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BACKGROUND: The gut microbiome is important in modulating health in childhood. Metal exposures affect multiple health outcomes, but their ability
to modify bacterial communities in children is poorly understood.

OBJECTIVES:We assessed the associations of childhood and perinatal blood metal levels with childhood gut microbiome diversity, structure, species,
gene family-inferred species, and potential pathway alterations.

METHODS:We assessed the gut microbiome using 16S rRNA gene amplicon sequencing and shotgun metagenomic sequencing in stools collected from
6- to 7-year-old children participating in the GESTation and Environment (GESTE) cohort study. We assessed blood metal concentrations [cadmium
(Cd), manganese (Mn), mercury (Hg), lead (Pb), selenium (Se)] at two time points, namely, perinatal exposures at delivery (N =70) and childhood expo-
sures at the 6- to 7-y follow-up (N =68). We used multiple covariate-adjusted statistical models to determine microbiome associations with continuous
blood metal levels, including linear regression (Shannon and Pielou alpha diversity indexes), permutational multivariate analysis of variance (adonis;
beta diversity distance matrices), and multivariable association model (MaAsLin2; phylum, family, species, gene family-inferred species, and pathways).
RESULTS: Children’s blood Mn and Se significantly associated with microbiome phylum [e.g., Verrucomicrobiota (coef = − 0:305, q=0:031;
coef = 0:262, q=0:084, respectively)] and children’s blood Mn significantly associated with family [e.g., Eggerthellaceae (coef = − 0:228,
q=0:052)]-level differences. Higher relative abundance of potential pathogens (e.g., Flavonifractor plautii), beneficial species (e.g., Bifidobacterium
longum, Faecalibacterium prausnitzii), and both potentially pathogenic and beneficial species (e.g., Bacteriodes vulgatus, Eubacterium rectale)
inferred from gene families were associated with higher childhood or perinatal blood Cd, Hg, and Pb (q<0:1). We found significant negative associa-
tions between childhood blood Pb and acetylene degradation pathway abundance (q<0:1). Finally, neither perinatal nor childhood metal concentra-
tions were associated with children’s gut microbial inter- and intrasubject diversity.

DISCUSSION: Our findings suggest both long- and short-term associations between metal exposure and the childhood gut microbiome, with stronger
associations observed with more recent exposure. Future epidemiologic analyses may elucidate whether the observed changes in the microbiome
relate to children’s health. https://doi.org/10.1289/EHP9674

Introduction
Metals and essential elements, hereafter collectively referred to as
“metals,” have been found to have impacts on children’s develop-
mental health (Cao et al. 2014; Ghaisas et al. 2016; Zeng et al.
2016). The intestine is one of themost important organs to metabo-
lize toxicants through the myriad of microbes present in it (Human
Microbiome Project Consortium 2012). Intestinal microbiome di-
versity, structure, and functional potential are likely changed by
toxicant exposure, but studies in humans, especially children, are

scant. Previous studies have investigated the associations of met-
als, including cadmium (Cd) (Breton et al. 2013; He et al. 2020; Li
et al. 2019), arsenic (Li et al. 2019), and lead (Pb) (Breton et al.
2013; Gao et al. 2017), with the mouse gut microbiome. Most
metal-related human studies assessed exposure related to highly
contaminated industrial sites (Shao and Zhu 2020) in populations
that had a high prevalence of diseases (e.g., autism) (Zhai et al.
2019) or the neonatal gut microbiome (Laue et al. 2020b).
However, many of these studies did not consider potential con-
founders or effect modifiers (Markle et al. 2013; Shao and Zhu
2020; Zhai et al. 2019), a major limitation in epidemiologic analy-
ses that may engender spurious associations. For example, sex has
been found to be one of the important effect modifiers in metal
microbiome studies (Chi et al. 2016, 2017; Hoen et al. 2018).
Limited data are available on the long-term influence of early life
metal exposures on the pediatric microbiome (Zhai et al. 2019).
Although long-read 16S rRNA gene amplicon sequencing can
reveal species and strain level identification (Franzén et al. 2015;
Santos et al. 2020), most current human studies onmetal exposures
have used only short reads (mostly V3–V4 regions) of 16S rRNA
gene amplicon sequencing (Duan et al. 2020; Shao and Zhu 2020;
Zhai et al. 2019), which are inadequate for investigating species-
level associations and functional potential.

In the present study, we addressed these research gaps by investi-
gating the associations of blood levels offivemetalsmeasured perina-
tally and during childhood with the 6- to 7-year-old children’s gut
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microbiomes in a healthy French-Canadian birth cohort. Specifically,
this study aimed to a) assess the longitudinal and cross-sectional asso-
ciations of children microbiome diversity and taxonomy profile with
metal exposures using 16S rRNA gene sequencing and b) investigate
the associations of metal exposures and childhood microbiome spe-
cies, gene family-inferred species, and related potential functional
pathwaysmeasured by shotgunmetagenomic sequencing.

Methods

Study Population
This study was performed in the GESTation and Environment
(GESTE) cohort in Sherbrooke, Quebec, Canada. Mothers were
recruited at delivery or at theirfirst prenatal care visit (with a subse-
quent delivery study visit) between 2007 and 2009. A graphic rep-
resentation of the workflow can be found in Figure 1. At the 6- to
7-y follow-up study visit, a subgroup of children (N =86) provided
stool samples for microbiome analysis. Of these 86, 68 had avail-
able blood metal levels from the same visit and 70 of their mothers
had blood metals measured at delivery (Table 1). One sample had
insufficient stool material for shotgun metagenomic sequencing,
reducing the sample size to 67 children with childhood blood met-
als and 69 children with complete perinatal blood metals. The
study population of the GESTE cohort is homogeneous in socioe-
conomic status and race/ethnicity, with most self-identifying as
middle-class, White, French-Canadian (Serme-Gbedo et al. 2016).
Parents signed informed and written consent forms at each follow-
up. All study protocols were approved by the institutional review
boards of the University of Sherbrooke, Harvard T.H. Chan School
of Public Health, and Columbia University.

Metal Measurement
Blood was collected from mothers at delivery and children at the
6- to 7-y follow-up. All metal analyses were performed at the
Quebec Center of Toxicology of the Quebec Institute for Public
Health, Quebec, Canada. Total blood mercury (Hg) was analyzed
by cold vapor atomic absorption spectrophotometry (CVAAS)
using a model 100 Hg monitor (Pharmacia Instruments). Total

blood Pb, manganese (Mn), Cd, and selenium (Se) were meas-
ured using inductively coupled plasma mass spectrometry (ICP-
MS) (Thermo Fisher Scientific). The limit of detection (LOD)
was set at three times the standard deviation from 10 consecutive
measurements of a representative sample. For the perinatal blood
metals, the LODs for Hg, Pb, Mn, Cd, and Se were 0:6 nmol=L,
0:005 lmol=L, 10 nmol=L, 0:4 nmol=L, and 0:2 lmol=L, respec-
tively. Childhood blood metals had LODs of 0:01 lmol=L (Pb),
20 nmol=L (Mn), and 0:3 lmol=L (Se). Metals in children’s
blood were measured in two batches, resulting in two different
LODs for Hg (2 nmol=L or 0:5 nmol=L) and Cd (0:9 nmol=L or
0:4 nmol=L). The population characteristics and blood metal con-
centrations are reported in Table 1 and Table S1.

DNA Extraction and Sequencing
Children were assisted by parents for stool collection as previ-
ously described (Laue et al. 2019). Briefly, the child excreted
feces into a compostable receptacle nested in their toilet and
parents then transferred a feces sample into a sterile glass vial
using a wooden tongue depressor while wearing gloves. Stools
were immediately stored in the household −20�C freezer until
staff picked them up within 48 h. Stools were then placed in a
−80�C laboratory freezer until extraction.

DNA from children’s stool samples was extracted in 2018
using the QIAamp DNA Fast DNA Stool Mini Kit (Qiagen) fol-
lowing the manufacturer’s protocol with additional bead beating
in the lysis buffer (Laue et al. 2019; Yuan et al. 2012). Stool bac-
terial microbiome was measured using 16S rRNA gene amplicon
sequencing at the New York University Langone Genome
Technology Center (New York, New York). All DNA samples
were normalized to 14 ng=lL in 15 lL, amplified, and used for
library preparation. We amplified the 16S rRNA gene V4 hyper-
variable region with previously validated Illumina dual-indexed
compatible primers 515F/806R (Apprill et al. 2015; Caporaso
et al. 2011; Parada et al. 2016). After quantification, the amplicon
pool was loaded into an Illumina MiSeq flow cell in a 2 × 250 bp
paired-end format. Raw data were output as individual fastq files.

DNA from the same participants’ stool samples was extracted
in 2020 using the QIAamp PowerFecal Pro kit following the

Figure 1. Graphic representation of microbiome analysis workflow in the GESTation and Environment (GESTE) cohort in Sherbrooke, Quebec, Canada.
Covariates: child exposure–child microbiome (N =68): sex, family income, gestational age, and ever breastfed; perinatal exposure–child microbiome (N =70):
sex, family income, delivery mode, maternal BMI, pregnancy complications, and preexisting conditions. For gene family-inferred species association, protein
features were mapped to UniRef90 database. Note: AAS, atomic absorption spectrophotometry; Cd, cadmium; Hg, mercury; ICP-MS, inductively coupled
plasma mass spectrometry; Mn, manganese; N, number of participants; n, total number of associations examined; Pb, lead; Se, selenium.

Environmental Health Perspectives 017007-2 130(1) January 2022



manufacturer’s protocol (Qiagen). DNA samples (1,327± 171 ng)
were normalized and sent to the New York University Langone
Genome Technology Center for shotgun metagenomic sequenc-
ing. The library was first pooled using Illumina Flex library prepa-
ration and then loaded to Illumina NovaSeq 6000 flowcell S2,
2 × 150 bp paired-end format for sequencing.

Covariates
Covariate data were collected from questionnaires given at deliv-
ery and at the 6- to 7-y postnatal follow-up. Potential confound-
ing factors [maternal age, child age, gestational age, delivery
mode, perinatal body mass index (BMI) at delivery, child BMI,
family income at delivery, family income at the 6- to 7-y follow-
up, child sex, breastfeeding practices, special school, family
proximity to industry, pregnancy complications, preexisting con-
ditions, child prescription medication, child dietary supplement,
child food intolerance, and child digestion issues] were first inde-
pendently screened for association with alpha diversity using lin-
ear regression (Tables S2 and S3) with p<0:05. Covariates were
then selected for inclusion in multivariable analysis either a pri-
ori or because of significant association with alpha diversity. In
the analysis based on the children’s blood metal data, covariates
used in multivariable analysis included child sex, family income
at the 6- to 7-y follow-up (continuous), gestational age (continu-
ous), and ever breastfed (yes/no) (Cioffi et al. 2020; Laue et al.
2019, 2020a; Min et al. 2019; Thion et al. 2018), with ever
breastfed selected from covariates screening. In the analysis

based on perinatal blood metal data, covariates included child
sex, family income at delivery (continuous), delivery mode (vagi-
nal or cesarean), perinatal BMI (continuous), pregnancy compli-
cations (yes or no), and preexisting conditions (yes or no) (Laue
et al. 2020a; Min et al. 2019; Mitchell et al. 2020; Thion et al.
2018; Vujkovic-Cvijin et al. 2020). Missing income data in either
analyses were imputed with the nonmissing income either at
delivery or the year 6–7 follow-up. Mothers clinically diagnosed
with at least one of either gestational diabetes or preeclampsia
(extracted from medical records) were classified as having preg-
nancy complications. Perinatal preexisting conditions included
clinical diagnosis at any time before delivery with one or more of
the following diseases: asthma, allergies, high blood pressure,
thyroid disease, group B Streptococcus infection, and type 1 or 2
diabetes (extracted from medical records).

Data Analyses
16S rRNA gene amplicon sequencing. The raw 16S rRNA fastq.
gz data were preprocessed using Trimmomatic to remove adapt-
ers and poor quality start and end reads (Bolger et al. 2014). The
trimmed data were then quality checked using fastqc and ana-
lyzed through QIIME2 pipeline (version 2020.6) (Andrews 2010;
Bolyen et al. 2019; Ewels et al. 2016). Briefly, the data set was
first demultiplexed and run through DADA2 to denoise and
remove chimeric sequences. Next, to obtain a representative
sequence, the feature table was calculated and mapped to match
feature identifier to sequences. Afterward, the representative
sequence was trained using an unsupervised machine learning
method to cluster through Silva (version 138) reference database
(Quast et al. 2013). We selected a 99% similarity threshold for
operational taxonomic unit (OTU) picking to determine taxon-
omy composition. After quality control, the average sequencing
depth was approximately 155,000 reads per sample.

Shotgun metagenomic sequencing. After preprocessing raw
sequences (37:46million reads per sample) with Trimmomatic, the
average sequencing depth was 22:31million reads per sample
(Bolger et al. 2014). Raw data were then quality checked using
fastqc and multiqc (Andrews 2010; Ewels et al. 2016). We then
used Bowtie2, version 2.4.2 (Johns Hopkins University) to remove
host reads aligned with National Center for Biotechnology
Information Homo sapiens GRCh 38 no-alt analysis genome
(Langmead and Salzberg 2012). The average host contamination
was 0.06%. The remaining reads were then input to HUMAnN 3.0
(alpha) for functional profiling (Franzosa et al. 2018). Briefly,
HUMAnN 3.0 performs a three-tiered search, taxonomic prescreen,
pangenome search, and translated search (Franzosa et al. 2018).We
obtained gene family, pathway abundance, and pathway coverage
table from raw HUMAnN 3.0 (alpha) pipeline output. We also
obtained the Metagenomic Phylogenetic Analysis (MetaPhlAn)
species relative abundance table. Gene families are groups of evolu-
tionarily related protein-coding sequences that often perform similar
functions (Franzosa et al. 2018). Gene families were grouped to
MetaCyc pathways and unrelated pathways (i.e., eukaryote path-
ways) were removed (Franzosa et al. 2018). The gene family table
with species classification was collapsed to UniRef90 protein data-
base features (Franzosa et al. 2018). Each gene family (protein) fea-
ture was broken down into individual species contribution
(Franzosa et al. 2018). We hereafter refer to this process as gene
family-inferred species association screening.

Statistical analyses. The concentration of metals below the
LOD was imputed as the LOD divided by the square root of 2
(Hornung and Reed 1990). All analyses involved multiple com-
parisons, thus a false discovery rate (FDR) cutoff q-value of 0.1
was applied to define associations as noteworthy. Linear regres-
sion diagnostics were performed in each alpha diversity

Table 1. Characteristics of GESTation and the environment (GESTE) cohort
participants [N, (%) or mean ð±SDÞ] evaluated for this study.

Exposures and
Covariates

Child
exposure–child

microbiome (N =68)

Perinatal
exposure–child

microbiome ðN =70)

Cd (nmol/L) 0.81 ( ± 0:34)a 2.20 ( ± 1:17)a

Mn (nmol/L) 186 ( ± 46:80) 282 (± 75:70)
Hg (nmol/L) 2.28 ( ± 1:71)a 3.54 ( ± 2:40)a

Pb (lmol=L) 0.041 ( ± 0:018) 0.044 (± 0:031)
Se (lmol=L) 2.03 ( ± 0:26) 2.13 ( ± 0:40)
Sex
Female 33 (48.5) 33 (47.1)
Male 35 (51.5) 37 (52.9)
Family income 91,300 ( ± 48,400)b 72,100 (± 34,300)c

Gestational age 39.3 ( ± 1:40) 39.3 ( ± 1:43)
Ever breastfed
Yes 62 (91.2) 64 (91.4)
No 6 (8.8) 6 (8.6)
Delivery mode
Vaginal 53 (77.9) 53 (75.7)
Caesarean 15 (22.1) 17 (24.3)
Perinatal BMI 26.5 ( ± 5:45) 25.7 ( ± 5:17)
Pregnancy

complicationsd

Yes 6 (8.8) 8 (11.4)
No 62 (91.2) 62 (88.6)
Preexisting

conditionse

Yes 25 (36.8) 30 (42.9)
No 43 (63.2) 40 (57.1)

Note: The GESTE cohort is in Sherbrooke, Quebec, Canada. Mothers were recruited at
delivery or their first prenatal care visit between 2007 and 2009. At the year 6–7 study
visit, of 365 mother–children pairs, a subgroup of children provided stool samples for
microbiome analysis. BMI, body mass index; Cd, cadmium; Hg, mercury; LOD, limit
of detection; Mn, manganese; Pb, lead; SD, standard deviation; Se, selenium.
aThe concentration of Cd and Hg below the LOD was imputed as the LOD divided by
the square root of 2.
bFamily income at the 6- to 7-y postnatal follow-up, Canadian dollars.
cFamily income at delivery, Canadian dollars.
dPregnancy complications: gestational diabetes or preeclampsia.
ePreexisting conditions: asthma, allergies, high blood pressure, thyroid disease, group B
streptococcus infection, and type 1 or 2 diabetes.
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association to examine model fitness and in each significant mul-
tivariable association model (MaAsLin2) association to find
potential outliers. The raw OTU table and participants metadata
were first turned into a phyloseq object (McMurdie and Holmes
2013) in R (version 4.0.2; R Development Core Team).

Alpha and beta diversity, taxa (phylum and family) associa-
tions were computed from 16S rRNA gene amplicon sequencing
data (Figure 1). Species, gene family-inferred species, and path-
way associations were computed from shotgun metagenomic data
(Figure 1). Alpha (within-subject) diversity, including Shannon
(richness and evenness) and Pielou (evenness), was calculated
using the phyloseq package (McMurdie and Holmes 2013). Alpha
diversity was linearly regressed with individual childhood or peri-
natal blood metals, adjusting for the above-listed covariates
sets. Beta (between-subject) diversity association was evaluated
using permutational multivariate analysis of variance (adonis)
(Anderson 2017; Oksanen et al. 2007). Adonis allows the linear fit-
ting of individual metal exposure to the beta diversity distance ma-
trix, using permutation test, adjusting for covariates (Stevens
2020). We applied two quantitative distance matrices, weighted
UniFrac and Bray-Curtis distance, and two qualitative distance
matrices, unweighted UniFrac and Jaccard distance (Beals 1984;
Lozupone et al. 2011). We performed a sensitivity analysis on di-
versity measures stratified by child sex using the samemethod.

All taxa, species, and pathway data were normalized to relative
abundance before screening. MaAsLin2 was used to screen signifi-
cant taxa from 16S rRNA gene amplicon data, and significant spe-
cies and pathways from shotgun metagenomic data (Mallick et al.
2021). Briefly, each taxon (phylum and family), species, pathway,
or gene family was first selected if it was present in >10% of the
total participants. They were then regressed against individual metal
measurements, adjusting for the above-listed covariates sets. We
selected individual metal and corresponding taxa from the raw
MaAsLin2 output table and calculated the FDR-adjusted q-value.
Influential points including one participant with high childhood
blood Mn, Se, and Cd; two participants with high perinatal
blood Cd; and one participant with high perinatal blood Pb were
removed in all analyses. We extracted over 530,000 protein features
mapped to UniRef90 for species association screening for each
blood metal. Gene family-inferred species were then extracted from
individual significant UniRef90 protein features. Unclassified spe-
cies were later removed in gene family-inferred species association
from the raw results. All de-identified R and batch scripts are pub-
licly available in a Github repository (https://github.com/YikeShen).

Results

Alpha and Beta Diversity
Children included in analyses had mean alpha diversity of
3:37± 0:36 for the Shannon index and 0:661±0:0537 for the
Pielou index, with no notable differences between the analytical
subsets. There was no significant association of alpha diversity
with either childhood blood metals or perinatal blood metals,
adjusting for the above-listed covariates sets (Figure 2; Table
S4). Similarly, beta diversity measured by weighted UniFrac,
Bray-Curtis, unweighted UniFrac, and Jaccard distance matrices
was not significantly associated with the five metals measured in
either childhood blood or perinatal blood, adjusting for the
above-listed covariates sets (Figure 3; Table S5). There was no
apparent effect modification by child sex (Tables S6 and S7).

Taxa (Phylum and Family) Associations
We examined 9 phyla and 63 families that were present in
>10% of participants for associations with childhood blood

metal concentrations. Both Mn and Se measured in childhood
blood were associated with several taxa after adjusting for the
above-listed covariates sets (Table 2; Excel Table S8).
Specifically, higher childhood blood Mn was significantly asso-
ciated with a lower relative abundance of Verrucomicrobiota
(coef = − 0:305, q=0:031), Akkermansiaceae (coef = − 0:307,
q=0:052), Erysipelatoclostridiaceae (coef = − 0:226, q=0:027),
and Eggerthellaceae (coef = − 0:228, q=0:052) and higher rela-
tive abundance of Prevotellaceae (coef = 0:437, q=0:052) (Table
2; Figure S1, Excel Table S8). Higher childhood blood Se was sig-
nificantly associated with a higher relative abundance of
Verrucomicrobiota (coef = 0:262, q=0:084) and Proteobacteria
(coef = 0:158, q=0:093) (Table 2; Figure S1, Excel Table S8).

Similarly, we explored the relationship between perinatal met-
als and 9 phyla and 59 families that were present in >10% of par-
ticipants. Taxa were significantly associated with perinatal blood
Mn, Se, and Pb, adjusting for the above-listed covariates sets
(Table 2; Figure S2, Excel Table S8). Higher perinatal blood Mn
was significantly associated with a higher relative abundance of
Actinomycetaceae (coef = 0:263, q=0:088) (Table 2; Figure S2,
Excel Table S8). Higher perinatal blood Se was significantly asso-
ciated with a higher relative abundance of Actinobacteriota
(coef = 0:176, q=0:095) (Table 2; Figure S2, Excel Table S8).
Finally, higher perinatal blood Pb was significantly associated
with a higher relative abundance of Fusobacteriota (coef = 0:189,
q=0:028) (Table 2; Figure S2, Excel Table S8).

Species Associations
There was no significant association of MetaPhlAn species with
either childhood blood metals or perinatal blood metals, adjust-
ing for the above-listed covariates sets (Excel Tables S9 and
S10). Bifidobacterium longum had the highest population aver-
age relative abundance (Excel Table S11). However, the rela-
tive abundance of several gene family-inferred species was
significantly higher in relation to higher childhood blood Cd
(n=11), Hg (n=2), and Pb (n=1), adjusting for the above-
listed covariates sets (Figure 4; Table S12, Excel Tables
S13–S17). Higher childhood blood Cd was significantly associ-
ated with a higher relative abundance of 11 gene family-
inferred species, namely, Bacteroides ovatus (coef = 0:109,
q=0:071), Bacteroides thetaiotaomicron (coef = 0:170, q=0:077),
Bacterodes uniformis [coef = ð0:115, 0:352Þ, q= ð0:001, 0:090Þ],
Bacteroides vulgatus [coef = ð0:138, 0:352Þ, q= ð0:006, 0:098Þ],
Bifidobacterium adolescentis [coef = ð0:119, 0:340Þ, q=
ð0:003, 0:099Þ], Bifidobacterium longum (coef = 0:211, q=0:093),
Bifidobacterium pseudocatenulatum [coef = ð0:164, 0:167Þ, q=
ð0:055, 0:060Þ], Agathobaculum butyriciproducens [coef =
ð0:146, 0:188Þ, q= ð0:012, 0:093Þ], Parabacteroides distasonis
[coef = ð0:126, 0:352Þ, q= ð0:047, 0:090Þ], and Parabacteroides
merdae (coef = ð0:126, 0:221Þ, q= ð0:047, 0:090Þ]. Higher child-
hood blood Hg was significantly associated with a higher relative
abundance of gene family-inferred Bacteroides vulgatus and
Ruminococcus lactaris [coef = ð0:218, 0:245Þ, q=0:079]. Higher
childhood blood Pb was significantly associated with a higher rela-
tive abundance of gene family-inferred Eubacterium rectale
(coef = 0:274, q=0:027). We found no significant gene family-
inferred species association with childhood blood Mn and Se. A
range of coefficients for significant gene family-inferred species is
shown because different UniRef90 gene families can map to the
same species (Figure 4; Table S12, Excel Tables S13–S17).

In the analyses based on perinatal bloodmetals, higher bloodHg
was significantly associated with a higher relative abundance of
gene family-inferred Faecalibacterium prausnitzii (coef = 0:194,
q=0:049) (Figure 4; Table S12). We found no significant associa-
tion with perinatal blood Cd, Mn, Pb, and Se, adjusting for the
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above-listed covariates sets. All results for the analysis of childhood
and perinatal bloodmetals can be found in Excel Tables S18–S22.

Pathway Associations
In the analysis based on childhood blood metals, we examined a
total of 362 pathways that were present in >10% of participants for
association with each metal, adjusting for the above-listed covari-
ates sets. Acetylene degradation (coef = − 0:238, q=0:100) had
significant negative associations with higher childhood blood Pb
(Table 2; Figure S1, Excel Table S23). In the analysis based on
perinatal blood metals, we assessed a total of 368 pathways that

were present in >10% of participants for association with each
metal, adjusting for the above-listed covariates sets. We found no
significant pathway associationwith perinatal bloodmetal levels.

Discussion
This study investigated the association of childhood or perinatal
blood metals with children’s gut microbial community diversity
measures, taxa, species, and pathways. We found numerous sig-
nificant associations of childhood blood metals with taxa (n=7),
gene family-inferred species (n=15), and pathway (n=1)
relative abundance. Perinatal blood Hg, Mn, Se, and Pb were

Figure 2. Adjusted associations of childhood or perinatal blood metals (Cd, Hg, Mn, Pb, and Se) with children’s gut microbiome alpha diversity at the 6- to 7-y fol-
low-up. Association of alpha diversity with (A) childhood or (B) perinatal blood metals. Alpha diversity was measured by Shannon richness and evenness index and
Pielou evenness index. Point estimates are the result of linear regression per 1-nmol/L increase in Cd,Mn, andHg and 1-lmol=L increase in Pb and Se; whiskers rep-
resent 95% confidence intervals. Childhood blood metal models adjust for child sex, family income at the 6- to 7-y follow-up, gestational age, and ever breastfed;
perinatal blood metal models adjust for child sex, family income at delivery, delivery mode, perinatal BMI, pregnancy complications, and preexisting conditions.
Additional information can be found in Table S4. Note: BMI: bodymass index; Cd, cadmium; Hg, mercury;Mn, manganese; Pb, lead; Se, selenium.
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associated with Faecalibaterium prausnitzii, Actinomycetaceae,
Actinobacteriota, and Fusobacteriota, respectively, but not with
any potential functional pathways. Overall, our study suggests
that concurrent children’s metal exposures may result in differen-
tially abundant microbial community profiles, gene family-
inferred species, and potential functional pathways. Conversely,
perinatal metal exposures may have limited impact on the child-
ren’s gut microbiome measured in 6- to 7-year-olds.

Previous animal studies on metal exposures and gut micro-
biome diversity have yielded conflicting findings. Breton et al.
(2013) found that subtoxic levels of Cd and a critical dose of Pb
(500 ppm) did not significantly modify the gut microbiome of 6-
to 14-wk-old mice, whereas Li et al. (2019) found that subtoxic
levels of Cd significantly lowered alpha diversity in 7- to 9-wk-
old mice. Gao et al. (2017) found that subtoxic Pb exposure
(10 ppm) disturbed the development of the microbiome in 8- to
21-wk-old mice, resulting in lower alpha diversity and differen-
ces in beta diversity. Human studies of metal exposures and the
gut microbiome among school-age children have been extremely
limited. The only study we found on metal exposure on 3- to
7-year-olds was heavily focused on autistic children without ana-
lyzing continuous metals and childhood gut microbiome diversity
measures (Zhai et al. 2019). One study in adults found that gut
microbial evenness increased during long-term high Pb exposure
near a mining and smelting site (Shao and Zhu 2020). Sitarik et al.
(2020) found infant alpha diversity was not significantly associ-
ated with a high level of fetal and early postnatal Pb measured in
teeth. Mothers and children included in our analysis had expo-
sures comparable with the U.S. population geometric mean levels
of blood Cd, Hg, and Pb (CDC 2021). Previous studies have
shown that children’s gut microbiomes are highly susceptible to
modifications immediately after delivery and up to 3 years of
age, when their gut microbiome reaches maturity (Laue et al.
2020b; Lozupone et al. 2012). In addition, gut microbiome alpha
diversity continues to slowly change until 40 years of age (Yadav
et al. 2016). However, our study suggests influences from perina-
tal and early life metal exposures may not exert long-term influ-
ences on the diversity of childhood gut microbiome.

We found no significant associations of beta diversity (intrasub-
ject diversity) with either perinatal or childhood blood metals.
Similarly, Sitarik et al. (2020) found no association between high
fetal or early postnatal tooth Pb and infant beta diversity measures.
Shao and Zhu (2020) found perturbation of adult gut microbial
beta diversity with long-term metal mixture exposure in a mining
and smelting area. However, that study did not adjust for covariates

Figure 3. Significance of adjusted associations of childhood or perinatal
blood metals (Cd, Hg, Mn, Pb, and Se) with children gut microbiome beta
diversity at 6- to 7-y follow-up. Association of beta diversity with (A) child-
hood or (B) perinatal blood metals. Beta diversity was measured by
weighted UniFrac, Bray-Curtis, unweighted UniFrac, and Jaccard distances.
Colors represent p-values from the adonis test. Associations with p<0:2 are
displayed. Childhood blood metals models adjust for child sex, family
income at the 6- to 7-y follow-up, gestational age, and ever breastfed; peri-
natal blood metal models adjust for child sex, family income at delivery,
delivery mode, perinatal BMI, pregnancy complications, and preexisting
conditions. Additional information can be found in Table S5. Note: BMI,
body mass index; Cd, cadmium; Hg, mercury; Mn, manganese; Pb, lead; Se,
selenium.

Table 2. Taxa associations from 16S rRNA gene amplicon sequencing.

Metals Phylum/feature Family/pathway Coef SE p-Value FDR q-Value

Child exposure–child microbiome—taxa associations
Mn Verrucomicrobssiota — −0:305 0.100 0.003 0.031
Mn Verrucomicrobiota Akkermansiaceae −0:307 0.100 0.003 0.052
Mn Firmicutes Erysipelatoclostridiaceae −0:226 0.061 0.000 0.027
Mn Actinobacteriota Eggerthellaceae −0:228 0.072 0.003 0.052
Mn Bacteroidota Prevotellaceae 0.437 0.136 0.002 0.052
Se Verrucomicrobiota — 0.262 0.098 0.009 0.084
Se Proteobacteria — 0.158 0.067 0.021 0.093
Child exposure–child microbiome—pathway associations
Pb P161.PWY Acetylene degradation −0:238 0.065 0.001 0.100
Perinatal exposure–child microbiome—taxa associations
Mn Actinobacteriota Actinomycetaceae 0.263 0.079 0.001 0.086
Se Actinobacteriota — 0.176 0.067 0.011 0.095
Pb Fusobacteriota — 0.189 0.061 0.003 0.028

Note: Pathway association from shotgun metagenomic sequencing. Association of gut microbiome taxa (phylum and family) with childhood or perinatal blood metals. Association of
gut microbiome functional pathway with childhood blood metals. Association was analyzed using MaAsLin2. Childhood blood metals covariate sets: child sex, family income at the
6- to 7-y follow-up, gestational age, and ever breastfed; perinatal blood metals covariate sets: child sex, family income at delivery, delivery mode, perinatal BMI, pregnancy complica-
tions, and preexisting conditions. All statistics, including nonsignificant results, can be found in Excel Table S8 (taxa) and Excel Table S23 (pathway). —; data not available; BMI,
body mass index; Coef, coefficient; FDR, false discovery rate; MaAsLin2, multivariable association model; Mn, manganese; Pb, lead; SE, standard error; Se, selenium.
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and used categorical analysis metal exposure. A study in rats
showed that Cd altered gut microbiota beta diversity in a dose–
response matter (Richardson et al. 2018). Our results may not sup-
port the link between intrasubject diversity and childhood blood
metal levels because of differences in population and experimental
conditions.

Taxa analysis showed that perinatal and childhood blood Cd, Hg,
and Pb were not significantly associated with the relative abundance
of phyla and families. Higher childhood blood Mn was significantly
associated with lower Verrucomicrobiota and Akkermansiaceae.
Verrucomicrobiota is ubiquitous in the human gut and ecosystems
andmay live in associationwith eukaryotes (Wagner andHorn 2006).
A member of Akkermansiaceae was found to degrade mucin
(Arumugam et al. 2011; Derrien et al. 2008). Higher childhood blood
Mnmay therefore lead to lower mucin degradation and energy gener-
ation, but more detailed analysis ofAkkermansiaceae species affected
by exposure is required. FamilyErysipelatoclostridiaceae, whichwas
associatedwithMn in our study, consists of someClostridium species
(e.g., Clostridium sp. CJ61, Clostridium sp. A4-51) that belong to the
XVIII clostridial cluster (Cole et al. 2009; Quast et al. 2013).
However, the implication of this result is uncertain because of the
large number of genera and species present in the family.Members of
Eggerthellaceae, which was associated with Mn in the present study,
were found to be associated with secondary plant compound metabo-
lization (Danylec et al. 2020). In addition, Eggerthellaceae were

shown to produce bioactive molecules from the dietary polyphenols
ellagitannins and ellagic acid, whichmediate some of the health bene-
fits associated with fruit consumption (Selma et al. 2017). Higher
childhood blood Se was significantly associated with a higher relative
abundance of two phyla commonly found in the gut microbiome—
Verrucomicrobiota and Proteobacteria. Proteobacteria are facul-
tative anaerobes, and some Proteobacteria members have been
linked with negative health-related outcomes such as dysbiosis
and metabolic diseases (Shin et al. 2015). Proteobacteria were
also found to increase with environmental stresses, such as anti-
biotic exposure (Shen et al. 2019, 2021). Hence, the increased
relative abundance of Proteobacteria may not be beneficial.

We found that higher perinatal blood Mn was associated with a
higher relative abundance of Actinomycetaceae. Whether this asso-
ciation has any health relevance is uncertain. Members of the family
Actinomycetaceae have a wide range of morphological and chemo-
taxonomic properties (Yassin 2014). Some members were associ-
ated with human and animal infections (Yassin 2014). A lower
relative abundance of Actinomycetaceae has been linked to oral can-
cer and clinical depression (Börnigen et al. 2017; Kelly et al. 2015).

To investigate taxa associations at higher resolution, we
employed shotgun metagenomic sequencing. Higher childhood
blood Cd was associated with a higher relative abundance of 11
gene family-inferred species, including several beneficial gene
family-inferred species.MostBifidobacteriummembers, including

Figure 4. Association of childhood or perinatal blood metals with child gut microbiome gene family-inferred species. Effect estimates per unit increase of
childhood Cd (in nmol/L), Hg (in nmol/L), and Pb (in lmol=L), adjusted for covariate sets. Perinatal association with Hg was denoted with Hg_perinatal.
Associations were analyzed using MaAsLin2. Childhood blood metals covariate sets: child sex, family income at the 6- to 7-y follow-up, gestational age, and
ever breastfed; perinatal blood metals covariate sets: child sex, family income at delivery, delivery mode, perinatal BMI, pregnancy complications, and preex-
isting conditions. Note: BMI, body mass index; Cd, cadmium; Hg, mercury; MaAsLin2, multivariable association model; Pb, lead.
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the 3 gene family-inferred species significantly associated with
higher childhood blood Cd, are beneficial bacteria that establish
metabolic and physiologic interactions with the host (Al-Sheraji
et al. 2012; Colombel et al. 1987; Duranti et al. 2020; Ghoddusi
and Tamime 2014; Moya-Pérez et al. 2015; Schell et al. 2002). In
particular, gene family-inferred Bifidobacterium longum is well-
adapted to the human gastrointestinal tract, has potential immuno-
modulatory activity, and may be used as a probiotic to reduce
adverse health outcomes (Colombel et al. 1987; Schell et al. 2002).
Agathobaculum butyriciproducens, which was also positively
associated with childhood blood Cd, was found to improve cogni-
tive impairment of Alzheimer’s disease in mouse models (Go et al.
2021). Parabacteroides distasonis, which can alleviate obesity
and metabolic dysfunctions and tumor formation associated with a
high-fat diet in mice (Koh et al. 2018; Wang et al. 2019), was also
positively associated with childhood blood Cd. Gene family-
inferred Ruminococcus lactaris, a potential beneficial species with
the capacity to ferment lactose in the gut (Moore et al. 1976), was
positively associated with childhood blood Hg. The only signifi-
cant association in our analysis of perinatal blood metals was a
positive association between Hg and gene family-inferred
Faecalibacterium prausnitzii. Faecalibacterium prausnitzii has
been observed to promote gut health and to be a potential bio-
marker for gut disease diagnostics given its reduced abundance in
intestinal disorders (Lopez-Siles et al. 2017). These beneficial spe-
ciesmay have adapted to harmfulmetals and thus had a higher rela-
tive abundance in relation to higher bloodmetals. It is also possible
that high bloodmetals inhibit the growth of some potentially harm-
ful species, resulting in the increase in the relative abundance of
the observed species.

High childhood blood Cd, Se, and Pb had positive associations
with gene family-inferred species that can be either beneficial or
harmful, depending on the context. Childhood blood Cd was posi-
tively associated with four gene family-inferred Bacteriodes species,
including Bacteroides vulgatus, which was also positively associated
with childhood Hg exposure. Bacteroides species are ubiquitous,
commensal obligate anaerobes commonly found in the lower human
intestinal tract that regulate molecular interactions (Patrick 2015;
Wexler 2007). Among Bacteriodes species, avirulent Bacteroides
vulgatus accounts for >40% and can potentially contribute to pectin
degradation, benefitting the human host (Larsen et al. 2019; Patrick
2015). Bacteroides uniformis has been shown to mitigate metabolic
disorders and immunological dysfunction (Dahiya et al. 2019).
However, Bacteroides can be harmful outside the gut environment
and was the most common type of bacteria found in anaerobic infec-
tions (Wexler 2007). In addition, Bacteroides may confer resistance
to metals (Ignacio et al. 2015; Riley and Mee 1982; Wexler 2007).
Gene family-inferred Eubacterium rectale, which significantly asso-
ciatedwith higher childhood blood Pb, promotes butyrate production,
which may be harmful in suppressing stem cell proliferation in the
crypts but beneficial for its energy metabolism and intestinal homeo-
stasis activities (Liu et al. 2018; Singh et al. 2016).

High childhood blood Cd and Pb had positive associations with
potentially harmful species. Gene family-inferred Flavonifractor
plautii, a potential pathogen positively associated with childhood
blood Cd, was related to worse Social Responsiveness Scale scores
in toddlers and suppressed immune response in mice (Laue et al.
2020a; Mikami et al. 2020; Ogita et al. 2020). Additional gene
family-inferred species characteristics and implications can be
found in Table S24.

Higher childhood blood Pb was significantly associated with a
lower relative abundance of genes in the acetylene degradation path-
way. Some bacterial species use acetylene as a carbon source and
produce acetate or ethanol through acetaldehyde hydrogenase (Caspi
et al. 2020; Schink 1985). Among the results we analyzed, there was

no significant species breakdown from the acetylene degradation
pathway other than unclassified species from the MetaCyc database.
Although no other studies, to our knowledge, have described associ-
ations between Pb and acetylene degradation, a lower relative abun-
dance of this pathway has been associated with type I diabetes
(Vatanen et al. 2018). Future mechanistic studies should examine
whether capacity of the gut microbiome to degrade acetylene medi-
ates or modifies known environmental epidemiologic associations.

To the best of our knowledge, this is the first human study to
evaluate the association of both childhood and perinatal blood metals
with the composition of the childhood gut microbiome. We used
both shotgun metagenomic sequencing and 16S rRNA gene amplicon
sequencing, covering both taxonomic and functional potential level
analyses. Our study also had several limitations, including small sam-
ple size. We used FDR-corrected q-values to limit the FDR to
<10%. In addition, some metal concentrations (i.e., Cd and Hg) in
childhood blood had 45.6% and 40% of values below the LOD,
respectively. Thus, we had limited power to detect associations with
these exposures and our findings may not apply to populations with
higher exposure. Furthermore, diet and antibiotic usage information
were not collected in the 6- to 7-y follow-up, which may result in
confounding. In addition to differences in sequencing methodology,
data processing, and reference databases, differences in DNA extrac-
tion for 16S rRNA and metagenomic sequencing limit comparability
of our results. Finally, the GESTE cohort is relatively homogeneous
in demographics (primarily of upper middle-class French-Canadians)
with mean levels of exposure, making our study less comparable
with population groups with high levels of metal exposure.

In conclusion, our study found associations of childhood and
perinatal blood metals with relative abundance of specific gut
microbiome taxa and gene family-inferred species that, based on
previous findings, may be beneficial to the host, whereas others
may have negative consequences. Additional epidemiologic and
mechanistic studies are warranted to confirm and generalize our
results, as well as to investigate how these microbial variations
may affect children’s health.
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