mi+2

Qi+2

×

L∞
φ

Qi+1

Mi+1

Qi

Mi

×

Figure 2.12: Two steps in the construction of squares. Respectively on the left and right, yi+1 ∈Mi

and yi+2 ∈ Mi+1 (indicated by the × symbols) lie above L∞φ , so Mi+1 and Mi+2 are situated on
the eastern sides of Qi+1 and Qi+2. However, on the left, as Qi was translated north to form Qi+1,
the relative orientation of Mi and Mi+1 is perpendicular. In contrast, as Qi+1 is translated east to
form Qi+2, the right-hand side has parallel Mi+1 and Mi+2.

In words, if the center of the present square lies on or below the line L∞φ , then we translate the
center north by 1

2
l to obtain the next square. Otherwise, we translate the center to the east by 1

2
l.

We further define, for i > 1,

Mi =

{{
x ∈ Qi : x2 − y2

i = 1
2
l and |y1

i − x1| 6 1
2
l− 1

}
if yi lies on or below L∞φ{

x ∈ Qi : x1 − y1
i = 1

2
l and |y2

i − x2| 6 1
2
l− 1

}
if yi lies above L∞φ .

(2.168)

In words, if yi lies on or below the line L∞φ , we choose Mi to be the northernmost edge of Qi,
excluding the corners. Otherwise, we choose it to be the easternmost edge, excluding the cor-
ners. These possibilities are depicted in Figure 2.12. In fact, we leave the corners out of the
Mi, as indicated, by the bounds of 1

2
l − 1 instead of 1

2
l in (2.168). We must do so to ensure that

Pω
(
τMi+1

6 τ∂ intQi+1

)
is harmonic for all ω ∈ Mi; we will shortly need this to apply the Harnack

inequality. Upcoming Figure 2.13 provides an illustration of Mi in this context.
We will guide the walk to ∂Rec without leaving Rec+ by requiring that it exit each square Qi

through Mi for 1 6 i 6 J , where we define

J = min{i > 1 : Mi ⊆ Recc}.

That is, J is the first index for which Mi is fully outside Rec. It is clear that J is finite.
Step 2: Proof that ∪Ji=1Qi is a subset of Rec+. Let v be the northeastern endpoint of Lφ,

where Lφ is the segment of L∞φ from o to eiφ(`+ w/2) and define k to be the first index for which
yk satisfies

y1
k > v1 or y2

k > v2.

It will also be convenient to denote by I the interface between Rec and Rec+\Rec (the dashed line
in Figure 2.11), given by

I = Rec ∩ ∂
(
Rec+\Rec

)
.
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By construction, we have ‖yk − yk−1‖ = 1
2
l and ‖yk − v‖ 6 1

2
l. By the triangle inequality,

‖yk−1 − v‖ 6 l. As ‖v‖ = ` + w/2 and because dist(o, I) 6 ` + 1, we must have—again by the
triangle inequality—that dist(v, I) > w/2− 1. From a third use of the triangle inequality and the
hypothesized lower bound on w, we conclude

dist(yk−1, I) >
w

2
− 1− l >

w

2
− 1− w

8
>
w

3
> 2l. (2.169)

To summarize in words, yk−1 is not in Rec and it is separated from Rec by a distance strictly greater
than 2l.

Because the sides of Qk−1 have length l, (2.169) implies Qk−1 ⊆ Recc. Since Mk−1 is a subset
of Qk−1, we must also have Mk−1 ⊆ Recc, which implies J 6 k − 1. As k was the first index
for which y1

k > v1 or y2
k > v2, yJ satisfies y1

J 6 v1 and y2
J 6 v2. Then, by construction, for all

1 6 i 6 J , the centers satisfy

y1 6 y1
i 6 v1 and y2 6 y2

i 6 v2. (2.170)

From (2.170) and the fact that dist(yi, L
∞
φ ) 6 1

2
l, we have

dist(yi, Lφ) = dist(yi, L
∞
φ ) 6

1

2
l ∀ 1 6 i 6 J.

As the diagonals of the Qi have length
√

2l, (2.170) and the triangle inequality imply

dist(x, Lφ) 6 dist(yi, Lφ) +
1

2

√
2l =

1

2
(1 +

√
2)l <

w

4
∀ x ∈

J⋃
i=1

Qi.

To summarize, any element of Qi for some 1 6 i 6 J is within a distance w/4 of Lφ. As Rec+

contains all points x within a distance w
2

of Lφ, we conclude

J⋃
i=1

Qi ⊆ Rec+.

Step 3: Lower bound for Po (τ∂Rec < τ∂Rec+). From the previous step, to obtain a lower bound
on the probability that the walk exits Rec before Rec+, it suffices to obtain an upper bound J∗ on
J and a lower bound c < 1 on

Pω
(
τMi+1

6 τ∂ intQi+1

)
,

uniformly for ω ∈ Mi, for 0 6 i 6 J − 1. This way, if we denote Y0 ≡ y and Yi = Sτ
∂ intQi

for
1 6 i 6 J − 1, we can apply the strong Markov property to each τMi

and use the lower bound for
each factor to obtain the lower bound

Po (τ∂Rec < τ∂Rec+) > cJ
∗
. (2.171)
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Qi+1

Mi+1

Mi

yi+1ω
✕

Qi+1

Mi+1

Mi

yi+1

ω ✕

Figure 2.13: The two cases for lower-bounding Mi+1 hitting probabilities.

To obtain an upper bound on J , we first recall that Lφ has a length of `+ w/2, which satisfies

`+ w/2 =
l

2

(
2`

l
+
w

l

)
6

l

2

(
2`

w/8− 1
+

w

w/8− 1

)
6

l

2

(
48
`

w
+ 24

)
, (2.172)

due to the fact that l > bw/8c − 1 > w/8 − 2 and the hypothesis of w > 24. The number of
steps to reach J is no more than twice the ratio (` + w/2)/(l/2). Accordingly, using the bound in
(2.172) and the hypothesis that `/w > 1, we have

J 6 2

(
48
`

w
+ 24

)
6 144

`

w
=: J∗. (2.173)

We now turn to the hitting probability lower bounds.
From the construction, there are only two possible orientations of Mi relative to Mi+1 (Fig-

ure 2.13). Either Mi and Mi+1 have parallel orientation or they do not. Consider the former
case. The hitting probability Pω

(
τMi+1

6 τ∂ intQi+1

)
is a harmonic function of ω for all ω in

Qi+1\∂ intQi+1 and Mi+1 in particular. Therefore, by the Harnack inequality [Law13, Theorem
1.7.6], there is a constant a1 such that

Pω
(
τMi+1

6 τ∂ intQi+1

)
> a1Pyi+1

(
τMi+1

6 τ∂ intQi+1

)
∀ ω ∈Mi+1. (2.174)

The same argument applies to the case when Mi and Mi+1 do not have parallel orientation and we
find there is a constant a2 such that (2.174) holds with a2 in place of a1. Setting a = min{a1, a2},
we conclude that, for all 0 6 i 6 J − 1 and any ω ∈Mi,

Pω
(
τMi+1

6 τ∂ intQi+1

)
> aPyi+1

(
τMi+1

6 τ∂ intQi+1

)
. (2.175)

We have reduced the lower bound for any ω ∈ Mi and either of the two relative orientations of
Mi and Mi+1 to a lower bound on the hitting probability of one side of Qi+1 from the center.
By symmetry, the walk hits Mi+1 first with a probability of exactly 1/4. We emphasize that the
probability on the left-hand side of (2.175) is exactly 1/4 as although Mi+1 does not include the
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adjacent corners of Qi+1, which are elements of ∂ intQi+1, the corners are separated from yi+1 by
the other elements of ∂ intQi+1.

Calling b = a/4 and combining (2.173) and (2.175) with (2.171), we have

Po (τ∂Rec < τ∂Rec+) > bJ
∗

= b144`/w = c`/w

for a positive constant c < 1.

2.9.5 Proof of Lemma 2.3.3
The lower bound in Lemma 2.3.3 is a simple consequence of the fact that random walk exits a
rectangle through its far side with a probability which is no smaller than exponential in the aspect
ratio of the rectangle (Lemma 2.9.5). In this case, the aspect ratio is O(m`).

The proof has two steps. First, after specifying the rectangle, we will confirm that, if the
random walk exits it appropriately, then {τArc` < τA} occurs. Second, we will apply Lemma 2.9.5
to estimate the probability with which the random walk appropriately exits the rectangle.

Proof of Lemma 2.3.3. Fix ` ∈ I and y ∈ Sec`. Denote ε` = (m` + 1)−1 and by Rec(φ,w, l) the
rectangle of width w, centered along the line segment from −eiφw to eiφl, intersected with Z2 (see
Figure 2.11). We will use the rectangles Rec` = Rec(ϕ`, w`, l`) and Rec+

` = Rec(ϕ`, w`, l` + w`)
with

ϕ` = π − arg y, w` = ε`R`−2, and l` = dist(y,Arc`) + 4w`.

Additionally denote the “interface” between Rec` and Rec+
` by I` = Rec` ∩ ∂(Rec+

` \Rec`).
We explain these choices as follows. The parameter ϕ` ensures that the rectangle is “pointing in

the right direction.” The factor ofR`−2 in w` reflects the need for the rectangle to remain within B`,
the innermost radius of which isR`−2. The factor of ε` arises from our earlier use of the pigeonhole
principle. l` ensures that the random walk encounters Arc` if it exits Rec` through I`. Note that
l` > w` and w` > 100 by (2.12), so the hypotheses of Lemma 2.9.5 are satisfied for Rec`.

We have

Po
(
τ∂Rec` < τ∂Rec+`

)
= Py

(
τI`+y < τ∂(Rec+` +y)

)
6 Py

(
τArc` < τ∂B`

)
6 Py

(
τArc` < τA

)
. (2.176)

The equality follows from the translation invariance of the law of random walk and the definition
of I`. The first inequality is due to the fact that I` + y is a subset of D

(
a`+b`

2

)
and Rec+

` + y is a
subset of B` (Figure 2.11). The second inequality follows from the fact that B` is empty of A.

By (2.176) and Lemma 2.9.5, there are constants c1 and c2 such that

Py
(
τArc` < τA

)
> Po

(
τ∂Rec` < τ∂Rec+`

)
> c

l`/w`
1 > c

2R`/ε`R`−2

1 = cm`2 .

The last inequality is due to the fact that, uniformly for y ∈ Sec`, dist(y,Arc`) 6 R`, so l` 6
2R`.

For convenience, we collect two facts about a` which we will use in the proof of Lemma 2.3.4.
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Lemma 2.9.6. Let ` ∈ I and denote ε` = (m` + 1)−1. Then

103 6 a`ε` 6 ∆`. (2.177)

Additionally, if x, y ∈ D(a`)
c satisfy ‖x− y‖ 6 1, then

| arg x− arg y| 6 10−8ε`−1. (2.178)

The specific constants 103 and 10−8 in (2.177) and (2.178) are unimportant. The factor of ε` in
(2.178) reflects the angular width of Sec`−1 defined in Lemma 2.3.2. Both (2.177) and (2.178) are
consequences of (2.12) and the definitions of regions in Lemma 2.3.2.

Proof of Lemma 2.9.6. By Lemma 2.3.2, a` is at least 10R`−2 which, by (2.12), is at least 103ε−1
` .

Lemma 2.3.2 also states that a` is at most δ′R`−1, which equals ε−1
` ∆` (2.22). This proves (2.177).

Let x, y satisfy the hypotheses. Then | arg x − arg y| is at most the reciprocal of a` and so at
most the reciprocal of 10R`−2. (2.12) implies thatR`−2 > 107ε−1

`−1, which implies | arg x−arg y| 6
10−8ε`−1.

2.9.6 Proof of Lemma 2.3.4
The reason we will use O(m

1/2
` ) rectangles with aspect ratios of O(m

1/2
` ), instead of, say, O(1)

rectangles with aspect ratios of O(m`), is that the rectangles must remain inside Ann`. (We could
also use O(m`) rectangles of aspect ratio O(1).) We briefly explain why this choice will work. As
depicted in Figure 2.14, we will essentially center rectangles of width 1

100
∆` along chords of Circ`.

The greatest distance between such a chord and Circ` is proportional to rω2, where r = rad(Circ`)
and ω is the angle subtended by the chord. Circ` is a distance O(∆`) from Ann`, so we must have
rω2 = O(∆`) as well. By (2.177), r is at most m`∆`, so ω must be O(m

−1/2
` ). Consequently,

we will need roughly m1/2
` rectangles to circle Ann`. This choice of ω results in rectangles with

lengths of O(rω) = O(m
1/2
` ∆`) and aspect ratios of O(m

1/2
` ).

Proof of Lemma 2.3.4. Fix ` ∈ I. We will use w = 1
100

∆` as the width of the rectangles and
take z to be an element of (Circ`)w (i.e., z is within w of Circ`). We choose z in this way, as
opposed to fixing z in Circ` exclusively, because it will be useful later. As in Lemma 2.3.2, denote
ε` = (m` + 1)−1.

The lower bound in (2.177) implies that there is an element v = v(z) of Circ` such that φ =

arg z−arg v ∈ ε1/2
` [ π

10
, π

5
]. We claim that, if ψ = arg(v−z), l = ‖v−z‖, and Recv = Rec(ψ,w, l),

then Recv + z is contained in Ann`.
Establishing Recv+z ⊆ Ann`. We note that dist(Circ`, ∂Ann`) is at least 0.49∆` (the missing

0.01∆` > 100 accounts for discreteness). Accordingly, to show that Recv+z is contained in Ann`,
it suffices to prove an upper bound of 0.49∆` on the distance between an arbitrary x ∈ Recv + z
and Circ`.
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1
2∆`

Z2

z

×

v

Ann`

Circ`

Sec̀
−
1

×××

Figure 2.14: The rectangle Recv + z (left) and a sequence of rectangles approaching Sec`−1 in
Ann` (right), which appear in the proof of Lemma 2.3.4. On the left, Recv + z is a rectangle
centered along the dashed line segment from z (dot) to v (cross). A random walk from z exits
the blue-shaded rectangle at Z2 (dot). On the right, Recv + z and a sequence of three subsequent
rectangles RecV2 + Z2, . . . ,RecV4 + Z4. The rectangles are not to scale: their common width is

1
100

∆`, while the distance from Circ` to Ann` is 1
2
∆`.

Let z′, v′ be the elements of R2 nearest z, v which lie on the circle CR2 in R2 with the same
radius as Circ`, centered at the origin. Additionally, let LR2 ⊆ R2 be the chord connecting z′ and
v′. For x ∈ Recv + z, we aim to apply the triangle inequality as:

dist(x,Circ`) 6 dist(x, LR2) + max
q∈CR2

dist(q, LR2) + max
y∈Circ`

dist(y, CR2). (2.179)

Concerning the first term, the triangle inequality implies

Recv + z ⊆
{
x ∈ Z2 : dist(x, LR2) < 2w + 2

}
, (2.180)

because the width of Recv is w, because dist(z,Circ`) 6 w, and because

max
y∈Circ`

dist(y, CR2) 6 1, (2.181)

which also addresses the third term.
We now address the second term. The greatest distance between LR2 and CR2 is the sagitta of

LR2 . An elementary formula expresses the length of the sagitta associated with a chord at a radius
of r and subtending an angle 2ω as r(1− cos(ω)). Accordingly, when r = 1

2
(a` + b`) and 2ω = φ,

we have
max
q∈CR2

dist(q, LR2) = r(1− cos(φ/2)) 6 1
8
rφ2 6 π2

200
rε` 6 3π2

400
∆`. (2.182)

The first inequality follows from cosψ > 1 − 1
2
ψ2, which holds for ψ ∈ [0, π

2
]. The second

inequality is the result of substituting the upper bound π
5
ε

1/2
` for φ. The third inequality follows

from r = a` + 1
2
∆` and (2.177).
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By (2.179) through (2.182), and then the fact that ∆` > 104,

dist(x,Circ`) 6 3π2

400
∆` + 1

100
∆` + 3 6 0.10∆`. (2.183)

By the preceding discussion, (2.183) implies Recv + z ⊆ Ann`.
Checking the hypotheses of Lemma 2.9.5. We aim to apply Lemma 2.9.5 to Recv and Rec+

v =
Rec(ψ,w, l + w), so we verify that 24 6 w 6 l. The first inequality holds because (2.12) implies
∆` > 104 which, in turn, implies w > 100. To estimate l = ‖v− z‖, we note that arg z′−arg v′ >
π
12
ε

1/2
` and recall the fact that a chord at a radius r and subtending an angle of 2ψ has a length of

2r sin(ψ). Using the same r as before and taking 2ψ = π
24
ε

1/2
` , we find

‖v′ − z′‖ > 2r sin
(
π
24
ε

1/2
`

)
> 1

6
rε

1/2
` > 1

60
∆`. (2.184)

The second equality is due to sin(ω) > 2
π
ω, which holds for ω ∈ [0, π

2
]. The third inequality

follows from r > a` and (2.177). By the triangle inequality, ‖v − z‖ > ‖v′ − z′‖ − 2. By (2.184)
and the lower bound on ∆`, we have l = ‖v − z‖ > 1

100
∆` = w.

An upper bound on l. We also note an important upper bound on l. The difference arg z′−arg v′

is at most π
4
ε

1/2
` . The chord length formula gives

‖v′ − z′‖ 6 2r sin
(
π
4
ε

1/2
`

)
6 π

2
rε

1/2
` 6 3π

4
ε
−1/2
` ∆`. (2.185)

The second inequality follows from sin(ω) 6 ω, which holds for ω ∈ [0, π
2
]. The third inequality

follows from r 6 a` + 1
2
∆` and (2.177). By the triangle inequality, ‖v − z‖ 6 ‖v′ − z′‖ + 2. By

(2.185) and the lower bound on ∆`, we have l 6 3ε
−1/2
` ∆`.

Applying Lemma 2.9.5. Call E1 = {τ∂(Recv+z) < τ∂(Rec+v +z)}. Lemma 2.9.5 and translation
invariance imply that there is a constant c1 such that

Pz(E1) > c
l/w
1 > c

m
1/2
`

2 . (2.186)

The second inequality follows from w = 1
100

∆`, the upper bound 3ε
−1/2
` ∆` on l, ε−1/2

` 6 2m
1/2
` ,

and c2 = c600
1 .

Call η1 = τ∂(Recv+z)∧τ∂(Rec+v +z). When E1 occurs, Z2 = Sη1 belongs to (Circ`)w, hence, given
Z2, we could equally well apply the preceding argument to Z2 in the place of z. Given Z2, define
V2 = V2(Z2) in analogy with v and obtain Rec+

V2
, E2, and η2 by replacing v, z with V2, Z2 in Recv,

E1, and η1. By the preceding argument, given Z2, when E1 occurs,

PZ2(E2) > c
m

1/2
`

2 . (2.187)

We can continue in this fashion, defining sequences of Zk, Vk, Ek, ηk for k > 3 (Figure 2.14) and
with bounds analogous to (2.187), except with Zk, Ek in the place of Z2, E2.

A lower bound on Pz(τSec`−1
< τA). Let N = d20ε

−1/2
` e and denote Fj = ∩ji=1Ei. We claim

that, when FN = ∩Ni=1Ei occurs, there is some j ∈ {0, . . . , ηN} such that Sj ∈ Sec`−1. Recall that
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Sec`−1 overlaps Ann` in an angular interval of width 2π
3
ε`−1. By (2.178), | argSj+1 − argSj| is

less than 2π
3
ε`−1 whenever Sj, Sj+1 belong to D(a`)

c. The preceding argument shows that, when
FN occurs, Sj belongs to Ann` ⊆ D(a`)

c for all j ∈ {0, . . . , ηN}. So when FN occurs, it suffices
for
∑N−1

k=0 (argZk − argZk+1) > 2π to hold, as this will imply that some Sj ∈ Sec`−1. This is the
case, since argZk − argZk+1 is at least π

10
ε

1/2
` for each k:

N−1∑
k=0

(argZk − argZk+1) > 20ε
−1/2
` · π

10
ε

1/2
` > 2π.

We have shown that, if z belongs to (Circ`)w—in particular, if z ∈ Arc`—then

Pz(τSec`−1
< τA) > Pz(FN). (2.188)

Denote the σ-field generated by (S0, S1, . . . , St) by Ft. We have

Pz(FN) =
N∏
i=1

Ez
[
Pz(Ei|Fηi−1

)
1Fi−1

Pz(Fi−1)

]
=

N∏
i=1

Ez
[
PZi(Ei)

1Fi−1

Pz(Fi−1)

]
>

N∏
i=1

Ez
[
c
m

1/2
`

2

1Fi−1

Pz(Fi−1)

]
= c

Nm
1/2
`

2 . (2.189)

The first equality is due to Fi−1 ∈ Fηi−1
and the second is due to the strong Markov property

applied to ηi−1. The inequality is due to (2.186), (2.187), and the analogous bounds withZ3, Z4, . . .
and E3, E4, . . . in the place of Z2 and E2.

Substituting the definition of N into (2.189) implies that there is a constant c3 such that
Pz(FN) > cm`3 . Then, by (2.188), Pz(τSec`−1

< τA) > cm`3 .
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Chapter 3

HAT in higher dimensions

This chapter is based on [Cal21].

3.1 Main results
We revert to denoting the ambient dimension by d, as we did in Chapter 1.

Returning to the question of whether HAT is recurrent or transient, it is easy to see that HAT
is positive recurrent on N̂onIsod,n, for any dimension d, when the number of elements n is two or
three. Additionally, according to Theorem 2.1.3, HAT is positive recurrent on the class of non-
isolated configurations, for every n > 2 when d = 2. In the context of Theorem 2.1.3, the first of
our main results establishes that HAT exhibits a phase transition, in the sense that HAT is transient
in any dimension d > 5, for every n > 4.

Theorem 3.1.1. HAT is transient for every d > 5 and n > 4.

Note that, because HAT is transient on Îsod,n for any d and n, there is no need to qualify
Theorem 3.1.1 further. At the end of this section, we briefly discuss a heuristic which explains
why we assume d > 5 in Theorem 3.1.1, and which suggests that transience is plausible in four
dimensions as well.

Figure 1.2 summarizes what is known about the phase diagram of HAT in the d–n grid. We
highlight two of its features:

• Theorems 2.1.3 and 3.1.1 imply that the phase boundary has a “corner”: There is a dimension
d′ > 3 and a number of elements n′ > 4 such that HAT is transient for (d, n) = (d′, n′), but
positive recurrent on N̂onIsod,n when (d, n) = (d′ − 1, n′) or (d, n) = (d′, n′ − 1).

• The classification of HAT is unknown when d ∈ {3, 4} and n > 4. However, a heuristic
argument suggests that HAT is positive recurrent on N̂onIso3,n when n ∈ {4, 5}.

Our second main result, Theorem 3.1.5, is a detailed description of the “way” in which tran-
sience occurs when d > 5 and n > 4. To state the result, we need the notion of a clustering and
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some related definitions. Whereas in Chapter 2 we usedD and C to denote a disk and its boundary,
we will henceforth use them to denote clusterings.

Definition 3.1.2 (Clustering). A clustering C of a configuration U into k clusters is an ordered
partition (C1, . . . , Ck) of U . In other words, C is a k-tuple of nonempty, disjoint subsets of U , the
union of which is U .

We need additional notation to state the next definition.

• First, observe that, if C = (C1, . . . , Ck) is a generic k-tuple of nonempty subsets of Zd and
if x ∈ ∪iCi, then x may belong to multiple subsets in C. However, if C is a clustering of a
configuration U , then x ∈ U belongs to exactly one cluster in C, which we call clust(C, x).
For notational convenience, we define clust(C, ∅) = 1.

• Second, in the context of a k-tuple C = (C1, . . . , Ck) of nonempty subsets of Zd, a label
i ∈ JkK where JkK denotes {1, . . . , k}, and A ⊆ Zd, we will use the following notation:

C ∪i A = (C1, . . . , Ci−1, Ci ∪ A,Ci+1, . . . , Ck)

C \i A = (C1, . . . , Ci−1, Ci \ A,Ci+1, . . . , Ck).

We now introduce a way to associate a sequence of clusterings to a sequence of configurations.
Given a clustering Ct of Ut and Ut+1, there is natural way to obtain a clustering of Ut+1 from Ct:
Treat every element of Ut like a element with a time-dependent location and a label fixed by Ct.
The locations of the elements change according to the HAT dynamics, but their labels do not.

We implement this as follows. If Ut+1 = Ut, then we set Ct+1 = Ct. If Ut\Ut+1 and Ut+1\Ut
are singletons, then we call the corresponding elements X and Y , and set

Ct+1 = (Ct \i {X}) ∪i {Y } (3.1)

where i = clust(Ct, X). Otherwise, we set Ct+1 to be the clustering of Ut+1 with one cluster.

Definition 3.1.3 (Natural clustering). Let t > 0 and let C be a clustering of Ut. The natural
clustering of (Ut, Ut+1, . . . ) with C is the sequence of clusterings (Ct, Ct+1, . . . ) with Ct = C, and
Cs+1 determined by Cs, Us, and Us+1 according to (3.1) for s > t.

The last definition we need before stating Theorem 3.1.5 identifies a special kind of clustering,
for which clusters have size two or three and satisfy bounds on separation, in terms both absolute
and relative to diameter. Denote the set C 6=i = ∪j 6=iCi. The separation of a clustering C is

sep(C) = min
i

dist(Ci, C 6=i).

Definition 3.1.4 (Dimer-or-trimer clustering). For positive real numbers a and b, a clustering C is
an (a, b) separated dimer-or-trimer (DOT) clustering if:

(DOT.1) |Ci| ∈ {2, 3} for each i;
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(DOT.2) sep(C) > a; and

(DOT.3) diam(Ci) 6 b log dist(Ci, C 6=i) for each i.

In this sense, a constrains the absolute separation of the clustering, while b constrains cluster
separation relative to diameter. We will refer to each cluster Ci with |Ci| = 2 as a dimer and each
cluster Cj with |Cj| = 3 as a trimer

For an n-element configuration U ⊂ Zd, we will denote by C (U, a, b) the (possibly empty) set
of (a, b) separated DOT clusterings of U . We will denote the set of n-element configurations in Zd
which have at least one (a, b) separated DOT clustering by Ud,n(a, b).

Dimers and trimers have a special status relative to other clusters in dimension d > 3 for two
reasons.

• Unlike a cluster consisting of a single element, a constituent element of a dimer or trimer
can be activated without the cluster necessarily being “absorbed” by another; and

• Unlike clusters comprised of four or more elements, the distribution of the time it takes for
a dimer or trimer to return to a given orientation has an exponential tail.

Regarding the second of these reasons, in dimension d > 5, an activated element would likely es-
cape to infinity in the absence of the conditioning in the transport component of the HAT dynamics
(1.3). Consequently, when clusters are well separated, the HAT dynamics favors a element acti-
vated at one cluster to be transported to the same cluster. As d increases, this effect becomes more
pronounced. It is this fact about dimension d > 5 which allows dimers and trimers to persist for
long periods of time without being absorbed by another cluster, despite comprising few elements.

Our discussion of the special status of dimers and trimers suggests that HAT configurations in
dimension d > 5 with at least four elements may fragment until consisting exclusively of dimers
and trimers, which then avoid one another indefinitely. The second of our main results shows that,
remarkably, this is the fate of all HAT configurations.

Theorem 3.1.5. Let d ∈ Z>5 and n ∈ Z>4, and letU0 be an n-element configuration in Zd. There is
a positive real number b = b(n), and a PU0-a.s. finite random time θ with the following property.
There is a clustering C of Uθ for which the natural clustering (Cθ, Cθ+1, . . . ) of (Uθ, Uθ+1, . . . )
with C satisfies

Ct ∈ C (Ut, at−θ, b) for t > θ, (3.2)

where as = s
1
2
−on(1) + 100n. In particular, (3.2) implies

Ut ∈ Ud,n(at−θ, b) for t > θ. (3.3)

The term of 100n in as is merely representative of a large multiple of n. For concreteness, (3.2)
and (3.3) are true with n−100 in the place of on(1).
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Theorem 3.1.5 identifies, for any initial configuration, an a.s. finite random time θ at which
there is a clustering of Uθ into dimers or trimers and forever after which the same dimers or trimers
become steadily, increasingly separated—in terms both absolute and relative to their diameters. In
particular, there is no exchange of elements between clusters after θ. We emphasize that (3.2) is
stronger than (3.3) because it precludes the exchange of elements between the clusters defined by
C, while (3.3) does not.

Theorem 3.1.5 implies Theorem 3.1.1 because HAT is irreducible on non-isolated configura-
tions.

Theorem 3.1.6. HAT is irreducible on N̂onIsod,n, for every d > 5 and n > 4.

Proof of Theorem 3.1.1. Let d > 5 and n > 4, and let U be the n-element segment {(j, 0, . . . , 0) :

j ∈ JnK} ⊂ Zd. It suffices to show that Û is transient, since Û ∈ N̂onIsod,n and since HAT is
irreducible on N̂onIsod,n by Theorem 3.1.6. Theorem 3.1.5 implies that there is a PU -a.s. finite
time θ such that diam(Ut) > 100n for t > θ. Because diam(Û) < 100n, this implies that there
are PU -a.s. finitely many returns to Û , hence Û is transient.

Key to the proof of Theorem 3.1.5 is the fact that, if a is a number which is sufficiently large
in terms of d and n, then, in a number of steps f = f(a, d, n) and with a probability of at least
g = g(a, d, n), HAT reaches a configuration in Ud,n(a, 1) from any configuration.

Theorem 3.1.7. Let a ∈ Z>2, d ∈ Z>5, and n ∈ Z>4. If a is sufficiently large in terms of d and n,
then there are f ∈ Z>0 and g > 0 such that, for any n-element configuration U ⊂ Zd,

PU

(
Uf ∈ Ud,n(a, 1)

)
> g. (3.4)

The critical aspect of Theorem 3.1.7 is that f and g do not depend on the diameter of U .
The proof takes the form of an analysis of three algorithms, which sequentially: (i) rearrange the
configuration into well separated, connected clusters with at least two elements each; (ii) organize
each cluster into a line segment; and (iii) split the segments into dimers and trimers. Collectively,
the algorithms take as input an arbitrary configuration U and a ∈ Z>2, and return a configuration
in Ud,n(a, 1). It does not seem possible to appreciably simplify this process without introducing
into g a dependence on the diameter of initial configuration.

Transience is plausible in four dimensions and provable in at least five
dimensions
We preemptively address the question of “Why must d > 5 in Theorem 3.1.1?” with a discussion of
some heuristics. Consider a pair of dimers. Until they begin to exchange elements, the difference
of their centers of mass will behave like a d-dimensional random walk. If they never exchange
elements, then, because random walk is transient in d > 3 dimensions, their separation will grow
steadily and without bound as Theorem 3.1.5 predicts.
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This basic picture is complicated by the fact that dimers exchange elements over a number of
steps which depends on their separation. Specifically, if the dimers are separated by a distance a,
then they will typically exchange elements over ad−2 steps. This timescale is related to the fact
that a random walk from the origin in d > 3 dimensions escapes the origin to a distance a with a
probability of roughly a2−d. If the dimers do not exchange elements during a period of a2 steps,
then the separation of the dimers likely doubles over the same period, after which it takes 2d−2

times longer for them to exchange elements. Hence if ad−2 > a2 and 2d−2 > 2 (i.e., if d > 4), then
it is plausible that dimer separation grows quickly enough that elements are never exchanged.

Now, consider replacing at least one of the dimers with a trimer, which can have a diameter as
large as the logarithm of its separation (DOT.3). The larger the diameter of a trimer, the more likely
it is for it to exchange a element with another cluster. Specifically, if an a separated trimer has a
diameter of log(a), then it exchanges a element with another cluster over ad−2 log(a)−1 steps. This
timescale is related to the fact that a random walk starting at a distance of log(a) from the origin in
d > 3 dimensions escapes the origin to a distance a with a probability of roughly a2−d log(a). For
ad−2 log(a)−1 to be at least a2, d must satisfy d > 5.

In summary, the greater the separation between DOTs, the longer it takes for them to exchange
elements. This effect becomes more pronounced as d increases. Until DOTs exchange elements,
the pairwise differences in their centers of mass behave like d-dimensional random walks, which
inclines them to grow increasingly separated due to the transience of random walk in d > 3
dimensions. In d > 5 dimensions, we will be able to show that DOT separation grows rapidly
enough in the absence of element exchange that it is typical for no element to be exchanged,
leading to Theorem 3.1.5.

Organization
The machinery underlying the proof of Theorem 3.1.5 is an approximation of HAT by another
Markov chain, called intracluster HAT (IHAT), which effectively applies the HAT dynamics to
each cluster in a separate copy of Zd. Under IHAT, we will essentially treat the clusters’ centers of
mass as independent random walks. Section 3.4 explains how we will compare the transition prob-
abilities of HAT and IHAT, and introduces a notion of harmonic measure adapted to clusterings,
which is used to define IHAT. Section 3.5 proves estimates of harmonic measure, which are used to
control the error arising from approximating HAT by IHAT in Section 3.6. Section 3.7 introduces
a random walk model of the separation between a pair of clusters and Section 3.8 uses this random
walk to obtain key estimates of separation growth. Beginning in Section 3.9, the focus shifts to
the proof of Theorem 3.1.7. Section 3.10 presents some supporting results, which are applied in
Section 3.11 to analyze the three algorithms around which the proof of Theorem 3.1.7 is organized
in Section 3.11. The last section, Section 3.12, proves Theorem 3.1.6.
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3.2 Proof of Theorem 3.1.5
Theorem 3.1.5 states that there is a random time θ from which the natural clustering of (Uθ, Uθ+1, . . . )
grows in separation according to (3.2), and which is PU -a.s. finite for every configuration U . In-
formally, we will define θ as the time of the first success in a sequence of trials, each of which
attempts to observe the natural clustering with a sufficiently well separated DOT clustering satisfy
(3.2). The fact that θ is a.s. finite will be a simple consequence of two results. First, Theorem
3.1.7 implies that, if the present trial fails, then we can conduct another, after waiting an a.s. finite
number of steps for Ut to have a sufficiently well separated DOT clustering. Second, the following
result states that each trial succeeds with a probability which is bounded away from zero, hence
we need only conduct an a.s. finite number of trials before one succeeds.

Proposition 3.2.1. Let a, b ∈ R>1, W0 ∈ Ud,n(a, b) and E0 ∈ C (W0, a, b) for d ∈ Z>5, and
n ∈ Z>4. Let (C0, C1, . . . ) be the natural clustering of (U0, U1, . . . ) with E0 and let at denote
the quantity t

1
2
−n−100

+ 100n for t ∈ Z>0. Define ξ to be the first time t that Ct is not an (at, b)
separated DOT clustering of Ut:

ξ = inf{t > 0 : Ct /∈ C (Ut, at, b)}.

There is a number ε > 0 such that, if a, b are sufficiently large in terms of d, n, then

PW0(ξ =∞) > ε. (3.5)

The proof of Proposition 3.2.1 will comprise several sections, and we dedicate the next section
to a discussion of the proof strategy. For now, we assume it and use it to prove Theorem 3.1.5.

Proof of Theorem 3.1.5. Let a ∈ Z>2 and b ∈ R>1 be sufficiently large in terms of d, n to sat-
isfy the hypotheses of Theorem 3.1.7 and Proposition 3.2.1, and let ε be the number of the same
name from Proposition 3.2.1. Additionally, let ψ be a function which, given a configuration
U ∈ Ud,n(a, b), determines a clustering in C (U, a, b). (We use ψ to “pick” one of potentially
multiple clusterings; it is otherwise unimportant.)

We define θ in terms of two sequences of random times, (τi)i>1 and (ξi)i>0. Informally, τi is
beginning of our ith attempt to observe the natural clustering satisfy (3.2), and ξi is the time this
attempt fails. More precisely, we define

ξ0 = 0 and ξi = inf{t > τi : Ci,t /∈ C (Ut, at−τi , b)} for i > 1,

where

• as is the quantity of the same name in the statement of Proposition 3.2.1;

• τi = inf{t > ξi−1 : C (Ut, a, b) is nonempty} for i > 1; and

• (Ci,τi , Ci,τi+1, . . . ) is the natural clustering of (Uτi , Uτi+1, . . . ) with ψ(Uτi).
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Lastly, define θ = τI for I = inf{i > 1 : τi < ∞, ξi = ∞}. By the definition of θ, (3.2) is
satisfied, which implies that (3.3) is, too.

We now show that θ is PU -a.s. finite. Let J = inf{j : ξj =∞}, in which case we have

PU(θ <∞) = PU(I <∞) = PU(J <∞). (3.6)

The first equality follows from the definitions of I and θ. The second equality follows from the fact
that PW (τ1 < ∞) = 1 for any n-element configuration W ⊂ Zd, which is a simple consequence
of Theorem 3.1.7.

To bound the tail probabilities of J , we write

PU(J > j + 1 | J > j) =
EU

[
PUτj

(ξ1 <∞); J > j
]

PU(J > j)
6 1− ε. (3.7)

The equality follows from the strong Markov property applied at time ξj and the fact that PUξj
(τ1 <

∞) = 1. The inequality holds because Proposition 3.2.1 implies PUτj
(ξ1 =∞) > ε.

The bound (3.7) implies that PU(J > j) is summable, so the Borel-Cantelli lemma implies
that J is PU -a.s. finite, which by (3.6) implies the same of θ.

3.3 Strategy for the proof of Proposition 3.2.1
The proof of Proposition 3.2.1 has two main steps. First, we prove that, when DOTs are a separated
in d > 5 dimensions, HAT approximates a related process, called intracluster HAT (IHAT), in
which transport occurs only to the cluster at which activation occurred, over a2 steps, up to an error
of O(a−1 log(a)). Specifically, we will prove that, if the natural clustering of W0, . . . ,Wt with a
clustering C0 satisfies separation conditions related to DOT.2 and DOT.3 (e.g., Ct is a separated),
then the probability PW0(U1 = W1, . . . , Ut = Wt) is within a factor of(

1−O
(
a2−d log(a)

))t
of the probability of the analogous event under IHAT. In our application, we will have t = O(a2)
and d > 5, in which case this factor is 1−O(a−1 log(a)).

Second, we show that over a2 steps of IHAT, the separation between every pair of clusters
effectively doubles, except with a probability ofO(a−1). We show this by considering the pairwise
differences between clusters’ centers of mass, viewed at consecutive times of return to given,
“reference” orientations. Viewed in this way, the pairwise differences are d-dimensional random
walks. We then apply the same argument with 2a in the place of a, then 4a in the place of 2a, and so
on. Each time the separation doubles, the approximation and exception errors halve, which implies
that if a is sufficiently large, then the separation grows without bound, with positive probability.

The second step is possible because, under IHAT, we can treat each DOT as if it inhabited a
separate copy of Zd, which simplifies our analysis of separation. We define IHAT by conditioning
the transport component of the HAT dynamics on intracluster transport, i.e., transport can only
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occur to the boundary of the cluster at which activation occurred. Because intercluster transport
over a2 steps is atypical when clusters are a separated, IHAT is a good approximation of HAT over
the period during which clusters typically double in separation.

The activation component of the IHAT dynamics is defined in terms of a generalization of
harmonic measure to clusterings of subsets of Zd. This harmonic measure is proportional to the
escape probability of each element, from the cluster to which the element belongs—not the entire
configuration. In this way, the IHAT dynamics will treat each cluster in isolation, rather than
collectively through the configuration. When clusters are a separated, the harmonic measure of
a configuration and a clustering thereof will agree up to a factor of 1 − O(a2−d). In fact, the
discrepancy between the transport components of HAT and IHAT will give rise to the dominant
error factor; we discuss this in greater detail in the next section.

3.4 Intracluster HAT
The purpose of this section is to motivate the definition of intracluster HAT by examining the
transition probabilities of HAT. We will observe that, when a HAT configuration consists of clusters
which are well separated—in terms both absolute and relative to the diameters of the clusters—
intercluster transport is rare. As a result, clusters evolve as if inhabiting separate copies of Zd, and
the pairwise differences in their centers of mass can be modeled as random walks.

Although HAT makes no reference to clusters, we can lift HAT (in the sense of, e.g., [DHN00])
to a process on clusterings, and subsequently recover HAT through the map π which takes a tuple
of sets C to their union:

π(C) =
⋃
i

Ci. (3.8)

(We will no longer use π to denote the stationary distribution of HAT in two dimensions.) To
define the lifted process, we give a name to the collection of pairs of elements of Zd at which
activation and to which transport can occur. We use the following notation for modifying a k-tuple
of nonempty subsets of Zd, C:

Ci,x,y = (C \i {x}) ∪i {y} for i ∈ JkK, x, y ∈ Zd.

Definition 3.4.1 (A lifting of HAT). Let E0 and E1 be clusterings of two configurations in Zd. We
define

Pairs(E0, E1) =
{

(x, y) : x, y ∈ Zd, pπ(E0)(x, y) > 0, and E1 = Ei,x,y
0 for i = clust(E0, x)

}
.

Given a clustering C0 of a configuration in Zd, we define the Markov chain (C0, C1, . . . ) with
transition probabilities

P(Ct+1 = E | Ct) =
∑

(x,y)∈Pairs(Ct,E)

pπ(Ct)(x, y) (3.9)
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for t > 0. Note that, if we set Ut = π(Ct) for each t > 0, then (Ut)t>0 has the same transition
probabilities as HAT under PU0 . It this sense, (Ct)t>0 is a lifting of HAT. For simplicity, we will
refer to both as HAT.

In the following subsections, we motivate IHAT by examining the transition probabilities of
HAT (Section 3.4.1) and define IHAT (Section 3.4.2).

3.4.1 A calculation which motivates the definition of IHAT
Let C0 be a clustering of a configuration U0 in Zd. For each t > 0, we set Ut = π(Ct), where
(Ct)t>0 has the transition probabilities given by (3.9). We will examine the transition probabilities
in the case when transport occurs to the boundary of the cluster at which activation occurred, i.e.,
y ∈ ∂(Ci

t\{x}). We additionally assume that:

• pUt(x, y) is positive; and

• Ct satisfies the absolute and relative separation conditions, DOT.2 and DOT.3, for some a, b ∈
R>1.

Call τ = τUt\{x}, τ ′ = τCit\{x}, and τ ′′ = τC 6=it
.

Under the assumptions, if {Sτ−1 = y} occurs, then {τ ′ < τ ′′} occurs too. Hence we can
express the probability pUt(x, y) (1.3) in terms of τ , τ ′, and τ ′′ as

pUt(x, y) = HUt(x)Px(Sτ−1 = y
∣∣ τ <∞)

= HUt(x)
Px(Sτ ′−1 = y, τ ′ < τ ′′, τ <∞)

Px(τ <∞)

= HUt(x)
Px(Sτ ′−1 = y, τ ′ <∞)− Px(Sτ ′−1 = y, τ ′′ < τ ′ <∞)

Px(τ <∞)
.

Regrouping, we find

pUt(x, y) = HUt(x)Px(Sτ ′−1 = y
∣∣ τ ′ <∞)

× Px(τ ′ <∞)

Px(τ <∞)

(
1− Px(Sτ ′−1 = y, τ ′′ < τ ′ <∞)

Px(Sτ ′−1 = y, τ ′ <∞)

)
. (3.10)

Concerning the factors in (3.10):

• The factor of
HUt(x)Px(Sτ ′−1 = y

∣∣ τ ′ <∞) (3.11)

can be thought of as an analogue of pUt(x, y) for a variant of HAT in which only intracluster
transport occurs. For the moment, denote this Markov chain by (C ′t)t>0 and denote its law by
P′. We will modify the transition probabilities of this Markov chain in the next subsection
to obtain a useful approximation of HAT.
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• The factor of Px(τ ′<∞)
Px(τ<∞)

is the probability that intracluster transport occurs. This probability
is at least 1 − O(a2.1−db). The factor of a2.1−d arises from the asymptotic form of Green’s
function for random walk (3.18), the leading-order term of which is O(a2−d), and a simple
bound ofO(a0.1b) on a reciprocal power of the diameters of the clusters, which satisfy DOT.3
with b by assumption.

• The ratio in parentheses in (3.10) is small when a is large because, for {τ ′′ < τ ′ < ∞} to
occur, a random walk from x in cluster i must escape to a different cluster, before returning.
This probability is O(a4−2d). In contrast, {Sτ ′−1 = y, τ ′ < ∞} occurs with a probability
which is at least a reciprocal power of the diameters of the clusters, which is O(a0.1b).
Overall, the factor in parentheses will be 1−O(a4.1−2db).

These observations suggest that, ifE0 is a clustering of a configuration in Zd and if (E1, . . . , Et)
is a sequence of clusterings arising from transitions which satisfy the preceding assumptions, then

PE0(C1 = E1, . . . , Ct = Et)

>
(
1−O(a2.1−db)−O(a4.1−2db)

)t
P′E0

(C ′1 = E1, . . . , C
′
t = Et). (3.12)

The relevant values of d and t for our purposes will be d > 5 and t = O(a2), in which case the first
factor on the right-hand side of (3.12) is roughly (1−O(a−1)).

Even if we proved (3.12), it would not serve our strategy to model the clusters’ centers of mass
under P′ as random walks in separate copies of Zd. The reason is that (3.11) still refers to clusters
collectively, through Ut. We will resolve this in the next subsection, by replacing HUt(x) in (3.11)
with a harmonic measure–like quantity that treaters clusters in isolation. The resulting transition
probabilities will define IHAT.

3.4.2 The definition of IHAT
In d > 3 dimensions, there is an alternative definition of harmonic measure, which is equivalent
to (1.2) (see, e.g., Chapter 2 of [Law13]). For finite A ⊂ Zd and x ∈ Zd, we define the escape
probability and capacity of A by

escA(x) = Px(τA =∞) 1(x ∈ A) and capA =
∑
x∈A

escA(x).

In these terms, the harmonic measure of A can be defined as

HA(x) =
escA(x)

capA
for x ∈ A. (3.13)

For a positive integer k, we generalize (3.13) to finite A = (A1, . . . , Ak) ⊂ (Zd)k by defining
capA =

∑k
i=1 capAi and

HA(i, x) =
escAi(x)

capA
for i ∈ JkK and x ∈ Ai. (3.14)
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We are ready to define IHAT, which we will denote by (Dt)t>0. Recalling (3.11), we replace
the activation component HUt(x) with HDt(i, x) to obtain qDt(i, x, y), the intracluster analogue of
pUt(x, y):

qDt(i, x, y) = HDt(i, x)Px(Sτ−1 = y | τ <∞), (3.15)

where τ abbreviates τDt\i{x}.

Definition 3.4.2 (Intracluster HAT). Let E0 and E1 be clusterings of two configurations in Zd. We
define

Triples(E0, E1) =
{

(i, x, y) : i ∈ Z>1, x, y ∈ Zd, qE0(i, x, y) > 0, and E1 = Ei,x,y
0

}
.

Given a clusteringD0 of a configuration in Zd, we define IHAT as the Markov chain (D0, D1, . . . )
with transition probabilities

Q(Dt+1 = E | Dt) =
∑

(i,x,y)∈Triples(Dt,E)

qDt(i, x, y) (3.16)

for t > 0. Additionally, we set Vt = π(Dt) for t > 0.

3.5 A lower bound of harmonic measure
The purpose of this section is to prove estimates of harmonic measure. We will use them in
Section 3.6 to compare the activation components of HAT and IHAT and, ultimately, to establish
an inequality of the form (3.12) for Q in the place of P′.

Throughout this section, we assume d > 3. The first result concerns Green’s function G(x),
which is defined for x ∈ Zd by

G(x) =
∞∑
t=0

Px(St = 0). (3.17)

Green’s function has the asymptotic form

G(x) = c‖x‖2−d +O(‖x‖−d) (3.18)

for an explicit constant c = c(d). In some instances, we will emphasize the dependence of Green’s
function on dimension by including a subscript: Gd(x).

We need two monotonicity properties of Green’s function. The first is phrased in terms of the
following partial order on Zd. For x, y ∈ Zd, we write

x � y ⇐⇒ |xi| > |yi| for all i ∈ JdK,

where xi and yi denote the ith components of x and y.

Lemma 3.5.1 (Lemma 8 of [CC16]). Let x, y ∈ Zd. If x � y, then G(x) 6 G(y).
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The second monotonicity property concerns Green’s function at the origin o ∈ Zd.

Lemma 3.5.2. Gd(o) is a nonincreasing function of d.

Proof. Montroll [Mon56, Eq. (2.10)] expresses Gd(o) in terms of I0, the modified Bessel function
of the first kind, as

Gd(o) =

∫ ∞
0

e−tI0

( t
d

)d
dt.

Using the integral representation of I0 [AS64, Eq. 9.6.19], we see that I0( t
d
)d is the L

1
d norm of

et cos θ with respect to the probability measure π−1dθ on [0, π]:

I0

( t
d

)d
=

(
1

π

∫ π

0

e
t cos θ
d dθ

)d
.

For any d′ > d, the L
1
d′ norm is no larger than the L

1
d norm, which implies

Gd(o) >
∫ ∞

0

e−tI0

( t
d′

)d′
dt = Gd′(o).

The next result is a consequence of Lemma 3.5.2.

Lemma 3.5.3. If d ∈ Z>5, then Gd(o) 6 1.2.

Proof. By Lemma 3.5.2, Gd(o) 6 G5(o) when d > 5. When d = 5, the probability p that random
walk in Zd returns to the origin is less than 0.14 [Mon56]. Since G5(o) = (1 − p)−1, this implies
G5(o) 6 1.2.

We use the first monotonicity property to prove the next result.

Lemma 3.5.4. Let U be an n-element configuration in Zd. There is a number c = c(d) such that,
if there is a clustering C = (C1, C2) of U with |C1| 6 3, then

escU(x) >
3− 2G(o)

G(o)
− cnsep(C)2−d for x ∈ C1. (3.19)

The first term on the right-hand side of (3.19) is the escape probability of a three-element set,
from an element with two neighbors. The term nsep(C)2−d bounds the probability that random
walk from C1 hits C2 before escaping; it arises from the leading-order term of Green’s function
(3.18) and the fact that |C2| 6 n.

Proof of Lemma 3.5.4. Let U and C satisfy the hypotheses and let x ∈ C1. Denote by N the
number of returns made to U by random walk. We write escU(x) in terms of N as

escU(x) = Px(N = 0) = 1− Ex[N ]

Ex[N |N > 0]
. (3.20)
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We will bound escU(x) from below by substituting an upper bound for Ex[N ] and a lower bound
for Ex[N |N > 0] into (3.20).

First, we find an upper bound for Ex[N ]. We separate the contributions to Ex[N ] from C1 and
C2:

Ex[N ] =
∑
y∈C1

G(x− y) +
∑
y∈C2

G(x− y) − 1. (3.21)

Concerning the first sum in (3.21), since x ∈ C1 and |C1| 6 3, the difference set x− C1 contains
o and at most two other elements. Hence there are u1, u2 ∈ Zd such that x−C1 ⊆ {o, u1, u2} and
which satisfy u1 � ej and u2 � ek for some j, k ∈ JdK. Because Green’s function is nonincreasing
in � (Lemma 3.5.1) and because G(ej) = G(o)− 1 for any j ∈ JdK,∑

y∈C1

G(x− y) 6 3G(o)− 2. (3.22)

By (3.18), the second sum in (3.21) is at most c1sep(C)2−d for a number c1 = c1(d). Applying this
bound and (3.22) to (3.21) gives

Ex[N ] 6 3G(o)− 3 + c1nsep(C)2−d.

Second, we have a lower bound for the conditional expectation in (3.20):

Ex[N | N > 0] = 1 + Ex
[
ESτU [N ]

∣∣ τU <∞] > G(o).

Substituting the two preceding bounds into (3.20), we find

escU(x) > 1− 3G(o)− 3 + c1nsep(C)2−d

G(o)
.

Rearranging and setting c = c1/G(o) gives (3.19).

For the next result, we need to assume d > 5 instead of d > 3, so that we can use the bound
Gd(o) 6 1.2 from Lemma 3.5.3.

Lemma 3.5.5. Let d > 5 and let U be an n-element configuration in Zd. There is a real number
a = a(d, n) such that, if there is a clustering C = (C1, C2) of U with |C1| 6 3 and sep(C) > a,
then

HU(x) >
1

2n
for x ∈ C1. (3.23)

Additionally, regardless of the separation of C,

HC(1, x) >
1

2n
for x ∈ C1. (3.24)

The proof applies the escape probability lower bound (3.19) from Lemma 3.5.4 and the fact that
escU(x) 6 G(o)−1 to get two-sided bounds on capU , hence harmonic measure by (3.13). Because
this bound will be in terms of G(o), to obtain (3.23)—which has no d-dependence—we will apply
Lemma 3.5.3. Concerning the fact that (3.24) holds regardless of sep(C), recall that HC(1, x) is
proportional to the escape probability of C1, which is agnostic to cluster separation.
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Proof of Lemma 3.5.5. We prove (3.23) first. Let U and C satsify the hypotheses. The capacity
satisfies capU 6 nG(o)−1 because U has n elements and because escU(x) 6 G(o)−1 for x ∈ U .
Combining this with the escape probability lower bound from Lemma 3.5.4 to (3.13), we find

HU(x) =
escU(x)

capU
>

3− 2G(o)

n
− csep(C)2−d for x ∈ C1, (3.25)

for a number c = c(d). By assumption, d > 5, so Lemma 3.5.3 implies G(o) 6 1.2. Substituting
this bound into (3.25) gives

HU(x) > 0.6n−1 − csep(C)2−d. (3.26)

When sep(C) is at least a = (10cn)
1
d−2 the term csep(C)2−d is at most 0.1n−1, leading to the

claimed bound (3.23). Note that, for every number a, the cluster C1 considered in isolation is an
a-separated clustering of C1 with one cluster. Hence the same argument which gave (3.26), but
with C1 in place of U , implies (3.24).

3.6 Approximation of HAT by intracluster HAT
Throughout this section, we will assume d ∈ Z>5 to satisfy a hypothesis of Lemma 3.5.5, and
n ∈ Z>4 to ensure that DOT clusterings have at least two clusters. When we refer to a clustering
with no further qualification, we will mean a clustering of an n-element configuration in Zd.

The main result of this section bounds below the probabilities of certain events under HAT in
terms of their probabilities under IHAT. Specifically, this bound will apply to events that consist of
sequences of clusterings that grow in separation sufficiently quickly, which will include the event
in Proposition 3.2.1. To make “sufficiently quickly” precise, consider an initial separation a ∈ R>1,
a number δ > 0, an increasing sequence of times (tk)k>0 ⊆ Z>0 with t0 = 0, and a sequence of
separations (ρk)k>1 ⊂ R>1 which satisfies ρk > δa for every k > 1. The bound will apply to
events which consist of sequences of DOT clusterings (E1, E2, . . . ) such that sep(Es) > ρk for
tk−1 < s 6 tk, where tk and ρk satisfy

∞∑
k=1

tkρ
2.1−d
k → 0 as a→∞. (3.27)

This condition will arise naturally in the proof, where the quantity exp(
∑

k tkρ
2.1−d
k ) will bound

the multiplicative error that we incur from approximating HAT by IHAT. In our application, ρk will
be roughly 2ka and tk will be roughly (2ka)2 (i.e., the expected number of steps for random walk
to travel a distance of 2ka) for k > 1. Because d > 5, these choices of tk and ρk will satisfy (3.27).

Proposition 3.6.1 (Main approximation result). Let a, b ∈ R>1 and let δ ∈ R>0, let E0 be an
(a, b) separated DOT clustering, let (tk)k>0 ⊆ Z>0 be an increasing sequence with t0 = 0, and let
(ρk)k>1 ⊂ R>1 satisfy ρk > δa for every k > 1. Additionally, let ` ∈ Z>1 and let D be the event

D =
{

(E1, . . . , Et`) : for each k ∈ J`K, for each s ∈ {tk−1 + 1, . . . , tk},
Es is a clustering which satisfies sep(Es) > ρk

}
. (3.28)
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If (tk)k>1 and (ρk)k>1 satisfy (3.27), and if E ⊆ D, then

PE0(E) > (1− oa(1))QE0(E). (3.29)

Proposition 3.6.1 is one of three inputs to the proof of Proposition 3.2.1. The other two in-
puts state that (i) the event which Proposition 3.2.1 concerns—that the natural clustering grows in
separation as Theorem 3.1.5 predicts—is a subset of D and that (ii) its probability under QE0 is
positive. We prove these other inputs in the next two sections. In the remainder of this section, we
prove Proposition 3.6.1.

The key to the proof of Proposition 3.6.1 is a comparison of the transition probabilities of HAT
and IHAT, which is the one-step analogue of (3.12), with Q in the place of P′.

Proposition 3.6.2 (Approximation of transition probabilities). Let a, b ∈ R>1, and let E0, E1 be
(a, b) separated DOT clusterings. There is a positive real number c = c(b, d, n) such that, if a is
sufficiently large in terms of b and d, then

PE0(C1 = E1) >
(
1− ca2.1−d)QE0(D1 = E1). (3.30)

For the sake of concreteness, a > emax{100b,10d2} suffices.

Proposition 3.6.1 is a consequence of a short calculation with Proposition 3.6.2.

Proof of Proposition 3.6.1. We express the probability of E in terms of transition probabilities and
then apply Proposition 3.6.2:

PE0(E) =
∑

(E1,...,Et` )∈E

∏̀
k=1

tk∏
s=tk−1+1

PEs−1(C1 = Es)

>
∑

(E1,...,Et` )∈E

∏̀
k=1

tk∏
s=tk−1+1

(
1− cρ2.1−d

k

)
QEs−1(D1 = Es)

= QE0(E)
∏̀
k=1

(
1− cρ2.1−d

k

)tk−tk−1 , (3.31)

where c = c(b, d, n) is the number of the same name from Proposition 3.6.2. The first equality
holds by the Markov property of Ct. The inequality is due to Proposition 3.6.2, which applies in
part becauseEs−1 andEs are clusterings with separations of at least ρk by virtue of E ⊆ D. For the
proposition to be applicable, Es−1 and Es must also be DOT clusterings. We can assume that this
is the case w.l.o.g., as sequences in E which include non-DOT clusterings have zero probability
under PE0 , hence they do not contribute to the sum. Lastly, to use Proposition 3.6.2, ρk must be
sufficiently large in terms of b and d. Since ρk > δa, we can arrange this by assuming that a is
sufficiently large in terms of b, d, and δ. The second equality follows from the Markov property of
Dt.
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Concerning the product over k in (3.31), when a is sufficiently large to make cρ2.1−d
k < 0.5, we

can apply the inequality log(1− x) > −2x (valid for |x| < 0.5) with x = cρ2.1−d
k as

∑̀
k=1

(tk − tk−1) log
(
1− cρ2.1−d

k

)
> −2c

∑̀
k=1

tkρ
2.1−d
k = −oa(1).

The equality holds because (tk)k>1 and (ρk)k>1 satisfy (3.27). By exponentiating both sides, we
find that the product over k in (3.31) is at least e−oa(1) = 1− oa(1).

We will split the proof of Proposition 3.6.2 into three parts. Recall that PE0(C1 = E1) is
a sum of pπ(E0) over Pairs(E0, E1), and QE0(D1 = E1) is a sum of qE0 over Triples(E0, E1).
First, we will show that there is a correspondence between the elements of Pairs(E0, E1) and
Triples(E0, E1) when E0 and E1 are sufficiently separated. Hence to show (3.30) it will suffice to
prove the bound with pπ(E0) and qE0 in the place of PE0(C1 = E1) and QE0(D1 = E1). Second,
for any element of Pairs(E0, E1), we will bound below the activation component of pπ(E0) by
the activation component of qE0 . Third, we will do the same for the transport components, and
combine the bounds to give (3.30).

We state the correspondence between Pairs(E0, E1) and Triples(E0, E1) first.

Proposition 3.6.3 (Correspondence between Pairs and Triples). Let a, b ∈ R>1, and let E0, E1 be
(a, b) separated DOT clusterings of n-element configurations in Zd. If a > emax{100b,10d2}, then

Pairs(E0, E1) =
{

(x, y) :
(
clust(E0, x), x, y

)
∈ Triples(E0, E1)

}
(3.32)

and
Triples(E0, E1) =

{(
clust(E0, x), x, y

)
: (x, y) ∈ Pairs(E0, E1)

}
. (3.33)

Next, we state the comparison of activation components.

Proposition 3.6.4 (Activation comparison). Let C be a clustering of an n-element configuration
in Zd which satisfies |Cj| 6 3 for each j. There is a number c = c(d) such that

Hπ(C)(x) >
(
1− cnsep(C)2−d)HC(i, x), (3.34)

with i = clust(C, x) and for x ∈ Zd.

Lastly, we state the comparison of transport components.

Proposition 3.6.5 (Transport comparison). Let C be a clustering of an n-element configuration in
Zd and let b ∈ R>1. Suppose that C satisfies:

• |Cj| 6 3 for each j;

• sep(C)0.1 > log(sep(C))d−2; and

• diam(Cj) 6 b log dist(Cj, C 6=j) for each j.



CHAPTER 3. HAT IN HIGHER DIMENSIONS 111

Then there is a number c = c(d) such that, for any x ∈ Ci and y ∈ ∂(Ci\{x}) such that
pπ(C)(x, y) > 0, we have

Px(Sτ−1 = y | τ <∞) >
(
1− cnbd−2sep(C)2.1−d)Px(Sτ ′−1 = y | τ ′ <∞), (3.35)

where τ = τπ(C)\{x} and τ ′ = τCi\{x}.

Concerning the hypotheses on C, the exponent of 0.1 in the second condition is merely repre-
sentative of a number less than one. For concreteness, C satisfies this condition if sep(C) > e10d2 .
Note that the conditions on x and y mean that intracluster transport can occur from x to y.

Let us prove Proposition 3.6.2, assuming the preceding three propositions.

Proof of Proposition 3.6.2. Let a, b, E0, and E1 satisfy the hypotheses of Proposition 3.6.3. De-
note

Pairs′(E0, E1) =
{

(x, y) :
(
clust(E0, x), x, y

)
∈ Triples(E0, E1)

}
.

By the definition of HAT and by Proposition 3.6.3, we have

PE0(C1 = E1) =
∑

(x,y)∈Pairs′(E0,E1)

Hπ(E0)(x)Px
(
Sτ−1 = y

∣∣ τ <∞). (3.36)

We will bound below each summand. Let i = clust(E0, x), τ = τπ(E0)\{x} and τ ′ = τEi0\{x}. We
claim that

Hπ(E0)(x)Px
(
Sτ−1 = y

∣∣ τ <∞)
>
(
1− cnbd−2a2.1−d)HE0(i, x)Px

(
Sτ ′−1 = y

∣∣ τ ′ <∞), (3.37)

for a real number c = c(d). Indeed, this follows from applying Proposition 3.6.4 and Proposi-
tion 3.6.5 with C = E0, and the fact that E0 is an (a, b) separated DOT clustering. Note that the
propositions together require C to satisfy three conditions, but it is easy to see that these are met
because E0 is an (a, b) separated DOT clustering, for a which satisfies a0.1 > log(a)d−2 because
a > e10d2 . The use of Proposition 3.6.5 further requires pπ(E0)(x, y) > 0 and y ∈ ∂(Ei

0\{x}). The
former holds because (x, y) ∈ Pairs(E0, E1). The latter must hold because, otherwise, y would
belong to ∂Ej

0 for a cluster j 6= i, in which case we would have sep(E1) = 1.
Returning to (3.36), and identifying the factor of qE0(i, x, y) on the right hand side of (3.37),

we find

PE0(C1 = E1) >
(
1− cnbd−2a2.1−d) ∑

(x,y)∈Pairs′(E0,E1)

qE0(i, x, y)

=
(
1− cnbd−2a2.1−d) ∑

(i,x,y)∈Triples(E0,E1)

qE0(i, x, y)

=
(
1− cnbd−2a2.1−d)QE0(D1 = E1).

The first equality holds by Proposition 3.6.3; the second holds by the definition of IHAT.

In the following two subsections, we prove Propositions 3.6.3–3.6.5.
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3.6.1 Proof of Proposition 3.6.3
There are two potential barriers to a correspondence between Pairs(E0, E1) and Triples(E0, E1).
The first is that one or more clusters could “surround” another cluster, disconnecting it from in-
finity. In this case, there would be an element (i, x, y) ∈ Triples(E0, E1) for which (x, y) /∈
Pairs(E0, E1). The second barrier is the possibility that an element could move between clusters
under HAT, whereas it could not under IHAT. In this case, there would be an element (x, y) ∈
Pairs(E0, E1), but no (i, x, y) in Triples. We resolve both of these barriers by requiring that E0 and
E1 be sufficiently separated.

The following proposition handles a step in the proof of Proposition 3.6.3. In words, it states
that, if a clustering C is sufficiently separated and if an element is exposed in Ci, then that element
is also exposed in π(C).

Proposition 3.6.6. Let a, b ∈ R>1, and letC be an (a, b) separated DOT clustering of an n-element
configuration in Zd. If a > emax{100b,10d2}, then

escCi(x) > 0 =⇒ escπ(C)(x) > 0, x ∈ Zd.

We will prove Proposition 3.6.6 at the end of this section. For now, we assume it and use it to
prove Proposition 3.6.3.

Proof of Proposition 3.6.3. Let a, b, E0, and E1 satisfy the hypotheses. By the definitions of
Pairs(E0, E1) and Triples(E0, E1), to establish (3.32) and (3.33), it suffices to show that

pπ(E0)(x, y) > 0 ⇐⇒ qE0(i, x, y) > 0 (3.38)

for any x, y ∈ Zd such that E1 = Ei,x,y
0 , where i = clust(E0, x).

It is easy to see that pπ(E0)(x, y) is positive iff x is exposed in π(E0), y is exposed in π(E1),
and y has a neighbor in π(E0)\{x}. In other words,

pπ(E0)(x, y) > 0 ⇐⇒


escπ(E0)(x) > 0, (3.39a)
escπ(E1)(y) > 0, and (3.39b)
y ∈ ∂

(
π(E0)\{x}

)
. (3.39c)

Analogously,

qE0(i, x, y) > 0 ⇐⇒


escEi0(x) > 0, (3.40a)
escEi1(y) > 0, and (3.40b)

y ∈ ∂
(
Ei

0\{x}
)
. (3.40c)

We claim that, if a > emax{100b,10d2}, then

(3.39a) ⇐⇒ (3.40a), (3.39b) ⇐⇒ (3.40b), and (3.39c) ⇐⇒ (3.40c),

which together imply (3.38). We address the forward implications first.
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Forward implications. Because x ∈ Ei
0 ⊆ π(E0) and y ∈ Ei

1 ⊆ π(E1),

escπ(E0)(x) 6 escEi0(x) and escπ(E1)(y) 6 escEi1(y),

hence (3.39a) =⇒ (3.40a) and (3.39b) =⇒ (3.40b). Next, by the definition of π and because
sep(E0) > 1, we have

∂
(
π(E0)\{x}

)
= ∂

(⋃
i

Ei
0\{x}

)
=
⋃
i

∂
(
Ei

0\{x}
)
.

Consequently, (3.39c) implies that y ∈ ∂
(
Ej

0\{x}
)

for at least one choice of j. In fact, j = i
is the only choice which works as, otherwise, we would have sep(E1) = 1. We conclude that
(3.39c) =⇒ (3.40c).

Reverse implications. Because E0 and E1 are (a, b) separated for an a which is at least
emax{100b,10d2}, Proposition 3.6.6 applies with E0 or E1 in the place of C. Using it, we conclude
that (3.39a) ⇐= (3.40a) and (3.39b) ⇐= (3.40b). The argument we used for the last forward
implication applies in reverse to show that (3.39c) ⇐= (3.40c).

In the remainder of this section, we prove Proposition 3.6.6 using a result of Kesten, which we
stated as Lemma 2.3.13 in Chapter 2.

Proof of Proposition 3.6.6. Let x ∈ Zd satisfy escCi(x) > 0 and let U = π(C). To establish
escU(x) > 0, it suffices to show that there is a path from x to the boundary of

F = {z ∈ Zd : dist(z, U) 6 2 diam(U)},

which otherwise lies outside of U .
Because x is exposed in Ci, there is a path Γ from x to ∂F , which otherwise lies outside of Ci.

We will modify Γ to obtain the path we desire. To this end, let Bj denote the fattening of the j th

cluster by its diameter, i.e., let

Bj =
{
z ∈ Zd : dist(z, Cj) 6 diam(Cj)

}
for each j. We state two facts about the Bj .

Fact 1. Each Bj is finite and ∗-connected, so each ∂visB
j must be connected according to

Lemma 2.3.13.
Fact 2. Each ∂visB

j is disjoint from ∪kBk. To see why, note that any element of ∂visB
j is

within
√
d of an element of Bj , while the distance between distinct Bj and Bk exceeds

√
d:

dist(Bj, Bk) > dist(Cj, Ck)− diam(Cj)− diam(Ck)− 2
√
d

> dist(Cj, Ck)
(

1− 2b log dist(Cj, Ck) + 2
√
d

dist(Cj, Ck)

)
>
√
d.

The first inequality follows from the triangle inequality; the second from the fact that C satisfies
DOT.3; the third from the fact that the ratio is decreasing in dist(Cj, Ck), which is at least sep(C),
and the fact that sep(C) > e10d2 .
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We will keep the part of Γ from x until it first encounters ∂visB
i, which otherwise avoids ∪kBk

by assumption. We denote by L the set of labels of the Bj subsequently hit by Γ. If L is empty,
then we are done. Otherwise, let ` be the label of the first of the Bj that Γ hits, and let Γu and Γv
be the first and last elements of Γ which intersect ∂visB

`. By Fact 1, ∂visB
` is connected, so there

is a shortest path Λ in ∂visB
` from Γu to Γv. We then edit Γ to form Γ′ as

Γ′ =
(
Γ1, . . . ,Γu−1,Λ1, . . . ,Λ|Λ|,Γv+1, . . . ,Γ|Γ|

)
.

Because Γv+1 was the last element of Γ which intersected ∂visB
`, Γ′ avoidsB`. By Fact 2, Λ avoids

∪kBk, so if L′ is the set of labels of Bj encountered by Γ′, then |L′| 6 |L| − 1.
If L′ is empty, then we are done. Otherwise, we can relabel Γ to Γ′ and L to L′ in the preceding

argument to continue inductively, obtaining Γ′′ and |L′′| 6 |L| − 2, and so on. Because |L| 6 n,
we need to modify the path at most n times before the resulting path to ∂F does not return to
∪kBk after reaching ∂visB

i. In summary, we edited Γ to obtain a path from x to ∂visB
i and

then from ∂visB
i to ∂F , which otherwise avoids U . By the preceding discussion, this proves

escU(x) > 0.

3.6.2 Proofs of Propositions 3.6.4 and 3.6.5
We will prove the comparison of the activation components of HAT and IHAT first.

Proof of Proposition 3.6.4. Let U = π(C). We express the escape probability of U as

escU(x) = escCi(x)− Px(τC 6=i <∞, τCi =∞), x ∈ U. (3.41)

By (3.18), there is a number c1 = c1(d) such that, for any y ∈ C 6=i,

Px(τy <∞) =
G(x− y)

G(o)
6 csep(C)2−d.

By a union bound over the elements of C 6=i and by the preceding bound,

Px(τC 6=i <∞, τCi =∞) 6 n max
y∈C 6=i

Px(τy <∞) 6 c1nsep(C)2−d. (3.42)

The right-hand side of (3.42) is small relative to the first term in (3.41) because |Ci| 6 3 which,
by Lemma 3.5.4, implies

escCi(x) >
3− 2G(o)

G(o)
>

1

2
. (3.43)

The second inequality holds because the ratio decreases as G(o) increases and G(o) 6 1.2 by
Lemma 3.5.3.

Substituting (3.42) and (3.43) into (3.41), we find

escCi(x)
(
1− cnsep(C)2−d) 6 escU(x) 6 escCi(x) (3.44)
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with c = 2c1. In particular, summing the first inequality of (3.44) over x and i gives

capC
(
1− cnsep(C)2−d) 6 capU . (3.45)

Combining (3.44) and (3.45) gives (3.34):

HU(x) >
(
1− cnsep(C)2−d)escCi(x)

capC
=
(
1− cnsep(C)2−d)HC(i, x). (3.46)

In addition to cluster sizes of at most three, the transport comparison requires that the clusters
satisfy absolute and relative (to diameter) separation conditions, similar to DOT.1–DOT.3. The
proof of (3.35) analyzes each factor of (3.10) in turn.

Proof of Proposition 3.6.5. According to (3.10),

Px(Sτ−1 = y | τ <∞) = Px(Sτ ′−1 = y | τ ′ <∞)

× Px(τ ′ <∞)

Px(τ <∞)︸ ︷︷ ︸
(3.47a)

(
1− Px(Sτ ′−1 = y, τ ′′ < τ ′ <∞)

Px(Sτ ′−1 = y, τ ′ <∞)

)
︸ ︷︷ ︸

(3.47b)

, (3.47)

where τ ′′ = τC 6=i .
We will bound (3.47a) from below. We start with two observations. First, there must be an

element z ∈ Ci which is distinct from x because, otherwise, there can be no y ∈ ∂(Ci\{x}).
Second, for such a z, ‖x − z‖ can be no larger than b log dist(Ci, C 6=i) by the hypothesis on the
diameter of Ci. Consequently, by (3.18), there is a positive number c1 = c1(d) such that

Px(τ ′ <∞) > Px(τz <∞) =
G(x− z)

G(o)
> c1(b log dist(Ci, C 6=i))2−d. (3.48)

Concerning the denominator of (3.47a), because there are fewer than n elements in C 6=i, a
union bound over the elements of C 6=i and (3.18) imply that there is a number c2 = c2(d) such that

Px(τ ′′ <∞) 6 c2ndist(Ci, C 6=i)2−d.

We use this fact with (3.48) in the following way:

Px(τ <∞) 6

(
1 +

Px(τ ′′ <∞)

Px(τ ′ <∞)

)
Px(τ ′ <∞)

6

(
1 +

c2ndist(Ci, C 6=i)2−d

c1(b log dist(Ci, C 6=i))2−d

)
Px(τ ′ <∞). (3.49)

This bound decreases as dist(Ci, C 6=i) increases, so (3.49) and the hypothesis on sep(C) imply

Px(τ <∞) 6
(
1 + c3nb

d−2sep(C)2.1−d)Px(τ ′ <∞) (3.50)
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for c3 = c2/c1.
The inequality (3.50) implies that (3.47a) satisfies

Px(τ ′ <∞)

Px(τ <∞)
> 1− c3nb

d−2sep(C)2.1−d. (3.51)

We will now bound (3.47b) from below. For {τ ′′ < τ ′ < ∞} to occur, a random walk from x
must escape cluster i to a distance of at least dist(Ci, C 6=i), before returning to cluster i. Conse-
quently, there is a positive number c4 = c4(d) such that

Px(Sτ ′−1 = y, τ ′′ < τ ′ <∞) 6 c4ndist(Ci, C 6=i)4−2d. (3.52)

Indeed, to obtain (3.52), we can write

Px(Sτ ′−1 = y, τ ′′ < τ ′ <∞) = Ex
[
PSτ ′′

(
Sτ ′−1 = y

)
; τ ′′ < τ ′

]
6 max

z∈C 6=i
Pz(τ ′ <∞)Px(τ ′′ <∞)

6 c4ndist(Ci, C 6=i)4−2d.

Concerning the denominator of the ratio in (3.47b), because cluster i has at most three elements,
the probability that {Sτ ′−1 = y} occurs is at least within a factor c5 of hitting z (3.48):

Px(Sτ ′−1 = y, τ ′ <∞) > c5(b log dist(Ci, C 6=i))2−d. (3.53)

Combining (3.52) and (3.53), we find that the ratio in (3.47b) satisfies

Px(Sτ ′−1 = y, τ ′′ < τ ′ <∞)

Px(Sτ ′−1 = y, τ ′ <∞)
6

c4ndist(Ci, C 6=i)4−2d

c5(b log dist(Ci, C 6=i))2−d .

This bound increases as dist(Ci, C 6=i) decreases, so the hypothesis on sep(C) implies(
1− Px(Sτ ′−1 = y, τ ′′ < τ ′ <∞)

Px(Sτ ′−1 = y, τ ′ <∞)

)
> 1− c6nb

d−2sep(C)4.1−2d (3.54)

for c6 = c4/c5.
Substituting the lower bounds (3.51) and (3.54) into (3.47), we find

Px(Sτ−1 = y | τ <∞) >
(
1− c7nb

d−2sep(C)2.1−d)Px(Sτ ′−1 = y | τ ′ <∞)

with c7 = 2 max{c3, c6}.

3.7 A random walk related to cluster separation
Proposition 3.6.1 will allow us to bound the probability in (3.5) of Proposition 3.2.1 with the
corresponding probability under IHAT. The purpose of this section and Section 3.8 is to bound
this IHAT probability away from zero. Our strategy is to argue that, for each pair of clusters, the
difference in their centers of mass, viewed at certain renewal times, is a random walk in Zd. The
purpose of this section is to define this random walk and prove some preliminary results about it.
In Section 3.8, we will apply random walk estimates to complete the proof of Proposition 3.2.1.
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3.7.1 Definitions
We will define several quantities associated with the natural clusterings Ct and Dt of Ut and Vt. To
avoid repetition, we will use Et and Wt as placeholders for Ct and Ut and Dt and Vt, and we will
use E as a placeholder for (Ct, t > 0) and (Dt, t > 0). To ensure that there are at least two clusters
in each clustering, we will assume that W0 has n > 4 elements and that E0 satisfies DOT.1.

Center of mass

For a finite, nonempty subset A ⊂ Zd, we define the (scaled) center of mass of A as

M(A) =
6

|A|
∑
x∈A
‖x‖. (3.55)

The factor of six in (3.55) ensures that the center of mass is an element of Zd when A has two or
three elements.

Reference times

In words, the reference times for a pair of clusters are the consecutive times at which both clusters
form line segments parallel to e1, where e1 = (1, 0, . . . , 0) ∈ Zd. Fix clusters i < j in E0. Their
reference times are ξi,j0 (E) = 0 and

ξi,jm (E) = inf{t > ξi,jm−1(E) : Ei
t ∈ Ref, Ej

t ∈ Ref}, m ∈ Z>1,

where Ref is the collection of reference dimers and trimers

Ref = {{x, x+ e1} : x ∈ Zd} ∪ {{x, x+ e1, x+ 2e1} : x ∈ Zd}.

A random walk

To make the notation easier to read, we will suppress the i, j superscript and the argument E,
writing M i

t instead of M(Ei
t) and ξm instead of ξi,jm (E).

Consider the increments

∆i,j
` =

(
M i

ξ`
−M j

ξ`

)
−
(
M i

ξ`−1
−M j

ξ`−1

)
, ` > 1,

which are i.i.d. and belong to Zd. In principle, the reference times can be arbitrarily large, so to
ensure that the corresponding partial sums result in a finite-range random walk on Zd, we truncate
them with a number κ > 0. We define Zi,j;κ

0 = M i
0 −M j

0 and

Zi,j;κ
m = Zi,j;κ

0 +
m∑
`=1

∆i,j
` 1
(
ξ` − ξ`−1 6 κ

)
, m ∈ Z>1. (3.56)
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When Et = Dt, for x ∈ Zd, we refer to the law of the process (Zi,j;κ
m , m ∈ N) under Q,

conditioned on Zi,j;κ
0 = x, by Qi,j;κ

x .
For any κ, Qi,j;κ

x is the law of a finite-range and symmetric random walk from x. Additionally,
if κ > 3, then Qi,j;κ

x is irreducible on Zd. This is because, for any pair of dimers or trimers, it
is possible to return to Ref in three steps, in such a way that ∆i,j

1 = ek, for any k ∈ JdK, where
ek denotes the kth standard unit vector in Zd. Aside from these considerations, the truncation of
reference times by κ is unimportant, because the distributions of reference times have exponentially
small tails, as the next subsection shows.

3.7.2 Reference times have exponential tails under Q

The distributions of reference times have exponentially small tails under Q. This result requires no
hypothesis about cluster separation. The key input to the proof of Lemma 3.7.1 is the lower bound
on harmonic measure from Lemma 3.5.5.

Lemma 3.7.1. Let D0 be a clustering of an n-element configuration in Zd with distinct clusters i
and j. There is a number c = c(d, n) such that, for all t ∈ Z>0,

QD0

(
ξi,j1 > t

)
6 2e−ct. (3.57)

Proof. We will prove (3.57) when both clusters are trimers; the resulting bound will hold for the
other cases, which can be argued analogously.

We claim that Di
t+8 and Dj

t+8 belong to Ref with a probability of at least p8, where p =
(2n)−1(2d)−4. Indeed, we can transition Di

t to Di
t+4 ∈ Ref as follows:

1. If there is an isolated element, activate it (w.p. > (2n)−1). Otherwise, “keep” the current
cluster by transporting to wherever activation occurs (w.p. > (2n · 2d)−1). Repeat this step
twice to ensure that the resulting cluster is connected.

2. Once the cluster is connected, if it does not belong to Ref, activate any element with the
least e1 component and transport it to x + e1, where x is any element of the cluster with
the greatest e1 component (w.p. > (2n)−1(2d)−4). Otherwise, keep the current cluster (w.p.
> (2n · 2d)−1). Repeat this step twice to ensure that the trimer belongs to Ref (i.e., equals
{x, x+ e1, x+ 2e1} for some x ∈ Zd).

The factors of (2n)−1 arise from the use of Lemma 3.5.5, which is justified because Di
t is a trimer;

factors of (2d)−1 arise from dictating random walk steps during the transport component of the
dynamics.

This process can be repeated for the j th cluster to ensure Dj
t+8 ∈ Ref, while maintaining

Di
t+8 ∈ Ref. This implies

QD0

(
ξi,j1 > t+ 8

∣∣ ξi,j1 > t
)
6 q

where q = 1− p8. Continuing inductively, we find

QD0

(
ξi,j1 > t

)
6 qb

t
8
c 6 q−1e−ct
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for c = −1
8

log q. Since q−1 6 2, this implies (3.57).

We mention that Lemma 3.7.1 will allow us to essentially ignore the truncation κ when we
apply the following results. Proposition 2.4.5 of [LL10] gives a large deviations estimate for the
number of steps it takes a random walk to exit a ball. We define the first hitting time of subset
A ⊆ Zd by

T i,j;κA = inf{m ∈ Z>0 : Zi,j;κ
m ∈ A}.

Denote by B(r) the ball of radius r ∈ R>0 centered at the origin, i.e., B(r) = {z ∈ Zd : ‖z‖ < r}.
There are numbers γ1 < ∞ and γ2 > 0 such that for any κ ∈ [3,∞), r > 0, and all x ∈ Zd and
α > 0,

Qi,j;κ
x (T i,j;κB(r)c > αr2) 6 γ1e

−γ2α. (3.58)

Additionally, Proposition 6.4.2 of [LL10] states that, if a number r is sufficiently large then, for
any κ ∈ [3,∞) and x ∈ B(r)c, there is a constant γ3 > 1 such that

Qi,j;κ
x

(
T i,j;κB(r) <∞

)
6 γ3

( r

‖x‖
)d−2

. (3.59)

Bounds (3.58) and (3.59) feature constants which could depend on κ through the increment dis-
tribution of the truncated random walk. In fact, due to Lemma 3.7.1, the coordinate variances of
the increment Zi,j;κ

1 − Zi,j;κ
0 are bounded above and below by finite, positive constants for any

κ ∈ [3,∞). Consequently, we can (and do) assume w.l.o.g. that γ1 through γ3 do not depend on κ.

3.7.3 Results relating the separation of two clusters to the distance between
their centers of mass

In Section 3.8, we will need to translate conditions involving the distance between two clusters
to conditions involving the random walk Zκ

m, and vice versa. In this subsection, we collect some
simple facts which serve this purpose.

If the diameters of clusters i and j are small, then the triangle inequality implies that Ei
t and

Ej
t are separated by a distance proportional to ‖M i

t −M j
t ‖.

Lemma 3.7.2. If max{diam(Ei
t), diam(Ej

t )} 6 r and ‖M i
t −M j

t ‖ > R, then

dist(Ei
t , E

j
t ) >

R− 8r

6
. (3.60)

Proof. We will prove (3.60) when cluster i is a dimer and cluster j is a trimer; the other cases are
similar. Assign the elements of Ei

t labels 1, . . . , |Ei
t |, and denote by Ei

t(`) the element with label
`. Assume w.l.o.g. that dist(Ei

t , E
j
t ) = ‖Ei

t(1)− Ej
t (1)‖. We write

M i
t −M j

t = 3Ei
t(1) + 3Ei

t(2)− 2Ej
t (1)− 2Ej

t (2)− 2Ej
t (3).

By the triangle inequality and the hypothesis on diameter, the right-hand side is at most 6 dist(Ei
t , E

j
t )+

8r in absolute value. Combining this observation with the hypothesis that ‖M i
t −M j

t ‖ > R gives
(3.60).
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At reference times, clusters are connected and so have small diameters. Diameters increase
at most linearly in time under IHAT. During each step the elements can move by a distance no
larger than the diameter of their cluster. These two facts imply a quadratic bound on the difference
M i

t −M j
t .

Lemma 3.7.3. For any time t > 0, if m ∈ N is such that ξm 6 t < ξm+1, then∥∥(M i
t −M j

t

)
−
(
M i

ξm −M
j
ξm

)∥∥ 6 6
(
ξm+1 − ξm

)2
. (3.61)

Proof. At time t0 = ξm, both clusters i and j are connected and so have diameters of at most two.
Their diameters can increase by at most one with each step, which implies

max
{

diam(Ei
t), diam(Ej

t )
}
6 (t− t0) + 2. (3.62)

We also know that no element can move in one step by a distance exceeding the present diameter
of its cluster. Because at most one element moves in a given step, it must be that

∑
k∈{i,j}

|Ekt |∑
`=1

∥∥Ek
t+1(`)− Ek

t (`)
∥∥ 6 max

{
diam(Ei

t), diam(Ej
t )
}
. (3.63)

By the definition of M i
t , the triangle inequality, and then (3.62) and (3.63),

∥∥(M i
t −M j

t )− (M i
t0
−M j

t0)
∥∥ 6 3

∑
k∈{i,j}

|Ekt |∑
`=1

∥∥Ek
t (`)− Ek

t0
(`)
∥∥

6 3
t−1∑
s=t0

∑
k∈{i,j}

|Eks |∑
`=1

∥∥Ek
s+1(`)− Ek

s (`)
∥∥

6 3
t−1∑
s=t0

((s− t0) + 2) 6 6(t− t0)2.

Because t < ξm+1, this implies (3.61).

Lemma 3.7.4. If t satsfies ξm 6 t < ξm+1, then

dist(Ei
t , E

j
t ) >

1

6

∥∥M i
ξm −M

j
ξm

∥∥− 3
(
ξm+1 − ξm

)2
. (3.64)

Proof. Let t satisfy the hypotheses. By Lemma 3.7.2,

6 dist(Ei
t , E

j
t ) > ‖M i

t −M j
t ‖ − 8 max{diam(Ei

t), diam(Ej
t )}.

By Lemma 3.7.3,
‖M i

t −M j
t ‖ >

∥∥M i
ξm −M

j
ξm

∥∥− 6
(
ξm+1 − ξm

)2
,
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and, by (3.62),

max{diam(Ei
t), diam(Ej

t )} 6 t− ξm + 2 6 ξm+1 − ξm + 2.

Combining these inequalities and using the fact that ξm+1 − ξm > 1, we find

6 dist(Ei
t , E

j
t ) >

∥∥M i
ξm −M

j
ξm

∥∥− 6
(
ξm+1 − ξm

)2 − 8
(
ξm+1 − ξm + 2

)
>
∥∥M i

ξm −M
j
ξm

∥∥− 16
(
ξm+1 − ξm

)2
,

which implies (3.64).

The next lemma states that the distance between the centers of mass of two clusters can be
bounded below in terms of the distance between two clusters and their diameters. We omit the
proof, as it follows easily from the definition of M i

t and the triangle inequality.

Lemma 3.7.5. At every time t ∈ Z>0,∥∥M i
t −M j

t

∥∥ > 6 dist(Ei
t , E

j
t )− 6 diam(Ei

t)− 6 diam(Ej
t ).

3.8 Separation of clusters under HAT and intracluster HAT
The purpose of this section is to prove Proposition 3.2.1, which states that there is a positive prob-
ability that the natural clustering of HAT satisfies the separation condition (3.2) of Theorem 3.1.5,
so long as the initial clustering is an (a, b) separated DOT clustering for sufficiently large numbers
a and b. We do so by establishing the same result for IHAT and then invoking Proposition 3.6.1.
We establish the result for IHAT by applying the standard estimates (3.58) and (3.59) to the ran-
dom walk Zm associated with the pair of clusters, and then translating these results into analogous
conclusions about the separation of the clusters, using the results of Section 3.7.3.

3.8.1 Definitions of key quantities and events
In this subsection and those which follow it, we will assume d ∈ Z>5 and n ∈ Z>4. When we refer
to a clustering, we will mean a clustering of an n-element configuration in Zd.

To state the main results of the section, we need to define several events, which formalize the
following picture. Starting from a clustering E0 with separation a > 1, we model the distance
between two clusters, i and j, with the random walk Zm. Accordingly, we aim to observe the
distance between two clusters, i and j, double to 2a over roughly (2a)2 steps of Zm, without
dropping below, say, 2aδ for some δ ∈ (0, 1). We then aim to observe the separation double again,
over (4a)2 steps of Zm, without dropping below 4aδ, and so on. In fact, we will budget slightly
more time to observe the doubling, and δ will become smaller as we observe more doublings.
Additionally, we will lessen the truncation of the reference times which define Zm (3.56) (by
increasing κ) as we observe more doublings.
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We will use ` ∈ Z>1 to count the number of doublings. We introduce sequences of positive real
numbers (δ`)`>0 and (κ`)`>1, and a sequence of positive integer times (t`)`>1. Each κ` and t` will
depend on a. For positive real numbers c1, c2, and c3, which will carry the same names throughout
this section and which we will choose later, we define

δ`−1 =
c1

n`
, t`(a) = [c2(n`)4 log(a)(2`a)2], and κ`(a) = c3 log(n`t`(a))

for each ` ∈ Z>1, where [r] denotes the integer part of a real number r. We think of t`(a) as (2`a)2;
the other factors are convenient in later calculations.

Let E be a placeholder for (Ct)t>0 or (Dt)t>0. The events are defined in terms of the reference
times ξi,jm (E), the number of reference times by time t,

N i,j
t (E) = sup{m ∈ Z>1 : ξi,jm (E) 6 t},

the time
S i,j` (E) = inf{s > t`−1 : dist(Ei

s, E
j
s) > δ−1

` 2`a},
and the random walk Zi,j;κ`

m (E). To reduce notational clutter—and because we intend to define the
events for both HAT and IHAT—we will suppress the i, j superscripts and the argument E. For
example, we will write ξ1 instead of ξi,j1 (E) and Zκ`

m instead of Zi,j;κ`
m (E).

We define four events for each ` ∈ Z>1, where ` counts the number of times the separation
between clusters has doubled, starting from a separation of a. For each `, we aim to observe:

1. the reference times after t`−1 and up to t` differ by at most κ` (i.e., the truncation has no
effect on the increments of Zκ`

m between these times);

2. the clusters become separated by δ−1
` 2`a, by time t`;

3. the separation remains above δ`2`−1a during {t`−1, . . . , t`}; and

4. the separation remains above 2`a during {S`, . . . , t`}.

More precisely, we define the following events (Figure 3.1):

Gi,j1 (`) =
{
ξm − ξm−1 6 κ` for Nt`−1

< m 6 Nt`

}
,

Gi,j2 (`) =
{
S` 6 t`

}
,

Gi,j3 (`) =
{

dist(Ei
s, E

j
s) > δ`2

`−1a for t`−1 6 s 6 t`
}
, and

Gi,j4 (`) =
{

dist(Ei
s, E

j
s) > 2`a for S` 6 s 6 t`

}
.

We also define Gi,j(`) =
⋂4
k=1 Gi,jk (`) and G(`) = ∩i<jGi,j(`).
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Figure 3.1: An occurrence of ∩4
k=2Gk(1).

3.8.2 Proof of Proposition 3.2.1
The event ∩`>1G(`) is significant because, when it occurs, the sequence of clusterings (E0, E1, . . . )
satisfies the separation condition which appears in Proposition 3.2.1 and Theorem 3.1.5. This is
the content of the first main result of this section.

Proposition 3.8.1 (Separation when ∩`>1 G(`) occurs). Let a, b ∈ R>1, let E0 be an (a, b) sepa-
rated DOT clustering, and let Et denote either Ct or Dt for each t ∈ Z>0. If b is sufficiently large
in terms of n, and if a is sufficiently large in terms of b, d, and n, then, for any ` ∈ Z>1, when
∩`m=1G(m) occurs,

diam(Ei
s) 6 b log dist(Ei

s, E
6=i
s ) and sep(Es) > s

1
2
−n−100

+ 100n, (3.65)

for every cluster i and time s ∈ Jt`K. In particular, denoting the separation lower bound in (3.65)
by as, if ξ is the first time t that Et is not an (at, b) separated DOT clustering, i.e.,

ξ = inf{t ∈ Z>0 : Et /∈ C (π(Et), at, b)},

then
∩`m=1 G(m) ⊆ {ξ > t`}. (3.66)

The second main result of this section is a bound on the probability under IHAT that G(`)
occurs, for every ` > 1.
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Proposition 3.8.2 (∩`>1 G(`) is typical for IHAT when E0 is well separated). Let a, b ∈ R>1 and
let E0 be an (a, b) separated DOT clustering. There is a number ε > 0 such that, if a is sufficiently
large in terms of b, d, and n, then

QE0

(
∩∞`=1 G(`)

)
> ε. (3.67)

Together, the two preceding propositions and Proposition 3.6.1 imply Proposition 3.2.1.

Proof of Proposition 3.2.1. Let W0, E0 satisfy the hypotheses, let as, b, c, and ξ be the quantities
with the same names in Proposition 3.8.1, and let D be the event defined in (3.28). Because the
lifting of HAT with the law PE0 has the same distribution as the natural clustering of (U0, U1, . . . )
with E0 under PW0 , it suffices to show that there is an ε > 0 such that

PE0(ξ =∞) > ε.

We claim that, for sufficiently large a and b,

PE0(ξ > t`) > PE0

(
∩`m=1 G(m)

)
> QE0

(
∩`m=1 G(m)

)
/2.

The first inequality holds by (3.66) of Proposition 3.8.1. For k > 1, let ρk denote the quantity
δk2

k−1a, which bounds below sep(Es) for tk−1 6 s 6 tk when G(k) occurs. If (tk)k>1 and
(ρk)k>1 satisfy (3.27) and if ρk > δa for some δ > 0, then Proposition 3.6.1 will imply the second
inequality because ∩`m=1G(m) ⊆ D. If these two conditions are met, then we can pass to the limit
as ` → ∞ and apply Proposition 3.8.2 to conclude that there is an ε > 0 such that, when a is
sufficiently large,

PE0(ξ =∞) > QE0

(
∩∞m=1 G(m)

)
/2 > ε.

It remains to verify the two conditions on (tk)k>1 and (ρk)k>1. First, since (a2 log(a))−1tk =
O(22.1k) and a−1ρk = Ω(20.9k), and since d > 5, the condition (3.27) is satisfied:

∞∑
k=1

tkρ
2.1−d
k 6 O(a4.1−d log(a))

∞∑
k=1

2(4−0.9d)k

︸ ︷︷ ︸
<∞

→ 0 as a→∞.

Second, the fact that there is a δ > 0 such that ρk > δa for k > 1 is implied by a−1ρk =
Ω(20.9k).

We turn our attention to the proofs of Propositions 3.8.1 and 3.8.2.

3.8.3 Proof of Proposition 3.8.1
Recall that the results of Section 3.7.3 relate cluster separation to the distance between their centers
of mass and the differences between consecutive reference times. To prove Proposition 3.8.1, we
will combine these results with the separation growth that the occurrence of ∩`m=1G(m) entails.



CHAPTER 3. HAT IN HIGHER DIMENSIONS 125

Proof of Proposition 3.8.1. The inclusion (3.66) follows directly from the definition of ξ and (3.65),
the two bounds of which we prove in turn.

Fix an ` ∈ Z>1, a time t`−1 < s 6 t`, and a cluster i of Es. Consider the first bound of (3.65),
which states that, if b is sufficiently large in terms of n, then

diam(Ei
s) 6 b log dist(Ei

s, E
6=i
s ).

This is implied by the claim that, when ∩`m=1G(m) occurs,

diam(Ei
s) 6 2κ` = On

(
log(2`a)

)
, and

log dist(Ei
s, E

6=i
s ) > log

(
δ`2

`−1a
)

= Ωn

(
log(2`a)

)
.

We verify the claim as follows. Reusing (3.62), we see that the diameter of Ei
s is at most

ξNs+1−ξNs +2. When ∩`m=1G(m) occurs, ξNs+1−ξNs is at most κ`. Since κ` > 2, the diameter of
Ei
s is at most 2κ`. Next, note that the occurrence of ∩`m=1G(m) implies dist(Ei

s, E
6=i
s ) > δ`2

`−1a.
The equalities involving On and Ωn follow from the definitions of κ` and δ`.

Next, consider the second bound of (3.65), which states that

sep(Es) > s
1
2
−n−100

+ 100n.

Because the occurrence of ∩`m=1G(m) implies that sep(Es) > δ`2
`−1a, and because we can make

this lower bound arbitrarily large relative to 100n by increasing a, it suffices to show that

δ`2
`−1a > t

1
2
−n−100

` (3.68)

for any ` (Figure 3.2).
We split into two cases in terms of L = L(n), a positive integer which is sufficiently large to

ensure L−1 log2 L 6 n−100.
If ` 6 L, then

δ`2
`−1a = Ωn(a) and t

1
2
−n−100

` = On(a1−n−100

).

Hence, to satisfy (3.68), we can simply take a sufficiently large in n. On the other hand, if ` > L,
then

δ`2
`−1a = Ωn

(
2`a
)

and t
1
2
−n−100

` = On

(
2`a · `2(2`a)−2n−100)

.

Because ` > L, we have 2−2n−100``2 6 1 and, since the first quantity has an extra factor of a2n−100 ,
we can take a sufficiently large to satisfy (3.68).

3.8.4 Proof of Proposition 3.8.2
We will devote most of our effort in this subsection to a proof of the next result, from which
Proposition 3.8.2 easily follows. To state it, we denote by Ft the σ-field generated by D0, . . . , Dt

for t > 0.
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t`−1 t` t`+1

δ`2
`−1a

δ`+12
`a

Figure 3.2: When ∩`m=1G(m) occurs, cluster separation lies above the blue lines. The red dashed
line is a t1/2−on(1) lower bound on cluster separation.

Proposition 3.8.3. Let a, b ∈ R>1, let E0 be an (a, b) separated DOT clustering, and let ` ∈ Z>1.
If a is sufficiently large in terms of b, d, and n, then

QE0

(
G(`)c | Ft`−1

)
1
(
∩`−1
m=1 G(m)

)
6

1

2`2
. (3.69)

Proof of Proposition 3.8.2. Let b > 1 and let a be sufficiently large to satisfy the hypotheses of
Proposition 3.8.3, let E0 be an (a, b) separated DOT clustering, and let ` ∈ Z>1. By conditioning
on Ft`−1

and then applying Proposition 3.8.3, we find

QE0

(
G(`)c ∩`−1

m=1 G(m)
)

= EE0

[
QE0

(
G(`)c | Ft`−1

)
1
(
∩`−1
m=1 G(m)

)]
6

1

2`2
.

Consequently,

QE0

((
∩∞`=1 G(`)

)c)
=
∞∑
`=1

QE0

(
G(`)c ∩`−1

m=1 G(m)
)
6

∞∑
`=1

1

2`2
< 1.

To prove Proposition 3.8.3, we will prove (3.69) with a sequence of events (H(`))`>1, which
satisfy H(`) ⊆ G(`), in the place of (G(`))`>1. These events will refer to the random walk Zκ`

m ,
instead of the distance between the pairs of clusters, so that we can use random walk estimates
(3.58) and (3.59) to estimate the probability that they occur.

For each ` ∈ Z>1, in terms of the time

T` = inf
{
m > Nt`−1

: Zκ`
m /∈ B

(
6δ−1
` (2`a) + 18κ2

`

)}
,
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we define

Hi,j
1 (`) = Gi,j1 (`),

Hi,j
2 (`) =

{
T` 6 Nt`

}
,

Hi,j
3 (`) =

{
Zκ`
m /∈ B

(
6δ`(2

`−1a) + 18κ2
`

)
, Nt`−1

6 m 6 Nt`

}
, and

Hi,j
4 (`) =

{
Zκ`
m /∈ B

(
6(2`a) + 18κ2

`

)
, T` 6 m 6 Nt`

}
.

We also defineHi,j(`) =
⋂4
k=1Hi,j

k (`) andH(`) = ∩i<jHi,j(`).

Proposition 3.8.4. For each ` ∈ Z>1,H(`) ⊆ G(`).

Proof. Fix an ` ∈ Z>1 and a time t`−1 6 s 6 t`. When G(`) occurs,

Zκ`
Ns

= M i
ξNs
−M j

ξNs
and ξNs+1 − ξNs 6 κ`.

Hence, by Lemma 3.7.4,

dist(Ei
s, E

j
s) >

1

6

∥∥M i
ξNs
−M j

ξNs

∥∥− 3
(
ξNs+1 − ξNs

)2
>

1

6

∥∥Zκ`
Ns

∥∥− 3κ2
` ,

which implies the inclusions.

Proposition 3.8.4 and the following four estimates will be the inputs to our proof of Propo-
sition 3.8.3. The first estimate bounds above the probability that Hi,j

1 (`)c occurs, i.e., some con-
secutive reference times between t`−1 and t` differ by more than κ`. Note that we do not need a
hypothesis on the separation of E0 as the eventHi,j

1 (`) only concerns reference times.

Proposition 3.8.5. For ` ∈ Z>1,

QE0

(
Hi,j

1 (`)c
)
6

1

14(n`)2
.

Proof. We calculate

QE0

(
Hi,j

1 (`)c
)

= QE0

 Nt⋃̀
m=Nt`−1

+1

{
ξm − ξm−1 > κ`

}
6 QE0

 Nt`−1
+t`⋃

m=Nt`−1
+1

{
ξm − ξm−1 > κ`

}
= EE0

[
QDt`−1

(
t⋃̀

m=1

{
ξm − ξm−1 > κ`

})]

6 EE0

[
t∑̀

m=1

EDt`−1

[
QDξm−1

(ξ1 > κ`)
]]

6 2t`e
−cκ` .
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The first equality is due to the definition of Hi,j
1 (`). The first inequality holds because the number

of reference times between t`−1 and t` is never more than t`. The second equality is due to the
Markov property applied to time t`−1 and the fact that (ξm − ξm−1)m∈Z>1

is an i.i.d. sequence.
The second inequality follows from a union bound over m and the strong Markov property applied
sequentially at the times ξm−1, . . . , ξt`−1. The third inequality is due to Lemma 3.7.1.

Recall that t` = [c2(n`)4 log(a)(2`a)2] and κ` = c3 log(n`t`), where c2 and c3 are yet unspeci-
fied positive numbers. By increasing c2, we can assume w.l.o.g. that t` > 28 and choose c3 = 2c−1,
in which case

2t`e
−cκ` =

2

t`(n`)2
6

1

14(n`)2
.

Proposition 3.8.6. Let ` ∈ Z>1 and sep(E0) > a for a ∈ R>1. If a is sufficiently large, then

QE0

(
Hi,j

1 (`) ∩Hi,j
2 (`)c

∣∣ Ft`−1

)
6

1

14(n`)2
.

Proof. Recall that, for Hi,j
2 (`)c to occur, the random walk Zκ`

m must fail to exit the ball of radius
r = 6δ−1

` (2`a) + 18κ2
` between steps Nt`−1

and Nt` . By (3.58), the probability that this occurs is
at most γ1e

−γ2α when Nt` −Nt`−1
exceeds αr2 for α > 0. The occurrence ofHi,j

1 (`) implies that

Nt` −Nt`−1
>
[
κ−1
` (t` − t`−1 − 1)

]
.

By taking a sufficiently large, we can ensure that the lower bound is at least (4κ`)
−1t`, hence to

prove the proposition it suffices to prove that

(4κ`)
−1t` > αr2

where α = γ−1
2 log

(
γ1 · 14(n`)2

)
. Some algebra shows that (r2κ`)

−1t` = Ω(log(n`)), which
implies that c2 can be taken sufficiently large to satisfy the preceding inequality.

Proposition 3.8.7. Let ` ∈ Z>1 and let sep(E0) > a for a ∈ R>1. If a is sufficiently large, then

QE0

(
Hi,j

3 (`)c
∣∣ Ft`−1

)
1
(
∩`−1
m=1 G(m)

)
6

1

14(n`)2
.

Proof. Denote by X = Z
κ`−1

Nt`−1
the location of the random walk Zκ`−1

m at time t`−1. Recall that, for

Hi,j
3 (`) to occur, Zκ`

m must avoid the ball of radius r = 6δ`(2
`a) + 18κ2

` between steps Nt`−1
and

Nt` . Clearly, it is enough for the random walk from X to escape B(r). By the Markov property
applied at time t`−1 and by (3.59), this occurs with a probability of at least

QE0

(
Hi,j

3 (`)
∣∣ Ft`−1

)
= QDt`−1

(
Hi,j

3 (`)
)
> 1− γ3

( r

‖X‖
)d−2

. (3.70)
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When ∩`−1
m=1G(m) occurs, the separation of Dt`−1

is at least 2`−1a and the diameters of clusters
i and j are at most 2κ`−1, which by Lemma 3.7.5 implies that

‖X‖ =
∥∥M i

t`−1
−M j

t`−1

∥∥ > 2`−1a− 24κ`−1.

Call this lower bound R, in which case the preceding inequality and (3.70) imply

QE0

(
Hi,j

3 (`)c
∣∣ Ft`−1

)
1
(
∩`−1
m=1 G(m)

)
6 γ3

( r
R

)d−2

.

Some algebra shows that r
R

= 12c1(1 + oa(1)) · (n`)−1, so the preceding bound and the fact that
d > 5 imply that

QE0

(
Hi,j

3 (`)c
∣∣ Ft`−1

)
1
(
∩`−1
m=1 G(m)

)
6

1

14(n`)2
,

for an appropriate choice of c1, for sufficiently large a.

Proposition 3.8.8. Let ` ∈ Z>1 and sep(E0) > a for a ∈ R>1. If a is sufficiently large, then

QE0

(
Hi,j

2 (`) ∩Hi,j
4 (`)c

∣∣ Ft`−1

)
6

1

14(n`)2
.

Proof. When Hi,j
2 (`) occurs, there is a number of steps T` between Nt`−1

and Nt` such that Y =

Zκ`
T` belongs to B(R)c, where R = 6δ−1

` (2`a) + 18κ2
` . For Hi,j

4 (`)c to occur, Zκ`
m must hit B(r),

where r = 6(2`a) + 18κ2
` , starting from Y . Hence by the strong Markov property applied at time

ξT` and by (3.59),

QE0

(
Hi,j

2 (`) ∩Hi,j
4 (`)c

∣∣ Ft`−1

)
= EDt`−1

[
QDξT`

(
Hi,j

4 (`)c
)
;Hi,j

2 (`)
]

6 EDt`−1

[
γ3

( r

‖Y ‖
)d−2]

6 γ3

( r
R

)d−2

.

Some algebra shows that r
R

= c1(1+oa(1)) ·(n`)−1, so the preceding bound is at most (14(n`)2)−1

when a is sufficiently large.

We combine the preceding five propositions to prove Proposition 3.8.3.

Proof of Proposition 3.8.3. Let E0 satisfy sep(E0) > a for a > 1 and let ` ∈ Z>1. We aim to show
that, if a is sufficiently large, then

QE0

(
G(`)c | Ft`−1

)
1
(
∩`−1
m=1 G(m)

)
6

1

2`2
. (3.71)

By Proposition 3.8.4 and a union bound over distinct pairs of clusters, we have

QE0

(
G(`)c | Ft`−1

)
6 QE0

(
H(`)c | Ft`−1

)
6
∑
i<j

QE0

(
Hi,j(`)c | Ft`−1

)
. (3.72)
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Using the fact that, for eventsH1 andH2, Hc
2 is contained in the disjoint union (H1∩Hc

2)∪Hc
1 ,

we find

QE0

(
Hi,j(`)c | Ft`−1

)
6 3QE0

(
Hi,j

1 (`)c | Ft`−1

)
+ 2QE0

(
Hi,j

1 (`) ∩Hi,j
2 (`)c | Ft`−1

)
+ QE0

(
Hi,j

3 (`)c | Ft`−1

)
+ QE0

(
Hi,j

2 (`) ∩Hi,j
4 (`)c | Ft`−1

)
.

Applying Propositions 3.8.5 through 3.8.8 to bound the terms on the right hand side, we conclude
that for sufficiently large a,

QE0

(
Hi,j(`)c | Ft`−1

)
1
(
∩`−1
m=1 G(m)

)
6

1

2(n`)2
.

The bound (3.71) then follows from (3.72) and the fact that there are at most n2 distinct pairs of
clusters.

3.9 Strategy for the proof of Theorem 3.1.7
Let us briefly summarize what the preceding sections have accomplished. In Section 3.2, we
proved our main result, Theorem 3.1.5, assuming Proposition 3.2.1 and Theorem 3.1.7. In Sec-
tions 3.4 through 3.8, we proved Proposition 3.2.1, using an approximation of HAT by IHAT and
a random walk model of cluster separation under IHAT. In this section, our focus shifts to proving
Theorem 3.1.7.

We continue to assume that d ∈ Z>5 and n ∈ Z>4. Recall that Theorem 3.1.7 identifies
a number of steps f = f(a, d, n) and a positive probability g = g(a, d, n) such that, if a is
sufficiently large in terms of d and n, then the PU probability that Uf ∈ Ud,n(a, 1) is at least g, for
any n-element configuration U ⊂ Zd.

If we permitted g to depend on U , it would be relatively straightforward to identify for any U
a sequence of f ′ configurations which can be realized by HAT and which produce a configuration
Uf ′ belonging to Ud,n(a, 1). Indeed, it would take only two “stages”:

(1’) First, we would rearrange U into a line segment emanating in the −e1 direction from, say,
the element of U which is least in the lexicographic ordering of Zd.

(2’) Second, we would “treadmill” a pair of elements from the “tip” of the segment, in the −e1

direction, until the pair was sufficiently far from the other elements. We would repeat this
process, one pair at a time, until only two or three elements of the initial segment remained.

While stage (2’) could be realized by HAT with at least a probability depending on d and n
only, stage (1’) could introduce a dependence on U into g. Indeed, it might require that we specify
the transport of an activated element over a distance of roughly the diameter of U . We will avoid
this by adding one preliminary stage; in the resulting, three-stage procedure, stages (1’) and (2’)
are essentially stages (2) and (3).

To specify the stages, we need two definitions.
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Definition 3.9.1 (Lined-up). We say that a clustering C of a configuration U can be lined-up with
separation r if sep(C) > 2r, if each cluster of C has at least two elements, and if each cluster of
C is connected. If such a clustering of U exists, we say that U can be lined-up with separation r.

Definition 3.9.2 (Lex). We say that an element x of a finiteA ⊂ Zd is lex inA, denoted lex(A) = x,
if it is least among the elements of A in the lexicographic order of Zd.

Here is the three-stage procedure, which takes as input an initial, n-element configuration U ⊂
Zd and a ∈ Z>2, which we will later require to be sufficiently large in terms of d and n. Note that
the output of each algorithm is a clustering—not a configuration.

1. First, we will use Algorithm A2 to construct a clustering C = A2(U, a) of a configuration
which can be lined-up with separation dn2a. This algorithm is the most complicated of the
three. In brief, the algorithm repeatedly attempts to create a non-isolated lex element of a
cluster, so that it can be “treadmilled”—along with a neighboring element—to form a new
dimer cluster.

2. In the second stage, we will apply Algorithm A3 to “line-up” the elements of each cluster
Ci. Specifically, in terms of the line segment

Lk =
{
− je1 : j ∈ {0, 1, . . . , k − 1}

}
,

we will rearrange the elements of Ci into the set lex(Ci) + L|Ci|. If C has m clusters, the
resulting clustering will be

A3(C) =
(
lex(Ci) + L|Ci|, i ∈ JmK

)
.

3. In the third stage, Algorithm A4 will iteratively treadmill pairs of elements from each seg-
ment in the −e1 direction for multiples of a steps until only a dimer or a trimer of the
original segment remains. The resulting clustering A(U, a) = A4(A3(C), a) will satisfy
DOT.1–DOT.3 with a and b = 1, meaning that the configuration associated with the resulting
clustering will belong to Ud,n(a, 1).

In the next section, we prove some results which will aid our analysis of the algorithms. In
particular, we prove a harmonic measure lower bound for lex elements. After preparing these
inputs, in Section 3.11, we will state and analyze the three algorithms to prove Theorem 3.1.7.

3.10 Some inputs to the proof of Theorem 3.1.7

3.10.1 A geometric lemma
To facilitate the use of the harmonic measure estimate in the next subsection, we need a geometric
lemma and a consequence thereof. We state the following lemma with more generality than is
needed for the immediate application; we will apply it again in a later section. The statement
requires the notion of the ∗-visible boundary of a set, which we first defined in (2.35).
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Lemma 3.10.1. Let A be a finite subset of Zd which contains the origin, and let x and y be distinct
elements of ∂visA. There is a path Γ from x to y in Ac of length at most

√
d diam(A) + 3d+1|A|.

Moreover, Γ ⊆ {z ∈ Zd : ‖z‖ 6 diam(A) +
√
d}.

Proof. Fix finite A ⊂ Zd containing the origin, and fix two elements, x and y, in ∂visA. Let {Bi}i
be the collection of ∗-connected components of A. Because A is finite, each Bi is finite and, as
each Bi is also ∗-connected, each ∂visBi is connected in Zd by Lemma 2.3.13.

Note that ∂visA is contained in {z ∈ Zd : dist(z, A) < 3}, so diam(∂visA) is at most diam(A)+
6. If Γ is a path from x to y of least length, then, by the preceding observation and the Cauchy-
Schwarz inequality, the length of Γ is at most

√
d (diam(A) + 6). We will edit Γ to obtain a

potentially longer path which does not intersect A.
If Γ does not intersect A, then we are done. Otherwise, let i1 denote the label of the first

∗-connected component of A intersected by Γ. Additionally, denote by a and b the first and last
indices of Γ which intersect ∂visBi1 . Because ∂visBi1 is connected in Zd, there is a path Λ in ∂visBi1

from Γu to Γv. We may therefore edit Γ to form Γ′:

Γ′ =
(
Γ1, . . . ,Γu−1,Λ1, . . . ,Λ|Λ|,Γv+1, . . . ,Γ|Γ|

)
.

If Γ′ does not intersect A, then we are done, as Γ′ is contained in the union of Γ and ∪i∂visBi,
and because ∪i∂visBi has at most 3d|A| elements. Accordingly,

|Γ′| 6
√
d(diam(A) + 6) + 3d|A| 6

√
d diam(A) + 3d+1|A|. (3.73)

Otherwise, if Γ′ intersects another ∗-connected component Bi2 of A, we can argue in an analogous
fashion to obtain a path Γ′′ which neither intersects Bi1 nor Bi2 . Like Γ′, Γ′′ is contained in
the union of Γ and ∪i∂visBi and so its length satisfies the same upper bound (3.73). Continuing
inductively yields a path from x to y with a length of at most the right-hand side of (3.73).

The path is contained in the union of Γ and ∪i∂visBi, which is contained in {z ∈ Zd : ‖z‖ 6
diam(A) +

√
d} because A contains the origin by assumption.

A consequence of this result is a simple comparison of harmonic measure at two points.

Lemma 3.10.2. Let d > 5. There is a number c = c(d, n) such that, if A ∪ B is an n-element
subset of Zd such that A is connected and dist(A,B) > 4dn, then, for any distinct x, y ∈ A which
are exposed in A ∪B,

HA∪B(x) > cHA∪B(y). (3.74)

Proof. Let x, y be elements of A which are exposed in A∪B. If u is any element of ∂visA∩ ∂{x}
and v is any element of ∂visA∩ ∂{y}, then, by Lemma 3.10.1, there is a path Γuv from u to v in Ac

of length at most √
d diam(A) + 3d+1|A| 6 1.1 · 3d+1n 6 4dn.

The first inequality is due to the assumption that A is connected, which implies diam(A) 6 n, and
the fact that

√
d 6 0.1 · 3d+1 when d > 5. The second inequality holds because d > 5.
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Because B is a distance of at least 4dn from A, Γuv must also lie outside of B. This implies
that there is a constant c = c(d, n) such that

escA∪B(x) > cescA∪B(y).

Dividing by the capacity of A ∪B gives (3.74).

3.10.2 An estimate of harmonic measure for lex elements
We now prove a harmonic measure lower bound for lex elements.

Lemma 3.10.3. Let d > 5. There are constants r = r(n, d) and c = c(d) such that, if A ∪B is an
n-element subset of Zd satisfying dist(A,B) > r and if x is lex in A, then

escA∪B(x) > cn−
1
d−2
−od(1) (3.75)

and, consequently,
HA∪B(x) > cn−

d−1
d−2
−od(1). (3.76)

For concreteness, the od(1) quantity is never larger than 0.8 when d > 5, and the lower bound can
be replaced with cn−2.2.

Proof. Suppose x is lex in A and assume dist(A,B) > 2k+2`, for positive integers k and `. With
a probability of at least (2d)−`, a random walk from x reaches x1 = x − `e1 before returning to
A ∪ B. The random walk can do so, for example, by following the ray {x − e1, x − 2e1, . . . },
which lies outside A because x is lex in A and B is a distance of 2k+2` from x.

Center a cube Q1 of side length 2` at x1; Q1 does not intersect A ∪ B. Denote the face of Q1

in the −e1 direction by F1. By symmetry,

Px1
(
SτQ1

∈ F1

)
= (2d)−1.

Denote SτF1 by X2. Given X2, we can center a cube Q2 of side length 4` at X2; Q2 does not
intersect A ∪B. By analogously defining F2, we have

PX2

(
SτQ2

∈ F2

)
= (2d)−1. (3.77)

We can define Xj , Qj , and Fj in this fashion, and (3.77) will hold with these variables in the place
of X2, Q2, and F2. The preceding bounds imply,

Px(τFk < τA∪B) > (2d)−(k+`). (3.78)

Let y = SτFk , in which case dist(y, A ∪ B) > 2k`. Denote by N the number of returns made
by random walk to A ∪ B. By (3.18), if ` is sufficiently large (in a way which does not depend on
n or A ∪B), then, for any z ∈ A ∪B,

G(y − z) 6 2(2−d)k.
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Using the fact that EyN =
∑

z∈A∪B G(y − z), the preceding bound implies

EyN 6 n2(2−d)k.

By Markov’s inequality, this implies

Py(N = 0) > 1− n2(2−d)k.

Together with (3.78), we find

escA∪B(x) > c1(2d)−k
(
1− n2(2−d)k

)
, (3.79)

for a constant c1 = c1(d).
If n is at most 2d−3, then choosing k = 1 in (3.79) results in a lower bound c2 = c2(d).

Otherwise, if n is at least 2d−3, then we can take k to be the integer part of log2((2n)
1
d−2 ), in which

case (3.79) gives
escA∪B(x) > c3n

− 1+log2(d)
d−2 , (3.80)

for another constant c3 = c3(d). Because cap(A ∪B) is at most nG(o)−1, (3.80) implies

HA∪B(x) > cn−
d−1+log2(d)

d−2 .

for c = min{c2, c3}G(o). We conclude the proof by setting r = 2k+2` and by replacing c3 with c
in (3.80).

We apply the preceding lemma to prove the following conditional hitting estimate.

Lemma 3.10.4. Let d > 5. There are constants ρ = ρ(n, d) and c = c(d) such that if x is lex in
A, if A ∪ B is an n-element subset of Zd such that dist(A,B) > ρ, and if B can be written as a
disjoint union B1 ∪B2 where |B1| 6 3 and dist(B1, B2) > ρ, then

Px
(
SτA∪B ∈ B1

∣∣ τA∪B <∞) > cn−
d
d−2
−od(1)diam(A ∪B)2−d. (3.81)

For concreteness, the od(1) quantity is smaller than 1.6 when d > 5.

Proof. Let A, B, B1, and B2 satisfy the hypotheses for the ρ in the statement of Lemma 3.10.3.
Additionally, denote by F the set of points within a distance rdiam(A ∪ B) of A ∪ B. Applying
the strong Markov property to τF c , we write

Px
(
SτA∪B ∈ B1

∣∣ τA∪B <∞)
> Ex

[
PSτF c

(
SτA∪B ∈ B1

∣∣ τA∪B <∞)PSτF c

(
τA∪B <∞

)
; τF c < τA∪B

]
. (3.82)

A standard result (e.g., [Law13, Theorem 2.1.3]) implies that for all sufficiently large r, if y
belongs to F c, then

Py
(
SτA∪B ∈ B1

∣∣ τA∪B <∞) > 1

2
HA∪B(B1). (3.83)
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Because B1 ∪ (A ∪B2) satisfies the hypotheses of Lemma 3.10.3,

HA∪B(B1) > c1n
− d−1
d−2
−od(1). (3.84)

for a constant c1. By (3.18), for any such y, we have

Py
(
τA∪B <∞

)
> c2dist(y, A ∪B)2−d, (3.85)

for a constant c2 = c2(d). Lastly, by Lemma 3.10.3, there is a constant c3 such that

Px(τF c < τA∪B) > escA∪B(x) > c3n
− 1
d−2
−od(1). (3.86)

Applying (3.83) through (3.86) to (3.82), we find a constant c4 = c4(d), such that

Px
(
SτA∪B ∈ B1

∣∣ τA∪B <∞) > c4n
− d
d−2
−od(1)diam(A ∪B)2−d.

Here, od(1) can be taken to be 1.6 when d > 5.

3.11 Proof of Theorem 3.1.7
In this section, we will analyze three algorithms which, when applied sequentially, dictate a se-
quence of HAT steps to form a configuration in Ud,n(a, 1), from an arbitrary configuration and for
any sufficiently large a. Each subsection will contain the statement of an algorithm and two results:

• informally, the first result will conclude that the algorithm does what it is intended to do; and

• the second will provide bounds on the number of steps and probability with which HAT
realizes the steps dictated by the algorithm.

The final subsection will combine the bounds.
To prove that the configuration produced by the algorithms belongs to Ud,n(a, 1), we must find

an (a, 1) separated DOT clustering of the configuration. For this reason, it is convenient for the
algorithms to return clusterings instead of configurations. Unlike the clusterings in the preceding
sections, the clusterings will not be natural clusterings associated to HAT. Instead, the algorithms
will actively assign and reassign elements to different clusters.

3.11.1 Algorithm 1
Before stating AlgorithmA2, we give names to special elements that we reference in the algorithm.
Let U be a configuration in Zd containing an element x ∈ Zd, let C denote a clustering of a
configuration, and denote τ = τU\{x}. We define

• µ(U, x), an arbitrary maximizer y of Px(Sτ−1 = y | τ <∞) over U\{x};
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• ν(U, x), an arbitrary element y ∈ ∂{x} which is exposed in U , assuming that U ∩ ∂{x} is
nonempty; and

• near(C, y), the label of an arbitrary cluster which y neighbors or belongs to, i.e., an arbitrary
element of {i : dist(y, Ci) 6 1}.

Additionally, we will refer to π, the map which takes a tuple of sets to their union (3.8).
To realize stage (1) of the strategy of Section 3.9, we must show that A2 produces a configura-

tion which can be lined-up (Definition 3.9.1) and then show that HAT forms this configuration in
a number of steps and with at least a probability which do not depend on the initial configuration.
The following result addresses the former.

Proposition 3.11.1. Given an n-element configuration U ⊂ Zd and a ∈ Z>2, A2(U, a) can be
lined-up with separation dn2a.

Proof. Consider the clustering C in line 27 of algorithm A2. It is easy to see that each cluster
must have at least two elements and be connected. To prove that C can be lined-up with separation
r = dn2a, we must additionally show that C is 2r separated. Ignoring those elements which were
assigned to clusters in lines 10 and 23, due to line 19, clusters i < j are separated by at least

3d(n− i+ 1)3a− 3d(n− j + 1)3a.

Because there are at most [n/2] clusters, the preceding expression is at least

3d(n/2 + 1)3a− 3d(n/2)3a > 2dn2a+ n.

At most n elements are added to clusters by executing lines 10 and 23. Because the clusters are
connected, the preceding bound implies that the pairwise separation of clusters must be at least
2r = 2dn2a.

We now verify that HAT realizes π
(
A2(U, a)

)
in a number of steps and with at least a proba-

bility which do not depend on U .

Proposition 3.11.2. Let U be an n-element configuration in Zd and let a ∈ Z>2. There are positive
numbers f1 = f1(a, d, n) and g1 = g1(a, d, n) such that, if a is sufficiently large, then

PU

(
Uf1 = π

(
A2(U, a)

))
> g1. (3.87)

Proof. The proof takes the form of an analysis of Algorithm A2. Denote by uk the configuration
U ∪ π(C) after the kth time U ∪ π(C) is changed (i.e., an element is moved) by the algorithm.
Additionally, denote by N the number of times the configuration changes before the outer while
loop terminates.

To establish (3.87), it suffices to show that there is a sequence of times t0 = 0 6 t1 < t2 <
· · · < tN 6 f1 such that u0 = U , uN = π

(
A2(U, a)

)
, and

Pu0

(
Ut1 = u1, Ut2 = u2, . . . , UtN = uN

)
> g1. (3.88)
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Algorithm A1

Input : n-element configuration U ⊂ Zd and a ∈ Z>2

Output: Clustering C which can be lined-up with separation dn2a
1 C ← ∅, i← 1 // Initialize variables.

2 while U is nonempty do
3 `← lex(U)
4 R← dist

(
`, U\{`}

)
, r ← 3d(n− i+ 1)3a

/* Form a non-isolated lex element if need be. */

5 while R > 1 and n > 1 do
6 x← µ(U ∪ π(C), `) // ` will be replaced by x.

/* x either neighbors U ... */

7 if x ∈ ∂U then
8 U ← (U ∪ {x})\{`}
9 else

/* ...or one of the existing clusters. */

10 U ← U\{`}, j ← near(C, x)
11 C ← C ∪j {x}
12 end
13 `← lex(U) // The lex element of U may have changed.

14 R← dist(`, U\{`})
15 end

/* If the lex element is non-isolated, treadmill it. */

16 if R = 1 then
17 y ← ν(U ∪ π(C), `) // y is an exposed neighbor of `.

18 U ← U\{`, y} // Remove the pair from U.

19 C ← C ∪i
{
`− re1, `− (r − 1)e1

}
// Treadmill the pair r steps.

20 i← i+ 1 // Prepare to form the next cluster.

21 else
/* Otherwise, U = {`}; add it to an existing cluster. */

22 x← µ(U ∪ π(C), `) // ` will be replaced by x.

23 U ← U\{`}, j ← near(C, x)
24 C ← C ∪j {x}
25 end
26 end
27 return C
28
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We will argue that N 6 n(n+ 1), that we can take tN = n(n+ 1)r1 for r1 = 3dn3a, and that

Puk−1

(
Utk = uk

)
> p, (3.89)

for each k ∈ JNK, for a positive number p = p(a, d, n). The Markov property then implies that
(3.88) holds with f1 = n(n+ 1)r1 and g1 = pn(n+1).

Claim 1. We claim that N 6 n(n+1). Observe that the outer and inner while loops starting on
lines 2 and 5 each repeat at most n times. Indeed, U loses an element every time the outer loop re-
peats, which can happen no more than n times. Concerning the inner loop, no non-isolated element
is made to be isolated, while, each time line 6 is executed, the isolated element ` is replaced by
an element x which is non-isolated. This can happen at most n times consecutively. Accordingly,
U ∪ π(C) changes at most n+ 1 times every time the outer loop repeats, hence N 6 n(n+ 1).

Claim 2. We now claim that we can take tN = n(n + 1)r1. It suffices to argue that, each time
U ∪ π(C) changes, at most r1 steps of HAT are required to realize the change. The configuration
U ∪ π(C) changes due to the execution of lines 8, 10 and 11, 18 and 19, or 23 and 24. In all but
one case—that of lines 18 and 19—the transition requires only one HAT step. For lines 18 and 19,
at most r1 steps are needed. Because there are at most n(n + 1) changes, tN can be taken to be
n(n+ 1)r1.

Claim 3. We now verify (3.89) by considering each way U ∪π(C) can change and by bounding
below the probability that it is realized by HAT. Assume U ∪ π(C) has changed k− 1 times so far.

• Lines 8, 10 and 11, or 23 and 24: Activation at ` and transport to x. Assume a is sufficiently
large in d and n to exceed the constant r in the statement of Lemma 3.10.3. Then, since ` is
the lex element of U and since dist(U, π(C)) > a, we can apply Lemma 3.10.3 with A = U
and B = π(C) to find

HU∪π(C)(`) > h,

for a positive number h = h(d, n). By the definition of µ, x is the most likely destination
of an element activated at `. Transport from ` occurs to at most 2dn sites and so, by the
pigeonhole principle, the element from ` is transported to x with a probability of at least
(2dn)−1. Together, these bounds imply

Puk−1

(
Utk = uk

)
> h(2dn)−1. (3.90)

• Lines 18 and 19: Treadmilling of {`, y}. In the first step, we activate at y and transport
to ` − e1. While y is not lex in U , by the definition of ν, it is an exposed neighbor of `.
Because dist(U, π(C)) > a, if a is at least 4dn, we can apply Lemma 3.10.2 with A = U
and B = π(C) to find HU∪π(C)(y) > c1h, for a positive number c1 = c1(d, n). Additionally,
Lemma 3.10.1 implies that an element activated at y is transported to `−e1 with a probability
of at least c2 = c2(d, n). Consequently, denoting

v1 =
(
uk−1 ∪ {`− e1, `}

)
\{`, y},

we have
Puk−1

(U1 = v1) > c1c2h. (3.91)
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Now, consider the configuration vm resulting from starting at uk−1 and treadmilling {`, y} a
total of m > 2 steps in the −e1 direction:

vm =
(
uk−1 ∪ {`−me1, `− (m− 1)e1}

)
\{`, y}.

To obtain vm+1, we activate at ` − (m − 1)e1 and transport to ` − (m + 1)e1. By the same
reasoning as before,

Pvm

(
U1 = vm+1

)
> c1c2h. (3.92)

By (3.91), (3.92), and the Markov property,

Puk−1

(
Utk = uk

)
>
(
c1c2h

)r1 . (3.93)

The bounds (3.90) and (3.93) show that, whenever U ∪ π(C) changes, the change can be
realized by HAT (in one or more steps) with a probability of at least

p = min
{
h(2dn)−1, (c1c2h)r1

}
.

This proves (3.89). We complete the proof by combining claims 1–3.

3.11.2 Algorithm 2
To complete Stage 2 of the strategy of Section 3.9, we show that if C is a clustering which can
be lined-up with separation dn2a, then HAT forms the clusters into dn2a separated line segments
oriented parallel to e1, in a number of steps and with at least a probability which depend on a, d,
and n only (Proposition 3.11.4). The clustering to which we refer is

L(C) =
(
lex(Ci) + L|Ci|, i ∈ JmK

)
.

Proposition 3.11.3. Let U be an n-element configuration in Zd with a clustering C which can be
lined-up with separation dn2a, for a ∈ Z>2. Then A3(C) = L(C).

Proof. The only way the algorithm could fail to produce L(C) is if, for some outer for loop i
and inner for loop j, the assignment in line 5 is impossible. This would mean that no element of
D = Ci\{`i + Lj} was exposed in π(C). While there must be an element of D which is exposed
in Ci, the elements of C 6=i could, in principle, separate D from∞. In fact, as we argue now, this
cannot occur because the clusters remain far enough apart while the algorithm runs.

Each Ci remains connected while the algorithm runs, so there is a ball Bi of radius n which
contains Ci. The Bi are finite and ∗-connected, so each ∗-visible boundary ∂visBi is connected
by Lemma 2.3.13. Moreover, each ∂visBi is disjoint from ∪jBj because dist(Bi, Bj) exceeds√
d. This lower bound holds because the clusters are initially 2dn2a separated and the separation

decreases by at most one with each of the n loops of the algorithm, hence

dist(Bi, Bj) > dist(Ci, Cj)− diam(Bi)− diam(Bj)− n > 2dn2a− 5n >
√
d.

The rest of the argument, which constructs an infinite path from D which otherwise avoids C,
is identical to the corresponding step in the proof of Proposition 3.6.6. We conclude that some
element of D is exposed in π(C), which completes the proof.
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Proposition 3.11.4. Let U be an n-element configuration in Zd with a clustering C which can be
lined-up with separation dn2a, for a ∈ Z>2. There is a positive number g2 = g2(d, n) such that, if
a is sufficiently large, then

PU

(
Un = π

(
A3(C)

))
> g2. (3.94)

Algorithm A3

Input : Clustering C of an n-element configuration U ⊂ Zd, which can be lined-up with
separation dn2a, for a ∈ Z>2.

Output: L(C).
1 m← number of clusters in C
2 for i ∈ JmK do
3 for j ∈ J|Ci| − 1K do
4 `i ← lex(Ci) // The segment will grow from `i.

5 xj ← lex
({
z ∈ Ci\{`i + Lj} : Hπ(C)(z) > 0

})
// xj is lex among exposed

elements of Ci which have not yet been added to the growing

segment.

6 yj ← `i − je1 // yj is the next addition to the segment.

7 C ← (C ∪i {yj})\i{xj} // Update the ith cluster.

8 end
9 end

10 return C

Proof of Proposition 3.11.4. Given a clustering C which satisfies the hypotheses, algorithm A3

specifies for each cluster i a sequence of |Ci| − 1 pairs (xj, yj)—where xj is the site of activation
and yj is the site to which transport occurs—to rearrange Ci into lex(Ci) + L|Ci|. We note that
no pair will result in a decrease in cluster separation of more than one, or an increase in cluster
diameter of more than one. Because the clusters are initially 2dn2a separated, the clusters will
remain 2dn2a− n > a separated throughout.

Accordingly, if a is sufficiently large in terms of d and n, the combination of Lemma 3.10.2
and Lemma 3.10.3 imply that there is a constant h = h(d, n) such that each xj can be activated
with a probability of at least h. Moreover, Lemma 3.10.1 implies that there is a positive number
c = c(d, n) such that an element from xj can be transported to yj with a probability of at least c.
Consequently, denoting C ′ = (C ∪i {yj}) \i {xj}, the transition in line 7 occurs with a probability
of at least

Pπ(C)

(
U1 = π(C ′)

)
> ch. (3.95)

By (3.95) and the Markov property, and the fact that there are at most n pairs, we have

PU

(
Un = π

(
A3(C)

))
> (ch)n.

Taking g2 = (ch)n gives (3.94).
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3.11.3 Algorithm 3
At the beginning of Stage 3, the elements are neatly arranged into well separated line segments
pointing in the −e1 direction. In Stage 3, we iteratively treadmill pairs of elements in the −e1

direction from each of the line segments, until only a dimer or trimer remains of the initial segment.
We will label each treadmilled pair as a new cluster. To reflect this in our notation, when C has m
clusters and when A ⊂ Zd, we will write C ∪m+1A to mean the addition of A to C as the (m+1)st

cluster.
Algorithm A4

Input : An n2a separated clustering C of an n-element configuration U = π(L(C)) ⊂ Zd,
for a ∈ Z>2.

Output: A configuration in Ud,n(a, 2(log a)
−1).

1 k ← 0, m← number of parts of C // Initialize variables.

2 for i ∈ JmK do
3 for j ∈ J|Ci|mod2− 1K do
4 `← lex(Ci), r ← 2(n− j)a
5 C ←

(
C ∪m+k {`− re1, `− (r − 1)e1}

)
\i {`, `+ e1} // Treadmill the pair

r steps, labeling it as cluster m+ k.

6 k ← k + 1 // Account for the creation of a new cluster.

7 end
8 end
9 return C

Proposition 3.11.5. If U is an n-element configuration in Zd and if C is a clustering of U such
that U = L(C) and C is n2a separated for an integer a > 1, then π

(
A4(C, a)

)
belongs to

Ud,n(a, 2(log a)−1).

Proof. Denote by Ck the clustering C once it has been changed by the algorithm for the kth time
(i.e., the kth time line 5 is executed). Denote by m the number of clusters of C0 and N the number
of times algorithm A4 changes C.

To prove that π
(
A4(C0, a)

)
belongs to Ud,n(a, 2 log(a)−1), we will verify DOT.1, DOT.2 with

a, and observe that each cluster of CN is connected; this will imply DOT.3 with b = 2(log a)−1.
Concerning DOT.1 and the claim that each cluster of Ci

N is connected, we note that line 5
creates connected clusters of size two and, because it is executed |Ci|mod 2 − 1 times for cluster
i, when the inner for loop ends on line 7, only two or three (connected) elements of the original
cluster Ci remain. Accordingly, every cluster of CN has two or three elements and is connected.

Concerning DOT.2, we observe that, for each i ∈ JmK, the separation of cluster Ci
N is at least

dist(Ci
N , C

6=i
N ) > dist(Ci

0, C
6=i
0 )− 2(n− 1)a > (n2 − 2n+ 2)a > a,

because no element is moved a distance exceeding 2(n − 1)a by the algorithm. The same is
true of dist(Ci

N , C
j
N) for each i ∈ JmK and every j, and for clusters i and j resulting from the

treadmilling of different clusters of C0. Concerning the pairwise separation of clusters i 6= j
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formed by treadmilling pairs from the same cluster of C0, by line 5, we have

dist(Ci
N , C

j
N) > 2(n− 1)a− 2(n− 2)a− 1 > a.

We conclude that every cluster i satisfies dist(Ci
N , C

6=i
N ) > a, so CN satisfies DOT.2 with a.

Because CN satisfies DOT.1 and because each cluster is connected, the cluster diameters satisfy
diam(Ci

N) 6 2. Then, because CN satisfies DOT.2 with a, DOT.3 holds for b = 2(log a)−1.

Proposition 3.11.6. Let U be an n-element configuration in Zd with an n2a separated clustering
C such that U = π(L(C)), for a ∈ Z>2. There are positive numbers f3 = f3(a, d, n) and
g3 = g3(a, d, n) such that, if a is sufficiently large, then

PU

(
Uf3 = π

(
A4(C, a)

))
> g3. (3.96)

Proof. As in the proof of Proposition 3.11.5, denote by Ck the clustering C once it has been
changed by the algorithm for the kth time (i.e., the kth time line 5 is executed). Denote by m the
number of clusters of C0 and N the number of times algorithm A4 changes C. Call uk = π(Ck).

To establish (3.96), it suffices to show that there is a sequence of times t0 = 0 6 t1 < t2 <
· · · < tN 6 f3 such that u0 = U , uN = π

(
A4(C0, a)

)
, and

Pu0

(
Ut1 = u1, Ut2 = u2, . . . , UtN = uN

)
> g3. (3.97)

Consider outer for loop i, inner for loop j, and suppose that C has been changed a total of k−1
times thus far. Let r = 2(n − j)a. We will first bound below the probability that HAT realizes
uk−1 as Ur+1 from uk (i.e., the transition reflected in line 5). HAT can realize this transition by
treadmilling the elements at ` = lex(Ci

k−1) and `+ e1 to {`− re1, `− (r − 1)e1}.
For example, in the first step, we activate at ` + e1 and transport to `− e1. As observed in the

proof of Proposition 3.11.5, Ck is a separated for every 0 6 k 6 N . Therefore, if a is sufficiently
large in terms of d and n, then the hypotheses of Lemma 3.10.2 and Lemma 3.10.3 are satisfied
with A = π(Ci

k) and B = π(C 6=ik ), and they together imply the existence of a positive lower bound
h = h(d, n) on Huk−1

(`+ e1). It is clear that the element at `+ e1 can be transported to `− e1 with
a probability of at least c = c(d), and so, denoting

vs =
(
uk−1 ∪ {`− se1, `− (s− 1)e1}

)
\{`, `+ e1},

we have
Puk−1

(Us = v1) > ch.

We can simply repeat this argument with ` and `− e1 in the place of ` + e1 and `, then `− e1

and `− 2e1, and so on. With the choice uk = vr, the Markov property implies

Puk−1
(Ur = uk) > (ch)r.

The same bound holds for any k ∈ JNK, so, by another use of the Markov property and the fact
that N 6 n, we find

Pu0

(
Ur = u1, U2r = u2, . . . , UNr = uN

)
> (ch)rn.

This proves (3.97) with f3 = nr and g3 = (ch)rn.
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3.11.4 Conclusion
We combine the results from the preceding subsections to prove the main result of this section.

Proof of Theorem 3.1.7. Let U be an n-element configuration in Zd. Take a ∈ Z>2 to be suf-
ficiently large in terms of d and n to satisfy the hypotheses of Propositions 3.11.2, 3.11.4, and
3.11.6. By Proposition 3.11.2, there are positive numbers f1 = f1(a, d, n) and g1 = g1(a, d, n)
such that

PU

(
Uf1 = π

(
A2(U, a)

))
> g1. (3.98)

By Proposition 3.11.1, C1 = A2(U, a) can be lined-up with separation dn2a. Consequently, by
Proposition 3.11.4, there is a positive number g2 = g2(d, n) such that

Pπ(C1)

(
Un = π

(
A3(C1)

))
> g2. (3.99)

By Proposition 3.11.3, C2 = A3(C1) = L(C1). Since C2 is n2a separated, by Proposition 3.11.6,
there are positive numbers f3 = f3(a, d, n) and g3 = g3(a, d, n) such that

Pπ(C2)

(
Uf3 = π

(
A4(C2, a)

))
> g3. (3.100)

Denote C3 = A4(C2, a). By the Markov property and (3.98) through (3.100),

PU

(
Uf1+n+f3 = π(C3)

)
> g1g2g3. (3.101)

By Proposition 3.11.5, π(C3) belongs to Ud,n(a, 2(log a)−1). Taking a > e2, C3 is an (a, 1)
separated DOT clustering. Setting f = f1 + n+ f3 and g = g1g2g3 concludes the proof.

3.12 Proof of Theorem 3.1.6
We continue to assume d ∈ Z>5 and n ∈ Z>4. To prove the irreducibility of HAT on N̂onIsod,n,
we show that HAT can form a line segment from any configuration and HAT can form any config-
uration from a line segment. This is the content of the next two propositions.

Proposition 3.12.1 (Set to line). Let n ∈ Z>4 and let U be an n-element configuration in Zd. There
are a finite number of steps f4 = f4(d, n) and a positive number g4 = g4(d, n, diam(U)) such that

PU

(
Ûf4 = L̂n

)
> g4. (3.102)

To state the next result, define for finite A ⊂ Zd its radius rad(A) = sup{‖x‖ : x ∈ A}.

Proposition 3.12.2 (Line to set). Let U ∈ N̂onIsod,n have a radius of r. There are a finite number
of steps f5 = f5(d, n, r) and a positive probability g5 = g5(d, n, r) such that

PLn

(
Ûf5 = Û

)
> g5. (3.103)
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Theorem 3.1.6 is a simple consequence of the preceding propositions.

Proof of Theorem 3.1.6. Let Û and V̂ belong to N̂onIsod,n. By Propositions 3.12.1 and 3.12.2,
there are finite numbers of steps f and f ′, and positive probabilities g and g′ such that

PU

(
Ûf = L̂n

)
> g and PLn

(
Ûf ′ = V̂

)
> g′.

Applying the Markov property at time f , the preceding bounds imply

PU

(
Ûf+f ′ = V̂

)
> gg′ > 0,

which implies that HAT is irreducible on N̂onIsod,n.

Next, we prove Proposition 3.12.1.

Proof of Proposition 3.12.1. Let a = a(d, n) be an integer which is sufficiently large to satisfy the
hypotheses of Theorem 3.1.7 and those of Lemma 3.10.3 and Lemma 3.10.4 in the place of r and
ρ, respectively.

By Theorem 3.1.7, there is a positive integer f = f(d, n) and a positive number g = g(d, n),
such that Uf belongs to Ud,n(a + n, 1) with a probability of at least g. In particular, there is an
a+ n separated clustering C of Uf .

Let ` be the lex element of Uf , which we assume w.l.o.g. belongs to C1. Because C is a + n
separated, we can activate any lex element of any cluster with a probability of at least h1 = h1(d, n)
by Lemma 3.10.3. Then, by Lemma 3.10.4, we can transport to `− e1 with a probability of at least
h2 = h2(d, n, diam(U)). Reassigning the element at `− e1 to cluster C1, the resulting clusters are
at least a+ n− 1 separated.

Because the resulting clusters are still a separated, we can simply repeat this process, trans-
porting an element to `− 2e1, and so on. Continuing in this fashion for a total of n steps results in
Uf+n = `+ Ln. The preceding discussion and the Markov property imply

PU

(
Ûf+n = L̂n

)
> g(h1h2)n.

Setting f4 = f + n and g4 = g(h1h2)n gives (3.102).

We will prove Proposition 3.12.2 with an argument by induction. To facilitate the induction
step, it is convenient to prove the following, more detailed claim, which assumes n ∈ Z>2 instead
of n ∈ Z>4.

Proposition 3.12.3. Let n ∈ Z>2 and let U ∈ N̂onIsod,n. In terms of r = [ rad(U) ], there are
positive integers f = 4dn2r and ` = f/n, and a sequence ((xi, yi), i ∈ JfK) of pairs in Zd such
that, setting

W0 = Ln and Wj = (Wj−1\{xj}) ∪ {yj} for j ∈ JfK,

the following conclusions hold:

(i) Wf = U .
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(ii) For each j ∈ JfK, xj is exposed in Wj−1.

(iii) For each j ∈ JfK, there is a path Γj from xj to yj , which lies outside of Wj−1\{xj} but
inside of B(r + dn), and which has a length of at most `.

Before proving the proposition, let us explain how Proposition 3.12.2 follows from it.

Proof of Proposition 3.12.2. By conclusion (iii) of Proposition 3.12.3, for each j ∈ JfK, we have
Wj−1 ⊆ B(r + dn). By this observation and conclusion (ii), the activation component HWj−1

(xj)
of each transition is at least a positive number h1 = h1(d, n, r). Again, by (iii), there is a path Γj ,
with a length of at most `, which can realize the transport step from xj to yj . Consequently, in
terms of τ = τWj−1\{xj}, the transport component Pxj(Sτ−1 = yj | τ < ∞) of each transition is
at least h2 = (2d)−`−1. By the Markov property and conclusion (i), the probability in (3.103) is at
least the product of these components, over f steps:

PLn

(
Ûf = Û

)
> (h1h2)f .

Lastly, we prove Proposition 3.12.3.

Proof of Proposition 3.12.3. The proof is by induction on n. The base case of n = 2 is trivial
because N̂onIsod,2 has the same elements as the equivalence class L̂2. Now suppose the claim
holds up to n− 1 for n > 3.

There are two cases, which we phrase in terms of the “exposed” boundary of U :

∂∗extU = {x ∈ U : HU(x) > 0}.

Either:

1. there is a non-isolated x ∈ ∂∗extU such that U\{x} ∈ NonIsod,n−1; or

2. for every non-isolated x ∈ ∂∗extU , U\{x} ∈ Isod,n−1.

Case 1. Peform the following steps. In what follows, denote r = [rad(U)] + 1.

Step 1: “Treadmill” a pair of elements in the −e1 direction for f1 = r + dn− 2 steps. Specifically,
activate the element e1 and transport it to −e1, then activate the element at the origin and
transport it to −2e1, followed by activation at −e1 and transport to −3e1, and so on.

Step 2: Isolate an element outside of B(r + dn− 2). At the end of Step 1, an element lies at −f1e1

and another at −(f1 − 1)e1. Activate the latter and transport it to the e1, then activate the
element at (n− 1)e1 and transport it to the origin.
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Step 3: Use the induction hypothesis to form (U\{x}) ∪ {−f1e1}, for a particular x. By the end
of Step 2, the configuration is Ln−1 ∪ {−f1e1}. We use the induction hypothesis to form
U\{x} from the Ln−1 subset, where x is a non-isolated element of ∂∗extU such that U\{x} ∈
NonIsod,n−1.

The use of the induction hypothesis guarantees that there is a sequence of 4d(n− 1)2r HAT
steps from Ln−1, which: (i) result in (U\{x}) ∪ {−f1e1}; (ii) have positive activation com-
ponents; and (iii) have transport steps that are realized by random walk paths with lengths of
at most 4d(n− 1)r, which remain inside B(r + d(n− 1)).

Step 4: Transport the element at −f1e1 to x. We activate the element at −f1e1 and transport it to x,
which is possible because x is non-isolated and exposed in U . Because U\{x} lies in B(r),
Lemma 3.10.1 implies that there is a path from−f1e1 to x which avoids U\{x}, has a length
of at most ` = 4dnr, and lies in B(r + dn− 1).

Note that Steps 1 and 2 require r + dn HAT steps, the activation components of which are
positive and the transport components of which can be realized by paths of length at most r+dn 6
`. Steps 3 and 4 require 4d(n− 1)2r+ 1 HAT steps, again with positive activation components and
transport components realized by paths of length at most `. In total, at most f = 4dn2r HAT steps
are needed and, since all paths lie in B(r + dn− 1), conclusions (i) through (iii) hold.

Case 2. Because we cannot remove a non-isolated element of U without obtaining an isolated
set—a set to which the induction hypothesis does not apply—we must instead use the induction
hypothesis to form a set related to U . In fact, the first two steps are the same as in Case 1, so we
begin with the configuration Ln−1 ∪ {−f1e1} and specify the third and subsequent steps.

Step 3’: Use the induction hypothesis. Let w and y be the least and greatest elements of U in the
lexicographic order, and let x be any non-isolated element of ∂∗extU . We use the induction
hypothesis to form

U ′ = (U\{x, y}) ∪ {w − e1},
which is possible because U ′ ∈ N̂onIsod,n−1.

The result is a sequence of 4d(n−1)2r HAT steps from Ln−1 which form U ′∪{−f1e1} with
positive activation components and transport components which are realized by random walk
paths with the same properties as in Step 3.

Step 4’: Activate the element at −f1e1 and transport it to w − 2e1.

Step 5’: Treadmill the pair {w− e1, w− 2e1}. Since w is the least element of U in the lexicographic
order, w− e1 and w−2e1 are the only elements which lie in O1 = {z ∈ Zd : z · e1 6 w · e1}.
Similarly, due to the choice of y, it is the only element which lies in O2 = {z ∈ Zd : z · ed >
y · ed}.
Consequently, it is possible to treadmill the pair {w − e1, w − 2e1} to:

– B(r + 3)c without leaving O1; then
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– O2 without leaving B(r + 6)\B(r + 3); and

– {y, y + ed} without leaving O2.

This requires at most f2 = 10r HAT steps, each of which has a positive activation component
and a transport component realized by a random walk path of length five.

Step 6’: Activate at {y+ed} and transport to x. The configuration at the end of Step 5’ is (U\{x})∪
{y + ed}, so activating the element at {y + ed} and transporting it to x (which is possible
because x is an exposed, non-isolated element of ∂∗extU ), forms U .

Recall that Steps 1 and 2 require r + dn HAT steps, which can be realized by paths of length
at most r+ dn 6 `. Steps 3’ and 4’ require 4d(n− 1)2r+ 1 HAT steps, realized by paths of length
at most `. Steps 5’ and 6’ require 10r+ 1 HAT steps, with paths satisfying the same length bound.
All activation components are positive. At most f HAT steps are needed in total and, since all
paths lie in B(r + dn− 1), conclusions (i) through (iii) hold.
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