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A single-cell atlas of glioblastoma evolution 
under therapy reveals cell-intrinsic and 
cell-extrinsic therapeutic targets

Lin Wang1,3, Jangham Jung1,3, Husam Babikir1,3, Karin Shamardani    1, 
Saket Jain    1, Xi Feng1, Nalin Gupta    1, Susanna Rosi1, Susan Chang1, 
David Raleigh    1, David Solomon    2, Joanna J. Phillips    1,2 & Aaron A. Diaz    1 

Recent longitudinal studies of glioblastoma (GBM) have demonstrated a 
lack of apparent selection pressure for specific DNA mutations in recurrent 
disease. Single-cell lineage tracing has shown that GBM cells possess a high 
degree of plasticity. Together this suggests that phenotype switching, as 
opposed to genetic evolution, may be the escape mechanism that explains 
the failure of precision therapies to date. We profiled 86 primary-recurrent 
patient-matched paired GBM specimens with single-nucleus RNA, 
single-cell open-chromatin, DNA and spatial transcriptomic/proteomic 
assays. We found that recurrent GBMs are characterized by a shift to 
a mesenchymal phenotype. We show that the mesenchymal state is 
mediated by activator protein 1. Increased T-cell abundance at recurrence 
was prognostic and correlated with hypermutation status. We identified 
tumor-supportive networks of paracrine and autocrine signals between 
GBM cells, nonmalignant neuroglia and immune cells. We present 
cell-intrinsic and cell-extrinsic targets and a single-cell multiomics atlas of 
GBM under therapy.

The genetics of glioblastoma (GBM), the most common and aggressive 
primary malignancy of the adult brain, have been extensively character-
ized1–3. Despite this fact, GBMs have proven resistant to all genotoxic 
therapies employed in clinical trials thus far. Recent longitudinal studies 
of GBMs based on bulk DNA sequencing demonstrate a lack of selection 
pressure for DNA mutations that are private to either primary or recur-
rent disease, a lack of association between genetic selection pressure 
and standard therapy and a remarkable clonal stability under therapy4. 
These findings are consistent with recent molecular analyses of spatially 
mapped biopsies from GBM specimens, which find minimal evidence of 
intra-tumor regional heterogeneity in clonal mutations5. Taken together, 
these results support the hypothesis that selection pressure for or against 
specific mutations occurs mostly during initial malignant transformation 
and that standard chemoradiation therapy does not apply significant 
additional selection pressure at the level of genomic alteration.

On the other hand, recent single-cell/single-nucleus RNA- 
sequencing (sc/snRNA-seq) studies of primary disease have demon-
strated that GBM cells exhibit a high degree of plasticity at the ph
enotypic level and apparent transitions between cellular states6–9; 
however, it is unknown to what extent standard therapy, temozolo-
mide (TMZ) chemotherapy, ionizing radiation (IR) and surgical resec-
tion, applies a selection pressure for or against specific cell types at 
recurrence. The extent to which standard therapy shapes the milieu 
of tumor-associated immune cells and nonmalignant neuroglia is not 
fully understood. To address this, we performed snRNA-seq on a cohort 
of patient-matched primary-recurrent paired specimens (n = 86), 
together with single-cell assay for transposase-accessible chromatin 
via sequencing (scATAC-seq), spatial transcriptomics (ST), spatial 
proteomics (SP) and exome sequencing (exome-seq) for specific subco-
horts (Fig. 1a). We present a single-cell multi-omics atlas of GBM under 
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showed that the largest contribution to variation in primary GBM neo-
plastic cells was an axis between MES (for example CD44 and CHI3L1) 
and PN (for example OLIG2 and DLL3) expression programs (Fig. 2a,b 
and Supplementary Tables 2 and 3). Inter-table analysis demonstrated 
nearly equal contribution to overall variance from each of the studies 
included, indicating that this result was not due to inter-laboratory 
technical effects (Fig. 2c). The second largest source of variation in this 
analysis, consistent with Wang et al., was the expression of markers of 
mitotic cells such as MKI67. We found that the same result held in both 
primary and recurrent specimens; however, the distribution of cells 
along the PN–MES axis shifts at recurrence (Fig. 2d,e). Using our pre-
viously described approach, we classified all neoplastic cells as either 
PN or MES11. This classification agreed with PCA analysis (Fig. 2d,e). 
We found a significant association between patient age and the MES 
phenotype (Extended Data Fig. 2a–c); however, there was no such asso-
ciation with tumor location (Extended Data Fig. 2d). While we did see 
an association between age and sex in our data, we did not find a signifi-
cant association between sex and the MES phenotype (Extended Data  
Fig. 2e,f). Last, we identified megabase-scale CNVs in the snRNA-seq 
data using patient-matched exome sequencing (exome-seq) as vali-
dation (Extended Data Fig. 2g and Methods). We found significant 
associations with between several prevalent chromosome-arm level 
CNVs and the MES phenotype (Fig. 2f,g and Extended Data Fig. 2g).

A mesenchymal shift in recurrent disease
A shift toward the MES phenotype at recurrence is a hallmark of therapy 
resistance3,13–15. Considering paired cases only and using a paired test, we 
found a significant increase in the percentage of MES cells per patient on 
average at recurrence (Fig. 3a). This MES shift was also observed in our 
bulk RNA-seq data (Extended Data Fig. 3a). While we found no signifi-
cant difference in the percentage of cycling cells overall when compar-
ing paired primary and recurrent cases (Fig. 3b), cases that underwent 
a MES shift showed a marked increase in the percentage of MES cycling 
cells at recurrence (Fig. 3c). The MES shift, as previously described3, 
could in principle be explained by at least several factors: a preferential 
resistance of MES cells to therapy, activation of a MES expression pro-
gram within non-MES cells and/or a change in the birth rates of non-MES 
and MES cells at recurrence. We found that the latter, an increase in the 
proliferation rate within the MES population, has a clear contribution. 
When we performed RNA velocity analysis to estimate rates of gene 
transcription (Methods) we found modest and infrequent positive 
velocities for MES genes, in non-MES cells (Extended Data Fig. 3b). 
PCA of MES cells from recurrent cases identified cycling versus qui-
escence as their primary axis of variation. RNA velocities indicated a 
unidirectional transition from quiescent to cycling MES cells (Fig. 3d,e 
and Extended Data Fig. 3c). There was no significant difference in the 
fractions of unspliced versus spliced total transcripts observed when 
comparing cycling to quiescent populations (Extended Data Fig. 3d), 
indicating that this result is not due to technical bias. Genes that cor-
related with progression from quiescence to cycling (Supplementary 
Table 4) were over-represented in the DNA-damage response pathway 
(Extended Data Fig. 3c,e,f). Conversely, transforming growth factor-β 
pathway genes were upregulated in quiescent MES cells.

Single-cell open-chromatin profiling implicates AP1
We performed scATAC-seq on 10 IDH-wild-type GBMs: four 
primary-recurrent pairs, one unmatched primary case and one 
unmatched recurrent case. This yielded 22,214 sequenced cells. 
Additionally, we included in our analysis four primary IDH-wild-type 
GBMs that we had profiled via snATAC-seq previously8. Neoplastic 
cells were separated from immune cells and nonmalignant glia based 
on detected mutations and a clustering of gene activity profiles. To 
identify cell states based on transcription factor activity, we scanned 
scATAC-seq reads for over-represented transcription factor motifs 
compared to a data-driven background model (Methods). Neoplastic 

therapy. This resource fills a gap in our knowledge of GBM at recurrence 
and has allowed us to derive several clinically relevant findings.

We extend our previous finding that proliferating GBM cells lie 
on a single axis of variation, ranging from the Verhaak proneural (PN) 
to mesenchymal (MES) phenotypes to the context of recurrent GBM. 
On average, we found that GBM patients undergo a PN-to-MES shift at 
recurrence, concomitant with an increase in the birth rate of MES cells 
in recurrent tumors and supported by paracrine signals from the tumor 
microenvironment. We identified gene-expression correlates of the 
re-entry of previously quiescent MES cells into the cell cycle at recur-
rence and found that targeting these genes decreases GBM cell viability. 
We identified chromosome-arm-scale copy-number variants (CNVs) 
that correlate with the MES phenotype, not previously described. 
Hypermutation status was found to be a predictor of increased T-cell 
infiltration at recurrence. Moreover, increased T-cell infiltration at 
recurrence was prognostic. Last, we mapped intercellular paracrine and 
autocrine signals between neoplastic cells, non-neoplastic neuroglia 
and immune cells via snRNA-seq. We validated coexpression of these 
signals in situ via ST and SP. We showed that these signals enhance GBM 
cell viability in a panel of low-passage patient-derived cell lines and are 
targetable therapeutically. Taken together, these studies address fun-
damental questions of GBM cellular biology and the selection pressure 
applied by standard therapy, as well as provide therapeutic targets for 
further development.

Results
Single-cell transcriptomics of longitudinal GBM specimens
We profiled 86 longitudinal fresh-frozen tissue specimens from 49 
patients undergoing surgical resection for GBM via snRNA-seq. For 
36 patients we profiled paired specimens from the primary untreated 
tumor and matched first recurrence (Fig. 1a and Supplementary Table 
1), additionally we profiled four untreated-primary and six first recur-
rence unmatched specimens. At the time of the first recurrence all 
patients had been treated only with standard-of-care therapy (TMZ, 
IR and surgical resection). The cohort’s age ranged from 35–76 years 
and had a male-to-female ratio of 1.2. Nuclei isolation from frozen tis-
sue, nuclei capture and library preparation were performed as pre-
viously described8, yielding 254,288 transcriptomes. We found that 
data quality metrics for our single-nucleus data, such as number of 
features per cell (Extended Data Fig. 1a) or doublet rate (Extended 
Data Fig. 1b), met or exceeded the quality for recent GBM single-cell 
studies7,9. Neoplastic cells (daughters of the tumor-initiating cell) were 
separated from nonmalignant neuroglia, endothelial and immune 
cells via our previously described approaches10–12, which include an 
analysis of gene signatures as well as expressed mutations (Fig. 1b–d). 
Mutation profiles were validated by DNA-amplicon sequencing via the 
UCSF500 panel for 52 of 86 cases, the mutational status of isocitrate 
dehydrogenase (IDH) was assessed for all patients via sequencing and 
and/or immunohistochemistry. Four samples were identified as having 
mutations in IDH1 and were excluded from further analysis. We use the 
term GBM to refer to IDH-wild-type GBM from hereafter. On average, 
samples from recurrent tumors had less purity than primary cases  
(Fig. 1d and Extended Data Fig. 1c). All cell types found were represented 
in specimens from across all lobes of the brain, a spectrum of ages and 
both sexes (Extended Data Fig. 1d–g).

Meta-analysis supports a proneural–mesenchymal axis
We recently showed that the phenotypes of proliferating primary GBM 
cells have a dominant axis of variation that ranges from the MES to PN 
transcriptional subtypes8. Subsequent scRNA-seq studies of primary 
GBM specimens and patient-derived tumor-propagating cells have 
produced similar findings6. We performed a meta-analysis of snRNA-seq 
data from our primary tumors and other recent single-cell studies of 
primary GBMs7,9. An unbiased multiple-factor analysis (MFA; Methods), 
an extension of principal-component analysis (PCA) to multiple tables, 
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Fig. 1 | A single-cell RNA atlas of human glioblastoma through recurrence. 
a, An overview of genomics studies on paired longitudinal GBM specimens. b, 
A t-distributed stochastic neighbor embedding (t-SNE) of the first ten principal 
components of snRNA-seq data. Cells with CNVs are annotated. n = 86 tumors 
were used (b–d). c, A hierarchical clustering of cells without CNVs, with several 
cluster-specific genes highlighted. d, A summary of sample cellular composition, 

genotype and demographics. Top: cellular composition inferred from snRNA-
seq. Middle: patient and sample annotations, with genotype inferred from 
snRNA-seq. Bottom: genotypes inferred from the UCSF500 clinical DNA-
amplicon-sequencing assay performed on adjacent tissue and controlled by 
sequencing a patient-matched blood specimen.
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cells were then hierarchically clustered based on inter-cell correlations 
in motif frequency deviances from background, identifying clusters of 
cells with similar transcription factor utilization (Fig. 3f,g). In both the 

primary and recurrent GBM hierarchical clusters, at their top levels, 
neoplastic cells were split into two states that bore hallmarks of the PN 
and MES phenotypes, respectively. In particular, the first cluster was 
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enriched for proneural transcription factors (for example OLIG2 and 
NEUROG1). The second had activator protein 1 (AP1) complex compo-
nents over-represented, some of which have been previously described 
as regulating MES gene expression16. Motif analysis of scATAC-seq pro-
vides information about differential targeting of transcription factors. 
This is often independent of differential transcription factor expression 
per se. Nonetheless, we did find that some of these cluster-specific 
transcription factors were also differentially expressed between PN 
and MES cells in our snRNA-seq data (Fig. 3h), further supporting our 
interpretation of these two clusters as consisting of PN and MES cells, 
respectively. Consistent with the MES shift identified in our snRNA-seq 
data, we also found evidence for the MES shift in our scATAC-seq data. In 
particular, the MES cluster increased in relative size at recurrence (pri-
mary, 60% PN and 40% MES; recurrent, 51% PN and 49% MES; Fig. 3f,g). 
Moreover, the PN and MES cells became more polarized in their respec-
tive phenotypes at recurrence with the MES cluster becoming more 
homogenous; median intra-MES cell correlation increased from 0.08 
to 0.20, whereas PN-to-MES cell correlations dropped from −0.12 to 
−0.180.18 in the median. A differential motif-enrichment test confirmed 
that PN and MES transcription factors were over-represented in primary 
and recurrent GBM specimens, respectively (Fig. 3i and Supplementary 
Table 5). Last, when we identified peaks from the snATAC-seq data 
we found the same enrichments for proneural and AP1 transcription 
factor motifs in the peaks specific to primary versus recurrent cases, 
respectively (Extended Data Fig. 3g,h and Supplementary Tables 6–9).

Radiation induced AP1 enhances mesenchymal genes
We sought to elucidate the AP1 regulome in GBM and determine 
whether it could be targeted for therapeutic benefit. To accomplish 
this, we correlated snRNA-seq gene expression with scATAC-seq 
chromatin accessibility in cis, using a latent-space approach to infer 
cis-regulatory enhancer activity (Methods). We then scanned these 
enhancers for AP1 recognition motifs and cross-referenced the results 
with genes that were differentially expressed between PN and MES 
neoplastic cells. This identified genes specifically expressed in MES 
cells, with MES-specific cis-regulatory enhancers that are targeted by 

AP1 (Fig. 3j,k). All previously described hallmarks of the MES pheno-
type16–18 were thusly identified as part of the AP1 regulome in GBM. 
To functionally validate AP1 regulation of these genes, we exploited 
low-passage (p3–6) cell lines derived from specimens of human recur-
rent GBMs, cultured as monolayers in defined factors (Methods). We 
genotyped these lines via UCSF500 DNA-amplicon sequencing and 
verified that they closely match their parental tumors (Extended 
Data Fig. 3i). We then treated these cells with an AP1 inhibitor for 48 h 
and performed scRNA-seq on treated cells and untreated controls 
(Methods). We found that AP1 inhibition regressed the expression 
of genes with AP1-regulated enhancers, including genes associated 
with stemness (for example VIM and MIR99AHG), MES hallmarks (for 
example CD44 and YAP1), invasiveness (for example TNC and FN1), 
inflammation (for example NFKB1, FYN and IL1B), IR resistance (for 
example TLK1) and others (Fig. 4a–e and Extended Data Fig. 4a,b). 
All these genes were part of the AP1 regulome inferred from in vivo 
human data and had MES-specific cis-regulatory enhancers that 
were targeted by AP1. AP1 inhibition did not significantly decrease 
GBM cell proliferation, although AP1 inhibition did synergize with IR 
(Fig. 4f). After approximately 48 h of AP1 inhibitor treatment, GBM 
cells that had been growing as a monolayer on basement membrane 
extract (BME)-coated plates detached from the plate and continued 
to grow as floating spheroids (Fig. 4g). Moreover, AP1 inhibition com-
pletely abrogated the ability of GBM cells to form colonies in BME. 
These findings are consistent with our inference of AP1 regulation 
of TNC, FN1 and other matricellular genes. To determine whether 
AP1 is induced by IR, we employed an immunocompetent, intracra-
nial murine model19. We treated tumor-bearing mice with IR using a 
fractionated schedule of 5 Gy on days 10, 12 and 14 after implantation 
(Methods). This resulted in a significant (28%, P = 0.039) extension 
of survival (Fig. 4h). Upon euthanasia, mice were perfused and tis-
sue from the injection site was collected. We observed a significant 
increase in the expression of AP1-component genes, as well as MES 
hallmark genes, AP1-regulated mediators of inflammation and the 
DNA-damage response (Fig. 4i and Extended Data Fig. 4d). Taken 
together, these results indicate that AP1 is induced in GBM upon IR 

Fig. 2 | A meta-analysis of public and in-house data identifies the proneural-
to-mesenchymal axis as the primary source of phenotypic variation in 
glioblastoma neoplastic cells and genetic correlates. a–c, MFA of primary 
GBM neoplastic cells from the scRNA-seq data of Neftel et al.9 (n = 5,588 cells), 
Couturier et al.7 (n = 17,884 cells) and snRNA-seq from our study (n = 34,582 cells). 
Cell loadings (a), gene scores (b) and an analysis of each dataset’s contribution 
to variance explained (c). d, Top: PCA of all GBM neoplastic cells from our study 
from longitudinal specimens. n = 78,415 cells from 62 paired tumors. Bottom: 
PN and MES cell-type assignments. e, Separate plots of the cells from primary 

GBMs (left) and recurrent cases (right). Expression values of top-loading genes 
in single cells are shown below. Cells are sorted according to position along the 
axis labeled. n = 78,415 cells. f, Summary of megabase-scale CNVs detected in the 
snRNA-seq data, indicating the presence of CNVs in individual samples, their type 
and cellular frequency. n = 86 tumors. g, The distribution of Chr6−, Chr14−, Chr19+ 
and Chr20+ CNVs in single cells in PCA from d. Bottom: percentages of PN and 
MES cells that have these genotypes and the associated one-sided Fisher’s P value 
indicating the probability that this association occurs by chance. n = 78,415 cells.

Fig. 3 | A proneural-to-mesenchymal shift is observed in GBM at recurrence, 
driven by an increase in cycling mesenchymal cells and mediated by AP1.  a, 
Percentages of PN and MES neoplastic cells in patient-matched paired primary 
and recurrent specimens via snRNA-seq (P = 0.03967). b, The percentages of 
cycling neoplastic cells in primary and recurrent samples. c, The percentages 
of PN and MES cycling cells for paired cases undergoing PN-to-MES shift 
(P = 0.01565). Paired longitudinal samples were used (a–c); n = 62 paired samples 
from 31 patients (a,b) and n = 38 samples from 19 patients who underwent 
MES transition (c). Boxplot lower/upper whiskers indicate the smallest/largest 
observation ≥/≤ the lower/upper hinge ± 1.5 times the interquartile range (IQR); 
lower/upper hinge indicates 25th/75th percentiles; and the center indicates 50th 
percentile. A one-sided Wilcoxon signed-rank test for paired samples was used. 
*P 0.05. P, primary; R, recurrent. d, RNA velocities and associated field lines for 
n = 10,456 MES cells from recurrent GBMs, visualized via PCA. e, Inference of 
pseudotime based on the flow field in d. n = 10,456 cells. f, Heat maps comparing 
cell-by-motif matrices of transcription factor motif deviances between primary 

and recurrent GBMs, derived from snATAC-seq of n = 3,894 neoplastic cells 
from primary tumors and n = 7,087 neoplastic cells from recurrent tumors. g, 
Heat maps of snATAC-seq inter-cell correlations of transcription factor motif 
frequencies obtained as deviances from a data-driven background distribution, 
compared between primary and recurrent neoplastic cells. n = 3,894 primary 
GBM and n = 7,087 recurrent GBM derived cells. h, Scatter-plots of proneural and 
AP1 transcription factor expression in snRNA-seq from n = 78,415 neoplastic cells 
show significant (one-sided Fisher’s P < 2 × 10−16) association with PN and MES 
cells, respectively. i, Over-represented (q < 0.05) transcription factor motifs in 
snATAC-seq reads from n = 3,894 primary (left) and n = 7,087 recurrent (right) 
neoplastic cells. Significance was assessed with a two-sided t-test and adjusted 
for multiple hypothesis testing via Storey’s method. j, A summary of the AP1 
regulome, consisting of genes that are both upregulated in MES cells in the 
snRNA-seq data and also show correlated enhancer activity at nearby AP1 binding 
sites, specifically in MES cells from the snATAC-seq data. k, KEGG pathway 
analysis of the inferred AP1 regulome.
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treatment and that AP1 positively regulates the MES hallmarks of 
inflammation, IR resistance and invasiveness through cis-regulatory 
enhancers.

Targeting the AP1 regulome for therapeutic benefit
We screened genes from the AP1 regulome against databases of known 
drug interactions, including off-label activity (Fig. 4j–m and Extended 
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Data Fig. 4e.f). Drug candidates were further prioritized based on evi-
dence of blood–brain barrier permeability. We identified two antipsy-
chotics and an antidepressant that target the AP1-regulated gene TLK1 

(Fig. 4d,i) that showed cytotoxic activity in vitro (Fig. 4j). In particular, 
thioridazine synergized with IR (Fig. 4k), consistent with the role of TLK1 
in DNA-damage repair. Additionally, the histone deacetylase HDAC9 and 
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lysine methyltransferases KMT5A, KMT2C were implicated targets of 
AP1 (Fig. 3j and Extended Data Fig. 4a,b,d) and inhibiting these pathways 
showed synergy with IR and TMZ (Fig. 4l,m). Having determined that 
standard therapy selects for a MES phenotype in neoplastic cells, we 
next sought to analyze how immune cells in the GBM microenvironment 
respond to standard of care.

Tumor-associated innate immune cells show limited 
activation
Tumor-associated innate immune cells in the aggregate represented 
12.6% and 16.5% of cells profiled, on average, in primary and recurrent 
tumors respectively (Fig. 5a). There was a significant increase in the per-
cent of innate immune cells classified as bone marrow-derived mono-
cytic (BMDM) lineage cells at recurrence and a significant decrease in 
the relative proportion of central nervous-system-resident microglia. 
An unbiased PCA of microglia and BMDM cells, including monocytes 
and their differentiated progeny, identified ontogeny as their primary 
source of variation (Fig. 5b). The second principal component (PC) 
stratified cells by the expression of regulators of inflammation (for 
example NFKB1), antigen presentation (for example CD74) and reactiv-
ity to a hypoxic microenvironment (for example HIF1A). We then scored 
microglia and BMDM for activation status, according to canonical 
markers of the pro-inflammatory (M1) and inflammation-resolving 
(M2) phenotypes, against a data-driven background model (Methods). 
Cells that did not express either program above background levels 
were classified as M0. We found that M0 cells had negative PC2 scores 
on average, whereas M1 and M2 cells had positive scores on average  
(Fig. 5c). This indicates that the second largest source of variation in 
innate immune cells is activation status. Consistent with recent find-
ings20, the majority of GBM-associated innate immune cells resided in 
an M0 state in primary GBM, based on canonical markers. While there 

were significant increases in the percentages of activated cells at recur-
rence, pluralities of both microglia and BMDM remained M0 (Fig. 5d).

T cells invade the tumor in outliers with superior prognosis
Tumor-associated lymphocytes consisted of only 0.9% and 1.7% of 
cells in primary and recurrent GBMs, respectively, with no significant 
change at recurrence in paired samples. When we performed cluster-
ing on lymphocytes (Fig. 5e and Extended Data Fig. 5a,b), the majority 
were identified to be in an exhausted state based on the expression of 
immune checkpoints (Fig. 5f). The percentage of exhausted T cells 
significantly increased at recurrence, at the expense of regulatory 
and proliferating T-cell percentages (Fig. 5g). Although T cells in 
total represented less than 1% of cells found in most specimens, T-cell 
abundance at recurrence did correlate with a significant increase in 
overall survival (Fig. 5h and Extended Data Fig. 5c). This result was 
apparently driven by 16% of recurrent cases which had levels of T-cell 
infiltration 2–20-fold higher than average. To identify correlates of 
these T-cell outliers we first assessed hypermutation status, as defined 
by greater than 20 mutations per megabase of DNA21,22. Hypermuta-
tion correlated with significantly higher levels of T-cell infiltration at 
recurrence when compared to either non-hypermutated recurrent 
cases or patient-matched primary cases (Fig. 5h and Extended Data 
Fig. 5d–f). While neurofibromin 1 (NF1) mutation status correlated 
with significantly increased innate immune-cell infiltration in primary 
GBMs (Extended Data Fig. 5g), this correlation did not hold in recurrent 
cases (Extended Data Fig. 5h). In contrast to previous reports23, NF1 
mutations did not correlate with T-cell abundance (Extended Data 
Fig. 5i,j). Female sex was another correlate of increased T-cell infiltra-
tion at recurrence, but this association did not hold in primary cases 
(Extended Data Fig. 5k,l). When we assessed mismatch-repair (MMR) 
gene expression and mutation status we found that MMR expression, 

Fig. 5 | The immune response to standard therapy.  a, Top: percentages of 
cell types in primary and recurrent tumors (n = 62 tumors). Oligodendrocytes, 
P = 0.0179; neoplastic, P = 0.00435; BMDMs, P = 0.00862; microglia, P = 0.00861. 
Bottom: percentages of BMDMs/microglia compared between primary and 
recurrent tumors. b, Top: monocytic-lineage cell PCA from n = 62 tumors. 
Bottom: expression levels of top-loading genes for PC1 and PC2 in single cells 
sorted by sample score. c, Distributions of M0, M1 and M2 activation phenotypes 
in PCA space. d, Distributions of innate immune-cell activation phenotypes 
compared between primary and recurrent specimens. n = 62 tumors. Significance 
assessed via a one-sided t-test. e, t-SNE plot of the first ten PC scores of tumor-
associated lymphocytes that have been clustered via Seurat. f, Heat map of gene 
expression in lymphocytes for select cluster-specific genes classifies T cells into 
proliferative, exhausted and regulatory phenotypes and separates natural killer 
cells. g, Percentages of exhausted, regulatory and proliferating T cells compared 
between primary and recurrent specimens. A one-sided t-test was used to assess 
significance. n = 70 tumors were used (e–g). h, Top left: distribution of T-cell 

percentages across recurrent samples, with the threshold used to separate 
relatively T-cell enriched and T-cell poor specimens highlighted. Top right: overall 
survival, comparing T-cell rich and poor specimens. Significance was assessed 
via a log-rank test. Bottom left: distribution of mutational burdens across 
samples, with the threshold used to define hypermutation status highlighted. 
Bottom right: percentages of T cells compared between hypermutated and 
non-hypermutated recurrent specimens. Asterisk indicates one-sided Wilcoxon 
rank-sum test P = 0.0493, from n = 31 tumors. In boxplots in a, d, g and h lower/
upper whiskers indicate smallest/largest observation ≥/≤ the lower/upper 
hinge ± 1.5 × IQR; lower/upper hinge indicates 25th/75th percentile; and center 
indicates 50th percentile. Patient-matched primary-recurrent paired specimens 
and the one-sided Wilcoxon signed-rank test for significance were used (a,d,g). 
*P 0.05. i, IHC for CD8 in FFPE specimens, comparing a patient-matched primary 
and recurrent pair, where the recurrent specimen is an outlier case with T-cell 
abundance over fourfold greater than average, representative data from four 
independent experiments with similar results.

Fig. 4 | AP1 positively regulates the mesenchymal phenotype and is induced 
by ionizing radiation. a–d, Left: enhancer activity analysis identifies enhancers 
that correlate with nearby gene expression, contain AP1 recognition motifs 
and are differentially active in human MES versus PN cells, from n = 20,544 
cells. Right: concomitant decreases in gene expression after AP1 inhibition, 
observed in low-passage GBM cultures treated for 48 h with T-5224. n = 3,593 
cells. e, Other significant changes in gene expression following AP1-inhibitor 
treatment. n = 3,593 cells. Significance was assessed with a two-sided likelihood-
ratio test between hurdle models and adjusted for multiple hypothesis testing 
via the Benjamini–Hochberg method (a–e). f, Cell proliferation following a 
3-d AP1 inhibitor treatment and 48 h after treatment with 3 Gy of IR, for n = 2 
independent experiments. g, Images of AP1 inhibitor-treated and control 
cultures, representative of n = 3 independent experiments. Under AP1 inhibition, 
monolayer-cultured GBM cells (left) detach from the BME-coated plate and 
continue to grow as floating spheroids. h, Survival for IR-treated (days 10, 12, 14 at 

3 Gy d−1) cases and controls. Immunocompetent mice were injected intracranially 
with syngeneic glioma cells (SB28). n = 3 mice per condition. Significance is 
assessed with a log-rank test. i, Differences in AP1 and MES-signature gene 
expression in IR-treated versus control mice, for n = 3 mice per condition. Data 
are presented as mean ± s.d. Significance is assessed via a one-sided t-test. 
j, Cell proliferation under combination treatment of IR and BBB-penetrant 
antipsychotics with inferred off-label activity against TLK1, for n = 2 independent 
experiments. k, Inhibition and death rates for the antipsychotic thioridazine, 
with and without IR, from n = 2 independent experiments, indicating synergy 
between thioridazine and IR. l,m, Cell proliferation following treatment with 
an HDAC inhibitor (panobinostat) or a methyltransferase inhibitor (UNC0642), 
in combination with IR or TMZ. n = 2 independent experiments (l). Synergy 
is assessed via highest single agent (HAS) score from n = 3 independent 
experiments (m).
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but not mutation status, correlated with increased T-cell infiltration 
in primary GBMs alone (Extended Data Fig. 5n–q). Consistent with 
these findings, MMR expression correlated with mutational burden 

only in primary GBMs (Extended Data Fig. 5r). To validate T-cell levels 
measured by snRNA-seq, we performed immunohistochemistry for 
CD8 (a marker of activated T cells) on slides from three T-cell outlier 
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Fig. 6 | A spatial transcriptomic and proteomic atlas of human GBM through 
recurrence. a, A hierarchical clustering of SP ROIs with IF of typical ROIs (from 72 
ROIs from six slides assayed) corresponding to the associated protein signatures 
(right). b, IF of two T-cell outlier cases indicating the presence of putative 
tertiary lymphatic structures, out of three outlier cases assayed. c, A hierarchical 
clustering of ST ROIs across genes. IF of typical ROIs (from 120 ROIs from ten 

slides assayed) corresponding to the associated mRNA signatures are annotated 
(right). d, Incoming and outgoing auto/paracrine signals between GBM cell 
types, inferred from snRNA-seq and compared between primary and recurrent 
GBM specimens, from n = 86 tumors. Receptor–agonist pairs were summarized 
by pathway and are annotated (bottom).
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recurrent GBMs and their non-outlier patient-matched primary tumors 
(Fig. 5i and Extended Data Fig. 5s,t). The primary tumors had typical low 
levels of CD8+ T-cell abundance and CD8+ T cells were sparse, isolated 

and frequently confined to the perivascular space. On the other hand, 
the matched recurrences showed robust T-cell invasion of the cellular 
tumor.

a b
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Fig. 7 | Integration of snRNA-seq and ST data identifies tumor-supportive 
paracrine signals with nonmalignant glia. a, IF in a GBM specimen used for 
ST, representative of n = 10 tumors. b, RNAscope on sections adjacent to a. 
Alongside are images where cells have been segmented and receptor/ligand 
stains quantified. Receptor mRNA is tagged red and ligand mRNA is teal. In 
processed images, ligand-expressing cells are yellow, receptor-positive cells 
are cyan, double-positive cells are purple and double-negative cells are red. 

RNAscope double staining for the receptor/ligand IGF1/IGF1R is shown. A window 
spanning the tumor-normal interface is highlighted in yellow, with a breakout 
showing a gradient of IGF1 and IGF1R expression. Breakouts (r1 and r2) highlight 
sporadic IGF1/IGF1R expression in the cellular tumor and elevated IGF1/IGF1R 
expression in diffusely infiltrated, adjacent nonmalignant tissue. c, A network 
diagram of IGF1/IGF1R signaling from snRNA-seq, shown alongside RNAscope 
from the invasive edge.
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Spatial analysis yields cell-extrinsic therapeutic targets
To further evaluate immune outlier cases, we profiled six formalin-fixed 
paraffin-embedded (FFPE) slides from three recurrent outlier cases 
and their matched primary cases by SP, using the Nanostring GeoMx 
platform (Methods). For tissue visualization, we performed immu-
nofluorescence (IF) for glial fibrillary acidic protein (GFAP) (broadly 
expressed in glia), CD68 (enriched in innate immune cells), CD45 (a 
pan-immune marker) and DNA. Approximately 12 regions of interest 
(ROIs) were profiled for 17 immune-related targets per slide (Fig. 6a). 
Having clustered our normalized SP data, we identified regions devoid 
of immune infiltrates and regions expressing high levels of markers of 
T cells (for example CD4). We observed two types of T-cell-rich regions 
in the SP data, the first correlated with expression of immune check-
points (PD-1 and PD-L1), antigen presentation/presenting-cells (CD68, 
CD11c, HLA-DR and B2M) and blood vessels (SMA and PanCk). The 
second T-cell rich cluster showed little expression of PD-1 or PD-L1. 
Notably, all outlier cases contained some ROIs that were enriched for 
B-cell markers, such as CD20, along with markers of dendritic cells (for 
example CD11c) and T cells (for example CD4). IF on adjacent slides 
for Iba, CD3 and CD20 confirmed the aggregation of B cells, T cells 
and monocytic-lineage cells that were consistent with the presence 

of tertiary lymphatic structures, for two of the three outlier cases sur-
veyed (Fig. 6b).

We next sought to expand our spatial analysis more broadly by per-
forming ST on ten slides from five patient-matched primary-recurrent 
pairs (for example Extended Data Fig. 6a). We compared ST datasets 
via hierarchical clustering (Fig. 6c) and performed deconvolution 
analysis of the ST data based on our snRNA-seq derived signatures 
(Extended Data Fig. 6b and Methods). This analysis divided samples 
into four clusters based on two gene sets. The first two clusters were 
enriched for markers of proliferating tumor cells and depleted of 
characteristic markers of immune cells (Extended Data Fig. 6c and 
Supplementary Tables 10 and 11). These two clusters also had higher 
PN cell percentages. By contrast the third and fourth clusters over-
expressed class-II interferon-signaling genes, class I and II human 
leukocyte antigen (HLA) and markers of innate and adaptive immune 
cells. We reasoned that an integrated analysis of ST and snRNA-seq data 
could be used to map paracrine signals in the GBM microenvironment 
and identify therapeutic targets. To that end, we first used CellChat to 
infer receptor–agonist interactions between different GBM cell types 
using snRNA-seq data (Methods). This approach integrates databases 
of agonist–receptor interactions with agonist–receptor subunit and 
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antagonist expression levels to infer cell-type-specific signaling net-
works. This identified a diverse network consisting largely of secreted 
ligands and their receptors. We mapped differences between primary 
and recurrent specimens, differences between PN and MES neoplastic 
cell types and differences between monocytic-lineage cells based on 
ontogeny (Fig. 6d, Extended Data Fig. 6d and Supplementary Table 12). 
To validate these findings from snRNA-seq in the ST data, we computed 
Pearson correlations between agonist–receptor gene pairs across ROIs 
and samples for the hits from our CellChat analysis (Extended Data  
Fig. 6e and Supplementary Table 12).

We next focused on signaling between neoplastic cells and nonma-
lignant glia, as recurrent disease often emanates from regions of diffuse 
infiltration and glial interactions in that niche are poorly understood. 
We leveraged two recurrent GBM cases (SF11082 and SF12407) where the 
interface between tumor and nonmalignant tissue could be discerned in 
FFPE slides (Fig. 7 and Extended Data Figs. 7 and 8). Many of the ligand–
receptor interactions that we inferred from the above snRNA-seq/ST 
co-analysis were positively correlated with progression from tumor 
to adjacent tissue across all three serial ROI ladders in SF11082 (Fig. 7a  
and Extended Data Fig. 8a). Correlated genes were enriched for ontology 
annotations that included WNT, growth factor, cytokine and chemokine 
signaling (Extended Data Fig. 8c,d). We validated a tractable num-
ber of these paracrine networks in adjacent sections via RNAscope 
duplex in situ hybridization (RNAscope). In particular, we assessed 
IGF1-IGF1R, PTN-PTPRZ1, WNT3A-LRP6 and WNT2B-LRP6 coexpres-
sion in SF11082 and SF12407. We then quantified the frequencies of 
receptor-positive, ligand-positive and double-positive cells (Methods). 
For IGF and WNT pathway genes, we identified positive gradients of 
receptor-expressing and ligand-expressing cells as we transitioned 
from tumor to nonmalignant tissue (Fig. 7b,c and Extended Data Figs. 7 
and 8e,f). We observed fourfold to tenfold increases in the frequencies 
of both receptor-expressing and ligand-expressing cells in diffusely 
infiltrated nonmalignant adjacent tissue when compared to regions of 
dense cellular tumor (Fig. 7 and Extended Data Figs. 7 and 8f). Notably, 
for IGF and WNT pathways, cells that were double positive for both the 
receptor and cognate ligand were infrequent. Instead, ligand-positive 
putative neoplastic cells were found adjacent to receptor-positive 
apparent nonmalignant glia, validating our predicted paracrine 
networks (Fig. 7, Extended Data Figs. 7 and 8e and Supplementary  
Table 12). By contrast, the PTN-PTPRZ1 RNAscope assays indicated 
higher levels of autocrine signaling in regions of dense tumor, evidenced 
by a nearly fourfold drop in double-positive cells when comparing 
regions in the cellular tumor to adjacent tissue. While the frequency of 
cells expressing PTN increased in the transition from tumor to adjacent 
tissue, the frequency of cells expressing PTPRZ1 decreased in an anticor-
related fashion. This is consistent with the asymmetric signaling from 
nonmalignant to malignant glia that was predicted by our snRNA-seq/
ST network analysis for PTN-PTPRZ1 (Extended Data Fig. 7a).

To assess the functional impact of these signals, we treated our 
panel of cell lines with recombinant IGF1, PTN and WNT3A (Fig. 8). 
We also tested recombinant CNTF, HGF, LIF and OSM (Methods), as 
these pathways had likewise been implicated in our network analysis. 
We found that each of these treatments significantly increased prolif-
eration in at least some cell lines and that CNTF, PTN or WNT3A treat-
ment robustly and consistently increased proliferation across all lines  
(Fig. 8a), in a dose-dependent fashion (Fig. 8b). WNT3A treatment 
provided a modest, but statistically significant degree of protection 
against TMZ chemotherapy (Fig. 8c). The baseline rate of prolifera-
tion could be recovered post WNT3A treatment via WNT3A inhibition  
(Fig. 8d). Moreover, WNT3A significantly enhanced colony formation 
and conferred resistance to IR (Fig. 8f–h).

Discussion
We constructed a single-cell atlas of GBM under therapy, including RNA, 
open-chromatin and spatial readouts. Additionally, we have derived 

results from this resource regarding the molecular basis for MES transi-
tion, genetic correlates of the MES phenotype, the relationship between 
hypermutation status and T-cell infiltration, as well as cell-intrinsic and 
cell-extrinsic targets for therapeutic development.

We previously found that the largest source of variation in the 
phenotypes of proliferating cells from primary GBMs is the PN–MES 
axis8. Our meta-analysis of public and in-house snRNA-seq data  
(Fig. 2a–e), as well as our analysis of open-chromatin signatures  
(Fig. 3f–i), supports this finding and extends it to recurrent GBM. A 
recent study that profiled GBM stem cells found a similar gradient 
between what they termed developmental and injury-response states, 
bearing markers of the PN and MES subtypes, respectively6. Another 
recent study of GBM stem cells likewise reported a single axis of varia-
tion in phenotypes between what they call MES and non-MES cell types, 
which strongly correlated with our PN and MES signatures at both the 
level of gene expression as well as DNA methylation patterns24. Gangoso 
et al. also clearly show that a component of the MES signature is induced 
by immune cells and likely driven by interferon exposure.

These results dovetail with the recent findings of Schmitt et al., 
who used a reporter system driven by PN- and MES-specific enhancer 
sequences25. Their studies indicate that the MES phenotype is inducible, 
for example via exposure to TNF-α and driven by NF-κB upregulation. 
This is consistent with previous studies in PN GBM models13. The notion 
that the MES phenotype is inducible is supported by our analysis of the 
AP1 regulome (Figs. 3 and 4). This analysis shows that most MES genes 
are enhanced by AP1. It is well known that AP1 regulates responses to 
external stimuli, such as growth factors, cytokines and reactive oxygen 
species. We were able to induce AP1 expression and downstream MES 
hallmarks in vivo via treatment with IR. We also found a correlation 
between whole-chromosome copy-number gains on chromosomes 
19 and 20 and the MES signature (Fig. 2). Taken together these results 
support the hypothesis that the MES phenotype is inducible yet biased 
by genetics. In the reporter system of Schmitt et al. the induction of a 
MES phenotype was reversible. Here too, we could regress MES genes 
via AP1 inhibition (Fig. 4). Strategies to reverse the MES phenotype 
would clearly be therapeutically relevant.

The basis for the MES shift in recurrent GBM is not completely 
understood. Multiple factors that are related to standard therapy 
could, in principle, contribute to this shift, for example changes in 
the cellular rates of division within MES and non-MES populations in 
response to therapy, a phenotypic shift within individual cells to a MES 
phenotype, preferential resistance to standard therapy by quiescent 
MES cells or genetic alterations that bias cells toward the MES state. 
There is certainly evidence in our data and from recent studies support-
ing all these mechanisms as factors. In our data the contribution from 
phenotypic shifts within individual cells was modest when measured 
via RNA velocity (Extended Data Fig. 3b); however, because some 
of these samples have been taken months after treatment pressure 
is removed, we cannot rule out a phenotypic shift occurring within 
individual cells in response to treatment playing a significant role in 
establishing the increased prevalence of MES cells seen at this later 
stage. A clear contribution to the MES shift at recurrence seems to 
be a marked increase in the percentage of MES cells which are cycling  
(Fig. 3b,c). This percentage stands in stark contrast to the strong cor-
relation observed between the MES phenotype and quiescence in 
primary, treatment-naive GBM8,9.

Recently, Alexander et al. found that Olig2+ radiosensitive pro-
liferating cells consisted of the bulk of treatment-naive PN murine 
gliomas26; however, side-population, immunohistochemistry (IHC) 
and scRNA-seq analysis also identified Olig2−/Nestin+ radioresist-
ant perivascular cells that proliferated in response to radiotherapy26. 
The analysis by Alexander et al. of upstream transcription factors 
implicated the AP1 component FOSL2 and other genes that have been 
associated with the MES phenotype in previous reports16 and in our 
snRNA-seq and scATAC-seq (Figs. 3f–i and 4a–e). These findings are 
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also consistent with the Holland laboratory’s previous report of a 
PN-to-MES shift in this model following radiotherapy14. Taken together, 
ours and previous studies support the premise of a quiescent stem-like 
cell with MES characteristics that is resistant to IR and TMZ, but that 
re-enters the cell cycle following therapy and becomes a driver of 
recurrent disease.

We observed an increase in the relative proportion of 
monocytic-lineage cells from the periphery at recurrence (Fig. 5a). 
We and others have shown that the abundances of myeloid-derived 
cells from peripheral blood and MES neoplastic cells correlate across 
patients and that these cell types co-occupy distinct tumor-anatomical 
niches8,10,27. For hypermutated cases, recurrence also correlated with a 
significant increase in T-cell abundance (Fig. 5h). By contrast, Hodges 
et al. concluded no association between tumor mutational burden 
(TMB) and T-cell infiltration based on IHC for PD-1, PD-L1 and CD8 in 
human GBMs21; however, while the cohort sizes interrogated for PD-1 
and PD-L1 were sizable according to Hodges et al. (n = 94 and 189, 
respectively) the cohort interrogated for CD8 (n = 9) was less so and 
other pan-T-cell markers were not considered. Touat et al. tested for 
an association between MMR deficiency and T-cell infiltration in GBM 
(again via IHC) and found none, but TMB and T-cell abundance were not 
compared22. Our results most closely align with those of Wang et al.3, 
which we extend with our finding of a significant increase in T cells 
in high-TMB recurrences compared to recurrent cases with mid and 
low TMBs. TMZ treatment has been associated with hypermutation 
status at recurrence28, although hypermutation status has not been 
reported to convey increased survival4. By contrast, we found that 
T-cell abundance was correlated with a significant increase in survival 
(Fig. 5h). This seems to be driven by a cohort of outlier recurrent cases, 
whose T-cell abundances were two to eightfold higher than average. 
T cells represent just over 1% of the cellular tumor on average, so this 
is not high in absolute numbers; however, it indicates that (1) GBMs 
with a higher mutational burden are potentially more immunogenic; 
and (2) standard care has a treatment effect on the adaptive immune 
response; T-cell outlier cases are all recurrences and TMB correlates 
with significant increases in T-cell abundance only at recurrence  
(Fig. 5h and Extended Data Fig. 5d,e). T cells in most tumors were either 
isolated cells in a field of apparent glia or confined to a perivascular 
space (for example Fig. 5i). By contrast, T cells in the outlier recurrent 
cases robustly invade the cellular tumor (Fig. 5i and Extended Data 
Figs. 5s,t and 6a).

The innate immune compartment showed a remarkable lack of 
activation in primary GBM according to standard markers for the 
M1 and M2 phenotypes (Fig. 5b–d). This is consistent with previous 
reports20; however, we found significant increases in the percentages 
of activated innate immune cells at recurrence (Fig. 5d). Although 
we did not see a significant increase in the total abundance of innate 
immune cells in recurrent GBMs (Fig. 5a, top), we did find a significant 
increase in the relative abundance of innate immune cells which were 
classified as being derived from circulation (Fig. 5a, bottom). At the 
same time, the M1/M2 paradigm is overly simplistic and many patterns 
of non-canonical innate immune activation have been described10. 
A spectrum model may be more suitable than a bimodal M1/M2 
classification29.

The tumor microenvironment shapes the composition of GBM 
neoplastic cells30. We modeled autocrine and paracrine signaling 
networks in GBM through an analysis of receptor and paired agonist 
expression in our snRNA-seq data (Fig. 6d, Extended Data Fig. 6d,e 
and Supplementary Table 12). These networks were subsequently vali-
dated via ST, RNAscope and in vitro analysis (Fig. 7 and Extended Data  
Fig. 7). Many of the inferred networks represent well-studied pathways in 
GBM: inflammation (for example interleukin-1–4 and type II interferon), 
immune-cell chemotaxis (for example colony-stimulating factor and 
CCL/CXCL) and angiogenesis (for example platelet-derived growth fac-
tor and vascular endothelial growth factor). These pathways were active 

in the initial disease and remained persistently active through recur-
rence; however, others were specifically upregulated in recurrent GBM, 
particularly in MES cells. For example, MES cells expressed receptors for 
WNT, NRG, NGF and IGF pathway genes specifically at recurrence (for 
example Fig. 6d, Extended Data Fig. 6d and Supplementary Table 12).  
This may reflect differences in microenvironment composition at 
recurrence. We observed a greater abundance of nonmalignant 
oligodendrocyte-lineage cells and innate immune cells derived from 
peripheral blood in recurrent specimens (Fig. 5a).

Early single-cell studies in GBM were limited to working with 
fresh tissue. Although these studies yielded unprecedented insights 
into GBM cellular composition and the tumor microenvironment, the 
requirement for prospective sample collection limited our statistical 
power as well as the types of cohorts we could assemble. Recent seminal 
studies demonstrated that nuclei could be efficiently extracted from 
archival frozen tumor specimens for single-nucleus profiling and that 
the resulting data were quantitative and comparable to scRNA-seq 
data31. This advance opened tissue archives to studies such as the one 
presented here; however, while profiling nuclear RNA gives an accurate 
quantification of relative gene expression there is a loss of information 
from a lack of mitochondrial RNA in snRNA-seq. In addition to the 
information about metabolism that can be gleaned from mitochondrial 
RNA24, expressed mitochondrial mutations can be used for single-cell 
phylogenetics8,32. More generally, our droplet-based approach yields 
3′-enriched coverage that is intended only for quantification of gene 
expression. Single-cell alternative splicing, an increasingly recognized 
contributor to tumor immunogenicity33, and single-cell analysis of 
expressed mutations are not optimal in these data. Last, epigenetic 
regulation is increasingly understood as an important lens through 
which therapeutically relevant processes in GBM can be understood, 
for example the MES shift at recurrence (Figs. 3 and 4), stemness and 
tumorigenicity34, oncogene amplification35 and sex differences36, to 
name a few. Single-cell epigenetic analyses of longitudinal brain tumor 
specimens are lacking. Given the plethora of new modalities avail-
able37,38, the rationale for doing these studies is strong. The resource 
generated by this study broadly informs disparate aspects of glioma 
biology. Further work will be required to functionally test many of the 
hypotheses generated from this atlas.

Methods
Ethical approval
Study protocols and sample use were approved by the University of 
California, San Francisco (UCSF) Institutional Review Board. All clinical 
samples were analyzed in a de-identified fashion. All experiments were 
carried out in conformity to the principles set out in the Declaration 
of Helsinki as well as the Department of Health and Human Services 
Belmont Report. Informed written consent was provided by all patients.

Tumor tissue acquisition
We obtained fresh-frozen and FFPE tissue specimens from patients 
undergoing surgical resection for glioma at UCSF. De-identified sam-
ples were provided by the UCSF Neurosurgery Tissue Bank.

Statistics and reproducibility
No statistical method was used to predetermine sample size. All avail-
able GBM specimens in the UCSF Brain Tumor Center Tissue Bank 
were profiled, representing decades of biobanking at UCSF. No data 
were excluded from the analyses. Randomization and blinding was 
used for all in vitro and in vivo experiments. The Wilcoxon signed-rank 
test for paired samples was used to compare percentages of cell types 
between primary and paired recurrent specimens. As the Wilcoxon test 
is nonparametric, we did not formally test for normality of the data. A 
log-rank test was used to assess significance in Kaplan–Meier survival 
analysis. A two-sided likelihood-ratio test between hurdle models 
was used to assess differential gene expression between single-cell 
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datasets and were adjusted for multiple hypothesis testing via the 
Benjamini–Hochberg method. Fisher’s exact test was used to test for 
genotype–phenotype associations.

Nuclei isolation
For snRNA-seq, nuclei were extracted from frozen tissues following 
the ‘Frakenstein’ protocol developed by L. Martelotto, Melbourne, 
Centre for Cancer Research, Victorian Comprehensive Cancer Centre 
and available from 10x Genomics (https://community.10xgenomics.
com/t5/Customer-Developed-Protocols/ct-p/customer-protocols). 
For snATAC-seq, frozen tissues were digested mechanically in a Dounce 
grinder with 500 µl of lysis buffer (Sigma). The lysate was strained 
through a 40-μm strainer, pelleted, washed and resuspended in 500 µl 
nuclei wash buffer (10x Genomics). Nuclei were subsequently purified 
via centrifugation in a sucrose-based density gradient, pelleted, washed 
and resuspended in tagmentation buffer (10x Genomics).

Cell derivation, culture and in vitro viability assays
Fresh tumor tissues were dissociated mechanically with a scalpel and 
then enzymatically (32 mg collagenase IV, 10 mg deoxyribonuclease 
I, 20 mg soybean trypsin inhibitor and 10 ml DPBS) at 37 °C under 
rotation for 15 min. Tissue lysate was further dissociated via pipetting 
and incubated at 37 °C for another 15 min with rotation. The lysate was 
filtered through a 70-μm strainer then a 40-μm strainer, washed twice 
and resuspended in RBC lysis buffer for 5 min. Cells were spun down, 
washed and resuspended in culture medium (DMEM/F12 GlutaMAX, 
0.5% N2, 0.5% B27 without vitamin A, 1% antibiotic-antimycotic, 0.5% 
NEAA, 20 ng ml−1 epidermal growth factor and 20 ng ml−1 fibroblast 
growth factor). Cells were cultured in Matrigel-coated plates at 37 °C 
and 5% CO2.

Where indicated, cell viability was assessed via AlamarBlue (Inv-
itrogen) reduction. Briefly, cells were seeded in 96-well plates at a 
density of 5,000 cells per well with DMEM/F12 complete medium and 
held overnight at 37 °C and 5% CO2. The medium was then aspirated 
and test compounds diluted in culture medium were administered 
at the reported concentrations. After culture for the reported time 
periods, the cells were washed with PBS and resuspended in 9 ml of 
culture medium plus 1 ml of AlamarBlue (Invitrogen). The plate which 
was then incubated for 4 h. Cell viability was assessed via absorbance 
using a microplate reader and compared to vehicle-treated control 
wells. In other experiments, proliferation was measured by trypan blue 
cell counting via a Countess II.

For WNT3A inhibition endo-IWR 1 (R&D Sys) was used. This is a 
small molecule inhibitor of Axin turnover resulting in stabilization of 
the β-catenin and suppression of Wnt signal transduction. The dias-
tereomeric form of IWR 1, exo-IWR 1, which exhibits decreased Axin 
stabilizing activity compared to endo-IWR 1 was used as a control.

Clonogenic assays
Cell we seeded at a density of 600 cells per well in the middle wells 
of six-well plates that were coated with 2% Cultrex TM BME (R&D Sys 
A1569601). Cells were incubated at 37 °C and 5% CO2 for 2 h to allow 
attachment. Subsequently, plates were exposed to 3 or 4 Gy of gamma 
radiation ( JL Shepherd & Associates) in rotation function without plate 
cover via a cesium-137 source emitting at a fixed dose rate of 2.46 Gy 
min−1. After 10 d, colonies were fixed using 6% glutaraldehyde diluted 
in DPBS and stained with 1 ml of Crystal Violet. ImageJ (v.1.51 h) was 
used for automated colony counting.

Multiplex immunofluorescence
FFPE tumor sections were profiled by multiplex immunofluorescence 
using a Discovery XT autostainer (Ventana Medical Systems) with 
appropriate controls. Antibodies used were CD3 (Leica, Clone LN10, 
1:100 dilution), CD20 (Leica, Clone L26, 1:200 dilution) and Iba1 (Wako 
Chemicals, 019-19741, 1:500 dilution).

Dual RNAscope
FFPE sections were evaluated by dual RNAscope chromogenic in situ 
hybridization assay for the expression of ligand–receptor pairs using 
Advanced Cell Diagnostics probes specific for PTN (838191) and PTPRZ1 
(584789-C2), WNT2B (453369) or WNT3A (429439) and LRP6 (custom 
probe, C2) and IGF1 (313039) and IGF1R (415819-C2). The RNA Probe 
PPIB (313909) and dapB (312039) were used as positive and negative 
control probes, respectively. Cell segmentation, classification and 
staining quantification were performed via QuPath (v.0.3.2).

Murine IR assay
All animal experiments were conducted in compliance with proto-
cols approved by the Institutional Animal Care and Use Committee at 
UCSF, following the National Institutes of Health (NIH) guidelines for 
animal care. The UCSF Institutional Animal Care and Use Committee 
maximal tumor burden of 20 mm in any direction was not exceeded. 
Ten-week-old C57BL/6J female mice were purchased from the Jackson 
Laboratory (000664) and housed in the UCSF animal facility 1 week 
before tumor transplantation at temperatures of 65–75 °F (~18–23 °C) 
with 40–60% humidity and a 14–10-h light–dark cycle. An aliquot of 
1,600 SB28 cells19 were injected into the right frontal cortex at the coor-
dinate Bregma, AP +2.0 mm, ML +2.0 mm and DV −2.0 mm in a cohort of 
six mice. All mice developed tumors, based on bioluminescence imag-
ing. On days 10, 12 and 14 after tumor transplantation, 5 Gy head-only 
irradiation was given to three randomly chosen tumor-bearing animals 
as previously described39. Endpoints were determined by weight loss 
and neurological symptoms. Upon euthanasia, brain tumors were 
quickly dissected after perfusion (cold 1× PBS) and snap frozen in liquid 
nitrogen, then stored at −80 °C before use.

Spatial transcriptomics and proteomics assays
For the ST assay, FFPE tissue blocks were reviewed for tumor purity 
and ten 5-µm sections were cut by the UCSF Neurosurgery Tissue 
Core. Slides were baked at 37 °C overnight and then deparaffinized, 
rehydrated, antigen-retrieved for 20 min at 100 °C and digested with 
proteinase-K 0.1 µg ml−1 for 15 min in a Leica BOND-RX. Samples were 
post-fixed in neutral-buffered formalin for 10 min and hybridized to 
the Cancer-Transcriptome Atlas (>1,800 targets) UV-photocleavable 
barcode-conjugated RNA in situ hybridization probe set overnight. 
Samples were washed to remove off-target probes and counterstained 
with morphology markers for 2 h. The morphology markers consisted 
of 1:25 dilution SYTO13 (Invitrogen), 1:100 dilution anti-CD3 Alexa Fluor 
647 (UMAB54, Origene), 1:200 dilution anti-CD68-Alexa Fluor 594 (KP1, 
Santa Cruz) and 1:400 dilution anti-GFAP-Alexa Fluor 488 (GA5, Invit-
rogen). IF imaging, ROI selection, spatially indexed barcode cleavage 
and collection were performed on a GeoMx Digital Spatial Profiling 
instrument (NanoString). Approximately 12 ROIs were collected per 
sample. Photoreleased GeoMx DSP oligonucleotide tags containing 
RNA IDs and a unique molecular identifier were collected from each 
ROI. After PCR with dual-indexing Illumina i5 and i7 primers, the library 
was purified with AMPure XP beads (Beckman Coulter), quantitated 
with a Qubit (Themo Fisher Scientific) and quality was checked with 
a Bioanalyzer (Agilent). Paired-end sequencing was performed on 
NextSeq 550 and NextSeq 2000 instruments.

Similarly, for the SP assay, FFPE tissue blocks were reviewed for 
tumor purity and six 5-µm sections were cut by the UCSF Neurosurgery 
Tissue Core. Slides were baked at 37 °C overnight, deparaffinized, rehy-
drated, antigen-retrieved in a pressure cooker for 15 min at 100 °C at 
high pressure. Samples were then incubated overnight with the GeoMx 
Immune Cell Profiling Protein Core antibodies (NanoString) containing 
UV-photocleavable barcode-conjugated antibodies against 17 targets 
and 6 control targets. At the same time, the samples were incubated 
with morphology antibodies consisting of SYTO83 (100 nM final con-
centration), 1:200 dilution anti-CD68-Alexa Fluor 594 (clone KP1), 
1:200 dilution anti-CD45-Alexa Fluor 647 (clone 2B11 + PD7/26) and 
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1:400 dilution anti-GFAP-Alexa Fluor 488 (clone GA5). IF imaging, ROI 
selection, spatially indexed barcode cleavage and collection were per-
formed on a GeoMx Digital Spatial Profiling instrument (NanoString) 
by GENEWIZ. Approximately ten ROIs were collected per sample. The 
resulting photocleavable barcode tags were subsequently detected 
and counted using an nCounter Prep Station and Digital Analyzer 
(NanoString).

10x Genomics-based snRNA-seq/snATAC-Seq
Single-nucleus capture, reverse transcription, cell lysis and library 
preparation for snRNA-seq were performed on the 10x Genomics 
platform as per manufacturer’s protocol. Approximately 15,000 nuclei 
were loaded per capture. For snATAC-seq assay, tagmentation, nuclei 
capture and library prep were likewise performed via the 10x Genomics 
platform as per manufacturer’s protocol. Sequencing was performed 
on an Illumina NovaSeq with 10x Genomics recommended parameters.

SnRNA-seq data preprocessing
The preprocessing of snRNA-seq data was performed as described 
previously8. We utilized CellRanger (v.3.0.2) for alignment and 
gene expression quantification, following the guidelines from 
the CellRanger website (https://support.10xgenomics.com/
single-cell-gene-expression/software/pipelines/latest/advanced/
references#premrna). We filtered cells that have >2.5% mitochon-
drial read counts and <200 expressed genes. DoubletFinder (v.2.0.2)40 
was used to remove doublets and was run using the first ten PCs and 
default parameters.

Copy-number variation analysis of snRNA-seq and snATAC-seq
CONICSmat (v.1.0) was used to assess the presence/absence of somatic 
CNVs in 10x snRNA-seq data41. We retained CNVs with a CONICSmat 
likelihood-ratio test <0.05 and a difference in Bayesian Criterion >50. 
For each CNV we used a cutoff of posterior probability >0.5 in the CON-
ICSmat mixture model to infer the presence/absence of that CNV in a 
given cell. The presence/absence of somatic CNVs in 10x snATAC-seq 
data was likewise estimated with CONICSmat. Here, the gene activity 
of cells generated by snapATAC (v.1.0.0)42 was used as input to perform 
CNV analysis.

Exome sequencing and copy-number variant identification
The Targeted DNA Seq Library Reagent kit was used for exome capture 
on tumor samples for selected patients. Libraries were sequenced on 
an Illumina-HiSeq 4000 using 150-bp paired-end reads. Reads were 
first trimmed and filtered with TrimGalore v.0.6.5 (parameter, −q = 30) 
(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) 
and Cutadapt v.3.4 (ref. 43). The quality control passed reads were 
mapped to the human Grch38 genome with BWA and only uniquely 
matched paired reads were used for analysis44. PicardTools (http://
broadinstitute.github.io/picard/) and the GATK toolkit carried out 
quality score recalibration, duplicate removal and realignment around 
indels45. CNVs were inferred with CNVkit v.0.9.6 (segment function,  
P value threshold <1 × 10−3)46.

Dimensionality reduction, clustering and cell-type 
classification for snRNA-seq
The snRNA-seq data were processed with Seurat v.3 (ref. 47). Data 
were normalized via the LogNormalize method with scale.factor of 
10,000 using the NormalizeData function. Highly variable genes were 
identified via Seurat using the mean.var.plot method with default 
parameters. Based on these genes, a PCA was performed and the first 
15 PCs were retained for clustering and visualization via t-SNE. Neo-
plastic cells were separated from non-neoplastic cells based on the 
presence of CNVs. For neoplastic cells, MES and PN cell-type labels 
were assigned via ELSA, an ensemble-learning approach that has been 
trained on historical data8,11. For non-neoplastic cells, cell clusters 

were identified via the ‘FindClusters’ function via the Louvain algo-
rithm with the resolution parameter of 0.52. Cluster-specific genes 
were identified via the FindAllMarkers function in Seurat v.3 with 
Rstudio running R v.3.6.0 (ref. 47) via a MAST test and used to assign  
cell-type labels.

Multiple-factor analysis
To perform MFA, we obtained 10x scRNA-seq data from Neftel et al.9 
(GSE131928) and Couturier et al.7 (EGAS00001004422). Cells with more 
than 5% mitochondrial read counts were filtered for both datasets and 
cells with at least 200 expressed genes were retained for analysis. The 
gene matrix for each dataset was filtered to only retain the highly vari-
able genes, identified via the FindVariableFeatures function of Seurat 
v.3 with selection.method ‘mvp’. This was applied to each dataset 
separately. Then genes that were identified as variable in at least two 
datasets were used for the MFA (1,411 genes in total). The FactoMiner 
package48 was used to perform MFA. The contributions of each dataset 
to total variance explained, as well as the genes’ qualities of repre-
sentation by dimensions one and two (cos2), was computed via the 
fviz_contrib function from the factoextra package49.

Single-nucleotide variant calling in snRNA-seq and UCSF500 
genotypes
The bam file of 10x snRNA-seq data generated via CellRanger was 
used to perform single-nucleotide variant calling by pooling reads by 
patient and running the GATK RNA-seq best-practices pipeline (https://
software.broadinstitute.org/gatk/best-practices/workflow?id=11164). 
Variant assignments in single cells were then assessed via the VarTrix 
(v.1.0) tool (https://github.com/10xgenomics/vartrix). Variants were 
annotated with the Annovar software package50. The UCSF500 muta-
tion panel is a clinical assay that uses an amplicon sequencing-based 
genotyping approach that compares a tumor tissue sample and a 
patient-matched blood control. For the mutation calling of UCSF500, 
reads were mapped to the human genome reference with BWA44. Picard-
Tools (http://broadinstitute.github.io/picard) and the GATK toolkit45 
carried out quality score recalibration, duplicate removal and realign-
ment around indels. Somatic single-nucleotide variants were detected 
with MuTect (https://www.broadinstitute.org/cancer/cga/mutect) 
for each tumor–control pair. The mutations were annotated with the 
Annovar software package.

RNA velocity analysis
RNA velocities were computed via scVelo using default parame-
ters51. MES neoplastic cells from recurrent GBMs were used as input. 
SnRNA-seq data were filtered and normalized via scvelo.pp.filter_and_
normalize with parameter min_shared_counts = 20. The first 30 PCs 
were used to compute moments for velocity estimation via scvelo.
pp.moments. The terminal states and latent time of cycling cells were 
computed via scvelo.tl.latent_time function included in scVelo. The 
putative driver genes of transcriptional changes were systematically 
identified by high likelihoods in the dynamic model. In particular, 
the top 300 highest-likelihood genes were used to generate a heat 
map via the scvelo.pl.heatmap function. Genes that showed a Pearson 
correlation with pseudotime of .1 or higher at an adjusted P value52 of 
q < 0.05 were used for Gene Ontology analysis via WebGestalt using 
the WikiPathway reference (Fig. 3e).

Monocytic cell classification and analysis
To classify the activation status of monocytic-lineage cells, signa-
ture genes of classically (M1: CCL2/3/4/5/8, CCR7, CD74, CSF2, CXCL10, 
HLA-DRA/B, IFNG, IL1B, IL1R1, IL6, INOS, IRF5, NFKB1, TLR2/4 and TNF) 
and alternatively activated (M2: ARG1, CD74, CCL1/17/22/, CXCL16, 
CXCR4, HLA-DRA/B, IL10, IL4, IRF4, MRC1, NFKB1, TGFB1 and TNF) phe-
notypes were aggregated from previous reports53–57. The M1 and M2 
score for each cell was calculated via AddModuleScore function with 
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the above M1/M2 signatures as input. This routine compares average 
signature levels to a data-driven background distribution. Cells were 
assigned M0 status if the M1 and M2 signature scores were both less 
than 0.0. Otherwise, activation status was determined by the higher 
of the M1 and M2 signature scores.

T-cell phenotype classification and analysis
We used Seurat to perform dimensionality reduction, clustering and 
visualization for T cells. In particular, data were normalized via the 
NormalizeData function using the LogNormalize method. Highly vari-
able genes were identified via the FindVariableFeatures function using 
the mvp method (mean.cutoff of c(0.1, 8) and dispersion.cutoff =  
c(1, Inf)) and other parameters set to default values. PCA was performed 
based on these genes. The first 15 PCs were retained for clustering via 
a k-nearest neighbor graph and visualized via t-SNE. A heat map was 
generated via DoHeatmap with the average expression calculated with 
the AverageExpression function. A boxplot of different T-cell types was 
generated via ggplot with geom_boxplot in R v.3.6.0.

snATAC-seq data processing and analysis
The CellRanger ATAC software (v.1.1.0) was used for read align-
ment, deduplication and identifying transposase cut sites (https://
support.10xgenomics.com/single-cell-atac/software/pipelines/
latest/algorithms/overview). The output matrix of CellRanger was 
further processed via the snapATAC package (https://github.com/
r3fang/SnapATAC)42. We selected the highest quality barcodes for 
each case based on two criteria: (1) number of filtered fragments 
>1,000; and (2) fragments in promoter ratio >0.2 for the case. Clus-
tering was performed using Seurat v.3 SNN-graph clustering via the 
‘FindClusters’ routine, with gene body-accessibility scores gener-
ated by the snapATAC package as input. Transcription factor motif 
frequency deviations from a data-driven background model were 
calculated via the computeDeviations function in chromVAR (v.1.6.0) 
with default parameters58, using only neoplastic cells as input. Dif-
ferential motif deviances were computed via a t-test and controlled 
for multiple hypothesis testing via fdrtool52. Differentially accessible 
regions, peaks and motif enrichments on differential peaks (relative 
to a genome-wide background) were computed using snapATAC’s 
‘findDAR’, ‘runMACSForAll’ and ‘runHomer’ respectively, run with 
default parameters. Heat maps of differential peaks were created in 
deepTools v.3.4.0 (ref. 59).

Cell–cell communication analysis
The CellChat package was used to assess cell–cell communication via 
interaction-network analysis60. A Seurat object was used as input for 
CellChat following their standard protocol as described in https://
github.com/sqjin/CellChat. Circle plots and dot plots were generated 
via netVisual_aggregate, vertex.size = groupSize and netAnalysis_dot 
resp. Data from primary GBM cases were processed separately from 
data from recurrent cases and compared a posteriori.

Data processing for spatial transcriptomics and proteomics
The SP data were normalized by ROI surface area. The ST data were 
normalized against the 75th percentile of signal (Q3 normalization). 
Multi-subject single-cell deconvolution was used for deconvolution of 
the ST data based on cell-type signatures determined from snRNA-seq 
data used as input61. Heat maps were generated via pheatmap package 
(https://cran.r-project.org/web/packages/pheatmap/index.html). To 
validate putative ligand–receptor interactions via ST, the expression 
of each ligand–receptor pair obtained from CellChat were used to 
calculate a Pearson’s correlation coefficient across ROIs. These were 
adjusted for multiple hypothesis testing via fdrtool52. Representa-
tive IF images for specific pathways were obtained based on sorting 
for correlation and then for expression of ligand–receptor pairs in  
that pathway.

Survival analysis
Survival analysis was conducted in R. Samples were divided into two 
groups T-cell high and T-cell low based on T-cell percentage at a cutoff 
of 1%. Kaplan–Meier plots of overall survival and elapsed days to recur-
rence for recurrent GBM were generated via ggsurvplot function in 
Survminer package. P values were calculated via a log-rank test.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The study data, in the form of raw sequenced reads, are available from 
the European Genome–phenome Archive repository (https://www.ebi.
ac.uk/ega/home), accession EGAS00001004909. Spatial image data, 
processed expression and peak Supplementary Tables are available 
from the Gene Expression Omnibus repository (https://www.ncbi.
nlm.nih.gov/geo/), accession code GSE174554. Previously published 
scRNA-seq data that were re-analyzed here are available from https://
github.com/mbourgey/scRNA_GBM and from the Gene Expression 
Omnibus, accession code GSE131928. All other data supporting the 
findings of this study are available from the corresponding author on 
reasonable request. Source data are provided with this paper.

Code availability
Custom code used is available from GitHub at https://github.com/
linwang6/Longitudinal_glioblastoma_paper.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | ScRNA-seq preprocessing and QC. a) Feature counts per 
cell compared between the single-nucleus RNA-seq from this study and single-
cell data from recent studies of GBM, all data were acquired via the 10X Genomics 
platform. The numbers biologically independent cells used for this panel were: 
N = 93,032 (our study), 22,559 (Couturier), and 12,010 (Neftel). Boxplots are 
defined as follows, lower/upper whiskers: smallest/largest observation ≥/≤ the 

lower/upper hinge −/+ 1.5 times the interquartile range (IQR); lower/upper hinge: 
25th/75th percentile; center: 50th percentile. b) TSNE plot of the first 10 principal 
components of the snRNA-seq data with inferred doublet events highlighted. 
N = 86 tumors shown in panels B-G. c)-g), as in b), but primary-vs-recurrent, 
location of specimen resection, patient age, sex, and identifier annotated 
respectively.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Clinical and genomic correlates of expression. a) 
A PCA of GBM neoplastic cells from snRNA-seq with patient age annotated, 
N = 78,415 cells. b) Annotation of adult vs. adolescent and young-adult status, 
N = 78,415 cells. c) A comparison of patient age between snRNA-seq neoplastic 
cells classified as PN vs. MES, N = 72 tumors. *- one-sided Wilcoxon rank-sum 
test p = 0.0161. Boxplots in panels C and E-F are defined as follows, lower/upper 
whiskers: smallest/largest observation ≥/≤ the lower/upper hinge −/+ 1.5 times 

the interquartile range (IQR); lower/upper hinge: 25th/75th percentile; center: 50th 
percentile. d) A PCA of GBM neoplastic cells from snRNA-seq with location of 
resection annotated. The distributions along principal component one of cells by 
location are shown as boxplots below, N = 78,415 cells. e) As above, but with sex 
annotated, N = 72 tumors. f) A comparison of patient ages between the male and 
female sex, N = 72 tumors. *- one-sided Wilcoxon rank-sum test p = 0.0389. g) CNV 
calls from exome-seq for select specimens.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Validation, correlates, and models of the MES shift. 
a) Comparison of PN, MES and monocytic-lineage cell marker genes between 
primary and recurrent bulk RNA-seq of patient-matched GBM longitudinal 
specimens, N = 30 tumors. A one-sided paired T-test was used to assess 
significance. Boxplots in panels A-B and D are defined as follows, lower/upper 
whiskers: smallest/largest observation ≥/≤ the lower/upper hinge −/+ 1.5 times 
the interquartile range (IQR); lower/upper hinge: 25th/75th percentile; center: 50th 
percentile. b) Boxplots of RNA velocities for MES hallmark genes CD44, CHI3L1 
computed over PN neoplastic cells from recurrent GBM cases, N = 37,428 cells. 
A one-sided signed Wilcoxon rank-sum test was used to assess significance. c) 
(Left) A heatmap representation of the pseudotime inference shown in Fig. 3d, 
e is shown above. Gene ontology terms from WikiPathway.org that are over-
represented (FDR < 0.05) based on genes that correlate with pseudotime, is 
shown below. (Right) RNA velocity and expression for MKI67 in MES neoplastic 
cells from recurrent GBMs, visualized in PCA space. d) The fractions of total 

spliced and unspliced mRNAs, compared between cycling and quiescent MES 
cells from recurrent cases using a two-sided Wilcoxon rank-sum test, p = 0.0551, 
N = 10,456 cells. e) RNA velocity and expression for CDK6, TLK1, and RRM2 in 
MES neoplastic cells from recurrent GBMs, visualized in PCA space, N = 10,456 
cells. f) (Left) The DNA-damage response pathway adapted from Wikipathway.
org. (Right) The response to IR pathway adapted from Wikipathway.org. Genes 
correlating with cell-cycle re-entry by MES cells at recurrence are annotated 
in green. g) Read-density and heatmap plots summarizing reads mapping 
to primary- and recurrent-specific scATAC-seq peaks respectively, from 
N = 10,981 cells. h) Over-represented transcription factor motifs in primary- and 
recurrent-specific scATAC-seq peaks, from N = 10,981 cells. i) (left) A comparison 
of genotypes between each of the patient-derived cell lines and the tumor 
specimens from which they were derived, performed via UCSF500 clinical 
genotyping. (right) Expression levels via RNA-seq of the patient-derived cell lines 
for PN and MES markers and genes targeted in in vitro assays.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Enhancer, in vitro, and in vivo analysis of the AP1 
regulome. a) Enhancer activity analysis, as in Fig. 4a. b) Gene expression 
differences between AP1 inhibitor-treated and control GBM cells following 48 hr 
AP1-inhibitor treatment at 20uM; C: control, T: treatment, *- q < 0.05, where q is 
the Benjamini-Hochberg adjusted p-value from the MAST two-sided likelihood-
ratio test. N = 3,593 cells. c) A colony-formation assay with IR treatment and AP1-
inhibitor pre-treatment shows that AP1 inhibition abrogates colony formation 
in BME d) Differential gene expression between IR-treated and control murine 

immunocompetent intracranial gliomas. N = 3 mice per condition were used. 
Data are presented as mean values + /- standard deviation. A one-sided T-test was 
used to assess significance. e) An overview of the pipeline employed to identify 
BBB-penetrant drugs that could be repurposed to blockade AP1 targets. f) Cell 
viability post treatment with the indicated agent, in combination with TMZ. 
Listed beneath is the HSA synergy score for each combination, N = 3 independent 
experiments.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Genetic and clinical correlates of immune phenotypes. 
The Wilcoxon signed-rank test was used for paired samples and the Wilcoxon 
rank-sum test was used for unpaired samples for all panels, * - p < 0.05. a) A TSNE 
plot of the first 10 principal components from snRNA-seq of N = 2,247 T cells. 
b) As in a), but with primary vs. recurrent annotated, N = 2,247 cells. c) Kaplan-
Meier analysis of time to recurrence comparing T-cell enriched/poor cases at 
recurrence. d) T-cell percentages in hypermutated (HM) recurrent cases and 
their matched primary tumors, p = 0.0372. e) HM vs. non-HM primary cases show 
no significant difference in T-cells. f) Primary vs. recurrent IDH-mutant GBM 
T-cell percentages. g) NF1-mutant vs. NF1-wildtype primary GBM monocytic 
lineage cells, p = 0.0162. h) As in g), for recurrent GBMs. i, j) NF1-mutant vs. NF1-
wildtype T-cell percentages in primary and recurrent GBMs. k, l) Male vs. female 
sex, comparing T-cell percentages in primary and recurrent GBMs, p = 0.0247. 
m) The distribution of miss-match repair (MMR) average gene expression 
across samples, in snRNA-seq of neoplastic cells, with the threshold used to 

define high- and low-expressing groups annotated. n, o) A significant difference 
in the percentage of tumor-associated T cells is seen when comparing MMR-
low and MMR-high primary GBMs (p = 0.05), however, this comparison is not 
significant at recurrence. p, q) MMR gene-mutation status does not predict T-cell 
infiltration in primary or recurrent GBM. r) MMR gene-expression predicts tumor 
mutational burden in primary GBMs (p = 0.0302) but not in recurrent GBMs. s, t) 
IHC for CD8 in FFPE slides, representative data from 4 independent experiments 
with similar results. The top panels show primary GBM cases and sporadic T 
cells. The bottom panels show the corresponding patient-matched recurrent 
cases and an infiltration of CD8 + T cells into the cellular tumor. The numbers of 
independent samples used in boxplots are as follows, D: N = 20, E: N = 31, F: N = 4, 
G-L and N-R: N = 31. Boxplots in panels D-L and N-R are defined as follows, lower/
upper whiskers: smallest/largest observation ≥/≤ the lower/upper hinge −/+ 
1.5 times the interquartile range (IQR); lower/upper hinge: 25th/75th percentile; 
center: 50th percentile.

http://www.nature.com/natcancer


Nature Cancer

Resource https://doi.org/10.1038/s43018-022-00475-x

Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Pathway and network analysis of paracrine signaling 
from ST data. a) Representative IF images visualizing glia, innate and adaptive 
immune cells, performed on patient-matched primary (left) and recurrent (right) 
FFPE GBM specimens (from 120 ROIs from 10 slides assayed). ROIs used for in 
ST profiling of this specimen are annotated. b) A heatmap showing the relative 
contributions of neoplastic, glial and immune cell types inferred by deconvolving 
ST data using snRNA-seq signatures. IF of typical ROIs corresponding to the 
associated cell composition signatures are annotated on the right. c) (Top) a 

pathway enrichment analysis via WebGestalt, using Wikipathway.org pathway 
annotations, for genes in the first two clusters of the ST data shown in Fig. 6c. 
(Bottom) as above, but for the third and fourth clusters. d) A summary of inferred 
intercellular paracrine signals, based on snRNA-seq data, between different GBM 
cell types and compared between primary and recurrent GBM. The numbers 
annotated for each interaction denote the number of genes involved in the 
given signaling pathway. d) Pearson correlations across ST ROIs and samples for 
receptor-agonist gene pairs inferred from snRNA-seq data.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Extended RNAscope analysis. a–c) RNAscope on 
sections adjacent to Fig. 7a. Alongside are images where cells have been 
segmented and receptor/ligand stains quantified. Receptor mRNA is tagged red 
and ligand mRNA is teal. In processed images, ligand-expressing cells are yellow, 
receptor-positive cells are cyan, double-positive cells are purple, and double-
negative cells are red. a) RNA-scope analysis of PTN/PTPRZ1. Double-positive 
cells are enriched in the cellular tumor, for example region a), PTN-expressing 

non-malignant cells are more frequent in tumor-adjacent tissue, that is b, c), and 
this gradient anticorrelates with PTPRZ1-expressing neoplastic cells. b) Gradients 
of WNT3A and LRP6 expression indicate the presence of both paracrine and 
autocrine signaling. c) Breakouts of sub-panels x-z) from panel B). d) A breakout 
of an interface between tumor and non-malignant tissue.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Extended data analysis. a) The right most ladder of ROIs 
shown in Fig. 7a, showing the transition from the dense cellular tumor to diffusely 
infiltrated adjacent non-malignant brain tissue in a primary GBM (SF11082). b) 
RNAscope profiling of WNT3A/LRP6 and downstream cell classification (top) in 
a specimen containing interfaces between dense cellular tumor and tumor-
adjacent diffusively infiltrated non-malignant tissue. The center subpanel shows 
adjacent tissue to the region annotated that was used for ST. Regions of putative 
paracrine signaling are annotated with white arrows. c, d) KEGG and Wikipathway 
gene associations that are over-represented in the ligand-receptor pairs that 
were inferred from snRNA-seq/ST co-analysis, and that correlate on average 
with progression from the cellular tumor to adjacent non-malignant tissue 
in SF11082. e) RNA-scope for WNT3A and LRP6 showing interactions between 
WNT3A-/LRP6 + , WNT3A + /LRP6-, and WNT3A/LRP6 + + cells, indicating putative 
paracrine signaling. f) RNA-scope (right) and associated cell classification (left) 
for WNT3A/LRP6 in regions r1 and r2 from Fig. 7b, taken from dense cellular tumor 

and diffusely infiltrated tumor-adjacent tissue. The frequencies of WNT3A + and 
LRP6 + cells (but not double-positive cells) increase over 10–20 fold in regions 
of diffusely infiltrated non-malignant tissue (for example r2), compared to 
regions of dense cellular tumor (for example r1). g–j) Expression in snRNA-seq 
of N = 78,415 neoplastic cells for transcription factors implicated previously as 
regulators of the MES phenotype. Significance for G-J is assessed via a one-sided 
Fisher’s exact test. k) The relative contributions to the WNT signaling pathway, 
compared between primary and recurrent specimens. l) Motif frequency 
deviations in neoplastic cells for transcription factors implicated previously as 
regulators of the MES phenotype, compared between PN and MES cells. N = 14 
independent samples were used. Boxplots are defined as follows, lower/upper 
whiskers: smallest/largest observation ≥/≤ the lower/upper hinge −/+ 1.5 times 
the interquartile range (IQR); lower/upper hinge: 25th/75th percentile; center: 50th 
percentile. A Wilcoxon rank-sum test was used. *** - adjusted p < 2.2e-16.
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