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ABSTRACT OF THE DISSERTATION

Nontopological Q-solitons and their Implications for Macroscopic Dark Matter

By

Rebecca Riley

Doctor of Philosophy in Physics

University of California, Irvine, 2021

Professor Arvind Rajaraman, Chair

Q-balls are stable, compact objects (more precisely, nontopological solitons) that can arise in

complex scalar field theories with a U(1) symmetry in which the potential adheres to certain

criteria. These objects are of phenomenological interest as candidates for macroscopic dark

matter, an as of yet still relatively underconstrained region of dark matter parameter space.

Many of the features of Q-balls – including their size, charge, energy, and stability dynamics

– can be qualitatively and approximately quantitatively extracted from their potential under

minimal assumptions, although exact solutions are only attainable numerically. A thorough

analytic study of Q-balls leads to a simplified understanding of the interconnectedness of their

parameters, attributes, and dynamics, culminating most notably in a direct mapping between

global Q-ball parameters and related gauged and Proca Q-ball parameters.

This work presents several novel results, as previously published by the author and collabora-

tors, including: precise analytic profiles for global, gauged, and Proca Q-balls; proof of various

Q-ball relations and identities; precise analytic estimates of a Q-ball’s radius, charge, and en-

ergy in terms of a universal Q-ball parameter; new bounds on Q-ball radii and stability; and

the aforementioned parameter mapping between global Q-balls and gauged and Proca Q-balls.

More complex Q-solitons, including excited Q-balls and Q-shells, are also discussed. Together,

these objects represent a new candidate class for dark matter.

x



Chapter 1

Historical overview

1.1 The need for new theories of dark matter

Dark matter was first postulated in 1933 by Zwicky to explain large rotational anomalies of

galaxies in the Coma Cluster. [1] Discrepancies between the luminous and rotational mass

measurements of galaxies suggested unseen “dark” (more accurately, transparent) matter dis-

tributed throughout the universe. Later, theories and simulations of cosmic structure formation

would independently confirm the need for additional matter content to seed the timely galac-

tic accretion that produced the observed Universe. Today, sophisticated astrophysics confirms

with ever-increasing certainty the fact that our Universe is awash in dark matter. But while

it is five times more abundant than ordinary matter in the universe, it has yet to be directly

observed.

Dark matter’s existence, nature, and origin are critical questions facing particle physics, astro-

physics, and cosmology, with implications for our understanding of the origin and future of the

universe, galaxy evolution, and the current Standard Model of particles.

1



Despite additions to the Standard Model since the discovery of dark matter, it has never yielded

a viable dark matter candidate. Modern consensus is that dark matter, whether it is a particle

or a larger compact object, must be either (a) a new, beyond the Standard Model particle (the

prevailing hypothesis) or – less likely – (b) an exotic state of normal matter, the production

mechanism for which is, at present times, inaccessible or unknown.

Attempts to profile dark matter have included known particles; theorized new particles (e.g.

axions); large, cold “Massive Compact Halo Objects” (MACHOs); or even an abundance of

medium-mass, primordial black holes, although many of these possibilities have since been

largely ruled out. Candidate dark matter particles should be weakly interacting, lack electro-

magnetic and color charge so as not to produce visible photons, remain stable for lifetimes on

the order of the age of the Universe or longer, and have masses, couplings, and production rates

that are compatible with measured dark matter relic densities. As such, the most popular can-

didate has historically been the Weakly Interacting Massive Particle (WIMP), a relatively heavy

new particle that was thermally produced in the early Universe, subsequently underwent a pe-

riod of freeze-out, and in the current epoch retains a small but detectable weak coupling to the

Standard Model. WIMPs gained further popularity with the discovery of the “WIMP miracle,”

a realization that supersymmetric extensions of the Standard Model naturally produced dark

matter candidate particles with the predicted properties of WIMPs.

While a dark matter candidate has yet to be directly observed, it is certainly not for lack of

trying. Dark matter detection experiments generically include direct detection, indirect detec-

tion, and collider creation. These efforts have primarily targeted WIMPs due to their relative

similarity to Standard Model particles and their weak but detectable Standard Model couplings.

Direct searches are based on the detection of dark matter particles passing through detectors

and physically interacting with them. They probe the scattering of dark matter particles off nu-

clei in ultra-low background, deep underground experiments. Examples are the collaborations

2



CDMS, EDELWEISS, and XENON, which use underground chambers of elemental crystals to

detect miniscule nuclear recoil from collisions between WIMPs and atomic nuclei.

Indirect searches are comprised of space- and ground-based observatories that endeavor to

detect secondary particles that originated from annihilations of dark matter candidates in the

Milky Way or other close galaxies. Experiments including PAMELA and Fermi LAT attempt to

detect these annihilation products, typically cosmic gamma rays. While less technically chal-

lenging than direct detection, the success of indirect detection experiments relies on intimate

knowledge of the distribution of dark matter within the local galaxy and the production of

background by other galactic sources, both of which are extremely difficult to estimate.

Particle colliders like the Large Hadron Collider operate at high enough energies to poten-

tially create WIMPs. The primary experimental signature of dark matter in particle colliders is

missing transverse energy, a sign that a dark matter particle has escaped undetected. Current

technology can identify this missing energy with a high degree of accuracy. Particle collid-

ers are able to probe lower-mass dark matter candidates that are outside the reach of direct

detection experiments. Additionally, they have the benefit of different and usually smaller sys-

tematic uncertainties compared to direct and indirect detection. The trade-off for this low-mass

sensitivity is an upper mass limit from production energy constraints.

Unfortunately, these detection efforts have so far proved fruitless. The silence of experiments

searching for WIMPs, as well as mounting doubt over the “WIMP miracle” in light of a lack of

positive verification of supersymmetry at colliders, has caused the WIMP picture to fall out of

favor in recent times. Physicists are turning to increasingly nontraditional ideas to explain this

mysterious element, including, as this work will discuss, solitonic candidates like Q-balls and

their sister solitons, Q-shells. As popular theories annually become more tightly constrained,

continued exploration and innovation in the theory space is essential in the still uncertain hunt

for dark matter.
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1.2 What are Q-balls?

Q-balls are stable, nontopological solitons that can arise in theories involving complex scalars

φ [2]. Under certain conditions, a scalar field theory admits the existence of localized soliton

solutions of finite energy. These solutions, called Q-balls, are bound configurations of complex

scalars φ that are stable against decay into individual particles or smaller Q-balls [3, 2] (for a

review see Ref. [4]). The complex scalars must carry a U(1) charge and require either a special

scalar potential [5] or the inclusion of gravity as an attractive force [6].

The energy dynamics of such scalar potentials are what class Q-balls as nontopological soli-

tons. These potentials allow for stable Q-configurations due to the fact that a collection of

bound particles with charge Q has a lower mass energy than the same number of free par-

ticles. Q-balls are nontopological solitons because their stability arises from the existence of

compact solutions of lower energy than the corresponding diffusive solution; this is in contrast

to topological solitons, which are stable due to a conserved topological charge.

This simple set-up can be modified in various ways. The most obvious is to make the U(1)

symmetry local, which leads to gauged Q-balls [7]. Another interesting extension is to include

more than one scalar field in the soliton [8].

Q-balls have been most saliently analyzed as candidates for macroscopic dark matter of various

types [9, 10, 11, 12], including those similar to black holes and neutron stars. (See also Chapter

6.) Many supersymmetric theories naturally predict Q-balls; the global U(1) is identified with

baryon or lepton number in these theories. Q-balls could play a role in dark matter [13]

or baryogenesis as well as phase transitions in the early universe [14]. They could lead to

detectable gravitational wave signatures [15].

Q-ball solutions are additionally interesting in their own right as a rare example of a stable

non-topological soliton; their stability is ensured by the conserved U(1) charge as opposed to
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a topological charge. Analytic solutions for some special Q-ball potentials have been studied

in [16, 17, 18]. However, outside of these special potentials, Q-ball solutions rely on either

approximations or numeric solvers, e.g. Mathematica [19], to solve their characteristic, non-

linear differential equations.

The Q-ball system can be extended and complexified by, for example, charging the complex

scalar φ under a massless or massive local symmetry (gauged and Proca Q-balls, respectively).

[7, 20, 21] Gauged Q-balls are well-motivated phenomenologically given that the Standard

Model includes both massless and massive gauge bosons. Unfortunately, they are predictably

a more difficult system to analyze. Unlike the global case, no exactly solvable potentials are

known at this time. The presence of the gauge field also complicates numeric methods, which

are generally restricted to the finite element methods of Mathematica.

The case of a massive (Proca) gauge field has received the least attention in the Q-ball literature

to date [22, 23, 24, 25], presumably because it is the most difficult system to solve and analyze.

However, they are important components of the Q-ball story, not only because they interpolate

the intermediary region between global and gauged Q-balls, but additionally because they are

interesting in their own right, exhibiting novel effects unique to the presence of a massive

gauge field.
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1.3 Coleman’s Q-balls

Coleman first proposed global Q-balls in 1985 [2], along with a framework for approximating

their features which will be employed frequently in the discussion that follows.

Very large, global Q-balls are defined by the radial behavior of a scalar field f . In the interior

of the Q-ball, this scalar field takes on some nearly constant, nonzero value, while outside the

Q-ball it is zero. The boundary between the interior and exterior of the Q-ball is a “crust” of

some width in which the scalar field drops from its nonzero, interior value to zero.

For very large Q-balls, the width of this crust is negligible compared to the total size of the

Q-ball. Coleman’s ansatz was to take this width to zero as the Q-ball becomes infinitely large,

with the result that the scalar field f is described by a discontinuous step function

f (ρ) =







1 , ρ < R∗ ,

0 , ρ > R∗ ,
(1.1)

where R∗ denotes the radius of the Q-ball. This ansatz is referred to as the “thin-wall limit.”

Coleman used this ansatz to approximate the charge Q and energy E of these large Q-balls.

Q =
4π
3

 

R∗
q

m2
φ
−ω2

0

!3

φ2
0ω0 (1.2)

E =ω0Q+
πφ2

0

3
q

m2
φ
−ω2

0

R∗2 (1.3)

The various parameters appearing in these equations will be defined in the next section. While

their accuracy for small and more complex types of Q-balls leaves much to be desired, these

approximations form the historical basis for the study of Q-balls and will be referenced fre-

quently throughout this work. They function as a starting point for improved approximations

of both the scalar and gauge field profiles of global, gauged, and Proca Q-balls.
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Chapter 2

Field theory framework

2.1 Types of Q-balls

Three varieties of Q-balls are treated here: global, gauged, and Proca.

Global Q-balls are solutions to Eq. (2.27) in the limit e→ 0 or mA→∞. Their hallmark is a

global U(1) symmetry φ→ eiαφ. They are described by (2.11), (2.17), and (2.20).

Gauged Q-balls are the result of promoting the global symmetry φ→ eiαφ to a local symmetry,

which introduces a new, massless gauge field. They are solutions to Eqs. (2.28) and (2.29) in

the limit mA→ 0. They are described by (2.12), (2.18). and (2.21).

Proca Q-balls are gauged Q-balls in which the gauge field is made massive. They are solutions

to Eqs. (2.30) and (2.31). They are described by (2.13), (2.19), and (2.22).

7



2.2 Lagrangians

Global, gauged, and Proca Q-balls are described by the following Lagrangian densities, respec-

tively:

Lglobal =
�

�∂µφ
�

�

2 − U(|φ|) (2.1)

Lgauged =
�

�Dµφ
�

�

2 − U(|φ|)−
1
4

FµνFµν (2.2)

Lproca =
�

�Dµφ
�

�

2 − U(|φ|)−
1
4

FµνFµν +
m2

A

2
AµA

µ (2.3)

φ is a complex scalar with potential U(|φ|). U(|φ|) is a generic, U(1)-invariant, scalar potential

that allows for the formation of Q-balls; it is described more fully in Section 2.3. Dµ = ∂µ− ieAµ

is the gauge covariant derivative and Fµν = ∂µAν − ∂νAµ is the field-strength tensor. e is the

positive-valued gauge coupling normalized so that φ has charge one. mA is the mass of the

new U(1) gauge boson A.

Lglobal has a global U(1) symmetry φ → eiαφ. There is a conserved Noether charge Q under

this symmetry, which is φ number. It is normalized here so that Q(φ) = 1. Lgauged is the result

of promoting the global U(1) symmetry in Lglobal to a local symmetry, i.e. gauging it. Lproca is

the result of giving the gauge field of U(1) symmetry in Lgauged a mass mA.

The gauge field mass mA can originate in either of two ways:

i) it can be a Stückelberg mass [26]. In this case the U(1) gauge symmetry is unbroken

but still fixed in L , while the underlying global U(1) symmetry φ(t, ~x)→ eiθφ(t, ~x) is

manifestly conserved;

ii) it can originate from spontaneous symmetry breaking by a scalar ψ that is either very

heavy or has negligible couplings toφ such that they are irrelevant for the soliton dynam-

ics. If the couplings are only negligible and ψ is not heavy, the full Lagrangian L (φ,ψ)
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must feature one global and one gauged U(1) symmetry, only the latter of which is broken

by 〈ψ〉.

Assuming the effects of a heavy and/or very weakly coupled scalar ψ are negligible, the phe-

nomenology is the same for both possible mA origins. The name “Proca Q-balls” is a general

descriptor that encompasses both possibilities for the origin of the massive gauge field A. 1

2.3 Potential

A potential U(|φ|) that admits Q-balls must meet, at a minimum, several conditions:

1. Coleman’s existence criteria (2.4) must be true.

2. It must have a negative fourth-order term.

3. It must be order six or higher.

4. It must have the vacuum as a stable minimum.

1. Existence criteria for global Q-balls are described by Coleman in Ref. [2]. Namely, global

Q-balls may form when U(|φ|)/|φ|2 has a minimum at 0< φ0 <∞ such that

0≤

√

√

√
2U(φ0)
φ2

0

≡ω0 <ω< mφ . (2.4)

1The Romanian physicist Alexandru Proca extended Maxwell’s equations to allow a massive vector boson via
the eponymous Proca equation:

� Aν − ∂ ν(∂µAµ) +m2Aν = jν .

The Proca Lagrangian density is

L= −
1
4

FµνFµν +
m2

A

2
AµAµ − jµAµ .
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The global U(1) symmetry allows φ0 to be restricted to be real and positive without loss of

generality. ω will also be chosen to be positive to ensure a positive charge Q on the Q-ball.

The scalar frequency ω of gauged and Proca Q-balls is not strictly less than mφ but may be

equal to it, leading to a similar but modified constraint: ω0 < ω ≤ mφ. In other words, for

the gauged and Proca cases κ≤ 1 rather than κ < 1 (global case). In Section 2.10, it is shown

that there is another, stronger lower bound on ω in the gauged and Proca cases which will not

be discussed presently.

2. The negative |φ|4 term is responsible for the attractive interaction betweenφ particles that

allows the formation of Q-balls.

3. The |φ|6 term stabilizes the potential for large φ values. More specifically, it allows the

existence of a local minimum φ0 which is a prerequisite for Q-ball formation. A generic quartic

potential U(φ) = m2
φ
|φ|2 −β |φ|4 cannot possess such a local minimum, and so cannot satisfy

the existence criteria (2.4).

4. The vacuum is a stable minimum of the potential U(|φ|) when two conditions are met:

dU
d|φ|

�

�

�

�

φ=0

= 0, m2
φ
≡

d2U
dφ dφ∗

�

�

�

�

φ=0

> 0 . (2.5)

mφ is the mass of the complex scalar φ.

There is freedom to choose the potential energy in the vacuum; here it will be zero with the

selection U(0) = 0. Additionally, to preserve the U(1) symmetry, 〈φ〉 = 0 is required in the

vacuum; this implies that f = 0 in the vacuum.

Beyond these requirements, it is advantageous to leave the potential as generic as possible

to isolate universal Q-ball features from those attributable to a specific potential. A generic,
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sextic, scalar potential that admits Q-balls is

U(|φ|) = m2
φ
|φ|2 − β |φ|4 +

ξ

m2
φ

|φ|6 . (2.6)

β and ξ are positive, dimensionless constants. This U(|φ|) satisfies all four conditions, in-

cluding the criteria of Eqs. (2.4) and (2.5). The parameters β and ξ will not appear in the

remainder of this work and are excluded in favor of equivalent parameters φ0 – a minimum of

U(|φ|) satisfying Eq. (2.4) – and ω0.

φ0 = mφ

√

√β

ξ
, ω0 = mφ

√

√

1−
β2

4ξ
. (2.7)

The criteria that 0≤ω0 <ω< mφ is alternately expressed as 0< β ≤ 4ξ.

With the inclusion of the |φ|6 term, U(|φ|) ceases to become renormalizable. This is an un-

fortunate but necessary trade-off to allow for the formation of Q-balls. A potential retaining

only renormalizable terms would be unable to satisfy the existence criteria (2.4) (c.f. condition

#3), excluding the possibility for Q-ball formation.

In a non-renormalizable theory, additional higher-order terms must also be considered. The

typical effective field theory perspective is that the |φ|6 term plays the dominant role in the phe-

nomenology of Q-balls when heavy scalars are introduced; higher order terms are suppressed

by additional powers of the heavy scalar mass scale. An order six potential is therefore a rea-

sonable approximation to physical reality and is adopted here. Further discussion of potential

phenomenological consequences of Q-balls can be found in Chapter 6.

To date, no exact solutions to Eq. (2.6) are known, so the numeric methods and analytic

approximations detailed below are pursued in their stead. For simplicity and concreteness, the

discussion that follows will exclusively utilize U(|φ|) of Eq. (2.6) as a minimalistic potential
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that admits Q-balls. However, the results here are also expected to be generally applicable to

a broader class of potentials that retain characteristics that make them amenable to Q-balls.

2.4 Spherical symmetry ansätze

In the ground state2, the simplifying assumption that Q-balls coalesce into a spherical con-

figuration is imposed. (This is also the assumption of Coleman [2] in his original work.) A

separable-field ansatz is the basis for spherical solutions to the Q-ball equations of motion.

φ(x) =
φ0p

2
f (r)eiωt , (2.8)

This form isolates a purely radial, dimensionless scalar function, f (r) (henceforth interchange-

ably “scalar profile”), from a pure frequency component, eiωt . In other words, these spherical

solutions only depend on time through the phase of φ. φ0 is a dimensionful scale constant

determined by the scalar potential; see Eq. (2.4). ω is bounded from above and below by

ω0 <ω< mφ (2.4) (alternately ω0 <ω≤ mφ in the gauged and Proca cases).

The gauge field in the gauged and Proca cases is subjected to the constraint that only the

electric potential is non-zero. It is also time-independent. (This is the “static charge ansatz” of

[7].)

A0(t, ~x) = φ0 A(r), A1,2,3(t, ~x) = 0 (2.9)

2See Chapter 5 for a discussion of excited states.
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With the φ(x) ansatz (2.8) and substituting φ0 and ω0 for β and ξ, the potential becomes

U( f ) = U(|φ|) = m2
φ
|φ|2 − β |φ|4 +

ξ

m2
φ

|φ|6

= m2
φ

φ2
0

2
f 2 − β

φ4
0

4
f 4 +

ξ

m2
φ

φ6
0

8
f 6

=
φ2

0

2

¨

m2
φ

�

β2

4ξ
+
ω2

0

m2
φ

�

f 2 −
m2
φ
β2

2ξ
f 4 +

m2
φ
β2

4ξ
f 6

«

=
φ2

0

2

¨

m2
φ
β2

4ξ

�

f 2 − 2 f 4 + f 6
�

+ω2
0 f 2

«

=
φ2

0

2

¦

(m2
φ
−ω2

0) f
2(1− f 2)2 +ω2

0 f 2
©

.

(2.10)

The forms of the Lagrangians (2.1), (2.2), and (2.3) also change with the substitution of the

separable field ansatz (2.8) and the gauge field constraint (2.9). Extra factors of 4π and r2

appear in the conversion from d3~x to 4πr2 dr.

Lglobal =

∫

d3~x Lglobal =

∫

d3~x ∂µφ∂
µφ∗ − U(φ)

=

∫

d3~x
�

∂tφ, ~∇φ
�

·
�

∂ tφ∗,− ~∇φ∗
�

− U(φ)

=

∫

d3~x ∂tφ∂
tφ∗ − ~∇φ ~∇φ∗ − U(φ)

= φ2
0

∫

d3~x
1
2
ω2 f 2(r)−

1
2
( ~∇ f (r))2 −

U(φ)
φ2

0

= 4πφ2
0

∫

dr r2

�

1
2
ω2 f 2 −

1
2

f ′2 −
U( f )
φ2

0

�

(2.11)
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Lgauged =

∫

d3~x Lgauged =

∫

d3~x DµφDµφ∗ − U(φ)−
1
4

FµνFµν

=

∫

d3~x [∂t − ieA0]φ[∂
t + ieA0]φ

∗ − ~∇φ ~∇φ∗ − U(φ)−
1
4
(∂µAν − ∂νAµ)(∂ µAν − ∂ νAµ)

=

∫

d3~x
φ2

0

2
[ f iω− ieA0 f ][− f iω+ ieA0 f ]−

φ2
0

2
( ~∇ f )2 − U(φ) +

1
2

A′20

= φ2
0

∫

d3~x
1
2

f 2(ω− eA0)
2 −

1
2

f ′2 −
U(φ)
φ2

0

+
1

2φ2
0

A′20

= 4πφ2
0

∫

dr r2

�

1
2

f 2(ω− eφ0A)2 −
1
2

f ′2 −
U( f )
φ2

0

+
1
2

A′2
�

(2.12)

Lproca =

∫

d3~x Lproca =

∫

d3~x DµφDµφ∗ − U(φ)−
1
4

FµνFµν +
m2

A

2
AµA

µ

= 4πφ2
0

∫

dr r2

�

1
2

f 2(ω− eφ0A)2 −
1
2

f ′2 −
U( f )
φ2

0

+
1
2

A′2 +
m2

A

2
A2

� (2.13)

Primes are derivatives with respect to r. The static charge ansatz (2.9) allows a dramatic

simplification of the gauge field terms, particularly FµνFµν.

2.5 Dimensionless equivalents

A more holistic and universal inspection of Q-ball properties is allowed when relevant quanti-

ties are rendered dimensionless. The most important dimensionless quantity, as will become

apparent later, is called here κ and defined as

κ2 ≡
ω2 −ω2

0

m2
φ
−ω2

0

∈ (0, 1] . (2.14)

Section 2.11 shows that this κ uniquely parameterizes the scalar profiles.
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A dimensionless radial coordinate in the same spirit is

ρ ≡ r
Ç

m2
φ
−ω2

0 , (2.15)

with ρ ∈ [0,∞). From here on, the scalar and gauge profiles will depend on ρ – f (ρ), A(ρ)

– rather than r.3

A complete set of dimensionless quantities used throughout the remainder of this work are

included here. These quantities will generally be favored over their dimensionful counterparts

for expressions.

κ2 ≡
ω2 −ω2

0

m2
φ
−ω2

0

= Ω2 −Ω2
0 ρ ≡ r

Ç

m2
φ
−ω2

0 ,

Ω≡
ω

q

m2
φ
−ω2

0

, Ω0 ≡
ω0

q

m2
φ
−ω2

0

,

Φ0 ≡
φ0

q

m2
φ
−ω2

0

, α≡ eΦ0 , (2.16)

A(ρ)≡
A0(ρ)
φ0

M ≡
mA

q

m2
φ
−ω2

0

R∗ ≡ R
Ç

m2
φ
−ω2

0 y ≡
ρ

1+ρ/a
.

Once these dimensionless quantities are introduced, the Lagrangians of Equations (2.11),

(2.12), and (2.13) take new, dimensionless forms. Here, primes denote derivatives with re-

spect to ρ rather than r.

Lglobal = 4πΦ2
0

Ç

m2
φ
−ω2

0

∫

dρ ρ2

�

−
1
2

f ′2 +
1
2

f 2Ω2 −
U( f )

Φ2
0(m

2
φ
−ω2

0)2

�

(2.17)

3Note that the dimensionful and dimensionless radial coordinates r and ρ, respectively, should not be confused
with R and R∗, the dimensionful and dimensionless Q-ball radii, respectively.
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Lgauged = 4πΦ2
0

Ç

m2
φ
−ω2

0

∫

dρρ2

�

−
1
2

f ′2 +
1
2

A′2 +
1
2

f 2 (Ω−αA)2 −
U( f )

Φ2
0(m

2
φ
−ω2

0)2

�

(2.18)

Lproca = 4πΦ2
0

Ç

m2
φ
−ω2

0

∫

dρρ2

�

−
1
2

f ′2 +
1
2

A′2 +
1
2

f 2 (Ω−αA)2 −
U( f )

Φ2
0(m

2
φ
−ω2

0)2
+

M2

2
A2

�

(2.19)

The above forms suggest an alternative potential V ( f ) (global Q-balls) or V ( f , A) (gauged and

Proca Q-balls) as a starting point for analyzing Q-ball dynamics. Lgauged (2.18) in particular

resembles two scalar fields under the influence of potential V ( f , A), but with a “wrong sign”

kinetic term for the A field. The “physical” implications of this will be treated in Section 2.10.

In keeping with the rest of the quantities presented already, these new potentials are dimen-

sionless.

Vglobal( f ) =
1
2

f 2Ω2 −
U( f )

Φ2
0(m

2
φ
−ω2

0)2
(2.20)

Vgauged( f , A) =
1
2

f 2 (Ω−αA)2 −
U( f )

Φ2
0(m

2
φ
−ω2

0)2
(2.21)

Vproca( f , A) =
1
2

f 2 (Ω−αA)2 −
U( f )

Φ2
0(m

2
φ
−ω2

0)2
+

M2

2
A2 (2.22)
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With these new potentials, the Lagrangians take a form which allows a straightforward extrac-

tion of their equations of motion.

Lglobal = 4πΦ2
0

Ç

m2
φ
−ω2

0

∫

dρρ2
�

−
1
2

f ′2 + Vglobal( f )
�

(2.23)

Lgauged = 4πΦ2
0

Ç

m2
φ
−ω2

0

∫

dρρ2
�

−
1
2

f ′2 +
1
2

A′2 + Vgauged( f , A)
�

(2.24)

Lproca = 4πΦ2
0

Ç

m2
φ
−ω2

0

∫

dρρ2
�

−
1
2

f ′2 +
1
2

A′2 + Vproca( f , A)
�

(2.25)

2.6 Equations of motion and solutions

The core task in uncovering the identity of a particular Q-ball is to solve its differential equa-

tion(s). A Q-ball solution furnishes the complete function f (ρ) for all points in space (as well

as the function A(ρ) for gauged and Proca Q-balls). Solutions also yield the size, energy, and

charge of Q-balls. As earlier stated, there are unfortunately no known exact solutions for the

coupled differential equations of Q-balls, so finding solutions becomes an exercise in two parts:

(1) numerically solving the differential equations as closely as possible using Mathematica

[19] and (2) using known limiting cases, e.g. "thin wall" Q-balls (c.f. Section 1.3), to approxi-

mate analytical solutions.

The basic equations of motion for the scalar and gauge fields of Q-balls are

f ′′ +
2
ρ

f ′ = −
∂ V
∂ f

, A′′ +
2
ρ

A′ = +
∂ V
∂ A

. (2.26)
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V is the relevant Q-ball potential from Eqs. (2.20), (2.21), and (2.22). Only the scalar field

equation of motion applies in the global case.

Explicitly, these equations are

f ′′ +
2
ρ

f ′ = −
∂ Vglobal

∂ f
=

1
Φ2

0(m
2
φ
−ω2

0)2
dU
d f
−Ω2

G f Global case (2.27)

f ′′ +
2
ρ

f ′ = −
∂ Vgauged

∂ f
=

1
Φ2

0(m
2
φ
−ω2

0)2
dU
d f
− (Ω−αA)2 f (2.28)

A′′ +
2
ρ

A′ = +
∂ Vgauged

∂ A
= α f 2(αA−Ω) Gauged case (2.29)

f ′′ +
2
ρ

f ′ = −
∂ Vproca

∂ f
=

1
Φ2

0(m
2
φ
−ω2

0)2
dU
d f
− (Ω−αA)2 f (2.30)

A′′ +
2
ρ

A′ = +
∂ Vproca

∂ A
= α f 2(αA−Ω) +M2A Proca case (2.31)

They are solved subject to boundary conditions on f , f ′, A, and A′, which reflect constraints

on physically realizable Q-balls.

lim
ρ→0

f ′ = lim
ρ→∞

f = lim
ρ→0

A′ = lim
ρ→∞

A= 0 (2.32)

The boundary conditions on the field derivatives prevents solutions that are singular at ρ = 0,

while the boundary conditions on the fields at infinity enforce localized solutions.

18



2.7 Radius

The three defining features of Q-balls are their size (i.e. radius), charge, and energy. Although

there is some ambiguity in defining the radius, the midpoint of the transition region (see the

profiles in, e.g., Fig. 2.1) is a logical choice. Since the transition region is well-approximated

by an exponential (discussed in Section 3.1.2), this translates mathematically to f ′′(R∗) = 0.

R∗ is the dimensionless Q-ball radius, defined in (2.16) (see also the footnote in Section 2.5).

A key observation from global Q-balls is that the scalar profile f is determined exclusively by

κ; see Section 2.11 for a discussion of this phenomenon. Since the Q-ball radius is exclusively

determined by the scalar profile, there is clearly a correspondence between R∗ and κ. This

relationship is derived and refined in Section 3.1.5 and is a defining result of this work.

2.8 Energy and charge

Q-balls have a conserved charge, Q, which is the spatial integral over the time component of

the conserved, scalar Noether current.

Q ≡ i

∫

d3 x
�

φ∗∂ 0φ −φ∂ 0φ∗
�

(2.33)

The energy of Q-balls, E, is obtained from their Hamiltonian.

E = 4πΦ2
0

Ç

m2
φ
−ω2

0

∫

dρρ2

�

1
2

f ′2
§

+
1
2

A′2
ª

+
1
2

f 2 (Ω−αA)2 +
U( f )

Φ2
0(m

2
φ
−ω2

0)2

§

+
M2

2
A2
ª

�

(2.34)

The Hamiltonian requires the original potentials U( f ) in the Lagrangian forms (2.17), (2.18),

and (2.19) (as opposed to negating the dimensionless potentials V ( f ) and V ( f , A) in the di-
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mensionless Lagrangians (2.23), (2.24), and (2.25)). The braced terms are excluded in the

global case and included in the gauged
��

+1
2A′2

	�

and Proca
�

�

+1
2A′2

	

,
¦

+M2

2 A2
©�

cases.

More detailed charge and energy expressions, derivations, and discussions for each type of

Q-ball can be found in Sections 3.1.4 (global), 3.2.3 (gauged), and 3.3.3 (Proca).

2.9 Stability

There are several criteria for Q-ball stability (discussed more extensively in [8, 27, 5, 28]), but

the most straightforward and applicable criterion for this work is that the energy of a stable

Q-ball must be less than the mass of Q free scalars:

E < mφQ . (2.35)

In other words, it must be energetically preferable for Q-ball to stay clumped together than

to break apart. (See Section 2.12 for a discussion of how the relationship (2.64) dE/dω =

ω dQ/dω relates to this energy-stability bound.)

The equations of motions (2.26) for Q-balls can be solved even for Q-balls that violate Eq.

(2.35). These Q-balls are marked as “unstable” in all figures. While unstable Q-balls are not

prohibited from forming, generally such Q-balls would be short-lived.

It is also worth noting that the regions of stability can change significantly with the type of

potential that produces the Q-balls [29]. For instance, in Ref. [9] is is shown that the Q-balls

which arise from a potential with a cubic term can be stable even for ω→ mφ. However, such

potentials will not be considered here, and the condition (2.35) will be the determinant of

stability for all Q-balls.
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2.10 Classical field dynamics

While Q-balls are a phenomenologically new class of particle, their dynamics can be understood

with the simple analogy of a particle (the scalar and, later, gauge profiles) traversing a path

under the influence of the potential V ( f ) or V ( f , A). This puts the differential equations of

(2.26) on more familiar footing. This picture is attributable to Coleman. [2]

Consider a particle satisfying the equation

ẍ +
2
t

ẋ +
dV
dx
= 0 , (2.36)

where dots denote time derivatives. This is a particle moving in a potential V (x) and experi-

encing time-dependent friction. In this analogy, x corresponds to the scalar profiles f and time

t to the radial coordinate ρ. The condition that f ′(0) = 0 is analogous to ẋ(0) = 0, mean-

ing that the particle starts at rest, while the condition f (∞) = 0 corresponds to x(∞) = 0,

which means the particle must end up at the local maximum at x = 0. Thus, the profiles for

f correspond to the trajectories of a particle whose friction decreases with time, rolling down

a potential and ending up at the top of a local peak. This familiar mechanical analogue is a

helpful way to conceptualize the dynamics of Q-ball profiles.

This analogy immediately makes clear the range of κ and its connection to the existence criteria

of Eq. (2.4). For κ ≥ 1, f = 0 is not a maximum, so the particle can only stop there if (1) it

begins there at rest, which is a trivial solution, or (2) it oscillates about the minimum at f = 0,

which would imply periods with f < 0. On the other hand, for κ < 0, f = 0 is higher than any

other maxima, and so nothing can roll onto it. If κ = 0, then the only point on the other hill

which is not lower than f = 0 is exactly at the maximum f = f+, and the particle never rolls

from this equilibrium point. Hence, 0< κ < 1, which is equivalent to ω0 <ω< mφ.

21



κ=0.99

κ=0.9

κ=0.7

κ=0.3

κ=0.1

f(0)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

f

V
(f
)

κ=0.99

κ=0.9

κ=0.7 κ=0.3 κ=0.1

0.5 1 5 10 50 100

0.0

0.2

0.4

0.6

0.8

1.0

ρ

f

Figure 2.1: Left: the effective, global Q-ball potential V ( f ). Right: global Q-ball profiles for
various κ. Dots on the potential plot are the points f (0) from which the scalar profile starts
its trajectory. The solid curves on the potential plot are the paths the scalar field f takes for
associated κ, while the rest of the (untraveled) potential is filled out with dashed lines. The
vertical dashed line is the location of the maximum when κ= 0. The associated spatial profiles
for the scalar trajectories shown in the potential plot are given in the f vs. ρ plot on the right.

In the global case, the Q-ball differential equation is Eq. (2.27) with associated potential

Vglobal( f ) =
1
2

f 2
�

κ2 −
�

1− f 2
�2�

(2.37)

The extrema of Vglobal( f ) are at f = 0 and

f 2
± =

1
3

�

2±
p

1+ 3κ2
�

. (2.38)

f+ is always a maximum, while f− is a minimum for κ < 1 (or ω < mφ), which is necessarily

true for global Q-balls (c.f. Section 2.3). The center of the potential, f = 0, is a maximum

for κ < 1. When κ = 1, f = 0 becomes a minimum, and the potential becomes nearly flat at

f = 0. These potential dynamics are illustrated in the left panel of Fig. 2.1.

In the analogy of a particle moving through a potential, Eq. (2.27) is the equation of motion

for the particle moving through a potential subject to friction. The 2 f ′/ρ term is this “friction”
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term. Were it not for this “friction”, the equation of motion could be written as

f ′′ +
dV
d f
=

1
f ′

d
dρ

�

1
2

f ′2 + V ( f )
�

= 0 . (2.39)

The quantity in parentheses may be identified as a conserved, energy-like term [30] in this

analogy

E =
1
2

f ′2 + V ( f ) . (2.40)

When evaluated at ρ = 0, this total “energy” E = 0. E is not conserved when the friction term

2 f ′/ρ is included; rather, energy is lost to the presence of this friction.

dE
dρ
= f ′

�

f ′′ +
dV
d f

�

= −
2
ρ

f ′2 (2.41)

In the analogy of the scalar profile of a Q-ball as a particle moving along a trajectory, the

particle starts at f = f (0) with f ′ = 0 and ends at f = 0 with f ′ = 0. Integrating the friction

term over this trajectory gives the energy difference between the starting and ending potential

peaks. [29] Recall that V (0) = 0.

V ( f (0)) = 2

∫ ∞

0

dρ
f ′2

ρ
. (2.42)

The height difference between the two potential peaks (see Fig. 2.1 for a visual representation)

is then equal to the energy lost due to friction.

This familiar language of a particle “losing energy” over a “trajectory” provides an intuitive,

qualitative understanding of the dynamics of the radial, scalar profile f (ρ) of a Q-ball. Tra-

jectories that begin near V ( f+) ≈ 0 (e.g. the red and purple profiles of Fig. 2.1) transition

to the true vacuum, f = 0, without much friction. At small ρ, the friction term dominates

over the tendency to begin rolling, as the energy difference between f+ and f = 0 is small.
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The transition begins when the friction term is suppressed by large ρ, after which it proceeds

quickly, unhindered by friction. This gives the sharp, step-like profiles in the right panel. These

trajectories correspond to smaller κ.

The extreme limit of the low-friction case is the thin-wall limit, in which ρ →∞ and κ→ 0

imply V (0) = V ( f+) = 0 and 2 f ′/ρ→ 0. The statement that there is no friction in the thin-wall

limit is equivalent to the statement that the two maxima V (0) and V ( f+) have equal heights,

thus no energy can be lost along the particle’s path. The profile of the thin-wall limit also

represents the extreme of the small-κ profiles depicted in Fig. 2.1: it is a perfect step function

without any smoothing or width attributable to the presence of friction. This is, of course, the

profile (1.1) from Section 1.3.

Conversely, as the energy difference between V ( f+) and V (0) = 0 increases, the friction cannot

completely compensate for the change. In these trajectories, f (0) falls progressively further

below f+, and these particles begin their transitions progressively “sooner,” i.e. at smaller ρ.

The earlier transitions leads to smaller radii, while the slowing effect from more potent friction

leads to softer edges.

For large enough κ, the trajectory must start so far below the first maximum that there is very

little rapid motion during the transition. The particle takes a long time rolling to f=0, and the

soft edge of the Q-ball continues to widen until at κ= 1 the trajectory begins and ends at rest

at f = 0. In other words, as κ continues to increase, the scalar profiles of Fig. 2.1 continue to

flatten and their transition regions continue to widen, until at κ = 1 they are completely flat

at f = 0.

Fig. 2.2 provides another perspective for the “timing” of the transition in ρ. Black points on

the potential mark values of integer ρ. Dots for small ρ (ρ < 21) collect at V ( f (0)) ∼ 0.02,

while dots for large ρ (ρ > 24) collect at V (0) = 0. The four dots in between (21 ≥ ρ ≤ 24)

illustrate the rapid change in f over a small region in ρ. The profile fG can be seen in Fig. 2.3.
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Figure 2.2: ρ dependence of effective, global potential Vglobal( f ). The effective potential V ( f )
is dependent on the scalar profile f , which is itself dependent on the radial coordinate ρ. The
black points illustrate this implicit ρ dependence for integer values of ρ in ρ ∈ [0,30]. They
also show that motion along the potential happens over a relatively small region of ρ; this is
the transition region. The profile spends most of its “time” on the local maxima of V ( f ).

The gauged case is similar, although its potential includes the new gauge field, A, in addition

to the scalar field f .

Vgauged( f , A) =
1
2

f 2
�

κ2 +αA(αA− 2Ω)−
�

1− f 2
�2�

. (2.43)

For constant A, the potential in f ≥ 0 has three extrema, one at f = 0 and the other two at

f 2
± =

1
3

�

2±
Æ

1+ 3κ2 − 3αA(2Ω−αA)
�

. (2.44)

f+ is a maximum and f− a minimum. The global case is a limiting case of Vgauged( f , A) with

A= 0.

For constant f , the potential for A has one extremum at

Amax =
Ω

α
. (2.45)

25



fG

f

α A

κG=0.215

κ=0.95

α=0.05

Ω0=1

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

ρ

Figure 2.3: Scalar and gauge field profiles for one potential parameterization. The two scalar
profiles for R∗ ≈ 22 are shown – the global scalar profile ( fG) in blue, and the gauged scalar
profile ( f ) in orange. This shows visually the correction provided by the mapping of Eq. (3.60)
for correspondent radii.

The primary difference between the global and gauged cases is that the evolving gauge field A

causes the effective potential for the scalar to change with ρ. This is illustrated in the left panel

of Fig. 2.4. The gauge field evolution changes the location and height of the maximum at f+.

The scalar continues to follow this maximum until a certain point, at which time it transitions

quickly to the other maximum at f = 0.

Of course, this can only occur when f+ exists, which translates to a requirement that Eq. (2.44)

is real. This implies

1
3
+κ2 ≥ αA(2Ω−αA) . (2.46)

This condition is automatically satisfied in the global case, i.e. α→ 0. In the gauged case, it

restricts αA to two possible regions:

αA≤ Ω−

√

√

Ω2
0 −

1
3

or αA≥ Ω+

√

√

Ω2
0 −

1
3

. (2.47)
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The second inequality is not compatible with Q-ball solutions; however, the first inequality

provides an upper bound on αA when Ω0 ≥ 1/
p

3.

Like the global case, initial values of the fields can be determined using energy principles.

Neglecting the friction terms, the equations of motion in the gauged case (from Eqs. (2.28),

(2.29), (2.21)) are

f ′′ +
∂ Vgauged

∂ f
= 0, A′′ −

∂ Vgauged

∂ A
= 0 . (2.48)

The energy-like quantity E

E =
1
2

f ′2 −
1
2

A′2 + Vgauged( f , A) (2.49)

is conserved as a function of ρ:

dE
dρ
= f ′

�

f ′′ +
∂ Vgauged

∂ f

�

− A′
�

A′′ −
∂ Vgauged

∂ A

�

= 0 . (2.50)

The inclusion of friction results in a new differential equation that reflects the true dynamics

of the gauged Q-ball system.

dE
dρ
= −

2
ρ

�

f ′2 − A′2
�

(2.51)

Eq. (2.51) (along with Eq. (3.74) of Chapter 3) indicates that f ′ and A′ affect the energy

differently. The f profile behaves according to one’s usual intuition, but the A profile’s dynamics

are backwards due to its opposite-sign kinetic term. It falls up rather than down. As a result,

while Eq. (2.45) is a minimum in V , this opposite-sign behavior drives A uphill either toward

A = 0 or A → ∞. If A is larger than Amax, it diverges as ρ → ∞, which violates the Q-

ball boundary conditions (and is obviously physically problematic). This implies a new Q-ball
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Figure 2.4: Left: Evolution of Vgauged( f ) with ρ. Right: Contour plot of Vgauged( f , A). Black
points are the values of the gauged Q-ball profiles for integer values of ρ ∈ [0, 30]. The left
panel shows how the dynamics of the gauge field A work to drive more energy into the scalar
potential for small values of ρ to enable a transition once f+ approaches Vgauged( f+) = 0. The
right panel illustrates the relative constancy of A during the transition in f that enables the
mapping of Eq. (3.60).

constraint, Ω− αA> 0, with two consequences for Q-ball dynamics. First, because the right-

hand side of the A equation of motion

A′′ +
2
ρ

A′ = −α f 2(Ω− Aα) , (2.52)

is always negative, A is monotonically decreasing for Q-ball solutions [7]. Second, as the system

evolves, the negative term under the square-root in Eq. (2.44) becomes smaller and the value

of f+ grows. As a result, for some solutions, such as the one shown in Fig. 2.4, the “force” from

the A gradient pushes f uphill toward this growing f+. In other words, the scalar and gauge

field profiles influence each other’s behavior, and for certain gauged Q-ball trajectories the A

field has the ability to overpower and reverse the expected behavior of the scalar field.

While the gauge field does influence the overall system dynamics and generate novel features

of gauged Q-balls compared to global Q-balls, the gauge field has a relatively minor effect in
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the region of the scalar field transition, where f goes from∼ 1 to∼ 0. This can be seen visually

in the right panel of Fig. 2.4. The small contribution from A in this region suggests a connection

to the purely scalar transition region of global Q-balls, for which the transition profile is shown

in Section 3.1 to be an excellent overall fit for global Q-ball dynamics. The resulting “mapping”

is shown to be a key feature of both the gauged and Proca cases in Sections 3.2.1 and 3.3.2,

respectively.

The Proca case proceeds similarly to the global and gauged cases above. The equations of

motion of the Proca case, without friction terms, are ((2.30), (2.31), (2.22))

f ′′ +
∂ Vproca

∂ f
= 0, A′′ −

∂ Vproca

∂ A
= 0. (2.53)

The conserved “energy” quantity is E .

E =
1
2

f ′2 −
1
2

A′2 + Vproca( f , A), (2.54)

dE
dρ
= f ′

�

f ′′ +
∂ Vproca

∂ f

�

− A′
�

A′′ −
∂ Vproca

∂ A

�

= 0. (2.55)

Reintroducing friction gives

dE
dρ
= −

2
ρ

�

f ′2 − A′2
�

, (2.56)

which can be integrated along the trajectory to find the relative height of the potential at

f (0), A(0).

Vproca( f (0), A(0)) = 2

∫ ∞

0

dρ
ρ

�

f ′2 − A′2
�

(2.57)
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As with the gauged case, f (∞) = A(∞) = 0 and the derivatives of f and A vanish at both

boundaries.

The first term in the integral (2.57) is the analogue of energy lost to friction along the trajectory

as f rolls from f (0) to f = 0. A has the opposite-sign behavior discussed for the gauge case

above. Its dynamics are determined by −V , not V . Therefore any energy “loss” due to friction

acting on A requires an opposite sign in the friction integral.

As above, constraints on the individual potentials of f and A can be determined when the other

field is held constant. For constant f , the potential V for A has one extremum at

Amax =
Ωα f 2

M2 + f 2α2
(2.58)

For f 6= 0 this is a minimum of V . From another perspective: because A behaves as if kinetic

energy has the opposite sign, Amax is a maximum in −V . This dynamic drives A down the −V

hill away from Amax. This implies that for Q-ball solutions, where f begins at a value near one,

that A must take values below Amax and is subsequently driven to even smaller values.

For constant A, the potential in f ≥ 0 has three extrema: one maximum at f = 0 and a

minimum and maximum at

f 2
± =

1
3

�

2±
Æ

1+ 3κ2 − 3αA(2Ω−αA)
�

. (2.59)

f± must be real for localized soliton solutions; this translates to a non-negative requirement

for the term under the square root. As with the gauged case, the result is a constraint on the

amplitude of the gauge field.

αA≤ Ω−
q

Ω2
0 − 1/3 (2.60)

This constraint is only relevant when Ω0 ≥ 1/
p

3.
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As the system evolves, i.e A shrinks, the term under the square-root in Eq. (2.59) is reduced

according to 2Ω−αA> 0, with the result that the peak in f grows. When f transitions to small

values, Amax follows. This slows the motion of the particle as it approaches ( f = 0, A= 0).

Fig. 2.5 illustrates two examples of Proca Q-ball profiles and trajectories. The left panel con-

tains the scalar and gauge profiles of a “thick-wall” Q-ball, i.e. a Q-ball for which the transition

happens relatively slowly and the transition region is radially stretched out as a result. Below

the profiles on the left is a quantitative illustration of the qualitative particle trajectory analogy;

the thick blue curve is the trajectory in Vproca( f , A). The right panel contains scalar and gauge

profiles and the potential trajectory of a more traditional, thin-wall Q-ball. The interplay of f+

and Amax within the potential Vproca is shown with dotted blue and green lines, respectively.

In the thick wall case (left panel), the trajectory begins at f ≈ 1, a little downhill from f+. This

causes f to roll to smaller values. The value of A is less than Amax, so the particle rolls uphill

toward smaller A. When f and A become small enough the trajectory crosses Amax, at which

point the gauge field mass begins to dominate the A evolution.

The thin-wall trajectory begins near the intersection of f+ and Amax. This is a point of unstable

equilibrium and plays a role similar to a particle resting exactly at f+ in the global Q-ball case.

By beginning the evolution close and closer to the equilibrium point, the radius of the thin-wall

Q-balls can increase without bound. The first stage of motion is dominated by A dynamics. The

particle begins rolling and is pushed uphill in V to smaller values of A while following f+ along

the potential ridge. Eventually it enters the transition region, where the scalar f dynamics

dominate and the system rapidly rolls to small values in f . Despite this dramatic motion, the

effect of friction is still clear from the profiles in the right panel, which are noticeably stretched

and smoothed from a pure step function. This friction acts to slow the particle. From a potential

perspective, the particle is slowed by both being above Amax by the need to roll into a valley

and back up a peak in V during the transition period. In the final period of motion, A dynamics

again dominate to bring the trajectory to f = 0, A= 0.
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Figure 2.5: Left: Profiles and contour plots of a “thick-wall” Proca Q-ball. Right: Profiles and
contour plots of a thin-wall Proca Q-ball. The top row shows both numeric (blue, orange
curves) and approximated (red, green dashes) profiles for the scalar and gauge fields, respec-
tively, of two sample Proca Q-balls. Approximations are taken from Eqs. (3.18) and (3.80).
The bottom row contains the contour profiles for their associated potentials Vproca( f , A). The
actual trajectories in Vproca are blue curves. The f maxima f+ (blue) and A maxima Amax (green)
are shown with dashed lines.
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2.11 κ dependence

A key result of this work is the observation that the scalar profile of Q-balls is determined

exclusively by the dimensionless parameter κ (2.14):

κ2 ≡
ω2 −ω2

0

m2
φ
−ω2

0

∈ (0, 1] . (2.61)

In the global case, the potential V ( f ) is dependent exclusively on κ.

Vglobal( f , A) =
1
2

f 2Ω2 −
U( f )

Φ2
0(m

2
φ
−ω2

0)2

=
1

m2
φ
−ω2

0

�

1
2

f 2ω2 −
U( f )
φ2

0

�

=
1

m2
φ
−ω2

0

�

1
2

f 2ω2 −
1
2
(m2

φ
−ω2

0) f 2(1− f 2)2 −
1
2

f 2ω2
0

�

=
1
2

f 2κ2 −
1
2

f 2(1− f 2)2

(2.62)

In the gauged case, the scalar profile also depends on a single parameter, κG, but via the

mapping of Eq. (3.60).

Vgauged( f , A) =
1
2

f 2 (Ω−αA)2 −
U( f )

Φ2
0(m

2
φ
−ω2

0)2

=
1
2

f 2Ω2
G −

U( f )
Φ2

0(m
2
φ
−ω2

0)2

=
1
2

f 2κ2
G −

1
2

f 2(1− f 2)2

(2.63)

Here κ2
G ≡ Ω

2
G −Ω

2
0, and ΩG ≡ Ω−αA. There is also a correspondence between R∗ and κG for

gauged Q-balls, which is defined by the mapping (3.60).
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2.12 ω as a chemical potential

Energy, charge, and frequency are related in Q-balls by the following expression, first noted in

[8].4

dE
dω
=ω

dQ
dω

(2.64)

Choosing ω > 0 implies Q > 0 without loss of generality. In global Q-balls, Eq. (2.64) can be

derived via Eqs. (3.29) and (3.31).

dE
dω
=ω

dQ
dω
+Q+ 4πφ2

0

∫

dr r2

�

f ′
d f ′

dω
−ω2 f

d f
dω
− f 2ω+

1
φ2

0

dU
dω

�

=ω
dQ
dω
+Q−Q+ 4πφ2

0

∫

dr r2

�

−
d f
dω

�

1
φ2

0

dU
d f
−ω2 f

�

−ω2 f
d f
dω
+

1
φ2

0

dU
dω

�

=ω
dQ
dω

, (2.65)

The first line uses the Hamiltonian for global Q-balls found in Eq. (3.31). The third term in the

integral on the first line is Q (c.f. Eq. (3.29)), which can be pulled out of the expression. The

first term is reexpressed using integration by parts and the scalar equation of motion (2.27).

For dQ/dω 6= 0, Eq. (2.64) implies dE/dQ = ω — in other words, ω behaves like a chemical

potential. That is, ω determines how the energy changes when a particle of charge Q is added

or removed from the Q-ball. When dQ/dω > 0, it is energetically favorable for given Q-ball

to shed particles to lower its energy; this condition is sometimes used to determine if a given

Q-ball is stable. In the opposite case, dQ/dω< 0, it is energetically favorable for the Q-ball to

accrete particles.

4The relation was derived in [8] for Q-balls in 3 spatial dimensions rather than 3+1 dimensions as here and
in Coleman’s work [2]. As the Q-balls here depend on time only through an internal phase, the 3 dimensional
relationship still applies with no concerns.
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Gauged Q-balls are shown to obey this relationship in [31]. The proof that (2.64) continues

to hold for the Proca case can be found in Section 3.3.4.

35



Chapter 3

Analytic predictions

Although exact solutions to the Q-ball equations of motion in Section 2.6 are not accessible

analytically, excellent approximations are found here using Coleman’s “thin wall” ansatz (c.f.

Section 1.3) as a starting point.

This chapter treats global, gauged, and Proca Q-balls in their own sections. Each new case

layers complexity upon the previous to arrive at its approximations.

3.1 Global Q-balls

As detailed in Section 1.3, Coleman [2] proposes that very large, global Q-balls in the limit

κ→ 0, ω→ω0, and R→∞ have a step-function scalar profile f (ρ):

f (ρ) =







1 , ρ < R∗ ,

0 , ρ > R∗ ,
(3.1)
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This ansatz is predicated on the notion that the “transition region” – i.e. the exterior “crust” of

the Q-ball which functions as an interpolation zone between the interior part of the Q-ball and

the space exterior to the Q-ball – is very narrow compared to radius of the Q-ball itself. This is

helpful in allowing the prediction of a number of quantities, including Q and E, that would be

very complex to obtain outside of the thin-wall limit.

3.1.1 Expanding the thin-wall ansatz

One might hope that these approximations hold in the not-quite-so-thin-wall limit as well, i.e.

ω¦ω0, in which case Q (1.2) and E (1.3) become

Q =
4π
3

 

R∗
q

m2
φ
−ω2

0

!3

φ2
0ω, E =ωQ+

πφ2
0

3
q

m2
φ
−ω2

0

R∗2 . (3.2)

If these approximations are to be compared to numerical results, it must also be known how

R∗ depends on ω (or equivalently on κ). Fortunately, an exact relation that will be helpful in

this regard has already been derived in Eq. (2.64),

dE
dR∗
=ω(R∗)

dQ
dR∗

. (3.3)

In concert with Eq. (3.2), an R∗ - κ relationship can be determined away from the thin-wall

limit. Substituting E from Eq. (3.2), the left-hand side of Eq. (3.3) becomes

dE
dR∗
=ω(R∗)

dQ
dR∗
+Q

dω
dR∗
+

2πφ2
0

3
q

m2
φ
−ω2

0

R∗

=ω(R∗)
dQ
dR∗
+

4π
3

 

R∗
q

m2
φ
−ω2

0

!3

φ2
0ω(R

∗)
dω
dR∗
+

2πφ2
0

3
q

m2
φ
−ω2

0

R∗ . (3.4)
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This leaves a differential equation for ω,

ω
dω
dR∗
= −

m2
φ
−ω2

0

2R∗2
. (3.5)

It can be integrated in the thin-wall limit, with ω = ω0 and R∗ =∞, then repurposed with

general ω and R∗ to find

R∗ =
m2
φ
−ω2

0

ω2 −ω2
0

=
1
κ2

. (3.6)

Eq. (3.6) gives the relationship between κ2, which determines the potential, and R∗, which is

the Q-ball size, to leading order. Eq. (3.6) is exact for very large R∗ or very small κ but is also

an excellent approximation away from the thin-wall limit; the accuracy can be seen visually in

Fig. 3.1. Even for the largest κ (up to the limit of Q-ball stability) the deviations between the

predictions of Eq. (3.6) and the true numerical values are only about 10%.

However, the agreement is not nearly as good in Q and E predictions, which contain powers

of R∗ that compound the deviations when Eq. (3.6) is substituted into Eq. (3.2). The result-

ing deviations from the numerical results can be as large as 50% for stable Q-balls. A better

understanding of how κ and R∗ are related would allow for more accuracy in the Q and E

predictions. Refined predictions for R∗(κ) can be found in Eqs. (3.52) and (3.53).

3.1.2 Three regions of a Q-ball: exterior, interior, and transition

To further continue moving beyond the thin-wall limit, a more physically accurate profile than

the basic step function is needed. This requires separately treating each Q-ball region: the

exterior, interior, and transition regions. In this section, κ will be kept general rather than

assuming κ→ 0 from the thin-wall limit.
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Far outside a Q-ball, when ρ� R∗, f trends to the vacuum, f ∼ 0. In this region, the potential

can be approximated a quadratic, which yields a differential equation for the exterior

0= f ′′ +
2
ρ

f ′ +
dV
d f

�

�

�

�

f=0

+ f
d2V
d f 2

�

�

�

�

f=0

+ . . .

' f ′′ +
2
ρ

f ′ − (1− κ2) f . (3.7)

In the last equation terms of order f 3 and higher are dropped as f � 1. Solving with the

boundary condition f (∞) = 0, the exterior solution f> is

f> =
c>
ρ

e−
p

1−κ2ρ . (3.8)

c> is an integration constant. This exponential drop-off behavior applies to all Q-balls, but in

the thin-wall regime κ can be taken as 0 in f>.

In the interior of the Q-ball, there exists the opposite situation: for large enough Q-balls, the

value of f is close to the maximum of the potential, f ∼ f+. Again approximating the potential

as a quadratic, the f equation for the interior is

0= f ′′ +
2
ρ

f ′ +
dV
d f

�

�

�

�

f= f+

+ ( f − f+)
d2V
d f 2

�

�

�

�

f= f+

+ . . . (3.9)

' f ′′ +
2
ρ

f ′ −α2( f − f+) . (3.10)

Neglected terms are higher order in ( f − f+), and α2 is defined as

α2 ≡
4
3

�

1+ 3κ2 + 2
p

1+ 3κ2
�

= 4+ 8κ2 − 3κ4 +O(κ6) . (3.11)

After enforcing the boundary condition f ′(0) = 0, the solution f< in the Q-ball interior is

f< = f+ + c<
sinh(αρ)
ρ

. (3.12)
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c< is an integration constant. In the thin-wall regime, where κ is small, α= 2 in f<. This result

agrees with earlier work by Paccetti Correia and Schmidt. [30]

The most interesting and difficult region is the transition region, which joins the interior and

exterior. Expanding the potential around an extremum will not prove useful here. A more

expedient strategy is to consider that the center of the transition region is where ρ = R∗. With

this in mind, a coordinate z = ρ − R∗ allows a focus on the region around z = 0, which is

by definition the transition region. The surface profile fs describes the transition from one

potential maximum to the other, so the full potential must be considered. Using this new

coordinate, the differential equation (2.27) becomes

d2 fs

dz2
+

2
R∗ + z

d fs

dz
+ fs

�

κ2 − (1− f 2
s )(1− 3 f 2

s )
�

= 0 . (3.13)

When −z� R∗, which is true for all but small Q-balls with wide transition regions (relative to

their size), the second term can be neglected. In fact, since (R∗)−1 is in general reliably small,

the scalar profile can be expanded as a power series in (R∗)−1:

fs(z) = f (0)s (z) + (R
∗)−1 f (1)s (z) + . . . (3.14)

Using the relation κ2 = (R∗)−1 from Eq. (3.6), to leading order the profile satisfies

d2 f (0)s

dz2
= f (0)s

�

1− ( f (0)s )
2
� �

1− 3( f (0)s )
2
�

. (3.15)

Since there is no “friction” term in Eq. (3.15) (see Section 2.10 for a description of “friction” in

this context), E of Eq. (2.40) is conserved. Further, since f ′(0) = V (0) = 0 for Q-ball solutions,

E = 0. This insight simplifies the second-order differential equation (3.15) to an equivalent
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first-order equation

d f (0)s

dz
= ± f (0)s

�

1− f (0)2s

�

. (3.16)

Direct integration yields the solution for the transition region.

f (0)s (z) =
�

1+ cse
±2z
�−1/2

(3.17)

cs is an integration constant. Note that because fs is a monotonically decreasing function [7],

the exponent must be positive.

The constant cs is determined by requiring f ′′(R∗) = 0, which formally identifies R∗ as the

Q-ball radius. In its final form, the transition function (at leading order in 1/R∗) is

ft(ρ) =
1

p
1+ 2e2(ρ−R∗)

. (3.18)

Interestingly, numerical studies (see, for instance, Figure 3.1 and Chapter 4) will show that this

transition profile also provides excellent results outside of the transition region, and can be used

as a proxy for the full profile in many cases. A similar profile to the transition profile (3.18)

presented here is derived in [32] using the Bogomolny argument; the fact that Bogomolny

methods produce such a similar result is a nod to Q-balls’ solitonic nature, even though they

do not possess a topological charge.

Further corrections in (R∗)−1 can in principle be obtained by solving the higher-order equations

that result from inserting the profile expansion of Eq. (3.14) into Eq. (3.13). In practice

this is quite complex and not worthwhile when the leading order approximation is already so

accurate.
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3.1.3 Full global profile

The interior (3.12), exterior (3.8), and transition (3.18) region profiles in f found in above

are



























f< = f+ + c<
sinh(αρ)
ρ

ft =
�

1+ 2e2(ρ−R∗)
�−1/2

f> = c>
ρ e−

p
1−κ2ρ

(3.19)

They need to be joined together for the full profile of a global Q-ball. The coefficients c< and

c> in the interior and exterior solutions are determined by enforcing continuity of f and f ′ at

the matching points.

These profiles were derived in the region κ∼ 0,1 but some small adjustments will improve the

profile away from this limit. In the thin-wall limit, the scalar field transitions from f (0) = f+ =

1 and to f = 0 at large ρ. Away from this limit, it need not be the case that the maximum f+ =

1. The scalar field will start at some value f (0) ≈ f+, which is near the maximum f+, before

transitioning to f = 0 at large ρ. Rescaling the transition profile by f+ =
1
3

�

2+
p

1+ 3κ2
�

(Eq.

(2.38)) accounts for this disparity. The three profiles then take the form

f (ρ) = f+



































1− c<
sinh(αρ)
ρ

for ρ < ρ< ,

�

1+ 2e2(ρ−R∗)
�−1/2

for ρ< < ρ < ρ> ,

c>
ρ

e−ρ
p

1−κ2
for ρ> < ρ .

(3.20)

1Additional improvements are possible via the introduction of more parameters into the profile and minimiza-
tion of the resulting E for a fixed Q. This is not addressed further here.
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c<,> and ρ<,> must be determined by requiring f and f ′ to be continuous at ρ<,>. ρ< is

determined by the equation

2ρ< =
�p

1+ 2e2(ρ<−R∗) − 1
�

�

2+ e−2(ρ<−R∗)
�

[αρ< coth (αρ<)− 1] . (3.21)

This equation does not have a simple solution, but under the assumptions ρ<� R∗ and αρ<�

1 it becomes

ρ< ≈
1

α− 2
≈

1
2

R∗ , (3.22)

where the relationship κ2 = 1/R∗ was also used. The constant c< takes the form

c< =
2e2(ρ<−R∗)ρ2

<

[αρ< cosh(αρ<)− sinh(αρ<)] [1+ 2e2(ρ<−R∗)]3/2
≈ R∗e−2R∗ . (3.23)

The insight of this result is that the interior solution joins the surface solution about halfway

between the center of the Q-ball and the edge, and only for smaller R∗ does the sinh term play

a significant role. This also yields a prediction for the value of the profile in the center of the

Q-ball.

f (0) = f+ (1−αc<) (3.24)

This quantifies how the initial value of f on the potential is away from the maximum as R∗

becomes smaller, but only by exponentially small amounts.

The matching condition for ρ> is

e−2(ρ>−R∗) = 2

�

ρ>

1+ρ>
p

1− κ2
− 1

�

, (3.25)
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which leads the approximate solution

ρ> ≈ 2R∗. (3.26)

The integration constant c> follows as

c> = ρ>eρ>
p

1−κ2 �

1+ 2e2(ρ>−R∗)
�−1/2

≈
p

2R∗eR∗ . (3.27)

Interestingly, the matching point to the exterior solution is well beyond R∗. This shows again

that much of the full profile is well-approximated by the transition solution.

With these solutions for c<,> and ρ<,>, the full profile is approximated as

f (ρ) =
1
3

�

2+
p

1+ 3κ2
�



































1− R∗e−2R∗ sinh(αρ)
ρ

for ρ < R∗

2 ,

�

1+ 2e2(ρ−R∗)
�−1/2

for R∗

2 < ρ < 2R∗ ,

p
2R∗eR∗

ρ
e−ρ

p
1−κ2

for 2R∗ < ρ .

(3.28)

Figure 3.1 shows the accuracy of the full profile of Eq. (3.28) (using the improved R∗(κ) from

Eq. (3.52)) in comparison to exact (to machine precision) numeric solutions. Since the profile

was derived using approximations from the thin-wall limit (κ→ 0), the agreement of the right

panel (κ= 0.1) is better than the left panel (κ= 0.8); this is to be expected, although it is worth

noting that the agreement in the left panel is still excellent. Substituting the exact numerical

R∗ (not pictured) results in per-mille level agreement for large R∗, underscoring that (1) the

full profile of (3.28) performs superbly when precise values are available for R∗ and (2) even

better approximations for R∗ are needed to improve analytic predictions further. Refinement

of R∗(κ) is addressed in Section 3.1.5.
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Figure 3.1: Top: Profiles f (ρ) for κ = 0.8 (left) and κ = 0.1 (right). Bottom: Relative er-
ror between analytic approximations and exact results. These figures illustrate the excellent
agreement between the full profile of Eq. (3.28) (blue lines) and exact numeric results (black
dashed) for both small and large κ. The simpler transition profile (3.18), extended to cover
the entire Q-ball range (red dotted), is shown to be nearly equally as good as the full profile,
particularly for small κ.
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Perhaps most amazing is the excellent approximation the transition function provides to the

profile as a whole. The transition profile (3.18) is shown in Fig. 3.1 in red, with ρ now being

allowed to run over the full region 0≤ ρ <∞. For κ� 1 (right panel), this simplified profile

is absolutely indistinguishable from the full profile (3.28), with agreement much better than

the 0.01% level. Even for large κ, the agreement is still quite good, with the main divergences

as ρ → 0 and ρ → ∞. (This is owing to the fact that the boundary condition f ′(0) can

only be satisfied asymptotically as R∗ to0.) While the full profile obviously provides the best

description, the simplicity and relatively high accuracy of the transition profile (3.18) make it

an extremely useful approximation when taken with Eq. (3.52).

3.1.4 Charge and energy

The program of this section will first be performed with dimensionful quantities (e.g. r, ω,

φ0) for clarity regarding their connection to the fundamental Q-ball potential (2.10) and La-

grangians (2.11), (2.12), and (2.13), then will be calculated again using the dimensionless

quantities (ρ, Ω, Φ0) employed throughout the rest of this work. The charge and energy sec-

tions for gauged (Section 3.2.3) and Proca (Section 3.3.3) Q-balls will reproduce only the

dimensionless methods.

The charge of a Q-ball is the integral of the time component of the scalar current

Q ≡ i

∫

d3 x
�

φ∂ 0φ∗ −φ∗∂ 0φ
�

(3.29)

= 4πωφ2
0

∫

dr r2 f 2 (3.30)
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The energy is the Hamiltonian for global Q-balls.

E = 4πφ2
0

∫

dr r2

�

1
2

f ′2 +
1
2

f 2ω2 +
U( f )
φ2

0

�

=ωQ+ 4πφ2
0

∫

dr r2

�

1
2

f ′2 −
1
2

f 2ω2 +
U( f )
φ2

0

� (3.31)

A relationship between E and Q is already beginning to emerge. The expression for energy

can be simplified further. A trick that takes advantage of a property of Lagrangians, suggested

in [7], allows the energy integral (3.41) to be reexpressed without reference to the potential.

When varied with respect to χ, which is subsequently set to χ = 1, the Lagrangian (2.11)

becomes

Lglobal = 4πφ2
0

∫

dr r2

�

−χ ·
1
2

f ′2 +χ3 ·
1
2

f 2ω2 −χ3 ·
U( f )
φ2

0

�

. (3.32)

The χ-dependent Lagrangian has two parts: one that explicitly depends on χ and another in

which a variation appears because ρ-dependent functions now depend on χ, e.g. f (ρ) →

f (ρχ). This second collection of terms is simply the usual variation of the Lagrangian and

vanishes by definition when χ = 1.

The other part, with terms that depend explicitly on χ, must vanish when Lglobal is varied with

respect to χ.

0=
∂

∂ χ

�

4πφ2
0

∫

dr r2

�

−χ ·
1
2

f ′2 +χ3 ·
1
2

f 2ω2 −χ3 ·
U( f )
φ2

0

���

�

�

�

χ=1

(3.33)

0= 4πφ2
0

∫

dr r2

�

−
1
2

f ′2 +
3
2

f 2ω2 −
3U( f )
φ2

0

�

(3.34)

0= 4πφ2
0

∫

dr r2

�

1
2

f ′2 −
1
2

f 2ω2 +
U( f )
φ2

0

�

−
4π
3
φ2

0

∫

dr r2 f ′2 (3.35)

The second term in the last line can replace the first term where it appears in Eq. (3.41). This

constraint is productive because it allows E to be formulated with fewer integrals and without
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an explicit U( f ) dependence.

E =ωQ+
4π
3
φ2

0

∫

dr r2 f ′2 . (3.36)

Additionally, it illustrates the relationship between E, ω, and Q – namely, that E = ωQ up to

terms that depend on the derivative of f (r). For large Q-balls, these terms are subleading and

the relationship E =ωQ dominates.

This methodology can be revisited with dimensionless quantities. Q and E are straightforward

mappings.

Q = 4πΦ2
0 Ω

∫

dρρ2 f 2 (3.37)

E = 4πΦ2
0

Ç

m2
φ
−ω2

0

∫

dρρ2

�

1
2

f ′2 +
1
2

f 2Ω2 +
U( f )

Φ2
0(m

2
φ
−ω2

0)2

�

=
Ç

m2
φ
−ω2

0

�

ΩQ+ 4πΦ2
0

∫

dρρ2

�

1
2

f ′2 −
1
2

f 2Ω2 +
U( f )

Φ2
0(m

2
φ
−ω2

0)2

��

=
Ç

m2
φ
−ω2

0

�

ΩQ+ 4πΦ2
0

∫

dρρ2
�

1
2

f ′2 − Vglobal( f )
�

�

(3.38)

Rescaled by χ, the Lagrangian (2.23) becomes

Lglobal = 4πΦ2
0

Ç

m2
φ
−ω2

0

∫

dρρ2χ

�

−
1
2

f ′2 +χ2Vglobal( f )
�

. (3.39)

Variation provides the constraint

0= 4πΦ2
0

∫

dρρ2
�

−
1
2

f ′2 + 3Vglobal( f )
�

= 4πΦ2
0

∫

dρρ2
�

1
2

f ′2 − Vglobal( f )
�

−
4π
3
Φ2

0

∫

dρρ2 f ′2 .

(3.40)
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When substituted into the previous expression for energy, this yields

E =
Ç

m2
φ
−ω2

0

�

ΩQ+
4πΦ2

0

3

∫

dρρ2 f ′2
�

. (3.41)

Using the thin-wall limit, the charge Q (3.37) and the energy E (3.41) can be expressed with

forms that depend on R∗.

Using the profile (1.1), the charge can be directly integrated.

Q =
4π
3
Φ2

0 Ω R∗3 (3.42)

This is Coleman’s thin-wall charge prediction (1.2). The Q-ball charge is Φ2
0 Ω times the volume

of the Q-ball when ω0 > 0.

The Q-ball energy E can be integrated using the fact that, in the thin-wall limit, f ′ is only

nonzero at ρ = R∗.

∫ ∞

0

dρρ2 f ′2 = R∗2
∫ 1

0

d f f ′ (3.43)

Taking the thin-wall “energy” of (2.40) as conserved and zero gives another equality.

R∗2
∫ 1

0

d f f ′ =

∫ 1

0

d f
Æ

−2V ( f )
�

�

�

κ=0
(3.44)

When integrated, this gives Coleman’s thin-wall expression for the energy (1.3).

E =
Ç

m2
φ
−ω2

0

�

Ω0Q+
π

3
Φ2

0 R∗2
�

, (3.45)
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The first term is the volume contribution to the energy and the second is the surface contribu-

tion.

The improved profile of Eq. (3.28) additionally allows for further refinement of approximations

for Q and E. The integrals of interest,
∫

dρρ2 f 2 (c.f. Eq. (3.37)) and
∫

dρρ2 f ′2 (c.f. Eq.

(3.41)), can be performed analytically, although the expressions are long and not particularly

useful. More practically, in the large R∗ limit they read

∫

dρρ2 f 2 '
f 2
+R∗3

3

�

1−
3 ln2
2R∗

+
π2 + 3 ln2 2

4R∗2
−
(π2 + ln2 2) ln2

8R∗3

�

,

∫

dρρ2 f ′2 '
f 2
+R∗2

4

�

1+
1− ln2

R∗
+
π2 + (ln2− 2)3 ln2

12R∗2

�

.

(3.46)

Using Eq. (3.52), these expressions can also be expanded in in small κ.

The first integral is directly proportional to the dimensionful Q-ball volume 4π(m2
φ
−ω2

0)
−3/2

∫

dρρ2 f 2.

In the large R∗ limit, the volume tends to ' 4πR∗3/3. This is immediately visible at leading

order, since f+ = 1 in the thin-wall limit.

After substitution of (3.46), the dimensionless charge and energy become

Q '
4π
3
Φ2

0 Ω R∗3 f 2
+

�

1−
3 ln 2
2R∗

+
π2 + 3 ln2 2

4R∗2
−
(π2 + ln2 2) ln 2

8R∗3

�

,

E '
Ç

m2
φ
−ω2

0

�

ΩQ+
π

3
Φ2

0R∗2 f 2
+

�

1+
1− ln 2

R∗
+
π2 + (ln 2− 2)3 ln 2

12R∗2

��

.

(3.47)

Again, these reduce to the expressions in Eqs. (3.42) and (3.45) in the thin-wall limit (leading

order with f+ = 1). Together with Eq. (3.52), they furnish analytical approximations for Q

and E as a function of the potential parameters. Other quantities, such as pressure, can be

calculated straightforwardly; see e.g. [29]. The 1/R∗ terms dramatically improve the fit for

smaller Q-balls, as illustrated in the plots of Chapter 4.
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For ω0 > 0, Q and E of (3.47) scale as Q ∝ E ∝ R3 in the thin-wall limit. This is the

proportionality expected for a lump of Q-matter. [2] However, special care must be exercised

in the ω0 = 0 case, in which ω∝ 1/
p

R and thus Q ∝ R5/2 and E ∝ R2. [30] The lesson

here is that even though the scalar profile f only depends on the parameter κ, the physical

Q-ball properties must still be discussed in terms of the original Lagrangian parameters and,

in particular, depend on ω0.

How theoretically motivated are Q and E of Eq. (3.47)? Do they obey the relationship (2.64)

dE/dω=ω dQ/dω (or, equivalently, dE/dR∗ =ω(R∗) dQ/dR∗ (3.3))?

To check, the refined R∗(κ) can be inverted to determineω(R∗). With this substitution, it turns

out that dE/dR∗ =ω(R∗) dQ/dR∗ is valid up to terms of order (R∗)0.

Instead of taking R∗(κ) to be the fundamentally correct approximation, Q and E could be taken

as exact, and then κ(R∗) determined by Eq. (2.64). The resulting relationship is

κ2 =
1
R∗
+

1+ ln 16
8R∗2

+O
�

1
R∗3

�

. (3.48)

It isn’t an improvement over Eq. (3.52), though, which will be used as the refined approxima-

tion for R∗ where needed throughout this work.

3.1.5 R* – κ correspondence

R∗, the Q-ball radius, and κ, a dimensionless parameter that fully parameterizes the global

scalar profile, have a leading-order relationship derived in Eq. (3.6). This section refines that

relationship with higher-order corrections.
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in the physically interesting region of stable Q-balls (κG ® 0.84).

Refining the R∗ −κ correspondence starts with the work-energy integral of Eq. (2.42):

V ( f (0)) = 2

∫ ∞

0

dρ
ρ
( f ′)2 . (3.49)

For the full, global profile of Eq. (3.28), this integral must be evaluated piecewise over the three

regions of f . The integrands of the interior and exterior regions are suppressed by factors of

e−R∗ or more; this leaves only contributions from the simple transition function (3.18).

Working in the large R∗ / small κ limit and utilizing the analytical approximations of Section

3.1.3, namely

f (0)≈ f+ , ρ< ≈
R∗

2
, ρ> ≈ 2R∗ , (3.50)

the friction-loss integral becomes

V ( f+) = 8 f 2
+

∫ 2R∗

R∗/2

dρ
ρ

e4(ρ−R∗)

[1+ 2e2(ρ−R∗)]3
= 8 f 2

+

∫ R∗

−R∗/2

dz
z + R∗

e4z

[1+ 2e2z]3
. (3.51)
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In the last equality, the coordinate z = ρ−R∗ of Section 3.1.3 is substituted forρ. The integrand

is sharply peaked at z = 0, allowing the expansion of (z + R∗)−1 in powers of z/R∗. This peak-

iness also permits the extension of the limits of integration out to infinity, up to exponentially

suppressed terms. The resulting relation

R∗(κ) =
f 2
+

2V ( f+)
=

1
κ2
+

1
4
−

5κ2

16
+O(κ4) (3.52)

agrees with Eq. (3.6) to lowest order in κ2 but introduces subleading corrections that further

improve its agreement with the numerical solutions and provide a high degree of accuracy

across the Q-ball profile landscape.

An even more accurate relation that closely resembles Eq. (3.52) is

R∗(κ) =
1
κ2
−

1
4κ
+

3
2
− 2κ+

1

3
p

1−κ2
. (3.53)

This relationship was produced “experimentally” by tweaking and parameterizing Eq. (3.52)

to improve its fit to numerical results, while leaving its fundamental structure intact. It approx-

imates numeric results with an accuracy exceeding 2% in the region κ < 0.84 (or R∗ ¦ 1.5),

the significance of this region being that it allows the formation of stable global Q-balls (i.e.

Q-balls with E < mφQ). This ultra-precise relation produces extremely accurate expressions of

the global Q-ball’s energy and charge as a function of radius using the expressions in Section

3.1.4.

3.1.6 Stability

The primary requirement for Q-ball stability, given in Eq. (2.35), is

E < mφQ . (3.54)
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In general, this bound can be seen directly in plots of Q-ball parameters; see e.g. Figs. 4.4,

4.5, and 4.6.

The approximations (3.47) can be used to express the stability requirement in terms of ω, ω0,

and mφ for ω0� mφ.

ω

mφ

®
1

14

�

5+
p

41
�

+
�

1
8
+

37

56
p

41

�

ω2
0

m2
φ

(3.55)

Interestingly, the stability does not depend purely on κ but also on ω0/mφ, although it turns

out that this dependence is weak. Numeric results show that the region of stability is between

κ ® 0.82 (for ω0 = 0) and κ ® 0.84 (for ω0 ∼ mφ). This calculation is the basis for the

instability region denoted in several of the global Q-ball figures in Chapter 4.

3.2 Gauged Q-balls

3.2.1 Mapping

An observation from Section 2.10 suggests that there is a connection between the scalar tran-

sition region of global Q-balls and the transition region of gauged Q-balls. This arises from

the gauge field dynamics and the fact that the gauge field plays a minor role during the scalar

transition phase. The resultant “mapping” derived below allows for analytic approximations

in the style of global Q-balls.

The starting point for this mapping is, as ever, the thin-wall limit, with f approximated as

a step function, f (ρ) = 1 − Θ(ρ − R∗). This approximation for f can then be used to solve

the equation of motion (2.29) for A. With the requirement that A(ρ) and its derivative be
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continuous at ρ = R∗, a thin-wall profile for A is [7]

A(ρ) =
Ω

α















1−
sinh (αρ)

cosh (αR∗)αρ
, ρ < R∗ ,

αR∗ − tanh (αR∗)
αρ

, ρ ≥ R∗ .

(3.56)

As with the thin-wall approximation in the global case, this profile remains a good approxima-

tion to exact gauge field solutions even for thicker-wall scenarios (i.e. smaller R∗ and larger

κ).

When the Q-ball radius R∗ is large (i.e. in the thin-wall limit), Eq. (3.56) shows that the

derivative of αA is small.

|αA′(R∗)|=
Ω

R∗

�

�

�

�

tanh(αR∗)−αR∗

αR∗

�

�

�

�

<
Ω

R∗
(3.57)

This implies that αA is essentially constant during the transition. The scalar profile can now be

iteratively refined by solving the f equation of motion (2.28) around ρ ∼ R∗ with a constant

A.

f ′′ +
2
ρ

f ′ =
1

Φ2
0(m

2
φ
−ω2

0)2
dU
d f
− [Ω−αA(R∗)]2 f (3.58)

Herein lies the mapping. Equation (3.58) is exactly the form of Eq. (2.27) for global Q-balls,

with the global value of ΩG given by

ΩG = Ω−αA(R∗) (3.59)

Since the derivative of αA is small, it does not contribute significantly to the friction over

the transition region. This means that the frictional effects over the transition are also almost

identical to the global case. Since the relation between ΩG and R∗ is determined by the friction,
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if the R∗ dependence of the global Q-ball parameter ΩG(R∗) is known, then the R∗ dependence

of the gauged Q-ball Ω(R∗) can be determined via

Ω(R∗) = ΩG(R
∗)αR∗ coth(αR∗) . (3.60)

This correspondence makes use of Eq. (3.59) and the thin-wall formula of Eq. (3.56) for A(R∗).

It provides a mapping from global Q-balls, for which the relation ΩG(R∗) is much easier to

obtain both analytically and numerically, to gauged Q-balls for any α. Further, as argued above,

the scalar transition profiles for gauged Q-balls are expected to be identical to the transition

profiles for the corresponding global Q-balls (Eq. (3.18)). This rather simple argument leads

to surprisingly accurate analytic descriptions of gauged Q-balls.

There is another approach to arrive at the mapping of Eq. (3.60). This derivation again relies

on the estimations of the thin-wall limit, but it arrives at the mapping relationship via charge

Q and energy E rather than the scalar and gauge equations of motion.

Using the thin-wall profile ansätze f (ρ)' 1−Θ(ρ−R∗) [7] and A from Eq. (3.56), the charge

Q (Eq. (3.67)) can be easily obtained by integrating f and A.

Q =
4πΩΦ2

0

α3
(αR∗ − tanh(αR∗)) (3.61)

The energy (Eq. (3.74)) is

E =ωQ+
πφ2

0

3
q

m2
φ
−ω2

0

R∗2 −
4πφ2

0

3
q

m2
φ
−ω2

0

Ω2
�

αR∗
�

sech2(αR∗) + 2
�

− 3 tanh(αR∗)
�

2α3
,

(3.62)

Notice that the last term in E goes to zero for α→ 0, leading back to the global case.
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Eq. (3.3), written in the form dE/dR∗ = ω(R∗) dQ/dR∗ to reflect the dependence of ω on R∗,

yields a differential equation for ω(R∗). The solution to this differential equation is

ω(R∗) = coth(αR∗)
Ç

cR∗2 +α2(m2
φ
−ω2

0)R∗ . (3.63)

c is an integration constant that is difficult to obtain, but an approximation c = α2ω2
0 +O(α3)

is possible from matching Eq. (3.63) to the global case κ2 ' 1/R∗ (valid roughly for R∗ > 2).

This yields

ω(R∗) = αR∗ coth(αR∗)

√

√

√

ω2
0 +

m2
φ
−ω2

0

R∗
, (3.64)

which is identical to the more general mapping of Eq. (3.60) in the large R∗ limit, where

ωG '
r

ω2
0 +

m2
φ
−ω2

0

R∗ .

3.2.2 Gauged profile

The mapping in Eq. (3.60) lays a path to construct analytic estimates for gauged Q-ball profiles.

Eq. (3.60) furnishes the radius of a gauged Q-ball given the known relationship ΩG(R∗) from

the global Q-ball (Eq. 3.53). The scalar profile f (ρ) is the transition profile of global Q-balls

(Eq. (3.18)), which is shown in Section 3.1.3 to be a very good approximation for the full

global profile. The gauge profile A(ρ) is taken from Eq. (3.56).

f (ρ) =
1

p
1+ 2e2(ρ−R∗)

(3.65)

A(ρ) =
Ω

α















1−
sinh (αρ)

cosh (αR∗)αρ
, ρ < R∗ ,

αR∗ − tanh (αR∗)
αρ

, ρ ≥ R∗ .

(3.66)
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Figure 3.3: Left: Profiles of a “thick-wall” gauged Q-ball. Right: Profiles of a thin-wall gauged
Q-ball. Numeric results are solid lines (blue, green) and analytic approximations are dashed
lines (orange, red). Approximations are taken from Eq. (3.65).

Figure 3.3 displays a comparison between numeric calculations and the analytical estimates

of (3.65) for one choice of parameters. The numeric methods employed for this analysis are

detailed in Chapter 4, along with a description of the use of approximated scalar and gauge

field profiles as “seed functions” to power the computational solver.

Note that the two solutions in Fig. 3.3 have the same potential parameters and scalar frequency

ω, but they differ in their Q-ball observables such as radius, charge, and energy. These two

solutions correspond to the two solutions for R∗ obtained from the mapping in Eq. (3.60). As

the plot illustrates, the analytic profiles for f and A match the numeric results remarkably well,

especially for the large Q-balls (right panel), which is to be expected for profiles derived in the

large R∗ limit.

More plots and a discussion of their features are presented in Section 4.3.
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3.2.3 Charge and energy

The charge of a gauged Q-ball is the integral over the time component of the scalar current

Q = 4πΦ2
0

∫

dρρ2 f 2 (Ω−αA) (3.67)

= −
4πΦ2

0

α
lim
ρ→∞

ρ2A′ . (3.68)

The expression (3.68) uses the equation of motion for the gauge field (2.29) and the fact that

A′′ is zero except for a small area in the transition region, which contributes negligibly. This

implies that for large ρ,

A=
αQ

4πΦ2
0ρ

(3.69)

up to corrections that fall off faster than 1/ρ.

The energy is taken directly from the Lagrangian form (2.18)

E = 4πΦ2
0

Ç

m2
φ
−ω2

0

∫

dρρ2

�

1
2

f ′2 +
1
2

A′2 +
1
2

f 2 (Ω−αA)2 +
U( f )

Φ2
0(m

2
φ
−ω2

0)2

�

. (3.70)

Approximating the energy of gauged Q-balls borrows from the methodology for global Q-balls.

The starting point is the Lagrangian (2.24) with a rescaled radial coordinate ρ→ χρ.

Lgauged = 4πΦ2
0

Ç

m2
φ
−ω2

0

∫

dρρ2χ

�

−
1
2

f ′2 +
1
2

A′2 +χ2Vgauged( f , A)
�

(3.71)

Vgauged( f , A) is defined in Eq. (2.21). When varied with respect to χ, which is subsequently set

to χ = 1, the Lagrangian has two parts: a part that explicitly depends on χ and a part in which

a variation appears because ρ-dependent functions now depend on χ, e.g. f (ρ) → f (ρχ).

This second collection of terms is simply the usual variation of the Lagrangian and vanishes by
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definition when χ = 1. Requiring the other term in the variation, which depends explicitly on

χ, to also vanish provides the constraint

0=

∫

dρρ2
�

−
1
2

f ′2 +
1
2

A′2 + 3Vgauged( f , A)
�

. (3.72)

This constraint allows E to be formulated without an explicit U( f ) dependence.

E =4πΦ2
0

Ç

m2
φ
−ω2

0

∫

dρρ2
�

1
3

f ′2 +
2
3

A′2 + f 2(αA−Ω)2
�

=4πΦ2
0

Ç

m2
φ
−ω2

0

∫

dρρ2
�

1
3

f ′2 +
2
3

A′2 +
1
αρ2
(αA−Ω)

�

ρ2A′
�′
�

(3.73)

The second equality makes use of the equation of motion for A from Eq. (2.29). When the

third term is integrated by parts, the expression becomes

E =
Ç

m2
φ
−ω2

0

�

ΩQ+
4πΦ2

0

3

∫

dρρ2
�

f ′2 − A′2
�

�

. (3.74)

This result may alternately be expressed with the potential Vgauged( f , A), which eliminates

derivatives in E.

E =
Ç

m2
φ
−ω2

0

�

ΩQ+ 8πΦ2
0

∫

dρρ2 Vgauged( f , A)

�

(3.75)

As discussed in Section 3.2.1, in the limiting situation of large R∗, the expressions for charge

and energy simplify to

Q =
4π
α2
Φ2

0 (αR∗ coth(αR∗)− 1)
q

R∗2Ω2
0 + R∗ , (3.76)

E =
πmφR∗Φ2

0csch2(αR∗)

6α
Æ

Ω2
0 + 1

�

αR∗
�

4R∗Ω2
0 + 3

�

− 6
�

R∗Ω2
0 + 1

�

sinh(2αR∗)

+αR∗
�

8R∗Ω2
0 + 9

�

cosh(2αR∗)
�

. (3.77)
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These predictions are more approximate than the full integrals, which are calculated in Mathematica

and used to generate the figures, but they are much more manageable and still make excellent

predictions at large R∗. They are included here for their utility in that regard.

Finally, a word about maximal radii and their connection to Q and E. In Section 4.3, the

numeric solutions all show maximal radii. For a given benchmark, this maximal radius can

have one of two origins: (1) the inequality of Eq. (2.47) or (2) κ= κmax = 1. For benchmarks

in which R∗max is set by the condition κ= 1 rather than by Eq. (2.47), a prediction can be made

for R∗max. Eq. (3.60) and the substitution of the large-R∗ relation κglobal = 1/
p

R∗ (Eq. (3.6))

yields

α2R∗max(1+ R∗maxΩ
2
0) coth2(R∗maxα)−Ω

2
0 = 1 . (3.78)

This equation cannot be solved analytically, but has the limiting cases

R∗max '











1
α2 , for Ω0 ® α ,

1
αΩ0

, for Ω0� α .
(3.79)

Since both charge and energy grow with R∗ for large radii, this R∗max also implies a maximal Q-

ball charge and energy for a given set of potential parameters, which can be seen in the figures

of Section 4.3. This qualitative claim was made in Ref. [7], but without the quantitative

predictions and numeric verification presented here.

3.3 Proca Q-balls

Lastly are Proca Q-balls, i.e. gauged Q-balls where the gauge field is massive. The Proca

Q-balls analytical discussion will look very similar to that of gauged Q-balls, only with more

complexity. Proca Q-balls are the most general types of Q-balls; global and gauged Q-balls are

61



special cases of Proca Q-balls, with α → 0 and M → 0, respectively. This provides a useful

check for derived Proca approximations, which must return to the approximations of Section

3.1 and 3.2 in their respective limits.

3.3.1 Proca profile

The discussion begins, as usual, in the thin-wall limit, with the scalar profile approximated by a

step function, f ∼ 1−Θ(ρ−R∗) [2, 7], which is defined exclusively by the radius R∗. This was

the starting ansatz in both the global (M →∞) and gauged (M → 0) cases, and is sensible

here given that the gauge boson mass interpolates between these two cases. Using this ansatz

for f , the differential equation for A, Eq. (2.31), yields the solution

A(ρ) =
αΩ

µ2















1−
1
ρ

(1+MR∗) sinh (ρµ)
µ cosh (R∗µ) +M sinh (R∗µ)

, ρ < R∗

R∗µ− tanh (R∗µ)
µ+M tanh (R∗µ)

e(R
∗−ρ)M

ρ
, ρ ≥ R∗

. (3.80)

It has been required that A and A′ be continuous at ρ = R∗. A new quantity µ ≡
p
α2 +M2 is

introduced, which is the effective mass of the gauge field inside the Q-ball. Like in the gauged

case, the thin-wall A profile is a good approximation of the exact solution when the radius is

not large; see for example the green dashed lines in Fig. 2.5.

The scalar profile can be improved by replacing the step function by the transition profile

f =
1

p
1+ 2e2(ρ−R∗)

, (3.81)

which was derived for the global case (c.f. Eq. (3.18)) and shown to be an excellent approxi-

mation for scalar profile for all radii. The transition function continues to hold its own even in

the presence of gauge and Proca fields; see the red dashed lines in Fig. 2.5 for an illustration

of its efficacy.
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3.3.2 Mapping

The following discussion maps closely to Section 3.2.1 (pun intended).

As with the gauged case, it is expected that the derivative of A will be small when f transitions

from 1 to 0. Eq. (3.80) allows an estimate for how much αA changes in the scalar transition

region.

|αA′(R∗)|= α2Ω(1+MR∗)
µ2R∗2

�

�

�

�

tanh(µR∗)−µR∗

µ+M tanh(µR∗)

�

�

�

�

<
αΩ

3
(3.82)

This implies that αA′ � 1 for small αΩ during the f transition from interior to exterior, so

A is approximately constant. In fact, this mapping is qualitatively, and often quantitatively,

accurate even beyond the small αΩ limit, as shown below.

In the region around ρ ∼ R∗, the f equation in Eq. (2.30) takes the form

(ρ2 f ′)′ =
ρ2

Φ2
0(m

2
φ
−ω2

0)2
dU
d f
−ρ2 [Ω−αA(R∗)]2 f . (3.83)

As with the gauged case, this is the form of the potential for the global Q-ball equation with

the global value of Ω= ΩG given by

ΩG = Ω−αA(R∗) . (3.84)

This makes clear that the f transition profiles for Proca Q-balls can be identified with partic-

ular transition profiles for global Q-balls. This is very convenient, as an excellent and simple

approximation for global transition profiles has already been identified in Eq. (3.18).

However, these profiles only match when the amount of friction is the same for both the global

and gauged cases, which implies that the radius R∗ is the same for each. Therefore, if the R∗

dependence of the global Q-ball parameter ΩG(R∗) is known, the R∗ dependence of the Proca
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Q-ball Ω(R∗) can be determined via

Ω(R∗) = ΩG(R
∗)
�

1−
α2

µ2R∗
R∗µ− tanh(R∗µ)
µ+M tanh(R∗µ)

�−1

(3.85)

Here the profile given in Eq. (3.80) has been used for A(R∗). A check that Ω(R∗) → ΩG(R∗)

for either α → 0 or M →∞ confirms that this relation holds for the limiting case of global

Q-balls; M → 0 reduces to the gauged mapping relation of Eq. (3.60).

This mapping provides remarkably accurate predictions using the much simpler results from

global Q-balls, for which ΩG(R∗) is easier to obtain both analytically and numerically. Both the

gauged mapping of Eq. (3.60) and the Proca mapping of Eq. (3.85) are recent, novel additions

to the Q-ball literature. They were introduced in a series of papers [33, 34] by the author and

collaborators.

The mapping of Eq. (3.85) can lead to a maximal radius constraint for certain Proca Q-balls,

although the complexity of the mapping initially makes this difficult to see. Taken in the large

R∗ limit and using the relation Ω2
G ' Ω

2
0 + 1/R∗ in Eq. (3.85), κ approaches

κ(R∗→∞)→
αΩ0

M
(3.86)

for M > 0. Since stable localized Q-balls require κ≤ 1 (corresponding to ω≤ mφ), the imme-

diate implication of Eq. (3.86) is that Proca Q-balls with M < αΩ0 exhibit a maximal radius

just like gauged Q-balls. Proca Q-balls with M > αΩ0 can potentially be arbitrarily large like

global Q-balls.2 This quantifies previous statements that heavy (light) gauge bosons give rise

to solitons that resemble global (gauged) ones. Eq. (3.86) provides another qualitative point

of evidence for the statement that Proca Q-balls interpolate between the global and gauged

cases via the gauge boson mass.

2Additional relations need to be satisfied to evade a maximal radius, in particular Eq. (2.47).
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3.3.3 Charge and energy

The charge and energy of Proca Q-balls fellow from the methods of the global and gauged

cases. The charge is the integral over the time component of the scalar current.

Q = 4πΦ2
0

∫

dρρ2 f 2 (Ω−αA) (3.87)

Using the equation of motion (2.31), the charge can be rewritten as

Q =
4πΦ2

0

α

∫

dρρ2
�

A′′ +
2
ρ

A′ −M2A
�

(3.88)

A′′ is zero except for within a small area around the transition region, and its contribution is

negligible.

The energy comes as usual from the Hamiltonian

E = 4πΦ2
0

Ç

m2
φ
−ω2

0

∫

dρρ2

¨

1
2

f ′2 +
1
2

A′2 +
1
2

f 2 (Ω−αA)2 +
U( f )

Φ2
0(m

2
φ
−ω2

0)2
+

M2

2
A2

«

=
Ç

m2
φ
−ω2

0

�

ΩQ+
4πΦ2

0

3

∫

dρρ2
�

f ′2 − A′2
�

�

.

(3.89)

As in the gauged case, the charge and energy of Proca Q-balls can be refined by the results of

the scalar and gauge field profiles in the Proca case. Deriving a simplified expression for the

energy proceeds exactly as in the gauged case in Section 3.2.3.

Rescaling the radial coordinate ρ→ χρ in the Lagrangian (2.25) yields

L =
Ç

m2
φ
−ω2

0 4πΦ2
0

∫

dρρ2χ

�

−
1
2

f ′2 +
1
2

A′2 +χ2Vproca( f , A)
�

. (3.90)
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When this Lagrangian is varied with respect to χ, there emerge two parts with different χ de-

pendences: a set of terms in which the variation is implicit in the functions f (ρ)→ f (ρχ), A(ρ)→

A(ρχ), which vanishes when χ = 1; and a set of terms that explicitly depend on χ. This second

set of terms must also vanish when χ = 1.

0=

∫

dρρ2
�

−
1
2

f ′2 +
1
2

A′2 + 3V ( f , A)
�

(3.91)

This constraint allows Eq. (3.89) to be expressed without an explicit U( f ) dependence.

E = 4πΦ2
0

Ç

m2
φ
−ω2

0

∫

dρρ2
�

1
3

f ′2 +
2
3

A′2 + f 2(αA−Ω)2 +M2A2
�

= 4πΦ2
0

Ç

m2
φ
−ω2

0

∫

dρρ2
�

1
3

f ′2 +
2
3

A′2 +
1
αρ2
(αA−Ω)

�

ρ2A′
�′
+

M2Ω

α

�

(3.92)

Integration of the third term by parts produces

E =
Ç

m2
φ
−ω2

0

�

ΩQ+
4πΦ2

0

3

∫

dρρ2
�

f ′2 − A′2
�

�

. (3.93)

3.3.4 Relationship between energy, charge, and frequency

Section 2.12 discusses the relationship between energy, charge, and frequency in the global

case and interprets it physically as a type of chemical potential. This section provides a deriva-

tion to show that the relationship Eq. (3.3) remains valid in the Proca case with nonzero M .

The definition of Q for Proca Q-balls is

Q = 4πΦ2
0

∫

dρρ2 f 2 (Ω−αA) (3.94)

=
4πΦ2

0M2

α

∫

dρρ2A−
4πΦ2

0

α
lim
ρ→∞

ρ2A′ , (3.95)
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where the second line uses the equation of motion (2.31) for A. If M = 0, this implies that for

large ρ

A=
αQ

4πΦ2
0ρ

, (3.96)

up to corrections that fall off faster than 1/ρ [7]. For M 6= 0, requiring a finite Q implies A

falls off faster than 1/ρ; therefore

Qα
4πΦ2

0M2
=

∫

dρρ2A . (3.97)

These results lead to a rewriting of the Proca energy (3.89).

E = 4πΦ2
0

Ç

m2
φ
−ω2

0

∫

dρρ2
�

1
2

f ′2 +
1
2

A′2 + f 2(Ω−αA)2 +M2A2 − Vproca( f , A)
�

= 4πΦ2
0

Ç

m2
φ
−ω2

0

∫

dρρ2
�

1
2

f ′2 +
1
2

A′2 +
1
αρ2
(Aα−Ω)

�

ρ2A′
�′
+
ΩM2

α
A− Vproca( f , A)

�

(3.98)

The equation of motion (2.31) is used in the second line. The third term can be integrated by

parts; when M = 0 this produces a nonzero boundary term determined by Eq. (3.96). When

M 6= 0, the boundary term vanishes and the fourth term can be evaluated using Eq. (3.97).

For either mass,

E =ωQ− L . (3.99)
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The derivative of L turns out to be Q.

dL
dω
=
Ç

m2
φ
−ω2

0 4πΦ2
0

∫

dρρ2
�

− f ′
d f ′

dΩ
+ A′

dA′

dΩ
+

dV
dΩ

�

=
Ç

m2
φ
−ω2

0 4πΦ2
0

�

ρ2A′
dA
dΩ

�

�

�

�

∞

0

+

∫

dρρ2
�

−
d f
dΩ
∂ V
∂ f
−

dA
dΩ
∂ V
∂ A
+

dV
dΩ

�

�

=
Ç

m2
φ
−ω2

0 4πΦ2
0

∫

dρρ2∂ V
∂Ω

=Q , (3.100)

The large-ρ A (3.96) should be used to evaluate the limit in the second line when M = 0. This

result implies that

dE
dω
=ω

dQ
dω

. (3.101)

This extends the relationship dE/dω=ω dQ/dω to the case of nonzero M .
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Chapter 4

Numeric solutions

4.1 Methods

There are a variety of methods for solving the scalar and gauge field equations of motion

numerically, particularly in the simplest case of global Q-balls.

The mechanical analogy of a particle rolling down a potential in the presence of friction (see

Section 2.10) suggests the “shooting” method. With this technique, an initial, numeric value

for f is selected at ρ = 0, then the equation of motion is numerically integrated out to ρ� 1.

A visual inspection confirms whether f has overshot or undershot the f = 0 maximum of the

potential. The guess for f is then manually tuned until eventually the field comes to rest on

the f = 0 point of the effective potential. While numerically simple and easy to implement,

this method is tedious and difficult to automate. Furthermore, it becomes completely unwieldy

for the coupled differential equations of the gauged and Proca cases. The precision required

to arrive at viable coupled solutions is functionally impossible to approach simultaneously in

each variable.
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Another option in the global case is to interpret the differential equation (2.27) as a vacuum

tunneling process. Various computer codes exist to efficiently solve the vacuum tunneling

problem, e.g. AnyBubble [35], and they can easily be repurposed to solve for Q-ball profiles.

Like the shooting method, however, these software packages cease to be useful when the gauge

field is introduced. Their main utility in this work was to confirm the results and behavior of

the custom Mathematica notebooks created for this project in the global case, which was

subsequently used to check the behavior of the gauged and Proca cases.

The final approach for all three cases was to solve the boundary value problems directly via the

finite element methods of Mathematica. Unfortunately, Mathematica cannot reliably solve

differential equations in which some of the boundary conditions are taken at infinity. To evade

this computational difficultly, a new, compactified radial coordinate y can be substituted for ρ

in the equations of motion.

y =
ρ

1+ρ/a
(4.1)

a is any positive number. It is taken in all numeric solutions to be a = 1000. This new coordi-

nate maps the range ρ ∈ [0,∞) to y ∈ [0, a], and ρ derivatives become

d
dρ
=

dy
dρ

d
dy
=
�

1−
y
a

�2 d
dy

. (4.2)

The global differential equation (2.27) is now

�

1−
y
a

�4�

f ′′ +
2
y

f ′
�

+
dVglobal

d f
= 0 , (4.3)

with the boundary conditions f ′(0) = 0 and f (a) = 0. A boundary condition at a = 1000

rather than ρ =∞ is handled much more gracefully by Mathematica.
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The differential equations (2.28), (2.29), (2.30), and (2.31) become

�

1−
y
a

�4�

f ′′ +
2
y

f ′
�

+
∂ V ( f , A)
∂ f

= 0 , (4.4)

�

1−
y
a

�4�

A′′ +
2
y

A′
�

−
∂ V ( f , A)
∂ A

= 0 , (4.5)

where V ( f , A) is either Vgauged( f , A) or Vproca( f , A) depending on the context. The gauge field

introduces two new boundary conditions: A′(0) = 0 and A(a) = 0.

Q-balls with certain potential configurations, particularly in regions of parameter space in

which viable Q-ball profiles are densely spaced (usually because they have highly varying radii

for similar κ), are beyond Mathematica’s capacity to solve unassisted. In this situations, pre-

cise guess functions, i.e. seed functions, that are highly similar to the expected numerical

solution are needed. The analytic approximations of Chapter 3 are generally accurate enough

to serve as these seed functions.

In some regions, even the very accurate analytic approximations are not precise enough to aid

Mathematica in converging on a correct solution. In these instances, previously generated

numeric solutions for similar κmay serve as seed functions instead. Iterative use of solutions as

seed functions can generate Q-ball solutions in otherwise unreachable parameter space. Taken

to extreme precisions, this iterative method is dubbed “crawling”. An automated, iterative

solution loop capable of many digits of precision in κ, “the Crawler,” provides access in the

most solution-resistant regions of parameter space.

A downside of radial compactification is the uneven visualization of Q-balls when the pro-

file solutions are plotted over y . The features of large Q-balls are radially compressed when

plotted vs. y relative to small Q-balls. In practice, this is not a problem, as large Q-balls are

already well-described by approximations in the thin-wall limit. This note applies only to plot-

ting considerations encountered in the course of working with the compactified coordinate in
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Mathematica and is not relevant to a casual reader, as all plots and figures shown here are

plotted in the true, non-compactified radial coordinate ρ, not y .

4.2 Global

Fig. 2.1 shows the potentials and profiles for several values of 0 < κ < 1. In the left plot,

the single-particle trajectories that lead to Q-ball solutions are plotted as solid lines, while the

remainder of the potential is dashed. The initial position of the particle, which corresponds to

the value of f (0) at the center of the Q-ball, is marked by a solid point. The corresponding

f (ρ) profiles are shown in the right plot; they are analogous to the position of the particle as

a function of time.

The right plot in Fig. 2.1 shows that Q-balls become bigger and less rounded for smaller κ. In

fact, global Q-ball profiles tend to a step function as κ→ 0, which is Coleman’s thin-wall limit.

[2] Small κ solutions are called thin-wall profiles. Conversely, when κ → 1, Q-balls become

more “fuzzy” (i.e. their transition region is wider and more diffuse) and approach the trivial

vacuum solution f = 0. Past a certain threshold, estimated analytically in Eq. (3.55), these

thick-wall Q-balls are unstable; see e.g. Fig. 4.2. The Q-ball radius f ′′(R∗) = 0 also has a clear

physical meaning in the profiles of Fig. 2.1 as the midpoint of the transition region.

The following figures and discussion are a granular comparison of various global Q-ball pre-

dictions to their corresponding numeric results. While such a comparison is not undertaken for

gauged and Proca Q-balls, they are closely related to global Q-balls via their mappings (Eqs.

(3.60) and (3.85), respectively), and thus the precision demonstrated here for global Q-balls

indirectly applies to them, too.

Fig. 4.1 compares the analytically-derived Q and E component integrals of (3.46) (blue curve)

to numeric results (black dashed) for those same integrals. The agreement is excellent for
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Figure 4.1: The integrals
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dρρ2 f ′2 (bottom) as a function of R∗ (left)
and κ (right). The dashed black line denotes the exact numerical solution and the blue solid
line the predictions (3.46).
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Figure 4.2: R(ω) (left), Q(ω) (middle), and E(ω) (right) for the potential parameter set φ0 =
mφ, ω0 = 0. In the upper row, black (red) dashed lines show the exact numeric values in the
stable (unstable) regime. Blue and red solid curves are the approximations of Eq. (3.47). The
lower row provides the relative difference between exact and approximate values. The red
region ω¦ 0.82 is the realm of unstable Q-balls with E > mφQ.

stable Q-balls, i.e. κ® 0.8. As a function of R∗, analytic result for
∫

dρρ2 f 2 approximates the

true numeric solution to better than 1% for stable Q-balls. The agreement as a function of κ

is not as good, with the match worsening to 13% near κ∼ 0.5. This is due to imperfect R∗(κ)

modeling. The integral
∫

dρρ2( f ′)2 agrees with the numerical results to better than 5% for

R∗ > 2 and better than 13% for κ® 0.8.

Fig. 4.2 evaluates the accuracy of the approximation (3.52) of R∗(ω) with the parameters

φ0 = mφ, ω0 = 0. Beyond ω ∼ 0.82mφ (red region), the Q-balls have E > mφQ and are

unstable to fission; accuracy is not phenomenologically important here. The analytic estimate

(3.52) agrees with the numeric results to better than 5% in the stable Q-ball regime, another

fantastic result. As expected, in the thin-wall limit ω → ω0 the agreement becomes exact,

since the analytic approximations were derived in this limit.

Shown in the middle and right columns are Q and E as functions of ω, respectively. The

numeric and analytic results agree to better than 13% over the entire stable region. The im-

provement over the original simple, thin-wall formulas (3.2), for which agreement was only
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Figure 4.3: Q(R∗) (top) and E(R∗) (bottom) for φ0 = mφ andω0 = 0 (left), ω0 = mφ/2 (right).
Dashed black lines are the exact solution in the stable regime; dashed red lines are unstable
exact solutions. Blue solid lines are the predictions of Eq. (3.47).

50%, makes the success of the refined estimates even more apparent. Errors in the approxi-

mation R∗(ω) propagate into magnified errors in Q and E, which explains the relatively worse

agreement compared to R∗(ω). The fit for Q(ω) and E(ω)could be improved with a further

refined R∗(ω).

Fig. 4.3 demonstrates the accuracy of Q(R∗) and E(R∗) using ω(R∗) from the inversion of Eq.

(3.52). The agreement is superior to that of Q(ω) and E(ω) shown in Fig. 4.2: better than

3% for Q(R∗) and 5% for E(R∗) for stable Q-balls. This is an order-of-magnitude improvement

over the first-order approximations of Eq. (3.2), which have agreement as poor as 40%. This

excellent agreement further demonstrates that R∗(ω) is the dominant source of error, while

the explicit dependence on the radius in (3.47) is very accurate.
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Fig. 4.3 also illustrates the qualitative difference of the two cases ω0 = 0 (left column) and

ω0 > 0 (right column). For large R and ω0 6= 0, E ∝ Q∝ R3 as expected from the thin-wall

approximation. However, as observed in Ref. [30], for ω0 = 0, ω ∼
Æ

mφ/R for large R and

thus Q∝ R5/2 and E∝ R2. In the unstable regime, which is not well-approximated, numeric

results give E ' mφQ∝ R for large R for all ω0.

4.3 Gauged

Examining a range of benchmarks, i.e. combinations of potential parameters, provides infor-

mation about Q-balls in the aggregate. Fig. 4.4 plots Q-ball predictions and numeric solutions

for the benchmark point Ω0 = 5 and α = 1/100, where φ0 = mφ and all dimensional quan-

tities are measured in units of mφ. In the top left panel, the numerical results for κ vs. R∗

(circles) are compared with the prediction of Eq. (3.60) (line). The other panels show the

analogous results for E/mφ,Q, and (E/mφQ). Overall, there is excellent agreement between

the numerical and analytical results.

The existence constraints on Q-balls are clearly visible in these figures. First, ω ≤ mφ (or

κ ≤ 1) (c.f. discussion in Section 2.3). This implies a maximum Q-ball radius.1 Secondly,

E ≤ mφQ ensures that the Q-ball is stable against decay to scalars. This constraint implies

the existence of a minimal Q-ball radius, which can be best seen in the top right panel of Fig.

4.4. Q-balls with E > mφQ are unstable; this is shown in the figure with a dashed line for the

prediction and open markers for the numeric solutions. The stable solution with smallest R∗ is

demarcated by a star.

Finally, the constraint of Eq. (2.47) requires that the scalar potential have a second maximum

away from f = 0. This puts an upper bound on the radius which, for this benchmark, is more

1This constraint could in theory be circumvented by a contrived and thorny potential designed to do just that.
Such a potential is not of interest here.
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Figure 4.4: A comparison of predictions from Eq. (3.60) to numeric solutions for κ (top left),
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restrictive than the maximal radius determined by the relationω≤ mφ. Using Eq. (2.47) with

A = A(0) from the thin-wall approximated profile from Eq. (3.56), this maximal radius R∗max

can be calculated numerically. R∗max is a prediction and can be seen in Fig. 4.4 where the solid

prediction line ends before κ = 1. Since the thin-wall A(0) overestimates the true value, R∗max

is slightly smaller than the true maximal radius (a rectangle in the plot), but the agreement is

still good.

One interesting feature in the κ vs. R∗ plot of Fig. 4.4 is the existence of a minimum allowed

value of κ. An analytic expression for this minimum value can found and, since this minimum

value must be less than or equal to one for Q-balls to exist, leads to the constraint

α®
1

Æ

1/(0.58)2 + 9Ω2
0/2

. (4.6)

This predicts that there are no gauged Q-balls with α > 0.58. Numeric solutions give the actual

upper limit α = 0.52. Ref. [7] notes that for any scalar potential (and its implied attractive

force) there must be an upper bound on the allowed gauge coupling (and its implied repulsive

force) in order to form a stable Q-ball. This upper bound is Eq. (4.6).

The lower panels of Fig. 4.4 illustrate the behavior of Q and E as a function of R∗. Both Q

and E inherit minimal and a maximal values from their corresponding radii. The analytical

predictions of Section 3.2 match the numerical results in the region where Q-balls are stable.

Analytic and numeric results for several other benchmarks are compared in Fig. 4.5. The ana-

lytic predictions show only small deviations with respect to the numeric results for all bench-

marks, demonstrating the resounding success of the analytic methods and approximations pre-

sented here. The plots also illustrate that the mapping in Eq. (3.60) holds both qualitatively

and quantitatively over the whole parameter space.
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Using analytic approximations in concert with numeric results, it can be determined that stable,

gauged Q-balls have R∗ ¦ 1.5, which is similar to the lower limit of R∗ ∼ 1.5 found for global

Q-balls. This matches the physical expectation that the introduction of a repulsive force to a

Q-ball should not decrease the Q-ball radius.

Finally, observe that for Ω0 = 0, the scalar profile is found to be essentially constant in the

interior of thin-wall Q-balls (Fig. 3.3, right), and that approximations become more accurate,

especially for small α, where the solutions approach the global Q-ball case. For larger Ω0, the

solutions deviate from the global case (Fig. 2.3), but the predictions remain quite accurate.

4.4 Proca

Fig. 2.5 shows two examples of predicted profiles for f and A plotted alongside exact numeric

results. The agreement is particularly good for small α and large R∗ – the approximations that

the mapping formula and profile functions are predicated on – but the predictions remain good

for large α and small R∗ as well.

Some benchmark scenarios for Proca Q-balls are shown in Fig. 4.6. In addition to exact nu-

meric solutions (circles), analytical predictions (curves) for κ(R∗) from the mapping relation

in Eq. (3.85) are plotted, as well as the predictions for E and Q. The κ(R∗ →∞) behavior

from Eq. (3.86) is clearly visible in the M = 0.25 and M = 1 benchmarks in the left column.

The benchmark point M = 0.1 exhibits an instability at R∗ ∼ 23 due to violation of Eq. (2.47)

and therefore has a maximal radius. Using Eq. (2.47) together with A= A(0) from Eq. (3.80)

and the mapping relation predicts this instability at R∗ > 16, which qualitatively agrees with

the numerical result. The M = 0.1 benchmark also supports Q-shells, which are discussed in

Chapter 5.
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The behavior of κ(R∗) in the benchmarks in the left column suggests a straightforward relation-

ship between κ and R∗. The benchmarks of the right column show that this is not universally

the case. For small Ω0, κ(R∗) can have a local maximum at large R∗ and thus up to three

“branches” of Q-ball solutions for a given κ.2 Because Ω0 = 0, these Proca Q-balls resemble

global Q-balls for very large R∗ and have no maximal charge or radius. However, the case

M = 1/500 has an instability region around R∗ ∈ (200, 2000), defined by κ > 1 and E > mφQ.

These disconnected stability regions are a novel feature of Proca Q-balls.

2Some types of Q-balls may have multiple valid solutions with different radii for a single κ. These sets of
solutions are grouped into “branches,” where small radii up to those associated with a minimum or local minimum
in κ form the first branch, medium radii from the local minimum in κ to the local maximum κ form the second
branch, and the remaining large radii form the third branch.
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Chapter 5

Other Q-states: Q-shells and excited

Q-balls

The bulk of this thesis has predominantly treated Q-balls, the spherically symmetric solutions to

the Q-ball equations of motion, which physically take the form of a dense ball of Q-particles.

Q-solitons also come in other variants; Q-shells and excited states of Q-balls will be briefly

discussed here.1

Q-shells are solutions to the Q-ball equations of motion (2.26) in which the scalar field φ

configures into a spherical shell rather than a solid ball. Importantly, they only arise in the

presence of a gauge field, i.e. in the gauged and Proca cases. Only Q-balls exist in the global

case. Proca Q-shells are particularly interesting because they fall into two classes: solutions

that map to gauged Q-shells as M → 0 and solutions that have no M → 0 analogue. The

existence of a new class of Proca Q-shells that has no massless gauged Q-shell equivalent is

another exciting demonstration of the novel affects that arise uniquely from a gauge field mass.

1Q-shells can, in principle, also exhibit excited states. These states are complex and will not be discussed here.
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An analytic approach to Q-shell solutions follows the methodology of Chapter 3. In the style

of Eq. (1.1), the scalar profile of large radius Q-shells can be approximated as simply

f (ρ) =



























0 , ρ < R< ,

1 , R< ≤ ρ ≤ R> ,

0 , R> < ρ .

(5.1)

ρ is the radial coordinate, while R< and R> are the inner and outer radii of the shell, respec-

tively.

As previously, this ansatz can be used to solve the equation of motion for the gauge field, A.

A(ρ) =































A<
R<
ρ

sinh(Mρ)
sinh(MR<)

, ρ < R< ,

αΩ

µ2
−

A1

ρ
sinh(µρ)−

A2

ρ
cosh(µρ) , R< ≤ ρ ≤ R> ,

A>
R>
ρ

e(R>−ρ)M , R> < ρ

(5.2)

A<, A1, A2, and A> are determined by demanding continuity of A and A′ at R< and R>.

Already f (ρ) and A(ρ) are good descriptions of exact Q-shell solutions; however, f (ρ) can be

further improved by the introduction of a modified version of the transition function (3.18).

f (ρ) =
1

p
1+ 2e2(R<−ρ)

1
p

1+ 2e2(ρ−R>)
(5.3)

The top panel of fig. 5.3 demonstrates the excellent qualitative and respectable quantitative

performance of these approximations when compared to exact results.

Expressions for R< and R> as a function of potential parameters allow Q-shells to be fully, if

approximately, analytically specified. Requiring continuity in A and A′ and R< and R> provides

four constraints for the six parameters A<, A>, A1, A2, R<, and R>. The energy-due-to-friction
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Figure 5.1: Predictions for the Q-shell radii R> (left) (Eq. (5.5)) and R< (right) (Eq. (5.4)) at
various values of the gauge boson mass M . The narrow Q-shell radii R>,< diverge at κ given by
Eq. (5.6). The wide Q-shell radii R> are degenerate with the Q-ball radii (dashed), and both
end at a radius that is determined by Eq. (2.47) for a given Ω0 (not shown in the plot). The
predictions are plotted in terms effective parameters Ω2

0R>,< and κ/Ω0, which are the original
parameters rescaled by Ω0 as described in [36].

relation of Eq. (2.57) provides the two additional constraints needed to approximate R< and

R>, as detailed in [36].

R< ' −
�

κ2 −αA< (2Ω−αA<)
�−1

, (5.4)

R> '
�

κ2 −αA> (2Ω−αA>)
�−1

(5.5)

While not as conducive to further analytic solubility as similar expressions for Q-balls, Eqs.

(5.1) and (5.2) can be solved numerically to predict Q-shell radii as a function of the potential

parameters.

As with Q-balls, κ may be determined as a function of the potential parameters.

κ2 ∼
α2 −M2 +

q

(α2 −M2)2 + 8Mα2Ω2
0

2M
(5.6)

At this value of κ, the Q-shell radii will grow without bound. This result is derived in the thin-

wall (i.e. large radius) limit, which in Q-shells means both R< and R> are infinite. Functionally,

the limit applies to very thin shells.
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Fig. 5.1 shows predictions for outer and inner radii of Q-shells of various M , as compared

to the radii predictions of their corresponding Q-balls, which form under the same potential

parameters. Wide Q-shells are degenerate with their sister Q-balls at their outer radii. Narrow

Q-shells diverge at the κ from Eq. (5.6). The wide-shell – Q-ball correspondence does not

mean that all Proca Q-balls have a corresponding Q-shell; Q-balls which exhibit a one-to-one

relationship between κ and R∗ do not have associated Q-shells.

Fig. 5.2 compares exact Q-ball and Q-shell solutions to the analytic predictions of Eqs. (5.1)

and (5.2). The benchmark presented is unique to the Proca case and contains no gauged Q-

shell analogue. (Gauged Q-shells have a massless gauge field, i.e. M → 0.) It shows highly

satisfactory agreement between predictions and numerics and a perfect overlap of Q-ball and

wide Q-shell solutions. This one-to-one degeneracy suggests that the Q-ball mapping relation

may be used to predict Q-shell outer radii in place of the more complex prediction (5.5).

Interestingly, Fig. 5.2 shows that E/(mφQ) is smaller, for a given Q, for narrow Q-shells than for

other solutions. Since E/(mφQ) is a measure of stability, this implies that narrow Q-shells may

be more stable than other Q-solitons for a given Q. If this is true, then production of Q-solitons

would favor narrow Q-shells at these locations in parameter space. The phenomenological

implications of this result are an open question.

Fig. 5.3 shows the trajectory of the scalar and gauge fields in the Proca potential space. A

notable difference to the case of gauged Q-solitons, i.e. M = 0, is that A need not be monotonic

in the Proca case. The right lower plot clearly shows such a non-monotonic trajectory for a

narrow Proca Q-shell.

Investigation of further classes of Q-solitons and their excited states is ongoing. A more ex-

tensive treatment of excited Q-balls that builds on the foundations presented here has, at the

time of writing, recently been released in preprint. [37]
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are degenerate with Q-balls and cease to exist for κ > 0.76 due to the instability described in
Eq. (2.47).

87



κ=0.7
α=0.1

Ω0=1.0
M=0.1

f

A

0 5 10 15 20 25 30
0

1

2

3

4

ρ

κ=0.7
α=0.1

Ω0=1.0
M=0.1

f

A

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

2.5

ρ

V=0

Am

f+

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

f

A

V=0

Am

f+

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

f

A

Figure 5.3: Left: Profiles and contour plots of a wide Proca Q-shell. Right: Profiles and contour
plots of a narrow Proca Q-shell. Top: The top row shows both numeric (blue, orange curves)
and approximated (red, green dashes) profiles for the scalar and Proca gauge fields, respec-
tively, of a sample Proca parameter set. Bottom: The dark blue line is the trajectory of the Proca
Q-shell through potential space. The values of the f maximum f+ (blue) and A minimum Am

(green) are shown with dashed lines.
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Chapter 6

Phenomenology of Q-balls

6.1 Macroscopic dark matter

The original impetus for the study of Q-solitons presented here was curiosity regarding possible

macroscopic dark matter candidates. Macroscopic dark matter is a class of dark matter can-

didates that fall in the mass region between particle dark matter and ultraheavy dark matter.

These dark matter “macros” are generally conceived as composite particles that behave very

similarly to a nucleus and are of approximately the same density. Dark matter macros range

in mass from a minimum of ∼ 55 g up to tonnes. For comparison, WIMPs, a relatively heavy

particle dark matter candidate, weigh in at approximately 10−20 grams, while ultraheavy dark

matter is on the order of solar masses. As such, flux of macroscopic dark matter would be quite

small, which excuses its non-detection for wide swaths of parameter space.

In general, dark matter macros are difficult to produce in theoretical models. Models that

predict macros generally produce them from Standard Model or dark quark matter, which is

compressed by some mechanism to approximately nuclear density. After compression, it is

able to persist in a stable state – usually after incorporating extra considerations, for example
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enhanced conversion rates of down quarks to strange quarks. It should be noted that many

of these candidates are actually not traditionally “dark” in the sense of having very weak or

no interactions with the Standard Model, but their number density is low enough for them

to be considered dark matter candidates nonetheless. Less dense candidates of approximately

atomic density can also be considered, but below certain densities they become more difficult

to search for terrestrially because they rip apart in the atmosphere. Additionally, they are more

difficult to produce in theoretical models.

Q-balls are an exception to the (admittedly limited) macroscopic dark matter model landscape

in that they are Beyond the Standard Model objects rather than an exotic state of normal matter.

This fact provides a convenient complementarity with the prevailing sentiment that dark matter

should be a new, Beyond the Standard Model particle, while simultaneously making available

a currently weakly-constrained region of dark matter parameter space to Q-ball candidates.

Because of the difficulties in developing production mechanisms theoretically, macroscopic

dark matter candidates have received little attention experimentally. As such, the parameter

space for macroscopic dark matter is still relatively unconstrained, with some of the more

serious bounds arising from such unlikely sources as the dramatically-titled “Death and Serious

Injury from Dark Matter,” [38] which constrains macros based on the fact that we have yet to

observe one of these high-energy composites kill anyone. Macroscopic dark matter candidates

present an exciting new class of dark matter candidates, with much breadth for exploration

and innovation, precisely because they have received so little consideration to date.

6.2 Macro production

A fundamental difficulty in building models with macros is that they must be simultaneously

stable, i.e. have a lower energy density than other accessible states of matter, but also relatively
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impervious to ordinary matter since it is not observed collapsing into the stable macro state.

In practice, this requires a mechanism of generating macros that is no longer accessible, in

addition to conditions ensuring both macro stability and a resistance to macro conversion by

ordinary matter.

One prospective mechanism for achieving these objectives is through a first-order QCD phase

transition that results in a novel configuration of ordinary matter inside persistent, initial-

phase nuggets. While lattice calculations have increasingly disfavored a first-order QCD phase

transition, an early example of such a production mechanism by Witten is provided here to

demonstrate the mechanics of these types of mechanisms.

6.2.1 Hot quark nuggets

An early but now disfavored theory of macroscopic dark matter was proposed by Edward Witten

in 1984 [39]. At the time, the possibility was not yet ruled out that the Universe could have

undergone a first-order QCD phase transition at∼ 100 MeV. Witten begins with the assumption

that a transition from quasifree, light quarks to mesons and baryons occurred at Tc ≈ 100−200

MeV and explores the consequences.

In the event of a smooth, first-order phase transition in which equilibrium was maintained to

such a degree that high- and low-temperature phases could coexist, the compression of stable,

high-temperature bubbles into a new form of hot quark matter (“nuggets”) was a possibility.

Quark matter would not be dark in the traditional sense, i.e. being weakly coupled or uncou-

pled to the Standard Model, but rather would occur in such low number densities as to go

undetected to date.

The formation of such nuggets would proceed as follows: Two possible phases were present

in the early Universe, separated by a phase transition at temperature Tc: a high-temperature
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phase in which quasi-free, virtually massless quarks were loosely bound into baryons, and a

low-temperature phase in which baryons became massive particles of at least ∼ 1 GeV. The

temperature of the phase transition, Tc, was the temperature at which the high- and low-

temperature phases had equal pressures and could coexist. As the temperature of the Universe

dropped below Tc, low-temperature bubbles began nucleating out of the high-temperature

phase. In a typical, non-equilibrium, first-order phase transition, these nucleated bubbles

would expand explosively, quickly overtaking and eradicating the high-temperature phase.

However, in the equilibrium transition, the expanding low-temperature bubbles compressed

the high-temperature phase as they grew, reheating it to T > Tc and increasing its pressure

on their domain walls, counteracting their growth. Eventually the heat pressure of the high-

temperature phase balanced the energetic expansion pressure of the low-temperature phase,

and the low-temperature bubbles stopped expanding. This equilibrium was maintained absent

the expansion of the Universe.

But of course, the Universe was expanding. This diluted the energy of the high-temperature

phase and decreased its heat-induced pressure on the low-temperature bubbles. In order to

maintain an overall heat pressure to balance the low-temperature bubbles, the hot-temperature

phase had to shrink to reequilibrate its temperature. As the Universe continued to expand, the

low-temperature bubbles grew, but they grew slowly, driven by the expansion of the Universe

rather than an energy differential between the high- and low-temperature phases.

As the low-temperature bubbles grew and began meeting each other, they began to coalesce

up to a size R1 ≈ few centimeters, at which point the dynamics of surface tension, heat trans-

fer, and fluid motion rendered coalescence energetically unfavorable. After reaching R1, the

low-temperature bubbles retained their shaped and continued growing without further coa-

lescence. When the low-temperature bubbles grew to occupy ∼ 50% of the overall volume of

the Universe, pockets of high-temperature phase began to be pinched off into effective bub-

bles, which shrank as the Universe continued to expand and cool. Witten estimated that these
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high-temperature bubbles would have radii on the order of 1 − 104 cm and would contain

80− 99% of all the baryons in the universe.1 Further expansion continued to shrink the high-

temperature bubbles, which could have either disappeared or persisted in a stable, compressed

state of quark matter.

There is a narrow path for the formation of macroscopic dark matter in this scenario. Its

viability turns on the admittedly unlikely assumption that the high-temperature bubbles un-

naturally suppress certain heat loss processes, but its convenience is obvious: persistent high-

temperature bubbles are unique is in their ability to source extreme asymmetric baryon densi-

ties and form dark matter.

As the Universe continued to expand, the high-temperature phase would hemorrhage heat into

the low-temperature phase in order to maintain it at the critical temperature, Tc. There are

two potential mechanisms for this heat loss: surface evaporation and neutrino emission.

Surface evaporation is exactly what it seems: a shedding of the contents of the high-temperature

bubble into the low-temperature phase from the surface region of the high-temperature bub-

ble. Such emission releases the baryonic content of the high-temperature bubble into the low-

temperature phase.

Neutrino emission, by contrast, originates from anywhere within a mean-free-path distance

from the surface. Such emission produces heat loss without the loss of baryons. In a scenario in

which surface emissions from the high-temperature bubbles are suppressed, only particles with

a sufficiently long diffusion length can escape the bubble. The baryons in the high-temperature

bubbles, which have a much shorter diffusion length than the neutrino mean free path, would

remain trapped in the high-temperature phase in such a scenario. The high-temperature bub-

1Although dark matter is expected to be primarily non-baryonic, there are observational discrepancies between
the amount of visible baryonic matter and the predicted production rates of baryons during Big Bang nucleosyn-
thesis. Quark nuggets are additionally compelling for providing a mechanism to produce this discrepancy.

93



bles would continue steadily shrinking, losing heat via neutrino emission, all the while building

an increasing baryon excess inside.

These quark-matter bubbles would continue to shrink, eventually occupying a tiny fraction

of the total volume of the Universe but containing 80-99% of its overall baryons. Their final

state would be lumps of hot quark matter with a density ρ ≈ 1015 g/cm3 and mass of 109 −

1018 g. There is a possibility that such lumps could persist to present times in a stable or

slowly decaying form, a compact soup of loosely bound quarks in an exotic state of quark

matter with a density somewhat above that of nuclear matter. The most compelling prospect

for the stability of such quark matter is a scenario in which down quark to strange quark

conversions become energetically favorable in this hot, quasifree quark phase, reducing the

energy per quark and resulting in more tightly-bound quark matter with increased stability.

Other suggestions include quark matter that decays via the weak force, but slowly enough for

remnants to persist today.

As a brief aside, this state of stable, strange-quark matter has been studied by others. [40, 41]

While heavier than ordinary, quasi-free quark matter due to the increased proportion of strange

quarks, it is still more stable due to the Pauli exclusion principle. Witten estimates that the

energy per quark in up-down-strange quark matter is ∼ 90% that of up-down quark matter,

potentially offsetting the energy penalty associated with the strange quark mass, although the

stability of strange-quark matter has been unable to be confirmed.

De Rujala and Glashow [40] find that strange quark nuggets possess a net positive charge and

attract an electron cloud “atmosphere” around themselves, which act as a buffer to atomic

collisions, complicating their interaction picture. Others [42] are not optimistic about the

prospects for stable quark matter, and report that nuggets with baryon number less than 1052

would have evaporated before the Universe cooled to 1 MeV. Such a baryon number represents

a planetary-sized mass.
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Nonetheless, if such quark nuggets were to still exist, the rate of collisions with Earth would

be in the neighborhood of one per year (r ≈ 10−2 cm) to 1 in 109 years (r ≈ 10 cm). These

quark nuclei would rocket through the Earth, vaporizing everything in their path along a tube

of 0.001–10 cm radius. Such a prospect is the focus of the experimental constraint efforts

detailed in Section 6.3.

Unfortunately, such a scenario is plagued by many possible avenues to decay and evaporation,

and a single, narrow, contrived path to stability. Witten himself acknowledged that stable

dark macros are implausible, in particular because there is no immediate reason to suspect

neutrino emission dominates over surface emission for heat loss; subsequent publications have

essentially ruled out such nuggets almost entirely, even before the prospect of a first-order QCD

phase transition became disfavored.

While quark-nugget macros are no longer considered viable macroscopic dark matter candi-

dates, the substantial wrangling required to generate them foreshadows the persistent difficul-

ties encountered in macro production. Q-balls are no exception.

6.2.2 Q-ball production

Q-ball production is an open question and one under active consideration by the author and

collaborators. While a clean and very precise description of Q-balls has emerged, issues of

production and stability in the presence of matter - Q-ball and Q-ball - Q-ball interactions are

much more challenging.

Despite detailed knowledge of the stability of various types of Q-balls, including how stabil-

ity depends on the Q-ball parameters, it remains unclear if and how Q-balls can subdivide

(or, equivalently, merge) and what the dynamics of Q-balls would be in a theory that allows

subdivision. Is there a smallest stable Q-ball that coexists in Nature with a spectra of larger,
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quasi-stable Q-balls? When Q-balls are impacted by ordinary matter or other Q-balls, do they

shatter into Q particles, smoothly cleave in two, or simply jump into an excited state? Can

excited Q-balls merge or split into less stable Q-balls as an alternative to de-exciting? While

the path forward in understanding these dynamics is itself unclear, these questions precede the

consideration of the even more difficult problem of how to produce Q-balls.

Fortunately, even in the absence of a compelling production mechanism, Q-ball phenomenol-

ogy can independently pass judgment on the viability of these dark matter candidates through

a number of constraints, some of which are quite inventive.

6.3 Constraints on macroscopic dark matter parameter space

As stated previously, owing to limited theoretical activity, macroscopic dark matter has received

little experimental attention, with no dedicated experiments allocated to its parameter space.

As such, these macros are able to be initially constrained with a variety of basic, armchair

considerations. A summary of the major constraints can be found in [43] and follow-up papers.

Two relevant astrophysical constraints provide upper bounds on macro masses and interaction

cross sections. Microlensing surveys rule out macros with M ≥ 1024 g, while the absence of

thermonuclear runaway events from white dwarfs provides an even tighter mass constraint of

M ® 1015 g. Negative detection of the scattering of CMB photons from macros constrains the

geometric interaction cross section to the range σ ≈ 10−9 ∼ 1 cm2 over generations of macro

mass from milligrams to tonnes.

The region 55 g ≤ M ® 1015 g remains essentially wide open for dense dark matter macros.

Mica, granite, or similarly light-colored rock slabs provide the first of several heuristic attempts

to constrain this parameter space. [43] “Countertop searches” – literally, investigating granite

countertop slabs for evidence of past collision events – attempt to trace deposits of macros in
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light-colored rock. Granite slabs provide an easily-accessible, visual history of nuclear-density

macro impacts (or lack thereof).

A nuclear-density macro incoming from space would contain a tremendous amount of kinetic

energy, which would vaporize a core through an impacted rock and then melt a larger cylinder

of rock around that core. This heat shock would restructure the chemical composition of the

melted rock, which would subsequently recalcify with a different color and structure than

the surrounding granite. These tracks would remain in the rock as a type of fossil record of

macro impacts accrued during its lifetime of surface exposure, and would be visible as circles

or ellipses in subsequent thin slabs of the granite. Since there are veins of granite that have

been exposed on the Earth’s surface for hundreds of thousands of years, these rocks have the

unique ability to have served as detectors for incredibly long periods of of time.

Conveniently, granite is commercially farmed and available in slabs that are amenable to look-

ing for tracks on either side of the cut part of the slab, including the slabs available in local

countertop supply stores. Sidhu, Starkman, and Harvey [43] estimate that such countertop

searches can constrain the parameter space from 10® M ® 106 g for interaction cross sections

from σ ∼ 10−5 cm2 up to the CMB photon scattering bound.

In a similar vein, high-energy macros that can melt and vaporize rock would have devastating

consequences if impacting a human body, presumably causing serious bodily injury or even

death. [38] Such impacts would resemble gunshot wounds traversing the body, presenting an

unexplained and mysterious phenomenon to medical professionals perplexed as to the appar-

ent lack of a weapon, bullet, or perpetrator. Under the assumption that such bizarre injuries

would have been reported by news outlets and medical journals had they occured, Sidhu,

Scherrer, and Starkman place constraints on macro parameter space from 10−2 ® M ® 105 g

for geometric cross sections from σ ∼ 10−7 cm2 up to the CMB photon scattering bound.
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Another detection proposal for dark matter macros, which would additionally help constrain

less dense macros that break up before reaching Earth’s surface, are remote camera networks.

[44] Incoming macros would heat the air column surrounding them into a plasma, which

would emit visible light upon cooling. Sky-camera networks such as the U.S. Prairie Network,

Canadian Network, Eastern European Network, and the Australian Desert Fireball Network

have never detected an object moving fast enough to have originated outside the solar sys-

tem. (Dark matter macros are expected to arrive at speeds faster than meteorites but slower

than cosmic rays.) Continued observation by these networks progressively constrains the dark

matter macro parameter space.

Incoming macros would also cause nitrogen florescence due to their ionization of atmospheric

nitrogen. Cosmic ray detectors could potentially be repurposed to detect this florescence. A

simple way to distinguish dark matter macros from cosmic rays is that, unlike cosmic rays, they

do not shower.

6.4 Q-ball interactions

Given that there is considerable breathing room for Q-ball candidates in the macro dark matter

parameter space, the pertinent considerations for phenomenology become their measurable

Standard Model interactions, scattering cross sections, and other characteristic experimental

signals. Some work has already been done in this department, e.g. the treatment of Q-ball

dark matter scattering off of nucleons. [10]

The Q-balls described here give rise to two immediate Standard Model portals:

1. The scalar field φ of Q-balls is generally assumed to have a Higgs-portal coupling to the

Standard Model. [11]

98



2. The gauge boson A of gauged and Proca Q-balls kinetically mixes with Standard Model

photons and Z bosons.

Both of these portals produce distinct experimental signatures which can constrain Q-ball

masses and couplings.

For gauged and Proca Q-balls, the underlying U(1) symmetry of the Q-ball scalar field φ can

be associated with various natural symmetries, e.g. U(1)B−L, which gives rise to myriad Q-ball

phenomenologies.

• U(1)′: A is a dark or hidden photon. Only φ is charged. Standard Model coupling occurs

via kinetic mixing, which is proportional to electric charge if A is light and hypercharge

if A is heavy. Q-balls repel each other but do not act on normal matter at long distances.

• U(1)B−L: Q-balls couple directly to all Standard Model fermions via A. This interaction

is effectively a Q-ball - neutron interaction. Light A can exhibit a long-range Q-ball -

neutron force.

• U(1)Le−Lα: Q-balls couple only to electrons and leptons of flavor α ∈ {µ,τ} and their

neutrinos. Q-balls scatter only on electrons, not nucleons.

• U(1)Lµ−Lτ: Q-balls couple only to muons, taus, and their neutrinos.

Which of these phenomenologies are compatible with macroscopic dark matter and Standard

Model mixing and coupling constraints is under active investigation by the author and collabo-

rators. Our hope is that the parametric liberties granted to Q-balls as macroscopic dark matter

candidates will help evade the stringent constraints of Standard Model interactions. Specific

models and phenomenological constraints are expected to be the subject of future publications.
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Chapter 7

In closing

Q-balls are curious objects that arise in certain U(1)-symmetric scalar field theories. This thesis

provides a guide to understanding Q-ball solutions, along with simple formulae that describe

their salient characteristics without the need to numerically solve their underlying differential

equations. The analytic approximations presented here significantly improve upon the results

of previous methods both qualitatively and quantitatively.

Global Q-balls are described in arbitrary U(1)-symmetric, sextic potentials to ∼ 10% accuracy

for small Q-balls, and much better for large Q-balls. In an effective field theory, these potentials

capture the leading dynamics which produce Q-balls and are therefore of particular interest.

The global scalar profile presented here closely describes the exact solution to the differential

equation over a wide range of parameters, as do the derived analytic formulae for the resulting

Q-ball properties, namely the charge, energy, and radius.

Promoting the U(1) symmetry to a gauge symmetry complicates the discussion significantly

and has previously eluded analytical descriptions outside of some limiting cases. This thesis

has described methods to obtain essentially all properties of gauged Q-balls via a mapping to

global Q-balls. Since the latter can be easily obtained numerically and often even analytically,
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this mapping allows for an excellent prediction of the gauged Q-ball properties without the

need to solve their coupled, nonlinear differential equations.

This dissertation also presents novel results for Q-balls with a massive Proca gauge boson. The

resulting solitons are similar to the global ones for large Proca masses and similar to gauged

ones for small Proca masses. For intermediate gauge boson masses, Proca Q-balls show unique

features such as extremely large minimal radii and charge. Analytic approximations for the

scalar and gauge profiles provided for Proca Q-balls allow insights into their behavior and also

make possible efficient numerical studies.

While the analytic approximations presented here perform best in the large-radius limit, they

also provide complementarity to numerical studies, which more easily describe smaller Q-balls.

Additionally, these analytic approximations serve as reliable seed functions for numerical finite-

element methods, enabling these methods to succeed in generating solutions that would be

impenetrable without the accurate initial guesses that these approximations provide.

The results of this thesis are of great value for simply and accurately calculating the properties

of Q-balls for use in various cosmological and astrophysical studies. In addition, since the sextic

potential was left completely general, these results will apply for a wide variety of specific sextic

potentials describing various effective field theories. Open avenues for further study include

Q-balls’ stability with respect to decay into smaller solitons as well as the reverse issue of Q-ball

formation from smaller solitons and individual scalars. The possibility of transitions between

Q-balls and Q-shells of equal charge is also salient. Addressing these questions will advance a

more complete understanding of how these solitons might be produced in the early universe

and how they might persist as a component of the Universe’s dark matter.
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