
eScholarship
Combinatorial Theory

Title
An asymptotically tight lower bound for superpatterns with small alphabets

Permalink
https://escholarship.org/uc/item/0cd5r5c8

Journal
Combinatorial Theory, 3(2)

ISSN
2766-1334

Author
Hunter, Zach

Publication Date
2023

DOI
10.5070/C63261976

Supplemental Material
https://escholarship.org/uc/item/0cd5r5c8#supplemental

Copyright Information
Copyright 2023 by the author(s).This work is made available under the terms of a
Creative Commons Attribution License, available at
https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0cd5r5c8
https://escholarship.org/uc/item/0cd5r5c8#supplemental
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

combinatorial theory 3 (2) (2023), #1 combinatorial-theory.org

An asymptotically tight lower bound
for superpatterns with small alphabets

Zach Hunter1

1ETH Zurich, Switzerland
zach.hunter@math.ethz.ch

Submitted: Dec 19, 2021; Accepted: Jul 20, 2022; Published: Sep, 15 2023
© The author. Released under the CC BY license (International 4.0).

Abstract. A permutation σ ∈ Sn is a k-superpattern (or k-universal) if it contains
each τ ∈ Sk as a pattern. This notion of “superpatterns” can be generalized to words on
smaller alphabets, and several questions about superpatterns on small alphabets have re-
cently been raised in the survey of Engen and Vatter. One of these questions concerned the
length of the shortest k-superpattern on [k + 1]. A construction by Miller gave an upper
bound of (k2 + k)/2, which we show is optimal up to lower-order terms. This implies a
weaker version of a conjecture by Eriksson, Eriksson, Linusson and Wastlund. Our results
also refute a 40-year-old conjecture of Gupta.
Keywords. Patterns, permutations, probabalistic method
Mathematics Subject Classifications. 05A05, 60C05

1. Introduction

Given permutations τ ∈ Sk, σ ∈ Sn, we say σ contains τ as a pattern if there exist indices
1 ⩽ i1 < · · · < ik ⩽ n such that σ(ij) < σ(ij′) if and only if τ(j) < τ(j′) for all choices j, j′
(e.g., 312 is contained in 25143 as a pattern, we may choose i1, i2, i3 = 2, 3, 4). We say
that σ ∈ Sn is a k-superpattern if it contains each τ ∈ Sk as a pattern. Naturally, this leads
us to consider the “superpattern problem”.

Problem 1. For k ⩾ 1, let f(k) be the minimum n such that there exists σ ∈ Sn which is a
k-superpattern. What is the asymptotic growth of f(k)?

In 1999, Arratia [Arr99] showed that1 (1/e2 − o(1))k2 ⩽ f(k) ⩽ k2, hence f(k) is well-
defined.

1The reader may consult the start of Subsection 1.2 to recall various asymptotic notation we will use (e.g., ‘O’,
‘o’, and ‘±’).

https://www.combinatorial-theory.org
mailto:zach.hunter@math.ethz.ch

2 Zach Hunter

There have been several competing conjectures about the asymptotic growth of f(k). The
conjecture relevant to this paper is that of Eriksson, Eriksson, Linusson and Wastlund, which
claimed f(k) = (1/2 ± o(1))k2 [EELW07]. As some evidence towards this conjecture, Miller
showed that there exist k-superpatterns of length (k2 + k)/2 (i.e., f(k) ⩽ (k2 + k)/2) [Mil09].
And later Engen and Vatter improved this to show f(k) ⩽ (k2 + 1)/2 [EV21]. However in
forthcoming work [Hun], the author will show that f(k) ⩽

(
3
8
+ o(1)

)
k2, refuting the claim

that the constant 1/2 is tight.
In light of this, one is left to wonder if a revised version of the conjecture from [EELW07]

holds true. We answer this in the affirmative by considering a “stricter regime” of the superpat-
tern problem which has received attention recently (see [CKS21, EV21]).

The regime in question concerns “alphabet size”. Instead of having σ be a permutation,
what if it was a word (i.e., sequence) on the alphabet [r] := {1, . . . , r}? For σ ∈ [r]n and
τ ∈ Sk, we say σ contains τ as a pattern for the same reasons as before (i.e., if there are indices
1 ⩽ i1 < · · · < ik ⩽ n such that σ(ij) < σ(ij′) if and only if τ(j) < τ(j′)). As before, we
say σ ∈ [r]n is a k-superpattern if it contains every τ ∈ Sk as a pattern. We define f(k; r) to be
the minimum n such that there is a σ ∈ [r]n which is a k-superpattern.

One could revise this conjecture, by claiming in regimes with “small” alphabets, that the
shortest k-superpatterns have a length of (1/2 ± o(1))k2. In this paper, we prove the revised
conjecture for the regime where r = rk = (1 + o(1))k. The lower bound is given by our main
result.

Theorem 1.1. For every ϵ > 0, there exists δ > 0 so that the following holds for sufficiently
large k. For2 rk = (1 + δ)k and n < (1/2− ϵ)k2, no word σ ∈ [rk]

n is a k-superpattern.

Hence, with Miller’s construction (which uses the alphabet [k + 1], and thus shows
f(k; k + 1) ⩽ (k2 + k)/2), we have asymptotically sharp bounds of the shortest superpatterns
in this regime.

Corollary 1.2. Suppose rk = (1 + o(1))k and also rk > k for all k. Then

f(k; rk) =

(
1

2
± o(1)

)
k2.

In Section 1.1 we go over past lower bounds of f , and outline a proof of Theorem 1.1. In Sec-
tion 1.2 we go over notation. In Section 2 we go over a reduction which shows that Theorem 1.1
follows from a more technical Theorem 2.3, which we state later.

We came across two proofs of Theorem 2.3, we include both (but provide different levels
of detail). In Section 3 we prove Theorem 2.3 by a simple coupling argument. In Section 4 we
sketch a second proof which uses the differential method. We believe our second proof is more
likely to find applications in future research, however the first proof is more natural and was
easier to present in full detail.

In Section 5 we discuss some open problems and go over some results about the lower-order
terms of our bounds. One part which may be of particular interest Section 5.3, where we refute
a conjecture made by Gupta in 1981 [Gup81], which was about the length of “bi-directional
circular superpatterns”.

2Throughout the paper, we omit floor functions when there is not risk for confusion.

combinatorial theory 3 (2) (2023), #1 3

1.1. Past lower bounds and an outline of our proof

We mention two trivial lower bounds for the length of superpatterns. Any σ ∈ Sn contains
at most

(
n
k

)
permutations τ ∈ Sk as a pattern, since

(
n
k

)
counts the number of choices of

indices 1 ⩽ i1 < · · · < ik ⩽ n. This implies
(
f(k)
k

)
⩾ k! must hold, which gives the

bound f(k) ⩾ (1/e2 − o(1))k2. Meanwhile, if rk = (1 + o(1))k, then one can get
f(k; rk) ⩾ (1/e − o(1))k2 by a convexity argument (more specifically, one shows that
any σ ∈ [k]n contains at most (n/k)k patterns of length k, and then one uses Remark 1.4 which
we mention shortly).

In 1976, Kleitman and Kwiatowski [KK76] used inductive methods to show
that f(k; k) ⩾ (1 − o(1))k2 which is asymptotically tight (indeed, to see f(k; k) ⩽ k2 one
can consider 1, . . . , k repeated k times). But it was only in 2020 that Chroman, Kwan, and Sing-
hal [CKS21] proved non-trivial lower bounds for superpatterns on alphabets larger than [k]. Ba-
sically, the methodology was based around “encoding” patterns in a more efficient manner. They
show that typical choices of indices 1 ⩽ i1 < · · · < ik ⩽ n have many “large gaps” (choices j
where ij+2 − ij > Ck for a certain C > 0), and that this property is particularly redundant
(loosely, they create equivalence classes for choices of indices with many large gaps, and show
that each equivalence class contains many choices of indices, yet few distinct patterns). This was
used to show f(k) ⩾ (1.000076/e2)k2 for large k, and f(k; (1+ e−1000)k) ⩾ ((1+ e−600)/e)k2

for large k.
In proving Theorem 1.1, we take a rather different approach than either of the previous papers

which established non-trivial lower bounds (namely [CKS21, KK76]). We actually reformulate
the problem in terms of random walks on deterministic finite automata (DFAs). To get there, we
need a definition and an observation.

Definition 1.3. For positive integers k, n, we let F (k, n) be the maximum number of
patterns τ ∈ Sk that a σ ∈ [k]n can contain.

Remark 1.4. For any σ ∈ [r]n, we have that σ contains at most
(
r
k

)
F (k, n) patterns τ ∈ Sk.

Consequently, if r is such that (
r

k

)
F (k, n) < k!

then there is no σ ∈ [r]n which is a k-superpattern (i.e., f(k; r) > n).
To confirm this remark, it suffices to verify the first sentence in Remark 1.4, which can be

briefly justified as follows. Note that for each of the
(
r
k

)
subsets Y ⊂ [r] with |Y | = k, there are

at most F (k, n) permutations τ ∈ Sk which are a pattern of σ|σ−1(Y). Conversely, if τ ∈ Sk is a
pattern of σ, it is contained as a pattern of σ|σ−1(Y) for some set Y ⊂ [r] with |Y | = k.

Thus for fixed ϵ > 0, we want to show that when n < (1/2− ϵ)k2 and k is large that F (k, n)
will be “extremely small”. We are able to show this by considering random walks on cer-
tain DFAs. What we specifically prove about DFAs is a bit technical, so we defer the rigorous
statement to Section 2.4. Essentially, it implies a exponentially small upper bound forF (k, n)/k!
when n < (1/2− Ω(1))k2.

4 Zach Hunter

Theorem 2.3 (Informal statement). There exists a functionG(k, n,N) (which is defined in terms
of a family of DFAs) such that

F (k, (1/2− ϵ)k2) ⩽ G(k, (1/2− ϵ)k2, k2).

For fixed ϵ > 0, we will have

G(k, (1/2− ϵ)k2, k2) gets “very small” as k → ∞.

Here, the notion of “very small” is such that Theorem 1.1 will follow from an application of
Remark 1.4.

Intuitively, one may expect our results to hold true by considering the following argument
sketch. The rest of our paper will be dedicated to rigorously grounding this sketch.

Fix any σ ∈ [k]n. We wish to show that when n < (1/2 − ϵ)n2, then it is a very rare
event for a random permutation τ ∈ Sk to be a subsequence of σ. It is actually fairly easy to
show that it is a rare event for a uniformly random t⃗ = (t1, . . . , tk) ∈ [k]k to be a subsequence
of σ. Let t be sampled from [k] uniformly at random. For any i0 ∈ [n], we will have that
E[inf{i > i0 : σ(i) = t}− i0] ⩾ (k+1)/2, which is minimized when σ(i0+1), . . . , σ(i0+k) is
a permutation (we use the convention∞−i0 = ∞ so that the quantity inf{i > i0 : σ(i) = t}−i0
is always well-defined).

Thus, if t1, . . . , tk are i.i.d. and sample [k] uniformly at random, and we set
ij = inf{i > ij−1 : σ(i) = tj} for each j ∈ [k], then it should be exponentially likely (in
terms of k) that ik − i0 > (1/2− ϵ)k2 (this essentially is due to a Chernoff bound).

This quantity ik − i0 essentially tells us how long σ needs to be so that we can
“embed” t1, . . . , tk into σ. In Section 2, we go over our reduction from pattern containment
to this deterministic embedding process, and then show how to use DFAs to track the quan-
tity ik− i0. We conclude Section 2 by precisely stating Theorem 2.3 and showing how it implies
Theorem 1.1.

We then prove Theorem 2.3 in Section 3. In our argument sketch above, we show
that ik − i0 < (1/2 − ϵ)k2 is exponentially unlikely when t1, . . . , tk are sampled uniformly
at random. The issue when considering permutations, is that τ(1), τ(2), . . . , τ(k) are not all
independent, as no letter will be repeated. To get around this, we consider consecutive seg-
ments of τ . We show that for appropriate choices of L (with respect to k), it is a very rare
event for there to exist some j0 ∈ {0, 1, . . . , k − L} and I = {i0 < i1 < · · · < iL}, such
that iL − i0 < (1/2− ϵ)Lk and σ(ix) = τ(j+ x) for x ∈ [L]. This event will imply that τ is not
a subsequence of σ, assuming n ⩽ (1/2− ϵ)(k − L)k ≈ (1/2− ϵ)k2.

To prove the rareness of said event, we proceed as follows. First, one union bounds over
the ⩽ k3 choices of (i0, j0) ∈ [n] × {0, 1, . . . , k − L}. Then, we use the fact
that τ(j0 + 1), . . . , τ(j0 + L) is distributed like L independent samples from [k], conditioned
on these samples all being distinct. For appropriate L, the probability that these samples are all
distinct, is much more likely than the event that such an I exists for a given choice (i0, j0) (by
Chernoff bounds). Whence, the rareness follows by Bayes’ theorem.

combinatorial theory 3 (2) (2023), #1 5

1.2. Notation

For positive integers n we let [n] := {1, . . . , n}. We let [∞] := {1, 2, 3, . . . } ∪ {∞}.
We use some standard asymptotic notation, detailed below. Let f = f(k), g = g(k) be

functions. We say f = O(g) if there exists C > 0 such that f ⩽ Cg for sufficiently large k;
conversely we say f = Ω(g) if there is c > 0 so that f ⩾ cg for all large k. We use o(1)
to denote a non-negative3 quantity that tends to zero as k → ∞. Following [Kee14], for a
function h = h(k), we say h = f ± g to mean f − g ⩽ h ⩽ f + g.

We remind the readers of the Kleene star operator. Given an alphabet (i.e., a set) Σ, we let Σ∗

denote the set of finite words on the alphabet Σ (so Σ∗ =
⋃∞

n=0Σ
i).

For our purposes, a DFA is a 3-tuple D = (V, δ, root(D)), where V is the set (of “states”)
of D, δ : V × Σ → V ; (v, t) 7→ δ(v, t) is a transition function defined on some alphabet Σ, and
root(D) ∈ V is the “root” of D. For the purposes of this paper, one may think of each DFA D
as being a rooted (not necessarily simple) directed graph, with its transition function, δ, being a
convenient way to describe walks on said graph.

Given a word w ∈ [k]∗ and v ∈ V we define a walk in D, walk(v, w), as follows. Let L be
the number of letters in w, so w = w1, . . . , wL. We set walk(v, w) = v0, . . . , vL, where v0 = v
and for j ∈ [L], vj = δ(vj−1, wj).

Let D be a DFA with a sets of states V , and suppose we have defined δ : V × [k] → V ;
(v, w) 7→ δ(v, w). We shall extend the function δ to the domain V × [k]∗. Consider w ∈ [k]∗.
If w has length zero, then set δ(v, w) = v. Otherwise, proceeding inductively, writing
w = w1, . . . , wL, we can set δ(v, w) = δ(δ(v, w1), w2, . . . , wL).

1.2.1 Cost

Now we shall go over how we define a “cost function”. We will start with an initial func-
tion c : V × [k] → [∞], and then extend it, similar to how we extended the transition function δ.
The end result will be a way to assign cost to walks that behaves additively; for those familiar
with weighted graphs and the travelling salesman problem, we will effectively be translating the
concept of weighted walks in terms of DFAs.

Let D be a DFA with a sets of states V , and suppose we have defined cost : V × [k] → [∞].
We shall extend this to the domain V × [k]∗. Given v ∈ V and w ∈ [k]∗, we let v0, . . . , v|w| =
walk(v, w), and set

cost(v, w) =
∑
j∈[|w|]

cost(vj−1, w(j)).

In English, we initialize with net cost zero and do a walk according to w that starts at state v and
let cost(v, w) be our net cost at the end of the walk. When doing the j-th step of our walk, we
read the letter w(j) while at state vj−1 and shall increment our net cost by cost(vj−1, w(j)) (if
we think of vj−1 as being a toll booth, this is the cost of taking the w(j)-th route of vj−1).

A weighted DFA is simply a 2-tuple (D, cost) where D is a DFA and cost is a cost function
defined on V , the set of states of D. Given a weighted DFA X = (D, cost), we call D the

3This is slightly non-standard, in most contexts o(1) is allowed to be negative. We primarily use this convention
to make the paper easier to read. We never implicitly make use of this convention in any of our proofs.

6 Zach Hunter

underlying DFA of X . Also, for a weighted graph X = (D, cost), we will identify X with D,
so if we say something like “let V be the set of states of X” we mean “let V be the set of states
of D”.

When talking about two DFAs A,B, we respectively denote the transition function of A and
the transition function ofB by δA and δB. We similarly denote their walk functions bywalkA and
walkB. In the same fashion, given two weighted DFAs A,B, each with their own cost function,
we will respectively denote them by costA and costB. This allows us to compare functions
when A,B have a common set of states V . Thus, if we say costA(v, t) ⩾ costB(v, t), this
means that if we wanted to read the letter t while at the state v, the associated cost of doing this
in A is at least as much as doing this in B.

We now introduce the concept of making a weighted DFA “cheaper”. For a weighted DFA
X = (D, cost) we say that Y = (D′, cost′) is a cheapening of X if D = D′ (i.e., they have
the same underlying DFA) and for each (v, t) ∈ V × [k] we have that cost(v, t) ⩾ cost′(v, t)
(here V is the set of states of D and [k] is the alphabet of letters which D reads).

The implication of this definition is that a cheapening will have a more relaxed cost function,
that assign lower costs to all inputs (just like what would happen if one decreased the weights of
some edges in an instance of the traveling salesman problem).
Remark 1.5. If B is a cheapening of A, then for (v, w) ∈ V × [k]∗ we have that
costB(v, w) ⩽ costA(v, w).

Proof. Consider any v ∈ V and w ∈ [k]∗. As A,B have the same underlying DFA, we will have
that walkA(v, w) = v0, . . . , v|w| = walkB(v, w). Hence,

costA(v, w)− costB(v, w) =
∑
j∈[|w|]

costA(vj−1, wj)− costB(vj−1, wj) ⩾ 0

(because B is “cheaper” than A,4 each summand is non-negative). It follows that
costA(v, w) ⩾ costB(v, w) as desired.

Finally, here are some meta-notational conventions we will use. The symbol σ will refer to
a word we want to be a superpattern. The symbol τ will be an element of Sk, we will wish to
check if τ is a pattern of σ.

We use i to denote an index of σ, j to denote an index of τ , t to denote an image of τ (i.e., it
would make sense to write “with τ = t1, . . . , tk” or “suppose τ(j) = t”).

2. Reduction

In this section, we will properly state Theorem 2.3 (which shall be proven in Section 3), and
prove that it implies Theorem 1.1. First, in Section 2.1, we formalize a “greedy strategy” for
embedding τ into σ, and show that when σ ∈ [k]n and τ ∈ Sk that τ is a pattern of σ if and only
if the greedy strategy works. Then in Section 2.2, we will introduce a way to associate σ ∈ [k]n

with a weighted DFA that will simulate this greedy embedding.
4i.e., costA(v, t) ⩾ costB(v, t) for all (v, t) ∈ V × [k]

combinatorial theory 3 (2) (2023), #1 7

Next in Section 2.3, we introduce a family of weighted DFAs, called k-DFAs, and show they
generalize the weighted DFAs from Section 2.2. Lastly, in Section 2.4 we first state Theorem 2.3
in terms of k-DFAs, and prove Theorem 1.1 assuming this result.

2.1. Greedy Strategy

Let σ ∈ [k]n and τ ∈ Sk. Since σ uses the alphabet [k], and τ uses every element of that
alphabet, we have that τ is a pattern of σ if and only if there are indices 1 ⩽ i1 < · · · < ik ⩽ n
with σ(ij) = τ(j) for each j ∈ [k]. Now, if such a choice/embedding of indices exist, then so
will the “greedy embedding” of τ where we take i1 = min{i : i ∈ σ−1(τ(1))} and iteratively
for j ∈ [k] \ {1} take ij = min{i > ij−1 : i ∈ σ−1(τ(j))}.5

Conversely, if we can construct i1, . . . , ik according to the greedy embedding, it is clear that
we will have i1 ⩾ 1 and ik ⩽ n, which will imply σ contains τ as a pattern. Hence, τ being a
pattern of σ is equivalent to being able to greedily embed τ into σ.

2.2. Greedy DFA

Given σ ∈ [k]n, we shall create a weighted DFA Aσ on n + 1 states such that for τ ∈ Sk,
τ can be greedily embedded into σ if and only if cτ ⩽ n, where cτ is the “cost” of the walk
which τ induces in Aσ. We start by letting the states of Aσ be V = {0} ∪ [n], with 0 being the
root. We will now define the transition function δ and the associated cost function cost on the
domain V × [k]. See Figure 2.1 for an example.

For v ∈ V and t ∈ [k], we let u = u(v, t) = inf{i ∈ σ−1(t) : i > v}. If u < ∞,
then u ∈ [n] ⊂ V , thus we define δ(v, t) = u and cost(v, t) = u− v. Otherwise, if u = ∞, we
let δ(v, t) = v and cost(v, t) = ∞.

0root 1 2 3 4
a (1)

b (2)

c (3)

b (1)

c (2)

b (2)

c (1) b (1)

Figure 2.1: A sketch of Aσ where σ = a, b, c, b (here we use the alphabet {a, b, c} rather than [3]
for clarity). The labels of the edges are of the form “x (y)” where x ∈ {a, b, c} is the letter being
read and y is the cost of the step. All omitted edges are self-loops with cost ∞.

As we went over in Section 1.2, we can extend δ, cost to functions on the domain V × [k]∗

by considering finite walks. We also now can define the walk function walk for Aσ.
5Indeed, suppose i′1 < · · · < i′k is one such embedding. We claim that the ij defined according to the greedy

embedding will exist for all j ∈ [k]. First, we have that σ(i′1) = τ(1), thus i1 exists and we will have i1 ⩽ i′1.
Then inductively, for any j ∈ [k − 1], assuming ij exists and ij ⩽ i′j , we see that as σ(i′j+1) = τ(j + 1) and
i′j+1 > i′j ⩾ ij =⇒ ij+1 ⩽ i′j+1. Hence we can construct ij for all j ∈ [k] as required.

8 Zach Hunter

Now, given v ∈ V,w ∈ [k]∗ we consider v0, . . . , v|w| = walk(v, w). If vj = vj−1 for
some j ∈ [|w|], we say there was a failure. It is easy to see that if there is a failure, then
cost(v, w) = ∞, and otherwise we will have cost(v, w) = v|w| − v0 (by induction).

We can now express pattern containment of permutations in terms of walks along Aσ. This
is morally because walk(0, τ) will mimic the greedy embedding of τ , and has infinite cost if and
only if the greedy embedding fails.

Lemma 2.1. For σ ∈ [k]n, τ ∈ Sk, we have that τ is a pattern of σ if and only if costAσ(0, τ)⩽n.

Proof. Let cost,walk be the cost and walk functions of Aσ. Consider any w ∈ [k]∗. We shall
show that w has a greedy embedding into σ if and only if cost(0, w) ⩽ n. By Section 2.1, the
result will follow, since τ will be a pattern of σ if and only if it has a greedy embedding into σ.

By design/definition, we see that if w ∈ [k]∗ has a greedy embedding i1, . . . , i|w| into σ,
then walk(0, w) = 0, i1, i2, . . . , i|w|. Since i1 ⩾ 1 > 0, and ij < ij+1 for j ∈ [|w| − 1],
we get cost(0, w) = i|w| ⩽ n (because the walk does not have a failure). Meanwhile, we have
that if cost(0, w) ⩽ n, then 0 = v0 < v1 < · · · < v|w| ⩽ n with v0, . . . , v|w| = walk(0, w),
making v1, . . . , v|w| a greedy embedding of w into σ.

2.3. The family of k-DFAs

We will now define a family of weighted DFAs that will generalize the weighted DFAs Aσ

created in the last subsection. Let D be a DFA with a set of states V and a cost function
cost : V × [k]∗ → [∞]. We say D is a k-DFA if for each v ∈ V , we have that there is πv ∈ Sk

such that πv(t) = cost(v, t) for each t ∈ [k].
Now we will show how k-DFAs “generalize” the family of Aσ from Section 2.2. Recall that

given two weighted DFAs X, Y , we say X is a cheapening of Y if they both have the same
underlying DFA, and we have costX(v, t) ⩽ costY (v, t) for all (v, t) ∈ V × [k].

Lemma 2.2. Let k be a positive integer. For any σ ∈ [k]n, there exists a k-DFA Bσ which is a
cheapening of Aσ.

Proof. Let V be the set of states for Aσ and let cost be the cost function for Aσ restricted
to V × [k].

We shall take Bσ to have the same underlying DFA as Aσ, and need to define some cost
function cost∗ for Bσ. It suffices to define cost∗(v, t) for all (v, t) ∈ V × [k].

For each v ∈ V , we wish to find a permutation πv ∈ Sk such that πv(t) ⩽ cost(v, t) for
all t ∈ [k]. We will then set cost∗(v, t) = πv(t) for all (v, t) ∈ V × [k]. If we can do this, then
it is clear that Bσ will be a k-DFA (by definition) and that it will be a cheapening of Aσ (by our
choices of πv).

We now fix some v ∈ V , and find πv. By construction of Aσ, we have that costv is injective
on finite values. Indeed, for t ∈ [k], we have cost(v, t) = c < ∞ =⇒ σ(v + c) = t, thus
if t, t′ ∈ [k] have the same finite cost c (starting at v) we have that t = σ(v + c) = t′.

Letting T = {t ∈ [k] : cost(v, t) ⩽ k}, we have that costv |T is an injection into [k]
and t ∈ [k] \ T will imply cost(v, t) > k. Thus, it works to let πv = π ∈ Sk for any π
where π|T = costv |T (such π will exist as costv |T is an injection into [k]).

combinatorial theory 3 (2) (2023), #1 9

Recalling Remark 1.5, as Bσ is a cheapening of Aσ, we have costBσ(v, w) ⩽ costAσ(v, w)
for all (v, w) ∈ V × [k]∗. Hence, for any σ ∈ [k]n, we get

{τ ∈ Sk : costAσ(0, τ) ⩽ n} ⊆ {τ ∈ Sk : costBσ(0, τ) ⩽ n}

where the set on the RHS is defined with respect to Bσ, which is a k-DFA.

2.4. The Reduction

We define G(k, n,N) so that for any k-DFA D on N states, there are at most G(k, n,N) “per-
mutational walks” w ∈ Sk where cost(root(D), w) ⩽ n. Observe that

F (k, n) ⩽ G(k, n, n+ 1) ⩽ G(k, n, k2)

when n ⩽ k2/2 (here the first inequality follows by our previous work, and the second follows
by the monotonicity of G in the third variable).

We can now make our original statement of Theorem 2.3 precise.
Theorem 2.3 (Formal statement). Fix ϵ∗ > 0. Then there exists c > 0 such that for sufficiently
large k,

G(k, (1/2− ϵ∗)k2, k2) ⩽ exp(−ck)k!.

By Remark 1.4, we see Theorem 1.1 will follow.

Proof of Theorem 1.1 given Theorem 2.3. Fix ϵ > 0.
We take ϵ∗ = ϵ. We may apply Theorem 2.3 to get c > 0 such that

F (k, (1/2− ϵ)k2) ⩽ exp(−ck)k!

for all sufficiently large k.
One can easily verify that there exists δ0 > 0 such that 2δ+δ log(δ−1) ⩽ c for all δ ∈ (0, δ0].

We will take some δ = min{1, δ0}. Letting rk = (1 + δ)k, a standard bound gives(
rk
k

)
⩽ (e(1 + δ)δ−1)δk < exp((2 + log(δ−1))δk) ⩽ exp(ck).

Thus by Remark 1.4, we get that f(k; rk) > (1/2− ϵ)k2 for sufficiently large k.

3. A coupling argument

3.1. Machinery

In this subsection, we will fix some variables. We let k be a (fixed) positive integer. We let D be
a (fixed) k-DFA with state set V ; we respectively denote the transition, walk, and cost functions
of D by δ,walk, and cost.

We will sayw ∈ [k]∗ is a permutational word ifw(j) = w(j′) =⇒ j = j′ (i.e., ifw is injec-
tive). Note that permutational words will always use the alphabet [k]. Also, for w = w1, . . . , wL,
and E ⊂ [L], we write w|E to denote the word we1 , we2 , . . . , we|E| , where e1 < e2 < · · · < e|E|
are the elements of E in increasing order.

We will make use of the following fact several times.

10 Zach Hunter

Remark 3.1. Suppose w is sampled uniformly from permutational words of length L. For
any E ⊂ [L], we have that w|E will sample permutational words of length |E| uniformly at
random.

This remark follows from basic properties of symmetry.
We will be concerned with bounding the following quantity, P .

Definition 3.2. For v ∈ V, ϵ > 0, L, we define

P (v, L, ϵ) = P(cost(v, w) < (1/2− ϵ)kL)

where w is permutational word of length L chosen uniformly at random.

For convenience, for v ∈ V , w ∈ [k]∗, and ϵ > 0, we say w is (v, ϵ)-bad if
cost(v, w) ⩽ (1/2 − ϵ)k|w|. Otherwise we say w is (v, ϵ)-good. Note that P and this con-
cept of “goodness” are defined with respect to D.

We now move on to proving some necessary lemmas.

Lemma 3.3. For any v ∈ V, ϵ > 0, L = L0 + L1 + · · ·+ LM

P (v, L, ϵ) ⩽ P (v, L0, ϵ) +
∑
u∈V

∑
m∈[M]

P (u, Lm, ϵ).

Proof. Set I0 = [L0], and similarly for m ∈ [M] set Im = [L0 + · · ·+Lm] \ [L0 + · · ·+Lm−1].
Observe that I0, . . . , IM partitions [L]. Also, for each m ∈ {0} ∪ [M] it is clear that |Im| = Lm.

Consider a word w ∈ [k]L of length L. For each m ∈ {0} ∪ [M], let wm = w|Im . Observe
that for each v ∈ V , we can choose u1, . . . , uM ∈ V so that

cost(v, w) = cost(v, w0) +
∑

m∈[M]

cost(um, w
m)

(indeed, we can start by taking u1 = δ(v, w0), and then for m ∈ [M − 1] take
um+1 = δ(um, w

m)). This is because w is the sequential concatenation of w0, w1, . . . , wM .
Now suppose w ∈ [k]L is a (v, ϵ)-bad word. It follows (essentially by pigeonhole) that there

must exist some m ∈ {0} ∪ [M] where the event Em(w) is true, where

• E0(w) is the event that w0 is (v, ϵ)-bad

• and for m ∈ [M], Em(w) is the event that wm is (um, ϵ)-bad.

Let w be sampled from permutational words of length L uniformly at random. As above,
for each m ∈ {0} ∪ [M] we define wm = w|Im . Now, recalling Remark 3.1, we will have that
each wm will be sampled uniformly at random from permutational words of length Lm.

Immediately, we see that the probability of the event E0(w) being true is exactly P (v, L, ϵ),
by definition. We now consider each m ∈ [M]. As wm is a uniform random permutational word
of length Lm, we will get

P(wm is (u, ϵ)-bad for some u) ⩽
∑
u∈V

P (u, Lm, ϵ)

combinatorial theory 3 (2) (2023), #1 11

by union bound. Hence as the event Em(w) is contained in the event on the LHS, the probability
of Em(w) occurring is upper-bounded by the RHS.

So by union bound we observe

P(w is (v, ϵ)-bad) ⩽
∑

m∈{0}∪[M]

P(Em(w)),

which gives the desired result due to the bounds given in the preceding paragraph.

Writing P (L, ϵ) := maxv∈V {P (v, L, ϵ)}, we immediately get

Corollary 3.4. For, ϵ > 0, L,M

P (ML, ϵ) ⩽ M |V |P (L, ϵ).

Next, we observe

Lemma 3.5. For ϵ > 0, L,

P (L, ϵ) ⩽
kL(k − L)!

k!
exp(−ϵ2

4
L).

Proof. Let w be uniform random word of length L. For each v ∈ V , we have that

P (v, L, ϵ) = P(w is (v, ϵ)-bad|w is permutational)

⩽
P(w is (v, ϵ)-bad)

P(w is permutational)

by Bayes’ theorem.
Immediately, we note that P(w is permutational) = k!

(k−L)!kL
, which justifies the first term in

our lemma.
Meanwhile, by a Chernoff bound [Goe15, Theorem 6.ii], we have P(w is (v, ϵ)-bad) ⩽

exp(− ϵ2

4
L) as cost(v, w) is the sum of L i.i.d. samples from the uniform distribution of [k]

(this is true by definition of D being a k-DFA). This justifies the second term in our lemma.
Hence, P (v, L, ϵ) ⩽ kL(k−L)!

k!
exp(− ϵ2

4
L). As v ∈ V was arbitrary, the same bound applies

to P (L, ϵ), giving the result.

3.2. Proof of Theorem 2.3

We require a standard bound for the birthday problem. However, we could not find our desired
statement in the literature. So for completeness, we include a short proof following an argument
from [Maj17, Slide 11].

Proposition 3.6. There exists α0 > 0 such that for α ∈ (0, α0), if we take L = αk, then we have
that

kL(k − L)!

k!
⩽ exp((α2/2 + α3/4)k).

12 Zach Hunter

Proof. We shall use without proof the fact that 1− x ⩽ exp(−x− 3
4
x2) for x ∈ [0, 2/5].

Observe that the LHS is equal to

L−1∏
t=0

1/(1− t/k).

So, for α ⩽ 2/5, this is at most

L−1∏
t=0

exp(t/k +
3

4
t2/k2) = exp(

L−1∑
t=0

t/k +
3

4
t2/k2)

= exp

(
L(L− 1)

2k
+

(L− 1)(L− 1/2)L

4k2

)
⩽ exp((α2/2 + α3/4)k).

We can now prove Theorem 2.3 by choosing L appropriately.

Proof of Theorem 2.3. Fix ϵ∗ > 0 and set ϵ = 2ϵ∗/3 so that

(1/2− ϵ)(1− ϵ) > (1/2− ϵ∗). (†)

Without loss of generality, we may assume ϵ < α0 where α0 is the constant from Remark 3.6.
Let D be any k-DFA with k2 states. We define P (·, ·) and (·, ·)-bad with respect to D as we

did in Section 3.1. Now, we will take L = ⌊αk⌋ for some α ∈ (0, ϵ) which we determine later.
We shall bound P (ϵ, L) by directly applying Lemma 3.5.

When 0 < α < ϵ < α0, the conclusion of Proposition 3.6 holds. Hence, plugging L into
Lemma 3.5 gives

P (L, ϵ) ⩽ exp

(
(α2/2 + α3/4)k − ϵ2

4
L

)
⩽ exp

(
(α2/2 + α3/4− ϵ2

4
α)k + 1

)
.

(here the +1 is to account for L being the floor of αk) Taking α =
√

ϵ2/2 + 1− 1 ∈ (0, ϵ),6 we
get

P (L, ϵ) ⩽ exp(1− c0k), with c0 =
ϵ2(

√
ϵ2/2 + 1− 1)

8
.

Next, we set M = ⌊k/L⌋. Because L ⩾ 1, we will have M ⩽ k, and by assumption D has
at most k2 states. By Corollary 3.4,

P (ML, ϵ) ⩽ k3 exp(1− c0k).

For later use, we remark that

k − ϵk < k − αk ⩽ k − L < ML. (‡)
6It should be clear that defining α in this way ensures α > 0; by checking derivatives one can confirm that

ϵ > 0 =⇒ α < ϵ. Hence α ∈ (0, ϵ) as desired.

combinatorial theory 3 (2) (2023), #1 13

The above follows from properties of the floor function and the fact that α < ϵ.
Now, let w ∈ Sk be sampled uniformly at random. By Remark 3.1, w′ := w|[ML] samples

permutational words of length ML uniformly at random. Trivially,

cost(root(D), w′) ⩽ cost(root(D), w)

as w′ is a prefix of w. So, assuming w′ is (root(D), ϵ)-good, we get

cost(root(D), w) ⩾ cost(root(D), w′)

⩾ (1/2− ϵ)kML

> (1/2− ϵ∗)k2.

(The last line quickly follows from † and ‡.) Thus, by our bound on P (ML, ϵ) from above

P(cost(root(D), w) ⩽ (1/2− ϵ∗)k2) ⩽ P (ML, ϵ) ⩽ k3 exp(1− c0k).

As D was arbitrary, this holds for all k-DFAs on k2 states, thus

G(k, (1/2− ϵ∗)k2, k2) ⩽ k3 exp(1− c0k)k!.

We conclude by fixing some choice of c ∈ (0, c0). By basic asymptotics, it follows that for
sufficiently large k, we have

G(k, (1/2− ϵ∗)k2, k2) ⩽ exp(−ck)k!.

4. An alternate approach

In this section, we sketch another way to get bounds on G. Here, we break the cost of each walk
into two parts, which we bound separately.

Fix a k-DFA D. Suppose we sample τ ∈ Sk uniformly at random. We write τ = t1, . . . , tk
and v0, . . . , vk = walkD(root(D), τ). For each j ∈ [k], let Cj = costD(vj−1, tj). By definition
of cost,

costD(root(D), τ) =
k∑

j=1

Cj. (∗)

Now, given t1, . . . , tj−1, there exists Sj ⊂ [k], |Sj| = k− j +1 such that Cj samples Sj uni-
formly at random (in particular, t1, . . . , tj−1 determines vj−1 thus we get Sj = {costD(vj−1, t) :
t ∈ [k] \ {t1, . . . , tj−1}}).

Let Xj be such that Cj is the Xj-th smallest element of Sj . Since Cj samples Sj uni-
formly, it follows that Xj samples [k − j + 1] uniformly at random. We remark without proof
that X1, . . . , Xk are independently distributed.

Next, we define Yj = Cj −Xj , and observe that Yj is always non-negative. By ∗, we get

costD(root(D), τ) =
k∑

j=1

Xj + Yj.

14 Zach Hunter

We shall now consider
∑k

j=1 Xj and
∑k

j=1 Yj individually.
The first sum is not very complicated and does not depend on our choice of D. It suffices to

apply Hoeffding’s inequality.

Lemma 4.1. For any ϵ > 0, and sufficiently large k,

P(
k∑

j=1

Xj ⩽ (1/4− ϵ)k2) < exp(−32ϵ2k/3).

Proof. By linearity,

E

[
k∑

j=1

Xj

]
=

k∑
j=1

k − j + 1

2
=

1

4
(k2 + k) > k2/4.

Meanwhile, for each j the support of Xj is contained in the interval [1, k− j +1]. We have that

k∑
j=1

(k − j + 1− 1)2 =
k−1∑
j=1

j2 =
1

6
(k − 1)k(2k − 1) < k3/3.

Thus, applying a standard Hoeffding bound, we get

P(
k∑

j=1

Xj ⩽ (1/4− ϵ)k2) < exp

(
−2k2(4ϵk)2

k3/3

)
= exp(−32ϵ2k/3).

Next, we want to control the sum over Yj . Given an event E, let I(E) denote its indicator
function. We first note

Yj =

Cj∑
t=1

I(costD(vj−1, t) = costD(vj−1, tj′) for some j′ ∈ [j − 1])

⩾ min
v∈V

Xj∑
t=1

I(costD(v, t) = costD(v, tj′) for some j′ ∈ [j − 1])

 .

Thus, for v ∈ V, j ∈ [k], x ∈ [k − j + 1], we define

Tv,j,x :=
x∑

t=1

I(costD(v, t) = costD(v, tj′) for some j′ ∈ [j − 1])

and Tj,x := min
v∈V

{Tv,j,x}.

We will next need two concentration results. These will allow us to bound
∑k

j=1 Yj in a
manner reminiscent to Riemann sums.

combinatorial theory 3 (2) (2023), #1 15

Proposition 4.2. Fix ϵ∗ > 0 and a positive integer M . There exists c = c4.2(ϵ
∗,M) > 0 such

that for each m1,m2 ∈ [M − 1],

P(|{m1k/M < j ⩽ (m1 + 1)k/M : Xj/(k − j + 1) >
m2

M
}|

< (1− ϵ∗)
(
1− m2

M

)
k/M) ⩽ exp(−ck)

when k is sufficiently large.
We may in particular take c4.2(ϵ∗,M) = 1

2

(
ϵ∗

M

)2.
Proposition 4.3. Fix ϵ∗ > 0 and a positive integer M . There exists c = c4.3(ϵ

∗,M) > 0 such
that for each m1,m2 ∈ [M − 1],

P(Tj,m2k/M < (1− ϵ∗)
(m2

M
(j − 1)

)
for some

m1

M
k < j ⩽

m1 + 1

M
k) ⩽ exp(−ck)

when k is sufficiently large.
We may in particular take any c4.3(ϵ∗,M) < 1

2

(
ϵ∗

M

)2.
The first result immediately follows from a Chernoff bound, since the size of the set be-

haves exactly like a binomial random variable. To prove the second result it suffices to con-
trol Tj,v,m2k/M and then take a union bound over all v, j. To control Tj,v,m2k/M , one can cou-
ple it with a binomial random variable B with success probability slightly less than m2/M so
that P(B > Tj,v,m2k/M) is exponentially small, and then apply a Chernoff bound. We leave the
details as an exercise for the reader.

We note that Proposition 4.3 is the only result whose proof will make use of the number of
states inD not being too large. In Section 5.2.1, we give an example of k-DFA with 2k states such
that

∑k
j=1 Yj = 0 always holds, thus limiting the growth of the number of states is necessary.

We now go over how to bound
∑k

j=1 Yj .

Lemma 4.4. Fix ϵ > 0. There exists c > 0 such that for sufficiently large k,

P(
k∑

j=1

Yj < (1/4− ϵ)k2) < exp(−ck).

Proof of Lemma 4.4 given Proposition 4.2 and Proposition 4.3. Fix ϵ∗ > 0 and a positive inte-
ger M . Now assume the events of Proposition 4.2 and Proposition 4.3 for the given ϵ∗ and M
do not hold for any m1,m2 ∈ [M − 1].

For m1 ∈ [M − 1], let Em1 = [m1k/M : (m1 + 1)k/M]. For m2 ∈ [M − 1], let

16 Zach Hunter

Fm2 = {j : Xj/(k − j + 1) > m2

M
}. We will have that∑

j∈Em1

Yj ⩾
∑

j∈Em1

Tj,Xj

⩾
∑

m2∈[M−1]

∑
j∈Em1∩Fm2

(1− ϵ∗)
(j − 1)

M

⩾
(1− ϵ∗)

M

∑
m2∈[M−1]

|Em1 ∩ Fm2|k
m1

M

⩾
(1− ϵ∗)2

M2
k2

∑
m2∈[M−1]

(1− m2

M
)
m1

M

(here the second inequality makes use of Proposition 4.3 not holding and also applies telescop-
ing; the last inequality makes use of Proposition 4.2 not holding).

Hence,

k∑
j=1

Yj ⩾
(1− ϵ∗)2

M2
k2

∑
m1∈[M−1]

∑
m2∈[M−1]

(1− m2

M
)
m1

M

=
(1− ϵ∗)2

M2
k2

(
M − 1

2

)2

⩾ (1− ϵ∗)2(1− 1/M)2
1

4
k2

here the second line follows by separating the double sum into the product of two sums (which
both happen to equal (M − 1)/2).

Thus, if ϵ∗,M are such that (1−ϵ∗)2(1−1/M)2 ⩾ 1−4ϵ, the RHS will be at least (1/4−ϵ)k2.
Hence, the probability that

∑k
j=1 Yj < (1/4 − ϵ)k2 is at most the probability that there

exists m1,m2 ∈ [M − 1] such that the event from Proposition 4.2 or Proposition 4.3 holds with
respect to the specified ϵ∗,M . By union bound, this is at most

(M − 1)2(exp(−c4.2(ϵ
∗,M)k) + exp(−c4.3(ϵ

∗,M)k)) ⩽ exp(−ck) for sufficiently large k

for any c < min{c4.2(ϵ∗,M), c4.3(ϵ
∗,M)}.

It is clear that combining Lemma 4.1 and Lemma 4.4 gives another proof of Theorem 2.3.

combinatorial theory 3 (2) (2023), #1 17

5. Conclusions

5.1. Lower order terms for f(k; k + 1)

From Corollary 1.2, we know that f(k; k+1) = (1/2± o(1))k2, meaning Miller’s construction
is optimal up to lower order terms. However, the statement of Theorem 1.1 does not immedi-
ately yield any explicit function for this o(1)-term. We briefly mention an explicit function our
methods yield.

To prove f(k; k+1) < n, it suffices to show kG(k, n, k2) < k! (by Remark 1.4). The follow-
ing comes from looking at the proof of Theorem 2.3, and observing c0 > ϵ4/33 for sufficiently
small ϵ (33 may be replaced with any constant greater than 32).
Remark 5.1. For all sufficiently small ϵ > 0,

ϵ4 >
33 + 132 log(k)

k
=⇒ f(k; k + 1) > (1/2− 3ϵ/2)k2.

Analyzing the work from Section 4 should give a similar bound, where 33 + 132 log(k) is
replaced by some other function of the same shape.

Thus, we can say

Corollary 5.2. For all k,

k2

2
− k7/4+o(1) ⩽ f(k; k + 1) ⩽

k2 + k

2
.

It is interesting to note that the best lower bound of f(k; k) is of the form k2 − k7/4+o(1)

[KK76]. The lower bound for f(k; k) was proved in 1976 and has remained unimproved for
45 years. It would be interesting to see if the lower-order error in the lower bound for f(k; k)
or f(k; k + 1) can be improved.

As we will demonstrate in Section 5.2.2, there is a limit to how well we can bound f(k; k+1)
by our methods. In particular, for large k we have G(k, k2 − k3/2, k + 1) = Ω(k!). In fact, a
more careful calculation would give that kG(k, k2−h(k)k3/2, k+1) ⩾ k! with h(k) being some
slowly growing function which is roughly |Φ−1(C/

√
k)| for a certain absolute constant C > 0

(here Φ is the cdf of the standard normal distribution).

5.2. Other Problems on k-DFAs

We believe understanding the cost of permutational walks on k-DFAs might be of independent
interest. We provide some useful constructions and ask a few future problems.

5.2.1 Upper bound on G(k, n,N) independent of N

We note that there’s an “optimally cheap” k-DFA for reading permutations. By which we mean
there is a k-DFA A such that for any other k-DFA B, there exists a bijection ϕ : Sk → Sk such
that for τ ∈ Sk we have costA(root(A), π) ⩽ costB(root(B), ϕ(τ)).

18 Zach Hunter

It follows that for any k-DFA B, that

|{τ ∈ Sk : costB(root(B), τ) ⩽ n}| ⩽ |{τ ∈ Sk : costA(root(A), τ) ⩽ n}|.

Thus the RHS will exactly be maxN{G(k, n,N)}.
We sketch a construction of A. For the set of states, V , we use all subsets of [k] (with the

empty set being the root). For v ∈ V , and t ∈ [k], we set δ(v, t) = v ∪ {t}. For the cost, we
impose for each v ∈ V , that t ∈ v ⇐⇒ cost(v, t) > k − |v|. Essentially, the DFA will
remember which letters have been read thus far, and assigns the highest costs to these letters
(since when reading a permutation, we never read a letter twice).

To see optimality, it suffices to show that we will always have
∑k

j=1 Yj = 0 (here we use the
terminology from Section 4). This follows immediately from how the cost is defined. If we’ve
walked to a vertex v, then letters we’ve read while walking to v is exactly the elements of v, and
these will have greater cost at v then any letter which is not an element of v (and thus none of
the summands Yj can be non-zero).

5.2.2 k-DFA’s with many low cost permutations

It would be interesting to better understand how fast nk must grow when

G(k, nk, k
2) = Ω(k!).

Repeating the analysis from Section 5.1, we get that nk ⩾ k2/2− k7/4+o(1) must hold.
We will describe a construction (provided by Zachary Chase in personal communication) of

a k-DFA D on k + 1 states such that for “many” τ ∈ Sk, costD(root(D), τ) ⩽ k2/2 − k3/2.
This will show that it is possible to have nk ⩽ k2/2− Ω(k3/2).

We first partition [k] into two sets A,B as evenly as possible, such that |A| ⩽ |B| ⩽ |A|+1.
Out set of states will be V := {−|A|, 1− |A|, . . . , |B|} with root 0.

For t ∈ A, we let δD(v, t) = v−1 if v ̸= −|A| and for t ∈ B we let δD(v, t) = v+1 if v ̸= |B|
(otherwise we let δ be constant, though this will not matter when reading permutations).

With v0, . . . , vL = walkD(0, w1, . . . , wL), we observe that we will have
vj = |B∩{w1, . . . , wj}|−|A∩{w1, . . . , wj}|, unless there was some j′ < j where wj′+1 = wj′ .
Whenever w is a permutation, the second case will not happen, so v0, . . . , wk := walkD(0, w)
satisfies

vj = |B ∩ {w1, . . . , wj}| − |A ∩ {w1, . . . , wj}|

whenever w ∈ Sk.
For our cost function, we will assign the elements of A lower weights when we are in a

negative state and do the opposite otherwise. For simplicity, we consider the case where k = 2m,
A = [m], B = [2m] \ [m]. Then for v ∈ V, t ∈ [k], we let

costD(v, t) =

t if v < 0

t+m if v ⩾ 0 and t ∈ A

t−m if v ⩾ 0 and t ∈ B

.

combinatorial theory 3 (2) (2023), #1 19

We now analyze the cost of reading permutations in D. We may write costD(v, t) =
mq(v, t)+ r(t), where q(v, t) ∈ {0, 1}, r(t) ∈ [m] (it is easily verified that r(t) does not depend
on v). Thus, for τ ∈ Sk, if walkD(0, τ) = v0, . . . , vk, then

costD(0, τ) =
∑
t∈[k]

r(t) +m
∑
j∈[k]

q(vj−1, τ(j)).

Noting
∑

t∈[k] r(t) =
k2

4
− k

2
⩽ k2/4, it remains to control the second term.

Now, we claim (without proof) that if τ ∈ Sk is chosen uniformly at random, there is a
coupling with X1, . . . , Xk (where Xi are i.i.d. Bernoulli variables with P(Xi = 1) = 1/2) so
that Xj = 0 =⇒ q(vj−1, τ(j)) = 0. By Berry–Esseen Theorem, one can see that

P(
k∑

j=1

Xj ⩽ k/2− 2
√
k) → Φ(−4) > 0

(where Φ is the cdf of the standard normal distribution). As Xj ⩾ q(vj−1, τ(j)) for each j, it
follows that for large k,

P

∑
j∈[k]

q(vj−1, τ(j)) ⩽ k/2− 2
√
k

 ⩾ Φ(−4)/2

=⇒ G(k, k2 − k3/2, k + 1) ⩾
Φ(−4)

2
k!.

5.3. Refuting a conjecture of Gupta

Lastly, we demonstrate how our result contradicts a conjecture by Gupta [Gup81] (see also the
second item in the final section of [EV21]). This conjecture is concerned with “bi-directional
circular pattern containment”.

Essentially, given a word w ∈ [r]n, we say τ ∈ Sk is a circular pattern of w if there
exists i ∈ [n] such that τ is a pattern of

w(i), w(i+ 1), . . . , w(n), w(1), w(2), . . . , w(i− 1).

We say τ ∈ Sk is a bi-directional circular pattern (BCP) of w ∈ [r]n if τ is circular pattern of w
and/or w′s reversal, w(n), w(n− 1), . . . , w(2), w(1).

Gupta conjectured that for each k, there was σ ∈ [k]n with n ⩽ 3
8
k2 + 1

2
such that

each τ ∈ Sk is a BCP of σ. By definition of BCPs, this would mean that there exists 2n
words w1, . . . , w2n ∈ [k]n such that for any τ ∈ Sk, there exists i ∈ [2n] such that τ is pat-
tern of wi.

This would imply that k! ⩽ 2nF (k, n) ⩽ k2F (k, n). Hence, by our bounds on F (k, n) we
get a contradiction for large k. In fact, essentially repeating the analysis from Section 5.1, we
can show that if σ ∈ [k]n contains each τ ∈ Sk as a BCP, then n ⩾ k2

2
− k7/4+o(1). In 2012,

Lecouturier and Zmiaikou proved that there exists σ ∈ [k]k
2/2+O(k) which contain each τ ∈ Sk as

a circular pattern (and hence as a BCP), thus our bound is tight up to lower-order terms [LZ12].

20 Zach Hunter

5.4. A 0-1 phenomenon

In [CKS21, Section 6], it was asked how large must nk be for there to exist σ ∈ [k]nk which con-
tain almost all patterns in Sk (i.e., what are the growth of sequences nk so
thatF (k, nk) = (1−o(1))k!). Again, the analysis of Section 5.1 shows thatnk ⩾ k2/2−k7/4+o(1)

is necessary for F (k, nk) = Ω(k!) to hold.
Meanwhile, if we consider the word wm

k obtained by concatenating m copies of 1, 2, . . . , k,
we have that w contains all τ ∈ Sk with at least k − m ascents (the number of ascents in a
permutation τ ∈ Sk is the number of j ∈ [k − 1] such that τ(j) < τ(j + 1)). By reversing
the order of permutation τ ∈ Sk with a ascents, you get a permutation with k − a − 1 ascents.
Thus, with m = ⌈k/2⌉ we have that wm

k contains at least half of the τ ∈ Sk as a pattern
(thus nk = (k2 + k)/2 satisfies F (k, nk) ⩾ k!/2).

Finally, using standard martingale concentration results (see e.g. [ADK22, Proposition 2.3])
if m = k/2+C

√
k then wm

k contains (1−2 exp(−Ω(C2)))k! patterns thus nk = k2/2+ω(k3/2)
suffices for F (k, nk) = (1− o(1))k!.

5.5. Open Problems

To recap Sections 5.1 and 5.2, we find the following problems concerning lower-order terms
interesting.

Problem 2. Is there c1 < 7/4 such that

k2 −O(kc1) ⩽ f(k; k)?

It is known that c1 must be taken to be ⩾ 1.

Problem 3. Is there c2 < 7/4 such that

k2 + k

2
−O(kc2) ⩽ f(k; k + 1)?

It is possible that no error term is needed, and (k2 + k)/2 = f(k; k + 1) simply holds.

Problem 4. Is there c3 < 7/4 such that

G

(
k,

k2

2
− Ω(kc3), k2

)
= o(k!)?

Due to Section 5.2.2, it is clear that c3 must be taken so that c3 > 3/2 (but potentially we can
take c3 to be any value > 3/2).

It would also be interesting to extend the conclusion of Corollary 1.2 to alphabets with lin-
early many extra letters. Specifically, we pose the following problem.

Problem 5. Does there exist δ > 0 such that f(k; (1 + δ)k) ⩾ (1/2− o(1))k2?

combinatorial theory 3 (2) (2023), #1 21

This would require a significant new idea. In particular, we think a proof would use some
“redundancy result” to replace Remark 1.4.

We further remark that the stronger statement, which claims f(k;Ck) ⩾ (1/2 − o(1))k2

for every C > 1, could quite possibly be true. However, our methods fail to prove
that f(k; 1.0001k) ⩾ (1/4− o(1))k2, so this currently seems out of reach. While we believe
Problems 1-5 have affirmative answers, we are uncertain whether this stronger statement holds
true. Our (lack of) understanding about more efficient superpatterns on small alphabets will be
further discussed in [Hun].

Acknowledgements

The author would like to thank Daniel Carter and Zachary Chase for helpful conversations and
looking at previous drafts of this paper. The author would also like to thank Carla Groenland for
many suggestions on the presentation of the paper. Lastly, the author thanks Vincent Vatter and
Mihir Singhal for giving comments on the final draft of this preprint.

References

[ADK22] Noga Alon, Colin Defant, and Noah Kravitz. The runsort permuton. Adv. in Appl.
Math., 139:Paper No. 102361, 18, 2022. doi:10.1016/j.aam.2022.102361.

[Arr99] Richard Arratia. On the Stanley-Wilf conjecture for the number of permutations
avoiding a given pattern. Electron. J. Combin., 6:Note, N1, 4, 1999. doi:10.

37236/1477.
[CKS21] Zachary Chroman, Matthew Kwan, and Mihir Singhal. Lower bounds for superpat-

terns and universal sequences. J. Combin. Theory Ser. A, 182:Paper No. 105467,
15, 2021. doi:10.1016/j.jcta.2021.105467.

[EELW07] Henrik Eriksson, Kimmo Eriksson, Svante Linusson, and Johan Wästlund. Dense
packing of patterns in a permutation. Ann. Comb., 11(3-4):459–470, 2007. doi:

10.1007/s00026-007-0329-7.
[EV21] Michael Engen and Vincent Vatter. Containing all permutations. Amer. Math.

Monthly, 128(1):4–24, 2021. doi:10.1080/00029890.2021.1835384.
[Goe15] Michel Goemans. Chernoff bounds, and some applications. Lecture notes, 2015.

URL: https://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf.
[Gup81] Hansraj Gupta. On permutation-generating strings and rosaries. In Combinatorics

and graph theory (Calcutta, 1980), volume 885 of Lecture Notes in Math., pages
272–275. Springer, Berlin-New York, 1981.

[Hun] Zach Hunter. A new upper bound for superpatterns. In preparation.
[Kee14] Peter Keevash. The existence of designs. 2014. arXiv:1401.3665.

https://doi.org/10.1016/j.aam.2022.102361
https://doi.org/10.37236/1477
https://doi.org/10.37236/1477
https://doi.org/10.1016/j.jcta.2021.105467
https://doi.org/10.1007/s00026-007-0329-7
https://doi.org/10.1007/s00026-007-0329-7
https://doi.org/10.1080/00029890.2021.1835384
https://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf
http://arxiv.org/abs/1401.3665

22 Zach Hunter

[KK76] D. J. Kleitman and D. J. Kwiatkowski. A lower bound on the length of a se-
quence containing all permutations as subsequences. J. Combinatorial Theory Ser.
A, 21(2):129–136, 1976. doi:10.1016/0097-3165(76)90057-1.

[LZ12] Emmanuel Lecouturier and David Zmiaikou. On a conjecture of H. Gupta. Discrete
Math., 312(8):1444–1452, 2012. doi:10.1016/j.disc.2011.12.027.

[Maj17] H. Maji. Lecture 10: Birthday paradox. Lecture slides, 2017. URL: https://www.
cs.purdue.edu/homes/hmaji/teaching/Fall%202017/lectures/10.pdf.

[Mil09] Alison Miller. Asymptotic bounds for permutations containing many different pat-
terns. J. Combin. Theory Ser. A, 116(1):92–108, 2009. doi:10.1016/j.jcta.

2008.04.007.

https://doi.org/10.1016/0097-3165(76)90057-1
https://doi.org/10.1016/j.disc.2011.12.027
https://www.cs.purdue.edu/homes/hmaji/teaching/Fall%202017/lectures/10.pdf
https://www.cs.purdue.edu/homes/hmaji/teaching/Fall%202017/lectures/10.pdf
https://doi.org/10.1016/j.jcta.2008.04.007
https://doi.org/10.1016/j.jcta.2008.04.007

	Introduction
	Past lower bounds and an outline of our proof
	Notation
	Cost

	Reduction
	Greedy Strategy
	Greedy DFA
	The family of k-DFAs
	The Reduction

	A coupling argument
	Machinery
	Proof of Theorem 2.3

	An alternate approach
	Conclusions
	Lower order terms for f(k;k+1)
	Other Problems on k-DFAs
	Upper bound on G(k,n,N) independent of N
	k-DFA's with many low cost permutations

	Refuting a conjecture of Gupta
	A 0-1 phenomenon
	Open Problems

