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Abstract

Essays on Manufacturer Pricing Policies When Retailers and Consumers Stockpile

by

Huanhuan Qi
Doctor of Philosophy in Engineering - Industrial Engineering and Operations Research

University of California, Berkeley

Professor Candace Yano, Chair

This dissertation is concerned with pricing issues facing manufacturers when retailers
offer periodic discounts and customers stockpile in response. Chapter 1 provides an overview of
the dissertation.

In Chapter 2, we study a new Pareto-improving pricing scheme in which the manu-
facturer subsidizes the retailer’s setup (transportation) cost in exchange for a (possibly) higher
wholesale price. The retailer responds by choosing regular and discount prices and his order
frequency to maximize his revenue less setup, purchasing and inventory holding costs, consid-
ering the customers’ response. There are two customer segments that differ in their reservation
prices and inventory holding costs. Customers make purchasing (including stockpiling) deci-
sions to maximize their utility from consumption less purchasing and inventory holding costs.
We characterize the retailer’s optimal response to the manufacturer’s pricing decisions and the
consumers’ response to the retailer’s pricing schemes. We then show how to solve the manufac-
turer’s decision problem in view of the downstream responses.

In Chapter 3, we investigate the retailer’s pass–through of manufacturer trade dis-
counts. The manufacturer offers a fixed wholesale price and periodic trade discounts. The
retailer optimizes his ordering plan (including stockpiling when a trade discount is offered) and
the pattern of discounts to offer to customers, seeking to maximize revenue less setup, purchas-
ing and inventory holding costs. Customers differ in their reservation prices, and in our model,
we account for the adverse effect of retail discounts on consumers reservation prices. For a given
frequency and depth of the manufacturer’s trade discount, we characterize the retailer’s optimal
discounting pattern for a given ordering schedule that spans the time between the manufac-
turer’s trade discount offers. We solve for the retailer’s jointly optimal ordering and discounting
patterns by enumerating appropriate ordering schedules and optimizing the retailer’s discount
pattern for each.

For the models in Chapters 2 and 3, we also perform associated numerical studies
which, together with our analytical results, provide insight into how both manufacturers and
retailers should make decisions in these problem settings, and circumstances in which various
policies are most effective in increasing profit.

Chapter 4 concludes the dissertation with a summary of contributions and key findings.
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Chapter 1

INTRODUCTION

In a retail supply chain with a manufacturer, retailer and consumers, the manufacturer’s
pricing policy has complex interactions with many other decisions in the supply chain, such
as the retailer’s ordering schedule, the retailer’s pricing scheme, and consumers’ purchasing
and stockpiling decisions, all of which ultimately affect the manufacturer’s profitability. A
single change in the manufacturer’s pricing policy may cause complex and indirect downstream
reactions, making it difficult for the manufacturer to predict the impact of his pricing changes.

This dissertation addresses two pricing issues that manufacturers may face. The first
study focuses on how a manufacturer should couple a transportation subsidy with an adjusted
wholesale price to maximize his profit when his own decisions affect the retailer’s ordering
schedule and pricing decisions in a context where customers are heterogeneous and will stockpile
when the retailer offers periodic discounts. The second study focuses on a retailer’s choice of
ordering schedule, including stockpiling decisions, and discounting patterns, in response to a
manufacturer’s periodic trade discount in circumstances where consumers stockpile in response
to retail discounts and retail discounts reduce consumers’ willingness-to-pay. The results of
our analysis provide insights into how manufacturers should design trade discounts to be most
effective. More detailed descriptions are presented in the following subsections.

1.1 Improving Supply Chain Profitability via Manufacturer Pric-
ing Policies Mitigating the Bullwhip Effect

The bullwhip effect is a well-known phenomenon and has been observed in industry
for a long time. Two causes of the bullwhip effect are order batching and high-low pricing.
We study manufacturer pricing policies that aim to dampen these behaviors on the part of the
retailer so as to reduce the bullwhip effect and its associated costs. We consider a scenario
in which transportation scale economies lead the retailer to order in batches, which then gives
him an incentive to utilize temporary price discounts (high-low pricing) to clear inventory more
rapidly. Customers take advantage of these discounts and may stockpile.

In the literature on order batching as it relates to the bullwhip effect, the emphasis is
on smoothing demand by balancing orders across time and on synchronizing orders to improve
the opportunity to use consistent information. The main reason for order batching that we
consider in this study is the setup cost (fixed transportation cost per order). A few papers in
the literature consider setup cost issues as they relate to the bullwhip effect, but to the best
of our knowledge, none considers them in a setting where the manufacturer offers a setup cost
subsidy to dampen the bullwhip effect by increasing ordering frequency and thereby improve
profitability.
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We study a pricing scheme in which the manufacturer combines a transportation cost
subsidy with an adjusted wholesale price to achieve Pareto-improving outcomes for the man-
ufacturer and retailer. We analyze the problem as a Stackelberg game with the manufacturer
moving first, the retailer moving second by setting regular and discount prices as well as his
replenishment interval, and finally, heterogeneous customer segments choosing when and how
much to purchase given the retailer’s prices. We characterize the retailer’s optimal policy for
any manufacturer pricing policy, and show that the manufacturer needs to consider at most
three potentially optimal solutions. We also examine the impact of the optimal pricing policies
on the bullwhip effect and profits.

1.2 Retailer’s Optimal Pass-Through of Manufacturer’s Trade
Discounts When Retail Discounts Affect Reservation Prices
and Stockpiling

Manufacturers offer trade (wholesale) discounts to increase market share and profitabil-
ity, but retailers do not necessarily pass the full amount to customers. Empirical research has
found various pass-through rates in the market, ranging from as low as about 20% (Besanko et
al. 2005) to more than 100%. Researchers have investigated determinants of the retailer’s pass-
through rate. But to the best of our knowledge, none of the previous studies considers the fact
that retail discounts reduce consumers’ willingness-to-pay (which we refer to as the (negative)
brand equity effect). Some papers on the effects of retail discounts investigate how and to what
extent they affect the manufacturer’s long-term profitability. We incorporate the brand equity
effect in the retailer’s optimal pricing decisions.

We model and analyze the effect of retail discounts on customers’ reservation prices on
the retailer’s optimal pass–through of trade discounts when both the retailer and customers may
stockpile in response to the discounts. We show that the decline in the customers’ willingness
to pay as a consequence of retail discounts leads to a threshold effect for the manufacturer’s
trade discount. More specifically, the decline in the customer’s willingness to pay due to retail
discounts sometimes makes it necessary for the manufacturer to offer a trade discount exceeding
a threshold before the retailer exhibits any response to the discount. This threshold effect
does not arise when only stockpiling behavior is considered. We show that the retailer’s pass
through of the trade discount may be non–monotonic due to the effects of the retailer’s and
customers’ stockpiling. Results from a numerical study enable us to characterize combinations
of factors that lead to low or high pass–through rates. The interactions among the factors
in influencing the pass–through rate are complex. Our analysis helps to explain phenomena
observed in practice, and provides manufacturers insight into the multi-dimensional effect of
trade discounts on retailer and consumer behavior, and on profit.

In both studies, we develop new models of complex interactions among a manufacturer,
retailer and customers where pricing decisions are involved, where the retailer makes operational
decisions (such as ordering and stockpiling), and where common behavioral phenomena among
consumers (e.g., stockpiling in response to a discount and/or decreased willingness to pay due
to retail discounting). We derive detailed characterizations of each party’s optimal decisions
and the interactions among the parties’ decisions. With these characterizations, we are able
to obtain insights, both from the analysis directly and from extensive numerical studies. The
insights can provide guidance to manufacturers who face related decisions, and help to provide
explanations for phenomena observed in practice.

The first study appears in Chapter 2 and the second study appears in Chapter 3.
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Chapter 4 contains conclusions, including a discussion of contributions of the research and a
summary of key findings.
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Chapter 2

Improving Supply Chain
Profitability via Manufacturer
Pricing Policies Mitigating the
Bullwhip Effect

2.1 Introduction

Our work was motivated by discussions with both manufacturers and retailers regarding
the deleterious effects of significant transportation scale economies along the supply chain. Typ-
ically, large retail chains bear the cost of inbound transportation because the most economical
choice offered by most manufacturers is a wholesale pricing option that excludes transportation.
Due to transportation scale economies, retailers purchase in large batches and transport the
goods to warehouses for eventual distribution to retail stores. When a retailer orders in large
batches, he has an incentive to offer temporary discounts to clear his inventory more quickly.
Although the temporary discounts may allow the retailer to sell to customers who are unwilling
to purchase at the regular price, they may also cause customers to stockpile, which reduces the
burden of holding inventory for the retailer. Therefore, retailers may order even less frequently
and in even larger batches, thereby causing further difficulties for the manufacturer in man-
aging capacity and planning production. Such order batching and temporary retail discounts
(high-low pricing) are two causes of the well-known bullwhip effect (Lee et al. 1997).

Transportation scale economies are unlikely to disappear any time soon, so we seek a
manufacturer pricing policy that benefits both the manufacturer and retailer vis-a-vis the status
quo of the retailer bearing the full cost of inbound transportation. Manufacturers typically offer
a few pricing options, from a low unit price without transportation provided to a high unit price
with transportation provided. We focus on pricing policies that are equally simple because they
are easy to implement and can account for typical laws prohibiting price discrimination. We
present and analyze a pricing scheme in which the manufacturer seeks to improve his profitability
by partially subsidizing the retailer’s transportation cost in exchange for an increase (perhaps
zero) in the price per unit. The manufacturer could implement the transportation subsidy by
offering to take responsibility for the transportation and charging the retailer a transportation
fee that is less than what the retailer currently incurs. The manufacturer designs the pricing
scheme to maximize his own profit, recognizing that the retailer will optimize his own ordering
and pricing policies, and consequently, retail demands and customer purchasing patterns may
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also change. We seek solutions that are Pareto-improving for the manufacturer and retailer.
For the special case of a single customer segment, we show that a transportation sub-

sidy is always optimal. For more general cases,, we use numerical examples to explore the
impact of the manufacturer’s optimal pricing policy on the retailer’s replenishment interval and
pricing policy, and their combined impact on the bullwhip effect. We also provide insights into
conditions that have the greatest potential for profit improvements for the manufacturer and
retailer. In particular, sizable gains in both parties’ profits arise when the manufacturer chooses
a transportation subsidy and adjusted wholesale price that either (i) induce the retailer to lower
his prices and thereby reach market segments that were not profitable for the retailer under the
manufacturer’s initial price structure, or (ii) enable the retailer to order frequently enough that
he can utilize a policy with smaller temporary discount and yet increase sales.

The remainder of this chapter is organized as follows. Section 2.2 reviews the relevant
literature. In Section 2.3, we formulate the decision problems facing customers, the retailer
and the manufacturer, and analyze the customer’s problem. We analyze the retailer’s and
manufacturer’s problems in Sections 2.4 and 2.5, respectively. Section 2.6 closes the chapter
with a discussion of managerial insights.

2.2 Literature Review

The literature on two-part tariffs, the bullwhip effect, customers’ response to price
promotions, and retailers’ price promotion strategies are all pertinent to our work; we discuss
relevant articles below. The literature on the latter two topics is vast, so we limit our discus-
sion to the most relevant papers. Raju (1995) provides a nice overview of various aspects of
both trade promotions and retail promotions. See Lal et al. (1996) for a foundational model of
manufacturer promotions and retailer forward-buying. For models involving (normative) coor-
dination of manufacturer promotion and production decisions, see Sogomonian and Tang (1993)
and references therein.

2.2.1 Two-Part Tariffs

In the model presented in Section 2.3, the retailer faces a two-part tariff with a fixed
transportation cost per order either borne internally or paid to a transporter and constant whole-
sale price per unit paid to the manufacturer. Two-part tariffs have been studied extensively in
the economics, marketing and operations management literatures (see, for example, Schmalensee
1981 and references in Sudhir and Datta 2009). A two-part tariff is a special type of quantity
discount, and there is an extensive literature on various types of quantity discounts. Dolan
(1987) provides a nice discussion of the various motivations for quantity discounts. Jeuland and
Shugan 1983, Lal and Staelin 1984, Dada and Srikanth 1987 and Weng 1995, among others, offer
approaches that a seller can use to structure discounts to improve supply chain performance.

We are not aware of any research in which one of the manufacturer’s (seller’s) decisions
is a possible subsidy of a cost normally incurred by the retailer. Interestingly, however, Dolan
(1987) points out that some sellers offer f.o.b pricing at the destination (i.e., inbound freight
is included in the wholesale price) and then use quantity discounts as a mechanism for sharing
the transportation cost savings (owing to larger shipments) with the retailer and simultaneously
shifting the inventory costs to him. In some sense, our analysis provides a mechanism for
addressing these tradeoffs, but in our context, the manufacturer generally prefers smaller, more
frequent orders, because they reduce the required inventory accumulation in advance of each
shipment. Many manufacturers prefer a steady stream of small orders rather than infrequent
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large orders because of production-related issues as well as the costs of holding inventory, and the
manufacturer’s inventory holding costs in our model can serve as a proxy for both effects. Clearly,
an adjustment in the two-part tariff has the potential for improving supply chain profitability;
our concern is how to accomplish this while accounting for the potentially complex reactions of
the retailer and customers.

2.2.2 Bullwhip Effect

The bullwhip effect has been observed in industry for a long time. Researchers have
described both operational and behavioral causes of the bullwhip effect. Lee et al. (1997) ar-
ticulated four operational causes of the bullwhip effect: demand signal processing (distortion of
demand information when orders are transmitted upstream), shortage gaming (retailer’s ten-
dency to inflate orders to gain a larger allocation when supply is scarce), order batching and
price fluctuations. Both order batching and price fluctuations arise in our model, and we discuss
them further later in this section. Note also that order batching indirectly affects demand signal
processing, as infrequent orders lead to greater uncertainty about the order quantity and longer
information delays. For a recent survey on the bullwhip effect, see Miragliotta (2006).

Behavioral causes arise from suboptimal decisions and can be explained by the bounded
rationality of decision makers, particularly the failure to adequately account for feedback effects,
time delays, and in-transit inventory (Sterman 1989; Croson et al. 2004).

2.2.2.1 Order Batching

Lee et al. (1997) indicate that order frequency and the evenness of order arrivals over
time are key factors that determine the magnitude of the bullwhip effect. There is a sizable
literature, too extensive to review in detail here, that examines the effect of different ordering
policies (sometimes in conjunction with different forecasting strategies and under different in-
formation regimes). For recent examples, see Warburton (2004) and Wright and Yuan (2007).
There is also a stream of research that emphasizes coordination of the timing of orders, either
across supply chain members at the same echelon (such as retailers ordering from the same man-
ufacturer; cf. Cachon 1999) or across stages in the supply chain (e.g., Johansson et al. 2000).
In these papers, the emphasis is on smoothing demand by balancing orders across time and on
synchronizing orders to improve the opportunity to use consistent information. Finally, a few
papers consider the impact of standard batch sizes (of which customers must order a multiple)
on the bullwhip effect (e.g., Riddalls and Bennett 2001, Holland and Sodhi 2004 and Potter
and Disney 2006). Not surprisingly, larger standard batch sizes tend to exacerbate the bullwhip
effect due to increased demand distortion.

The main reason for order batching in our model is setup costs. Although a few
papers in the literature (all mentioned in Section 2.2.3) consider setups costs, to the best of our
knowledge, none considers them in a setting where two or more supply chain members explicitly
seek to modify the allocation of setup costs among the parties to improve profitability.

2.2.3 Consumer’s Reaction to Price Promotions

There is a vast literature on the impact of price promotions on consumer purchas-
ing decisions such as brand choice and purchase acceleration (i.e., stockpiling). In a variety
of empirical studies, researchers have come to somewhat different conclusions about which of
these effects is most prominent. In broad terms, however, they generally conclude that brand
switching constitutes the main effect, followed by purchase acceleration (see Gupta 1988 and
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Bell et al. 1999 for examples). Currim and Schneider (1991) propose a taxonomy of purchasing
strategies, categorizing customers according to their propensity to switch brands and/or to ac-
celerate purchases when a promotion is offered, and demonstrate their validity for ground coffee
purchases.

Evidence is mixed on whether consumer stockpiling in reaction to promotions leads
to an overall increase in consumption. A study by Chandon and Wansink (2002) suggests that
stockpiling does increase consumption for both high- and low-convenience products, but Ailawadi
and Neslin (1998), Bell et al. (2002) and Ailawadi et al. (2007) report evidence that stockpiling
causes an increase in consumption in some product categories, but not in others. Nijs et al.
(2001) present empirical results indicating that price promotions do not influence total cate-
gory sales. Researchers have studied whether purchase acceleration during promotions is offset
by lower purchases post-promotion. Hendel and Nevo (2003) present results suggesting that
post-promotion dips do occur. They (2004) also provide a survey of research on intertemporal
substitution for storable products.

A stream of empirical research examines the effect of promotions on stockpiling behav-
ior in particular. Beasley (1998) presents results of a study which indicates that deal-proneness
of the household, the consumer’s level of inventory and the depth of the discount affect the in-
cidence of stockpiling behavior. Two studies by Meyer and Assuncao (1990, 1993) suggest that
the stockpiling decision depends on the observed price of the good, the distribution of future
prices and the customer’s on-hand inventory. A study by Aggarwal and Vaidyanathan (1993)
indicates that short-term promotions accelerate purchases but longer-term promotions (such as
manufacturer coupons) do not. Mela et al. (1998) report evidence that increasing promotional
activity over the years has led to customers purchasing more during promotions and less during
non-promotional periods.

Krishna (1994) develops a normative model of consumer purchase behavior in the pres-
ence of deals whose timing is uncertain and shows that the optimal purchase quantity increases
with the uncertainty in timing. Related work has been done by Golabi (1985) and Helsen and
Schmittlein (1992), among others. Bucovetsky (1983) presents a normative model of customer
stockpiling and shows that the customers’ ability to stockpile combined with search costs that
limit their visits to different retailers can lead to an equilibrium strategy for the retailers in
which there is price dispersion, even when both retailers and customers are homogeneous.

2.2.4 Retailer’s Optimal Price Promotion Strategies

There is extensive research that attempts to explain retailers’ incentives for offering
price promotions. Blattberg et al. (1981) suggest that promotions are a means to transfer
inventory costs to the customer. They develop a model to determine the optimal discount and
optimal reorder cycle for the retailer. Jeuland and Narasimhan (1985) analyze a variant of the
Blattberg et al. model that considers price-sensitive demand and customers whose holding costs
are correlated with their purchase intensity. They show that the latter allows the retailer to price
discriminate, and that price discrimination is profitable if high demanders have high inventory
holding costs and low demanders have inventory holding costs small enough that their forward
buying during promotions compensates for the opportunistic behavior of the high demanders.
Analysis by Kopalle et al. (1996) indicates that asymmetry in customers’ (demand) response
around a reference price may make temporary price promotions optimal for the retailer.

Achabal et al. (2001) develop a normative model for the retailer’s promotion frequency,
regular and promotional prices, and inventory levels in promotional and non-promotional weeks.
Each promotion involves a fixed cost (e.g., for advertising) in addition to a price decrease. De-
mand depends upon the price reduction, the frequency of promotions (due to the impact on
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purchase acceleration), inventory levels, and seasonal effects. In their model, purchase acceler-
ation necessitates higher retail inventory levels, which is the reverse of the effect in our model.

The Blattberg et al. (1981) paper mentioned earlier considers a situation in which a
retailer sells to two customer segments, only one of which will stockpile. The retailer optimizes his
replenishment and pricing policy considering the consequent revenue, per-order setup costs and
inventory holding costs. We generalize the model to allow both customer segments to stockpile
and also include the manufacturer as another decision-maker who makes pricing decisions in
view of the retailer’s response, which depends upon the customer’s purchasing and stockpiling
choices.

We do not consider competitive effects in our model. There is a vast literature on pro-
motions in a competitive context, but very little of it considers the effects of customer stockpiling.
For examples of papers on this topic, see Kopalle et al. (1999) and Bell et al. (2002).

2.3 Problem Statement and Formulation

We model a scenario with two customer segments of arbitrary sizes, arbitrary but
different reservation prices and possibly different holding cost rates. We assume that each
customer consumes one unit per unit time (deterministically), provided that he has access to a
unit whose gross cost (including the cost of holding inventory from purchase to consumption)
does not exceed his reservation price. (It is straightforward to accommodate segments with
different consumption rates.) If a customer does not have access to such a unit, he foregoes
consumption of the product, possibly purchasing a less expensive (default) substitute whose
effects are not considered in the model. Products that have this characteristic include bottled
water (the default is tap water) or a national brand product whose consumption remains stable
over time (such as toothpaste or laundry detergent) where the default might be a store-brand
product. Using the aforementioned demand constructs, we are able to model a situation in
which the total demand for the product is price-elastic and both the total demand and the
profile of demand (as a function of time) seen at the retail level may differ depending upon
the manufacturer’s and retailer’s decisions. We assume that the presence of customer stockpiles
(where applicable) does not change the basic consumption rates. (This is easily justified for
products such as toothpaste but there is evidence of small increases in consumption for other
products when customers stockpile those products, as mentioned earlier.)

We model the case of a single retailer. Although one motivation for this assumption is
tractability, it turns out that the trajectory of total inventory over time in a system consisting
of a warehouse and the set of retail stores that it supports is quite similar to the trajectory for
a single mega-store that is directly supplied by the manufacturer and supplies the same set of
customers. This correspondence occurs because in both systems, the retailer receives orders in
batches from the manufacturer in the same way and sells goods to customers at the same pace.

We also assume that customers shop frequently enough that they can take advantage
of all promotions if they so choose. Many consumers purchase groceries frequently (e.g., once
a week), and most retail chains hold prices of non-perishable goods constant for a week, so our
assumption allows us to capture forward-buying behavior reasonably accurately. For simplicity,
we assume that the retailer offers a single price discount at the beginning of each replenishment
cycle (upon receipt of a shipment from the manufacturer). It can be shown that if the retailer
offers a discount only once during each replenishment cycle, this is the optimal timing.

Customer segment i, i=1,2, has λi customers, each of whom has a reservation price
ri and holding cost rate hi per unit time. We assume without loss of generality that r1 >
r2. Although customer heterogeneity can be modeled via a single segment with a range of
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reservation prices, such a representation leads to extremely messy expressions for quantities
purchased at the discount price and necessitates optimization of the regular price over the entire
range of reservation prices. Our representation of customer heterogeneity avoids both of these
complications.

The manufacturer has a constant unit production cost c (which we normalize to zero)
and an annual inventory holding cost per unit hm. We also assume that the manufacturer
produces at a finite rate P while operating, and that his production rate is adequate to satisfy
his demand.

The current transportation (setup) cost borne by the retailer is K per shipment and
the current wholesale price is w per unit. (Shipment quantity constraints can be accommodated
by limiting the replenishment interval.) In practice, K is either a cost borne internally by the
retailer if he uses his own truck fleet or a cost paid by the retailer to a third-party transporter, and
in the medium-term, the associated per-shipment costs are not controllable. We also assume
that the status quo value of w is exogenous. For a variety of reasons, including competitive
factors and price discrimination laws, the manufacturer may not be able to optimize w for a
given K, if he knows the value of K at all. (In particular, the retailer cannot offer different
wholesale prices simply because the retailers face different transportation costs.) Furthermore,
in many practical settings, the value of w is negotiated. One might view our model as one in
which the manufacturer is negotiating a transportation subsidy and wholesale price together,
starting from any arbitrary status quo situation. An offer of this form is a reasonable quid pro
quo that has the same type of structure as price structures commonly offered in practice, as
mentioned earlier. We note, however, that our analysis can be used to optimize w for any fixed
K, and provides insights for this case, as well.

The manufacturer chooses a (possibly subsidized) cost per shipment, K ′ and a wholesale
price, w′. The retailer has an annual holding cost per unit hr. The retailer chooses an “everyday”
price, p, the discount, ∆, and the replenishment interval, T . The customers choose how much to
purchase when the discount price is offered and whether to purchase at other times. We assume
that none of the parties has a strict limit on inventory storage. To avoid trivial solutions, we
assume that: (1) customers have finite, positive holding cost rates; and (2) r2 > c, so there
exists a discount price that allows the retailer to profitably sell to segment 2.

We analyze the problem as a Stackelberg game with the manufacturer as the first-
mover, the retailer as the second-mover, and the customer as the third (and last) mover. The
manufacturer and retailer must anticipate how the downstream player(s) will respond.

2.3.1 Customer’s Problem

Given the retailer’s decisions T, p and ∆ and his own parameters, the customer seeks
to minimize his total purchase and holding costs, with the stipulation that he will not purchase
if the gross cost of a unit, i.e., the unit purchase cost plus the cost of holding the unit from
purchase to consumption, exceeds his reservation price. In addition, customers do not stockpile
more than what they can consume during the retailer’s replenishment cycle, T , simply because
the retailer will offer the same discount at the beginning of the next cycle.

Before analyzing the customer’s decisions, we first examine whether we can limit the
range of regular prices that the retailer needs to consider. Clearly p < r2 is suboptimal because
the retailer could charge up to r2 without sacrificing any demand. If p > r1, all customers will
buy only at the discounted price (if at all), and the retailer would achieve the same or better
result by setting p = r1 with an appropriately-selected discount. Finally, any other price in the
open interval (r1, r2) is suboptimal because raising the price to r1 would not result in any loss of
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demand. Therefore, the optimal regular price is either r1 or r2. We now analyze the customer’s
purchasing and stockpiling behavior for these two cases.

2.3.1.1 p = r1

When the regular price is r1, the discount may not be large enough to entice customers
in segment 2 to buy. If the discount price r1−∆ exceeds r2, customers in segment 2 will not pur-
chase at all. Customers in segment 1 stockpile to satisfy their consumption for a duration ∆/h1,
after which they purchase at the regular price for immediate consumption. As noted earlier,
customers stockpile to satisfy demand for a duration of at most T . Thus, segment 1 stockpiles
to satisfy demand for a duration t1 = min{∆/h1, T}. Observe that it is not advantageous for
the retailer to choose ∆ > h1T because this will not induce customers in segment 1 to buy more
and simply reduces the price on all units sold to that segment. Segment 2 does not purchase at
all, so revenue from that segment is unaffected.

On the other hand, if the discount price, r1 − ∆, is less than r2, then customers
in segment 1 stockpile in the same way as described above, but the situation is different for
customers in segment 2 because they are willing to pay a gross cost of at most r2 per unit. The
surplus per unit of a customer in segment 2 when purchasing at the discount price is r2−(r1−∆),
and this is the maximum that such a customer is willing to spend on holding a single unit until
consumption. Therefore, customers in segment 2 stockpile to satisfy consumption for a duration
t2 = min{[r2 − (r1 −∆)]/h2, T}.

2.3.1.2 p = r2

When the regular price is r2 and a discount ∆ is offered, then the two segments stockpile
to satisfy demand for a duration ti = min{∆/hi, T} units, i = 1, 2. When their stockpiles are
depleted, they purchase at price r2 to satisfy consumption needs on a just-in-time basis.

From the above, we can write a formula for each customer’s stockpiling duration that

considers both cases: ti = min(T, [∆−(p−ri)+]+

hi
). This formula explicitly accounts for T as the

upper bound on each customer’s stockpiling duration. We initially assume, however, that ti ≤ T,
i = 1, 2 (i.e., the constraint is not binding), because this is a reasonable assumption for a
wide range of products. Our rationale is as follows. Due to internal material handling costs
associated with small order quantities (i.e., the non-reducible part of the setup cost incurred
by the retailer for each shipment), for most non-perishable, non-bulky products with low to
moderate demands, even very large retailers place orders only a few times a year, so T may
be as long as several months. (As an example, the authors are familiar with a drug store
chain with over 500 stores whose system-wide demand for a typical stockkeeping unit totals
only several pallets a year, partly because some of the items are quite small (e.g., dental floss)
and partly because customer demands are divided among a great diversity of products within
a product category.) Furthermore, it is unusual in practice for customers to stockpile for many
months ahead, if only due to space constraints. (Indeed, the literature suggests that customers
often underbuy when large purchases would be suggested by purely economic considerations;
see Meyer and Assancao 1990.) Our initial assumption captures situations where changes in
the manufacturer’s pricing policy have a reasonable chance of affecting the degree of customer
stockpiling. Nevertheless, we provide analysis in Appendix A to show what happens when
customers would be willing to stockpile extensively. Although the algebraic details differ, the
essential structural results and insights carry over to the more general situation.
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2.3.2 Retailer’s Problem

Now we formulate the retailer’s problem of maximizing his profit per unit time. We
often express revenue as the difference between revenue at full price and the total discount for
all units purchased at the discount price. For notational simplicity, we omit the primes on K ′

and w′ as they are constants in this section. As stated earlier, the retailer sets p = r2 or r1. If
p = r1, the retailer can choose a small discount and sell only to segment 1, or he can choose
∆ > r1 − r2 and sell to both segments. We discuss the various pricing options in turn.

2.3.2.1 Option 1: p = r2

When p = r2, both segments purchase to satisfy consumption throughout the cycle. In
addition, both groups stockpile when a discount is offered, with ti = ∆/hi for i = 1, 2. If the
customer segment’s respective stockpile is depleted before the end of the retailer’s replenishment
cycle, customers in that segment continue to purchase at the regular price for the remainder of
the cycle. Thus, the gross margin per cycle is (r2−w)(λ1+λ2)T−∆(λ1t1+λ2t2). The retailer sells
λ1t1+λ2t2 units instantaneously at the discount price at the beginning of each cycle. Then, when
customers in one segment have depleted their stockpiles, the retailer starts to deplete inventory
at that segment’s demand rate and then finally starts to deplete inventory at the sum of the
demand rates when customers in the other segment have depleted their stockpiles. Therefore,
the area under the retailer’s inventory curve for one cycle is hr

2 ((λ1 + λ2)T 2 − λ1t
2
1 − λ2t

2
2) (see

inventory diagram in Figure 2.1).

one of the segments

depletes stockpile

other segment

depletes stockpile

inventory

time

1t1+ 2t2 depleted

instantaneously

Figure 2.1: Inventory Diagram for Option 1

After substituting ti = ∆/hi, the objective can be written as

Π1(∆, T ) = (r2 − w)(λ1 + λ2)−
K + (

∑ λi
hi
− hr

2

∑ λi
h2i

)∆2

T
− hr

2
(λ1 + λ2)T. (2.1)

2.3.2.2 Option 2: p = r1 and ∆ ≤ r1 − r2

When p = r1 and ∆ ≤ r1−r2, segment 2 does not purchase at all. Segment 1 stockpiles
to satisfy consumption for a duration t1 = ∆/h1. The retailer sells λ1t1 units instantaneously at
the beginning of each cycle, and then starts to deplete inventory again when customers in segment
1 have depleted their stockpiles. The retailer’s gross margin per cycle is (r1 − w)λ1 −∆λ1t1/T
and the area under the retailer’s inventory curve for one cycle is λ1T

2 − λ1t
2
1.
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After substituting for t1, the retailer’s objective can be written as

(r1 − w)λ1 −
(λ1h1 −

hr
2
λ1
h21

)∆2 +K

T
− λ1hr

2
T. (2.2)

2.3.2.3 Option 3: p = r1, ∆ > r1 − r2

Similarly to the previous case, only segment 1 purchases at the regular price, but the
discount is large enough that segment 2 will purchase at the discount price and then stockpile
the purchase for future consumption. Hence we have t1 = ∆/h1 and t2 = ∆−(r1−r2)

h2
. Substituting

for t1 and t2, we can write the retailer’s profit function as:

Π3(∆, T ) = (r1 − w)λ1 −
K + g(∆)

T
− hrλ1

2
T, (2.3)

where g(∆) = (
∑ λi

hi
− hr

2

λ1

h2
1

)∆2 − λ2

h2
(r1 + r1 − r2 − w)∆ + (r1 − w)(r1 − r2)

λ2

h2
. (2.4)

Note that g(∆) reflects all of the effects of the discount: reduction in revenue from segment 1,
revenue from segment 2, and the savings in inventory holding costs due to customer stockpiling.

We provide a full analysis of the retailer’s problem in Section 2.4.

2.3.3 Manufacturer’s Problem

The manufacturer maximizes his profit by choosing a price pair (K ′, w′) to offer to the
retailer. Under the status quo, the retailer pays a transportation cost of K per shipment either
borne internally or paid to a third party and a wholesale price of w per unit. Unlike the retailer,
who can optimize his profit without regard for the impact of his choices on the manufacturer,
the manufacturer needs to ensure that the retailer will accept the new arrangement. Thus, the
manufacturer must account for the retailer’s participation constraint.

In its most general form, the manufacturer’s objective function is quite complex. As
we will show in the next section, the set of potentially optimal solutions for the retailer is small
and highly structured, and this allows for a significant simplification of the problem(s) that the
manufacturer needs to solve. We use the term dominant to refer to these potentially optimal
solutions. Here, we present the manufacturer’s objective function in shorthand notation:

max
K′,w′

R(T ∗(K ′, w′), p∗(K ′, w′),∆∗(K ′, w′))− cD(T ∗(K ′, w′), p∗(K ′, w′),∆∗(K ′, w′))

− hmI(T ∗(K ′, w′), p∗(K ′, w′),∆∗(K ′, w′))− (K −K ′)/T ∗(K ′, w′)

where R,D and I are the manufacturer’s revenue rate, (aggregate) average demand rate and
average inventory levels, respectively, and p∗,∆∗ and T ∗ are the retailer’s optimal decisions for
the given (K ′, w′). The last term is the transportation subsidy per unit time. We analyze the
manufacturer’s problem in Section 2.5.

2.4 Solving the Retailer’s Problem

For each profit function in (2.1),(2.2) and (2.3), we first optimize ∆ for an arbitrary
fixed T and then use these results to find the corresponding optimal T . These results, combined
with other results obtained later in this section, reduce the set of candidate optima significantly.
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Throughout our analysis, we make comparisons where dominance depends upon one
expression being less (greater) than another. For ease of exposition, we omit the points of
equality, and the reader should recognize that the equality could be associated with either
the “less than” or “greater than” with no loss of optimality, and when equality holds, weak
dominance applies. We also use the notation Πi(·) to refer both to a profit function and the
corresponding policy; in all cases, the meaning should be clear from the context.

2.4.1 Optimizing ∆ for Each Option

Characteristics of the optimal ∆ for a fixed T depend heavily upon the signs of the
coefficients of ∆2 in (2.1), (2.2) and g. Let α denote

∑ λi
hi
− hr

2

∑ λi
h2i

(the coefficient of ∆2 in

(2.1)), β denote λ1
h1
− hr

2
λ1
h21

(i.e., the coefficient of ∆2 in (2.2)) and γ denote
∑ λi

hi
− hr

2
λ1
h21

(i.e.,

the coefficient of ∆2 in g). These expressions are functions only of the problem data, so their
signs can be determined in advance.

The value of α is positive if

hr < 2
∑ λi

hi

/∑ λi
h2
i

To provide some intuition regarding this condition, in the special case of h1 = h2 = h, the right
hand side of the above expression is equal to 2h. Loosely speaking, the relation is a condition
on hr relative to the (weighted average) holding costs of the two segments.

The condition β > 0 is equivalent to hr < 2h1.
The value of γ is positive if

hr < 2h1 +
2h2

1λ2

h2λ1

which again is a condition on the relationship between hr and a function of the holding costs of
the two customer segments. To provide some intuition, in the special case where h2 = h1 and
λ1 = λ2, the right hand side of the above expression is equal to 4h1.

Observe that α > 0 implies γ > 0, γ < 0 implies α < 0, γ < 0 implies β < 0 and γ < 0
implies α < 0. Thus, the only possible combinations of signs are shown in Table 1.

Case α β γ

I + - +
II - - +
III + + +
IV - + +
V - - -

Table 2.1: Combinations of Signs of Coefficients of ∆2

By analyzing terms in the profit functions that depend upon ∆, we are able to determine
the optimal ∆ for each profit function. We summarize the results for Cases I through IV in Table
2.1. We use two pieces of shorthand notation in the Table, ∆0 and ∆UB, which we define next.
∆0 is the stationary point of g. ∆UB denotes the optimal discount for situations where α < 0
(i.e., Cases II and IV). In these situations, the optimal solution for Option 1 has the property
that at least one of the segments stockpiles for the entire replenishment cycle. (Technically, ∆UB
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α> 0 α < 0

β < 0 Case I Case II
(hr > 2h1) Π1(0),Π2(r1 − r2),Π3(∆0) Π1(∆UB),Π2(r1 − r2),Π3(∆0)

β > 0 Case III Case IV
(hr < 2h1) Π1(0),Π2(0),Π3(∆0) Π1(∆UB),Π2(0),Π3(∆0)

Table 2.2: Potentially Optimal Policies Considering Optimal Discounts

is not an upper bound, but the nomenclature serves as a reminder that the discount is fairly
large.) Detailed derivations of the results in the table can be found in Appendix D. The results
in Table 2.2 rely only on the functional forms of the terms involving ∆. We can eliminate other
policies due to (economic) dominance of one profit function over the other (see Appendix D for
details).

Additional results can be derived for Cases III and IV, where β > 0 so for Π2, ∆∗ = 0.
We can show that Π2(0) dominates Π3(∆0) if w′ exceeds a threshold which we call w2 and
the reverse holds otherwise. (The threshold w2 is the value of w′ that equates g(∆0) to 0;
g(∆0) <> 0 for w′ <> w2.) Thus, if there exists no ∆ > r1−r2 (the range of ∆ values for which
Π3 is applicable) such that g(∆) < 0, then Π3(∆0) is dominated by Π2(0) and the converse
holds if any such feasible ∆ exists. Thus, for any set of problem parameters, the retailer only
needs to compare two potentially optimal policies, as shown in Table 2.3. (Whether Π2 or Π3

needs to be considered depends upon the value of w.)

α > 0 α < 0

β < 0 Case I Case II
(hr > 2h1) Π1(0),Π3(∆0) Π1(∆UB),Π3(∆0)

β > 0 Case III Case IV
(hr < 2h1) Π1(0), and Π2(0) or Π3(∆0) Π1(∆UB), and Π2(0) or Π3(∆0)

Table 2.3: Reduced Set of Potentially Optimal Policies

Case V is the only case with γ < 0, which corresponds to situations in which the
retailer’s holding cost is quite high in comparison to the customers’. In Appendix D, utilizing
our earlier analysis characterizing how the profit functions change with ∆, we show that only
Π1(∆UB), Π2(r1 − r2) and Π3(∆ub) need to be considered, where ∆ub is the optimal solution
applicable to Option 3 which is analogous to ∆UB for Option 1. We also show that Π2(r1 − r2)
is dominated by Π3(∆ub), hence only Π1(∆UB) and Π3(∆ub) remain as potentially optimal
solutions.

To summarize, the retailer must evaluate the solutions listed in Table 2.3 for Cases I,
II, III, and IV, and Π1(∆UB) and Π3(∆ub) for Case V, and choose the best one.

We now seek to identify regions in the two-dimensional space of w′ and K ′ in which
the retailer prefers each of these policies. As before, we drop the primes on w′ and K ′ as they
are constants in the retailer’s problem. We present the analysis for cases with α > 0 in detail
and later explain what differs for analogous cases with α < 0.
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2.4.2 Retailer’s Dominant Policy Regions

We divide our analysis according to the cases in Table 2.3, first considering cases with
α > 0.

2.4.2.1 Case I: α > 0, β < 0 (
∑ λi

hi
− hr

2

∑ λi
h2i
> 0, hr > 2h1)

The profit functions for the two dominant choices are: -0.05in

Π1(0, T ) = (r2 − w)(λ1 + λ2)− K

T
− hr

2
(λ1 + λ2)T,

Π3(∆0, T ) = (r1 − w)λ1 −
K + g(∆0)

T
− hrλ1

2
T.

Maximizing Π1(0, T ) with respect to T gives T ∗ =
√

2K
(λ1+λ2)hr

. Substituting this expression for

T ∗ into the objective, we have

Π∗1(∆ = 0) = Π1(∆ = 0, T ∗) = (r2 − w)(λ1 + λ2)−
√

2hr(λ1 + λ2)
√
K. (2.5)

Similarly, maximizing Π3(∆0, T ) gives T ∗ =
√

2(K+g(∆0))
hrλ1

(if K + g(∆0) ≥ 0), so

Π∗3(∆0) = Π3(∆0, T
∗) = (r1 − w)λ1 −

√
2hrλ1

√
K + g(∆0). (2.6)

Both profit functions are convex decreasing in K, and Π∗1(∆ = 0) decreases more
rapidly than Π∗3(∆0) because λ2 ≥ 0 and g(∆0) < 0. (For a proof that g(∆0) < 0 in this case,
see Appendix F.) Hence if (r2 − w)(λ1 + λ2) ≤ (r1 − w)λ1, then Π∗3(∆0) dominates Π∗1(∆ = 0)

for all K, or equivalently, there is a threshold w1 ≡ r2(λ1+λ2)−r1λ1
λ2

such that if w ≥ w1, Π∗3(∆0)
dominates. On the other hand, if w < w1, Π∗1(∆ = 0) is dominant to the southwest, and
Π∗3(∆0) is dominant to the northeast, of the switching curve which is defined by points where
the two profit functions are equal. Figure 2.2 shows a typical dominance map for this case. The
switching curve is not necessarily monotonic, but, it is straightforward to show it is unimodal and
the stationary point (with respect to K) is negative, so the function is monotonically decreasing
over the relevant range.

w!

w1

Option 3 preferred

Option 1 preferred

K!

Figure 2.2: Dominance Map 1 (Case I)

Thus far we have assumed that K+g(∆0) ≥ 0. In the unusual case where K+g(∆0) <
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0, the benefits of offering the optimal discount, ∆0, are so large that they outweigh the setup
cost, so the retailer has an incentive to order extremely frequently. But because the manufacturer
will be worse off as T goes to zero, he will choose w and K to prevent the retailer from choosing
this option.

2.4.2.2 Case III: α > 0, β > 0 (
∑ λi

hi
− hr

2

∑ λi
h2i
> 0, hr ≤ 2h1)

Case III is more complicated as we have to consider all three profit functions. However,
as mentioned earlier, if g(∆0) > 0 at the given w, Π∗3(∆0) is dominated by Π∗2(∆ = 0) and the
reverse holds if g(∆0) < 0 at the given w. With some analysis (see Appendix G for details),
we can show that the dominance map for this case has the form shown in Figure 2.3, where
w2 is the value of w at which g(∆0) = 0. In particular, we show that such a threshold, which
separates the regions in which Option 2 and Option 3 are dominant (for large K ′) exists, and
that the curve shown in the diagram is continuous and monotonically decreasing.

w!

Option 1 Option 2

preferred preferred

2

w2

Option 3

Option 1 preferred preferred

K!

Figure 2.3: Dominance Map 2 (Case III)

2.4.2.3 Cases II and IV: α < 0

The condition α < 0 implies that the retailer’s holding cost is large in comparison to
the “weighted average” holding costs of the two customer segments, so ∆ is at an upper limit
rather than at a lower limit. The analysis for Cases II and IV is otherwise analogous to that
for Cases I and III, respectively, replacing Π1(0) by Π1(∆UB). The objective function takes
different forms depending upon which customer segment has the higher holding cost. Details
appear in Appendix A in the subsection titled “Analysis of Π1 for Large ∆.”

The resulting optimal profit functions differ from Π∗1(∆ = 0) obtained in Case I (cf.
(2.5)) only in the coefficient of

√
K ′, and in both cases, the coefficients are simply constants

that depend upon the problem parameters. Thus, we can define switching curves analogous to
those derived for Cases I and III. The dominance maps have qualitatively the same structure
as those for Cases I and III, respectively. As in the cases analyzed earlier, there is a threshold
value of w that plays a role in the dominance map.

2.4.2.4 Implications

Here, we discuss implications of Dominance Maps 1 and 2 for Cases I and III, respec-
tively, but qualitatively similar conclusions can be drawn for Cases II and IV. We wish to answer
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the following question: What does the manufacturer have to do induce the retailer to choose
another pricing option that may be advantageous for the manufacturer as well?

For the situation illustrated in Dominance Map 1, Π1(0) and Π3(∆0) (with their corre-
sponding T ∗ values) are candidate optimal solutions. If the current K and w are to the northeast
of the switching curve, the manufacturer can induce the retailer to switch by choosing w′ and
K ′ to the southwest of the switching curve. The retailer will then prefer Π1(0), i.e., an everyday
low price policy under which he sells to both segments rather than only one segment. Both the
retailer and manufacturer may gain due to greater market penetration. Furthermore, because
the retailer would then be holding more inventory (as ∆ = 0) and because K ′ is relatively small,
he orders frequently in small quantities, so the manufacturer may also reduce his holding costs.

For situations corresponding to Dominance Map 2, the manufacturer may shift to a
high value of w′, which induces the retailer to choose an “every day high price” policy; thus,
he sells only to customers in Segment 1 and those customers do not stockpile. However, the
numerical results reported later in this chapter suggest that such a shift is rarely preferred by
the manufacturer. Instead, the manufacturer prefers to induce the retailer to shift his pricing
strategy to entice Segment 2 customers to purchase for at least part of the cycle. This may
require a transportation subsidy, a reduction in the wholesale price, or possibly both. Either
shift in the retailer’s pricing strategy enables the retailer to sell to segment 2, which may lead to
a substantial increase in the retailer’s profits, and possibly also the manufacturer’s. Of course,
the manufacturer will only choose a transportation subsidy and adjustment in the wholesale
price that ultimately benefit himself. We explore these phenomena further after analyzing the
manufacturer’s problem.

2.5 Manufacturer’s Problem

The dominance maps reveal that for any set of problem parameters, the retailer will
choose among at most three options. Thus, to solve the manufacturer’s problem for each domi-
nance map, we only need to solve one constrained optimization for each possible retailer response,
where within each problem, the constraints consist of the retailer’s incentive compatibility (IC)
constraint and his participation constraint. In modeling the retailer’s participation constraint
that the manufacturer must consider, we assume that the status quo values of K and w are pre-
specified. The manufacturer chooses the pricing solution with the highest profit. (By definition,
one of these solutions must satisfy his own participation constraint.)

Because the optimization problems involve two nonlinear constraints containing square
roots, solutions for most of the problems cannot be obtained in closed form. Consequently, in
the remainder of this section, we focus on problem formulations. Results that simplify the
analysis and sketches of the solution procedures can be found in Appendix H. In general, the
problems can be solved by careful application of standard nonlinear optimization techniques.
We discuss each dominance map in turn. Note that for some problem parameters there may be
no feasible solution to the manufacturer’s problem in one or more regions of the dominance map;
such alternatives may be eliminated from consideration. In this section, we use the following
additional notation: ∆′0 is the optimal value of ∆0 at w = w′ and t′2 is the value of t2 at ∆ = ∆′0.

Below, we index options in the same way as the retailer’s pricing options (cf. Section
2.3.2).

Dominance Map 1: Π1(0) versus Π3(∆′0)

Option 1: Retailer chooses Π1(0) with T ∗ =
√

2K′

(λ1+λ2)hr
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After substituting for T ∗, the manufacturer’s objective becomes

Πm
1 = (λ1 + λ2)w′ −

K
√

(λ1 + λ2)hr/2√
K ′

+

√
λ1 + λ2[hrP − (λ1 + λ2)hm]√

2hr

√
K ′ (2.7)

The participation and incentive compatibility constraints are, respectively,

w′ ≤
[
r1(λ1 + λ2)−

√
2hr(λ1 + λ2)

√
K ′ −Π0

] /
(λ1 + λ2), and

w′ ≤
[
r2(λ1 + λ2)− r1λ1 −

√
2hr(λ1 + λ2)

√
K ′ +

√
2hrλ1

√
K ′ + g(∆′0)

] /
λ2, (2.8)

where Π0 denotes the retailer’s current profit.

Option 3: Retailer chooses Π3(∆0) with T ∗ =
√

2[K′+g(∆′
0)]

λ1hr

After substituting for T ∗, ∆′0 and t′2, the manufacturer’s objective becomes:

Πm
3 = λ1w

′ +

√
hrλ1[K ′ −K + f(w′)]√

2[K ′ + g(∆′0)]
−
hmλ1

√
2[K ′ + g(∆′0)]

2hr
− hmλ1λ2(c1w

′ + c2)

P
(2.9)

where f(w′) is a quadratic function of w′ in which the coefficients depend only on the problem
data and c1 and c2 are constants that depend only on on the problem data (see Appendix H for
details).

The IC constraint is the same as given in (2.8) but with the inequality reversed. The
participation constraint is (r1 − w′)λ1 −

√
2hrλ1

√
K ′ + g(∆′0) ≥ Π0.

Dominance Map 2: Π1(0) versus Π2(0) or Π3(∆′0)
The relevant objectives and participation constraints were presented earlier. The IC

constraints only require that w′ > w2 (< w2) if the retailer chooses Π∗2 (Π∗3).

Option 1: Retailer chooses Π1(0) with T ∗ =
√

2K
(λ1+λ2)hr

The objective and participation constraint are the same as for Dominance Map 1.
There are two different IC constraints depending upon whether w >< w2.

For w′ > w2, the IC constraint is:

w′ ≤
[
r2(λ1 + λ2)− r1λ1 −

√
2hr(λ1 + λ2)

√
K +

√
2hrλ1

√
K
] /
λ2. (2.10)

For w′ < w2, the IC constraint is the same as given for Dominance Map 1 when the
retailer chooses Π1(0).

Option 2: Retailer chooses Π2(0) with T ∗ =
√

2K′

λ1hr

After substituting for T ∗, the manufacturer’s objective becomes:

Πm
2 = λ1w

′ −
K
√
λ1hr/2√
K ′

+

√
λ1 + λ2(hrP − λ1hm)√

2hr

√
K ′. (2.11)

The retailer’s participation constraint is (r1 − w′)λ1 −
√

2hrλ1

√
K ′ ≥ Π0 and the IC

constraint is the same as that given in (2.10) but with the inequality reversed.

For Cases II and IV, the formulations can be constructed similarly.

Before closing this section, we note that if the manufacturer wishes to optimize w′

for any fixed K (e.g., the current value), he still needs to account for the retailer’s choices as
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reflected in the dominance maps. The problem, of course, is easier because he only needs to
identify the relevant threshold value of w and solve the appropriate constrained optimization
problems for w′ above and below that threshold. Likewise, the manufacturer can optimize K ′

for any fixed w, which would be relevant in competitive situations where the manufacturer is a
price-taker.

2.5.1 The Single-Segment Problem

Due to the complex form of the manufacturer’s problem, we cannot obtain closed-form
solutions for the case of two customer segments. To obtain additional insights, we analyze the
single-segment case. The retailer only has one pricing option, Π2, so the retailer’s objective
function reduces to

Π2(∆, T ) = (r1 − w′)λ1 −
K ′ + λ1

h1
(1− hr

2h1
)∆2

T
− hr

2
λ1T.

Clearly, the retailer’s optimal discount, ∆∗, depends on the sign of 1− hr
2h1

. We consider the two
possibilities in turn.

2.5.1.1 Case A: 1− hr
2h1
≥ 0

When 1 − hr
2h1
≥ 0, the coefficient of ∆ in the retailer’s objective function is negative

and hence ∆∗ = 0. With ∆∗ = 0, the retailer’s first order necessary condition with respect to T
gives

T ∗ =

√
2K ′

λ1hr
.

Substituting for T ∗ in the manufacturer’s objective, we get

Πm
2 = λ1w

′ − (K −K ′)
√
λ1hr√

2K ′
− hmλ

2
1

√
K ′

P
√

2λ1hr
. (2.12)

Because the retailer has only one pricing option in the single-segment problem, IC
constraints are unnecessary. The retailer’s participation constraint is binding, as we explain
next. From (2.12), observe that for any K ′, the manufacturer’s objective is increasing in w′ so
he would like to increase w′ as much as possible for any arbitrary K ′. The retailer’s objective
evaluated at T ∗, i.e., (r1−w′)λ1−

√
2hrλ1K ′, is decreasing in both w′ and K ′. Thus, for any K ′

the manufacturer will choose a w′ that necessarily makes the retailer’s participation constraint
binding.

Applying the participation constraint Π∗2 = Π0, where Π0 is the retailer’s profit under
the current pricing regime, we get

w′∗ = w +

√
2hrλ1(

√
K −

√
K ′)

λ1
. (2.13)

Taking the first derivative of Πm
1 with respect to K ′ and substituting for w′∗ and then for Π0,

and performing a few additional algebraic manipulations, we find that K ′∗ satisfies

K ′∗

K
=

[
1 +

hm
hr

λ1

P

]−1

. (2.14)

We can obtain w′∗ by substituting K ′∗ back into (2.13).
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The formula in (2.14) suggests that it is always optimal for the manufacturer to sub-
sidize transportation and the optimal fractional transportation subsidy increases with hm/hr
and λ1/P . As hm/hr increases, the relative economic disadvantage of the manufacturer hold-
ing inventory vis-a-vis the retailer increases. As λ1/P increases, the manufacturer’s holding
costs incurred while accumulating stock prior to each shipment increases. Both of these effects
increase the manufacturer’s incentive to provide a larger transportation subsidy. The formula
also makes clear the essence of the tradeoff: the manufacturer’s holding cost is proportional to
hmλ1/P while the retailer’s holding cost is proportional to hr. (Recall that ∆ = 0 in this case,
so the retailer does not transfer any of the holding costs to the customers.) So the fractional
transportation subsidy depends directly on the ratio of these two cost expressions.

2.5.1.2 Case B: 1− hr
2h1

< 0

Following analysis similar to that for Case A, we can derive the optimal solution to the

retailer’s problem as ∆∗ = h1T
∗ and T ∗ =

√
K′

λ1h1
. Then continuing as in Case A, we obtain

K ′∗

K
=

[
1 +

hmλ1

2h1P

]−1

. (2.15)

As in (2.14), the optimal fractional transportation subsidy increases with λ1/P , but
instead of increasing with hm/hr, the subsidy increases with hm/2h1. This relationship arises
because T ∗ is a function of h1 instead of hr, as it was in Case A. In Case B, the retailer holds
no inventory because the customers stockpile to satisfy their demand for the entire cycle, so the
key tradeoff is between the manufacturer’s holding cost hm and the customer’s holding cost h1.
As in Case A, the retailer’s participation constraint is binding and a transportation subsidy is
always optimal.

In both cases, the retailer’s participation constraint is binding, so the retailer’s profit is
unaffected by the manufacturer’s pricing decision, and the manufacturer simply seeks a (K ′, w′)
to induce the retailer to choose ∆ and T that optimize the total system profit. Because the
equilibrium solution maximizes system-wide profit and the retailer’s profit is fixed, the manu-
facturer has no incentive to deviate from the stated solution. Thus, the manufacturer applies
either (2.14) or (2.15), as appropriate, just once, not repeatedly.

The single-segment problem does not capture the impact of discounts in reaching a
larger customer base, which is a key reason why retailers may use high-low pricing. We explore
this issue through a computational study for scenarios with two segments. Here, too, we will
see that it may be beneficial for the manufacturer to offer a transportation subsidy. The results
also provide insights into the interactions between the transportation subsidy and the pricing
policy.

2.6 Numerical Results

In this section, we explore characteristics of the manufacturer’s optimal pricing scheme
for an array of problems. We found equilibrium solutions for the following combinations of
parameters which would be typical for a product sold at the drug store chain that motivated our
work, but they also represent a range of scenarios that lead to varied optimal pricing decisions.:
r1 = 5, r2 = 3.5 or 4.5, λ1 = 3000, λ2 = 1500, 3000 or 15000, P = 20(λ1 + λ2), K = 500
and w = 2.5. We set h1 = 0.2r1 or 0.5r1, h2 = 0.2r2 or 0.5r2, hr = 0.5h1, h1, or 2.5h1, and
hm = 0.2hr, 0.5hr or hr. We explain our parameter choices below. We consider both situations
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where the two segments have similar (r1 = 5, r2 = 4.5) and quite different (r1 = 5 and r2 = 3.5)
reservation prices. Similarly, the number of customers in segment 2 may be much larger than in
segment 1 (because typically, many more customers would be willing to pay a moderate price
rather than a high price) but we also allow it to be smaller. The production rate is set so that
the manufacturer could supply all potential customers of 20 retailers that are equivalent in size
to the retailer in our model. (The actual demand from each retailer may be far less so the
manufacturer could then supply many more retailers.) We chose a single base transportation
cost, K = 500, which is roughly the cost of a short-haul trip of a few hours, which would be
typical in our motivating scenario.

The customers’ annual per unit holding costs correspond to annual inventory holding
cost rates (percentages) of 20% and 50% assuming their purchase cost is equal to their reservation
price. (The actual price may be less, depending upon the retailer’s pricing policy.) These
relatively high holding cost rates reflect the customers’ tendency to stockpile less than what
economic considerations (i.e., their opportunity cost of capital and opportunity cost of storage
space) would suggest; this is consistent with empirical evidence on stockpiling behavior. The
retailer’s holding costs range from 50% of segment 1’s holding cost up to 2.5 times segment 1’s
holding cost. At the low end of the range, the retailer prefers to hold inventory and avoid offering
discounts, while at the high end of the spectrum, the retailer has a strong incentive to transfer
inventory to the customers by offering discounts. We set the manufacturer’s holding costs to be
less than or equal to those of the retailer because manufacturer’s storage facilities tend to be
in lower-cost locations than retail distribution centers. These combinations yield a total of 216
problem instances. There are 6, 66, 126, and 18 instances that satisfy the conditions of Cases I,
II, III and IV, respectively (see Table 3 for the conditions defining the cases). It turns out that
for some of these cases, the ranges of parameter values satisfying the corresponding conditions
on α and β are quite small. The reasons are as follows. The expression for α can be rewritten
as λ1

h1
(1 − hr

2h1
) + λ2

h2
(1 − hr

2h2
). So, if β (i.e., the first parenthetical expression in the formula) is

negative, the first term in the expression is negative and α is positive only if h2 lies in a restricted
range (holding other parameters constant). This is why only a few problem instances satisfy
the conditions of Case I. (We generated additional problem instances satisfying the conditions
of Case 1; their solutions have characteristics that are similar to those in our initial set.) The
number of problem instances satisfying the conditions of Case IV are limited for similar reasons,
but the conditions are not as restrictive as they are for Case I.

We found equilibria for the manufacturer’s current pricing scheme (“before”) and when
he can choose K ′ and w′ (“after”). We categorize the results according to the retailer’s pricing
strategies in the “before” and “after” scenarios. There are five pricing schemes: (i) p = r2,∆ = 0
(everyday low price—EDLP); (ii) p = r2,∆ > 0 (low price with discounts—LPD); (iii) p =
r1,∆ = 0 (everyday high price—EDHP); (iv) p = r1, 0 < ∆ ≤ r1 − r2 (high price with shallow
discounts—HPSD); and (v) p = r1,∆ > r1− r2 (high price with deep discounts—HPDD). Table
4 shows the average profit improvement for the manufacturer and the number of instances for
each before–after combination.

The manufacturer achieves substantial profit improvement when his new pricing policy
reduces the retailer’s operating costs enough to allow him to embrace Segment 2 as customers.
This occurs, for example, when the retailer switches from EDHP to EDLP, EDHP to HPDD,
HPSD to LPD or HPSD to HPDD. The best opportunities arise when (i) products have high
price elasticity, where small changes in the price would bring in a relatively large incremental
revenue (i.e., a large segment 2 with a reservation price fairly close to that of segment 1), or (2)
when the retailer has high implicit holding costs—-either his own holding costs if he is holding
most of the inventory, or the cost of the discounts to induce customers to stockpile to relieve
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him of the holding costs. In the latter situation, a transportation subsidy relieves the retailer of
considerable holding costs.

After

Before EDLP LPD EDHP HPSD HPDD

EDLP 0% (90)† — — — —

LPD — 0% (15) — — —

EDHP 36% (21) — 0% (24) — 39% (3)

HPSD — 20% (3) — 0% (12) 52% (9)

HPDD — — — 1.6% (39)
† number of problem instances

Table 2.4: Manufacturer’s Profit Increase from New Pricing Scheme for Various Changes in
Retailer’s Pricing Strategy

There are also some instances (see the bottom right cell in the table) where adjustments
in a HPDD policy are beneficial to the manufacturer. In 3 of these 39 instances, the retailer’s
replenishment cycle is long and Segment 2 purchases (only at the discount price) to fulfill demand
for only a small portion of the replenishment cycle. To induce Segment 2 to purchase more, the
retailer would have to offer an extremely large discount. By offering a transportation subsidy,
the manufacturer enables the retailer to reduce his replenishment cycle to the point where he can
adjust the discount in such a way that he can entice Segment 2 to purchase to satisfy demand
for a much larger portion of the replenishment cycle. For these 3 instances, the improvement
in the manufacturer’s profit averages 21%. These instances have relatively high values of h2 so
the customer’s stockpiling duration is short. As such, changes in the cycle duration may have a
strong impact on total sales to Segment 2.

Recall that the manufacturer chooses Pareto-improving K ′ and w′, so the retailer is
never worse off. Table 2.5 shows the improvement in the retailer’s profit as a function of the
price strategy change induced by the manufacturer. In the cells with positive changes, retailer’s
profit increases due to greater market penetration (more or all of Segment 2’s demand). Some
profit gains of the retailer are quite substantial and although they accrue to the retailer in our
model, if retailers perceive that a manufacturer offers a price structure that allows retailers to
earn more profit when operational costs such as transportation and inventory are considered,
that manufacturer’s products will be more competitive in the long term.

We now turn to an evaluation of consumer surplus. For several of the changes in the
retailer’s pricing strategy (EDHP to EDLP, EDHP to EDHP, EDHP to HPDD, and HPSD to
HPDD), the surplus of each segment is guaranteed to improve or remain the same. Here, we
discuss circumstances where there is potential for the net surplus to decline. For all instances
where the retailer retained the LPD or HPSD policy, there was no change in the consumer
surplus because the retailer did not change his prices. In all 39 instances where the retailer
retained the HPDD policy, consumer surplus increased, sometimes manifold. Thus, although it
is possible for consumer surplus to decline when the manufacturer induces the retailer to switch
to a new pricing policy, this appears not to have a deleterious effect on consumers, and indeed,
often makes them better off.

Thus far, we have focused on the effects of the optimal pricing policy on the retailer’s
and manufacturer’s profits and consumer surplus. We next report on the extent to which the
profit-optimizing solutions dampen two causes of the bullwhip effect: order batching and high-
low pricing. A detailed examination of “before” and “after” solutions reveals that, when it is
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After

Before EDLP LPD EDHP HPSD HPDD

EDLP 0% (90)† — — — —

LPD — 0% (15) — — —

EDHP 45% (21) — 0% (24) — 60% (3)

HPSD — 62% (3) — 0% (12) 47% (9)

HPDD — — — — 0% (39)
† number of problem instances

Table 2.5: Retailer’s Profit Increase for Various Changes in His Pricing Strategy Induced by the
Manufacturer’s Pricing Policy

optimal for the manufacturer to change K, two types of changes are common:
(1) T decreases, w decreases (from r1 to r2) and ∆ remains unchanged (virtually always zero
both before and after)—about 61% of the changes; and
(2) T decreases, w is unchanged and ∆ increases—about 33% of the changes
Less common is the following type of change:
(3) T decreases, w decreases (from r1 to r2) and ∆ decreases—about 6% of the changes.
Thus, in all cases where K ′ < K, T decreases, with a typical reduction of 30% in our set
of numerical examples (details omitted). From the manufacturer’s perspective, the retailer’s
replenishment interval is a key metric of the bullwhip effect—the impact of high-low pricing on
the manufacturer is fully reflected in the retailer’s replenishment interval. Thus, although ∆
increases for instances in category (2) above, T decreases despite the increase in ∆ because this
change makes both parties better off. As such, there may be an increase in the degree of price
fluctuations even when the bullwhip effect—as observed by the manufacturer—has declined. The
reason why this occurs is that the price fluctuations at the retailer occur within the retailer’s
replenishment cycle and not from one replenishment cycle to the next. As such, care must be
taken in claiming that price fluctuations exacerbate the bullwhip effect. Instead, a change in
the manufacturer’s pricing policy that induces the retailer to make changes in either pricing or
operational policies that ultimately lead to shorter retailer replenishment cycles will dampen
the bullwhip effect, even if intermediate symptoms such as price fluctuations appear to worsen.

Thus far, we have focused on problem in stances in which it is optimal for the manufac-
turer to change K. There are three other instances in which it is optimal for the manufacturer
to keep K constant but to reduce w. In these instances, the reduction in w allows the retailer
to sell to both segments profitably so the retailer lowers his regular price. Furthermore and
interestingly, the retailer also increases ∆ and by doing so, shifts the inventory burden almost
entirely to the customers. Consequently, the retailer also increases T (by about 30%). Thus, the
bullwhip effect (as measured by T ) increases, but the manufacturer’s profitability increases (by
about 80% in these instances) because two segments are purchasing instead of one. Thus, if the
manufacturer seeks to optimize K and w, he may keep K constant and reduce w. In such cases,
it is obvious that the bullwhip effect will worsen. If the manufacturer is concerned primarily
about the bullwhip effect, he can simply retain his current pricing scheme. However, by doing
so, he may be foregoing a substantial increase in profit and market share.

To summarize, in about 80% of our problem instances, K and w do not change when the
manufacturer attempts to optimize them because of his own participation constraint. However,
when he stands to benefit from a change, it is quite likely that the bullwhip effect—as reflected
in the retailer’s replenishment interval—decreases and the profitability of the supply chain may
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increase substantially, with the vast majority of the benefit accruing to the manufacturer. In
many instances, this occurs even when retail price fluctuations become worse. We note that
our numerical results are based on values of K that are consistent with the cost of fairly short
trips of 200 miles or less (as in our motivating example). Thus, the manufacturer’s latitude for
subsidizing transportation is relatively limited. When the initial K is larger, we would expect a
greater percentage of cases in which a transportation subsidy would be advantageous

2.7 Conclusions

We have analyzed a three-stage supply chain consisting of a manufacturer, retailer, and
two segments of end-consumers who may differ in their reservation prices and their propensity
to stockpile. The retailer incurs a transportation (setup) cost for each order as well as inventory
holding costs. He therefore orders in batches, which gives him an incentive to offer discounts
to clear his inventory more rapidly. The retailer decides regular and discount prices and his
replenishment cycle.

We analyze a three-stage Stackelberg game in which the manufacturer can subsidize the
retailer’s transportation cost and adjust the wholesale price. The manufacturer earns revenue
from the units sold at his selected wholesale price and incurs holding costs while accumulating
inventory prior to each shipment and his share of the transportation costs. The manufacturer
and retailer seek to optimize their respective profits. We fully characterize the retailer’s op-
timal response to the manufacturer’s pricing policy, which provides clear insights on how the
transportation subsidy and adjusted wholesale price affect the retailer’s pricing strategy and
replenishment cycle.

The manufacturer stands to gain the most when, under the current costs the retailer
finds it unprofitable to sell to the segment with the lower reservation price. By subsidizing the
transportation cost, the manufacturer makes it possible for the retailer to increase sales to the
segment with the lower reservation price without having to offer a large discount. This occurs
because, when the retailer’s replenishment cycles are short, these customers may be willing
to stockpile to satisfy demand for most or all of the replenishment cycle even when offered a
modest discount, whereas they are unwilling to stockpile to the same extent as a fraction of
the replenishment cycle when the cycle is long. The more modest discount also leads to greater
revenue from the segment of customers with the higher reservation price because they purchase a
greater percentage of their demand at full price. These two effects can lead to a marked increase
in profits. Thus, the impact of a transportation subsidy is complex, indirect, and not intuitive
at the outset. Our numerical results also show that the transportation subsidies, when it is
optimal to offer them, have a direct effect on the bullwhip effect—as reflected in the retailer’s
replenishment interval—even when the base transportation cost is relatively small, and often
even when they lead to greater fluctuations in the retail price.

Although we have considered deterministic demand here, when demand is stochastic,
shorter replenishment cycles contribute to reducing the adverse effects of demand signal pro-
cessing (another cause of the bullwhip effect) because orders are transmitted more frequently,
thereby reducing the horizon over which the retailer needs to forecast demand. Because near-
term forecasts tend to be more accurate than forecasts of demand father into the future, the
magnitude of the forecast error decreases more than proportionally as the replenishment cycle
decreases.

Manufacturers can increase their market penetration by reducing the total cost incurred
by a retailer for offering their products. This includes not just the wholesale price but also
logistics costs, including the cost of holding inventory. Retailers may bear the inventory holding
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costs directly, or they may do so indirectly via revenue lost when they offer discounts to clear
inventory more quickly. Large retailers such as Wal-Mart have pressured their suppliers to reduce
logistics-related costs borne by the retailer, but manufacturers may benefit by finding new ways
to reduce these costs. Here, we have considered one method that relies on a transportation cost
subsidy, but the transportation subsidy also has other benefits for the retailer. Further research
is needed to explore other means of reducing retailer-borne logistics costs while considering the
array of other decisions made in a supply chain, such as pricing and replenishment decisions,
and their complex interactions.
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Chapter 3

Retailer’s Optimal Pass-Through of
Manufacturer Trade Discounts
When Retail Discounts Affect
Reservation Prices and Stockpiling

3.1 Introduction

Manufacturers offer discounts, known as trade discounts, to retailers, hoping that re-
tailers will pass the savings on to their customers, thereby increasing the manufacturer’s market
share and possibly also increase his profit. Empirical research (e.g., Armstrong 1991 and Be-
sanko et al. 2005) suggests, however, that manufacturers rarely pass through the entire discount
to customers, and sometimes do not pass through any of it at all.

In this chapter, we focus on low- to moderately-priced, discretionary, consumable prod-
uct that customers will purchase if the price is “low enough,” but for which they will forego
consumption (or consume an alternate default product) otherwise. For such products, retail
discounts have a strong impact on demand. We study the retailer’s problem of determining his
optimal pass–through strategy when intermittent retail price discounts affect customer’s reser-
vation prices and may lead them to stockpile. Intermittent price discounts are known to have an
adverse effect on reservation prices (or synonymously, willingness-to-pay)—we refer to this as the
(negative) brand equity effect— but they allow retailers to reach customers who are unwilling to
buy at the regular price. Furthermore, customers—both those who purchase regularly and those
who purchase when periodic price discounts are offered—may stockpile, which serves to reduce
the retailer’s costs by shifting the cost of holding inventory from the retailer to customers. When
a manufacturer offers a trade discount, the retailer may choose to offer even deeper discounts,
which will magnify both the beneficial and adverse effects mentioned above. We seek a strategy
for the retailer that achieves the best tradeoff. We also discuss implications for manufacturer’s
choice of trade discounts in view of the retailer’s optimal reaction to these discounts.

We show that, not surprisingly, considering the brand equity effect causes the retailer
to discount less than he would when considering customer stockpiling alone. What is surprising,
however, is that the brand equity effect sometimes causes the retailer to change the structure
of his discounting policy vis-a-vis situations with customer stockpiling alone. We also show
that there may be a threshold effect: in some circumstances, if the trade discount does not
exceed a threshold, the retailer does not pass through any of the discount, and above the
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threshold, the retailer passes through a portion of the trade discount. The threshold effect
arises when the retailer discounts affect brand equity but does not arise when only stockpiling
behavior is considered. Furthermore, rarely does the retailer pass on a substantial portion of
the discount. The retailer’s reaction to a trade discount depends, in part, on the retailer’s
(optimal) discounting strategy in the absence of trade discounts. Consequently, in the presence
of two common phenomena—-negative brand equity effects due to periodic retail discounts and
stockpiling by customers when a discount is offered—manufacturers need to understand the
retailer’s discounting strategy in the absence of a trade discount and to evaluate how large a
trade discount will be needed to induce a reaction on the part of the retailer that is profitable
for the manufacturer.

The remainder of this chapter is organized as follows. In Section 3.2, we provide
a review of the literature. In Section 3.3, we provide a formal statement of the problem and
formulations of the customers’ problem of when and how much to purchase and a general version
of the retailer’s problem of choosing a discounting and ordering strategy. In Section 3.4, we derive
more detailed results and a solution procedure for the retailer’s problem under the assumption
of a uniform distribution of customer reservation prices. Section 3.5 presents the results of
an extensive numerical study that examines how the retailer’s pass–through changes with the
manufacturer’s trade discount, and characteristics of situations that lead to high or low pass-
through rates. Conclusions appear in Section 3.6.

3.2 Literature Review

We review the literature on several topics that are closely related to our study: (i)
formation of customers’ reference prices and how reference prices affect purchasing decisions,
(ii) consumers’ reaction to promotions (such as stockpiling and brand switching), (iii) how retail
price promotions affect immediate and long-term demand, and (iv) retailers’ optimal pass–
through of manufacturers’ trade deals.

3.2.1 Reference Prices

Reference price is the standard against which consumers evaluate purchase prices (Mon-
roe 1973); a positive difference between the reference price and the purchase price is considered
a gain and a negative difference is considered a loss (Winer 1986 ). The concept of reference
prices stems from adaptation-level theory (Helson 1964) which holds that people judge stimuli
based on standards shaped by their prior exposure to similar stimuli. A substantial amount of
empirical work has included reference prices in consumer-choice models and their inclusion gen-
erally improves the predictive ability of the models (see, for example, Guadagni and Little 1983).
We discuss the literature on reference price formation and its effect on purchasing behavior.

Conceptually, many researchers regard reference price as being a function of some type
of weighted average of past prices that consumers have observed, plus perhaps other factors,
but different mathematical representations have been used. Lattin and Bucklin (1989) develop
a model of reference prices that includes two effects: (i) the effect of past prices, represented
as an exponentially weighted average of these prices and (ii) promotion reference effects, by
which they mean the disparity between consumers’ expectation of whether a promotion will be
offered in the store and the actual situation they observe. By combining these effects, they
significantly improve the predictive performance of their brand choice model over their baseline
model without reference price effects. Mayhew and Winer (1992) utilize both internal and
external reference prices in discrete choice models to estimate purchase probabilities. Internal
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reference prices are based on customer’s memories of actual prices or other internalized price
concepts, while external reference prices are observed prices, such as displayed “regular prices.”
In their model, the former is represented by the price paid by the consumer at the last purchase
occasion and the external reference price is represented by the displayed regular and reduced
prices. Their results show that both types of reference prices play significant roles in explaining
purchase probabilities.

Other researchers have extended reference price models to include other factors. Winer
(1986) includes posted price, price trend and market share in his model to estimate reference
prices. Using data on coffee purchases, Winer finds that the reference price effect is significant
and the predictive performance of his brand choice model with the additional predictors of
reference price is substantially better than the model without these factors. Kalwani et al.
(1990) include frequency of sales promotions and price trends over time. They report that
frequent promotions lower consumers’ reference prices, more deal-prone customers have lower
reference prices, and people expect to pay different prices at different stores. They also find
that consumers have asymmetric responses to perceived gains and losses vis-a-vis their reference
price (i.e., sensitivity of demand to a price loss is greater than that to a price gain).

Briesch et al. (1997) develop a model to estimate consumers’ utility for various brands
that includes some contextual factors (i.e., whether the brand is featured or displayed), and
households’ loyalty toward each brand along with reference prices. They evaluate five different
price representations: (i) current price of a randomly chosen brand, (ii) current price of the
last-chosen brand, (iii) exponentially-weighted average of past retail prices of brands chosen by
a household, (iv) exponentially-weighted average of a brand’s own retail prices, and (v) the
combination of a brand’s immediate past price, price trend, deal frequency, deal proneness of
the household. Their estimates of utility are used in their multinomial logit model to predict
the probability that a particular brand will be chosen by a household at each purchase occasion.
The authors conclude that the model in which reference price is represented as an exponentially
weighted average of a brand’s own retail prices appears to be the best overall.

Another stream of work investigates how reference prices affect consumers’ purchasing
decisions, such as brand choice, purchase quantity, and purchase timing decisions. In general, a
positive difference between the reference price and the purchase price increases the customer’s
willingness to pay for the item (brand), and a negative difference reduces it (Winer 1986, Kalya-
naram and Winer 1995, Bell and Lattin 2000). Krishnamurthi et al. (1992) find that a positive
difference between reference price and observed price has a positive effect on consumers’ brand-
choice and purchase-quantity decisions for both loyal customers and switchers. Bell and Bucklin
(1999) find that consumers stockpile if they perceive a price gain (i.e., a positive difference be-
tween the reference price and the actual price) and postpone a purchase if they perceive a loss
(negative difference between the reference price and the observed price). They also observed
that the effect of reference prices on purchase quantity and purchase probability is moderated
by household inventory positions (Krishnamurthi et al. 1992, Bell and Bucklin 1999).

3.2.2 Effects of Price Promotions

In the literature, various impacts of price promotions on consumer purchasing decisions,
such as brand choice, stockpiling and consumption acceleration, have been reported. Researchers
report that brand switching constitutes the main effect, followed by stockpiling (Gupta 1988 and
Bell et al. 1999). Our model is a single-product model, so we do not discuss the literature on
brand choice here. We discuss literature on the two other effects next, and then turn to the
literature on the long-term effects of price promotions on sales volume.

One stream of empirical research examines the effect of promotions on consumers’
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stockpiling behavior. Beasley (1998) shows that consumers’ stockpiling decisions depend on
their household deal-proneness, inventory level and the depth of discount. Meyer and Assuncao
(1990, 1993) find that the the observed price of the good, the distribution of future prices and the
consumers’ inventory level affect the incidence of consumers’ stockpiling behavior. A study by
Aggarwal and Vaidyanathan (1993) suggests that short-term promotions encourage stockpiling
but long-term promotions (for example, manufacturer’s coupons) do not. The study by Mela et
al. (1998) indicates that increasing promotional activity over the years has cultivated consumers’
tendency to purchase more during promotions and less during non-promotional periods.

In another stream of literature, researchers report mixed results on whether promotions
lead to accelerated consumption. Chandon and Wansink (2002) report that stockpiling increases
consumption for both high- and low-convenience products. Ailawadi and Neslin (1998), Bell et
al. (2002) and Ailawadi et al. (2007) report that stockpiling causes an increase in consumption
in some product categories, but not in others. Researchers have also investigated whether
consumers’ stockpiling during promotions is offset by lower purchases after promotions. Hendel
and Nevo (2003) report evidence that post-promotion dips do occur.

Researchers have investigated the long-term effects of promotions and conclude that
promotions have essentially no persistent impact on sales volume in a mature market. Dekimpe
et al. (1999) utilized impulse-response functions to analyze the effects of promotions and found
that both category and brand sales are stable, and demand returns to a baseline level after pro-
motional effects fade away in the catsup, liquid detergent and yogurt markets. Their results show
long-term effects on promotions on sales in the soup category, but with relatively low persistence.
Nijs et al. (2001) studied the effects of consumer price promotions on category demands across
560 consumer product categories and found little persistent or long-term effects of promotions.
Their results indicate that price-promotion effects typically last for about 10 weeks and the
long-term impact converges to zero in 98% of the 560 product categories. Persistence models
have their methodological roots in econometrics and time series analysis and have been used to
study the long-run effects of various marketing activities on market performance (see Dekimpe
and Hassens 2005). Pauwels et al. (2002) use persistence models to capture the long-term effects
of promotions and conclude that promotion effects are virtually absent. In only 1 out of 29 cases
did they detect a permanent promotion effect. Differences in persistence of price promotions
across different product categories and brands may be due to product characteristics: mature
markets are less likely to be permanently affected by marketing actions because consumers have
become habituated to the usual promotional patterns (Bronnenberg et al. 2000).

3.2.3 Retailer’s Pass–Through Rate

The literature includes both analytical and empirical studies of the retailer’s pass-
through of manufacturer’s promotions. In empirical studies, Chevalier and Curhan (1976),
Walters (1989) and Armstrong (1991) all find substantial variations in pass-through rates. They
find not only values less than 100%, as expected, but also rather surprising values greater than
100%.

In more recent empirical studies, Besanko et al. (2005) report on pass–through behavior
of a major U.S. supermarket chain for 78 products across 11 categories and find that, on average,
the pass–through rates are more than 60% for 9 out of 11 categories, but the rate is as low
as 22% in the toothpaste category and as high as 558% in the beer category. They observe
that brands with larger market shares or that contribute more to retailer profits have higher
pass–through rates. Nijs et al. (2010) investigate pass-through from wholesaler to retailer
and retailer to consumer, and observe large variances in pass-through at each level. They find
retail pass-through to be positively correlated with retailer size, price elasticity, and negatively
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correlated with package size and wholesaler’s deal frequency. Meza and Sudhir (2006) explore
variations in the retailer’s pass-through over time, which may be important for manufacturers
who produce products that have strong seasonality in demand. They find that during regular
demand seasons, only loss-leaders receive high pass-through, and during peak-demand seasons,
both loss-leaders and regular products receive a considerable amount of pass-through. Ailawadi
and Harlam (2009) investigate the magnitude of, and drivers of the differences in, the retailer’s
pass-through. Their results indicate that private labels, manufacturers with high market share,
and categories with certain characteristics (high sales volume, high promotion elasticity, low
margin, and low concentration) typically receive larger pass-through. Pauwels (2006) finds that
retailers offer higher pass-through for leading brands and high-revenue categories. His findings
also indicate that when a manufacturer offers a trade discount, its competitors also reduce their
wholesale prices, and the retailer adjusts competing brands’ retail prices, thus the effectiveness
of a manufacturer’s promotion is reduced.

Some researchers have studied the determinants of the retailer’s pass-through rate
using analytical models and suggest that the pass–through rate depends on characteristics of
the consumers’ purchasing behavior, such as consumers’ willingness-to-pay and propensity to
switch brands or stores, and the performance of the product, such as its profit margin and
demand at the regular price. Tyagi (1999) offers differences in responsiveness of a firm’s marginal
revenue to a change in its price as an explanation for differences in pass–through rates. A profit-
maximizing retailer equates marginal revenue with marginal cost, so when he receives a discount
from the manufacturer, he adjusts his retail price to match the marginal revenue with the reduced
marginal cost. If the retailer’s marginal revenue is very responsive (or not very responsive) to a
change in retail price, the retailer must reduce its price by less (more) than the amount of the
reduction in his marginal cost.

Kumar et al. (2001) suggest that the retailer offers a lower pass–through rate when
many customers are willing to pay the regular price and when they have a high cost of searching
for deals elsewhere. Kim and Staelin (1999) analyze the retailer’s pass–through rate in a com-
petitive environment by including the effects of brand switching, store switching and category
expansion (i.e., new demand from consumers who did not purchase products in this category pre-
viously) on demand. Comparative statics results indicate that the pass–through rate increases
with the customers’ propensity to switch stores or brands. Besanko et al. (2005) and Moorthy
(2005) examine both own-brand pass–through (i.e., the pass–through of a manufacturer’s dis-
count as a retail discount on his own brand) and cross-brand pass–through (i.e., reduction in
the retail price of competing brand(s) due to a manufacturer’s discount) and find both negative
and positive cross-brand pass–through in addition to significant own-brand pass–through. Their
research generally indicates that brands with larger profit margins have higher pass–through
rates and are more likely to have a positive pass–through.

To the best of our knowledge, there is no research that considers (negative) brand
equity effects when analyzing the retailer’s optimal pass–through of trade discounts. Most of the
previous work on the effects of retail price discounting focuses on how it hurts the manufacturer’s
long-term profitability. Here, we incorporate its effects into the retailer’s price discounting
decisions and explore how this affects the pass–through of manufacturer’s trade discounts—and
thus, also, how the manufacturer should structure trade discounts.

3.3 Problem Statement and Formulation

We model a retail channel that consists of a single manufacturer, a single retailer and
heterogeneous consumers. In our model, the retailer makes decisions about temporary retail
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discounts as well as a procurement plan (i.e., how much to order and when). Grocery chains
and other similar retailers typically make these decisions on a periodic (e.g., weekly) basis, so
we use a discrete time framework in which the basic time unit is chosen consistently with the
periodicity of the discounting and procurement decisions. We assume that the basic time unit
is determined by institutional arrangements that exist due to historical, competitive, and/or
practical considerations, and therefore will not be influenced by small to modest changes in the
retailer’s discounting decisions. The retailer’s pass–through rate is implicit in his discounting
decisions. We elaborate on the retailer’s problem later in this section.

The manufacturer offers a constant regular wholesale price, w, but offers a per unit
discount of ∆M every T periods. We assume that w and T are given, but the analysis can
be performed for any desired values of w and T . We initially assume that ∆M is given, but
later in the chapter, we examine how its value affects the retailer’s decisions and the consequent
pass–through rate.

The total number of potential customers in the market is Γ and each customer consumes
one unit of the product per period if he has a unit available. Customers are heterogeneous with
respect to their reservation prices. The distribution of the customers’ reservation prices in the
absence of retail discounts is denoted by F (·) which we assume is continuous and differentiable;
the density is f(·). We assume that if the retailer offers discounts, the entire distribution
of reservation prices shifts to the left (downward) by an increment that depends upon the
retailer’s discounting pattern. The new distribution function of the customers’ reservation prices
is denoted by F̃ (·) which we refer to as the adjusted reservation price distribution; f̃(·) is the
p.d.f. We explain how the customer’s reservation prices are affected by the retailer’s discounts
in Section 3.3.1.

In our model, all customers have the same holding cost, h per unit per period, which is
incurred on average inventory. Each customer consumes one unit of the product per unit time
if he has access to a unit whose gross cost, i.e., the actual purchase cost plus the cost of holding
inventory from purchase to consumption, does not exceed his reservation price. If a customer
does not have access to such a unit, he foregoes consumption of the product. When the retailer
offers a discount, customers may stockpile. So at various points in time, customers may be
depleting their stockpile, they may purchase one unit per period and consume it immediately,
or they may not be consuming at all (if the gross cost is too high). We assume that the
presence of customer stockpiles (where applicable) do not change the basic consumption rate.
We also assume that customers shop frequently enough to take advantage of all discounts if they
so choose. Many consumers purchase groceries frequently (e.g., once a week) and most retail
chains hold prices for non-perishable goods constant for a week (although they may differ from
week to week), so our assumption allows us to capture the forward-buying behavior of customers
reasonably accurately.

The retailer pays a fixed transportation cost K for each replenishment and incurs an
inventory holding cost of hr per unit per period (incurred on average inventory). We assume that
the regular price, p, is fixed. The retailer chooses the timing and magnitude (or synonymously,
depth) of retail discounts, and his procurement policy to optimize his profit (revenue less the
sum of variable unit costs, transportation and inventory holding costs) per unit time, taking
into account the customers’ response. We assume the retailer’s discounting and replenishment
pattern repeats after T periods, the periodicity of the manufacturer’s discount. Within the T
periods are two types of replenishment cycles. One type of cycle, which we call a high cycle, has
a duration denoted by TH and starts when the manufacturer offers a discount and the retailer
places an order at the discounted price. The other type of cycle, which we call a low cycle, is a
regular replenishment cycle with a duration denoted by TL in which no discount is offered by
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the manufacturer, but the retailer may choose to offer a discount. There may be one or more
low cycles following each high cycle, so we have T = TH +NTL for some integer N ≥ 0.

We assume that the retailer offers a single discount (∆H ≥ 0 in high cycles and ∆L
i ≥ 0

in the ith low cycle after each high cycle, ∀i ∈ {1, ..., N}) at the beginning of each of his
replenishment cycles (immediately after receipt of a shipment from the manufacturer). It can be
shown that if the retailer offers a discount only once during each of his replenishment intervals, it
is optimal to schedule the discount offering at the beginning of his replenishment cycle because
this timing induces customers to purchase a stockpile immediately and thereby leads to the
greatest reduction in the retailer’s inventory holding costs. By offering a discount, retailer not
only clears his inventory more quickly, but he also attracts customers who would not purchase at
the regular price. On the other hand, he sacrifices some profit because the customers’ reservation
prices decline. This is the fundamental tradeoff that the retailer faces.

We analyze the problem as a Stackelberg game with the retailer as the leader. In the
next subsection, we analyze the customer’s problem of when and how much to buy for a given
discounting strategy chosen by the retailer.

3.3.1 Customer’s Problem

Given the fixed regular price p, the retailer’s decisions regarding cycle lengths TH and
TL and discount magnitudes ∆H and ∆L

i , i ∈ {1 . . . N}, as well as his own parameters, the
customer seeks to maximize his net utility (utility from consumption less purchase costs and
inventory holding costs), where the utility is equal to his reservation price. Krishna and Johar
(1996) suggest that the average of the prices offered by the retailer (across all periods) is a good
estimate of the customer’s reservation price. Their findings suggest a simple model of the impact
of discounts on reservation prices in which each customer’s reservation price declines from his
original reservation price by mT , which is the average depth of discount offered over the T -
period cycle. (We also refer to m as the loss of brand equity due to retailer discounting.) Other
researchers have proposed and tested other functional forms to capture the impact of discounts
on reservation prices and more generally, on the propensity of the customer to purchase. Many of
these functional forms are quite complicated, so we elected to use a simple model that captures
the first-order effects of retail discounts on reservation prices. Letting R denote the random
variable for the adjusted reservation price and r the observed value, the distribution of R is
F̃ (r) = F (r +m), and the density is f̃(r) = F̃ ′(r).

Given each customer’s adjusted reservation price, he will not purchase if the gross
cost of a unit, i.e., the unit purchase cost plus the cost of holding the unit from purchase to
consumption, exceeds his reservation price. Customers behave strategically and may stockpile
when the retailer offers a discount. A customer whose reservation price r is higher than the
regular price p, referred to as a regular customer, will stockpile to satisfy his consumption for
a duration ∆C/h, where ∆C is the discount offered in the current cycle, at which point he is
indifferent between (i) a unit purchased at the beginning of the replenishment cycle and held
until it is consumed and (ii) a unit purchased at the regular price for immediate consumption.

However, if ∆/h exceeds the duration of the current cycle, consumers may stockpile
to satisfy demand only up to the end of the cycle if the retailer offers another discount at
the beginning of the next cycle. Let TC , ∆C and ∆N represent the duration of the current
cycle, the discount in the current cycle and the discount in the next cycle, respectively. Then
consumers do not stockpile for consumption in the next cycle if ∆C − ∆N < hTC , i.e., if the
incremental discount offered in the current cycle is not large enough to offset the incremental
holding cost due to an early purchase. Although there are instances in which consumers would
be willing to stockpile to satisfy demand for longer than TC , empirical research (e.g., Meyer
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and Assancao 1990) indicates that consumers stockpile less than their economic tradeoffs would
dictate. Possible reasons for this behavior include storage limitations, cash flow limitations, etc.
As such, we assume that discounts satisfy ∆C − ∆N < hTC and leave other cases for future
research. (Our preliminary analysis indicates that these other cases are quite complicated and
it is difficult to obtain any insights from them.)

Similarly, customers whose reservation price r is below the regular price but above the
discount price, referred to as discount customers, will stockpile to satisfy their consumption for a
duration of [∆C−(p−r)]/h, which is always less than TC if ∆C−∆N < hTC . Unlike the regular
customers, after their stockpiles are depleted, the discount customers forego consumption until
the next time the discount price is below their respective reservation prices.

3.3.2 Retailer’s Problem

The manufacturer offers a trade discounts every T periods, and within each such T -
period manufacturer-discount cycle, the retailer has a high cycle in which the retailer receives
a discount from the manufacturer, and N low cycles in which the retailer does not receive a
discount from the manufacturer. (One can think of “high” and “low” as characterizing the
retailer’s likely order quantities.) Let ΠH and ΠL

i represent the total profit in the high cycle and
the ith low cycle, respectively. The retailer’s objective is to maximize his profit per unit time:

Π = (ΠH +

N∑
i=1

ΠL
i )/T if N ≥ 1

Π = ΠH/T if N = 0.

Recall that the retailer needs to choose ∆H , ∆L
i , TH , TL and N . The values of TH , TL and N

are integral, but we treat the ∆s as continuous variables.
In the remainder of this section, we derive the components of the retailer’s objective

function. We focus on the retailer’s total profit in a high cycle first; the profit in low cycles can
be derived in a similar fashion.

If the retailer offers a discount ∆H ≤ hTH at the beginning of a high cycle, then each
regular customer will stockpile to satisfy consumption for a duration ∆H

h . Similarly, the discount
customers will stockpile to satisfy consumption for a duration [∆H − (p− r)]/h. Hence the total
quantity purchased at a discount at the beginning of a high cycle, denoted by dH1 , is

dH1 = Γ[(1− F̃ (p))
∆H

h
+

∫ p

p−∆H

∆H − (p− r)
h

f̃(r)dr] (3.1)

The first term is the number of customers with a reservation price higher than p multiplied by
the quantity that each customer purchases at a discount of ∆H . The second term is the total
quantity stockpiled by customers whose reservation price is between p−∆H and p; it accounts
for the fact that each such customer stockpiles a quantity that depends upon his reservation
price, r.

From the above, we can express the total quantity purchased at a discount at the
beginning of a high cycle as:

d̃H1 = Γ[(1− F̃ (p))TH +

∫ p

p−∆H

min{∆H − (p− r)
h

, TH}f̃(r)dr] (3.2)

Customers with reservation prices higher than p start to purchase one unit just-in-time
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when their stockpiles are depleted. Therefore, the demand during the remainder of a high cycle,
denoted by dH2 can be expressed as:

dH2 = ΓF̃ (p)(TH − ∆H

h
)+. (3.3)

The retailer’s profit in a high cycle is equal to the total revenue from stockpiled quanti-
ties and from demand from regular customers during the remainder of the cycle, less variable unit
costs, inventory holding costs and the transportation cost per order. Therefore, the retailer’s
total profit is:

ΠH(∆H ,∆L
i , T

H , TL, N) = (p− w −∆H + ∆m)dH1 + (p− w + ∆m)dH2 − hrTHdH2 /2−K. (3.4)

where dH1 is defined in (3.1) and dH2 is defined in (3.3).
Total profit in the ith low cycle, ΠL

i , is analogous to that of the high cycle. So the total
quantity purchased at a discount of ∆L

i at the beginning of the ith low cycle is

dL1i = [
∆L
i

h
(1− F̃ (p)) +

∫ p

p−∆L
i

∆L
i − (p− r)

h
f̃(r)dr]Γ. (3.5)

The total demand during the remainder of a low cycle is

dL2i = (TL − ∆L
i

h
)+F̃ (p)Γ. (3.6)

Therefore, the total profit in the ith low cycle is:

ΠL(∆H ,∆L
i , T

H , TL, N) = (p− w −∆L
i )dL1i + (p− w)dL2i − hrTLdL2i/2−K, (3.7)

where dL1i is defined in (3.5) and dL2i is defined in (3.6).
In summary, the retailer seeks to maximize his profit per unit time:

Π = [ΠH(∆H ,∆L
i , T

H , TL, N) +
N∑
i=1

ΠL(∆H ,∆L
i , T

H , TL, N)]/T.

3.3.2.1 Special Case: No Regular Customers

In this subsection, we analyze the special case in which the maximum adjusted reser-
vation price, R−m, is below the regular price, so no customers purchase at the regular price.

The derivations of retailer’s demand and profit rate parallel those above. The retailer’s
demand at the beginning of high and low cycles are, respectively:

dH1 =

∫ R−m

p−∆H

∆H − (p− r)
h

f̃(r)dr] (3.8)

dL1i =

∫ R−m

p−∆L
i

∆L − (p− r)
h

f̃(r)dr] (3.9)

There is no demand at the regular price and the retailer does not need to hold any
inventory, hence the retailer’s revenue only comes from sales at a discount. The retailer’s total
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profit in a high and a low cycle are, respectively:

ΠH(∆H ,∆L
i , T

H , TL, N) = (p− w −∆H + ∆m)dH1 −K (3.10)

ΠL(∆H ,∆L
i , T

H , TL, N) = (p− w −∆L
i )dL1i −K (3.11)

The retailer maximizes his total profit per unit time:

Π = [ΠH(∆H ,∆L
i , T

H , TL, N) +
N∑
i=1

ΠL(∆H ,∆L
i , T

H , TL, N)]/T

.
In the next section, we show how to solve the retailer’s problem for fixed TH , TL and

N assuming (for analytic tractability) that the distribution of customers’ reservation prices is
uniform. With this, it is straightforward to enumerate combinations of TH , TL and N satisfying
TH + NTL = T , to solve the retailer’s discounting and procurement problem for each, and to
find the combination that leads to the best objective value. By enumerating different values
of TH , in particular, we are able to explore the interplay between the manufacturer’s depth of
trade discount and the retailer’s propensity to forward-buy, and their combined effect on the
retailer’s optimal discounting policy. We defer the discussion of the TH , TL, N values to Section
3.5. We first discuss the the general case in which there are regular customers and then briefly
discuss differences for the special case with no regular customers.

3.4 Retailer’s Problem For Uniformly Distributed Reservation
Prices

To gain some insight into the qualitative structure of the retailer’s optimal strategy,
in this section, we analyze the problem under the assumption that the customers’ reservation
prices follow a Uniform distribution on [0, R]. Note that the main effect of the “shape” of the
distribution of reservation prices is on the partitioning of customers among three categories:
(i) those whose reservation prices exceed the regular price; (ii) those whose reservation prices
are between the discount price and the regular price; and (iii) those whose reservation price is
below the discount price (and who will never buy). For different reservation price distributions,
the relative sizes of these groups will differ, but the qualitative effects of the retailer’s decisions
remain the same irrespective of the distribution of reservation prices. Under the distributional
assumption stated above, the expressions for demands in (3.1), (3.5) and (3.6) can be simplified
to:

dH1 = ∆H [(R− p−m)+ + ∆H/2]
Γ

hR
, (3.12)

dL1i = ∆L
i [(R− p−m)+ + ∆L

i /2]
Γ

hR
, (3.13)

dL2i = (hTL −∆L
i )(R− p−m)+ Γ

hR
. (3.14)

The retailer’s profit functions in high and low cycles, respectively, can be rewritten as:

ΠH(∆H ,∆L
i , T

H , TL, N) = aH(∆H)3 + bH(∆H)2 + cH∆H + γH , (3.15)

ΠL(∆H ,∆L
i , T

H , TL, N) = aL(∆L
i )3 + bL(∆L

i )2 + cH∆L
i + γL, (3.16)
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where

aH = aL = −0.5
Γ

hR
,

bH = [0.5(p− w + ∆M )− (R− p−m)+]
Γ

hR
,

cH = 0.5hrT
H(R− p−m)+ Γ

hR
,

γH = (p− w + ∆M − 0.5hrT
H)hTH(R− p−m)+ Γ

hR
−K,

bL = [0.5(p− w)− (R− p−m)+]
Γ

hR
,

cL = 0.5hrT
L(R− p−m)+,

γL = (p− w − 0.5hrT
L)hTL(R− p−m)+ Γ

hR
−K

In the remainder of this section, we provide relevant structural results and a sketch of
the solution procedure, deferring details to the Appendices.

3.4.1 Optimizing the ∆ Values

The optimization problem is:

max
∆H ,∆L

1 ,...,∆
L
N

Π = ΠH(∆H) +
N∑
i=1

ΠL(∆L
i )

subject to 0 ≤ ∆H ≤ hTH

0 ≤ ∆L
i ≤ hTL, i = 1, . . . , N

The constraints ensure that customers do not stockpile more than they will consume before
the beginning of the retailer’s next replenishment cycle, which is consistent with our earlier
assumptions.

Finding the optimal solution is complicated by the fact that the discount in each cycle
has an effect on brand equity and hence affects the profit in all cycles. Consequently, the
retailer’s objective is not always jointly concave in the ∆ values. To deal with this complication,
we solve the problem using a nested optimization approach. In the “inner” optimization, we
optimize ∆H and the ∆L

i s for a fixed (negative) brand equity effect, m. To do so, we first obtain
results that allow us to jointly optimize the ∆L

i values. These results allow us to collapse the ∆L
i

decisions into a single decision variable. With this, the problem of jointly optimizing ∆H and
the ∆L

i s for a fixed m reduces to a single-variable optimization problem. Then, in the “outer”
optimization, we optimize m, utilizing expressions for the optimal ∆H and ∆L

i s as functions of
m. The shape of the objective as a function of m is fairly well behaved (in the worst case, a
cubic function), but the solution depends upon the signs and relative values of the coefficients
in the relevant function.

In the discussion that follows, we assume N ≥ 1; the special case of N = 0 (i.e., no low
cycles) is discussed in Appendix I. Here, we provide an overview of the key structural results
that provide the foundation for solution procedure(s); finer details and proofs are relegated to
the Appendices.
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Inner Optimization Problem
In the inner optimization problem, the sum of the discounts is fixed. We represent the

average discount per period by m (which is also the loss of brand equity), so the total discount
across all periods in a cycle is mT . Therefore, for any fixed m, the problem can be written as:

max
∆H ,∆L

1 ,...,∆
L
N

Π = ΠH(∆H) +
N∑
i=1

ΠL(∆L
i )

subject to ∆H +

N∑
i=1

∆L
i = mT

0 ≤ ∆H ≤ hTH

0 ≤ ∆L
i ≤ hTL, i = 1, . . . , N

Both ΠH and ΠL are cubic functions (of ∆H and ∆L, respectively) and differ only in
their coefficients. Given that cH ≥ 0 and cL ≥ 0, ΠH and ΠL can take one of two possible
functional forms: (i) convex increasing then concave (and unimodal) and (ii) strictly concave.
Examples of the functional forms of ΠH are shown in Figure 3.1, and the forms of ΠL are
exactly the same. Although these two functional forms are unimodal, we cannot guarantee
that the objective is jointly unimodal in the discounts. We can, however, obtain a partial
characterization of the solution for the low cycles, as stated in Proposition 1 below.

∆

Π

b>0, c>0

∆

Π

b<0, c>0

Figure 3.1: Examples of Profit Functions for a Replenishment Cycle

Proposition 1. Let (∆H∗,∆L
1
∗
, ...,∆L

N
∗
) be the optimal solution to the retailer’s problem in

which there is a high cycle followed by N low cycles. For any low cycles i and j such that the
discounts ∆L

i
∗

and ∆L
j
∗

are positive, ∆L
i
∗

= ∆L
j
∗
(= ∆L∗).

Proof: See Appendix F.
The intuition underlying the proposition can be explained as follows. For some com-

binations of parameter values, ΠL may be convex for ∆L below a threshold. Because we wish
to maximize the objective in the N -dimensional space of ∆L

i values, boundary solutions (i.e.,
with one or more of the ∆L

i values equal to zero) may be optimal. On the other hand, when
ΠL is concave increasing, equal and positive values of ∆L

i are optimal. For any fixed number,
n, of positive ∆L

i s that are equal to each other, optimizing the ∆L
i values reduces to a single
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variable problem. Note also that ∆H can be expressed as mT −
∑N

i=1 ∆L
i , so the problem of

jointly optimizing all of the ∆ values for a given n remains a single-variable problem but we
need to consider all possible number of positive ∆L

i values, i.e., n = 0, ..., N , to find the optimal
solution.

Intuitively, the convexity of ΠL (as function of ∆L) below a threshold can be explained
by the fact that the number of units sold at a discount is convex increasing (roughly quadratic)
as the discount increases. Not only do customers who were already purchasing choose to buy
more, but customers who did not purchase at smaller discounts now choose to purchase. The
retailer thus sells more units at a discount when offering one large discount than when offering
two smaller discounts whose sum is equal to the single large discount. Therefore, holding the
loss of brand equity constant, if the volume increase outweighs the reduction in the unit profit
margin, the retailer may be better off offering a mix of large and zero discounts instead of
equalizing discounts across low cycles. Therefore, when ΠL

i has a convex region, the discounts
in the low cycles are not necessarily equal to each other despite the fact that we have the same
economic parameters in all low cycles. On the other hand, in the absence of the brand equity
effect, the retailer faces independent and identical decisions in each low cycle and therefore
offers the same discount in all low cycles. The convexity that may arise due to the brand equity
effect thus provides a reason for fluctuations in retail prices even during time intervals when the
manufacturer’s wholesale price is constant.

We now provide results that relate decisions in the high and low cycles.

Proposition 2. Let (∆H∗,∆L
1
∗
, ...,∆L

n
∗
) be the optimal solution to the retailer’s problem. If

TH ≥ TL and ∆M ≥ 0, then ∆H∗ ≥ ∆L
i
∗
, ∀i = 1, ..., N , that is, the retailer’s discount in high

cycles is greater than or equal to the discount in low cycles.

Proof: See Appendix J.

Propositions 2 shows that manufacturer discounts cause the retailer to offer the same
or higher discount if the retailer chooses a longer ordering interval. We explore the question of
what fraction of the manufacturer’s discount the retailer passes on to consumers in our numerical
study.

To summarize, for a fixed m, we can reduce the problem of finding ∆H and the ∆L
i

values to a unidimensional problem by utilizing the fact that all positive discounts in low cycles
are equal. If bL < 0, then ΠL is initially convex and then concave, and we need to solve problems
with n = 1, . . . , N positive discounts and choose the best one. If bL ≥ 0, then ΠL is concave,
hence we only need to solve the inner problem with n∗ = N positive discounts.

For a fixed n, we show in Appendix K that the retailer’s objective as a function of the
(positive) discount in the applicable low cycles has one of four forms: (i) convex increasing; (ii)
convex decreasing and then increasing; (iii) initially concave then convex; (iv) concave decreasing
then convex. Which form is pertinent depends upon whether certain coefficients, which can be
computed from the problem data, are positive or negative.

3.4.1.1 Outer Optimization Problem: Optimizing m

In this section, we analyze the outer problem (i.e., optimizing m) for a fixed n and
provide an overview of properties of the objective function that form the foundation for iden-
tifying the optimal solution. Details appear in Appendix L. The relevant functions are cubic
or quadratic expressions, so the optimal solution is either a stationary point (if it is the global
maximum) or a boundary solution with ∆L at its lower or upper limit. The characteristics
of these functions (e.g., whether the cubic functions are initially concave then convex or the
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reverse, and whether the quadratic functions are convex or concave) depend on the coefficients
which, in turn, depend upon the problem parameters.

We refer to the coefficients as α1, α2, α3 and α4 and the objective function has the form
α1m

3 + α2m
2 + α3m + α4. The expressions for the coefficients can be found in Appendix L.

Under the strategy (∆H = mT,∆L = 0), α1 is a constant and the other coefficients are linear
functions of ∆M . Under the strategy (∆L∗ > 0,∆H = mT − n∆L∗), α1 is again a constant,
α2 is a linear function of ∆M , and α3 and α4 are both equal to zero. The “shapes” of the
functions depend upon the signs (negative, zero, or positive) of the coefficients. Typically, α1,
the coefficient on the cubic term, is negative, and it primarily captures the effect of discounting
on overall revenue. If α2 > 0 at a given value of ∆M , then, roughly speaking, the retailer gains
more from selling to discount customers than he loses due to the reduced margin on units sold
to regular customers. If α3 > 0 at a given value of ∆M , then the retailer’s savings in inventory
costs from discounting is greater than the reduction in profit due to the fact that the (negative)
brand equity effect reduces the number of regular customers. If α2 is positive and α3 is negative
(or the reverse), then the retailer faces competing forces when optimizing his discounts. If both
α2 and α3 are negative, then the retailer has little incentive to offer discounts at the given value
of ∆M . In most cases, the stationary point can be expressed in closed form, but sometimes a
unidimensional numerical search is required. Four prototypical shapes of the objective function
are shown in Figure 3.2.
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m

Π
 α

2
<0, α
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m
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2
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3
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m

Π

 α
2
≤0, α

3
≤0

Figure 3.2: Retailer’s Objective as a Function of m

When we combine the facts that the coefficients change with ∆M with the fact that the
retailer’s profit functions are quadratic or cubic functions of m, we can infer that the optimal
value of m may not change smoothly as ∆M changes. In particular, it is possible for the
optimal retailer discount to be zero for small values of ∆M , eventually becoming positive at
some threshold, and then increasing in a convex, concave, or even a discontinuous fashion as
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∆M increases further, due to the the manner in which ∆M affects α2 and α3. So the analytical
results indicate there may be threshold effects, and that the pass–through percentage may
be increasing, decreasing, or even fluctuating as a function of ∆M . We observe all of these
phenomena in the numerical results that we report later.

3.4.2 Special Case: No Regular Customers

Analysis of the special case of no regular customers (i.e. m > R − p) is analogous to
that of the case with regular customers discussed above. Under the assumption of uniformly
distributed reservation prices, the retailer’s profit functions in high and low cycles, respectively,
can be written as:

ΠH(∆H ,∆L
i , T

H , TL, N) = aH(∆H)3 + bH(∆H)2 + cH∆H + γH (3.17)

ΠL(∆H ,∆L
i , T

H , TL, N) = aL(∆L
i )3 + bL(∆L

i )2 + cH∆L
i + γL (3.18)

where the coefficients are:

aH = aL = −0.5
Γ

hR
,

bH = [0.5(p− w + ∆M )− (R− p−m)]
Γ

hR
,

cH = [(R− p−m)(p− w + ∆M )− 0.5(R− p−m)2]
Γ

hR
,

γH = 0.5(p− w + ∆M )(R− p−m)2 Γ

hR
−K,

bL = [0.5(p− w)− (R− p−m)]
Γ

hR
,

cL = [(R− p−m)(p− w)− 0.5(R− p−m)2]
Γ

hR
,

γL = 0.5(p− w)(R− p−m)2 Γ

hR
−K.

Note that aH , bH , aL, and bL are the same whether m ≤ R − p or m > R − p; only
the other coefficients differ. Propositions 1 and 2 still hold and the problem can be solved in a
similar fashion. Details appear in Appendix K.

Likewise, the solution to the outer optimization problem parallels that for the case of
m ≤ R− p. (See Appendix L for details.) What is different is that when m ≤ R− p, the brand
equity effect only affects the number of regular customers and does not affect the number of
discount customers who purchase at any particular discount. In contrast, when m > R− p, the
retailer does not have any regular customers but brand equity affects the number of discount

customers purchasing at a discount (i.e., dH1 = Γ
R

∫ R−m
p−∆H

∆H−(p−r)
h dr). The retailer must make

the following tradeoff: on one hand, by offering a larger discount, the retailer can reach customers
with lower reservation prices, and on the other hand, the reservation prices of all customers
decline so the number of customers whose reservation prices are above the discount price also
declines. In addition, the retailer also reduces his profit margin on all units sold when he offers
a deeper discount (because no units are purchased at the regular price in this case).

The models in Sections 3.4.1 and 3.4.2 include the negative effects of discounting on
brand equity (willingness to pay). In the next section, we present an analysis for the case in
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which there is no brand equity effect due to retail discounting.

3.4.3 Model Without a Brand Equity Effect

In the model with no brand equity effect, the retailer’s objective has the same form as
that in the model with brand equity effect, and it can be written as:

Π = (ΠH +
N∑
i=1

ΠL
i )/T if N ≥ 1

Π = ΠH/T if N = 0.

The only component of the retailer’s objective that is different from the model with a
brand equity effect is that the distribution of the customers’ reservation prices is the unadjusted
distribution, f(·), instead of the adjusted distribution, ˜f(·).

The expressions for demand are analogous to the expressions for demand in (3.12),
(3.13) and (3.14) and can be written as:

dH1 = ∆H [(R− p) + ∆H/2]
Γ

hR
, (3.19)

dL1i = ∆L
i [(R− p) + ∆L

i /2]
Γ

hR
, (3.20)

dL2i = (hTL −∆L
i )(R− p) Γ

hR
. (3.21)

The retailer’ profit functions in high and low cycles, respectively, are

ΠH(∆H ,∆L
i , T

H , TL, N) = aH(∆H)3 + bH(∆H)2 + cH∆H + γH (3.22)

ΠL(∆H ,∆L
i , T

H , TL, N) = aL(∆L
i )3 + bL(∆L

i )2 + cH∆L
i + γL (3.23)

where the coefficients are:

aH = aL = −0.5
Γ

hR
,

bH = [0.5(p− w + ∆M )− (R− p)] Γ

hR
,

cH = 0.5hrT
H(R− p) Γ

hR
,

γH = (p− w + ∆M − 0.5hrT
H)hTH(R− p) Γ

hR
−K,

bL = [0.5(p− w)− (R− p)] Γ

hR
,

cL = 0.5hrT
L(R− p),

γL = (p− w − 0.5hrT
L)hTL(R− p) Γ

hR
−K.

When there is no brand equity effect, the discounts in the high and low cycles have no
interactions, so the retailer can maximize ΠH and ΠL independently. ΠH and ΠL are unimodal in
∆H and ∆L, respectively, over the relevant range, and both have a local maximum defined by the

corresponding stationary point. The optimal discount in a high cycle is ∆H∗ = −bH−
√
bH2−4aHcH

2aH
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and the optimal discount in a low cycle is ∆L∗ = −bL−
√
bL2−4aLcL

2aL
.

Observe that bH is linearly increasing in ∆M , aH is a negative constant and cH is a
positive constant. So from the expression for ∆H∗, we can see that the retailer’s discount in a
high cycle is strictly increasing in ∆M .

3.5 Numerical Study

In this section, we report on optimal solutions for problems covering a wide range of
parameter combinations. The focus of the study is on how various problem parameters, especially
the manufacturer’s discount, affect the retailer’s pass–through. Our study focuses on situations
where there is a brand equity effect. Results in Section 3.4.3 show that the relationships are
much simpler in the absence of a brand equity effect.

The problem parameters are: Γ = 1000; R = 3 and 6; p = 0.25R, 0.5R, 0.75R and
0.95R; w = 0.4p, 0.6p, 0.8p and 0.9p; T = 4, 12 and 24; hr = 0.3w/52, w/52 and 4w/52;
h = 0.02p, 0.05p, 0.3p and 0.5p; and K = 100. These parameter combinations yield a total
number of 1152 instances.

The choices of R are arbitrary, as they are simply scale parameters, but we chose the
other parameters for the following reasons:
• The three values of p represent situations with 75%, 50%, 25% and 5% regular customers,
respectively, which covers a wide range of willingness-to-pay scenarios vis-a-vis the regular price.
• The four ratios of w to p capture the range or retail margins that are typical for consumable
consumer goods.
• The three values of the customer’s holding cost rate (h) represent situations in which the
customer will stockpile one unit (one week’s usage) for discounts of 2%, 5%, 30% and 50%,
respectively. At the low end of this spectrum, the customer is quite prone to stockpiling whereas
at the high end, the customer is reluctant to stockpile.
• The four values of the retailer’s holding cost rate (hr) reflect annual holding cost rates of
30% (typical for non-perishable foods), 100% (appropriate for foods requiring refrigeration or
freezing) and 400% (appropriate for situations where products have short life cycles or retailer
shelf space is extremely limited).
• The values of T were chosen so that several combinations of TH , TL and N are feasible.
• The value of K is chosen so that the retailer’s economic order quantity ranges from one week
of supply to 22 weeks of supply. We only use a single K value because the variation in hr yields
a wide range of values for the retailer’s economic order quantity.

As mentioned in the previous sections, we find the retailer’s optimal cycle lengths, TH
∗

and TL
∗
, and the optimal number of low cycles, N∗, within each T–period trade discount cycle

by enumeration. Under the framework of integral cycle lengths, we enumerate TH in [1, . . . , T ];
then we find the set of integer divisors of T − TH (denoted dN ). We enumerate N in dN and
for each relevant N , the length of each low cycle, TL, is set equal to (T − TH)/N .

For each parameter combination, we determine the retailer’s optimal response for ∆M

equal to 0.1w, 0.2w, 0.3w, 0.4w, 0.5w, 0.6w, 0.7w, 0.8w and 0.9w. Values at the upper end of this
range are not common in practice, but we include them for completeness. In the next subsection,
we analyze how the manufacturer’s discount affects the retailer’s optimal discount and ordering
schedule, and in the subsequent subsection, we examine under what parameter combinations
the retailer tends to pass a large (or small) proportion of the manufacturer’s discount on to
consumers.
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3.5.1 How the Manufacturer’s Discount Affects the Retailer’s Optimal Dis-
count and Ordering Schedule

The analytical results in the previous section raised the possibility that the retailer’s
discount in the high cycles (and therefore also the pass–through rate) may increase, decrease,
or fluctuate as ∆M increases. We categorize the observed relationships into six patterns: (i)
increasing; (ii) decreasing; (iii) unimodal with a local minimum; (iv) unimodal with a local
maximum; (v) fluctuating; and (vi) no change. Out of 1152 instances, the number of instances
that fall into patterns (i) through (vi) are 467, 39, 15, 126, 36 and 469, respectively. The
proportional split of problem instances among the patterns is largely a consequence of our
choice of parameters. Our main concern was to have enough instances so that we could relate
the patterns to systematic characteristics of the mix of problem parameters. Below, we discuss
these relationships.

In some instances with Pattern (i), ∆H∗ is strictly monotonically increasing in ∆M

over the entire range of ∆M values that we considered. These situations tend to arise when the
retailer is already offering a discount even in the absence of a manufacturer discount. If the
manufacturer offers a discount, the retailer sometimes chooses to increase his discount. If he
does so, the discount tends to increase monotonically with the manufacturer’s discount, at least
up to some threshold where it is no longer advantageous for the retailer. This pattern arises
commonly when the retailer has small regular demand (in which case the reduction in profit on
sales to regular customers is small), the consumers have a small holding cost (so small changes
in the discount can induce substantial stockpiling, which represents additional demand for the
retailer), and the manufacturer discounts infrequently (so the retailer stockpiles large quantities
when the manufacturer offers discount and therefore has a greater incentive to clear inventory
by discounting).

In other instances in which we observe Pattern (i), ∆H∗ is a discontinuous function of
∆M : it remains zero until ∆M reaches a threshold, and then jumps from zero to a positive value
at the threshold, and may or may not increase further beyond the threshold. The threshold
effect is due to the fact that for some parameter combinations, the retailer’s objective is a cubic
function of the discount, and ∆M affects the shape of the cubic function. Up to some threshold
value of ∆M the optimum is zero, but when ∆M reaches the threshold, the α coefficients in
the retailer’s objective function change enough to alter the shape of the function so that the
optimum shifts to a positive value. These instances tend to arise when the retailer has small
regular demand and the manufacturer discounts frequently, so the retailer does not bear much
expense in holding inventory and therefore has little incentive to offer discounts. The retailer
chooses to offer a zero discount unless ∆M is large enough to make it worthwhile to switch to
a different strategy that focuses greater penetration among the discount customers. When the
retailer makes this switch, the high trade discount provides him an adequate margin despite the
fact that he is offering deep discounts to his customers.

In Pattern (ii), ∆H∗ is non-increasing in ∆M and strictly decreasing for at least one
∆M in the range of values that we consider. In the problem instances that give rise to this
pattern, the manufacturer offers a trade discount frequently and the the retailer typically has a
large regular demand and moderate holding costs. When the manufacturer offers a small trade
discount, the retailer must trade off the benefits of inventory reduction (by inducing customer
stockpiling) with the loss of revenue from reduced brand equity. The retailer’s moderate holding
costs combined with frequent trade discounts give him a fairly small incentive to clear inventory.
On the other hand, the reduction in profit on sales to the large portion of customers who would
have been willing to pay full price can be substantial. The retailer may choose to offer a small
discount but is not inclined to discount very deeply. When the manufacturer offers a large
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trade discount, the discount serves to subsidize the retailer’s cost of holding inventory (which is
still modest due to the retailer’s moderate holding cost and the frequent trade discounts). The
retailer chooses to stockpile and then sell these items at (close to) the regular price. Hence the
retailer decreases his discount as ∆M increases.

In Pattern (iii), the retailer’s discount first decreases in ∆M (for the same reasons
noted for Pattern (ii)) and then increases. The primary difference between problem instances
that result in Pattern (iii) versus Pattern (ii) is that the retailer has smaller regular demand in
the former, so for sufficiently large values of ∆M , the retailer is willing to forego some of the
profit margin on sales to regular customers in exchange for the opportunity to sell to the much
larger number of customers who are willing to purchase only at a relatively deep discount.

In Pattern (iv), the retailer’s discount initially increases and then decreases as the
manufacturer’s discount increases. In the problem instances that generate this pattern, the
manufacturer offers a trade discount infrequently. As ∆M increases, the retailer increases his
stockpiling and simultaneously increases his discount to transfer part or all of his stockpile to
customers. For a sufficiently high ∆M , the retailer opts to purchase only when the manufacturer
offers a discount. For ∆M above this threshold, the incremental trade discount provides a subsidy
for the retailer’s cost of holding inventory, so the retailer’s need to discount declines. When the
subsidy is sufficiently high, the retailer prefers to reduce his discount in order to recapture
sales at the full-price. This occurs because a reduction in his discount increases the proportion
of regular customers, and regular customers purchase to satisfy consumption throughout the
entire cycle whereas discount customers purchase to satisfy consumption for only a portion of
the cycle. Furthermore, due to the high trade discount, the full-price sales provide the retailer
a substantial net margin. Thus, for a sufficiently high ∆M , the retailer employs a different
discounting strategy than when ∆M is small, and this leads to the pattern of retail discounts
initially increasing and then decreasing as the trade discount increases.

The fluctuations observed in retailer’s discount in Pattern (v) as ∆M increases are
due to the requirement that the retailer’s cycle lengths be integral. In the instances leading
to Pattern (v), the retailer has a large regular demand and high holding costs. Because the
retailer must hold inventory for the regular customers (who purchase just-in-time during the
latter part of the cycle) and his high holding costs make it costly to do so, the retailer uses the
strategy of coupling increases in stockpiling with increases in the discount. However, due to
integrality of cycle lengths, as ∆M increases, TH

∗
does not strictly increase. For values of ∆M

at which TH
∗

increases, the retailer’s pass–through increases as well; for values of ∆M at which
TH
∗

is unchanged, the retailer’s discount decreases for the same reason as noted for Pattern
(ii). As such, we attribute these fluctuations to “rounding error”: if the retailer could choose
non-integral cycle lengths, the discounts would likely change in a smoother fashion.

Among instances that lead to Pattern (vi), ∆H∗ is constant at zero in 398 out of 469
instances and is constant at a positive value in 71 out of 469 instances. Situations with ∆∗ = 0
tend to arise when the customers have a large holding cost, the retailer has low holding cost
and moderate to large regular demand, and manufacturer offers a discount frequently. In these
circumstances, the retailer needs to hold inventory for the regular customers but it is relatively
inexpensive for him to do so because he has a low holding cost rate and does not need to stockpile
large quantities because the manufacturer offers discounts frequently. Because customers have a
high holding cost, significant discounts would be needed to induce the relatively small number of
discount customers to purchase very much. None of these factors weighs in favor of the retailer
offering discounts.

Two different combinations of factors lead to situations in which the retailer offers a
positive discount but does not increase it as ∆M increases. The first combination of factors is a
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very large proportion of regular customers and a very small customer holding cost. The retailer
offers a small discount in all of these instances but can generate considerable sales to discount
customers due to their small holding cost. The retailer does not increase his discount as ∆M

increases because doing so would cause him to sacrifice considerable profit on sales to regular
customers without compensating profit from discount customers. The second combination of
factors is a small proportion of regular customers and a large initial profit margin (p − w). In
these circumstances, the retailer chooses deep discounts, foregoing the small volume of potential
full-price sales, in order to reach a substantial portion of the discount customers who will not
otherwise buy. The large initial profit margin allows the retailer to offer deep discounts. The
manufacturer’s trade discount causes the retailer to make purchases only when trade discounts
are offered, but because the retailer would offer deep discounts even in the absence of a trade
discount, an increase in the trade discount is insufficient incentive for the retailer to offer even
deeper discounts. (Beyond a threshold, additional retail discounts only decrease per-unit margin
while not increasing unit sales.)

Although the retailer’s optimal discount may change in different ways as ∆M increase,
the retailer’s ordering schedule changes in a consistent way: the retailer chooses larger values
of TH and in concert, stockpiles more. The number of low cycles decreases correspondingly,
but the lengths of the low cycles remain constant in the vast majority of problem instances and
nearly constant (i.e., a mix of two consecutive integer values) in the rest of the instances. Recall
that TH and TL need to be integers in our model. So, the differences that we observe can be
viewed as “rounding error” due to the integrality constraints; the retailer probably would have
chosen equal non-integral values of TL if such an option were available.

We now turn to a discussion of a more commonly-reported metric, the pass–through
rate.

3.5.2 Retailer’s Pass–Through Rate

The retailer’s pass–through rate is traditionally defined as the ratio of the retailer’s
discount to the manufacturer’s trade discount. Figure 3.3 shows the cumulative percentage of
problem instances with 0, 25%, 50%, 75%, 100%, 200%, 300%, 400% and over 400% pass–
through rates for ∆M = 0.1w, 0.3w, 0.5w, 0.7w and 0.9w. As shown in the figure, for all ∆M

values, roughly 40% of instances have a zero pass–through rate and the majority of the instances
have pass–through rates below 25%. Thus, broadly speaking, pass–through rates are quite low,
but interestingly, a considerable portion (up to 20%) of instances have pass–through rates above
100% when ∆M is small. The range and mix of pass–through rates observed in our numerical
study (based on our analytical model) is consistent with what researchers have reported in
empirical studies.

In a small portion of problem instances, the pass–through rate is as high as 300% or
400%. In these problem instances, retailer’s profit margin is high in the absence of a trade
discount, but the fraction of customers who are willing to pay the regular price is low. So the
retailer can “afford” to implement a high–pass through rate because he can maintain a relatively
large net margin while simultaneously reaching customers who are unwilling to pay an amount
close to the regular price. We observe analogous situations in practice for products that are
frequently offered on a “buy-one-get-one-free” basis: retail margins are quite high at the regular
price and not many customers are willing to pay the full price, so manufacturers have to invest
a lot of money to induce retailers to offer deeply-discounted promotional prices.

In our model framework, the retailer may offer a discount even in the absence of a trade
discount. Thus far in this section, we have reported on the traditional pass–through rate metric,
but a more accurate metric would be the ratio of the incremental discount that the retail offers
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Figure 3.3: Distribution of Retailer’s Pass–Through Rates for Various Trade Discount Levels

due to the trade discount to the trade discount. Figure 3.4 shows the cumulative percentage of
problem instances with -5%, 0%, 10% 15%, 20%, 25%, 30%, 40%, 50% and 100% incremental
pass through rates.

 

Figure 3.4: Distribution of Retailer’s Incremental Pass–Through Rates for Various Trade Dis-
count Levels
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At all discount levels that we consider, the incremental pass–through rate is zero or
negative in about 50% of the problem instances, and problem instances with incremental pass-
through rates of more than 10% are rare. For example, when the trade discount is 50% of the
wholesale price, the retailer passes through 20% or more of the discount in only about 1% of
problem instances. Although the overall incremental pass–through rates are quite low overall,
interestingly, they are higher for large manufacturer trade discounts than they are for small trade
discounts; the opposite relationship applies to the traditional pass–through rate. These results
suggest that manufacturer’s face extremely difficult tradeoffs: either the manufacturer can keep
trade discounts low (or zero) and get minimal reaction from the retailer, or he can invest large
sums recognizing that very large trade discounts are required to get a meaningful incremental
reaction from the retailer. These results also raise the question of the choice of metrics to provide
economic incentives to decision–makers that are aligned with the manufacturer’s goals.

As expected, both the traditional pass–through rate and the incremental pass–through
rate generally decline as the trade discount increases, modulo the effects of the constraints that
TH and TL be integral, as mentioned in the last subsection. This is true even in cases where
∆H∗ increases as ∆M increases, because the former almost always increases more slowly than
the latter, and it increases much more slowly or declines for sufficiently large values of ∆M .

3.6 Conclusions

In this chapter, we investigate the retailer’s optimal pass–through of manufacturer trade
discounts. We study a scenario with three types of strategic players: a manufacturer, a retailer
and customers. The manufacturer offers a constant regular wholesale price but offers periodic
trade discounts to the retailer in the hope of achieving higher market penetration and possibly
earning a higher profit. The retailer offers a constant regular price and decides the timing and
depth of discounts, which may coincide with trade discounts but may also be offered at other
times. The retailer chooses his ordering and discounting patterns to maximize his profit per
unit time, and stockpiles when the manufacturer offers a discount if the benefit of stockpiling
outweighs the cost of holding inventory. Customers, who are heterogeneous with respect to
their reservation prices, stockpile when the retailer offers a discount. They wish to consume the
product at a constant rate but purchase only if their gross cost—the actual purchase price plus
the cost of holding the item until it is consumed—does not exceed their reservation price. In
addition, it is well known that retail discounts erode brand equity and therefore also reservation
prices, and we include this effect in our model.

To the best of our knowledge, our study is the first to incorporate the effects of retailer
and consumer stockpiling, along with the (negative) effects on brand equity of retail discounts, in
a retailer’s decision model for choosing discounting and ordering patterns when a manufacturer
offers periodic trade discounts. We develop a full characterization of the retailer’s optimal
discounting policy for a given ordering schedule and we use this to determine a jointly optimal
discounting and ordering plan assuming that orders can be placed at discrete points in time (e.g.,
weekly). Results from our analytical developments and a numerical study provide a number of
important managerial insights, including:
• The combination of brand equity effects (due to retailer discounting ) and retailer and consumer
stockpiling may lead to threshold effects for the manufacturer: it may be necessary for the
manufacturer to offer a discount above a threshold before there is any reaction on the part of
the retailer. These situations tend to arise when the retailer has small regular demand and the
manufacturer discounts frequently so the retailer’s stockpiling quantities are relatively small and
his incentive to clear inventory more rapidly by discounting is small. In these circumstances, it
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may be unprofitable for the retailer to increase his discount further unless the trade discount is
sufficiently high, due to the loss of customers who are willing to pay full price. We show that the
threshold effect is due to the brand equity effect; it does not arise in the absence of this effect.
• Numerical results indicate that the retailer’s discount may not be monotonic in the trade
discount. At low or moderate trade discounts, the retailer may prefer to focus on sales volume
and discount fairly deeply to reach more discount customers. On the other hand, when the
trade discount is high, the retailer may opt to offer a low discount so as to bolster the number of
customers who are willing to pay full price, and then sell to these customers at very high margins
(owing to the high trade discount). Thus, different depths of the manufacturer’s trade discount
may lead to distinctly different pricing and consumer targeting strategies by the retailer.
• The retailer tends to offer a higher (absolute) pass–though of trade discounts when the fraction
of regular customers (those who are willing to pay full price) is small, the retailer has high to
moderate holding costs, customers have low to moderate holding costs and the manufacturer
discounts infrequently. In such circumstances, if the retailer stockpiles, he incurs significant
inventory holding costs due to the combination of his own high to moderate holding costs and
the long time between trade discount offers, so he has a strong incentive to offer discounts to
induce customers to stockpile. Customers are willing to stockpile to a fair extent because their
inventory holding costs are not too high. Also, because the fraction of regular customers is
small, if the retailer offers discounts, he does not suffer much loss of sales at full price even if
these customers switch to buying only at a discount due to the (negative) brand equity effect.
From this, it is clear that a combination of favorable factors is needed for a high pass–through
rate, and the absence of any one of these factors could lead to a low pass–through rate. For
example, if the manufacturer offers trade discounts frequently and the retailer has low inventory
holding costs, the retailer may simply choose to stockpile during trade discount opportunities
and gradually sell it at his regular price. It is important for manufacturers to consider the
complex interactions among factors that affect retailer’s discounting choice when designing a
trade discount plan.
• Although pass-through rates measured by the traditional metric (retailer’s discount divided by
the manufacturer’s discount) tend to be modest, the incremental pass–through rates (retailer’s
additional discount above and beyond his normal discount divided by the manufacturer’s dis-
count) are commonly zero or negative, and rarely are they greater than 10% in our numerical
study. Interestingly, (traditional) pass–through rates tend to be higher for small manufacturer
discounts (10% or 20% of the wholesale price) but incremental pass through rates are higher
when manufacturer discounts are high. These results raise the question of the choice of metrics
to provide economic incentives that are aligned with the manufacturer’s goals.

We close this chapter with a discussion of how the findings from our analytical model
and numerical study compare with empirical findings in the literature. Although virtually all
empirical studies have been conducted in competitive settings with multiple products and multi-
ple retailers, overall, the findings from our analysis and numerical study are very consistent with
what the empirical studies indicate. First, several recent studies (Chintagunta 2002, Besanko
et al. 2005 and Nijs 2010) report negative pass through rates, i.e., retailers raising the regular
price when the manufacturer offers a trade discount. In a study focused on other aspects of
retail pricing, Chintagunta (2002) observed a negative correlation between wholesale and retail
prices for one of the five products that he studied at one retail chain. The product happened
to have the highest price, highest retail margin, and smallest volume in its category. He conjec-
tured that retailers could be raising prices during manufacturer promotions to maximize profits
from loyal customers. Besanko et al. (2005) and Nijs (2010) also found negative pass-through
in some instances but did not provide details on characteristics of the pertinent products nor
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explanations for the negative pass-through rates. In our numerical results, we observed prob-
lem instances with relatively few customers who are willing to pay the full price for which the
retailer’s optimal policy is to offer a large discount when the trade discount is small because,
in these circumstances, it is more profitable to target the large number of customers who are
only willing to purchase a discount. On the other hand, when the manufacturer’s trade discount
is large, the retailer uses a completely different strategy and offers zero or a small discount,
targeting the customers who are willing to pay the full price. In our model, the regular price is
fixed and we assume that discounts are non-negative, so we do not have outcomes in which the
retailer raises the regular price. But problem instances in which retailer switches strategies as
described above have similar characteristics to the situation in which Chintagunta conjectured
that a negative pass–through was occurring: relatively few customers are willing to pay the full
price, and the per–unit margin considering the trade discount is quite high.

Results from empirical studies also indicate that pass-through rates are high when de-
mand is elastic (Nijs et al. 2010; Meza and Sudhir 2006; Walters 1989), and that the retailer
offers a higher pass–through in response to trade deals when the manufacturer discounts in-
frequently (Walters 1989; Nijs et al. 2010). Our analytical results are consistent with both of
these findings. The impact of demand elasticity is not surprising, but our analytical model helps
to explain why the frequency of trade discounts matters when both the retailer and customers
stockpile. In particular, if trade discounts are infrequent, the retailer tends to stockpile more,
but in turn, needs to offer a deeper discount to reduce his inventory holding costs. In addition,
Nijs et al. (2010) found the retail pass-through to be higher for products with larger package
sizes. Our results also suggest that retailers tend to offer a high pass-through when the product
has a high holding cost; thus pass–through rates for bulky products are higher than for small
products with a similar unit cost.

The observations above indicate that our analytical model, although it is stylized and
ignores competition, is helpful in explaining phenomena observed in practice, including phenom-
ena such as negative pass–through rates for which relatively few compelling explanations have
been offered in the literature.

We have analyzed a stylized model with many simplifying assumptions in order to gain
insights into the first-order effects of retail and consumer stockpiling and the effects of retailer
discounting on customers’ willingness to pay on the retailer’s optimal response to manufacturer
trade discounts. Further research is needed to study these issues in contexts with multiple
products, competition between retailers and between manufacturers, other types of promotions,
and other realistic factors.
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Chapter 4

Conclusions

In this dissertation, we have studied two different pricing issues that manufacturers face
when retailers offer periodic discounts and customers stockpile in response. The combination
of these two factors can exacerbate the well–known bullwhip effect. Our analysis in Chapter
2 explores one pricing scheme that a manufacturer can use to dampen the bullwhip effect by
inducing the retailer to order more frequently and simultaneously improve profitability. Retailer
discounting can also lead to a reduction in customers’ willingness to pay. Our analysis in Chapter
3 explores the question of how a manufacturer’s periodic trade discounts affect a retailer’s
optimal ordering and pricing (discounting) policy when the retailer stockpiles in response to
trade discounts, customers stockpile in response to retail discounts, and retail discounts affect
customers’ willingness to pay. For the model in each chapter, we provide a full characterization of
the retailer’s optimal response to the manufacturer’s pricing decisions as well as the consumers’
response to the retailer’s pricing scheme. We also perform associated numerical studies which,
together with our analytical results, provide insight into how both manufacturers and retailers
should make decisions in these problem settings, and circumstances in which various policies are
most effective in increasing profit.

In Chapter 2, we propose and analyze a new Pareto–improving pricing scheme in which
the manufacturer subsidizes the retailer’s order setup (transportation) cost in exchange for a
(possibly) higher wholesale price. The retailer responds by choosing regular and discount prices
and his order frequency to maximize his own profit in view of the customers’ response. The
retailer incurs a fixed cost per shipment for transportation and inventory holding costs, in
addition to unit purchase costs. If the retailer offers a discount, he offers it immediately upon
the arrival of an order from the manufacturer so as to clear some inventory as soon as possible by
inducing customers to stockpile. There are two customer segments that differ in their reservation
prices and holding costs (which affect their propensity to stockpile). Customers wish to consume
the product at a constant rate and make purchase (including stockpiling) decisions to maximize
their utility from consumption less purchase costs and inventory holding costs. As such, they
do not consume if the gross cost of the product—the sum of the purchase cost and the cost of
holding inventory until the product is consumed—exceeds their reservation price.

We derive a detailed characterization of the retailer’s optimal pricing policy for each
of three dominant pricing strategies. In the first dominant strategy, the retailer sets a high
regular price (equal to the higher of the reservation prices for the two segments) and may offer
a discount, but the discount is not large enough to entice customers with the lower reservation
price to buy. In the second dominant strategy, the retailer also sets a high regular price but
discounts deeply enough to entice customers with the lower reservation price to purchase when
the discount is offered. In the third dominant strategy, the retailer sets a low regular price (equal
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to the lower of the reservation prices for the two segments) and may also offer a discount. For
each pricing strategy, there is an associated optimal order cycle duration. We derive conditions
that define regions in the two-dimensional space of values of the transportation subsidy and
wholesale price in which the retailer prefers each of his dominant pricing strategies.

The manufacturer solves an optimization problem to maximize his own profit within
each region taking into account the retailer’s response, and selects the pricing scheme that
maximizes his own profit across the three regions while ensuring that the retailer is no worse off
than under the current pricing scheme. For different manufacturer pricing policies, the retailer
may choose a completely different pricing strategy which can lead to a substantially different
demand and profit for the manufacturer.

We performed an extensive numerical study that enabled us to identify the types of
changes in the retailer’s decisions that commonly occur in response to changes in the manufac-
turer’s pricing scheme, and circumstances that make pricing changes profitable for the manu-
facturer. Below, we discuss some of the underlying intuition that provides a common thread
for our findings. It is clear that any transportation subsidy and any increase in the wholesale
price (which then increases the retailer’s holding cost per unit) will lead the retailer to order
more frequently. Even with this increase in order frequency, the retailer’s net transportation
costs decrease, but the increased order frequency also provides the side–benefit of a reduction
in inventory levels. So, a $1 increase in the transportation subsidy may provide the retailer
more than a $1 reduction in his overall operating costs. If these savings are not offset by an
increase in the wholesale price, the retailer may find it profitable to switch to a different pricing
strategy that embraces the customer segment with the lower reservation price. For example,
he may switch from a policy with everyday high pricing, under which only the segment with
the higher reservation price purchases, to a policy in which the regular price is high but deep
discounts are offered periodically that entice customers with the lower reservation price to buy.
As another example, the retailer may switch from a pricing policy in which the regular price is
high and deep discounts are offered periodically (as described above) to a policy with everyday
low pricing under which both segments purchase at a steady rate and never forego consumption
because the price is always below their reservation prices. Both of the switches in the retailer’s
pricing strategy that we have just described lead to an increase in the manufacturer’s overall
demand, which provides a potential opportunity for an increase in profits, also.

A transportation subsidy may also help the manufacturer to mitigate the bullwhip
effect. Although demand is deterministic in our model, in settings with uncertain demand,
shorter retailer’s order cycles mean that both the retailer and the manufacturer need to forecast
demand over a shorter time horizon, which helps to reduce forecast errors and their amplification,
thereby mitigating the bullwhip effect.

In Chapter 3, we investigate the retailer’s pass-through of the manufacturer’s trade
discounts. In our model, the manufacturer offers a fixed wholesale price and periodic trade
discounts. The retailer optimizes his ordering plan (including stockpiling when the manufacturer
offers a discount) and the pattern of discounts to be offered to customers. The retailer orders
in batches due to a fixed transportation cost per shipment and incurs holding costs. Therefore,
if he offers discounts, he offers them immediately upon arrival of orders from the manufacturer
so as to clear some inventory as soon as possible by inducing customers to stockpile. Customers
differ in their reservation prices. We account for the fact that retail discounts reduce consumers’
reservation prices, which we call the (negative) brand equity effect. To the best of our knowledge,
ours is the first model to include the brand equity effect together with retailer and consumer
stockpiling in the retailer’s decision model for choosing discounting and ordering patterns when
a manufacturer offers periodic trade discounts.
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For a given frequency and depth of the manufacturer’s trade discount, we characterize
the retailer’s optimal discounting pattern for a given retailer ordering schedule that spans the
time between the manufacturer’s trade discount offers. The brand equity effect links the retailer’s
discount decisions in different periods, resulting in a non-concave optimization problem. We are
able to surmount this difficulty by obtaining a characterization of the retailer’s optimal discounts
at times when there is no trade discount in effect, and using this result to develop a nested
optimization problem whose solution provides the optimal pattern of retail discounts. We also
show that the retailer should stockpile and schedule his next order later than he would otherwise
whenever the manufacturer offers a trade discount; this result helps to eliminate dominated
ordering schedules. We solve for the retailer’s jointly optimal ordering and discounting patterns
by enumerating the non-dominated ordering schedules and optimizing the retailer’s discounting
pattern for each.

We obtained many interesting findings from our analytical model and a numerical
study based on it. One of the structural results from our analysis of the model is that there
may be threshold effect in the retailer’s pass-through. That is, the retailer may pass none of
the manufacturer’s trade discount on to consumers—owing to the loss of brand equity— unless
the trade discount is above certain threshold, at which point the retailer’s discount exhibits a
jump. We show that the threshold effect is due to the brand equity effect; it does not arise in
the absence of this effect.

Another finding is that the retailer’s discount does not necessarily increase as the
manufacturer’s trade discount increases. For example, the retailer may choose to offer a large
discount when the manufacturer offers a small trade discount if he faces a small portion of
customers who are willing to pay the full price. Here, it may be less important to protect brand
equity than it is to reach a larger portion of the customer base by offering a deep discount.
Under the same conditions, if the manufacturer’s trade discount is high, the retailer may use a
completely different pricing strategy in which he offers a small discount to protect brand equity
and bolster the number of customers who are willing to pay a high price, and sells to this
relatively small proportion of customers at a very high margin, owing to large trade discounts.
Indeed, we have found from both our analytical and numerical results that the retailer’s discount
may be increasing, decreasing, increasing then decreasing, decreasing then increasing, or even
fluctuating as the manufacturer’s discount increases. The patterns are consequences of complex
interactions among factors such as the frequency of manufacturer’s trade discount, the retailer’s
and customers’ holding costs, and the portion of customers who are willing to pay full price.

From our numerical study, we have found that the retailer offers a high pass-through
if (i) he has a strong incentive to reduce his inventory holding costs, (ii) if a large portion of
customers will stockpile fairly large quantities or purchase more in response to discounts. Any
factors that contribute to either (i) or (ii) increase the retailer’s pass through. The retailer
has a strong incentive to reduce his inventory holding costs if his inventory holding cost rate is
high and/or if the time between manufacturer trade discount offers is long. These two factors
make it expensive for him to stockpile in response to the manufacturer’s trade discount and he
can reduce these costs by offering a discount to customers. A large portion of customers will
stockpile fairly large quantities in response to a retailer’s discount if the customers’ holding costs
are relatively low. Customers with low reservation prices who do not purchase at the regular
price will stockpile to satisfy consumption for a greater portion of the time (i.e., they forego
consumption for a smaller portion of the time) if the time between manufacturer trade discount
offers (and thus also the time between retailer discounts) is shorter. The factors contributing to
condition (ii) increase the payoff the retailer receives from any given discount, and thus increase
his incentive to offer a discount.
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The retailer’s pass-through rate is an important measure of the efficiency of manufac-
turer’s trade promotions. By including both a brand equity effect and retailer and consumer
stockpiling behavior in the retailer’s decision model, we provide very important managerial in-
sights for manufacturers about how retailers may respond to their discounts, which has strong
implications for how manufacturers should structure their trade discounts.

In this dissertation, we have explored two ways in which, by offering a subsidy (of the
transportation cost) or periodic discounts, a manufacturer may be able to improve his market
penetration and profitability. In both cases, the benefits of the subsidy or discount are amplified
because the subsidy or discount drives the retailer to make operational decisions (e.g., ordering
frequency or stockpiling decisions) as well as pricing decisions differently than he would have
in the absence of the manufacturer subsidy or discount. For example, in the model in Chapter
2, the transportation subsidy leads the retailer to order more frequently, thereby reducing his
inventory holding costs. This, then, sometimes via a very complicated mechanism, allows him
to sell profitably to another segment of customers, which yields benefits to the manufacturer as
well. In the model in Chapter 3, the manufacturer’s periodic trade discounts generally leads the
retailer to stockpile to take advantage of the trade discount. But to avoid the associated increase
in inventory holding costs, the retailer may elect to offer deeper discounts to customers, which
enables the retailer to reach customers who otherwise would not purchase. Although we have
found that the retailer rarely passes on a large portion of the manufacturer’s trade discount
to customers, the retailer responds to the trade discounts by changing his ordering schedule
and discount pattern in such a way that his own profit is maximized, and this sometimes leads
to deep retail discounts that generate substantial additional sales, which can lead to increased
profits for the manufacturer.

As we have seen in this dissertation, manufacturers’ pricing policies affect retailers’
pricing decisions as well as operational decisions, and opportunities for profit improvement may
be significant if the manufacturer carefully designs his pricing policy with a good understanding
of these complex interactions.
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Appendix A: Derivation of the Retailer’s Optimal Solution for ∆UB and ∆0

when Consumers Stockpile Extensively

The formulas for Π1 in (2.1) and Π3 in (2.3) are based on the assumption that the
stockpiling duration of both segments is less than or equal to T . If the retailer increases ∆ so
that one segment would be willing to stockpile more, that segment will receive the additional
discount on all units purchased and the retailer garners no additional inventory savings related
to that segment because the segment will not stockpile further. In these cases, we need to
modify the objective function and solution. The question is whether the retailer’s net benefit
(inventory savings less reduction in revenue from the additional discount) due to the other
segment’s additional stockpiling is large enough to compensate. For both Π1 and Π3, the
retailer’s objective depends on whether h1 or h2 is smaller; we divide our analysis accordingly.

Analysis of Π1 for Large ∆
In this case, when ∆ reaches min{h1, h2}T , one segment stockpiles for the entire order

cycle.

Case (i): h1 ≤ h2

In this case, t2 = ∆/h2 < t1 = T because segment 1’s stockpiling duration exceeds that
of segment 2, which is t2 = ∆/h2 (< T ). Substituting these into the objective, Π1, specialized
for these circumstances, we obtain:

Π1(∆, T ) = (r2 − w)(λ1 + λ2)−
K + λ2

h2
(1− hr

2h2
)∆2

T
− λ1∆− hr

2
λ2T.

Subcase (a): 1− hr
2h2

> 0
In this subcase, the specialized Π1 is decreasing in ∆ so we do not want to increase ∆

beyond hminT ; thus ∆∗ = h1T . Hence the optimal solution is

T ∗ =

√
K

h1λ1 + 0.5hrλ2 + λ2
h2

(1− hr
2h2

)h2
1

and ∆∗ = ∆UB = h1T
∗. (A-1)

The optimal objective is

Π∗1 = (r2 − w)(λ1 + λ2)− 2

√
h1λ1 + 0.5hrλ2 +

λ2h2
1

h2
(1− hr

2h2
)
√
K ′. (A-2)

Subcase (b): 1− hr
2h2

< 0.
In this subcase, the specialized Π1 is neither concave nor convex, and we find that

the unique stationary point is a saddle point by checking the second order conditions at the
stationary point. Therefore, the optimal solution must be on the boundary, i.e., at the lower
bound ∆ = h1T

∗ or at the upper bound ∆ = h2T
∗. The optimal solution at the lower bound

was derived above, and the optimal solution at the upper bound (note that in this case, both t1
and t2 are equal to T ) is:

T =
√

K
(λ1+λ2)h2

and ∆UB = h2T .

The associated objective value is Π∗1 = (r2 − w)(λ1 + λ2) − 2
√
h2(λ1 + λ2)

√
K ′. This solution

is dominated by Π1(0) in (2.5) (because 2h2 < hr). But under the conditions of this subcase
(i.e., h1 ≤ h2 and 1 − hr

2h2
< 0), Π1(0)∗, is dominated by the solution with ∆ = h1T

∗ (i.e., the
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lower bound on ∆), whose profit is the same at that given in (A-2). Therefore, the solution with
∆ = ∆UB is dominated, and the optimal solution is that given in (A-1).

Case (ii): h1 > h2

In this case, t1 = ∆/h1 and t2 = T . The objective, Π1, specialized to these circum-
stances, is

Π1(∆, T ) = (r2 − w)(λ1 + λ2)−
K + λ1

h1
(1− hr

2h1
)∆2

T
− λ2∆− hr

2
λ1T.

We can obtain solutions using analysis similar to that for Case (i) above.
Subcase (a): 1− hr

2h1
> 0

In this subcase, the optimal solution is

T ∗ =

√√√√ K

h2λ2 + 0.5hrλ1 +
λ1h22
h1

(1− hr
2h1

)
and ∆∗ = ∆UB = h2T

∗.

The optimal objective is

Π∗1 = (r2 − w)(λ1 + λ2)− 2

√
h2λ2 + 0.5hrλ1 +

λ1h2
2

h1
(1− hr

2h1
)
√
K ′.

Subcase (b): 1− hr
2h1

< 0
The analysis for this subcase parallels that of Case (i), subcase (b). The stationary

point is a saddle point. The solution with ∆ at its upper bound is T ∗ =
√

K
(λ1+λ2)h1

,∆∗ =

∆UB = h2T
∗,Π∗1 = (r2 − w)(λ1 + λ2) − 2

√
h1(λ1 + λ2)

√
K ′, and this solution is dominated

by Π∗1(0) (because 2h1 < hr), which in turn is dominated by the solution with ∆ at its upper
bound.

Analysis of Π3 for Large ∆
In this case, at ∆ = min{h1/T, h2/T + r1 − r2}, one segment’s stockpiling duration

reaches T .

Case (i): h1 ≤ h2

In this case, we have t1 = ∆
h1
> t2 = ∆−(r1−r2)

h2
, so segment 1’s stockpiling duration is

longer than that of segment 2. Substituting t1 = T and t2 = ∆−(r1−r2)
h2

into the objective, we
have

Π3(∆, T ) = (r1 − w)λ1 − λ1∆−
K + λ2

h2
[∆2 − (2r1 − r2 − w)∆ + (r1 − w)(r1 − r2)]

T
(A-3)

We define gUB(∆) = λ2
h2

[∆2 − (2r1 − r2 − w)∆ + (r1 − w)(r1 − r2)]. Notice that gUB has the
same structural form as g(∆) in (2.4). We can rewrite Π3 as

Π3(∆, T ) = (r1 − w)λ1 − λ1∆− K + gUB(∆)

T
.

Like our assumption that K + g(∆) > 0, we assume that K + gUB(∆) > 0 so T should
be set as large as possible, i.e., to the upper bound, ∆/h1. Substituting T = ∆/h1, the objective

can be rewritten as Π3 = (r1−w)λ1 + 2λ2
h1

(r1−r2−w)−(λ1 +h1λ2/h2)∆−
h1K+

λ2h1
h2

(r1−w)(r1−r2)

∆ ,
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which is concave in ∆. The optimal unconstrained solution (stationary point) is

∆∗ =

√
h1h2K + h2(r1 − w)(r1 − r2)λ2h1

h2λ1 + h1λ2
and T ∗ = ∆∗/h1. (A-4)

We need to check that the stationary point for ∆∗ is in the relevant range, i.e., greater
than r1 − r2. If not, then the optimal constrained solution is ∆∗ = r1 − r2 and T ∗ = ∆∗/h1.

Case (ii): h1 > h2

In this case, we have ∆
h1
≥ ∆−(r1−r2)

h2
if ∆ ≤ ∆̂ = h1(r1−r2)

h1−h2 and ∆
h1
≤ ∆−(r1−r2)

h2
otherwise. In other words, segment 1 stockpiles more than segment 2 if ∆ is less than a threshold
value, ∆̂, and stockpiles less than segment 2 if ∆ is larger. Hence we need to optimize ∆ in the
two subintervals and choose the better solution.
Subcase (a): ∆ ≤ ∆̂

We have t1 = T and t2 = ∆−(r1−r2)
h2

in this case, hence the specialized Π3 is exactly
the same as (A-3). We need to check whether the stationary point for ∆ in (A-4) is less than or
equal to ∆̂. If so, the solution is optimal; otherwise, the optimal solution is on the boundary:

∆∗ = ∆̂ and T ∗ = ∆∗/h1.

Subcase (b): ∆ ≥ ∆̂
In this case, we have t1 = ∆

h1
and t2 = T , so Π3 specialized to this case is

Π3(∆, T ) = (r1 − w)(λ1 + λ2)−
K + λ1

h1
(1− hr

2h1
)∆2

T
− hr

2
λ1T − λ2∆. (A-5)

If 1 − hr
2h1

> 0, then the objective is decreasing in ∆ so we should set ∆ at the lower
bound, h2T + r1 − r2. With this substitution, the objective can be rewritten as

Π3(∆, T ) = Θ− [λ2h2 +
λ1h

2
2

h1
(1− hr

2h1
) +

hrλ1

2
]T −

K + λ1
h1

(1− hr
2h1

)(r1 − r2)2

T
,

where Θ = (r1 − w)(λ1 + λ2)− λ2(r1 − r2)− 2λ1
h1
h2(1− hr

2h1
)(r1 − r2). The objective function is

concave in T and the unconstrained optimal solution is

T ∗ =

√
λ1
h1

(1− hr
2h1

)(r1−r2)2+K

λ2h2+
λ1h

2
2

h1
(1− hr

2h1
)+hrλ1/2

and ∆∗ = h2T
∗ + (r1 − r2).

It is easy to see that the ∆∗ derived above must be greater than r1 − r2. On the other hand, if
the stationary point for ∆∗ is less than ∆̂ , then the optimal solution is

∆∗ = ∆̂ and T ∗ = ∆̂−(r1−r2)
h2

.

If 1− hr
2h1

< 0, the objective is neither monotonic nor concave in ∆, and the stationary

point is a saddle point. Hence we need to check the boundary solutions ∆ = h1T, h2T and ∆̂.
(It is easy to show that ∆̂ ≥ r1 − r2, so r1 − r2 is a redundant boundary in this case.) The
solution with ∆ at the lower bound (i.e., h2T ) was derived above. The objective function with
∆ at its upper bound (i.e., h1T ) is

Π3(∆, T ) = (r1 − w)(λ1 + λ2)− (λ1 + λ2)h1T −
K

T
.
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The unconstrained optimal solution is

T ∗ =
√

K
(λ1+λ2)h1

and ∆∗ = h1T
∗.

If the ∆∗ derived above is less than ∆̂, then it can be eliminated from consideration.
By substituting ∆̂ for ∆ in (A-5) and optimizing the resulting concave function with

respect to T , we obtain the solution at ∆ = ∆̂ as

∆ = ∆̂, T ∗ =

√
K + (λ1/h1)(1− hr

2h1
)∆̂2

0.5hrλ1
.

We have now derived solutions with ∆ at the three boundaries. The boundary solution
with the largest objective value is the optimal solution to this subproblem.

Appendix B: Proof of Lemma 1

Lemma 1: If β < 0, then there exists a ∆ > r1 − r2 such that g(∆) < β ∗∆2.

Proof: We can re-express g(∆) as:

(
λ1

h1
− hrλ1

2h2
1

)∆2 +
λ2

h2
[∆2 − (2r1 − r2 − w)∆ + (r1 − w)(r1 − r2)].

The first term is simply β ∗∆2 so g(∆) < β ∗∆2 if the expression in square brackets above is
negative. Let ∆ = r1 − r2 + ε. Then, with a little algebra, we can show that the expression is
negative for all ε < r2 − w. Thus, there exists a ∆ > r1 − r2 such that g(∆) < β ∗∆. 2

Appendix C: Proof of Lemma 2

Lemma 2: Under the conditions of Case I, specifically hr > 2h1, g(∆0) < 0.

Proof: Substituting for ∆0 in g(∆0), after some algebra, we obtain:

g(∆0) = − [(λ2/h2)(2r1 − r2 − w)]2

4(
∑ λi

hi
− hrλ1

2h21
)

+ (r1 − w)(r1 − r2)λ2/h2.

The condition hr > 2h1 implies that the denominator of the first term is less than λ2/h2, so the
first term is less than −(λ2/h2)(2r1 − r2 − w)2/4. With a few straightforward algebraic steps,
we can show that g(∆0) < −(w − r2)2/4 < 0. 2

Appendix D: Derivation of Results in Tables 2.2 and 2.3 in Section 2.4.1

We first derive the optimal discount for each of the retailer’s profit functions under the
assumptions of Section 2.4.1, i.e., that neither segment’s stockpiling duration is more than T .
In Appendix A, we address situations where one of the segments is willing to stockpile for a
duration exceeding T .

Π1 (see (2.1)) is decreasing in ∆ if α > 0, in which case ∆∗ is the lower limit of the
feasible interval (i.e., zero). The condition α < 0 implies that the retailer prefers to increase
∆ so long as additional discounting induces both segments to stockpile more. We know that
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it is suboptimal for the retailer to choose ∆ such that both segments would be willing to
stockpile to satisfy their consumption for more than T . When ∆ reaches min{h1, h2}T , one
of the two segments stockpiles for the entire replenishment interval. This defines ∆UB under
the assumptions of Section 2.4.1.

Π2 (see (2.2)) is increasing in ∆ if β < 0 and decreasing in ∆ otherwise. Thus, ∆∗ is,
accordingly, the lower limit (i.e., zero) or the upper limit (i.e., r1 − r2) of the feasible interval.

We now consider Π3 (see (2.4)). The only term in Π3 that depends on ∆ is g. The

stationary point of g is ∆0 = λ2(2r1−r2−w)
2h2(

∑
λi/hi−hrλ1/2h21)

. Notice that the numerator of ∆0 is positive

so the sign of ∆0 depends upon the sign of the denominator, which is the same as the sign of γ.
Recall that g appears as −g(∆) in Π3. If γ > 0, then ∆0 > 0 and −g is concave. Consequently,
∆0, the stationary point, is the optimal discount if it is feasible (i.e., ∆0 > r1 − r2). On the
other hand, if γ < 0, then it is straightforward to show that −g is convex and increasing for all
∆ > 0. (The stationary point is negative.)

Further analysis allows us to show dominance of certain policies over others: For Cases
I and II, Π2 achieves its maximum at the upper limit of its feasible region, r1 − r2. It is easy to
show that Π2(r1 − r2) = Π3(r1 − r2). It can also be shown (see proof of Lemma 1 in Appendix
B) that if β < 0, there exists ∆ > r1 − r2 such that g(∆) < 0 and g(∆) < β ∗∆2. Furthermore,
Π3 is increasing for ∆ up to ∆0 > r1 − r2. Therefore Π3(∆0) dominates Π2(r1 − r2) if β < 0.

For Case V, β < 0 implies that Π2 is increasing in ∆, and γ < 0 implies that Π3 is
also increasing in ∆. Noting that Π2(r1 − r2) = Π3(r1 − r2), we can conclude that Π3(∆ub)
dominates Π2(r1 − r2).

Appendix E: Lemma 3

Lemma 3: If ΠL is monotonically increasing in the interval [a, b], convex in [a,∆0] and concave

in [∆0, b], then for any two points ∆1,∆2 ∈ [a, b] such that ∂ΠL

∂∆L (∆1) = ∂ΠL

∂∆L (∆2), we have

ΠL(∆1+∆2
2 ) = 0.5ΠL(∆1) + 0.5ΠL(∆2).

Proof. There exist at most two distinct positive solutions, say ∆1 and ∆2, to the first order
condition ∂ΠL

∂∆L = 3aL∆L2
+ 2bL∆L + cL = µ, and the sum of ∆1 and ∆2 is −2bL

3aL
= 4

3b
L. Given

that ∆0 is the inflection point of ΠL, we know that ∆0 = −bL
3aL

= 2
3b
L. Therefore, ∆1+∆2

2 = ∆0.

What remains to be shown is that ΠL(∆0) = 0.5ΠL(∆1) + 0.5ΠL(∆2).
As shown in Figure 4.1, the slope of the segment connecting ΠL(∆1) and ΠL(∆2),

which we define as α, is ΠL(∆2)−ΠL(∆1)
∆2−∆1

. Hence the segment connecting ΠL(∆1) and ΠL(∆2) can

be written as g(∆L) = ΠL(∆1) + α(∆L −∆1), and we have g(∆0) = 0.5ΠL(∆1) + 0.5ΠL(∆2).
To show that ΠL(∆0) = g(∆0) is equivalent to show ΠL(∆0) = ΠL(∆1)+α(∆0−∆1) =

ΠL(∆1) + ΠL(∆2)−ΠL(∆1)
∆2−∆1

(∆0 −∆1) = ΠL(∆1) + 0.5[ΠL(∆2) − ΠL(∆1)]. Applying the explicit

form of ΠL, the above equation can be written (for both the cases of m ≤ R−p and m > R−p)
as 0.25(∆1 + ∆2) + bL(∆1 −∆2)2 = (∆1)3 + (∆2)3. Given ∆1 + ∆2 = 4

3b
L, the above equation

can be written as 16
27(bL)2 + bL(∆1 −∆2)2 = 4

3b
L[(∆1)2 −∆1∆2 + (∆2)2]. The above equation

can be further simplified to be 16
9 (bL)2 = (∆1 + ∆2)2. The left hand side is equal to the right

hand side.

Appendix F: Proof of Proposition 1

Let (∆H∗,∆L
i
∗
) denote the optimal solution to the retailer’s problem. To prove the

main result, we first need to establish that ∂ΠL

∂∆L (∆L
i
∗
) ≥ 0 for all ∆L

i
∗
> 0, i ∈ {1, . . . , N}.
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Figure 4.1: ΠL

Let m∗ denote the optimal value of m (i.e., m∗ satisfies ∆H∗ +
∑N

i=1 ∆L
i
∗

= m∗T ). Then
∆H∗ and ∆L

i
∗

can be expressed as functions of m∗ in the nested problem. Suppose that

for some i ∈ {1, ..., N}, we have ∂ΠL

∆L (∆L
i
∗
) < 0 and ∆L

i
∗
> 0. Then there exists m̃ =

m∗ − ε/T and ∆̃L
i = ∆L

i
∗ − ε, for some small ε > 0 such that that ΠL(∆H∗,∆L

1
∗
, . . . ,∆L

N
∗
) <

ΠL(∆H∗,∆L
1
∗
, . . . ,∆L

i−1
∗
, ∆̃L

i ,∆
L
i+1
∗
, . . . ,∆L

N
∗
). This is true because decreasing ∆L

i
∗

will im-

prove the profit in the ith low cycle because ∂ΠL

∆L (∆L
i
∗
) < 0 and a reduction in m will improve

the profit in the other cycles because of higher brand equity. This contradicts the optimality of
m∗. Therefore, we must have ∂ΠL

∆L (∆L
i
∗
) ≥ 0.

Now, we prove the main result, namely that the positive discounts in low cycles must
be equal to each other in the optimal solution. Let λH be the Lagrange multiplier associated
with the constraint ∆H ≥ 0 and λLi be the Lagrange multiplier associated with the constraint
∆L
i ≥ 0, and µ be the Lagrange multiplier associated with the constraint ∆H +

∑n
i=1 ∆L

i = mT .
Then the Karush–Kuhn–Tucker conditions for the retailer’s problem (holding m fixed) are as
follows:

− ∂ΠH

∂∆H = λH − µ (A-6)

− ∂ΠL

∂∆L
i

= λLi − µ, i = 1, . . . , n (A-7)

∆H +
∑n

i=1 ∆L
i = mT (A-8)

λH∆H = 0, λLi ∆L
i = 0, i = 1, . . . , n (A-9)

λH ≥ 0, λLi ≥ 0, i = 1, . . . , n (A-10)

The conditions in (A-7) and (A-9) imply that for any i ∈ 1, ..., n, we have either

(∆L
i
∗

= 0 and λLi > 0) or (∆L
i
∗
> 0, λLi = 0, and ∂ΠL

∂∆L
i

= µ). Therefore, we have ∂ΠL

∂∆L
i

(∆L
i
∗
) =

µ ≥ 0 for all positive ∆L
i
∗
. There are at most two positive solutions that satisfy ∂ΠL

∂∆L
i

= µ

due to the cubic form of ΠL. As shown in Figure 3.1, ΠL is either strictly concave or initially
convex and then concave in the region of ∆L ≥ 0. If bL ≤ 0, then ΠL is strictly concave
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and there exists one positive solution, which implies that any positive ∆L
i
∗
s are equal to each

other. If bL > 0, then ΠL is initially convex, then concave increasing then concave decreasing,
so there are two distinct positive solutions to the first order condition ∂ΠL

∂∆L
i

(∆L
i
∗
) = µ. Denote

the two solutions by ∆1 and ∆2. By Lemma 3, the solution (∆L
i
∗

= ∆1 and ∆L
i
∗

= ∆2) is
dominated by (∆L

i
∗

= ∆L
j
∗

= (∆1 + ∆2)/2). Therefore, we must have ∆L
i
∗

= ∆L
j
∗

for any

∆L
i
∗
,∆L

j
∗
> 0, i, j ∈ 1, ..., N . 2

Appendix G: Characterization of the Retailer’s Dominance Map for Case III
in Section 2.4.2

The condition g(∆0) < 0 is equivalent to the condition

λ2

h2
(r1 − r2)−1(

λ1

h1
− hrλ1

2h2
1

)−1 > 4(r1 − w)(r2 − w)−2. (A-11)

When β > 0 (which applies to Cases III and IV), the left hand side of (A-11) is positive. The
right hand side of (A-11) is convex and increasing in the applicable range of w (< r2). Let w2

represent the value of w that satisfies (A-11) as an equality. Then Π∗3 is dominant for w < w2

and Π∗2 is dominant for larger values of w. Thus, for w > w2 the relevant comparison is between
Π∗1 and Π∗2, whereas for w < w2 the relevant comparison is between Π∗1 and Π∗3.

We also need to ensure that for w < w2, we have ∆0 > r1 − r2; otherwise we would be
evaluating Π3 at an infeasible value of ∆. We address this issue by determining whether all ws
satisfying (A-11), i.e., all w < w2, also satisfy the condition ∆0 > r1 − r2. With some algebra,
the latter condition can be expressed as:

λ2

h2
(r1 − r2)−1(

λ1

h1
− hrλ1

2h2
1

)−1 > 2(r2 − w)−1. (A-12)

The left hand side of this inequality is the same as the left hand side of (A-11). Because r1 > r2,
the right hand side of (A-12) is less than the right hand side of (A-11), so any w satisfying
(A-11) also satisfies (A-12). Thus, the condition ∆0 > r1−r2 imposes no additional constraints.

Expressions for Π∗1 and Π∗3 were derived in Section 2.4.2 (cf. (2.6) and (2.7)). We now

derive Π∗2. Maximizing Π2(0, T ) = (r1−w)λ1− K
T −

λ1hr
2 T with respect to T gives T ∗ =

√
2K
λ1hr

,
so

Π∗2 = (r1 − w)λ1 −
√

2hrλ1

√
K. (A-13)

We first consider the case where Π∗2 dominates Π∗3 and then the case where the reverse
holds.

Subcase (a): Π∗2 dominant over Π∗3
Here, Π∗3 can be excluded, so we need to compare Π∗1 and Π∗2 to determine the regions

of (w,K) in which the retailer prefers each. It is easy to see that the two function are convex
decreasing in K for any w and the former is declining at a faster rate as K increases. Thus Π∗2
is dominant if (r1 − w)λ1 > (r2 − w)(λ1 + λ2) or equivalently, w > r2(λ1+λ2)−r1λ1

λ2
= w1. Note

that this is the same threshold on w as was defined in Case I. For smaller values of w, however,
the dominance regions vis-a-vis Π∗1 and Π∗2 (ignoring Π∗3) are defined by a monotonic switching
curve, i.e., the (w,K) pairs satisfying Π∗1 = Π∗2, which can be expressed as:

wλ2 = r2(λ1 + λ2)− r1λ1 −
√

2hr(λ1 + λ2)
√
K +

√
2hrλ1

√
K. (A-14)
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Π∗1 is dominant to the southwest of this curve and Π∗2 dominates to the northeast.

Subcase (b): Π∗3 dominant over Π∗2
When w < w2 at the given K, then Π∗2 can be excluded from consideration. The (w,K)

pairs satisfying Π∗1 = Π∗3 can be expressed as

wλ2 = r2(λ1 + λ2)− r1λ1 −
√

2hr(λ1 + λ2)
√
K +

√
2hrλ1

√
K + g(∆0). (A-15)

Equation (A-15) is defined only for K ′ > −g(∆0) > 0. (In Section 4.2.1, we discussed what
happens when K ′ + g(∆0) < 0.) Because g(∆0) is a quadratic, there are two values of w′ that
satisfy (A-15) for each K ′ but only the smaller solutionis valid; the larger w′ is greater than r2.
Π∗1 is dominant to the southwest of the switching curve and Π∗3 is dominant to the northeast.

When w = w2, g(∆0) = 0 so the two switching curves are identical at this point.

Appendix H: Sketches of Solution Procedures for the Manufacturer’s Problem

Dominance Map 1, Option 1

Taking the derivative of Πm
1 in (2.7) with respect to K ′, we obtain

∂Πm
1

∂K ′
=
K
√

(λ1 + λ2)hr

2
√

2
K ′−1.5 +

[√
(λ1 + λ2)hr

2
√

2
− hm(λ1 + λ2)1.5

2P
√

2hr

]
K ′−0.5. (A-16)

The first term is positive, so a sufficient condition for Πm
1 to be increasing is that the expression

in parentheses is non-negative, or hr/hm ≥ (λ1 + λ2)/P . Thus, if the retailer’s holding cost is
high in comparison to that of the manufacturer, the manufacturer will choose K ′ as the largest
feasible value. Otherwise, setting (A-16) to zero yields K ′∗ = K(hm(λ1+λ2)

hrP
−1)−1. For any fixed

K ′, the objective is increasing in w′, however, so the solution lies on one of the two constraints.
Recall that ∆0 is a linear function of w′, so g is a quadratic function of w′. Thus, Lagrangian
methods may be required to solve the problem if the IC constraint is binding. On the other
hand, if it is not binding, the optimal solution can be obtained in closed form by using the
relationship between w′ and K ′ in the participation constraint.

Dominance Map 1, Option 3 The expression for f(w′) is:

λ2c1[1− hmλ2c1/2P ]w′2 + c2λ2(1− hmλ2c1/P )w′ − hmλ2
2c

2
2/2P,

where c1 = − λ2/h
2
2

2(λ1h1 −
hrλ1
2h21

)
and c2 =

(λ2/h
2
2)(2r1 − r2)

2(
∑ λi

hi
− hrλ1

2h21
)
− r1 − r2

h2
.

Because the objective function, participation constraint and IC constraint all involve√
K ′ + g(∆′0), algebraic solution approaches are difficult, but numerical solution methods are

relatively straightforward. Despite their complicated form, we have found the functions to be
relatively well-behaved, although it is not possible to prove unimodality in general.
Dominance Map 2, Option 1

When w′ > w2, the participation and IC constraints have different gradients with
respect to K ′ (i.e., one of the functions is steeper for all K ′), so the two functions can cross at
most once. The problem can be solved easily by first computing the crossing point, then solving
two problems, each with the applicable binding constraint. One also needs to impose constraints
on w′ to ensure that the solution lies on the correct side of the crossing point and that w′ > w2.
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When w′ < w2, The solution approach is similar to that given in the discussion of
Dominance Map 1, except that one additionally needs to consider the upper bound on w.

Dominance Map 2, Option 2

The manufacturer’s objective is increasing in w′ for fixed K ′, so for any K ′, the manu-
facturer increases w′ as much as possible subject to the retailer’s participation and IC constraints.
The IC constraint is not binding in this case because for any fixed K ′, there exists a sufficiently
large w′ that the retailer will prefer Π∗2. The solution thus lies on the retailer’s participation
constraint and with some algebra, the solution can be obtained in closed form.

Appendix I: Solution for the Retailer’s Problem When N = 0

The special case of N = 0 is easy to solve and does not require a nested optimization
procedure. The retailer’s objective is simply to optimize ΠH , and we have m = ∆H/T . The
objective function is

ΠH = aH0 (∆H)3 + bH0 (∆H)2 + cH0 ∆H + γH0

where the coefficients are defined as follows. If m = ∆H/T < R− p, we have:

aH0 = (−0.5 + 1/T )
Γ

hR
,

bH0 = [0.5(p− w + ∆M )− (R− p)− 0.5hrT
H/T ]

Γ

hR
,

cH0 = [0.5hrT
H(R− p)− (p− w + ∆M − 0.5hrT

H)hTH/T ]
Γ

hR
,

γH0 = (p− w + ∆M − 0.5hrT
H)hTH(R− p) Γ

hR
−K.

On the other hand, if m = ∆H/T ≥ (R− p) we have:

aH0 = (−0.5 + 1/T − 1/(2T 2))
Γ

hR
,

bH0 = [0.5(p− w + ∆M )− (R− p)− (p− w + ∆M )(1/(2T 2)− 1/T ) + (R− p)/T ]
Γ

hR
,

cH0 = (R− p)[(p− w + ∆M )(1/1/(2T ))− 0.5(R− p)] Γ

hR
,

γH0 = 0.5(p− w + ∆M )(R− p)2 Γ

hR
−K.

We need to solve two problems, one constrained to the region ∆H < (R− p)T and the
other constrained to the region ∆H ≥ R−p. The solution that returns the higher objective value
is the optimal solution. The solution procedures for the constrained problem of ∆H < (R− p)T
and that of ∆H ≥ (R − p)T are entirely the same, and the following derivation of the optimal
solution applies two both of the two constrained problems.

The solution depends upon the sign of aH0 . We consider the two cases below. It is easy
to show that in both cases, the objective function is a cubic function of ∆H , but the form of the
function for ∆H ≥ 0 depends upon the other coefficients. As such, the optimal solution may be
zero, one of the stationary points, or the upper limit on ∆l (i.e., (R− p)T ). Below, we describe
the form of the cubic function in the region ∆H ≥ 0 for the various combinations of coefficients
and the corresponding optimal solutions.
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• Subcase (a): aH0 < 0

If cH0 > 0, then ΠH is increasing and then decreasing in ∆H , hence ∆H∗ = min{(R −

p)T,
−bH0 −

√
bH0

2−3aH0 c
H
0

3aH0
}

If bH0 < 0 and cH0 < 0, then ΠH is decreasing in ∆H , hence ∆H∗ = 0.

If bH0 > 0 and cH0 < 0, then ΠH is decreasing then increasing and then decreasing again in

∆H , hence ∆H∗ = 0 or ∆H∗ = min{(R− p)T, −b
H
0 −

√
bH0

2−3aH0 c
H
0

3aH0
}.

• Subcase (b): aH0 ≥ 0

If bH0 > 0 and cH0 > 0, then ΠH is increasing in ∆H , hence ∆H∗ = (R− p)T .

If bH0 < 0 and cH0 > 0, then ΠH is increasing then decreasing and then increasing in ∆H ,

hence ∆H∗ =
−bH0 +

√
bH0

2
+3aH0 c

H
0

3aH0
or ∆H∗ = (R− p)T .

If cH0 < 0, then ΠH is decreasing then increasing in ∆H , so ∆H∗ = 0 or (R− p)T . 2

Appendix J: Proof of Proposition 2

Let (∆H∗,∆L
1
∗
, . . . ,∆L

N
∗
) denote the optimal discounts offered by the retailer, and

TH
∗

and TL
∗

denote the optimal durations of the high and low cycles, respectively. We assume
TH
∗ ≥ TL∗.

We will show that if the discount offered in the low cycle, ∆L
i
∗
, is greater than the

discount offered in the high cycle, ∆H∗, then the retailer can improve his profit by switching
∆H∗ and ∆L

i
∗
, and this contradicts the optimality of (∆H∗,∆L

1
∗
, . . . ,∆L

N
∗
).

As noted earlier, we prove the result by contradiction. Suppose that ∆H∗ < ∆L
i
∗

for
some i ∈ 1, . . . , N . Then

Υ , Π(∆H∗,∆L
1
∗
, ...,∆L

N
∗
)−Π(∆L

i
∗
,∆L

1
∗
, ...,∆H∗, ...∆L

N
∗
)

= ΠH(∆H∗) + ΠL(∆L
i
∗
)−ΠH(∆L

i
∗
)−ΠL(∆H∗).

If m ≤ R− p, then

Υ = 0.5∆M ((∆H∗)2 − (∆L
i
∗
)2) + 0.5hr(R− p−m)[TH(∆H∗ −∆L

i
∗
) + TL(∆L

i
∗ −∆H∗)]).

and if m ≤ R− p, then

Υ = 0.5∆M ((∆H∗)2 − (∆L
i
∗
)2) + ∆M (∆H∗ −∆L

i
∗
).

Hence
Π(∆H∗,∆L

1
∗
, ...,∆L

N
∗
)−Π(∆L

i
∗
,∆L

1
∗
, ...,∆H∗, ...∆L

N
∗
) < 0

because ∆H∗ < ∆L
i
∗

and TH
∗ ≥ TL∗. This contradicts the optimality of (∆H∗,∆L

1
∗
, . . . ,∆L

N
∗
).

Hence we must have ∆H∗ ≥ ∆L
i
∗

for all i ∈ {1, . . . , N} if TH
∗ ≥ TL∗. 2

Appendix K: Optimizing ∆L for a Given n

In this appendix, we derive the optimal ∆s for a fixed n. If there are n low cycles in
which the retailer offers a positive discount, then we have m = ∆H+n∆L

T , where we have omitted
the subscript on ∆L

i because, by Proposition 1, all of the positive ∆L values are equal, so we
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need not distinguish them. (Recall, however, that some of the ∆L
i values are zero.) To convert

the retailer’s problem to a single-variable problem, we re-express ∆H as mT − n∆L, and the
retailer’s objective becomes a cubic function of ∆L. We can infer the functional form from the
first derivative of the retailer’s objective with respect to ∆L, which is:

∂Π

∂∆L
= a(∆L)2 + b∆L + c

where

a = 1.5(n2 − 1)
n

hRT
, and (A-17)

b = [−2(R− p−m)+(n+ 1) + (p− w)(n+ 1) + (∆M − 3mT )n]
n

hRT
. (A-18)

If m < R− p, then

c = (R− p−m)+[2mT − 0.5hr(T
H − TL)] +mT (1.5mT − (p− w + ∆M ))

n

hRT
(A-19)

and if m > R− p, then

c = (R− p−m)+[2mT − (p− w + ∆M ) + 0.5(R− p−m) + (p− w)/n− 0.5(R− p−m)/n]

+ mT (1.5mT − (p− w + ∆M ))
n

hRT
. (A-20)

For a fixed m, the problem is to allocate a total discount, m, among the high cycle and n low
cycles, where the discounts in the low cycle are equal to one another. The optimal solution
depends upon the signs of b and c, which define which of the four possible forms of Π (as shown
in Figure 4.2) applies. We assume TH ≥ TL in this section, which is commonly true in practice
because retailers tend to stockpile hence high cycles tend to be longer than low cycles. We allow
TH and TL to be in any order in the Numerical Study in Section 3.5.

• b > 0, c > 0

If b > 0 and c > 0, Π is convex increasing in ∆L. The solution is ∆H = 0 and ∆L = mT .
We conclude that this solution is suboptimal based on the results in Proposition 2.

• b < 0, c > 0

As shown in the upper right plot in Figure 4.2, the two local optima are (i) the stationary

point ∆L = −b+
√
b2−4ac

2a , if it exists, and (ii) the upper limit of ∆L (i.e., ∆L = mT
n ,∆H = 0).

The upper limit is suboptimal based on Proposition 2. If b2−4ac ≥ 0, the stationary point

exists and ∆L∗ = −b+
√
b2−4ac

2a ; if b2 − 4ac < 0, the objective is increasing in ∆L so the
solution ∆L = mT/n is suboptimal .

• −∞ < b <∞, c ≤ 0

When c ≤ 0, the only difference between the cases with b ≤ 0 and b > 0 is that when
b > 0, ΠL is convex for small ∆L. But in both cases, the retailer’s profit function is
decreasing then increasing and hence the optimal solution is either at the lower limit (i.e.,
∆L = 0), or the upper limit (∆L = mT/n). However, by Proposition 2, the latter solution
is suboptimal so the solution is (∆H∗ = mT,∆L∗ = 0) in this case.
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Figure 4.2: ΠL For Different Signs of b, c

Therefore, the optimal solution to the inner problem is either the boundary solution

(∆H∗ = mT,∆L∗ = 0) or the stationary point (∆L∗ = −b+
√
b2−4ac

2a ,∆H∗ = mT − n∆L∗). We
solve the outer problem utilizing these two solutions to the inner problem.

Appendix L: Outer Optimization Problem: Optimizing m

We derive the solution for m∗ for the two potentially optimal solutions: (1) ∆H∗ = mT

and ∆T ∗ = 0 and (2) ∆L∗ = −b+
√
b2−4ac

2a where a, b and c are defined in (A-17) through (A-20),

and ∆H∗ = mT − n∆L∗.

Potential Solution 1: ∆H = mT,∆L = 0 with α1 < 0
Substituting for ∆H and ∆L in the objective function, the retailer’s objective can be

rewritten as Π(m) = α1m
3 + α2m

2 + α3m+ α4 where
(Case 1:) if m ≤ R− p, then

α1 = 0.5T 2(2− T )
Γ

hR
,

α2 = [(0.5(p− w + ∆M )− (R− p))T 2 − 0.5hrT
HT ]

Γ

hR
,

α3 = [0.5hr(R− p)THT − (p− w + ∆M − 0.5hrT
H)hTH − n(p− w − 0.5hrT

L)hTL]
Γ

hR
,

α4 = (R− p)[(p− w + ∆M − 0.5hrT
H)hTH + n(p− w − 0.5hrT

L)hTL]
Γ

hR
− (n+ 1)K
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(Case 2:) if m > R− p, then

α1 = −0.5T (T − 1)2 Γ

hR
,

α2 = [(0.5(p− w + ∆M )− (R− p))T 2 + ((R− p)− (p− w + ∆M ))T

+0.5((p− w)(n+ 1) + ∆M )]
Γ

hR
,

α3 = [((R− p)(p− w + ∆M )− 0.5(R− p)2)T − ((p− w)(n+ 1) + ∆M )(R− p)] Γ

hR
,

α4 = 0.5(R− p)2[(p− w)(n+ 1) + ∆M )]
Γ

hR
− (n+ 1)K

If m ≤ R − p, then α1 is negative for T > 2, and if m > R − p, then α1 is negative
for T > 1. Note that if T < 2, then there cannot be a low cycle and the special case with no
low cycles applies. (See Appendix I for an analysis of this special case.) Furthermore, if T = 2,
then the high and low cycles are forced to have the same duration, which is quite restrictive. In
the analysis that follows, we initially focus on cases with T > 2, and then return to the case of
T = 2. The analysis depends upon the signs of α2 and α3, and the corresponding shape of the
retailer’s objective is shown in Figure 3.2; we divide our analysis accordingly. In all cases, the
same analysis applies to both m ≤ R− p and m > R− p.
(a) α2 ≤ 0, α3 ≤ 0

Π(m) is decreasing in m for m ≥ 0, and hence m∗ = 0.
(b) α2 > 0, α3 < 0

Π(m) is decreasing then increasing and then decreasing again as m increases from
0. There are two local optima: m∗ = 0 and the larger of the two stationary points, m∗ =
α2+
√
α2

2−3α1α3

−3α1
. This stationary point exists if and only if α2

2 + 2T 2(T − 2)α3 ≥ 0. If α2
2 +

2T 2(T − 2)α3 < 0, then Π(m) is decreasing in m, so m∗ = 0 is the optimal solution. Therefore,

the optimal solution is m∗ = min{R − p, α2+
√
α2

2−3α1α3

−3α1
} if the stationary solution exists and

m∗ = 0 otherwise.
(c) −∞ < α2 <∞ and α3 > 0

Π(m) is increasing and then decreasing in m for m ≥ 0, so the unconstrained optimal

solution is at the stationary point, m̂ =
α2+
√
α2

2−3α1α3

−3α1
. (Note that the stationary point exists

because the expression under the square root is positive.) Therefore, in Case 1, m∗ = min{R−
p, m̂} and in Case 2, m∗ = m̂.

We now provide further economic interpretation of the coefficients in the objective
function. Assuming that α1 < 0, the other key parameters that affect characteristics of the
solution are α2 and α3. If α2 > 0 at a given value of ∆M , then, roughly speaking, the retailer
gains more from selling to discount customers than he loses due to the reduced margin on units
sold to regular customers If α3 > 0 at a given value of ∆M , then the retailer’s savings in inventory
costs from discounting is greater than the reduction in profit due to the fact that the (negative)
brand equity effect reduces the number of regular customers. If α2 > 0and α3 < 0 (or the
reverse), then the retailer faces competing forces when optimizing his discounts. If both α2 and
α3 are negative, then the retailer has little incentive to offer discounts at the given value of ∆M .

Potential Solution 2: ∆L∗ = −b−
√
b2−4ac

2a ,∆H = mT − n∆L∗

Substituting for ∆L∗ and ∆H in Π(∆L) gives the objective expressed as a function of

m: Π = a
3∆L∗3 + b

2∆L∗2 + c∆L∗ + θ, where ∆L∗ = −b−
√
b2−4ac

2a , θ = aH(mT )3 + bH(mT )2 +
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cH(mT ) + γH + nrL, a, b, c are functions of m and are defined in (A-17), (A-18), (A-19), and
(A-20) aH , bH , cH , γH , γL are also functions of m and defined in Section 3.4.

However, the optimal m cannot be expressed analytically. We provide optimality con-
ditions below; numerical methods can be used to find optimal m.

The first order condition ∂Π(∆L)
∂∆L = 0 can be written as

a∆L(m)
∂∆L(m)

∂m
+ 0.5∆L(m)

2
[2(n+ 1)− 3nT ] + b∆L∂∆L(m)

∂m

+[−2mT − 0.5hr(T
H − TL) + 2T (R− p−m)]∆L(m) + c

∂∆L(m)

∂m
= 0 (A-21)

where

∆L(m) =
−b−

√
b2 − 4ac

2a
∂∆L(m)

∂m
= − 1

2a
{2(n+ 1)− 3nT − 2b[2(n+ 1)− 3nT ]− 4a{−2mT − 0.5(TH − TL)

+ 2T (R− p−m) + T [1.5mT − (p− w + ∆M ) + 1.5mT 2]}/[2
√
b2 − 4ac]}

The optimal value of m is either at the stationary point mentioned above (i.e., the solution to
(A-21)) or at the boundary value, 0.

Finally, we turn to the special case of α1 = 0 (which implies that T = 2) under the
assumption that m ≤ R− p. If α1 = 0 and m < R− p, the solution procedure for α1 < 0 can be
used. The retailer’s objective function is Π(m) = α1m

3 +α2m
2 +α3m+α4 and expressions for

the αs are those listed under Potential Solution 1 at the beginning of this appendix. Because
α1 = 0, Π is quadratic in this case, so the solution depends on the signs of α2 and α3 and is
either at a stationary point or at the boundary of 0. Details follow.
• α2 > 0, α3 > 0:

Π is concave increasing for m ≥ 0, and the optimal solution is m∗ = R− p.
• α2 > 0, α3 < 0:

Π is concave decreasing and then increasing, hence m∗ is either 0 or R− p.
• α2 < 0, α3 > 0:

Π is concave increasing and then decreasing, and m∗ is at the stationary point:
−α3−

√
α3

2−4α2α3

2α2
.

• α2 < 0, α3 < 0:
Π is concave decreasing for m ≥ 0, hence m∗ = 0.
The economic interpretations of α2 and α3 are the same as those given earlier, so if both

are positive, large discounts are attractive and if both are negative, discounts are undesirable
for the retailer. When these coefficients have different signs, there may be a tradeoff, in which
case an intermediate value may be optimal.




