
Lawrence Berkeley National Laboratory
Recent Work

Title
The Electrical Resistivity Method in Cased Boreholes

Permalink
https://escholarship.org/uc/item/0cf136z6

Author
Schenkel, C.J.

Publication Date
1991-05-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0cf136z6
https://escholarship.org
http://www.cdlib.org/


, /, 

" 

r 

LBL-31139 

Lawrence BerkeHey Laboratory 
UNIVERSITY OF CALIFORNIA 

I 

EARTH SCIENCES DIVISION 

The Electrical Resistivity Method in Cased Boreholes 

C.J. Schenkel 
(Ph.D. Thesis) 

May 1991 

-1 
- -- I, 

.... n I 0 ..... r I Ii Ii 0 
n > 

.t::-t::z: 
I-' 

:( III n 
11) (+0 , 
11) 11) "tI 
,.000< 
00 - --
tD 
I-' 
0. 
IQ 

[J1 
IS> I 

r 
r tD~ ..... rl C"n I . 

Ii 0 w! 
111"0 I-" 

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098 

Ii"< 1-'" 

I "< wi . I\) t"O'l 
\. j 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain COlTect information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any walTanty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



, 

The Electrical Resistivity Method in Cased Boreholes 

Clifford J. Schenkel 

(ph.D. Thesis) 

Engineering Geoscience 
University of California 

and 

Earth Sciences Division 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, California 94720 

May 1991 

LBL-31139 

This work was supported in part by the U.S. Environmental Protection Agency under Interagency Agree­
ments DW89932611 and DW89933758, through U.S. Department of Energy Contract DE-AC03-
76SF00098, and in part by Paramegnetic Logging, Inc. 



Copyright © 1991 by Clifford J. Schenkel 

The United States Department of Energy has the right to use this thesis 
for any purpose whatsoever, including the right toreproduce all or any part thereof. 



THE ELECTRICAL RESISTIVITY METHOD IN CASED BOREHOLES 

by 

CLIFFORD J. SCHENKEL 

Abstract 

The resistivity method in cased boreholes with downhole current sources is investigated 

using the integral equation (IE) technique. The casing and other bodies are characterized as 

conductivity inhomogeneities in a half-space. For sources located along the casing axis, an 

axially symmetric Green's function is used to fonnulate the surface potential and electric field 

(E-field) volume integral equations. The situations involving off-axis current sources and 

three-dimensional (3-D) bodies is formulated using the surface potential IE .method. The solu-

tion of the 3-D Green's function is presented in cylindrical and Cattesian coordinate systems. 

The methods of moments is used to solve the Fredholm integral equation of the second kind 

for the responSe due to the casing and other bodies. 

The numerical analysis revealed that the current in the casing can be approximated by its 

vertical component except near the source and the axial symmetric approximation of the cas-

ing is valid even for the 3-D problem. The E-field volume IE method is an effective and 

efficient technique to simulate the response of the casing in a half-space, whereas the surface 
r 

potential approach is computationally better when multiple bodies are involved. 

Analyzing several configurations of the current source indicated that the casing response 

is influenced by four characteristic factors: conduction length, current source depth, casing 

depth, and casing length. The conduction length, the most important factor, relates the casing 

conductance with the conductivity of the host medium and is an indicator of the ability of the 

pipe to carry the current along its length. When the source is located within the casing, the 

characteristic parameters can be reduced to three ratios: the conduction length to casing length 



(conduction ratio), the source position to casing length, and the casing depth to casing length. 

For a conduction ratio that is approximately greater than two, the fields from the casing are 

similar to those produced by a line source. When the source is located beneath the casing, the 

distortion of the fields is also dependent on the casing-source separation distance. For a 

current source near the casing « 100 casing diameters), the casing greatly distorts the fields 

when compared to those produced by a pole source. When the source is greater than 100 cas­

ing diameters from the pipe, only the region near the casing is affected. The numerical simu­

lations indicate that cross-hole and downhole to suIface time monitoring srudies may be con­

ducted with very little casing effect An energized casing or a dipole source at the end of the 

casing can enhance the anomalies produced by a conductive zone. The use of casing in 

experiments that monitor injection or extraction processes may be advantageous. 

Numerical analyses indicate that resistivity measurements through metal casing' (MfC) is 

feasible provided one can distinguish voltage differences in the order of lO's .IlV/m per 

Ampere. The discontinuity of the E-fields correspond to the layer boundary and the rate of 

change of the E-field is inversely proportional to the resistivity of the adjacent fonnation. For 

a simple layer model, the fonnation resistivity can be estimated by the ratio of the potential 

and its second derivative provided that the casing conductance can be obtained. For an unk­

nown casing conductance, two set of measurements are needed to calculate the fonnation 

resistivity. At the places where the contact resistance is low, the current tends to leak into the 

fonnation more readily and the fonnation resistivity will be underestimated. A transmission 

network, to incorporate the current channeling effects, can be used to simulate the MfC 

method. The borehole fluid resistivity has negligible effects on the resistivity measurements in 

the casing. Variations of the casing conductance only affect the measurements when the 

discontinuity lies within the span of the array, while variations of the cement annulus have 

great effects on the estimate of the fonnation resistivity. Geometric factors, such as length 

and radius of the casing, as well as the array location within the casing affect the resistivity 

measurements. The resolution of the layer lx>undary is limited to the electrode spacing needed 



to estimate the second derivative. The radius of investigation is independent of the electrode 

spacing: using different electrode spacings will not provide any additional infonnation about 

the conductance of the cement or the fonnation. To detennine the true fonnation resistivity in 

the presence of a cement annulus is not possible without prior knowledge of the thickness or 

resistivity of the cement. 

The downhole to surface field experiment, conduced at a Dupont test well near Waverly, 

Tennessee, showed that the signals can be measured in a resistive environment. Not oIJIy are 

casing effects large for measurements near the well, but they can be seen at the far electrodes 

even for sources located far below the casing. The modeling indicated that strong interactions 

between the casing and near surface fonnations exist 
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CHAPTER I 

lNTRODUcrlON 

The use of downhole current sources in resistivity mapping can greatly enhance the 

detection and delineation of subsurface features (Merkel and Alexander 1971, Daniels 1978, 

and Daniels and Dyck 1984). Theoretical studies of a spheroidal target (Snyder and Merkel 

1973, Dobecki 1980, and Lytle 1982). as well as numerical integral equation results for ariJi­

trary objects (Daniels 1977. Yang and Ward 1985. and Beasley and Ward 1986) have shown 

an enhanced response of the body when downhole sources are used. Wilt and Tsang (1985). 

using a three-dimensional finite difference modeling algorithm developed by Dey and 

Morrison (1979) to simulate the migration of contaminants, indicated that nearly an order of 

magnitude sensitivity can be obtained with the mise-a-la-masse configuration. Asch (1990) 

presented a differencing scheme to minimize near-surface variations which further enhances 

the sensitivity to changes in resistivities at depth. Sensitivity to variations in resistivities 

makes the downhole methods ideally suited for monitoring subsurface processes such as injec-

tion in enhanced oil recovery. leakage or injection of contaminants at a waste site. or extrac-

tion and reinjection processes in geothennal production. 

For many of the above applications. the wells are cased with steel. which distorts the. 

fields in the medium and leads to an erroneous interpretation of the field data (Holladay and 

West 1984 and Williams and Wait 1985). If the casing is used as an electrode, the results 

may be unpredictable because the current leaves the pipe irregularly due to the variability of 

the contact resistance between the casing and fonnation (Kauahikaua et al .• 1980). 

The purpose of this work is to examine the resistivity method for current sources in 

! 
wells cased with steel. This research begins with an analysis of the distortion of the fields in 

1 



2 

the half-space when current sources are placed on the axis and beyond the end of the casing. 

Since many holes are left uncased for some distance at the bottom, the first objective was to 

determine how interpretable data would be for downhole to surface and cross-hole 

configurations of electrodes. Through an understanding of how the fields are distorted by the 

interaction of the casing, source, and host medium, one may develop methods which compen-

sate or minimize the deviations. With this knowledge, field tests can be designed to reduce 

the distortion caused by the casing or even to use the casing effect in the experiment. Since 

the formulation of the numerical solution for this problem was perfectly general, a second 

objective of the research became the analysis of the fields when the current source was inside 

the casing. 

Previous Research 

The effect of casing on electrical survey data has been the subject of numerous studies 

in the geophysical literature. In this section. the publications on resistivity measurements in 

the presence of the casing are reviewed. 

Several authors have investigated the distortion effects of nearby casing on surface resis-

tivity configurations. Wait (1983) analyized the effect of a vertical semi-infinite conductor on 

the apparent resistivity for a surface pole-pole array. His numerical results indicate that the 

apparent resistivity can be seriously affected by the conductor even when the electrodes are 

located at a distance of more than ten times the pipe radius. In his formulation, a surface 

impedance on the conductor was incorporated to allow for an oxidized layer or coating. This 

impedance layer appears to reduce the effects of the conductor on the apparent resistivity. 

Holladay and West (1984) studied the effects of well casing on surface dipole-dipole 

resistivity and induced polarization (IP) surveys. To examine the factors which affect the 

measurements, they used the semi-infinite pipe solution and an integral solution approach 

using the Galerkin weighted residuals technique to determine the currents in the pipe. They 
I 

studied the effects of the casing length on the apparent resistivities. In the evaluation of the 
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field data. multiple pipes were used. In obtaining the response of the multiple pipes. they 

ignored the casing interactions and determined the response by the superposition of the fields 

due to a single pipe at several casing locations. They indicated that the metal casing may 

strongly distort the response of the desired signal on surface surveys. Important factors 

included the pipe conductance. the distance of the pipe from the survey stations. and the pipe 

length and radius. 

Johnson et al. (1987) also investigated the effects of a finite length pipe for surface sur-

veys. They assumed that the pipe can be approximated by a set of finite length current line 

sources which resulted in a set of linear equations. The potentials are obtained by matrix 

inversion of the linear equations. In their' study. a thin surface layer was introduced to 

account for the contact resistance between the pipe and host medium. They calculated the 

apparent resistivities for pole-pole. Schlumberger. and dipole-dipole arrays. In their pole-pole 

analysis. they showed that the apparent resistivity near the casing decreases as the pipe 

lengthens. 

In most of the studies of subsurface electrode configurations. the currents are injected in 

the borehole and the potentials are measured at various points in the medium. If a well is 

cased in steel. point source approximations cannot are invalid. Sill and Ward (1978) used the 

well casing as a buried electrode for their mise-a-Ia-masse experiment at the Roosevelt Hot 

Springs geothermal field in Utah, as did Kauahikaua et al. (1980) for their mise-h-Ia-masse 

mapping of a high temperature geothermal reservoir in Hawaii. Sill (1983) used the well as a 

source to monitor an injection test at Raft River, Idaho to determine if measurable changes 

that might indicate the direction of fluid flow could be observed. Rocroi and Koulikov (1985) 

delineated a known resistive hydrocarbon deposit in the USSR by injecting current into two 

cased wells. 

All of these studies were based on the common assumption that a constant line source 

can be used to represent a pipe excited by a source in or on it. The highly conductive 
! 

grounded casing is supposed to act like a transmission line which distributes the current along 
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its length. If the casing is very long or the surrounding fonnations are conductive, the current 

will not extend unifonnly along the entire length of casing. This may have occurred in the 

experiment of Kauahikaua et al. where they indicated that the current appeared not to flow in 

the lower section of the casing. 

Other studies, which do not use the line source approximation, attempt to solve the prob-

lem analytically. In early works, the solutions for the pipe response were obtained by making 

a simplifying assumption that it can be represented by a solid cylinder extented to infinity 

(Wait 1952 and Smythe 1968). Later, the cylindrical multi-layered infinite or semi-infinite 

pipe response was investigated for both direct current (DC) and electromagnetic (EM) sources 

located inside or outside the pipe (Otto 1968, Gianzero and Rau 1977, and Wait 1982, and 

Wait and Williams 1985). 

LaBrecque and Ward (1988) investigated the effects of well casing on surveys for frac-

ture location using a downhole source. They used the pipe model of Holladay and West 

(1984) and combined it with Beasley and Ward's (1986) rectangular body model to produce 

an integral equation for the electric fields. Like Holladay and West, they used the two-

dimensional approximation where the electric fields in the pipe are radially symmetric. The 

fracture was modeled with a thin vertical prism so that only a single row of elements was 

needed to define the target Their study showed that large distortions of the apparent resistivi-

ties may occur when the source is near the end of the casing. They indicated that for 

borehole to surface surveys the effects of the casing are small for a source completely below 

the casing and for receivers at least one casing-length away from the pipe. 

Two non-conventional techniques. measurements while drilling (MWD)' and measure-

ments through casing (MfC), measure signals in the presence of a steel drill string or casing. 

These methods have been developed due to technological advances in electronics so that 

minute signals may be measured in hostile environments. The MWD method collects realtime 

infonnation during drilling operations. Holbrook (1985) detennines properties of the invasion 
. ~ 

. zone with resistivity measurements during drilling. Sorensen (1989) has measured fonnation 
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resistivity while auger drilling using the "Ellog" method. The MTC logging method measures 

the electrical resistivity of the formation through metal casing. Several patents, Kaufman 

(1989), Vail (1989a,b), and Gard et al. (1989), describe devices that are capable of measuring 

through casing, but only Vail is known to have developed and tested such a tool. These non-

conventional resistivity applications are investigated in greater detail in the thesis. 

Scope of Research 

Four tasks constitute the objectives of this thesis. The first is the development of the 

theory and computer algorithms based on the integral equation method to detel1Iline the poten­

tials due to a cased well and other $ree-dimensional objects in the half-space (Chapters II-

IV). The second is the evaluation of the casing effect and the parameters that influence the 

behavior of the fields (Chapter V). The third is the numerical analysis of several field situa-

tions involving steel cased wells: downhole current electrode surveys, measurement-while-

drilling, and measurements through casing logging (Chapters V-VI). The last is the applica-

tion of the algorithm to evaluate the field data from a survey conducted in a cased well 

(Chapter VII). 

Chapters II and III present two forms for the theoretical formUlation of the integral equa-

tion method. The first makes use of the surface integration of the potential fields. The second 

uses a the volume integral of the electric fields. In Chapter II, the integral equations are 

derived from fundamental expressions. Chapter III evaluates the Green's function expressions 

for both types of integral equations. 

The application of Green's theorem to the field equations results in a Fredholm integral 

equation of the second kind for the unknown fields. The integral equation expresses the unk-

nown (field) function as superposition of the primary field caused by the applied source and 

the scattered field due to the inhomogeneities. For this problem, the inhomogeneities are 

caused by a conductivity contrast between the disturbing bodies (pipes and other objects) and 
~ 

the background medium. In deriving the expression for the integral equations, a ring Green's 
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function is required for the axial symmetric problem and a point Green's function is used for· 

the three-dimensional problem. 

The integral equation is solved by an approximate method of point matching over sub­

sectional bases (Harrington, 1968). This method involves the expansion of the unknown func­

tion into a series of weighting and basis functions at N discrete points in or over the region of 

interest. Each basis function exists only over a subsection of the region and the corresponding 

piecewise constant weighting function will only affect the approximation: of the unknown 

function over that subsection. This resUlts in reducing the integral equation into a set of linear 

equations which must be satisfied at the discrete points. The linear equations are simultane­

ously solved to determine the unknown basis functions. Once the basis functions are found, 

the linear form of the integral equation is used to calculate the fields in the medium. 

The accuracy and validity of the theoretical formulation and the computer algorithm is 

tested in Chapter IV. Convergence and reciprocity properties of the numerical results are used 

to check the accuracy or self-consistency of the method. The validity of the formulation and 

algorithms is checked by comparison to known analytic solutions and published results. The 

analytic solutions for a semi-infinite vertical annulus and horizontally layered media are used 

to check the numerical results for models with radial and horizontal boundaries, respectively. 

The situation involving both boundaries is checked by comparison to the numerical results of 

Gianzero and Anderson (1982). 

In Chapter V, the casing effects are examined for several situations involving steel cased 

wells and downhole sources. The semi-infinite vertical annulus and the electric field volume 

integral equation method are used to detennine the important parameters for the fields within 

the pipe. In the half-space, the electric field volume integral equation method is used to illus­

trate the pipe effects on the potential fields. Position, thickness, diameter (radius), and length 

of the pipe, as well as the conductivities of the casing and background medium are the impor­

tant parameters which influence the casing response. 

Several current electrode configurations are used to detennine the casing influence on 
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downhole to surface and cross-hole measurements. Additionally, these effects are examined 

for a configuration in which the casing segments are separated by insulators of various length 

and are used as downhole current and potential electrodes. By separating several segments in 

a well, multiple downhole sources or receivers can be used to image a target The response of 

the medium to a dipole source at the end of the pipe is also examined. 

Several numerical examples are used to simulate practical siwations. The first simula­

tion involves the monitoring of an injection plume with cross-hole and downhole-surface 

measurements. The second is the transmission of a signal through the earth during MWD 

operations. 

Chapter VI presents the numerical analysis of the MfC method. Kaufman (1990) inves­

tigatedthe behavior of the potential and its derivative for a borehole with casing based on 

models of an infinite-length vertical annulus in a homogeneous medium. This chapter exam­

ines the resistivity measurements through a finite-length casing in a homogeneous or layered 

medium. The algorithm based on the IE approach is used to investigate the effect in varia­

tions of the casing conductance, boreholeftuid resistivity, and cement annulus. Geometric 

factors, such as casing dimensions and location within the casing, may affect the resistivity 

measurements and must be studied. In addition to these topics, the relations of layer boundary 

resolution and radius of investigation to the electrode spacing are examined. 

The evaluation of a downhole-surface resistivity survey conducted near Waverly, 

Tennessee is presented in Chapter VII. Three radial dipole surface arrays measure the vol­

tages for a succession of downhole current sources. The primary objective of the survey was 

to determine if borehole to surface measurements were feasible in a resistive environment. 

Data of acceptable qUality was analyized by numerically simulating the apparent resistivities. 

The surface IE method was used to produce the surface response of a partially cased well in a 

high resistive (> 1000 n'm) layered medium. Finally in Chapter VIII, the results of this study 

are summarized and discussed. 



CHAPTER II 

INTEGRAL EQUATION FORMULATION 

Physical phenomena which can be represented by fields are usually expressed by partial 

differential equations. A solution is found when the field, governed by the partial differential 

equation (PDE), satisfies the particular set of boundary conditions which are appropriate to the 

given physical siruation. 

For geophysical siruations, the geometry of the boundary value problem is so complex 

that solutions are usually obtained numerically. The finite difference and finite elements 

method, the most commonly used techniques, require a complete gridding of the solution 

domain which must be fine enough to resolve the features of interest, usually the inhomo­

geneities. However, strong constraints are placed on the resolution of the field for a large 

domain due to the limited memory of the computer. Another drawback to these methods is 

that the solution of the field is calculated for the entire domain although one may only need a 

solution for a single point 

For situations where finite-size inhomogeneities are located within a domain, the integral 

equation (IE) may be a more convenient technique. The boundary value problem is recast 

into an IE which incorporates the boundary conditions directly into the formulation. This 

method involves only the inhomogeneities or their boundaries, and any external sources which 

are usually specified. Thus, the solution within the entire domain need not be calculated, 

although it may be obtained from the IE. 

The use of the IE method to model geophysical problems is well documented in the 

literature. Typically in electrical problems, the Fredholm integral equation of the second kind 

is obtained by applying Green's theorem to the field equation and employing the boundary 

8 
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conditions. In terms of scattering theory, the IE is the representation of the total field which 

is the superposition of a primary field and the scattered field. The primary or incident field 

arising from a known source radiates in an idealized medium, usually homogeneous or lay-

ered. The scattered field, also known as the secondary field, is due to the inhomogeneities 

with contrasting properties located in the idealized medium. 

The scattered field can be described by a surface charge distribution that accumulates on 

the surfaces of the homogeneities. This method is typically used for the DC resistivitY prob­

lem. Several examples of the IE involving the surface charge distribution can be found in 

Dieter et al. (1969), Snyder (1976), or Eskola (1979). The other method, commonly used in . 

electromagnetic (EM) modeling, is to describe the scattered field by a volume distribution of 

current density or current dipole moment within the inhomogeneity (HOhm3IUl, 1971, Ting and 

HOhm3IUl, 1981, SanFilipo and HOhm3IUl, 1985, and Robertson, 1987). 

This chapter will present the derivation of surface and volume IE methods as applied to 

the DC resistivity problem. The first approach uses the surface integral of the potential on the 

inhomogeneity to calculate the potentials in the medium. This "surface potential method" is a 

description of the physical phenomenon of the surface charges accumulating on the discon-

tinuities in the medium. Commonly, the surface IE solves for the surface charges on the inho-

mogeneity, but the method using surface potentials is much simplier to use. Only one IE is 

required to solve the problem, whereas the surface charge method needs two equations; one to 

calculate the surface charges and another to find the potential function at the field point. The 

formulation of the surface potential boundary IE approach follows that of Hvozdara (1982 and 

1983) and Eloranta (1986). The second method determines the potential fields in the medium 

by using the volume distribution of current density. This method is not commonly used for 

DC resistivity modeling, although Holladay and West (1984) and Beasley and Ward (1986) 

have applied this technique. For this chapter, the familiarity with Green's functions is helpful 

and can be found in Kellogg (1953), Morse and Feshbach (1953) or Tai (1971). 
I 

. " 

> .< 
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2.1 Surface Potential Integral Equation 

The boundary or surface IE method incorporates the surface boundaries of the inhomo-

geneities in its formulation. The surface charges on the boundaries can be described as a 

source density distribution. The IE technique involving a source density distribution is 

referred as the "source density" method. This technique requires that the source density distri-

bution must first be solved and the field solution is then calculated from an integral expression 

that relates the field to the source density distribution. This method requires two integral 

equations, one for the source density distribution and another for the field solution. If the 

boundary values of the field play the role of the source density distribution, the fonnulated 

expression is a "direct" boundary IE. This method makes use of Green's theorem which 

results in the expression of the hannonic function! as the superposition of a (surface charge) 

single-layer and a (dipole) double-layer potential function. 

This chapter will present the derivation of the direct .boundary IE fonnulated for the DC 

resistivity problem in an infinite medium. The harmonic function is the scalar potential field 

which is derived from the continuity equation, Faraday's and Ohm's laws. For this problem, 

the single-layer and double-layer functions will contain the infinite medium Green's function 

and its nonnal derivative, respectivity. By applying the boundary conditions, the IE is 

reduced to the double-layer function containing the hannonic function and the nonnal deriva-

tive of the Green's function. 

2.1.1 Potential Field Equation 

The partial differential equation which governs the potentials can be derived from fund a-

mental relations of electromagnetic (EM) theory. For a point source of current located at ro , 

the continuity equation ata field point r is (panofsky and Phillips, 1964): 

1 A function ·is hannonic within a closed region if its second derivatives exist and are continuous, and it satisfies 
Laplace's equation at all points of that domain inducing its boundary (Kellogg, 1953). 
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v . J(r) = lo(r - r J (2.1.1-1) 

where J is the current density, I is the current of the current source. and oCr - ro) is the Dirac 

delta function defined in Appendix A. Using Faraday's law and noting that the electric field, 

E is irrotational: 

VxE= - an =0 at 
The electric field can be written as a gradient of a scalar potential. cjl: 

E= -Vcjl 

Using Ohm's law: 

J= O'E 

(2.1.1-2) 

(2.1.1-3) 

(2.1.1-4) 

and equation (2.1.1-3), substituting into equation (2.1.1-1) yields the differential equation: 

V' -O'Vcjl=IO(r-rJ ~ V2cjl= - ![VO'.Vcjl+IO(r-rJ] (2.1.1-5) 

For a homogeneous region, there is no conductivity gradient and equation (2.1.1-5) becomes 

the governing field equation, the familiar Poisson's equation: 

(2.1.1-6) 

As can be seen from equation (2.1.1-6), the scalar potential is the hannonic function which is 

being sought. 

2.1.2 Surface Integral Equation Formulation 

From the governing field equation (2.1.1-6) and with the use of the Green's function, 

Appendix A, the IE will be fonnulated. As stated previously, the hannonic function can be 

represented as the sum of the single-layer and double-layer potential functions. However, by 

applying the boundary conditions on the inhomogeneity, the expression of the hannonic func-

tion in the IE can be reduced to a double-layer potential and the applied extemalfields. 

Consider an inhomogeneity of conductivity 0'1 and volume V1 in an infinite homogeneous 

medium of conductivity 0'0 with volume Vo (Figure 2-1). The boundary of, region 0 is the sur-
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face n of the body (nonnal unit vector Dn point towards medium 0) and surface r of the . 

sphere at infinity (outward nonnal unit vector Dr). Region 1 has surface n as its boundary. 

Source in the Host Medium 

Assume there is a point source of current I located at r 0 in region 0. The differential 

expression which describes the potentials in the homogeneous region is: 

I 
V2~0(r) = - -oCr - r..) 

0'0 
(2.1.2-1) 

In region 1, there are no sources and Laplace's equation is valid: 

V2~I(r) = 0 (2.1.2-2) 

The boundary conditions are: 

(r 00 m (2.1.2-3a) 

d~o(r) d~1 (r) 
0'0-- = aI--

dOn dOn 
(r onm (2.1.2-3b) 

lim 41o{r) = 0 (r on n (2.1.2-3c) 
Irl-+ -

If the field point of interest, r is located in region 0, the Green's function (Appendix A) 

satisfies the same differential equation as the potential function, ~o: 

with the boundary condition: li'P g(r, r·) = 0 
Ir-r 1 ... _ 

The solution satisfying equations (2.1.2-4) and (2.1.2-5) is: 

• 1 1 
g (r, r ) = -4 I • I 

1t r-r 

(2.1.2-4) 

(2.1.2-5) 

(2.1.2-6) 

Multiply equation (2.1.2-1) by g and equation (2.1.2-4) by - 410, add the two expres-

sions, interchange rand r· , and integrate over the volume Vo, resulting in: 

f [g(r, r·)V·2~o(r·) - 41o(r·)V· 2g(r, r·)Jdv· 
Vo 

= f [- .£.g(r, r·)8(r· - r..) + 41o(r·)O(r· - r)jdV· 
v ~ • 
o 

(2.1.2-7) 
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The right side of equation (2.1.2-7) is: 

- f.,[ ~o g(r. r)li(r - r.l]dV + LJ~o(r)Ii(" - r)]dv' ~ - Mr) + ~o(r) (2.1.2-8) 

where the first term of the right side of equation (2.1.2-8) is the equation for the incident (pri­

mary) field of a point source due to current, I: 

I I 1 
cjlp{r) = 0"0 g(r,rJ = 47t0"0 Ir - ra l 

The left side of (2.1.2-7) is converted to surface integrals by Green's theorem:2 

J [g(r, r·)V·cjlo(r·) - cjlo(r·)V* g(r, r·)] • n(r·) ds· 
So 

= J [g(r, r·)V°cjlo(ro) - C!>o(r·)V· g(r, r·)] • nr<r·) ds· 
r 

(2.1.2-9) 

+ 1 [g (r, rO )VO C!>o(rO) - cjlo(rO )V· g (r, rO)] • [ - nn<r·)] tho (2.1.2-10) 
n 

As Irol ~ 00, the first surface integral of equation (2.1.2-10) vanishes as the resuit of the pro-

perties of the Green's function and potential at infinity. Therefore, the integral equation in 

region 0 is: 

1 oa o·1· a .. cjlo(r) = cjlp(r) - g(r, r )-a ° C!>o(r ) ds + cjlo(r )-a • g(r, r ) ds 
n n n n 

(2.1.2-12) 

Equation (2.1.2-12) is the general form found in Stratton (1941) where the harmonic 

function may be expressed as the superposition of the fields due to the applied sources within 

region 0 and to sources or charges outside the region. These charges outside the region can 

be replaced by an equivalent surface distribution on n which will produce the proper value of 

the harmonic function within the region. The equivalent surface layers are the single-layer 

(left integral) and double-layer (right integral) potential functions. _The single-layer is 

2 Green's theorem is: 

fJ",v·2e -eV·~]dv· = JJl'v"e -ev"",] . 0" ds· = 5.[", a:~ -ei!-]ds· 
v s s 

where V· is the region of interest, S" is the surface enclosing V" , n· is the outward tmit nonnal vector on S·, 
and a",/on· is the directional derivative of the function", in the nonna! direction to the surface. 
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equivalent to the potential of a single layer of charge distributed over n. The double-layer 

represents the potential produced a layer of dipoles on the surface n. 

In region 1, Laplace's equation is valid for the potential function, cl>t(r) and the Green's 

function since the point of interest is outside the body. Hence, the governing equations for 

the potential and Green's function are: 

V24>l(r) = 0 

V2g(r, r·) = 0 

Using the same procedure employed to obtain equation (2.1.2-7) yields: 

I [g(r, r·)V· 24>1(r·) - 4>l(r·)V· 2g(r, r·)]dv· = 0 
V1 

Applying Green's theorem, results in the following relation: 

I · a - • I · 0 .) ds-g(r, r )-. 4>l(r ) ds = 4>l(r )-;-;-g(r, r 
n on n un 

(2.1.2-13a) 

(2.1.2-13b) 

(2.1.2-14) 

(2.1.2-15) 

Using the continuity of nonnal current density boundary condition, equation (2.1.2-3b), and 

substituting for the left side of equation (2.1.2-15), gives a relation of nonnal surface deriva-

tive of the potential in terms of the nonnal surface derivative of the Green's function: 

I · a - - 0'1 I · 0 •• g(r, r )-;-;-4>o(r ) ds = -- 4>l(r )-;-;-g(r, r ) ds 
n un 0'0 n un 

(2.1.2-16) 

By using the continuity of the potential boundary condition, equation (2.1.2-3a), letting: 

(r· on m, (2.1.2-19) 

substituting equation (2.1.2-10) into the right side of equation (2.1.2-17), and inserting this 

into the integral of equation (2.1.2-12) will give (after some minor algebra): 

[ 
0'1] i - 0 •• 4>o(r) = 4>p(r) + 1 - - 4>(r )-. g (r. r ) ds 
0'0 n an (2.1.2-18) 

Equation (2.1.2-18)-is the desired IE for the potential at a point in the region O. This IE 

has eliminated the single-layer function such that the hannonic function 4>0 is expressed as the 

sum of the external sources and the double-layer potential function distributed over the surface 



15 

of the inhomogeneity. The double-layer function is the surface integral that contains the nOf-

mal derivative of the Green's function and the unknown boundary values of the function 41. 

Source in the Inhomogeneity 

Now, consider the field point r to be in region 1. The governing equations for the 

potential and the Green's function are: 

V2411(r) = 0 

V2g(r, r·) = -l)(r - r·) 

(2.1.2-19a) 

(2.1.2-19b) 

with the boundary conditions of equations (2.1.2-3) and (2.1.2-5) for the potential and Green's 

function. Using Green's theorem for 411 and g results in : 

i [g(r, ro)V0241I(r·) - 4I1(ro)V02g(r, rO)]dvo = i 4I1(ro)l>(r· - r)dvo = 4Il(r) 

~ ~ 

= 1 [g(r,rO)v04l1(rO)-4II(rO)VOg(r,rO)] °On(r·)ds· 
n 

1 00 ° °1 0 • ° 4Il(r) = g(r, r ):;-;-4Il(r ) ds - 4Il:;-;-g(r. r ) ds 
n on n on 

(2.1.2-20) 

With the current source in region O. the governing equations in region 0 for the potential and 

Green's function are: 

V2410(r) = - ..Ll)(r - r 0) 
0'1 

V2g(r. rO) = 0 

Again using Green's theorem and the boundary condition of 410 and g at infinity: 

L [g(r. rO)V0 2410 - 4Io(ro)V0 2g(r. rO)]dvo = - L ~l g(r. rO)o(ro - rJdvo = - 4Ip(r) 
o 0 

1[ ° 0 • • 0 .j. ~ 4Ip(r) - g(r, r )-. 4Io(r ) - 4Io(r )-0 g(r. r) ds = 0 
n . on on 

(2.1.2-2Ia) 

(2. 1.2-2 lb) 

(2.1.2-22) 

Using the boundary conditions. equations (2.1.2-3~) and (2.1.2-3b), on equation (2.1.2-20), 

results in the following expression: 

1 . 0 • • 0'0 [ g(r, r )-. 4I1(r ) ds = - 4Ip(r) + 
n on 0'1 1 0 • !o] 41-. g(r, r ) ds 

n an 
(2.1.2-23) 
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Substituting into equation (2.1.2-20), yields: 

cro [ i· a ..J cMr) = ~ cj>p(r) + n cj>(r ) an. g (r, r ) tis - i · a.. cj>(r )-;-;-g (r, r ) tis 
n un 

(fo [ cro ) i · a.. = -cj>p(r) + - -1 cj>(r )-. g(r, r ) tis 
crl crl n an (2.1.2-24) 

Factoring out (fe/crl' equation (2.1.2-24) is: 

cro [ [cr I] i · a ..J cro cj>1 = - cj>p(r) + 1 - - cj>(r )-. g(r, r ) tis = -cj>o(r) 
crl cro n an crl 

(2.1.2-25) 

Equation (2.1.2-25) shows that the formula for the potential in region 1 can be expressed in a 

form that involves the IE of region 0, equation (2.1.2-10), multiplied by the conductivity ratio 

of the host and inhomogeneity. This relation is important when developing an algorithm to 

solve for the potentials in both regions. Equation (2.1.2-25) allows a single routine to calcu-

late the potentials in both regions by merely incorporating a condition statement within the 

routine. 

For the mise-a-Ia-masse situation (sources within the inhomogeneity), the potential must 

now satisfy Poisson's equation for field points in region 1 and Laplace's equation in region O. 

The Green's function will satisfy its respective governing equation for its domain. By follow-

ing the same procedures as before, equations (2.1.2-18) and (2.1.2-24) are also the expressions 

for the mise-a-la-masse case. 

An advantage of the surface potential IE, equation (2.1.2-18), over the IE involving the 

surface charge distribution is the relaxation of the restriction that the boundary be a Liapunov 

(smooth) surface. It can be applied to the more general Kellogg regular surfaces, allowing 

inclusions of comers or edges (Brebbia et al., 1984). Another advantage is only one IE is 

required to determine the potentials on the boundary and in the medium. Whereas, the other 

method needs two expressions: one to find the surface charges and the other to calculate the 

potential in the medium. 



17 

2.1.3 Singularity 

The evaluation of the singularity of the double-layer potential function follows the dis-

cussion of Okabe (1976). The surface integrals of equations (2.1.2-18) and (2.1.2-24) are 

improper since the integrand goes to infinity as r approaches r·. To investigate the behavior 

of the surface potential near the singularity, the surface boundary, IT is broken into two sur­

faces: one is an arbitrarily small disc of radius £« 1 containing the point r· with surface ITE; 

the other involves the remaining surface of IT - ITe which excludes r· (Figure 2-2). Now the 

integral of equation (2.1.2-18) can be written as: 

I · a.. I · a.. I · a ( .) ds· ~(r )-. g(r, r ) ds = «r )-a • g(r, r ) ds + ~(r )-. g r, r 
n an n-ne n De an 

(2.1.3-1) 

The first integral over IT - ITe is proper, since the singular point has been removed from 

the integrand, and can be evaluated. Since E can be arbitrarily small, the potential function is 

essentially constant over the area ITE with the value of ~(r·) which can be taken out of the 

integral: 

I .. a.. • I a.. • a I .. (2 32) «r)-.g(r,r)ds =~(r) -aog(r,r)ds =-~(r)a g(r,r)ds .1.-
De an De n n De . 

where the relation between the nonnal derivatives of the Green's function (2.2.1.3) was used. 

To evaluate the integral, a cylindrical coordinate system was used where the origin is 

located at the center of the disk. The field point r is placed a distance ~ from the surface on 

the vertical axis, which coincides with the nonnal unit vector of the surface. The surface 

position r· is located a distance a from the origin on the tangential axis (Figure 2-2). From 

Figure (2.1.3-2), the following relations hold: 

Ir - r O I = [(P - 0)2 + (0 _ a)2r
12 

= (P2 + a 2)112 , 

..E....=..E.... and ds° =adad9 
an ap 

Substituting these into the integral of equation (2.1.3-2) will give: 

a I ° ° 1 a - - g (r, r ) ds = - --
an 1\ . 47t an I 1 ° 

Ir _ rOI ds = 
nE . 

(2.1.3-3a) 

(2.1.3-3b) 
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E 

= 1 a J ada _ .!.~[(~2 + £2)112 _ ~l 
- "2 a~ 0 (~2 + a 2)112 = 2 a~ ~ 

(2.1.3-4) 

By letting r -+ r· , which is equivalent to ~ -+ 0, the evaluation of the integral is: 

o I .. 1. a [1R2 2\112 A 1 - - g(r, r ) ds = - - bm - \p + £ J - pJ ,an I'Ie 2 ~~o a~ 

= - ~ ~, [ (fl' +~£'>I" - 1] = ~ (2.1.3-5) 

The use of relations (2.1.3-5), (2.1.3-2), and (2.1.3-1) and substitution into equation (2.3-20) 

will yield the IE which is now proper everywhere on r: 

[ 0'1] [r . a •• 1 • ~( .)1 cMr) = cjlp(r) + 1 - 0'0 I
n 

cjl(r ) on. g (r, r ) ds + "2cj1(r )U\r, r J 

where 5(r, r·) is the Kronecker delta function defined by: 

• r=r 

(2.1.3-6) 

,(2.1.3-7) 

The numerically integration of equation (2.13-6) can be perfonned as though the singu­

larity did not exist in the integrand since the singularity has been excluded (theoretically) in 

the fonnulation. After the numerical integration, the contribution of the singularity (if applica-

ble) can then be added to the numerical solution. 

2.1.4 Half Space Problem 

The derivation of the half-space problem is similar to that of the whole-space. The ini-

tial configuration is the same as Figure (2-1) except that region 0 which was surrounded by an 

infinite radius sphere r is now enclosed by two surfaces. The first is a hemisphere, again 

called r, located at infinity with unit nonnal Dr. The second is the planar half-space surface 

'P with unit nonnal D'¥. Figure (2-3) illustrates the half-space situation. 

The same PDE govern the behavior of the potentials: Poisson's equation for the medium 

, containing an external source'and Laplace's equation for the source-free re~ion. In addition to 

the boundary conditions of the potentials and the normal current densities of equation (2.1.2-



2), there is a boundary condition for the planar half-space surface, 'l': 

alPo 
0"0-- = 0 

an'f' 
(r on 'l') 
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(2.1.4-1) 

The Green's function satisfies the same equations as in Section 2.1.2. In addition to the 

Green's function behavior at infinity, a boundary condition is needed for the surface 'l', equa-

tion (2.2.1.4), 

ag(r, r) = 0 
an,!, 

(Ir - r- I on 'l') (2.1.4-2) 

The solution satisfying the governing equation and the boundary conditions will result in the 

half-space Green's function, equation (2.2.1): 

_ I[ I I] 
g(r, r ) = 41t Ir _ r-I + I -I r - rl 

(2.1.4-3) 

where r; is the image location of the source position r-. 

Applying Green's theorem to the field equation for the Green's function and potentials 

will result in the same expression as equation (2.1.2-10) plus another surface integral to 

account for the planar surface 'l' which is: 

(2.1.4-4) 

The integrand will vanish when the boundary conditions (2.1.4-1) and (2.1.4-2) are applied to 

this term. The same procedure that was applied in Section 2.1.2 can be employed to obtain 

the IE for all the half-space cases: 

lPo(r) = lPp(r) + [1 - :~l In lP(r") a;. g(r, r") ds" (2.1.4-5) 

whe~ the primary potential term of equation (2.1.4-5) also involves an image term: 

lPP(r)=..Lg(r,ro)=_I_[1 1 1+ 1 1 I] (2.1.4-6) 
0"0 41t0"0 r - ro r - rO,1 

and r 0, I is the image location of the source location r 0 • Figure (2.1-4) shows the inhomo-

geneity and external source with their images. 
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2.1.5 Multiple Bodies 

The expressions for a single body in a homogeneous medium that have been derived in 

the previous sections can be extended to incorporate multiple bodies. The derivation in this 

section will deal with two bodies in a homogeneous space. The extension to the multiple 

bodies case will be apparent from the derivation. 

Consider two separated bodies of conductivities. volumes. and boundaries of 0'10 Vlt ill 

and O'z. Vz• ilz• respectively. set in a homogeneous medium with a conductivity of 0'0. volume 

VOl and outer boundary ITo. The directions of the normal unit vector of the surfaces are shown 

in Figure (2-5). For the field point and current source located in region O. the following field 

equations for the potentials and Green's function are: 

VZ4>O(r) = - ~f>(r - rJ and VZg(r. r") = - f>(r - r") (in region 0) (2.1.5-1) 
0'0 

VZ4>I(r) = 0 and VZg(r. r") = 0 (in region 1) (2.1.5·2) 

VZ4>Z(r) = 0 (in region 2) (2.1.5-3) 

The boundary conditions for the potentials are: 

lim cl>o(r) = 0 (r on ilo) (2.1.5-4) 
Irl .... - ' 

and 
a4>o(r) a4>1 (r) 

0'0-- = 0'1--
ann) an nl 

(r on ill)(2.1.5·5) 

a4>o(r) a<!>z(r) 
0'0-- = O'z--

an n2 an n2 
4>O(r) = <!>z(r) and (r on I1;0 (2.1.5-6) 

Applying Green's theorem to equation (2.1.5-1) and using equations (2.1.5-4) and (2.3-5) 

boundary conditions. gives: 

I [g(r, r")V"Z4>o(r") - 4>o(r")V" Zg (r, r")Jdv" = - 4>p(r) + 4>o(r) 
Vo 

'I[ "a " "a "1" = -. n
1 

g(r, r ) an~ 4>o(r ) - 4>o(r ) an~ g(r, r )J ds 

I[ · a " ",a "J" - g (r, r )-;-;-4>o(r ) - 4>o(r )-;-;-g (r, r ) ds 
n ani ani I 2 . 

(2.1.5-7) 

where the notation for the partial derivatives, ~ = a a • is used for convenience. 
nn

i 
ni 
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For region 1, Green's second identity yields: 

J [g(r, r·)V· 2cMr·) - cMr·)V· 2g(r, r·)Jdv· = 0 
VI 

'= I [g(r,r·)ao.cMr.)-cMr·)oo.g(r,r.)l ds· 
0

1 
nl nl. J 

which leads to: 

(2.1.5-8) 

Using boundary conditions of equation (2.1.5-5) yields: 

1 .. a •.• <111 • a (. • <111 (. a ( ·)ds"2159) g(r, r )-. ~(r ) ds = - g(r, r )-.4>1 r ) ds = - 4> r )-;-;-g r, r \ .. -
o anI <10 0 on 1 <10 0 anI 

I ,I I 

For region 2, a similar expression is obtained: 

I · a • • <12 I a •• g(r, r )-.4>o(r ) ds = - 4>-;-;-g(r, r ) ds 
11z on 1 <10 Oz an 1 

(2.'1.5-10) 

Substitution into equation (2.1.5-7) and inclusion of the singular term gives: 

%(r) ~ +,(r) + [1- ::] [ In,~r).!; g(r. r) lb' + ~~r )lI(r. r)] 

[ 
<12] [ I · a •• 1 • \s:. • ] + 1 - <10 Oz4>Cr ) an~ g (r, r ) tis + 24>(r }V(r, r )J (2.1.5-11) 

where the potentials in the integrals are on the surface of the bodies. 

It is apparent from the above derivation that the expression of equation (2.1.5-11) can be 

extended to Q -bodies. By summing over all the bodies, the multiple bodies problem can be 

treated like the single body problem. The IE for the potentials that incorporates the interaction 

and effects of the Q -bodies can be expressed as: 

Q: [ ] [ l . <1 .a .• 1 •• 
4>o(r) = 4>p(r) + L 1 - <1q I 4>(r )-a • g (r, r ) tis + 24>(r )5(r, r ) 

q=1 0 n nq 
q 

(2.1.5-12) 

Section (2.3.3) contains the discussion of solving the linear form of the I~ which incorporates 

the interactions of the Q -bodies. 
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2.2 Electric Field Volume Integral Equation 

The use of the volume IE to solve for the electric fields of small three-dimensional inho­

mogeneities was introduced by the studies of Raiche (1974), Hohmann (1975), and Weidelt 

(1975). The method consists of replacing an inhomogeneity by a volume distribution of point 

scattering current (densities). The scattering currents can be represented by the product of the 

anomalous conductivity contrast and the total electric field. This approach also allows an 

inhomogeneity to have different electrical properties with no modification of the formulation. 

The scattered fields outside the inhomogeneity are found by integrating the appropriate 

Green's function with the scattering currents. 

The volume IE approach is not commonly used for the DC resistivity problem since this 

method is more complicated to use than the surface IE method. First, the E-field volume IE is 

a vector expression that requires three sets of scalar equations that must be solved simultane­

ously to determine the E-fields. Whereas, the potential or surface charge IE is a scalar expres­

sion which results in a smaller set of linear equations to be solved. Second, the volume IE 

method requires that the volume of the body be discretized versus the surface discretization 

used for the surface IE method. The volume discretization may be much more involved if the 

body has a complex shape. If the problem requires only a single component of the E-field or 

can be reduced to thin objects, the volume IE method becomes practical for solving DC resis­

tivity problems. 

Holladay and West (1988) presented the use of the volume IE method to investigate the 

effects of the well casing on surface resistivity measurements. They simplified the problem by 

assuming only the vertical E-field existed within the casing. Beasley and Ward (1986) used 

the volume IE approach to model a fracture in a hydrothermal field where the fracture was 

modeled as a single row of volume elements. LaBrecque and Ward (1988) combined the two 

methods to study the effects of well casing on resistivity surveys for fracture location. 

All of the above DC resistivity studies assumed that the E-field volume IE existed and 
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presented no derivations of this method for the DC problem. This section will formulate the 

electric field volume integral equation for the DC resistivity problem. To calculate the poten-

tial in the medium, two integral equations are needed; one to calculate the electric fields 

within the body and the other to determine the potential fields. The Poisson's equation for a 

vector potential function is derived from Maxwell's equations. Since the scattering current 

density is a vector quantity, the infinite medium Green's function is in a dyadic fOIm. The 

formulations of multiple inhomogeneities and the half-space boundary will not be presented in 

this section since these deviations are similar to those of the previous section (surface integral 

equation). 

2.2.1 Electric Field Equation 

The integral equation is derived from the field equation of electromagnetic theory. The 

coupled dependence of the magnetic field H and the electric field E is described by Maxwell's 

equations. Using Ampere's law, the magnetic and electric fields due to an impressed (pri­

mary) current source, i in a homogeneous region is: 

v x H= crE+i 

where 0' is the conductivity of the medium. 

From the solenoidal (magnetic-Gauss) Law, the magnetic field is divergentless, i.e., 

V 'H=O 

Hence, one can represent H as a curl of a vector function: 

H=VxA 

where A is a Schelkunoff vector potential. 

Faraday's law for a DC source field shows that the electric field is irrotational, 

v x E = - an ~ v x E = 0 at 
so one can derive the electric field as the gradient of a scalar function: 

E= - V<1> 

(2.2.1-1) 

(2.2.1-2) 

(2.2.1-3) 

(2.2.1-4) 

(2.2.1-5) 



Substitution of (2.2.1-3) and (2.2.1-5) into (2.2.1-1) yields: 

v x V x A = - O'Vcp + i 

Applying a vector identity to the left side of (2.2.1-6), results in: 

VV - A - V - VA = VV - A - V2A = - O'Vcp + i 
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(2.2.1-6) 

(2.2.1-7) 

Since 41 is arbitrary, one can arbitrarily impose a restriction. For convenience, impose the 

Lorentz gauge: 

V-A= -0'41 (2.2.1-8) 

This leads to the desired expression: 

(2.2.1-9) 

which is the vector form of Poisson's equation applied to the homogeneous regions containing 

the current source. 

Equation (2.2.1-9) is .the PDE that must be satisfied to solve for the vector potential. 

This vector equation can be written in terms of the scalar component of A and the unit base 

vectors (Ut) of the coordinate system. 

~ V2LAtUk = - LJiuk ~ L V2(Akuk) = L-Jiut (2.2.1-10) 
k k k k 

The Laplacian operator (V~ operates on both Ak and Uk. For the case of the Cartesian 

coordinates3
, the base vectors are constant and equation (2.2.1-10) can be written as: 

(2.2.1-11) 

Equation (2.2.1-11) indicates that a solution to the vector equation is obtained by summing the 

solutions of its scalar components. Hence, only the scalar equations are needed in order to 

solve the problem. 

(all k) (2.2.1-12) 

Once Ak is found, the scalar potential cp and the electric field E can be found from the respec-

tive equations, (2.2.1-8) and (2.2.1-5). 

3 Generally, the Laplacian of a vector is formulaled by the veClor identity: V2A = V(V • A) - V x V x A. 
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2.2.2 Solution of the Electric Field Equation 

For an impressed current source located within an unbounded homogeneous medium, the 

general solution for the vector potential of equation (2.2.1-11) can be found by solving the 

PDE using a transform technique (Banos, 1966) which is: 

• 0 

1 J J' (r) 0 J o· 0 d 0 A(r) = - 1 01 dv = g(r,r )JI(r ) v 
41t v. r - r v· 

(2.2.2-1) 

where g(r,r
O

) is the whole-space Green's function (see Appendix A). 

Thus, if the current density i is known then the vector potential A can be found. By 

using the relationship of equation (2.2.1-8), the scalar potential can be obtained: 

cI> = - - V • A = - - V· g(r,r )JI(r )dv = - - • g(r,r )J (r )Jdv 1 1 [ J o· 0 oj J 1 V [ 0 i 0 1 0 

(1 (1 y. v" (1 

J 1[ 0 ·0 0·010 = - - g(r,r )V' JI(r ) + Vg(r,r ). JI(r )Jdv 
v. (1 

(2.2.2-2) 

The divergence operation is applied in the field coordinate system r, whereas Ji is in the 

source system. Therefore, this tenn is zero and equation (2.2.2-2) is: 

J 1 V 0 • 0 0 
cI> = - - g (r,r ). J' (r )dv 

y. (1 
(2.2.2-3) 

From equation (2.2.1-5), the electric field is: 

(2.2.2-4) 

Now, expanding the integrand on the right side of equation (2.2.2-4) gives: 

V[Vg(r,r
O

). i(r
O

)] = [i(r
O

). V] Vg(r,r") + [Vg(r,r
O

) 'V]i(r") 

+ i (r") x V x Vg (r,ro
) + Vg(r,rO

) x V xi (r·) (2.2.2-5) 

The second and last tenn on the right side of equation (2.2.2-5) are zero since the vector 

operators and i are in different reference (coordinate) systems. The third tenn is zero by the 

vector identity: V x V", = O. Applying the concept of the the dyadic Green's function 

(Appendix A) equation (2.2.1-5) can be written as: 

1 [ ".1 1[." ] . -V Vg(r,r ). J'(r )J = - JI(r ). V Vg(r,r ) 
(1 . cr 
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(2.2.2-6) 

The desired fonn of the electric field is obtained: 

E(r) = jt':(r,r*)' Ji(r*)dv" (2.2.2-7) 
v· 

The dyadic Green's function is defined for field points outside the inhomogeneity in 

Appendix A. But when the field point r is within the volume V", the volume integral is 

improper. The singularity must be removed from the integration and evaluated separately at 

the singular point. As shown by Van Bladel (1961 and 1964) and presented by Ward and 

Hohmann (1988), the dyadic Green's function is: 

e(r,,') =! HVVg(r.r)j- ~ str - r) Y} (2.2.2-13) 

where P [ • ] denotes the principal value integration. 

2.2.3 Electric Field Integral Equation Formulation 

The previous section focused on the impressed current source in an unbounded homo-

geneous medium. However, when there are inhomogeneities within the medium, the 

impressed current source will "induce" currents within the inhomogeneities. At any point in 

the medium, the total field observed is the sum of the incident (primary) field caused by the 

impressed source and the scattered (secondary) field due to the scattering currents in the inho-

mogeneities with contrasting properties. Since the scattered field can be written in tenns of 

the total field, the integral equation is solved for the total field using a numerical technique. 

Consider an unbounded homogeneous medium (host) with volume, V 1 and conductivity 

(Jl and an inhomogeneity (body) with a volume V! and conductivity (J! contained within it 

(Figure 2-5). Let there be a impressed current density source i within the host medium. 

Since the body has a different conductivity than the surrounding medium, some of the incident 

field (denoted by the superscript i) will be "deflected" to produce a scattered field (superscript 

s ). The total field observed at a point r in the host will come from from both the incident and 

scattered fields. Hence. the electric and magnetic total fields can be decomposed into the 
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scattered fields. Hence, the electric and magnetic total fields can be decomposed into the 

incident and scattered fields: 

E=Ei+E' 

H=H i +H" 

Ampere's law for the entire medium is: 

v x H = O'(r)E + i 
where: 

() 
{
O'l' r in V 1 

O'=O'r = 
0'1, r in VI 

(2.2.3-1a) 

(2.2.3-1b) 

(2.2.3-2) 

(2.2.4-3) 

The incident field that would apply everywhere in the absence of the inhomogeneity would 

satisfy the following: 

Subtracting (2.2.3-4) from (2.2.3-2) yields: 

v x [H - Hi] = O'(r)E - O'lEi ~ V X US = 0'1E' + [O'(r) - O'l]E 

'The anomalous conductivity contrast is: 

fO'l - 0'1 , 
O'(r) - 0'1 = !l.0' = 1

0 

Thus, equation (2.2.3-5) can be written as: 

and 

y =!l.0' E 

(2.2.3-4) 

(2.2.3-5) 

, (2.2.3-6) 

(2.2.3-7) 

(2.2.3-8) 

Equation (2.2.4-7) is Ampere's law applied to the scattered fields. On the left side of 

equation (2.2.4-8), JS is the equivalent scattered current that replaces the body and is the 

source of the secondary field. On the right side,E is the total electric field and !l.0' is the con-

ductivity contrast between-the body and host. Adding the primary field, equation (2.2.3-3), to 

the scattered field, equation (2.2.3-7), yields the expression for the total fields with the primary 

and equivalent scattered sources. 



Vx~+Vxw=~~+i+~~+Y 

~ V x H = crlE + Ji + Y 
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(2.2.3-9) 

Using the procedures of Section (2.2.1) will result in the PDE for the vector potential due to 

the incident and scattered sources: 

(2.2.3-10) 

The solution to this PDE is: 

A(r) = Ai + A' = J g(r,r·)i(r·)dv· + Jg(r,r·)J"(r·)dv" 
V 1+V2 2 

(2.2.3-11) 

The left integral is the vector potential due to the incident field which is known. The right is 

attributed to the scattered field which is dependent on the conductivity contrast and the unk-

nown total electric field. 

Using the relations of equation (2.2.1-8) on the incident field and the scattered P,Otential, 

equations (2.2.2-3) and (2.2.2-8a), yields the desired expression of the scalar potential: 

cp(r) = cpi(r) + JV· g(r,r·)· Acr E(r")dv· 
2 

(2.2.3-12) 

Applying the relation of (2.2.1-5) on this equation gives the the Fredholm integral equation of 

the second kind for the electric field: 

E(r) = Ei(r) + J ~(r.r·)· Acr E(r·)dv" 
2 

(2.2.3-13) 
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2.3 Numerical Solution of the Integral Equations 

The next objective of this chapter is to solve the surface IE of Section (2.1) and volume 

IE of Section (2.2). A common method to solve the functional form IE is to reduce it into a 

set of linear equations which can be solved by matrix procedures. This is accomplished by an 

approximation technique known as the method of moments. also called the method of point 

matching over subsectional bases or method of weighted residual (see Appendix B). 

This method involves the expansion of the unknown field function into a series of piece-

wise constant basis functions and Dirac delta weighting functions at N discrete points in the 

region of interest. Each basis function exists only over a subsection within the region. The 

corresponding weighting function will only affect the approximation of the unknown function 

over that subsection. The integral over the region is then approximated as a summation of 

integrals over the subsections. This linear form of the equation must now be satisfied at each 

N discrete points. As a result. a matrix equation is obtained and can be -solved to determine 

the unknown field functions. 

2.3.1 Surface Integral Equation 

The surface IE of Section (2.1): 

[r • d.. 1 • \: ·1 cjl(r) = cjlp(r) + C II cj>(r ) an. g (r ,r ) ds + "2cjl(r )u(r,r )J (2.3.1-1) 

where: 

is transformed into the matrix equation by the following procedure. By using N piecewise 

constant basis functions, equation (2.3.1-1) can be approximated by: 

(2.3.1-2) 

where: 

· j 0
0 

0 o. J a • ~ K(r,r,,)= v g(r,r,,)-nn(r,,)ds = -.-g(r,r,,)ds 
n an • n. 

(2.3.1-3) 
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The potential for each n-segment can be detennined by using equations (2.3.1-2) and . 

(2.3.1-3). If one lets the field point lie on the m-th segment (denoted by r ... ). which is 

equivalent to using the Dirac delta weighting function 5(r - r:) for all N -segments. the 

integral equation can be written as: 

cI>(r ... ) = cl>p(r ... ) + c[iK(r .... r.JcI>(r:) + ~ cl>(r.J5(r .... r:)l 
,.=1 J (2.3.1-4) 

Using the property of the Kronecker delta function and rearranging equation (2.3.1-4). yields: 

(2.3.1-5) 

where: 

5".,. = 5(r .... r:) 

K".,. = K(r .... r:) 

Equation (2.3.1-5) is the desired fonn of the matrix equation that can be solved for the poten-

tial on each segment. 

2.3.2 Volume Integral Equation 

The volume IE of section (2.2) involving vectors and dyadics instead of scalar quantities 

can be written as: 

E(r) = Ei (r) + f (i(r.r·) • ~crE(r· )dv· (2.3.2-1) 
v· 

The method of moments procedure to obtain a solution with the vectors is the same as that of 

the scalar. Using N piecewise constant basis functions. equation (2.3.2-1) can be approxi-

mated by: 

N 
E(r) = Ei(r) + L f(r,r:) • E(r:) (2.3.2-2) 

,.=1 

where: 

(2.3.2-3) 
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The electric field for each n -segment can now be determined from equations (2.3.2-2) and 

(2.3.2-3) by applying the Dirac delta weighting function for each segment. The electric field 

relation for the m -th segment becomes: 

where: 

N . 

E", =Ei", + L r"", -E" 
" .. I 

E", = E(r",) 

Ei ", = Ei(r",) 

r ..... = r(r",.r:} 

Rearranging equation (2.3.2-4) gives: 

The ~"''' is defined by: 

~"'" ={Y, 
~, 

where Y is the identity dyadic and ~ is the null dyadic. 

(2.3.2-4) 

(2.3.2-5a) 

(2.3.2-5b) 

(2.3.2-5c) 

(2.3.2-6) 

(2.3.2-7) 

Equation (2.3.2-7) is now in the form of a partitioned matrix equation which can be solved for 

the unknown E -field in each segment. 

2.3.3 Matrix Equation 

Equations (2.3.1-5) and (2.3.1-6) can be expressed as a matrix equations of the form: 

N 

gm = L a"l"", 
,,=) 

(2.3.3-1) 

where gIll is the kriown source field, a" is the unknown field, and I"", is the linear integral 

operator. Table (2-1) shows the relation of the field components of the surface IE and volume 

IE with the linear matrix equations (2.3.3-1). 
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Surface IE Volume IE 

g". 4>p(rm ) ~(r;) 

a" 4>(r :) E(r:) 

lmll B Omll - c K"." ~mII - r mil 

Table (2-1) 

In vector notation, equation (2.3.3-1) can be expressed as: 

(2.3.3-2) 

where g and a are vectors and 1 is a matrix. From equation (2.3.3-1), the unknown fields of 

the inhomogeneity a are found by: 

(2.3.3-3) 

where I-I is the inverse of matrix 1. 

Equation (2.3.3-3) solves for the unknown field a" for each segment at r; on/in the inhomo-

geneity. The field at point r in the medium can be calculated by substituting a", which 

represents the potential or electric field of the n-th segment of the inhomogeneity, into the 

respective scattering field of equation (2.3.1-2) or (2.3.2-2). 

Since equation (2.3.3-1) is linear, the matrix equation can easily be extended to include 

multiple bodies (inhomogeneities). For Q -inhomogeneities. the matrix equation can be 

expressed as: 

1'1 
~ Gi = L AjLij (2.3.3-4) 

j=1 

Q 

where: (i, j = 1 to Tl = L Nq ) and (mq , nq = 1 to Nq ) are the segment indices and Nq is the 
q=1 

total number of segments for the q -th inhomogeneity. The elements of A can be found by: 

(2.3.3-5) 

where L -I is the inverse of L and has the dimensions ell x 11). 
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The matrix L of equation (2.3.4) can be thought of as a partitioned matrix composed of 

(Q x Q) submatrices in the fonn of: 

(2.3.3-6) 

L(QQ) 

This partitioned matrix accounts for the interaction within and between the inhomogeneities. 

The diagonal matrices L(qq) incorporate the interaction of the segments of the q-th body onto 

itself and has the dimensions (Nq x Nq ). The off-diagonal partitioned matrices ~), with 

(Np x N q ) elements, represent the interaction between the p -th and q -th bodies. This matrix 

contains the effects of the segments for the q-body onto the elements of p-body, whereas the 

converse holds for matrix L(qp). 

It is worth noting that for the DC resistivity problem the matrix I is a full, diagonally 

dominant, real matrix and can be very large. For an infinite homogeneous medium, this 

matrix can be symmetric if elements of equal size are used for the segmentation of the inho­

mogeneity. Additionally, the elements of the matrix I contain infonnation on the interaction 

between the segments of the inhomogeneity and have no primary source field infonnation. 

Hence, the unknown fields a of the inhomogeneity can be solved for any source configuration 

once the inverse matrix 1-1 is obtained. 

Knowledge of the matrix and the kind of problem being solved is important in solving 

the linear equations. If a problem involves many different source configurations and a single 

scatterer configuration, the computational effort can be greatly reduced by saving the inverse 

matrix 1-1 and using it to calculate all the source configurations. Since only scatter informa­

tion is contained in 1, the matrix only needs to be solved once. Depending on the problem, 

several matrix inversion :algorithms, the Gauss-Jordan elimination, LV decomposition, and 

singular value decomposition (SVD), are commonly used. 
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If the properties of the inhomogeneity change during the analysis of the problem, as 

would occur for an iterative inversion problem, the unknown fields must be calculated and the 

inverse matrix ;-1 may not be needed. For these types of problems, the SVD is frequently 

used to solve for the unknown fields. The iterative techniques, such as the conjugate gradient 

method (Sarkar and Rao. 1982). are becoming popular for solving large sparse sets of linear 

equations. Many other methods exist that can be employed to solve linear equations but are 

beyond the scope of this thesis. 
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Figure 2-1: The generalized geometrical and electrical configuration of an inhomogeneity 
within an infinite medium for the potential surface IE method. (Current sOUrce position is not 
shown.) 
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Figure 2-2: The configuration of small surface element of the singular e'ell for the potential 
surface IE method. 
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Figure 2-3: The generalized geometrical and electrical configuration of an inhomogeneity 
within a half-space for the potential surface IE method. (Current source position is not 
shown.) 
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Figure 2-4: The generalized geometrical and electrical configuration of two inhomogeneities 
within a whole-space for the potential surface IE method. (Current source position is not 
shown.) 
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CHAPTER III 

GREEN'S FUNCTION SOLUTIONS 

In the previous chapter, two fonns of the IE used to calculate the potential field of an 

arbitrary inhomogeneity were derived and a numerical method to solve these expressions was 

introduced. The inhomogeneity produces the scattered field which can be characterized by a 

source density distribution. The first type of source density is the double-layer potential 

which is distributed over the surface of the body. The second kind is the volume distribution 

of current densities within the inhomogeneity. In either case, an integral containing the 

Green's function must be evaluated in order to calculate the source density. For the remainder 

of the chapter, this integral will be called the "Green's function integral". 

Since the region of interest is a half-space, the image method is used to satisfy the sur­

face boundary condition that no vertical current exist at the half-space surface. The image 

sources, with the same strengths and polarities as the primary sources, are placed on the oppo­

site side of the half-space boundary. The resulting field is the sum of the primary sources and 

their images. The same procedure is used to calculate the effects of the half-space on the 

scattered fields. 

The majority of this discussion will deal with a specific inhomogeneity, a vertical 

annulus or pipe, and the detennination of the Green's function integral for this situation. Both 

the potential surface-IE and E-field volume IE approaches are solved for the axial symmetric 

(axisymmetric) configuration. For the axisymmetric problem, the bodies are discretized into 

cylindrical rings. The solution of the Green's function integral of the ring elements requires 

the use of the axisymmetric Green's function. 

The Green's function integral of the surface potentials for the thr~-dimensional (3-D) 

case will be investigated in both the Cartesian and cylindrical coordinate systems. Flat-surface 

40 
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The Green's function integral of the surface potentials for the three-dimensional (3-D) 

case will be investigated in both the Cartesian and cylindrical coordinate systems. Flat-surface 

and arc-surface segments are used to describe the body for the Cartesian and cylindrical coor­

dinate systems, respectively. The 3-D Green's functions in both coordinate systems are 

needed to solve these integrals. 

Additional bodies, axisymmetric and off-axis, are incorporated with the pipe model The 

fields which are due to the addition of axisymmetric plumes can be obtained by using the 

axisymmetric Green's function and the multiple body fonnulation. To detennine the fields 

caused by the pipe and an off-axis body, a 3-D "mixed" coordinate system is used. This 

mixed system uses arc-surface segments for the pipe and the fiat-surface segments for the off­

axis body to determine the scattered field. If the body and/or applied sources are a sufficient 

distance from the pipe, an axisymmetric Green ',s function can be used to simplify the compu-

, tations by approximating the response of the pipe with circular ring segments instead of the 

arc segments. 
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3.1 Axisymmetric Problem 

The Green's nmction integrals are solved for the axisymmetrict case. This is accom-

pUshed by using the axisymmetric Green's function which is derived in Appendix C by satis­

fying Poisson's equation for the Dirac delta source function in cylindrical coordinates. This 

Green's function is used to represent the situations where the primary source(s) and axisym­

metric objects(s) are coaxial. Along with solving the Green's function integral, a "ring" pri­

mary source tenn is found for the potential and electric field (E-field) using the axisymmetric 

Green's function. 

The first part of this section solves the Green's function surface integral K(r, r*). This 

surface integral is comprised of the surface nonnal derivative of the Green's function 

integrated over the surface element The second part finds the Green's function volume 

integral f(r, r*) by integrating the components of the dyadic Green's function over the volume 

of the cell. For the E-field solution, a second IE is required to detennine the potential fields 

in the medium caused by the scattered currents of the circular ring segments. 

3.1.1 K(r, r·) Formulation 

Figure (3-1) illustrates the axisymmetric model configuration of a finite-length pipe and, 

for simplicity, a single current source coaxially located. Let the surface of the earth be z = 0 

with the positive vertical z axis directed downward. The location of the current electrode on 

the vertical axis is at Z8' The origin of the radial direction is at the center of the pipe. The 

pipe is described by its length: L, inner radius: b, outer radius: c, and a conductivity of <rl. 

The earth, host medium, has a conductivity of <ro. Other bodies, such as the borehole fluid 

and/or casing cement, may be included in the problem but are not needed in solving for the 

Green's function. 

t In the cylindrical coordinate system, a position of a point can be described by a radial, azimuthal, and vertical 
. coordinates (p, 9, z). The problem has axial symmetry when only the radial and vertical' coordinates are required 

to define the position. 
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Recall that the Green's function surface integral for the surface IE, equation (2.3.1-3), is 

of the fonn: 

• J V· • • )ds· J a ( • • K(r, r ) = g(r, r ) • n(r = n -.-g r, r )ds 
~ s"~ 

(3.1.1-1) 

where n is the directional cosine of the surface nonnal unit vector n. For the pipe, or an 

annular-shaped object, there are two components, i.e., radial and vertical, to the surface 

integral. Hence the Green's function integral of equation (3.1.1-1) can be written as: 

• J a •• • • K(r, r ) = n -.-g(r, r)ds = n,K,(r, r ) + npKp(r, r ) 
s. an (3.1.1-2) 

The first, K, defines the fiat horizontal ring surface associated with the top and bottom 

parts of the annulus. The· second, Kp describes the inner and outer vertical walls of the 

annulus. Figure (3-2) illustrates the two surfaces associated with an annular obje~t. The com­

ponents of the d.irectional cosines of the unit surface nonnal, nz and np are defined as positive 

downward and outward, respectively. For this problem, they are either ± one or zero. 

Horizontal Surfaces 

The z-component of K(r, rO

) is given by the following expression: 

21th 

° J a "ds" I J a ". 0 • K,(r, r ) = ~g(r, r) = -. g(r, r )p da dp 
s" oZ c oz (3.1.1-3) 

The half-space axisymmetric Green's function, appendix equation (C-7), is substituted into 

equation (3.1.1-3) and is evaluated over the width of the annulus, interval (b, c). The expres-

sion now becomes: 

(3.1.1-4) 

. where the evaluation over the a-integral from 0 to 21t was accomplished. 

Since equation (3.1.1-4) is linear, rearranging the operations yields: 

(3.1.1-5) 

Evaluating the Bessel integral yields: 
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b b c 

IJo(Ap·)p· dp· = fJo(Ap·)p· dp· - IJo(Ap·)p· dp· 
c b 0 

(3.1.1-6) 

where p; = b and Pi = c. 

Evaluating the %. -derivative term yields: 

~[e4.lz-a·1 + e~z+z·~ = A[Sgn(%-z·) e-AaJ - e~] = Xl:(±);e-Aai 

~ w 
(3.1.1-7) 

where: al = 1% -% • I, a2 = (z +z .), (±)l = sgn(% -% .), and (±h = -1. 

Combining the terms yields the solution for ~: 

- 2 2 
K, = ~ I ~(±);e-l.ai ~(-I}HpjJl(Api·)JO<Ap)dA 

12 2 'I • 
= 2 !t(±); i~(-IY- Floo(Pj'P,Cl;) (3.1.1-8) 

where F loo is found in Luke (1962): 

1 e.kK(k) 1 
a > b -

21t(ab )'h 
- 21\0('1', k) 

Floo(a, b, p) = a Ie-¥JI(Aa)Jo(Ab)dA = 1 e.kK(k) 
a =b (3.1.1-9a) - -

0 2 2M 

0 e.kK(k) 1 
a < b - + 21\0('1', k) 

21t(ab)'h 

1\0('1'. k) is the Heuman lambda function, 

(3. 1. 1-9b) 

Vertical Surfaces 

The p-component of K(r, r·) is: 

21t '0 • I a •• 11 0 •••• Kp(r, r ) = -:;-;-g (r, r )ds = -. g(r, r )p de dz 
. s· (]p 0 - op 
. '0 

(3.1.1-10) 

Integrating e· from 0 to 21t and using equation (3.1.1-8) in equation (3.1.1-10) gives: 



_ %0 
= ~ pOl c/o Jo(Ap°) JJe-AIz-

ZO
, + el.(,+,O)]dz

o 
d').. 

p ·0 

where Z6 = Zo + liz and Zo = Zo - liz. 

The p
O 

-derivative is: 

a!O lo(Ap°) = - ')..Jl(Ap·) 

The evaluation of the z· -integration in equation (3.1.1-8) yields: 
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(3.1.1-11) 

(3.1.1-12) 

(3.1.1-13) 

Three resulting cases occur for the evaluation of the absolute value in the first integral of 

the right side of equation (3.1.1-11). 

·0 [ ~ J ,,0 ) 0 1 4,('0 -z) -I.('ii -,) e-"'" -z dz = - I" e - e 
zii 

z S; Zo 

'0 J e-)J,-z°,dz 0 = 
zii 

·0 . ~ 
J " 0) 0 1 r -I.(.-zii) -I.(,-zo) 

e-""z-z dz = - I"Le - e 
'ii 

z ~ z6 (3.1.1-14) 

o ·0 

J 4,(z-Z°)d· I -l.(zO -Z)d 0 1 [ -I.('-zii) 4,(·0-z) 2J e z + e z = --e +e -
- ').. Zo . 

Zo < Z < Z6 

The solution of the second integral in equation (3.1.1-13) is: 

Z+ 

Jo -"z+zO)d 0 1 [ -1.(1+.0) -l.(z+Zii)~ e"" z =--e -e 
').. 

(3.1.1-15) 
zii 

Combining equations (3.1.1-13) and (3.1.1-14) yields the solution for the ZO -integration: 

Z+ 

] [e-A'z-z°' + eI.(Z+ZO)]dz o 

(3.1.1-16) 
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where at = IZ-Z6 I, az = Iz-zo I, a3 = (z+Z6), Cl.4 = (z+zo), and 5(z ,zt) equals unity for 

Zo < Z < Z6 or zero othelWise. Combining the tenus of equations (3.1.1-15) and (3.1.1-16) 

gives: 

K,. = ~ p·IJ1o,p·)JoO>9)[t,<±).e .... - 2li(%,z~)]dA 

= ~ t(±)kFl00(P* ,p,al;) - F1OO(P* ,p,O) 5(z ,zt) 
1=1 

(3.1.1-17) 

Equations (3.1.1-8) and (3.1.1-17) are the expressions for the components of the Green's func-

tion surface integral used to evaluate the response of the annulus surfaces in a half-space. To 

calculate the potential fields on the surface of the annulus and in the medium, these two 

expressions, equations (3.1.1-8) and (3.1.1-17), must be used in the scattering term of the sur-

face IE, equation (2.3.1-3). 

3.1.2 r(r, r*) Formulation 

The same model configuration, Figure (3-1), is used where the pipe of length (L), thick-

ness (t), inner (b) and outer (c) radii is coaxial with the single current source which is located 

on the vertical axis at Z.r. As in the previous section, the field point is represented by r and 

the scattered position is defined as r·. Usually the conductivity of the borehole fluid is much 

closer to the conductivity of the surrounding host than the casing conductivity. 

For this section, the problem is simplified by assuming that CJfluid = CJhost = CJo when comparing 

with the casing conductivity, CJt. Figure (3-3) shows a segmented cell of the pipe used for the 

volume integral equation approximation. The scattering current can be decomposed into two 

components: Jp and J:. The location of the center of the cell is (0, zo) and has a center radius, 

half-height, and half-thickness of a, Az = h./2 and tJ.a = t12, respectively. 

The expression of the Green's function volume integral for the volume IE, equation 

(2.3.2-3), is in a dyadic form: I 
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r(r, r') = flcr f t:(r, r')dv' (3.1.2-1) 
v' 

where flcr = al - ao and the axisymmetric dyadic Green's function is found in equation (3G-9) 

in Appendix 3G. For the axisymmetric problem, there are four elements to r: 

(3.1.2-2) 

where the r component, r Gb relates the a -component of the field at point (r) to the b­

component of the scattering current at r·. For the axisymmetric problem, equation (3.1.2-1) 

is: 

r(r, r·) = fla f f f t:(r, r·) p. de*dp· dz· = 21tf1a f f t:(r, r·) p. dp· dz· (3.1.2-3) 
%'p'S' %.p. 

Using appendix equation (A-ll), equation (3.1.2-3) can be written as: 

r · 21tf1cr f f VV· •••• (r, r ) = - -- g (r, r ) pdp dz 
ao •• 

% P 

The elements of the dyadic r function are: 

o 0 0 0 -- --rw

' 
r~l op op· op oz· 

= - 21tf1cr f f g(r, r·) p. dp· dz· 

r%p. r cro •• o 0 0 0 u* • P --- ---
oz op· oz oz' 

where: 

(3.1.2-4) 

(3.1.2-5) 

is the expression for the axisymmetric Green's function, equation (3G-7) in Appendix C. 

The solutions for the r components are derived in Appendix D 'and are: 

a!ulticr 4 { a.;k; [1+k'2 l} rpp. = L (±)f 312 -'2-E(k;) - 2K(k;) - Ep 
ao ;=1 41t(pa) k 

(3.l.2-6a) 

a tia ticr 4 . k; [ a.; 2 + p2 - a 2 ~ rzp' = L (3.1.2-1)' 112 K(k;) - 2 2 E(k;) 
. cro ;=1 21ta(pa) a.; + (p - a) .. 

(3.1.2-6b) 
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r .. = auuuCJ L (3.1.2-IY+1 ' K(k;) - ' E(k;) 
A _ A 4 k. [ a. 2 + a2 _ p2 j 

p CJo ;=1 21tp(pa)112 a;2 + (a _ p)2 
(3.1.2-6c) 

r = al1a/j.CJ~(+).r a; k;3 E(k.) 
.... CJo tt -, 41t(pa)312 (1 - k;)2 ' 

(3.1.2-6d) 

where K(k) and E(k) are the complete elliptic integrals of the first and second kind, respec­

tively, and ki was defined in equation (3.1.1-9b). The values of (±)f = ±1, in equation (3.1.2-

6a), and (±)l = ±l, in equation (3.1.2-6d), are dependent on z, Z ()t and flz in appendix equa­

tions (04-4) and (DI-12), respectively. In equation (3.1.2-6a), the Ep is equal to 1/a2 in the 

singular cell and zero otheIWise. 

Highly Conductive Pipe 

At this point, consider the behavior of E-fields within the pipe. Figure (3-4) shows the 

interface between the host medium and pipe with conductivities of CJo and CJh respectively. 

The boundary condition (h.c.) of the continuity of the tangential E-fields requires that the 

tangential components of the E-fields on both sides of the interface be equal, i.e., 

(3.1.2-7) 

The b.c. of the continuity of the nonnal component of the current densities J insists that: 

(3.1.2-8) 

Typically, the conductivity of a metal pipe (CJI) is 6-10 orders of magnitude larger than 

that of the host mediUm (CJo). Hence, the normal E-field within the pipe essentially is nil, i.e., 

ENl = o. Figure (3-5) is a plot comparing the components of the E-fields within a infinite-

length pipe with the conductivity ratio CJo I CJI = 10-8• In terms of Figure (3-4), Ep represents 

the normal component and E. is the tangential component of the E-field. Except for the posi-

tions very near the source depth, the E.-field is much greater than the Ep-field. This shows 

that the vertical E-field within the pipe dominates the response for source-receiver separations 

greater than O.lm. 
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Recall that the E-fields within the pipe are found by solving the linear matrix equation 

which approximates the IE. This matrix equation is fonned by letting the field point rift 

approach the scattering source position r = for all segments. Since only the E,-field exists 

within the pipe, the r u. is the only component needed to fonn the matrix equation. For the 

highly conductive pipe, the dyadic r function integral can be reduced to the scalar quantity 

r". ,.equation (3.1.2-6d). 

Potential Field 

Unfortunately, equation (3.1.2-6d) is limited to calculating the E,-fields within the pipe 

segments. To detennine the potential fields in the medium from the scattered currents within 

the pipe, the integral equation (2.2.3-12) is required. 

$(r) = $i (r) + $s (r) (3.1.2-9) 

The scattered potential of equation (3.1.2-9) can be expressed as: 

1 Iv. .) · $s(r) = -_. g(r, r ) • ~O'E(r dv 
0'0 v. 

~O'J a .) ·)d· =-- -ag(r,rE,(r v 
0'0 v. z 

:: - -E,(r ) - g(r, r )dv ~O' • [a J ..J 
0'0 az v. 

(3.1.2-10) 

The bracketed tenn in equation (3.1.2-10) is fonnulated in Appendix E and is: 

a J •• 4 . k; -a g(r, r )dv :: aML (3.1.2-1)' 112 K(ki ) 
z v. i=1 1t(pa) 

(3.1.2-11) 

Substituting this into equation (3.1.2-10), one can calculate the scattered potential in the 

medi~ caused by the scattered currents of the ring segments, and hence, the total potential in 

the half-space from equation (3.1.2-9). 
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3.2 Three-Dimensional Problem 

The solution of the Green's function surface integral: K(r, r·), equation (2.3.1-3), for the 

three-dimensional problem follows steps similar to those of the axisymmetric case. The prob­

lem now assumes no geometric symmetry and must be modeled by using fiat or cUlVed sur­

face elements. In this section, the procedures necessary to describe the pipe/annulus by fiat 

surface elements or cwved quadrilaterals are given. The Cartesian coordinate system is used 

to derive K(r, r·), for the fiat triangular and rectangular surface elements. The solution of the 

Green's function surface integral for the CUlVed quadrilateral segments is derived in the 

cylindrical coordinate system. 

3.2.1 Cartesian Coordinate System K(r, r·) Formulation 

Figure 3-6 illustrates two surface elements used to approximate the two shapes encoun­

tered when defining the pipe surface. The top and bottom horizontal surfaces of the pipe can 

be described by triangular elements. Two triangles are required to approximate this culVi­

linear quadrilateral. To approximate the curved vertical surface of the outer and inner pipe 

walls, a series of rectangles is used. The number of surface elements needed to describe the 

side surfaces is reduced by a factor of two by using rectangular elements instead of triangles. 

In this section, the Green's function surface integral for the triangular cells will be 

derived first followed by the solution using rectangular elements. The derivations are based 

on the method described by Barnett (1972, 1976) and Paul (1974) where the surface integrals 

over triangular domains are solved in Cartesian coordinates for the IE based on surface charge 

distribution. Unlike the solution using triangular cells, K(r, r·) for the rectangular elements 

are exact and require no numerical integration. 

The fonnulation for.the triangular cells is very useful since the surface of any 3-D body 

can be approximated by a set of triangular segments. Assume that the triangular segments 

that define the surface of the body are arbitrarily oriented with respect to ~e x, y, and z axes 

(Figure 3-7). By using the 3-D Green's function, appendix equation (A-6), the Green's 
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function surface integral, equation (2.3.1-3), can be expressed by the following: 

" J" " "" 1 r (r - r" ) " " K(r, r ) = i V g (r, r ) • n(r ) ds = - 47t ~ Ir _ r" P • n(r ) ds (3.2.1-1) 

Expanding this in terms of the x, y, and z components yields: 

" 1 r(x-x·)nx + (y-y)n, +(z-z·)n, 
K(r,r)= - 47t~[(x-x.)2+(y-Yi+(z-z.)2J312 ds·(x·,Y,z·) (3.2.1-2) 

where nx , 1ty, and nz are the directional cosines of the surface nonnal unit vector n. 

Since the segment is arbitrarily oriented, evaluating all of the surface integrals that 

describe the pipe is difficult The evaluation is made much easier by rotating the coordinate 

system such that one of the coordinate axes is perpendicular to the surface of the segment and 

another coordinate axis is parallel to a side of the triangular segment 

If the apices of the triangular cell are numbered as shown in Figure (3-7), the following 

unit vectors can be defined: 

where: 

S13 
1=-­

IS131 
m=nxl 

Sij = (Xj - Xi)X + {Yj - Yi)Y + (Zj - Zi)Z 

Now the desired coordinate transfonnation can be achieved by letting: 

U = I· r 

u· = I· r" 
. v = m·r' . " v = m· r 

Using these relations, the following are true: 

(r - r") • n(r·) = (w-w") 

w = n· r 
" " w = n· r 

Ir - r·1 = [(u-'u·)2 + (v-v·)2 + (w-w· )2]'h 

ds· = due dv· 

Equation (3.2.1-1) can now be written as: 

• 1 J (r .:... r·) •. • K(r, r ) =. - -4 I • 13 • n(r ) ds 
7t s r-r 

- - _1 J J . . (w -w· ) d • d • 
- 47t"v[(u-u.)2+(v-v.)2+(w-w.i]312 U V 

I 

(3.2.1-3) 

(3.2.1-4) 

(3.2.1-5) 

A shift of the origin to the field point location is done for convenience so equation (3.2.1-5) 



is: 

• • • where: P =U - U q = v - v r =w -w 

Integrating with respect to P -variable yields: 

The P -variable in equation (3.2.1-7) is a linear function of q. i.e .• 

Pi = Pi(q) = giq + hi (for ;=1 and 3) 

where gi (slope) and hi (intercept) are the following: 

P2 - PI 
gl= 

q2 - ql 

P2-P3 
g3 = 

q2 - ql 

h 
_ Plq2 - P~l 

1-
q2 - ql 

h 
_ P3q2 - P2q2 

3-
q2 - ql 
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(3.2.1-6) 

(3.2.1-7) 

(3.2.1-8) 

(3.2.1-9) 

> The q -integral is accomplished by using a Gauss-Legendre method for numerical integration. 

For the rectangular surface element, the K(r, r·) formulation follows the same pro-

cedures as was done for the triangular segment The coordinate system is rotated and 

translated so as to make the integral evaluation simple. If the apices of the rectangular ele-

ment are numbered as in Figure (3-8), the previous procedures up to and including equation 

(3.2.1-7), are the same as above. Unlike the triangular element, the p-variable integration is 

independent of q. Hence, the integration with respect to the q-variable can be done analyti-

cally. After some manipulations and algebra, the solution to the general form of the integral 

is: 

(3.2.1-10) 

Hence, the Green's function surface integral for the rectangular elements reduces to four arc-

tangent functions and can be expressed as: 

(3.2.1-11) 
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3.2.2 Cylindrical Coordinate System K(r, r·) Formulation 

To approximate the surface of the pipe using the fiat rectangles and triangles, many ele-

ments are required. This results in a very large linear system of equations which much be 

solved to determine the unknown fields on the surface of the elements. One could reduce the 

size of the matrix of unknowns by describing the surface with curved-quadrilateral elements. 

Figure (3-9) shows the two surface elements that are used to approximate the pipe surface. 

The vertical walls can be enclosed with a series of curved-rectangular surface elements. A 

fiat-surfaced, curve-sided quadrilateral segment is used to define the horizontal pipe surface. 

By using the cylindrical coordinate system, K(r, r·) for the quadrilateral segments can be 

derived. for completeness, two formulations will be presented in the section. The first formu-

lation is for the "blue collar" form of K(r, r·) which is in terms of trigonometric functions and 

can easily be calculated on a computer. The second derivation is an elegant form which is 

expressed as elliptic integrals and can be used for limiting approximations. 

If the coordinates of the field and source points are (p, e, z) and (r· , e· , z·), respectively, 

then for an arbitrary azimuthal component, cp, the following relations exist: 

r - r· ::: [p cos(O-e·) - p·cos(cp-a·)]p + [p sin(~) + p·sin(cp-a·)]~ + (z - z·)z(3.2.2-1) 

Since ~ is arbitrary, let e = • so equation (3.2.2-1) is: 

(3.2.2-2) 

(3.2.2-3) 

The first formulation of the Green's function surface integral is given below. Using 

equations (3.2.2-2) and (3.2.2-3), the expression for the K(r, r·) is: 

• • • •• 1 (r - r·) •• 
K(r, r ) = I yo g (r, r ) • n(r)ds = - 41t I Ir _ r. P • nCr )ds 

___ l-J [p - p. cos(o-a· )]n p + p' sin(O-a' )ne + (z - z· )nz • • • • 
- 4 2·2· • '2312 ds(p,a,z) 1t s [p + p - 2pp cos(a-a ) + (z - Z )] 

(3.2.2-4) 

where n p' ne, and nz are the directional cosines of the surface normal vector, n. 
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For the pipe, no surfaces exist such that ne *- O. The horizontal surfaces have np = 0 and 

nz = ±1 and the vertical surfaces have np = ±l and nz = O. Hence, equation (3.2.2-4) can be 

decomposed into two components: 

" 1 I [ J (z - z")" "] e" KH (r. r ) = -4 - I " 13 pdp d 
n 8" p. r - r 

(3.2.2-5a) 

[ 
·2" "] Kv(r. r") = -41 I - I p ~ p co~~:-e )dz" de" 

n 8. I" r - r 
(32.2-Sb) 

where Ir - r"1 is defined by equation (3.2.2-2b) and KH and Kv are the horizontal (H) and 

vertical (V) components of the Green's function surface integral, respectively. The solutions 

to the bracketed terms in equation (3.2.2-5) are: 

(3.2.2-6a) 

Z2 
" 2 • £\" • 2 " (£\e" ) ( " ) Iv(a-e") = - I [p - pp c~s(~9 )] dz" = [p" - pp ~s ~ ]" z - z" (3.2.2-6b) 

• Ir - r 13 [p2 + P 2 - 2pp cos2(0-e )] Ir - r 1 
z zl 

In the above formulation, there are no complicated functions involved and both 

integrands can easily be calculated. To obtain K(r, r"), equation (3.2.2-5) must be numerically 

integrated with respect to e· -variable. To simplify the integration, let"," = e" - 90 where eo is 

the azimuthal location of the center of the surface arc-element (see Figure 3-10). The general 

form of the components of K(r, r") can be expressed as: 

(3.2.2-7) 

where 'II = e - eo, ~e is the half arc-length of the surface element. and the subscript k 

represents either the horizontal or vertical component of K(r, r·). 

The following procedure is the second formulation of the Green's function surface 

integral. The general form of the K(r, r
O

) can be written as: 

o Jno • 00 IJJa 1 • 00 K(r, r ) = v g (r, r ) . nCr )ds = -4 -. 1 .1 P d,e dr 
s n r* eO an r - r .. 

= _1 J ~[J 1 1 0 deO]p" dr
o 

(3.2.2-12) 
4n r" an eO r - r 1 
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where 'r -r·' is defined by equation (3.2.2-3) and r· is the integration variable which is per-

pendicular to the surface nonnal vector, D. The integral in the brackets can be expressed as: 

/e{P" ,z.) = J , ! ., d9· = l[ F("" k) J"'2 = 2kb [F("" k) ]"'2 
e· r r 0 "'1 "'1 (3.2.2-13) 

where F("" k) is the incomplete elliptic integral of the first kind and: 

b2 4pp " k2 = -= 
0 2 (p+p.)2 + (z _ z")2 

"'2 = 1 
2"(9 - 90 + A9) 

1 
"'1 = -(9 - 90 - A9) 

2 

Again, there are two surface elements for the pipe: horizontal and vertical. Hence, the 

Green's function integral is expressed as the horizontal (H) and vertical (V) GQmponents: 

KH(r, r") = f- J /. le{P" , z·)p· dp· 
1t p. z 

• 1 J a.. " · Kv(r, r ) = -4 -;7le{P, z )p dz 
1t • (}z , 

Evaluating the partial derivatives yields the integrands: 

[ 2 . ]"'2 I (n· z·) = 2(z - z")~ E( k) _ k sm 'If cos '" 
H\t' • bR 2 ",. (1 - k2sin~)"" 

"'1 

[ .2 [ 2 ] j"'2 I • z· - _T __ k_ E k _ k sin 'If cos 'If _ _ k_F k 
v{P. ) - p. bR2 ("'. ) (1 - k2sin~)'h bp· ("'. ) 

"'1 
where E(",. k) is the incomplete elliptic integral of the second kind and: 

f = p2 - p. 2 + (z _ z·)2 

R 2 = {P _ p·)2 + (z _ z·)2 

(3.2.2-14a) 

(3.2.2-14b) 

(3.2.2-15a) 

(3.2.2-15b) 

- The evaluation of the equation (3.2.2-14) may be computationally time consuming. In 

each step. one needs to evaluate the integral of the Green's function where the elliptical 

integrals is needed. The calculation of these elliptical integrals requires a routine involving an 

infinite series and many time consuming conditional statements. Thus. using equation (3.2.2-

6) may result in a computationally faster evaluation of the K(r. r·) than using equation (3.2.2-

15). 
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3.3 Off-axis Geometry and Asymmetric Approximations 

Thus far, the method to detennine the responses of several coaxially located or three­

dimensional bodies has been presented. Now, the objective is to present a method which can 

calculate the coupled response of a pipe/well casing (annular-shaped body) and an arbitrarily 

located 3-D body (see Figure 3-11). 

For the majority of the configurations involving the pipe and off-axis bodies, the surface 

IE approach is simple and convenient With the exception of thin objects, the volume IE 

method may be quite cumbersome to discretize the body. For thin objects, like fractures, the 

volume IE approach can model the fracture as a single layer of rectangular blocks. But for a 

larger body, the number of volume elements needed to approximate it greatly increases and 

the process of volume discretization becomes complicated. The procedure used to discretize a 

surface is simpler than discretizing a volume. Additionally, the number of unknowns that 

must be solved are fewer using the surface IE method. For the surface IE approach, the unk­

nowns are the potentials which are scalar quantities versus the vector quantities, the E-fields, 

used in the volume IE method. Thus, the potential surface IE formulation described in 

Chapter 2 may be a better method to calculate the coupled response of the pipe and an off­

axis body. 

In Section (3.2.1), the fonnulation of the Green's function surface integral K(r, r·) was 

derived for any arbitrary body. The Green's function integral for triangular surface elements, 

equation (3.2.1-7), can be used to calculate the fields due to the 3-D body. The casing 

response is approximated by either the Cartesian or cylindrical coordinate fonnulation of 

K(r, r·). By substituting the appropriate Green's function surface integral into equation (2.6-

I), the response of any body that is near or in contact with the pipe can be calculated. Using 

the procedure in Section .2.6 for multiple bodies, the potentials in the medium can be deter­

mined. 

Discretizing the surface of the body and pipe with triangular cells refluires a tremendous 

number of segments. This results in a very large set of linear equations that must be solved 
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in order to determine the unknown field for each segment If the pipe surface can be approxi-

mated with annular segments, as in the axisymmetric method, the number of unknowns for the 

pipe will be reduced. This reduction is proportional to the number of ring segments needed to 

replace the arc segments. 

The model study of LaBrecque and WaId (1988) used such a method in their volume IE 

formulation to determine the electric field responses of fractures located near the steel cased 

well (see Chapter 1). They combined the integral equation formulation for the axisymmetric 

and 3-D problems. The electric fields in the well casing were assumed to be radially sym-

metric. Thus, the axisymmetric Green's function was applied to the casing. The fracture was 

modeled as an off-axis tabular body which was discretized with rectangular blocks. The 3-D 

Green's function of Beasley and Ward (1986) was used for the tabular body. 

The use of the axisymmetric Green's function for the pipe was based on the work of 

Holladay and West (1984). They indicated that if the off-axis source distances are "much 

greater" than the radius of the pipe, then an axisymmetric Green's function may substitute for 

the 3-D Green's function. Their approximation was numerically tested by comparing the zero 

and first order solution coefficients for a variety of source positions with an infinite-cylinder 

model. 

The axisymmetric approximation is based on the assumption that the annular region sur-

rounding any point on the pipe is at the same potential (equipotential). This phenomenon may 

be possible because of the extremely large pipe conductivity. If a surface segment of pipe is 

an equipotential surface, then the arc element of equation (3.2.2-13), see Figure (3-10) can be 

evaluated about the- circumference of the pipe, i,e, 69 = 1t. Since the integration is evaluated 

about the entire ring segment, the azimuthal center of the arc can be arbitrarily chosen. For 

convenience, let 90 = 9 and then equation (3.2.2-13) becomes: 

2k [ J'I'r'fC/2 
Ie = -b F("" k) = 

'l'1~2 

where the following two identities were used: 

2kK(k) 
(pp. )112 

(3.3-1) 



F(-\jf. k) = - F(\jf. k) 

F(7tI2. k) = K(k) 

From Luke (1962). equation (3.3-1) can be written as: 
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(3.3-2) 

I, = 2lt[ .:;~~,,] = 2lt I J,p.p 0 )J,p.p l<->J,~O'd 'J.. = T[I J,p.p 0 )J,p.p l< ->J.~ Old + 0
0 

(3.3-3) 

The Green's function swface integral becomes: 

Kt(r, r*)= -4
1 I ~le p*dr* = -4

1 I 47 rr JoQ.,p*voQ.,p)e4.lz-?ldA]dO*P*dr* 
7t r" an 7t r" an ~ l~ . 

= (r 4[~r JoQ.,p·voQ.,p)e-'J..U-1l.ldA]p·de·dr* = I ~g(r,r·)ds* (3.3-4) 
r" ~ an 47t ~ s. an 

where g(r, r·) is the axisymmetric Green's function. 

From this derivation, if the annular surface is a near-equipotential surface, then the axisym-

metric approximation of the pipe segment may be used. The validity of this assumption will 

be investigated in the next chapter by comparing the solutions of the 3-D Cartesian and the 

axisymmetric formulations. 
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Figure 3-1: A generalized model of the finite-length pipe coaxial with a current source within 
a homogeneous half-space. 
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Figure 3·2: The surface elements associated with the ring segment of the pipe. The inner and 
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Figure 3-3: The volume- segment used to define the pipe for the volume IE method. The 
scattered current densities are decomposed into two components: radial (Jp) and vertical (lz). 
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Boundary Conditions; 

1) 

Figure 3-4: The E-field behavior in the two mediums is dependent on the boundary condition 
at the interface: tangential electric fields and normal current densities are continuous. 
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Figure 3-6: The surface elements used to approximate an arc sections of the pipe. For the 
3-D Cartesian coordinate formulation, triangular and rectangular surface elements are used. 
The arrows represent the surface normals of the surface elements. ~ 
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Figure 3·7: A graphical representation of the transform of the rectangular surface ele~ents 
from the x, y, z· to the p, q, r-coordinate system. 
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Figure 3-8: A graphical representation of the of the transform of the rectangular surface element from the 
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Figure 3-9: The surface elements used to approximate an arc sections of the pipe. For the 
3-D cylindrical coordinate formulation. cUIvilinear-quadilateral and curvilinear-rectangular sur­
face elements are used. The arrows represent the surface normals of the sorface elements . 
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Figure 3-11: The generalized configuration of the 3-D problem with an arbitrarily located pipe, 
body, current source, and field point in a half-space. 
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CHAPTER IV 

CONSISTENCY, ACCURACY, AND VALIDITY 

The theoretical fOImulation and programming of the numerical algoritluils that solve the" 

IE problem are checked by evaluating the consistency, accuracy, and validity of the results. 

Two numerical algorithms were developed to calculate the potentials for the axisymmetric 

problem based on the two IE approaches. The computer code founded on the volume IE uses 

the vertical E-field approximation and calculates the potentials in the half-space, whereas the 

routine based on the surface IE method is more general and can compute the potential any-

where in the medium. 

The method of moments, used to solve both integral equations, approximates the integral 

over the body (region) by summing subsectional integrals located at discrete points. The shape 

of the body may also be approximated at these points with surface or volume elements. For 

each subsection, the unknown "continuous" function is assumed constant. A linear matrix 

equation for the unknown function is produced and then solved. By increasing the number of 

discrete points, a better approximation of the unknown function and shape of the body can be 

achieved. If there were an infinite number of points, an exact solution could be obtained. 

Since the number of points is limited to the size and speed of the available computer. 

"truncation'~ errors will.occur due to the approximation, and render the solution unreliable. In 

Section 4.1, the self-consistency and accuracy are investigated by evaluating the convergence 

and reciprocity properties of the numerical results. Since errors can also occur during the 

theoretical fOImulation and programming of the computer algorithm, the solution must be 

checked before it can be considered valid." In Section 4.2, the validity of the method will be 
" ~ 

evaluated by the comparison of analytic and published solutions with the IE results. 
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4.1 Self-Consistency and Accuracy 

A valuable test for the self-consistency of the numerical method is the convergence of the 

solution as the number of model subsections increases. By decreasing the size of the seg-

ments, the IE must be satisfied at more points on the body resulting in a better approximation 

of the unknown function. If the solutions vary greatly for the different cell sizes, then the 

numerical technique is not consistent and may not be reliable. The convergence of the solution 

for an increasing number of segments indicates that the method is self-consistent which is 

necessary for reliability. 

The convergence of the solution does Dot imply a reliable solution. Another check on the 

numerical technique is based on the theorem of reciprocity. Applying reciprocity to this prob-

lem, the same results should be obtained if the source and receiver are interchanged. Since 

reciprocity was not enforced in the development of the algorithm, this theorem can be used to 

test the accuracy of the numerical results. 

Figure (4-1) illustrates the model used for the convergence and reciprocity tests. The 

vertical annulus or pipe with length L = sOm, inner radius b = 10.16cm, and thickness 

t = 1.27cm is divided into N equal length segments of height M... It is coaxial with a point 

current source (unit strength) which is located at the surface. The resistivities of the pipe and 

background medium are PI = 10-6 n'm and Po = 10 n'm, respectively. 

Convergence Check 

The convergences of the potentials at three locations (top, middle, and bottom) on the 

surface of the pipe are evaluated for the surface IE approach and shown in Figure (4-2). The 

number of the equidimensional cells varied from 1 cell (M.. = 5Om) to 500 cells (M.. = O.lm). 

The total number of surface elements needed to describe the surface of the pipe is 2(Nz + N p) 

where Nz and N p are the number of elements in the vertical and radial directions, respectively. 

Each vertical cell requires two surface elements, and the horizontal segments need one surface 
! 

element each. A convergent solution was obtained at about 200 cells (M.. ~ 0.25m), while a 
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reasonable result could be obtained at 2S0 cells (U = 0.2m). 

Figure (4-3) illustrates the convergences of the E-fields within the pipe where the E-fields 

are calculated with the volume IE method. With the use of volume elements, only N segments 

are necessary to define the pipe. The number of cells ranged from 10 segments (IlL = Sm) to 

SOO segments (IlL = O.OSm). The figure illustrates that the convergence of E-fields is very 

rapid. A good approximation can be obtained with about 50 segments (IlL = 1.Orn). 

The convergence of the fields appear to be dependent upon the pipe dimensions and the 

model geometry, but was most influenced by the conductivity contrast between the pipe and 

host. A cell size of approximately two pipe radii was sufficient to give accurate results for the 

surface potential IE method. The E-field volume IE method converges much more rapidly and 

requires a cell size of 5-10 pipe radii to produce an accurate response. 

Reciprocity Check 

For the reciprocity check, two pole-pole array configurations were used (Figure 4-4). 

Since the source was placed off-axis from the pipe, the results were calculated using the 

axisymmetric approximation. The first pole-pole electrode combines a surface radial line and 

downhole array. The surface line (#1-#5) has the electrodes placed every Sm from 2Sm to 5m 

from the pipe. However, the downhole array (#6-#11) has an interval of lOrn which starts at 

the top and terminates at the bottom of the pipe. The second array configuration is set off-axis 

from the pipe 5m in the y-direction and extends from -25m (#1) to +25m (#11) on the x-axis 

with a 5m interval. The tables in this section are tabulated such that each row represents the 

source position on the array and the columns are the receiver locations. 

Table (4-1) presents the results using the combination array of the calculations for the 

surface IE method. The table of the potentials is nearly diagonally symmetric indicating that 

reciprocity for this problem is upheld. Most of the deviation between two reciprocal values 

was less than one percent. The largest (= 1.S%) occurred for the case when either the source 

or receiver was at the end of the pipe. 
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When the volume E-field IE approach was used, the calculated results (Table 4-2) were 

very similar. The largest deviation (::: 3%) occurred for the array with an electrode at the bot­

tom of the pipe. Additionally, a 3% deviation was observed for the reciprocal pair, electrodes 

of #5 and #6, (the top of the pipe and the first point away from the pipe). This deviation may 

be due to the vertical component approximation used for the E-field in the pipe. When the 

field point is adjacent to the source location, the majority of the field contribution is due to the 

radial component of the E-field which is neglected in the single component E-field approxima­

tion. 

Table (4-3) represents the potentials calculated for the off-axis line. The comparison of 

the corresponding potentials of the two methods shows little difference. Both are diagonally 

symmetric and have nearly identical values for the potential at every source receiver combina­

tion. Although not shown, the deviations of all reciprocal pairs for both methods were less 

than one percent. 

These results indicate that both methods uphold the reciprocity theorem and are accurate 

for nearly all array configurations. The largest deviations occurred for the situation where elec­

trodes are placed at the ends of the pipe. The axisymmetric approximation is accurate if the 

off-axis source is not located too close (> 5m) to the pipe for downhole receivers. For the sur­

face IE method, this source-pipe separation may be smaller. 
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4.2 Validity 

The validity of the axisymmetric fonnulation and computer program is checked by com­

paring the numerical results with the analytical and numerical solutions for three situations. 

The first check, which verifies the situation of radial boundaries, is the comparison of the 

potentials due to a conductive semi-infinite vertical annulus at the surface, Z = O. The second 

test compares the apparent resistivities for a lateral log configuration in a layered medium to 

validate the numerical solution for the horizontal boundaries case. The third comparison is the 

calculated apparent resistivity for a normal log configuration in a medium involving both radial 

and horizontal boundaries. 

Radial Boundaries 

An expression for the potentials and E-fields can be obtained by modifying the solution 

for the infinite vertical annulus which can be found in Wait (1982). The method of images is 

used to produce the semi-infinite annulus solution. The solutions are in the fonn of cosine and 

sine transfonns and can easily be coded into an algorithm. Because of the long length of the 

pipe, the limited number of surface elements, and the surface position of the source and 

receiver points, the length of the vertical surface elements increased with depth. This segmen­

tation seems appropriate since the major interactions between the elements and source are 

greatest near the surface. For the semi-infinite annulus and numerical pipe models, a thickness 

of 1.27mm and an inner radius of 1O.16cm were used. For the numerical model, the pipe was 

tOkm long. The resistivities were 1O~ n'm and 1 n·m for the pipe and the host medium, 

respectively. The coaxial current source was placed on the surface, Z = 0, and had a strength 

of 1 Ampere. 

Figure (4-5) is the plot of potentials on the half-space surface for the analytical and 1400 

elements numerical solutions.- The numerical results differ (::: 40%) from the analytical solu­

tions near the pipe and quickly converge to the analytical values for increasing radial distance. 

The differences are due to the lack of surface elements needed to approximat~ the highly con­

ductive pipe. Because of the high conductivity contrast, very small surface elements are 
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needed to obtain a good approximation of the potentials on the pipe. For a long pipe model, a 

large number of the small elements is required. This makes the numerical calculation intract-

able since a very large matrix must be inverted to obtain the potentials. 

Horizontal Boundaries 

The layered medium solution can be obtained from Van Nostrand and Cook (1966). For 

this case, the solution is in the form of a zero order Hankel transform. An algorithm for this 

problem, called "POTWELL" , can be found in the U.C. Berkeley's Engineering Geoscience 

computer library. Figure (4-6a) is the three-layer model used for this comparison. The top 

and bottom layers have a resistivity of 10 Q·m. The 100 Q·m target (middle) layer is 3m thick 

located 49m below the surface. For the numerical calculation, the infinite extent of the target 

layer was approximated by placing the outer boundary at 5.5km. A lateral log configuration 

was used where the current electrode (A) is 1m from the center (0) of the two potential elec-

trodes (M and N). The separation of the potential electrodes is 2Ocm. Like the semi-infinite 

annulus model, the target layer was segmented such that the lengths of the surface elements 

increased with radial distance away from the source. 

Two types of numerical solutions were checked: a poim solution and a (IOcm radius) ring 

solution. The ring solution is used in situations where the source and/or potential electrodes 

are in contact with a cylindrical object, such as a pipe. Figure (4-6b) is a plot of the apparent 

resistivities for the analytical and the two numerical solutions. All three curves are essentially 

the same for this situation. 

Dual Boundaries 

A numerical technique that determines the potentials for the situation involving both the 

radial and horizontal boundaries is described by Gianzero and Anderson (1982). Their method 

obtains the solution for the potentials by iteratively solving a system of singular integral equa-

tions. This system is the result of suitably matching the boundary conditions of the problem. 
( 

. Gianzero and Anderson illustrated their work. by applying it to several logging configurations. 
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One such case is shown in Figure (4-7a) which simulates a 16 inch (0.4064m) normal log 

in a two layer medium with an 8 inch (0.2032m) diameter mud-filled borehole. The mud resis-

tivity in the borehole. assumed infinite in extent. is 1 n·m. The top and bottom layers. also 

assumed infinite in the radial and vertical directions. have resistivities of 10 n'm and 100 n·m. 

respectively. The model used for the surface IE technique described in Chapter 3 has a 

100 n'm layer with a radius of SkIn. placed SkIn below the surface in a 10 n·m host medium. 

and a 10kIn long cylinder with a resistivity of 1 n·m. The large dimensions are used to 

approximate the infinite extent of the layers and borehole. 

Figure (4-7b) illustrates a comparison between the computed response of the Gianzero 

and Anderson (GA) method. the measured response obtained by a resistor network model.l and 

the calculated values of the surface integral equation (SIE) method. The results of the SIE 

method are nearly equivalent to that of the GA method. The comparison to the network 

method shows minor differences but still has excellent agreement. 

Axisymmetric Approximation 

In addition to these checks. the validity of the axisymmetric approximation for both forms 

of the IE methods is tested by comparing the potentials calculated on a radial array with the 3-

D formulation for a vertical finite-length pipe. The two types of cell segmentation used to 

represent the pipe are shown in Figure (4-8). The first is the 3-D Cartesian coordinate approxi-

mation where the surfaces are substituted by rectangular and triangular segments. The other 

applies the axisymmetric approximation and uses the circular ring cells. 

The dimensions of the pipe are L = 2Sm~ t = 10.16cm. and b = 1.27cm. The resistivi­

ties are Po = 10 n'm and PI = 10-6 n·m. The potential electrode array starts at 2m away from 

the pipe and has an interval of 2m. Figure (4-9) shows the potentials on the radial array for 

two current electrode positionS: within the pipe and 4m orthogonal to the electrode array. 

1 The resistor network values are taken from the Gianzero and Anderson paper which references the study of 
Segesman (1962). 



TJ. 

The plots indicate that the axisymmetric approximation for the off-axis source will give a 

good result. The volume IE approach shows some· discrepancy for the near-pipe electrodes. 

However, the differences diminished when the number of volume cells was increased. 

4.3 Summary 

The tests applied in this section indicate that the IE methods will give correct results. 

The discrepancies encountered are due to the numerical approximation caused by the discretiza­

tion and can be reduced by decreasing the segmentation size. The axisymmetric approximation 

will give an accurate solution provided that the pipe is discretized with small enough segments 

compared to the given field and source positions. 
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SIB Potentials (mV) 

Somces Receivers 
1 2 3 4 5 6 7 8 9 10 11 

1 - 317 157 103 75 46 46 45 45 45 41 
2 317 - 316 155 99 52 52 52 51 51 46 
3 157 316 -- 312 148 61 60 60 59 59 53 
4 103 155 312 - 299 74 73 72 71 70 62 
5 75 99 148 299 -- 96 094 92 91 91 78 
6 45 52 60 73 96 -- 199 199 198 197 164 
7 45 52 60 72 93 199 --- 199 198 197 164 
8 45 51 60 71 92 199 199 --- 198 198 164 
9 45 51 59 71 91 198 198 198 --- 198 165 

10 45 51 59 71 91 197 198 198 198 --- 166 
11 42 47 54 63 80 167 167 167 167 168 ---

Reciprocal Pairs Percent Deviation [ ~Is - r I xlOO% 1 
s + r) 

Sources Receivers 
1 2 3 4 5 6 7 8 9 10 11 

1 ----
2 0.00 ---
3 0.00 0.00 ----
4 0.01 0.01 0.00 ----
5 0.05 0.05 0.04 0.03 ----
6 0.54 0.67 0.83 0.96 0.07 ---
7 0.43 0.52 0.62 0.75 0.90 0.01 ---
8 0.18 0.19 0.18 0.14 0.12 0.02 0.02 ----
9 0.09 0.14 0.20 0.26 0.24 0.06 0.05 0.04 ---

10 0.35 0.41 0.48 0.54 0.47 0.15 0.14 0.12 0.09 ----
11 1.05 1.19 1.36 1.51 1.58 1.51 1.51 1.50 1.48 1.49 ----

Table 4-1: Potentials (top) calculated with the surface IE method for sources and receivers 
located on the positions numbered in Figure (4-4). Percent deviation (bottom) of the recipro­
cal pairs of the electrodes from the top table. Pipe model: L = 5Om, b = 10.16cm, t = 1.27cm, 
and N = 502 (Nz = 250, N p = 1). Resistivity: PI = 1.~ nom and Po = 10 nom. 

/ 
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VIE Potentials (m V) 

Sources Receivers 
1 2 3 4 5 6 7 8 9 10 11 

1 --- 317 157 103 75 44 45 45 45 45 45 
2 317 - 316 155 99 50 51 51 51 51 51 
3 157 316 - 312 148 58 59 60 60 60 59 
4 103 155 312 - 299 69 71 72 72 72 71 
5 75 99 148 299 -- 83 99 93 93 93 91 
6 45 51 59 69 86 --- 212 211 210 210 204 
7 45 51 59 71 91 211 --- 211 210 210 205 
8 45 51 60 71 92 210 211 -- 211 210 205 
9 45 51 60 72 93 210 210 211 --- 211 205 

10 45 52 60 72 93 210 210 211 211 --- 206 
11 46 52 60 72 93 211 211 211 212 213 ---

Reciprocal Pain; Pen:ent Dev;ation [~IS -r I XlOO%] 
s + r) 

Sources Receivers 
1 2 3 4 5 6 7 8 9 10 11 

1 ----
2 0.00 ---
3 0.00 0.00 ----
4 0.01 0.01 0.00 ----
5 0.04 0.04 0.04 0.03 ----
6 025 0.28 0.25 0.04 2.84 ----
7 0.22 0.25 0.29 0.38 0.63 0.00 ---
8 0.10 0.11 0.13 0.15 0.24 0.02 0.01 ----

9 0.05 0.07 0.09 0.09 0.01 0.04 0.04 0.03 ---
10 0.21 0.24 0.27 0.28 0.16 0.10 0.10 0.08 0.06 --_ .. 
11 1.76 1.99 2.24 2.50 2.66 3.17 3.17 3.16 3.14 3.10 ----

Table 4-2: Potentials (top) calculated with the volume IE method for sources and receivers 
located on the positions numbered in Figure (4-4). Percent deviation (bottom) of the recipro­
cal pairs of the electrodes from the top table. Pipe model: L = 50m, b = 10.16cm, t = 1.27cm, 
and N = 250. Resistivity: PI = 1.0~ n·m and Po = 10 n·m. 
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SIB Potentials (mV); N = 402 (Nz=200,Np=I) 

Sources Receivers 
1 2 3 4 5 6 7 8 9 10 11 

1 -- 317 158 104 76 56 49 43 38 34 31 
2 317 -- 316 156 101 73 58 SO 43 38 34 
3 158 316 -- 313 151 96 72 59 50 43 38 
4 104 156 313 --- 306 142 94 72 59 SO 43 
5 76 101 151 306 -- 290 138 94 72 58 49 
6 59 73 96 142 290 --- 290 142 96 73 59 
7 49 58 72 94 138 290 --- 306 151 101 76 
8 43 SO 59 72 94 142 306 --- 313 156 104 
9 38 43 SO 59 72 96 151 313 --- 316 158 

10 34 38 43 SO 58 73 101 156 316 - 317 
11 31 34 38 43 49 60 76 104 158 317 ---

VIE Potentials (m V); N = 200 

Sources Receivers 
1 2 3 4 5 6 7 8 9 10 11 

1 --- 317 158 104 76 59 49 43 38 34 31 
2 317 -- 316 156 101 73 58 SO 43 38 34 
3 158 316 --- 313 151 96 72 59 SO 43 38 
4 104 156 313 --- 306 142 94 72 59 SO 43 
5 76 101 151 306 --- 290 138 94 72 58 49 
6 59 73 96 142 290 --- 290 142 96 73 59 
7 49 58 72 94 138 290 --- 306 151 101 76 
8 43 SO 59 72 94 142 306 --- 313 156 104 
9 38 43 SO 59 72 96 151 313 --- 316 158 

10 34 38 43 SO 58 73 101 156 316 --- 317 
11 31 34 38 43 49 59 76 104 158 317 ---

Table 4-3: Potentials cciIculated for the off-axis electrode array for sources and receivers 
located on the electrodes numbered in Figure (4-4). The top and bottom tables are calculated 
with the surface and volume IE methods, respectively. Pipe model: L = 5Om, b = 1O.I6cm, 
and t = 1.27cm. Resistivity: PI = 1.0--6 n·m and Po = 10 n·m. 
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CHAPTER V 

NUMERICAL ANALYSIS OF CASING EFFEcrs 

In Chapters n and m, the IE solutions were developed for a finite-length vertical 

annulus (Pipe) in a conductive medium with arbittarily located current sources. In Chapter 

IV, the computer algorithms, based on the surface and volume IE formulations, were exam-

ined and validated by performing convergence tests, reciprocity checks, and comparisons. The 

algorithm was proven accurate in situations involving boundaries that are horizontal, vertical, 

or a combination of both. In this chapter, the algorithms will be used to investigate several 

geophysical situations involving resistivity methods in steel-cased wells. 

The validity of the line source approximation, used by Sill and Ward (1978), Kauahikaua 

et al. (1980), Sill (1983), and Rocroi and Koulikov (1985), is investigated. These authors 

considered the casing as a line source of current. The actual situation is simulated here by 

placing a current source in contact with the inner wall of the casing. By placing the current 

electrode beyond the end of the pipe, the casing effects and the spatial extent of the distortion 

are evaluated for downhole to surface and cross-hole measurements. The determination of the 

casing effects is important to correctly interpret field measurements acquired in the presence of 

the steel casing. The coupling effects between adjacent pipe segments separated by insulating 

segments are studied next. If the coupling is small, the separated casing segments can be used 

as downhole current and potential electrodes for DC tomography (Daily and Yorkey, 1988 and 

Shima and Saito, 1988). Further, there is the intriguing possibility that the separated seg-

ments, used as current electrodes, may be able to direct or focus currents (Jackson, 1981 and 

Parra et al., 1986). A dipole gap at the end of the pipe can simulate the DC limit for certain 
! 

types of electromagnetic signal telemetry through the earth for measurement-while-drilling 

90 
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(MWD). One can also use the algorithm to model a MWD resistivity logging operation. 

Lastly, the algorithm is used to simulate several field situations which involve steel cased 

wells. 

While examining these situations, the factors or parameters that influence the fields will 

be identified. The geometrical and electrical variables; position, thickness, diameter, and 

length of the pipe, as well as conductivities of the casing and background medium appear to 

be important factors that influence the pipe response. The effects of these variables are deter­

mined by examining their effects on the vertical electric fields (E,) in the pipe. During this 

analysis, several of the geometrical and electrical variables will be combined into characteristic 

parameters that describe the fields. 
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5.1 Source on or in the Casing 

As indicated in the introduction, several field studies have been conducted using an ener-

gized casing or pipe as a line source. For this situation, the casing or pipe is energized by 

placing a current source in contact with the casing. Kauahikaua et a1. in their mise-h-Ia-masse 

experiment to map a geothermal reservoir noted that the current appeared not to extend to the 

lower sections of the casing. Rocroi and Koulikov, using two energized casings to delineate a 

hydrocarbon deposit. showed in their models that the apparent resistivities were dependent on 

the location of the current source within the casing. 

The objectives here are to examine the use of the casing as a source, to study the effects 

of the casing parameters on the fields, and to determine the situations when the line source 

approximation is valid. The parameters that influence the fields are identified by using several 

. configurations of the pipe and current source. A semi-infinite pipe configuration examines 

half-space boundary effects on the E, behavior. The whole-space and half-space problems are 

studied with a finite length pipe to determine the effect of boundaries at both ends of the pipe. 

The potentials calculated for a finite-length casing are compared to the potentials of a point 

source to investigate the region distorted by the casing and to a line source to evaluate the line 

source approximation for an energized casing. 

5.1.1 Semi-Infinite Length Pipe 

Consider a highly conductive semi-infinite length vertical annulus with thickness t, 

center radius a, and conductivity (fc in a homogeneous half-space with conductivity (fo. A 

current source of strength I is applied to the top of the pipe (Figure 5.1-1). An expression for 

the E, can be obtained for an elemental section of the pipe located sufficiently far from the 

source such that the radial E-field is negligible (see Figure (3-5) in Chapter IIT). 

By using Ohm's law~ the potential difference ~cp across the section can be expressed as: 

(5.1-1) 
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where flL is the segment length, Ie is the current within the segment, Se is the pipe conduc-

tance 1 defined by Kaufman (1990) as: 

(S.1-2) 

and All = tl2 is the half-thickness of the pipe. Multiplying equation (S.l-l) by flL-1 and let-

ting flL shrink to zero about some point in the section, the Es -field can be approximated: 

(S.1-3) 

The current in the elemental section Ie is the portion of the applied current I which has 

not dissipated into the surrounding formation The amount of current leakage is dependent on 

the host medium conductivity, pipe conductance, and distance from the current source. There-

fore, E, is proportional to the applied current source and inversely proportional to the pipe 

conductance, i.e., E. oc: liSe and can be normalized by the factor (liSe)' 

Kaufman (1990) indicated that for an infinite pipe the Es can be approximated by the 

transmission line equivalent (Sunde, 1968): 

E, = !.sc exp[- (Se~o)ll2] 
where t!.z is the source-receiver separation distance and is defined, in terms of vertical position 

of the source z os and field (receiver) z, as: 

t!.z = Iz - Zos 1 (S.l-S) 

In equation (S.l-4), the factor of one-half accounts for equal distribution of current flow 

in both directions of the infinite pipe. For a semi-infinite pipe and a source placed on the 

half-space surface, the factor is unity instead of one-half since all the current in the pipe 

would flow downward due to the boundary. The term in the denominator of the exponent is 

defined as the "(effective) conduction length" of the (infinite) pipe OL and is given as: 

1 The pipe conductance seems to be a misnomer since its units are [ S-m ] instead of [ S ], the units of conduc­
tance. It is actually, although not mentioned in Kaufman's paper, the inverse of the unit length longitudinal 
resistance. Hence, the units of the pipe (longitudinal) conductance are [(rumrl] = [ S·m ]. , 
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(5.1-6) 

The conduction length of the pipe relates the pipe conductance with the conductivity of 

the background medium and is an indicator of the pipe's ability to carry current along its 

length. When the conduction length is short, the current in the pipe quickly leaks into the sur-

rounding medium. A long conduction length indicates that the pipe conductance is large com-

pared to the surrounding medium conductivity so that the current travels in the pipe with little 

leakage into the formation. The conduction length is similar in definition to the skin depth 

used in electromagnetics. At 6% = ~L' the field amplitude has dissipated to approximately 37% 

(e-1) of the field at 6% = o. 

Figure (5.1-2) shows the normalized ~ variations for a semi-infinite pipe with the 

current source placed at the surface (zos = 0). This plot shows that the decay of the field is 

dependent only upon the conduction lengths. All the field curves have decayed to approxi­

mately e-1 of their original values at 6% = ~L. For an infinite annulus, all curves would con-

verge to If2 at l!.z = o. The only difference between the two sets of plots is a factor of one-

half due to the half-space boundary. 

The Ez in the semi-infinite pipe can be characterized by a parameter Ps that nonnalizes 

the conduction length by the source depth. It is given by the following: 

The vertical position is also nonnalized and defined as: 

l!.z 
Zs=­

Zos 

(5.1-7) 

(5.1-8) 

Figure (5.1-3) shows two plots of the nonnalized Ez in a semi-infinite pipe for Ps < 1 and 

Ps ~ 1. All curves to the right of the Zs = 1 represent downgoing Ez which is positive. To the 

left of Zs = 1, the upgoing Ez is negative. Since current densities are proportional to the E-

field, these plots also represent'the amount of current flowing in that portion of the pipe. 
~ 
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These CUIVes indicate that the half-space boundary and the ~s -ratios dictate the distribu-

tion of the fields or current flow in the pipe. The amplitudes of the upgoing and downgoing 

E, are dependent on the longitudinal resistance of the pipe for the sections above and below 

the source (zs = 1). Since the half-space surface has infinite resistance, the ~s-ratio (conduc-

tion length to source depth ratio) will determine the amplitudes of the upgoing and downgoing 

fields. 

For large ~s -ratios @s ~ 2), most of the current is traveling downward due to the SUrface 

boundary effect on the upgoing fields. The upgomg CUIVes which are impeded by the surface 

boundary resemble the fields for ~s = 1.75 with a shift of the vertical axis. As the ps-ratios 

decreases, the disparity between the upgoing and downgoing fields decreases and their ampli-

tudes tend toward one-half at Zs = 1. The half-space boundary has less effect so that more 

current is able to flow upwards and leak into the surrounding medium. For small ~s-ratios 

(~s ~ 0.3), there is very little difference between the amplitudes of the upgoing and downgoing 

fields at the source depth. The downgoing fields behave like those of the infinite-length pipe. 

However, the upgoing fields are still affected by the half-space boundary. The deviation from 

the infinite-length field CUIVes is dependent upon the ~s-ratios. 

5.1.2 Finite-Length Pipe 

When the pipe is finite in length (see Figure 5.1-4), the behavior of the fields will be 

dependent upon the length of the pipe and the relative source position. The parameters that 

characterize the fields should reflect the finite length. This can be achieved by dividing the 

numerator and denominator in the exponential in equation (5.1-4) by the length of the pipe 

(L). -Thus, the approximation in equation (5.1-4) which describes the behavior of the E. will 

not be affected. The parameter called the conduction ratio, Cl£., is introduced. It is the ratio of 

the conduction length to pipe length and is given as: 

5L 5L 

Cl£. = (ZB - zr) = L (5.1-9) 

The normalized vertical position, ZL' is: 
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(S.l-lO) 

Two length variables. flL.r and ALB, will be used to define the lengths from the source to the 

top and bottom of the pipe. respectively. 

IlLr = I Zos - ZT I and (5.1-11) 

where ZT and ZB are the depth to the pipe top and bottom. respectively. Another parameter is 

introduced to account for the source position in the pipe relative to the pipe length. This 

parameter is called the relative source position. S IL -ratio. and is defined as: 

(Zos - zT) flL.r ALB 
SIL = =-=1--

(ZB - ZT) L L 
(5.1,.12) 

Figure (S.l-Sa) shows the normalized whole-space Ez of several aL-ratios with the 

source located at the top of the pipe (S IL = 0). At first glance, these fields resemble the 

downgoing fields of the semi-infinite pipe. But when compared to the semi-infinite pipe 

curves, the whole-space fields fall off more rapidly due to the boundary conditions at the bot-

tom of the pipe. The boundaries have the greatest effect on the fields when aL > 1.75 ( 

OL > 1.75L) so that the normalized Ez in the pipe appears to have the same response. 

Evaluating the effects of source position on the Ez (Figures S.l-Sb to S.l-Sd) indicates 

that the behavior of the fields in the pipe is dictated by the longitudinal resistance of the upper 

and lower sections. The longitudinal resistance is the equivalent resistance of the pipe section 

observed at the source and is related to the inverse of the section length. Since the pipe is in 

the whole-space. the Ez -fields for 0.5 ~ S IL. ~ 1 are the mirror image of 0 ~ S IL ~ 0.5. As the 

00J. -ratio decreases, -the boundary has less influence on the fields in the pipe. Hence, the 

differences between the upgoing and downgoing fields at the source decrease and the Ez value 

approaches one-half. 

The effects of the half-space boundary on the finite-length pipe is seen by comparing the 

nonnalized Ez for SIL = 0.5 of the whole-space (Figure S.l-Sd) and th~ half-space (Figure 

5.1-6) cases. Due to the surface boundary condition Ez = 0 at ZL = 0, the upgoing half-space 
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Ez-fields are smaller than the whole-space fields. The effect of the half-space is the greatest in 

the upper portion of the pipe. The downgoing half-space fields are similar to those of the 

whole-space since both have the same boundary condition. At the bottom end of the pipe, the 

boundary condition is that ~ = 0 due to the large conductivity contrast between the pipe and 

medi~. The results indicate the the fields are influenced by the pipe depth. However, this 

effect is minor compared to the effects caused by the conduction ratio and relative source 

position. 

5.1.3 Potentials in the Medium 

The potentials ~ in the half-space can be characterized by the same parameters defined in 

the previous section. Recall that the relationship of the conductivities between the background 

host medium and the pipe is incorporated in the conduction length. The potentials in the 

medium are presented as logarithmic-contour plots. 

From the analysis of the current source within the pipe and <XL. >1.75 (8L > 1.75L), it 

was found that the potentials were proportional to the current / and inversely proportional to 

the background conductivity 0'0 and pipe length L. For a· given conduction length, pipe depth. 

and source position, the normalized potential is given as: 

(5.1-13) 

For current sources located within the pipe, the normalized field positions, PL and ZL' 

and conduction ratio UL are used since the fields are independent of the pipe length. The 

radial PL and vertical ZL components of the normalized field position are given as: 

PL = plL and (5.1-14) 

where P and Z are the radial and vertical coordinates of the field point, respectively. The area 

of interest is within the bOunds ZL = (0, 2) and PL = (0.01,2.01). The pipe is placed at the sur­

face (zT = 0) and several current source positions S IL are used. 
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Contour plots of the potentials calculated for a current source located within the pipe 

(SIL < 1) are presented in Figures (S.I-7) to (S.I-10). Each figure is composed of several 

plots which are the normalized total field for several (XL -ratios and the normalized primary 

field. From these figures. there are certain cases (<XL < 1.75) where the potentials appear simi-

lar to those produced for <XL > 1.75. For these situations. let 

<XR = 1.75 max[6i.] 
L 

(S.I-IS) 

where ~ and 6i.B are defined by equation (S.I-l1) and max [6i.] is the maximum length of 

llLr and 6i.B • 

For (XL > (XR. all the normalized potentials have nearly identical contour plots and are 

independent of the source position The pipe alters the fields such that the potentials appear 

as fields produced by a line source showing no evidence of the . primary source position. 

When <XL < (XR. the normalized potentials are dependent on the source position. The source 

position is evident from the curvature of the equipotential lines. The values of the total field 

approaches the primary field due to the reduced pipe effect For very small CXr. -ratios 

«XL < 0.05). the currents in the pipe leak quickly into the surrounding medium. The pipe has 

almost no influence on the potentials. and thus the total and primary potentials are nearly the 

same. 

The distortion of the potentials caused by the pipe can be analyzed by observing the 

behavior of the ratio between the total and primary fields: 

(S.1-16) 

For a non-distorted .field. R. is unity. A R. greater than one indicates that the pipe effects add 

to the primary field. and a R. less than one implies that the pipe contribution reduces the field. 

Coincidentally. the R .-ratio is also the ratio of the apparent resistivity to that of the back-

ground medium for a pole-pole survey. 

The half-space primary field from a single current source is given as:1 
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cl>o = _1- [ 1 + 1 ] = _I_G 
41tcro Ir - rol Ir - r' 01 41tcro 

(S.I-17) 

where r, ro, and r'o are the location of the field (measurement) point, current source, and 

source image, respectively. Solving for the array geometric factor G yields: 

cI>o 
G = 41tGo­

I 

The apparent resistivity for a pole-pole survey is: 

.t [1 1].t -1 P .. = 41t I Ir _ rol + Ir _ r'ol = 41t I G 

(S.1-18) 

(S.I-19) 

where cI> is the (total) potential measurement at the field poSition. Substituting for G in equa-

tion (S.I-19) with equation (S.I-18) yields: 

(S.I-20) 

where Po = lIcro- . 

Figures (S.I-11) is a series of contour plots for aL = 2 and various sourCe positions 

within the pipe. The model configuration is similar to that of the previous section. The 

shaded areas in the plots are the locations where the total field is within S% of the primary 

field, i.e., the distortion of the potential due to the pipe is S% or less. 

When the R .-ratios are calculated, the results indicate that the area affected by the pipe 

is dependent upon the source position. Large pipe effects are Observed for situations where 

the current source is near the pipe ends (S IL = 0.0 and 1.0). The largest distortion occurs 

when the source is near the bottom of the pipe (S IL > 0.8). The configuration which shows 

the least overall distortion is where sources are located very near the pipe center (S IL = 0.5). 

Surface and cross-hole measurements would be the least affected by the pipe. The distortion 

of greater than S%occurs within OAL on the surface and 0.6L at the source depth. The 

source positions slightly below the pipe center (S IL = 0.65 - 0.70) appear to give optimum 

results for measurements below the pipe. The non-distorted area begins approximately 0.2-

O.4L beyond the pipe end. 
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5.1.4 Line Source Approximation 

To evaluate the line source approximation, the ratio between the total potential and the 

potential due to a line source is calculated. A ratio near mtity indicates that the energized cas-

ing behaviors like a line source. The potential produced by a finite-length equipotential con-

ductor in a half-space is: 

I [[(Z - ZT)2+ p~112 + (z - ZT)] [(z + ZB)2 + p~112 + (z + ZB)]] 
C\)(p, z) = In 2 21112 X 2 2112· (5.1-21) 

4xaO(ZB - ZT) [(z - ZB) + P J + (z - ZB)] [(z + ZT) + p] + (z + ZT)] . 

where ZT and ZB are depths to the top and bottom of the casing, respectively. 

Figures (5.1-12) to (5.1-16) are the contour plots of the potential ratio for several source 

positions. Each figure has four plots for different conduction ratios. The shaded areas 

represent the locations where the total field is within 1 % of the potentials produced by a 

finite-length line source. The figures show that the line source approximation is dependent on 

the ar. -ratio. 

Except for the area near the surface and within one pipe length, a 1 % or less deviation 

occurs for ar. > aR' The largest deviations occurs when the source is placed at the ends of the 

pipe for ar. ~ 0.5. When the source is placed near the middle of the pipe, the region of distor-

tion is the smallest. A 1 % or less deviation occurs for field points that are at least one-half 

pipe length away from the casing. 

For a resistive host (large ar. -ratio), the line source approximation of the casing is valid 

at all field positions. The deviation is less than 5% at all points within the medium for any 

source depth within the casing. The spatial distortion increases as the conduction ratio 

decreases. In a conductive medium, the line source approximation greatly distorts the poten-

tials and is dependent on the source position within the casing. For 5% or less deviations, 

surface measurements cannot be less than one casing length away from the pipe when 

ar. = 0.5. Cross-hole surveys can be conducted as close as 1/2 pipe length to the casing if the 

field points are at least 1/2 casing length beneath the surface. 
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5.1.5 Summary 

The E,-fields in the pipe are found to be proportional to the applied current source and 

inversely proportional to the pipe thickness, radius, and conductivity, i.e., the pipe conduc­

tance. Like E" the potentials are also proportional to the current source, but are inversely 

proportional to the background conductivity and pipe length. 

In general, Ez and potentials can be characterized by the following four parameters: the 

conduction length of the pipe (~L)' position of the current source (S), the length of the pipe 

(L), and depth to the pipe (T). All the parameters contain some geometric aspect of the prob­

lem, i.e., the positions, distances, and dimensions. Of the four parameters, only the conduc- . 

tion length of the pipe is based on the electric properties of the problem. It relates the pipe 

conductance with the background medium conductivity and is an indicator of the pipe's ability 

to carry current along its length. When the current source is located within the pipe, all 

parameters and spatial variables can be normalized by the pipe length reducing the number of 

characteristic parameters to three. They are the conduction ratio (elL), relative source position 

(S IL), and pipe depth to pipe length ratio (zTIL). 

When the current source is within the pipe boundaries, the conduction ratio appears to be 

the most important parameter that characterizes the response of the pipe. The behavior of the 

E, is mainly affected by the conduction ratio and source location. The depth to the pipe has 

only a minor effect on the Ez in the pipe. 
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5.2 Source Beyond Casing End 

In many instances, the wells are only steel cased in the upper portion of the borehole 

and open at depth. Bevc and Morrison (1990) conducting a monitoring experiment of a steam 

injection, and Schenkel and Morrison (1990b) in another field study (see Chapter 7) have 

reported anomalously high apparent resistivities at locations near the well. Both experiments, 

downhole to surface resistivity surveys, were conducted in wells that were partially cased with 

steel. The steel casing can strongly distort the response of the desired signals which may lead 

to erroneous interpretation of the field data (Holladay and West, 1984). 

The main objective of this section is to evaluate the distortion caused by the casing on 

borehole to surface and cross-hole resistivity surveys for current sources placed beyond the 

end of the pipe. The areas where the potentials are greatly distorted must be detennined and 

avoided. If it is not possible to avoid these regions, then the pipe influence must be deter­

mined to distinguish casing effects from the target response. The electric fields within the 

casing are studied, as are the potentials in the medium. 

5.2.1 Ez-Fields in the Casing 

For current sources located beyond the pipe end, the pipe-source separation (&-), is used 

to describe the current source location and is defined as: 

(5.2-1) 

Figure (5.2-1) illustrates the E. for a constant pipe-source separation with the conduction 

length varying. The sharp fall-offs at the top and bottom of the pipe are caused by the boun­

dary conditions at the ends of the pipe. The E. values near the bottom of the pipe are similar 

for all conduction lengths. But along the pipe, the fields decay according to its conduction 

length. 

Figure (5.2-2) are plots of the E. in the pipe for increasing separation distance from the 

pipe end These values correspond to Cl£-ratios of 2, 0.5, 0.2, and 0.1, respectively. using 
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600m, 150m, 6Om, and 30m for the conduction lengths.2 For these plots, the top of the pipe . 

was located at the surface and had a length of 300 meters. From the figures, the fields 

asymptote to zero towards the surface and decrease with increasing pipe-source separation dis­

tance. For large conduction lengths, the fields become more symmetric and uniform near the 

pipe center as the separation increases. 

When the source is located beyond the end of the pipe, an equivalent S IL -ratio will not 

produce the same Ez for different pipe lengths. Figure (5.2-3) shows nomialized E. values for 

different source separation distances calculated from a 30m pipe which has a conduction 

length of 60m (ar. = 2 for this configuration). Comparing Figure (5.2-3b) to Figure (5.2-2a) 

(SL = 600m or C1.L = 2) shows that several of the curves match each other if the spatial vari-

abIes are normalized by the pipe length. This indicates that a relationship exist between the 

E: in the pipe and the pipe length, conduction length (conductivities), and current source posi­

. tion. 3 But this relation is much more complex than the simplified approximation of equation 

(5.1-4). Hence, the pipe length must be included as a parameter for a current source beyond 

the pipe end. 

5.2~2 Potentials in the Medium 

The potentials q, in the half-space can be characterized by the same parameters defined in 

the previous section. For this analysis, the top of the finite-length pipe is located at the sur-

face and several conduction lengths are used. The field position (p, z) and pipe location (ZT) 

cannot be normalized by the pipe length. The current source position, pipe length, and con-

duction length SL are needed to calculate the fields. A 300m long pipe is placed at the surface 

(ZT = 0) and several conduction lengths are used. The area of interest is from Om to 600m in 

the vertical direction and from 3m to 603m in the radial direction. The source depth, which 

2 For sources beyond the pipe end, the E, in the pipe is dependent on the pipe length, so that the conduction ra­
tio aL cannot be used. 

3 Although not shown, changing the variables of conduction length for both pipe lengths resulted in proportional 
variations of the E, -fields. Hence, the E-fields· are still dependent on the conduction lertgth. 
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also cannot be normalized, is described in terms of pipe-source separation ll.s, given in equa-

tion (S.2-1). 

Several source-pipe separations ranging from O.lm to 10m are used to evaluate the dis­

tortion caused by the pipe (Figures S.24 to S.2-8). For a given separation distance, the calcu­

lation of the fields using ~L > 1.75L produces the same normalized potentials. As can be 

expected, the area of the non-distorted field decreases as the conduction length decreases for 

all source locations. For large conduction lengths and current source slightly below the pipe 

end, the equipotential lines are still parallel to the pipe. However, the potential is not com-

pletely masked by the pipe effect since the equipotential lines enclose the current source. As 

the separation distance increases, the total field asymptotes to the primary field since the pipe 

effects become less pronounced. At approximately 10m separation, the maximum amplitude 

of the two are equivalent and the pipe has a very small influence on the potentials except at 

field positions very near the pipe. With decreasing conduction lengths, the effects of the pipe 

are even further reduced. At ~L = 15m, the pipe becomes essentially transparent for ll.s ~ 2m 

and the equipotential lines intersecting the pipe are nearly perpendicular to it 

As in Section (S.l), the distortion of the potentials caused by the pipe is evaluated by the 

ratio between the total and primary fields, R ,. Recall that R, is unity for a non-distorted field 

and is also the ratio of the apparent resistivity to that of the background medium for a pole-

pole survey. 

Figures (S.2-9) and (S.2-10) are logarithmic-contour plots of the normalized primary field 

for source positions beyond the end of the pipe. The model configuration· for Figure (S.2-9) 

has the pipe located at the surface with a length of 300m and a conduction length of 600m. 

For this situation, the pipe-source separation distance used in the field calculation ranged from 

O.lm to 20m. For the results of Figure (S.2-1O), the pipe-source separation is fixed at 0.5m 

and the conduction length varied from 60m to 600m. The shaded areas in the plots are the 

locations where the total field is within S% of the primary field, i.e., the distortion of the 
~ 

potential due to the pipe is S% or less. 
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Figure (5.2-9) indicates that the influence of the pipe decreases as the separation distance 

increases. For small separation distances, R. is similar to that produced by the source at the 

pipe end. Only areas far from the pipe have little distortion of the fields. As the source 

moves farther from the pipe, the distorted areas decrease in spatial extent and the amplitudes 

of the potentials approach the primary field values. At 15m and greater, only the area adja­

cent the pipe shows large pipe effects. The area between the pipe and source shows minor 

changes due to the pipe. Little casing effects are seen in the areas below the source. 

Figure (5.2-10) shows a decrease of the distortion as the conduction length decreases. 

The 5 % or more distortion extends approximately two casing lengths beneath the casing and 

radially outward from the well at the surface. For decreasing conduction lengths, the two dis­

torted areas near the surface and below the casing are significantly reduced. When compared 

with the 600m conduction length, the extent of the distortion is reduced by approximately a 

factor of two for the 60m conduction length. 

5.2.3 Summary 

Once the current source is beyond the end of the pipe, the Ez-fields and potentials are 

dependent on the pipe length· and the characteristic parameters cannot be normalized by the 

pipe length. For this situation, the source position was conveniently defined in terms of the 

pipe-current source separation distance instead of the source depth. Both Ez-fields in the pipe 

and potentials in the medium are largely influenced by the pipe-current source separation dis­

tance, conduction length, and pipe length. !he effect of the pipe decreases as the pipe-current 

source separation distance increases and as the conduction length becomes smaller. 

A lO~Q·m casing with a IOcm inner radius and 6m thickness will have a conduction 

length of 623m in a lOOQ·m half-space. The potentials in the region very near the pipe are 

substantially influenced by the pipe for a source 100 casing diameters below the end of the -

casing. For a field distortion 5% or less, the surface measurements must not be closer than 

lfl pipe length. In cross-hole resistivity surveys, the affected area is greatly reduced; surveys 
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can be conducted as close as 1/6 the casing length for with a distortion of 5% or less. In a 

conductive 10'm half-space, the pipe conduction length is reduced to 62m. surface measure­

ments can be as close as 1/4 pipe length for 5% or less distortion of the fields, while the 

cross-hole survey can be conducted as close as 1/10 pipe length from the pipe. 
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5.3 Multiple Pipe Segments 

By separating several segments in a borehole (Figure 5.3-1), as was done by Bevc and 

Morrison (1990), multiple sources or receivers can be used to image the target in a downhole 

survey. Downhole current electtodes can be created by energizing the isolated segments. 

Likewise, the insulated segments could be used as potential electrodes. If additional wells are 

drilled with multiple segments, then cross-hole measurements can be made and processed 

using DC imaging techniques (Daily and Yorlcey, 1988 and Shima and Saito, 1988). The 

imaging technique requires that the interaction between segments is such that the sources and 

receivers show point-like behavior. Thus, the main purpose of this section is to evaluate the 

coupling effects of the adjacent casing segments and determine when the point-like approxi-

mation may be used. 

The interaction between separate coaxial pipe segments is investigated by using a long 

upper segment (fixed casing) and short lower segments (electrodes). Figure (5.3-2) illustrates 

the configuration of the two pipe segments with lengths, Ll and L 2 , separated by a distance 

M. The behavior of E, in the pipe segments and the potentials in the half space was investi-

gated by varying the pipe· separation distances M, segment lengths L, conduction lengths SL' 

and current source positions within the active segment.4 The Ez-fields and potentials are nor-

malized with the same factors used in the previous sections, liSe and 1141CcrrJ.-1t respectively. 

The parameters and spatial variables are not normalized, thereby eliminating confusion regard-

ing which of the pipe lengths is used for the normalization. 

For the following analysis, the pipe segments will have the same conductance with the 

upper segment, C It -is fixed at the surface and of length L 1 == 300m. Several lower segment 

lengths L z, conduction lengths SL, and separation distances M are used to illustrate the distor-

tion caused by the passive~ segment. 

4 The term "active" is used to describe the pipe segment containing the current source. Whereas, "passive" 
refers to the source free casing segment. 
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5.3.1 E-fields in the Casing 

Figures (5.3-3) to (5.3-6) are the normalized E~ in the passive C 1. In Figure (5.3-3), the 

E.-fields are calculated for several conduction lengths for L2 = Sm, IJ.d = Sm, and the current 

source placed in the center of the lower segment. In Figure (5.3-4). the E.-fields in C1 are 

plotted when the source is placed at the top of the 5m lower segment and several separation 

distances are used. The influence of different lengths for the lower segment, 2m below the 

upper segment, is seen in Figure (5.3-5). The effects of current source position in the 5m 

active segment, that is separated 2m from the upper casing, are illustrated in Figure (5.3-6). 

The E. -fields in passive C 1 are similar to the fields produced by a current source below a 

single pipe. The fall-off of the fields is mainly dominated by the conduction length as seen in 

Figure (5.3-3). Figure (5.3-4) shows that the E.-fields in C1 become smaller and more sym· 

metric for longer separation distances. For a given separation distance and conduction length, 

the longer length of the active pipe segment results in smaller Ez (Figure 5.3-5). Since the 

current is distributed along the length of C 2, the effect on C 1 is reduced for long C 2 segments. 

Figure (5.3-6) illustrates that the Ez in C 1 is independent of the current source position in C 2. 

Its effect can be approximated by a current source placed at a distance Ild + L,/2 from the end 

of C 1 in absence of C 2. 

Since the length of the lower active segment is short, the E. in the active segment C 2 

resembles the field for a current source placed within the pipe that is below the half-space sur-

face. Hence, the Ez in the active segment is not shown. For a given conduction length, the 

fields of different active pipe lengths L2 appear the same if the position and separation are 

normalized with the respective pipe length. The E.-fields for all OL > 1.7SL2 are the same for 

a known separation distance and pipe length. 

5.3.2 Potentials in the Medium 

Contour plots of the log-potential and the total"'primary potential ratio are used to deter-
I 

mine the region affected by the addition of the passive segment If the distortion of the fields 
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caused by the passive segment is small, the ratio of the potentials is close to unity. The 

greater the deviation from one, the larger the distortion. The potentials and distortion due to 

the lower segment are illustrated for various lengths of C2 (figure 5.3-7), separation distances, 

and conduction lengths (figures 5.3-8 to 5.3-11). 

In general, the behavior of the potentials is similar to that of the current source located 

beneath a single casing. For short separation distance and large conduction lengths, the equi­

potential lines are nearly parallel to the upper casing. As the active segment length increases,. 

separation distance increases, or conduction length decreases the total potentials asymptote to 

the values of the primary fields. The extent of the affected area near the surface is reduced 

for longer L 2, whereas the distorted region near the lower segment shows a larger reduction 

for longer segment lengths. For short separation distances, there is a large distorted region 

near the surface adjacent to the upper casing and in the vicinity of the lower segment. When 

the separation distance is increased, there is a reduction of the distorted areas indicating that 

there is less interaction between the two pipes. For large conduction lengths, the potentials 

adjacent to the lower pipe appear similar to those produced by a line source although this is 

difficult to observe from the figures. The potentials along the upper segment are affected such 

that the equipotential lines are nearly parallel to the pipe. The distortion increases along the 

passive casing towards the surface and radially outward. The areal extent of the distortion is 

downwards along the lower segment and extents far below the active lower segment. As the 

conduction length decreases, the coupling between the pipes is small. Thus, the upper seg­

ment carries less current and the equipotential lines along C 1 merge into the the pipe and the 

distorted area is si~ficantly reduced in the region. 

5.3.3 Additional Segments 

Next, a 5m segment- is placed below the long and short segments to evaluate the varia­

tions of the potentials due to the additional segment. This configurations can be represented 

. by the upper three segments in Figure (5.3-1). Contour plots of the log-pdtentials and total to 
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primary ratio for the two 5m segments placed below the 300m casing. For the analysis, a 

current source placed in either of the two 5m segments. 

Figures (5.3-12) to (5.3-15) are the contour plots with the source in the upper short seg-

ment using several conduction lengths and separation distances. Comparing these plots to the 

results of the single casing and the casing and short segment configurations -show only slight 

differences of the potentials in the medium between the three situations. The distorted area is 

nearly the same as that for the single casing. TIlls indicates that the lower passive segment 

has negligible effects on the fields. 

Figures (5.3-16) to (5.3-19) are contour plots for the same situation except that the 

current source is located in the lower short segment. These figures show that the response is 

slightly different from the single casing situation. Since the center passive segment lies 

between the bottom active segment and the upper passive casing, the center segment acts as a 

conduit for the currents to flow into the upper casing. Thus. the spatial distortion is larger 

than that for the situation of the single casing. 

5.3.4 Summary 

The behavior of the fields is dependent on any factors that increase the effective conduc-

tance of the passive segment. Short separation distances. as well as long segments and con-

duction lengths appear to have the most influence on the behavior of the fields. The location 

of the current source within the active segment has no influence on the fields. Placing the 

source anywhere on the active segment is equivalent to a current source located at a distance 

of M + L2/2 below the upper casing. The length of the active pipe has a minor influence on 

the fields. 

The interaction between the two pipe segments results in the reduction of potentials adja-

cent to the upper segment. with a corresponding increase in the fields below this segment 

The separation distance between the two segments and the conductance length have the most 
~ 

influence on the potentials. When the separation distance is short. the interaction between the 
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two pipes is great, distorting the region outward from the casing near the surface and down­

ward below the segments. This effect is accentuated when the conduction length is large. 

For the two segment configuration, the major contribution to the distortion is due to the 

long surface casing. For additional segments, the effects are small if they are located below 

the long surface casing and short active segment. If a segment is between the active segment 

and . surface casing, its addition would effectively increase the conductance between the active 

segment and surface casing. This causes the spatial distortion of the potentials to be larger 

that that of the single casing or double segment configurations. 
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S.4 Dipole Current Source 

Consider a dipole current source located at the end of the casing where one pole is 

located in or near the casing end and the other below. This configuration may be used for 

downhole to surface or cross-hole surveys as will be shown in the next section. By attaching 

the polarized current source to insulated segments, measurement-while-drilling (MWD) opera­

tions can be simulated. 

The fields from a grounded dipole source can be calculated by the superposition of posi­

tive and negative pole sources. Thus, the analyses from the previous sections can be applied 

to this situation. The Ez in the casing and the potentials in the medium are examined to deter­

mine the effects of the conduction length, dipole gapS length, and a lower segment on the 

fields. Throughout this section, the Ez-fields and the potentials are nonnalized by the factors 

lISe and 1141t<Jo. respectively. Additionally, the potentials are plotted at logarithmic contour 

intervals of approximately one-half. 

5.4.1 Conduction Length 

Consider a fixed dipole, with a gap length &0 = O.2m, located at the end of a 300m cas­

ing (Figure 5-4.1). Several conduction lengths (600, 300, 150, and 6Om) are used for the cas­

ing which extends to the surface. For this analysis, no lower segment is used. 

Figure (5.4-2) shows that the Ez-fields in the casing for various conduction lengths are 

similar to those produced by a source at the end of the pipe. The figure indicates that the 

fall-off of Ez is strongly dependent on the conduction length and is slightly greater than that 

of the single source due to the effect of the negative pole below the pipe. 

For this situation, the primary potentials due to the dipole source are the same for all 

conduction lengths since only the medium conductivity is varied and this is incorporated into 

the nonnalization (Figure 5.4-3). Figure (5.4-4) shows the total potentials produced by the 

5 The dipole gap length is the distance between the two current source poles. 
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dipole source in the presence of the casing. For large conduction lengths, the behavior of the 

potentials' is similar to that produced by a line and pole source of opposite polarity. In the 

vicinity of the casing, the zero potential line is shifted up towards the pipe. Away from the 

casing, the equipotential line asymptotes to the zero potential of the dipole field. As the con­

duction length decreases, the potentials become more symmetric about the source such that the 

equipotential lines merge into the adjacent casing. 

The most intriguing aspect of the casing effect is that the amplitudes of the potentials are 

much larger than the fields of the primary potentials. This amplification effect is the largest 

near the casing and is at least two orders of magnitude. Away from the casing, the effect is 

reduced by a factor of to. For a fixed dipole gap length, this distortion is reduced for smaller 

conduction lengths. 

5.4.2 Dipole Gap Length 

The effects of the dipole gap length (Azo) on the Ez-fields in the pipe is shown in Figure 

(5.4-5). The model used for this evaluation is a 300m casing extending to 'the surface with a 

conduction length of 600m. 

The behavior of the curves is similar to those of the Ez-fields from the single source at 

the end of the casing. The smgle source configuration is the limiting case of the infinite gap 

length. The amplitudes of all the Ez curves produced by a finite gap length will be less than 

this limiting case. The amplitudes of the Ez are dependent on the gap length of the dipole. 

For a long gap length, the negative pole is situated far below the casing and has little 

influence on the fields in the casing. Hence, the shorter gap lengths will result in smaller Ez-

fields within the casing. 

Figure (5.4-6) illustrates the effects of the dipole gap length on the primary potentials in 

the medium. The plots show that the primary fields are dependent on the dipole gap length. 

The potentials away from the source are proportional to the dipole length Az o. The presence 

of the casing for the different gap lengths are illustrated in Figure (5.4-7). As with the pri-
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mary fields, the total potentials increase with increasing dipole length although it appears that 

this relationship is not linear. The potentials are similar to those described in the previous 

case for the conduction length effects. The total potentials appear to be caused by a line and 

pole source which are much larger than the primary fields of a dipole source. 

5.4.3 Lower Segment Length 

The effects of the length of an separated segment attached to the negative pole of the 

source is examined. Both the 300m upper surface casing and lower separated segment with a 

length of L z have a conduction length of 600m and are separated by a distance of O.2m (Fig­

ure 5.4-8). For this problem, the positive pole is placed at the bottom of the casing and the 

. negative pole is located at the top of the segment. 

The Ez-fields in the upper casing and lower segment are shown in Figure (5.4-9) for 

various lengths of the lower segment. The fields in the" upper casing increase as the lower 

segment length increases. The asymptotic limit for these curves is the Ez -field produced by a 

pole. This behavior is due to the current distribution in the lower segment which reduces the 

influence of the pole in the segment on the upper casing. The response of the Ez-fields in the 

lower segment is similar to that in an active segment of the single source case. As with the 

other dipole configurations, the fall-off of the fields is slightly greater than the decay of the 

single pole in the upper casing. 

All of the primary fields in Figure (5.4-10) are the same since the dipole gap 

(&0 = O.2m) and conduction length (OL = 600m) did not vary. Figure (5.4-11) is a series of 

contour plots of the total potentials for several lengths of the lower segment. The fields in the 

medium behave like those produced by two line sources of opposite polarity. The potentials 

near the casing and the segment increase as the lower segment length increases. Also, the 

potentials are more symmetric about the current source as the lower segment length increases. 

Again, the total potentials are much greater than the primary fields of the dipole. 
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5.4.4 Surface Response 

The potentials and the total-primary ratio are calculated on the half-space surface to 

illustrate the magnification of the potentials caused by the casing with the dipole source as 

opposed to the potentials from a dipole source with no casing. Several dipole gaps and lower 

segment lengths are used to illustrate the effect. A 300m upper casing with a conductance of 

3883S·m is placed in a l00n·m half-space (this is equivalent to a conduction length of approxi-

mately two). 

Figure (5.4-12) illustrates the effects of the dipole gap length on the potentials. The 

curves for different gap lengths are nearly parallel to each other. The fall-off of the potentials 

is greater than that of the single pole curve. As the gap length increases, the potentials 

increase and approach the single pole case. However, the total-primary ratio is reduced as the 

gap length increases. For surface positions near the casing, the total fields can be 2-3 orders 

of magnitude greater than the primary field. In the far-field, the potentials are reduced by a 

factor of 5 to 10. 

The influence of the lower segment length on the potentials and the total-primary ratio is 

shown in Figure (5.4-13). For this problem, the casing separation (dipole gap) is O.2m. From 

this figure, both the potentials and the total-primary ratio increase as the lower segment 

lengthens. The potentials are magnified by the presence of the upper casing and lower seg-

ment. Near the casing, the potentials are 300-3000 times larger than the primary fields. The 

distortion is reduced by an order of magnitude when the field point is approximately one cas-

ing length away from the well. 

5.4.5 Summary 

In the presence of the casing and/or a segment of , casing below upper casing, the poten­

tials in the medium are much larger than the fields from the dipole source alone. The fields 

are influenced by the dipole gap, conduction length, and separated segment length. The poten-

. I 

tials in the half-space are increased when any of these factors is increased. Although the far-
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fields are greatly affected, the largest deviations of the potentials occurs near the casing and 

segment where they are approximately 100-1000 times greater than the primary fields. 
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55 Numerical Examples 

In this section, two examples are used to simulate field situations that may be encoun-

tered with steel cased wells. The first model simulates the monitoring of an injection experi­

ment; the cross-hole and downhole to surface sUlVeys are considered. The last example is 

directed to the low frequency limit of an electromagnetic telemetry scheme used in measure-

ment while drilling (MWD). 

5.5.1 Injection Monitoring Simulations 

The principle behind the monitoring of an injection experiment can be illustrated in the 

simple cross-section in Figure (5.5-1). Consider electric current injected into the earth 

between a downhole electrode A and a remote surface electrode B. In a homogeneous 

medium, the currents from the source (position AI) radiate away from the hole producing a 

predictable set of voltages at measuring potential electrodes located at the surface or in an 

adjacent well. When the electrode is located in a zone of high conductivity, caused for exam­

ple by the injection of conductive fluids, the current pattern "is distorted by the zone as shown 

by the current flow lines when the electrode is at position A2. This distortion produces a per-

turbation in the voltages observed at the measuring arrays. This method can be used to moni-

tor the changes associated with an injection over time. 

For many injection situations, the wells are cased with steel. The fluids are usually 

injected through a perforated zone in the casing or out the bottom of the pipe into the sur-

rounding formation. Not only does the steel casing distort the voltages at the potential elec-

trodes, but there will be a coupling effect between the injected fluid and steel casing which 

can also distort the Voltages. The objectives of this study are two fold: (1) to determine if the 

spatial changes associated with the injection can be measured at the potential electrodes and 
- . 

(2) to determine if the casing will reduce or distort these changes so that they may not be 

measurable or distinguishable. The cross-hole and downhole to surface surveys are used for 

the mOnitoring simulations. 
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Cross-Hole 

Consider a well cased with steel and perforated at some depth. Conductive fluids are 

injected through the perforated section into the surrounding media producing, under ideal con-

ditions, a cylindrical zone which is often referred to as a plume. As the fluid is continuously 

injected, this plume will increase in size over time. For this problem, the steel casing isener-

gized by a downhole source and an array of potential electrodes is located in an open-hole 

adjacent to the injection well. 

Two models are used for this numerical example. The first model is the injected plume 

in a homogeneous half-space with the downhole source placed within the plume (mise-ll-la-

masse). The second model, shown in Figure (S.S-2), consists of the plume and the casing in 

the host medium. The current source is placed inside the casing at the same depth (200m) as 

in the mise-ll-la-masse configuration.6 

The 300m casing which has a resistivity of lO~n'm is embedded in a lOOn'm homo-

geneous medium. The In'm, disk-like plume is injected into the fo~ation at a depth of 

200m. A radius R represents the spatial extent of the 2m thick plume during the injection 

process. The cross-hole measuring array, which is located 100m from the injection well, has 

the potential electrodes spaced Sm apart and extends to a depth of 400m. 

Figures (S.5-3) and (S.S-4) are plots of the potentials and Ez -fields in the monitoring 

well for the plume only (circles) and plume with casing (squares). The background or pre-

injection fields, i.e., the fields in absence of the plume, are represented by the dashed (casing) 

and solid (no casing) lines. Radii of 2Sm (black) and sOm (white) are used for the plume. 

Both figures consist of two plots: one is the field (potential or Ez ) and the other is the 

difference between the injection and pre-injection fields. 

Figure (S.S-3a) shows that the pre-injection potentials dominate the signature of the 

6 This depth is used for convenience. For the parameters used in this example, the analysis of Section 5.1 indi­
cates that the potentials in the medium are independent of the source location within th~ casing. 

\' 
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fields. The plume produces small changes or perturbations on the background in the uncased 

model An interesting phenomenon occurs when the casing is incorporated in the model The 

perturbations caused by the plume are enhanced when the casing is present (Figure 5.5-3b). 

However, the near-surface response is also quite large and may be misinterpreted as an ano-

maly. 

Since pole measurements may be difficult to acquire in field situations, the E, -fields 

were calculated from differences of adjacent electrodes. Figure (5.5-4a) has the E.-fields for 

non-casing and casing models. The background E.-fields for the mise-k-Ia-masse case are 

much larger than those in a cased well, and the injected plume produces pertUIbations on the 

background fields in both cases. The differences in the E. -field due to the plume with the 

casing present are much larger than those of the mise-k-Ia-masse configuration (Figure 5.5-4b). 

To understand the response of the potentials for the two situations, the current patterns 

in the medium and conductive plume are illustrated in Figure (5.5-5). For the mise-k-Ia masse 

configuration (top). the currents are first channeled into the plume and then dissipated into the 

surrounding foonation. The pertUIbations obseIVed at the cross-hole array have a larger peak 

and greater fall-off. The plume effectively moves the source closer to the potential array. 

When the casing is present, two differences in current patterns are obseIVed. First, the 

pipe energized by the pole current source it behaves like a line source; in the absence of any 

inhomogeneity, the currents would flow in a radial direction away from the casing. Second, 

the currents radiating from the casing are channeled into the conductive plume. Away from 

the casing, the currents in the plume leak into the foonation as in the uncased mise-k-Ia-masse 

situation. The effects of curreru channeling into the plume from a line source provides a rela-

tively greater focusing effect at the cross-hole array than the simple current channeling in the 

plume for a source in anuncased well. 

Downhole to Surface 

I 

In the next example, consider the conductive fluid to be injected at the bottom of the 
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steel casing. The measuring array of electrodes is placed on the surface radially away from 

the injection well and the current source is located below the casing. The values of the 

parameters were chosen such that the numerical results simulated a field injection test 7 

Figure (5.5-6) illustrates the models used for this numerical analysis. The first model, 

which excluded the pipe and fluid in the borehole, had an injection plume in a homogeneous 

half-space. The second figure shows a model of a plume and a pipe filled with fluid embed-

ded in a homogeneous half-space. The fluid resistivity is lO·m while the host had a resistivity 

of lOOOn·m.The pipe has a length of 750m (= 2460 ft) and two conduction lengths of 135m 

and 426.7m are used to represent an insulated and conductive pipe, respectively. The disk-

like plume emerging from the end of the pipe has a height of 2m and its radius varies to 

simulate its growth during the fluid injection. The values of the plume radius are O.lm, 3m, 

10m, 30m, 100m, and 300m. 

Two source configurations are used in the modeling. The first is the downhole source 

placed 1m beyond the end of the pipe within the plume (mise-a-la-masse). The remote elec-

trode is assumed to be at infinity. The second is the downhole dipole with its center located 

3m beyond the pipe's end and an electrode separation of 4m. One electrode is within the 

body and the other is located in the host below the plume. The surface array has a potential 

electrode spacing of 15m. The voltage differences between these electrodes are used to calcu-

late the apparent resistivity. 

The next six figures (5.5-7) to (5.5-12) are the apparent resistivity (top plot) and the per­

cent difference (bottom plot) for the three models: plume only, resistive pipe and fluid, and 

conductive pipe and fluid. The apparent resistivities for the pipe models are plotted on a 

semi-logarithmic scale; all other plots are linear. The downhole pole-source-is used for Fig-

ures (5.5-7) to (5.5-9) and Figures (5.5-10) to (5.5-12) have a dipole as the current source. 

The percent difference is used to monitor changes in apparent resistivities due to the increase 

7 Chapter vn discusses the downhole-surface resistivity survey conducted at DuPont's Hemby Branch test well 
near Waverly, Tennessee in early October 1989. I 
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in size of the plume. The percent difference, 0, is calculated by the following expression: 

o. = (Po - Pi) x 100% 
• Po 

where Po and Pi are the apparent resistivities of the background (no plume) and with the inho-

mogeneity (plume). respectively. 

The plots of Figure (S.5-7) (plume and pole-source) indicate that the plume must be of 

significant size (» 30m) to to be distinguishable from the background measurements .. Only 

the 100m and 300m apparent resistivity curves show significant deviations from the back­

ground value of 1000 n·m. The percent difference curves show this more clearly: the 100m 

plume shows a maximum difference of only 3%. and the difference increases to 23% for the 

300m plume. 

Figure (5.5-8) shows responses for the resistive pipe filled with fluid and for the pole-

source. The pipe effects are seen on the near-well apparent resistivities. The percent 

difference plot show values over 2% (near-well electrodes) for all the plume radii. The pipe 

and fluid appears to accentuate the surface response of the plume especially at the near-well 

electrodes. The apparent resistivity and the percent difference for the conductive pipe with 

fluid are shown in Figure (S.S-9). The pipe significantly distorts the apparent resistivities. 

This effect extends along the entire array but has a much smaller effect at the far-field elec-

trodes. The presence of the conductive pipe greatly increases the percent differences for all 

radii of the plume. 

Figures (5.5-10) to (S.S-12) are equivalent to the plots of Figures (5.S-6) to (5.5-8) with 

a dipole current source instead of a pole source. All the responses show sizable differences 

from- the background values. With this electrode configuration, even the small radius (3m) 

show deviations from the background level. The percent difference plot of Figure (5.5-12) 

shows that the 100m and 300m curves are nearly the same for the distances shown in the 

figure. Thus for the conductive pipe. the size of the large plumes may not be distinguishable 
) 

. from one another if the electrode array does not radially extend far from the well. 
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Conclusion 

This results suggest that a cross-hole and downhole to surface surveys to monitor in time 

an injection experiment in cased wells may be possible. Using an energized casing as a 

source or placing a dipole source at the end of the casing enhances the response of the 

injected plume. When compared to background measurements, the anomalies produced by the 

plume with the casing present are significantly larger than those. without the casing. Thus, 

using the casing in monitoring of an injection may be advantageous to determine the extent of 

a plume. 

5.5.2 Measurement While Drilling 

Measurement while drilling (MWD) is a method that provides realtime downhole infor-

mation during drilling operations. Commonly, the MWD tool is composed of two systems 

that are assembled in a drill collar and placed above the drill bit (Figure 5.5-13). The first is 

the sensor package that acquires the data. The second is the telemetry system which relays 

the infonnation to the surface. 

The infonnation collected by the sensors can be divided into tWo categories: drilling 

infonnation and fonnation properties. Drilling infonnation includes hole direction and inclina-

tion used for directional drilling. Other infonnation, such as downhole weight-on-bit, torque, 

temperature, and pressure can be acquired. Fonnation characteristics, natural gamma ray 

emissions and electrical resistivity, are also typically gathered with MWD sensors. 

There are several telemetry methods' by which signals are sent from downhole to the sur-

face (Gravley, 1983). One method transmit the signals by generating pressure waves in the 

drilling mud. The pressure waves can be frequency modulated or pulsed. Another technique 

transmits the infonnation through electrical conductors inside the pipe. The pipes are pre-

wired such that the circular conductor is insulated from the drill pipe by two concentric dielec­

tric rings (Holbrook, 1985). A third method sends an acoustic signal through the drill string. 
~ 

Since these acoustic waves have high attenuation, repeaters are needed in the drill string to 
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relay the signal to the surface. 

The last transmission technique, which is the topic of this section, is the electromagnetic 

telemetry method. The signals are transmitted through the earth to surface receivers by a EM 

source near the drill bit. The attenuation of the signals is dependent. in part, on the electrical 

properties of the medium. The DC limit of the EM telemetry is investigated in this example. 

If the DC responses are small for a configuration, the EM signal are probably not measurable 

since the DC value is the upper asymptotic limit. Two major factors that affect the signal 

amplitudes are the depth of the transmitter and the conduction length of the drill stem. Recall 

that the conduction length relates the drill stem conductance and the fOIIIlation conductivity. 

Figure (5.5-14) illustrates the simplified model used for the EM telemetry problem. The 

transmitter is simulated by a current dipole (/ = lAmp) placed across an insulated gap at the 

end of the drill string. Thus, the drill string will act as a long line source and the lower collar 

and bit behave like a short line source of opposite polarity. For this example, a model with 

short dipole gap &0 = O.2m and no lower drill collar L2 = O.Om is considered. The l<r.Q·m 

drill string, which varies in length Ll from 100m to 3000m, has a thickness of 6mm, has an 

inner radius of IDem, and is embedded in a homogeneous half-space. Resistivities of I, 10, 

and l00.Q·m are used for the half-space which correspond to conduction lengths of 62, 197, 

and 623m, respectively. 

Figure (5.5-15) shows the potential difference or voltage (~V) on the surface measured 

between the drill string and radial surface electrodes. Figure (5.5-16) plots the voltage meas­

ured between the well and an electrode at the 500m as a function of drill string length Lt. 

For short string lengths, the voltages quickly reach their asymptotic values. The voltages are 

proportional to the host resistivity and the inverse of the string length. As the drill string is 

lengthened, the signals in the l.Q·m fOIIIlation are significantly reduced (~V :::: 1O-7-10-8V for 

L t > lOOOm). The signals transmitted in the lOQ'm host begin to deteriorate (~V < IO~V) for 

lengths greater than 3000m. In a resistive environment (IOOQ'm), the signals are relatively 
~ 

large even for the 3000m drill pipe (~V:::: 1O-3V). For great lengths, the voltages are 
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proportional L -4. The transition length to this fall off appears to occur at approximately 1-3 

conductionlen~. 

For this example. a "worst case" scenario was considered. The analysis in Section 5.4 

indicates that the voltages can be improved by lengthening the dipole gap or introducing a 

lower collar. Figure (55-17) illustrates that the voltage can be increased by increasing the 

dipole gap or lower collar length. These values correspond to a model with a 300m drill 

string and lOOn·m host formation. The maximum increase appears to asymptote to 4-5 times 

that of a model with no collar and O.2m dipole gap. 

Lastly. this configuration can be used as a MWD resistively tool. The current pattern in 

the medium is shown in Figure (5.5-18) for an insulated collar separated from the drill string 

with a dipole source placed across the gap. For this configuration. the currents are emitted 

from the collar into the formation and return to the upper drill pipe. Its current pattern 

appears similar to that produced by an open-hole focus log. Other current electrodes may be 

added to the adjust the focusing of the current, to further resemble the current pattern of a 

focus log. By placing potential electrodes near the center of the lower collar. a MWD focus 

log can be simulated. 

These results indicate that EM telemetry through the earth is possible in resistive forma­

tions. For a conductive earth. the signals transmitted at depth may be greatly attenuated and 

may be difficult to receive at the surface. The signal strength at the surface can be improved 

by increasing the dipole gap or lengthening the the drill collar. Additionally. this 

configuration has a current pattern resembling those produced by an open~hole focus log. 

Thus. one may be able to simulate MWD resistivity logging configurations. 



I 

semi-infinite 
pipe 

= tl2 

host 
medium 

sc= 21ta~a(J'C 
1/2 

0L = (SC/crO ) 

125 

Figure 5.1-1: Generalized configuration of the semi-infinite vertical annulus in a homogeneous 
half-space, applied current source, and field position.· 
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Figure 5.1-2: Semi-log plot of the nonnalized Ez in a semi-infinite pipe for several OL values 
with current source placed at the surface. Ez is normalized by the factor IISe • 
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ized by the source depth Zos and factor liSe' respectively. 
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Figure 5.1-4: Generalized configuration of the finite length pipe in a homogeneous half-space, 
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Figure S.l-Sa: Semi-log plots of the nonnalized whole-space Ez in a pipe for several aL -ratios 
with current source located at S IL = 0.0. The spatial variables and Ez are nonnalized by the 
pipe length L and factor liSe, respectively. / 
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Figure S.l·Sc: Semi·log plots of the normalized whole· space Ez in a pipe for several aL -ratios 
with current source located at S IL = 0.3. The spatial variables and Ez are normalized by the 
pipe length L and the factor lISe' respectively. 

w 
o 
E 
..J 
Q.. 

OT-----~--------~--------~----~--------~----~--------~----~--------~------, 

~ -2 
4{ 

o 
w 
N 
:::i 
4{ 

~ 
a: 
o 
Z 
CJ 

9 

. . . . 0- 6.00. : . : ..... 0; .............. ": ............... ~ ............... : ...... . 0- 2.00 ... ~ ............... : ............... : ............... ~ .... . 

6- 1.76: . . : 
<>- 0.60 : : 
11- 0.30 . 
~- 0.20 .. .................... ~ ~ 

·-········:···············~···············r······ 

EB- 0.10 
~- 0.06 

... ~ ............... ; .............. . 
'--.-----' 

-6+---~----~----r---~----T---~-----~----~--~--~ o 0.1 0.2 0.3 0.4 0.6 0.11 0.7 0.8 0.9 
NORMALIZED POSmON 

Figure S.l·Sd: Semi-log plots of the normalized whole·space Ez in a pipe for several 0-[.­

ratios with current source located at S IL = 0.5. The spatial variables and E z are normalized by 
the pipe length L and the factor I/Sc, respectively. 
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Figure 5.1-6: Semi-log plots for several (J.L -ratios of the normalized half-space E. with current 
source located at S IL = 0.5. The spatial variables and E. are normalized by the pipe length L 
and the factor lISe' respectively. 
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Figure S.1-7a: Log-coritour plots of the normalized half-space potentials due to a pipe for 
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Figure S.I-IOa: Log-contour plots of the nonnalized half-space potentials due to a pipe for 
several CJ.L -ratios with current source located at S IL = 1.0. The spatial variables and potentials 
are nonnalized by the pipe length L and the factor 1141tcrcJ.-, respectively. 



139 

a -= 0.20 a - 0.10 
0 0 

...J --• 0 0 z ci ci 0 

/ / E - _(I) 

• .0 
A. 
...J 

0 < o· u 

/ 
i= 
a:: 
w 
> 

0 o· 
C'I C'I • • 

0 2 0 2 

a 0:: 0.05 Primary 
0 0 

...J --• 0 0 z ci ci 0 

/ / E - _(I) 

• - .0 
A. 
...J 

0 < o· u 

/ 
i= 
a:: 
w 
> 

0 
o· 

C'I C'I • • 0 1 2 0 1 2 
RADIAL POSITION • 1/L RADIAL POSITION • 1fL 
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Figure 5.1-11a: Contour plots of the ratio of the total to primary fields due to a pipe and 
aL = 2 with current source located within the pipe: 0.0 ~ S IL ~ 0.5. The spatial variables and 
potentials are nonnalized by the pipe length L and the factor 1141tcroL, respectively. The dotted 
area represents 5% or less deviation of the total field from the primary 6eld. Coincidentally, 
these plots are the ratio of the apparent and background resistivities for a pole-pole survey. 
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Figure 5.1-11b: Contour plots of the ratio of the total to primary fields due to a pipe and 
Cl[. = 2 with current source located within the pipe: 0.5 < S IL ~ 1.0. The spatial variables and 
potentials are nonnalized by the pipe length L and the factor 1141CCJoL, respectively. The dotted 
area represents 5% or less deviation of the total field from the primary field. Coincidentally, 
these plots are the ratio of the apparent and background resistivities for a pole-pole survey. 
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Figure 5.1-12: Contour -plots of the ratio of the total to finite-length line source potential for 
several ~ -ratios with the current source located at S IL = 0.0. The dotted area represents loca­
tions where the total potential is within 1 % of the line source potentials. 
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Figure 5.1-13: Contour·plots of the ratio of the total to finite-length line source potential for 
several aL -ratios with the current source located at S IL = 0.3. The dotted area represents loca­
tions where the total potential is within 1 % of the line source potentials. 
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Figure 5.1-14: Contour "plots of the ratio of the total to finite-length line source potential for 
several CL[. -ratios with the current source located at S IL = 0.5. The dotted area represents loca­
tions where the total potential is within I % of the line source potentials. 
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Figure 5.1-15: Contour- plots of the ratio of the total to finite-length line source potential for 
several CJ.L -ratios with the current source located at SIL = 0.7. The dotted area represents loca­
tions where the total potential is within 1 % of the line source potentials. 
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Figure 5.1-16: Contour plots of the ratio of the total to finite-length line source potential for 
several <l£. -ratios with the current source located at S IL = 1.0. The dotted area represents loca­
tions where the total potential is within 1 % of the line source potentials. 
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Figure 5.2-1: Semi-Iog·plots of the nonnalized half-space E. in a 300m pipe for several OL 
with & = 10m. The E. is nonnalized by the factor l/Sc' 
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Figure 5.2-3: Semi-log plots of the normalized half-space Ez in a 30m pipe for As'~ 1m (top) 
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151 

6 .... 600.0m 6 -150.0m 
0 0 

E 
0 0 z o· o· 0 

/ / 
~ 

0 ou; 
0 00 
C'l ';'11. • -J 

0 0 < o· o· (.) 

a/ a/ 
~ a:: 
w 
> 

o· 0 o· 0 
0 0 
C) C) 

• I 

3 303 603 3 303 603 . 

6 = 50.0m 6 .... 15.0m 
0 0 

] 
0 0 z 
0 0 0 

/ / 
~ 

0 ou; 
0 00 
C'l C'lQ. • I 

-J 
< 
(.) 

~ 
a:: 
w 
> 

0 0 
0 0 
C) C) 

• • 3 303 1503 3 303 1503 
RADIAL POSITION (m) RADIAL POSITION (m) 
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Figure 5.2-8: Log contour plots of the nonnalized half-space potentials due to a 300m pipe 
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Figure 5.2-9a: Contour plots of the ratio of the total to primary fields due to a 300m pipe for 
OL = 600m and current source located below the pipe at & = O.lm to 1m. The potential is nor­
malized by the factor 1141tcroL. The dotted area represents 5% or less deviation of the total 
field from the primary field. Coincidentally, these plots are the ratio of the apparent and back­
ground resistivities for a pole-pole survey. 
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Figure 5.2-9b: Contour plots of the ratio of the total to primary fields due to a 300m pipe for 
OL = 600m with current source located below the pipe at 6.s = 2m to 10m. The potential is nor­
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Figure 5.3-1: Generalized configuration of the multiple casing segments coaxial with an arbi­
trarily located pole current source in a homogeneous half-space. 
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Figure 5.3-2: Model of the two pipe segments coaxial with an arbitrarily located pole current 
source in a homogeneous half-space. For the analysis, Ll :> L z. 
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Figure 5.3-5: Semi-log plots of the normalized E: in the 300m C 1 for several L2 with 
OL = 6OOm, M = 2m, and current source located at the top of C 2. E, is normalized by the fac­
tor liSe' 
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Figure 5.3-Sa: Log-coritour plots of the normalized half-space potentials due to the 300m C 1 

for several !ld with OL = 6OOm, L2 = S.Om and current source located at the center of C2• The 
potentials are normalized by the factor I/41tO"oLl. 
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Figure 5.3-9b: Log-contour plots of the total-primary ratio for the same model as Figure 5.3-
9a. The irregularly spaced contour levels are: ±2, ±1.5, ±1.25 , and ±1. The dotted area 
represents 0.5% or less deviation. 
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Figure 5.3-10b: Log-cOntour plots of the total-primary ratio for the same model as Figure 
5.3-lOa. The irregularly spaced contour levels are: ±2, ±1.5, ±1.25, and ±l. The dotted area 
represents 0.5% or less deviation. 
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Figure 5.3-11a: Log-contour plots of the nonnalized half-space potentials due to the 300m C 1 

for several M with OL = 6Om, L2 = 5.Om and current source located at the center of C 2' The 
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Figure S.3-11b: Log-cOntour plots of the total-primary ratio for the same model as Figure 
5.3-11a. The irregularly spaced contour levels are: ±2. ±1.5. ±1.25. and ±l. The dotted area 
represents 0.5% or less deviation. 
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Figure S.3-12b: Log-contour plots of the total-primary ratio for the same model as Figure 
5.3-12a. The irregularly spaced contour levels are: ±2, ±1.5, ±1.25, and ±1. The dotted area 
represents 0.5% or less deviation. 
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Figure 5.3-13a: Log-contour plots of the normalized half-space potentials due to the 300m C 1 

and two underlying 5m segments (C 2 and C3) for several OL with lld = O.5m and current source 
located at the center of C 2. The potentials are normalized by the factor I!41t(J~ 1. 
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Figure S.3-13b: Log-cOntour plots of the total-primary ratio for the same model as Figure 
5.3-13a. The irregularly spaced contour levels are: ±2, ±1.5, ±1.25, and ±1. The dotted area 
represents 0.5% or less deviation. 
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Figure S.3-14a: Log-contour plots of the nonnalized half-space potentials due to the 300m C 1 

and two underlying Sm segments (C 2 and C 3) for several OL with M = 2.0m and current source 
located at the center of C2. The potentials are nonnalized by the factor I!41tcroLl. 
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Figure S.3-14b: Log-cOntour plots of the total-primary ratio for the same model as Figure 
5.3-14a. The irregularly spaced contour levels are: ±2, ±1.5, ±1.25 , and ±l. The dotted area 
represents 0.5% or less deviation. 
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located at the center of C 2. The potentials are normalized by the factor 1/41tCJr!--I. 
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Figure 5.3-16b: Log-cOntour plots of the total-primary ratio for the same model as Figure 
5.3-16a. The irregularly spaced contour levels are: ±2, ±1.5, ±1.25, and ±1. The dotted area 
represents 0.5% or less deviation. 
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located at the center of C 3. The potentials are nonnalized by the factor 1141CCJc/.- l' 



6 -600.0m 

• • • • • • • • • • • • • • • • • • • •• 0 
o 
CO) 

• 

......................... g 
• • • • • • • • • • • • • • • • • • • • • • • •• CI 

• 3 303 e03 

3 

6 -lS0.0m 
.........•.•.•.. 0 

. . . . . . . . . ~ . . . . . . . 

...•...••••..•.....•.. 0 
o 
CO) 

• 

....••.....••..•...••••.• 0 ......................... ~ 
• 303 e03 

RADIAL POSITION (m) 

185 

6 -300.0m 
............... 0 

•••••••••••• e, ••••••••• 

] 
z 
o 
~ 

oUi 
00 
MA. • ...J 

< 
(,J 

~ a:: 
w 
> 

......................... g · . . . . . . . . . . . . . . . . . . . . . . .. ., 
• 3 303 e03 

3 

6 - 50.0m 
.•..•...•............ 0 

. ~ ................... . ] 
z 
o 
~ 

oUi 
00 
';'c.. 

· .................. " ..... . 

......................... g 
· . . . . . . . . . . . . . . . . . . . . . . .. ., 

• 303 e03 
RADIAL POSITION (m) 

...J 
< 
(,J 

~ 
a:: 
w 
> 

Figure S.3-17b: Log-cOntour plots of the total-primary ratio for the same model as Figure 
5.3-17a. The irregularly spaced contour levels are: ±2, ±1.5, ±1.25, and ±l. The dotted area 
represents 0.5% or less deviation. 
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Figure 5.3-18b: Log-contour plots of the total-primary ratio for the same model as Figure 
5.3-18a. The irregularly spaced contour levels are: ±2, ±1.5,±1.25, and ±1. The dotted area 
represents 0.5% or less deviation. 



188 

6 -600.0m 6 -300.0m 
0 0 

! 
0 0 z 
0 0 0 

/ / 
i= 

0 oUi 
0 00 
f') ~~ • -' < 

(.J 

i= a: 
w 
> 

0 0 
0 0 
~ C) 

• • 3 303 803 3 303 803 

6 -lS0.0m 6 - 60.0m 
0 0 

] 
0 0 z 
0 0 0 

/ / 
i= 

0 oUi 
0 00 
f') f')c,. • • 

-' 
< 
(.J 

i= 
a: 
w 
> 

0 0 
0 0 
C) C) 

• • 3 303 803 3 303 803 
RADIAL POSITION (m) RADIAL POSITION (m) 

Figure 5.3-19a: Log-contour plots of the normalized half-space potentials due to the 300m C 1 

and two underlying 5m segments (C 2 and C3) for several OL with M = 2.Om and current source 
located at the center of C 3. The potentials are normalized by the factor 1141tcrcJ., 1. 



6 -600.0m 6 -300.0m 

o 

189 

z 
o 
i= 

o ...................... . 
OC;; 
00 
';'0----- ................................................ .. ';' ...: ........................ . 

.................................................. 0 

.•••.••••••.••••••••.•••• 0 
• • • • • • • • • • • • • • • • • • • • • • • •• CI 

• 3 303 e03 

6 -150.0m 
~~--~--~.--.-.-.-.-.--.-.-.-.-. __ .-.-.-.~. __ .~.~. 0 

o · ••••••••••••••.••••••••. 0 
• • • • • • • • • • • • • • • • • • • • • • • •• CI 

• 3 303 e03 

6 - eO.Om 
~~~.~.~.~.-.~.~.~.~. __ .~.~.~.-.~.~.~.~.-.~.~.~.~.~o 

~/. : : : : : : : : : : : : : : : : : : : : : : : ................................................ 
................................................ 

~ 

< 
(.J 

i= a: 
w 
> 

z 
o 
i= 

--= .. : : : : : : : : : : : : : : : : : : :: : : : : 
g D' ...................... . 
';' ~. : :: : : : : : : : : ::: :::::: :::: 

oc;; 
00 
"'0. • 

......................... g 
• • • • • • • • • • • • • • • • • • • • • • • •• CI 

• 3 303 e03 
RADIAL POSITION (m) 

................................ "0" ............ .. 

o ..••••••.•••...•••••..••. 0 
• • • • • • • • • • • • • • • • • • • • • • • •• CI 

• 3 303 e03 
RADIAL POSITION (m) 

~ 

< 
(.J 

i= 
a: 
w 
> 

Figure 5.3-19b: Log-contour plots of the total-primary ratio for the same model as Figure 
5.3-19a. The irregularly spaced contour levels are: ±2, ±1.5, ±1.25, and ±1. The dotted area 
represents 0.5% or less deviation. 
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Figure 5.4-1: Generalized configuration of a 300m casing coaxial with a dipole current source 
in a homogeneous half-space. 
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Figure 5.4-2: Semi-log plots of the normalized Ez in the 300m C 1 for several OL with 
&0 = O.2m. The Ez is normalized by the factor liSe. 
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Figure 5.4-5: Semi-log' plots of the nOImalized Ez in the 300m C 1 for several &0 with 
OL = 6OOm. The Ez is normalized by the factor lISe. 
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Figure S.4-6b: Contour plots of the normalized half-space potentials using a dipole source 
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Figure 5.4-7a: Contour plots of the nonnalized half-space potentials due to the 300m C 1 for 
&0 = 0.05, 0.1, 0.2, and O.5m with OL = 600m. A logarithmic contour interval of 0.5 is used. 
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Figure 5.4-7b: Contour-plots of the nonnalized half-space potentials due to the 300m C I for 
&0 = 1.0, 2.0, 5.0, and 10.Om with0L = 600m. A logarithmic contour interval of 0.5 is used. 
The potentials are normalized by the factor 1141t(10 X 10-3• 
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OL = 600m and Azo = O.2m. The E. is normalized by the factor lISe. 
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Figure 5.5-5: a) Current patterns in the medium and conductive plume for the mise-a-Ia-masse 
configuration (top). b) Current patterns in the medium and conductive plnme for the energized 
casing configuration (bottom). 
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Figure 5.5-7: Apparent resistivity (top) and percent difference (bottom) for the plume-only 
with the pole source model. Legend shows the length of the plume. 
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Figure 5.5-9: Apparent resistivity (top) and percent difference (bottom) for the conductive 
casing, fluid, and plume with the pole source model. Legend shows the length of the plume. 
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Figure 5.5-10: Apparent resistivity (top) and percent difference (bottom) for the plume-only 
with the dipole source model. Legend shows the length of the plume. 
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Figure 55-11: Apparent resistivity (top) and percent difference (bottom) for the resistive cas­
ing, fluid, and plume with the dipole source modeL· Legend shows the length of the plume. 



218 

Apparent Resistivty (dipole) 

10 8 

Om 

10 7 -0-- 3m 
~ 10m 

4 30m 

10 6 
0 100m 
v 300m 

e-
o 

10 5 9-
eD 

0.. 

10 4 

103~~TT~~~::~::~~§!~~;;~~~~S;;;~;;~ 
o 100 200 300 400 500 600 700 800 900 1000 

Distance (m) 

%-Difference (dipole) 

100 

90 

80 
Q) 
u 
c: 
Q) .... 

70 ~ 
i5 -0---- 3m 
~ 0 

-0-- 10m 
60 4 30m 

0 100m 

50 
v 300m 

40 
o 100 200 300 400 500 600 700 800 900 1000 

Distance (m) 

Figure 5.5-12: Apparent resistivity (top) and percent difference (bottom) for the conductive 
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Figure 5.5-14: A simplified model used for the EM telemetry problem. The EM source is 
simulated with a dipole source between two pipe segments. The upper segment represents the 
drill string and the lower models the MWD tool and drill bit 
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Figure SoS-ISb: Plots of the potential difference measured between the casing and radial posi­
tion on the surface for a drill string of lOOOm (top) and 3000m (bottom). No lower collar and 
a dipole gap .1zo = O.2m were used. 
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CHAPTER VI 

REsISTIVITY MEASUREMENTS THROUGH METAL CASING 

In recent years. there has been increased interest in measuring fonnation resistivity 

through metal casing. Measurements made through casing can aid in characterizing existing 

reservoirs for effective recovery of oil and gas. as well as geothennal heat, without the cost 

and time of drilling new wells. Measuring the resistivity of adjacent fonnations may be useful 

to locate oil that was missed during the original logging prior to insertion of the casing. The 

method may also monitor changes in resistivity caused by subsurface processes such as injec-

tion or leakage of contaminants from a waste site. flooding operations for enhanced oil 

recovery, or processes of geothennal production. 

In the past, logging in cased wells has been limited to measuring parameters of 

downhole flow. casing conditions, and cement integrity. Infonnation on fonnation properties 

was mainly obtained through gamma ray or, neutron scattering methods, but the radius of 

investigation of these techniques is limited to tens of centimeters. Several seismic techniques 
\ 

are capable of measuring some fonnation parameters but resistivity or induction logs appeared 

impossible to acquire since the ~gh1y conductive metal casing short circuits any current 

Several patents however, have recently been issued which describe methods and devices that 

are capable of measuring the fonnation resistivity through casing (Kaufman 1989. Vail 1989a 

and 1989b, Gard et al. 1989). Currently, Vail is known to have developed and tested such a 

device, called Through-Casing Resistivity Apparatus (TCRA). 

The patents orkaufman and Vail discuss the use of two pairs of voltage measurements 

(three-point measurement) in contact with the casing to calculate the formation resistivity. 
~ 

Gard et al., using a single pair of voltage measurements also in contact with the casing, sug-
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gested that the formation can be continuously logged through the casing by making two 

traverses. All these methods use a compensation technique to "correct" for the unknown cas-

ing conductance, i.e., wall thickness and conductivity. 

Kaufman (1990) investigated the behavior of the potential and its derivatives for a 

borehole with casing based on models of an infinite-length conductive pipe in a homogeneous 

medium. He showed that the second vertical derivative of the potential is proportional to the 

casing conductance and formation resistivity for receivers located in the "intermediate zone" 

from the current source. He concluded that for a known casing conductance Sc, the formation 

resistivity PI can be calculated at the depth where the potential cj) and its second derivative are 

measured by the expression: 

(6-1) 

The objective of this chapter is to investigate the validity of Kaufman's and Vail's 

approach to determine the formation resistivity through metal casing for a finite length pipe 

and surrounding annulus in a layered medium. The annulus surrounding the casing can 

represent contact resistance or a cement layer. The IE approaches, which were derived in 

Chapter II and III, are used to calculate the potentials and E-fields on the casing and to simu-

late the resistivity measurements through casing (MTC) logging technique for a variety of pipe 

and layer parameters. 

In addition to logging simulations, the effects of variations of the casing conductance 

and surrounding cement layer are studied. Variations in either the casing or ceinent layer may 

alter the result of the measurements since the currents tend to leak out in areas where the 

resistances are small. The patents, that were previously cited, claim to be able to compensate 

for variations in the casing conductance, but actually can only account for variations that 

occur over distances greater than the array dimension. It will be shown that compensation for 

short distance variations (less than the electrode separation) requires an additional term. 
I 
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The effects of potential electrode separation on the layer boundary resolution and radius 

of investigation are also examined. Kaufman suggested that the resolution of the layer boun­

dary is dependent on the ability of the electrode array to approximate the second derivative. 

The radius of investigation needs to be studied, as it may also be dependent on the electrode 

spacing. If this is the case, one may be able to compensate for its influence and determine the 

formation resistivity as function of distance from the well. 
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6.1 Resistor Circuit Relation 

The second order differential equation (DE) given from Kaufman can be derived by 

resistor circuit relations. Figure (6-1) illustrates the resistor circuit for the casing and adjacent 

formation. The circuit can be consider as a series of resistors, representing the casing, inter-

sected by shunt resistors that depict the formation resistance. The resistance of the formation 

at the i:..th node can be determined by measuring the current leaking from the casing into the 

adjacent formation at the node by measuring the potentials across the two, i and i+l, sectio'ns 

above and below the i-th node (at three points) on the casing. 

Ohm's law, V = IR, is used to determine the relation between the current 1j , voltage Vj, 

and casing resistance Rj in the i-th section of the casing: 

v's· 1·=-'-' , luj (6-2) 

where Uj is the potential measured at the i-th node and Sj, the casing conductancel for the i-th 

section, is defined by Kaufman (1990) as: 

(6-3) 

and ai, Ii, and crj are the center radius, thickness, and conductivity in the i-th casing section, 

respectively. To obtain the relation for the current 1/ j flowing from the i-th node into the for-

matioo. Ohm's law is again applied: 

Ui - U_ 
V/ i = Ui - U_=IfiR/ j ~ If' = ---

• R/i 
(6-4) 

Kaufman defines the term "transverse resistance,,2 Tj of the medium as: 

(6-5) 

where L j is the height of a cylindrical layer used to represent the formation adjacent to the i-th 

node. This height is one-half the sum of the lengths of the sections above and below the i-th 

The casing (longitudinal) conductance is discussed in Chapter V. Section 5.1 

2 Transverse resistance appears to be a misnomer since its units are [ n·m ] instead of [ n ], the units of resis­
tance. It is actually the inverse of the unit length leakage conductance. Thus, the units ~of the transverse resis­
tance are [ (S/mt1 ] = [ n·m ]. 
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node, i.e., 

Ilzi + llzi+1 
Li = 2 (6-6) 

The factor one-half is used since the adjacent i-I and i + 1 nodes account for the other halves 

of the section lengths needed to calculate the transverse resistance at those nodes. Substituting 

~uations (6-5) and (6-6) into (6-4) yields: 

(6-7) 

where V_is measured at a point sufficiently far from the source and Vi such that 

Vi - V _ = Vi. The use of Kirchoff's current law at the i-th, If; = I; - Ii+l' yields: 

Vi (Ilzj + Ilzi+l) 
=---

T; 2 
(6-8) 

Let !1sj = Sc - Sj represent the deviation of the casing conductance Si from the average 

conductance, where the average conductance Sc = (Sj + Sj+l)/2 is measured across the three-

electrode array. Now. equation (6-8) can be written as: 

(6-9) 

If the electrode separation distances are the same, i.e., Ilzj = Ilzj+1 = Ilz, then equation (6-10) 

becomes: 

(6-10) 

If the casing conductance between both sets of electrodes is the same, then !1sj = Asj+! = 0 and 

equation (6-10) is: 

(6-11) 

Equation (6-11) is the discrete fonn of the second order DE, equation (6-1) given by 

Kaufman. It suggests that if the casing conductance is known, the transverse resistance can be 

calculated from the potential and its second derivative. This expression cannot account for 
~ 

casing conductance variations, such as changes in thickness and conductivity, that span dis-
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tances shorter than the potential array length 2& . 

To account for the shorter variations of the casing conductance in the transverse resis-

tance calculations, the second tenn in equation (6-10) which compensates for casing conduc-

tance variations between the electrode pairs is required. It accounts for the differences in the 

voltages -due to the variations of the casing conductances between the two sets of potential 

electrodes. This tenn is similar to Vail's "second order error" tenn that he indicates is due to 

the product of the differences in resistances between the sets of electrodes and leakage current 

. flowing into the fonnation. 

There are two interpretations of the relationship between the transverse resistance and 

fonnation resistivity. Kaufman indicates that the currents flowing outside the casing are radial 

due to charge build-up on the outer casing surface. Hence, an annular disk, representing the 

region where the radial current flows, could be used to calculate the transverse resistance 

which is: 

T- = PI _l_lri [.E..] , 21t b (6-12) 

where b and c are the inner edge (outer pipe radius) and outer edge of the annular disk, 

respectively. 

Equation (6-12) shows that the value of the transverse resistance is dependent on the for­

mation resistivity and the logarithm of the ratio between the outer and inner radius of the 

annular disk. Kaufman compared the approximation of the E-fields in the borehole with the 

solution of an analogous transmission line problem and deduced that the fonnation resistivity 

could replace the traIlSverse resistance in the transmission line solution, i.e., 

Tj = PI (6-13) 

In his analysis, Kaufman compared equation (6-12) and (6-13) and stated that the outer edge 

of the annular disk with zero potential would be located at a sufficient distance from the 

borehole, "sufficient" being defined by the equation: 

(6-14) 
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It is not obvious that equations (6-13) and (6-14) are valid. A comparison with an 

approximation is not sufficient to validate the relation of the inner and outer radii in equation 

(6-14). According to equation (6-14), if the inner radius of the annulus is D.1m = 4", then 

c = 54m is sufficient so that the outer edge of the annular disk has zero potential In practice, 

this distance may be adequately far from the casing so that the potential at this radius is 

effectively zero. However, the choice of sufficient distance for zero potential greatly dictates 

the value of the transverse resistance of equation (6-12). If one selects the outer radius of the 

disk to be at infinity, where the potential is acrually zero, the transverse resistance will become 

infinitely large. With no theoretical evidence to suppon equation (6-14), this expression for 

sufficient distance appears to be an accommodating relation to obtain the formation resistivity 

directly from the transverse resistance. 

Equation (6-11) is also the general form of Vail's equation. In his formulation, the 

transverse resistance is based on the approximation given by Tagg (1964) for the resistance of 

a grounded electrode in a half-space? Vail's expression, which has been misinterpreted from 

Tagg's formula, is: 

1 [2&] T- = PI-in -
I 21t a 

(6-15) 

where & is the electrode separation and a is the radius of the pipe. 

Equations (6-12) and (6-15) appear similar in form but have different representations. 

Kaufman's formulation of the transverse resistance is based only on the properties of the for-

mation, whereas Vail incorporates the geometrical properties of the measuring array in his 

description of the transverse resistance. Intuitively, one would expect that the transverse resis-

tance is similar to the apparent resistivity and is dependent on the formation properties, as 

well as the geometry of the array. The factors that influence the transverse resistance will be 

presented later in this chapter. 

3 See equation (6-20) in Section 6.3.1 for Tagg's approximation. 
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6.2 Electrode Arrays for Unknown Casing Conductance 

For an unknown casing conductance, two independent sets of measurements are needed 

to determine the transverse resistance by equation (6-10) or (6-11). Figure (6-2) illustrates the 

two electrode configurations that estimate the casing conductance and measure the potential 

and its second derivative. To compensate for the variations in the casing conductance and to 

approximate the second derivative, three potential electrodes, M, N, and M', are needed. 

For the first array configuration, the calibration or compensation state, the current I is 

applied at the source electrodes A and B which are in close proximity to the potential elec-

trodes. Due to the large contrast in conductivities between the casing and adjacent formation, 

essentially all of the current will flow within the casing. Thus, the voltages Viand V 2 meas­

ured across their respective electrode pairs, MN and NM', will reflect the conductan.Ce of the 

casing between the electrode pairs. By measuring Viand V 2 separately and knowing the 

current strength, the conductance for each section can be estimated from Ohm's law: 

s- = I t:.z 
, Vi (for i = 1,2) (6-16) 

This expression assumes no current leakage into the formation. There may be some leakage if 

the potential electrodes are located "too far" from the current source in a highly conductive 

formation. 

With the second electrode configuration, the measurement state, the current electrode B 

is moved to a remote position (infinity in theory). Now the current must not only flow in the 

casing but also through the formation. The measured voltages VIand V 2, as well as the 

potential UN' will reflect both the casing and formation resistivities. By subtracting the two 

voltages, an approximation of the second derivative is obtained. With the estimate of the cas-

ing conductance and second derivative, the transverse resistance is calculated from equation 

(6-10) or (6-11). 

Equation (6-16) suggests that the transverse resistance can be described in terms of the 
~ 

E-fields of the calibration and measurement states. The casing conductance for the i-th section 



can be determined from the calibration state, and written in terms of the E-field: 

I· C 

S· =-'-
• Ef: • 
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(6-17) 

Substituting for S; in equation (6-8) and noting that V; is the voltage difference across the i-th 

section in the measurement state, the transverse resistance can be expressed as: 

[ 
M M ]-1 T. = U; E; _ E;+l 

, C C C 
I; E; E;+l 

(6-18) 

where E C and EM are the E-fields detennined from the calibration and measurement states, 

respectively. 'This expression shows that the transverse resistance is inversely proportional to 

the difference between the measurement-calibration E-field ratio of the two sets of electrodes. 

6.3 Casing Effects 

The effects of the geometrical and electrical properties of the casing on the transverse 

resistance are now investigated. A 1<r n'm casing with length L, (inside) diameter ID, and 

thickness, t is embedded in a homogeneous half-space. For this analysis, the separation 

between the current and center potential electrode is AN = 4m. The potential electrode spac-

ing is set at MN = NM' = 2m. 

Figure (6-3) is the transverse resistance for a 200m casing with thicknesses4 of 1/4", 

3/8", and 1{2" and IDS of 4", 6", and 8" in a 10 n'm medium. Variations due to the different 

casing thickness only resulted in a change of approximately 1.5 percent in the transverse resis-

tance. The casing diameter appears to have a greater influence on the transverse resistance 

where the larger casing diameters decrease the transverse resistance. Variations of about 3-7 

percent occur for different diameters depending on the thickness. 

The transverse resistance appears to be related to the inverse of the diameter. Large 

diameter casing produces' the small transverse resistance, whereas the small diameter pipe 

4 The thicknesses of 1/4. 3/8. and If2" correspond to 0.635, 0.9525, and 1.27 cm. respec~vely. 

5 These inside diameters correspond to inner radii of 2. 3. and 4" or 5.08.7.62. and 10.16crn. respectively. 



234 

results in large resistance. For small casing diameters, the casing thickness has some 

influence on the transverse resistance. For large diameter casing, different thicknesses have 

negligible changes of the transverse resistance. 

Figures (6-4) to (6-6) are plots of the transverse resistance calculated for a 20.32cm (8") 

10, 127cm (1/2") thick casing using several casing lengths in a host fOIIDation with resistivi­

ties of 1, 10, and 100 n·m. The figures indicate that the transverse resistance is dependent on 

the fOIIDation resistivity and the casing length. Near the half-space SUIface, the larger fOIIDa­

tion resistivity and longer casing length result in a greater deviation of the transverse resis­

tance from the fOIIDation resistivity. Away from the SUIface, the transverse resistance is 

dependent on the conduction ratio of the casing. Recall that the conduction ratio is inversely 

proportional to the casing length. 

When the conduction ratio is greater than one-half, the transverse resistance is mainly 

affected by the length of the casing. The deviation of the transverse resistance from the true 

resistivity is proportional to the logarithm of the casing length. This is especially true for high 

fonnation resistivities. All the transverse resistance curves are convex in shape where the 

values slowly decrease with depth in the upper portion of the casing and then rapidly decay 

near the bottom. 

For conduction ratios less than one-half, the transverse resistance near the surface is 

dependent on the logarithm of the casing length and partially on the fOimation resistivity. 

Near the casing ends, the transverse resistances are large at the surface and small at the bot­

tom of the casing. Toward the center, the curve becomes concave and the transverse resis­

tance approaches the fOIIDation resistivity. 

The current leakage is strongly influenced by the boundary conditions at the ends of the 

casing. When the conduction ratio is greater than one-half, current leakage is nearly the same 

along the casing. Thus, the transverse resistance will strongly depend on the casing length 

and position. When this ratio is less than one-half, the casing length ~ effectively much 

greater than the length of conduction. Away from the ends, the effects of the boundaries are 
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reduced since much of the current can dissipate into the fonnation. Hence, the transverse . 

resistance gives a better estimate of the fonnationresistivity. 

6.3.1 Geometric Variations 

These results suggest that a correction factor G must be applied to the transverse resis-

tance T to obtain the formation resistivity. This relation can be expressed as: 

T=PI G (6-19) 

For a conduction ratio greater than one-half, the factor G compensates for the geometric 

parameters, such as casing diameter, length, and measuring (field) position. When the ratio 

falls below one-half, the electrical parameters and the source position must be included in the 

compensation. 

As discussed previously, Tagg's approximation the resistance of a grounded electrode in 

the half-space with an "average" resistance calculated for an ellipsoid of revolution where its 

length L is much greater than the radius a. Using Tagg's result, the correction factor can be 

written as: 

G = _1 In[2L] 
I 21t a 

(6-20) 

Equation (6-20) shows that this factor is dependent on the logarithm of the ratio of the length 

to radius. This expression assumes a uniform average value along the entire conductor. It 

will only shift the transverse resistance curve and cannot compensate for the variations along 

the casing as seen in Figures (64) to (64). 

Sunde (1968) presented a fonnula for the potential along a conductor in a half-space 

based on constant leakage of current From this expression, a geometric factor can be written 

as: 

. 1 [[(Z + Ll2)2 + a2] 112 + (z + Ll2)] 

Gs = -In [ r2 
21t (z - Ll2i + a 2 + (z - Ll2) 

(6~21) 
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Equation (6-21) incorporates the field position on the conductor, as well as the length and 

radius. However, for this formulation, the location of the current source is assumed to be at 

the surface. 

FigUres (6-7) to (6-9) are the formation resistivities calculated from the transverse resis­

tances using the correction factor, equation (6-21). These plots show that for large conduction 

ratios, the variations of the transverse resistance due to position can be partially corrected. 

The curves are flattened and the deviations from the true formation resistivity are slightly 

reduced. However, for the long casing length (600m), one tends to grossly overcorrect the 

transVerse resistance, whereas for the short length (sOm), one severely underestimates the 

correction. For small conduction ratios, the variations of the transverse resistance curves are 

not accurately compensated. The curves are overcorrected and the deviations are larger than 

the values without the application of the correction factor. 

Since Gs assumes a fixed source location and constant leakage of current, it can only 

account for the geometrical effects for large conduction ratios. It cannot compensate the 

transverse resistance along the casing for small conduction ratios since the boundary effects 

are greatly reduced. Thus, the source location and electrical parameters must be incorporated 

into the formulation of the correction factor. This may be done by assuming the currents 

within the casing behave like the those in a transmission line problem. The current can be 

represented as a superposition of upgoing and downgoing currents in the form: 

(6-22) 

where OL is the conduction length, (z - zO) is the distance from the current source depth, [0 is 

the current strength! [u and [D are the upgoing and downgoing coefficients that are found by 

solving a transmission line boundary value problem. Once the current is found, the correction 

factor G can be obtained by integrating the current over the length of the conductor: 

1 L [ , J -112 
G = -2-J [(z,) (z - z')2 + a 2J dz' 

TClo-L 
(6-23) 
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where z' is the depth of the elemental segment. 

Incorporating the source position and electrical properties into the correction factor may 

be more complicated than solving the actual problem. Hence, at this time it may be better to 

note that these parameters must be included in the correction factor in order to effectively 

compensate for the effects of the casing and the fonnation interaction. 

6.3.2 Conductance Variations 

The effects of variations in the casing ~nductance are investigated. Gard et al. indi­

cated that variations of the conductance are due to manufacturing tolerances, chemical compo­

sition of the metal, corrosion, and other environmental factors. Often, several casing segments 

with different radii and thicknesses are inserted in a single hole. The use of casing segments 

with different conductance properties may cause problems at the places where me two seg­

ments meet. Additionally, the collars which join the casing segments will change the conduc­

tance locally. 

Equations (6-11) and (6-10) are used to illustrate the effects of conductance variations 

and the errors associated with this situation. Recall that equation (6-11) assumes no variations 

of the conductance within the electrode array, whereas equation (6-10) can incorporate small 

scale variations. Figure (6-10) is a model of two segments with different conductances used 

to study the variation effects on the E-field. measured conductance. and transverse resistance. 

Both segments have equal lengths of 100m and inner radii of 0.1016m. The conductivity­

thickness products of the top and bottom segments are (jltl and (j2t2' respectively. The three­

electrode array is used for the two independent sets of measurements needed to simulate an 

unknown casing conductance situation. The potentials are measured at electrodes M. N. and 

M' and the current is injected at electrodes A and B. 

Figures (6-11) to (6-t 3) illustrate differences of equations (6-11) and (6-10) for a casing 

that has a conductance discontinuity. Equation (6-11) is not corrected for casing variations. 

whereas equation (6-10) compensates for these variations. The spacings o(the electrodes used 
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for this analysis are MN = NM' = 2m and AN = BN = 4m. A discontinuity of the casing 

conductance occurs at the interface between the two segments due to the difference of the 

thickness. The thicknesses of the upper and lower segments are 12.7cm and 6.35cm, respec­

tively. The positions along the casings are relative to the interface with the increasing dis­

tances going downward. The conductivities of the segments and host medium are 106 S/m 

and 1.0 Slm, respectively. 

The calibration E-fields and the estimate of the casing conductance are shown is FigUre 

(6-11). The E-field across electrodes MM' represents that of the uncompensated measuremem 

and is the average value of the E-fields for MN and NM'. From the E-fields, the casing con­

ductance can be calculated and it is inversely proportional to these fields. These estimates are 

slightly larger (2-5 percent) than the actual value used for the model. 

The potentials and E-fields for the measurement state are illustrated in Figure (6-12). 

The potentials are essentially constant showing very small variations. The E-fields are similar 

to those of the calibration state. There are slight variations between the two measurement E­

fields due to the distance the measuring electrodes are from the current electrode. This 

difference is larger on the positive side of the interface indicating that the casing conductance 

is smaller than that of the negative side. 

Figure (6-13) is the estimate of the second derivative calculated from the E-fields of the 

measurement state. Theoretically, the· second derivative for this situation is a spike located at 

the discontinuity and zero everywhere else. The plot shows that the spike is approximated by 

a triangular-shaped response. This function is Oat at I d I ~ 2m, is linear from I d I ~ 2m, and 

has a minimum at d = Om. The width of this "triangle" is the same as the length of the 

three-electrode array. These results indicate that smaller electrode spacing produces bener 

resolution of a casing junction. 

The transverse conductance, which is the inverse of the transverse resistance, would have 

a large error in the vicinity of the interface if the effects of the change in ~asing conductance 

were not included in the calculations (Figure 6-13b). Curve Gl is equivalent to the first tenn 



239 

in equation (6-10), or equation (6-11), which cannot compensate for the discontinuity of the 

conductance. Curve G2 represents the second term in equation (6-10) which corrects for these 

variations of the conductance. Curve Gc is the difference of Gl and G2 which is the 

transverse conductance compensated for the casing conductance discontinuities. For locations 

away from the interface ~ d I > 2m), the casing segments may be corrected with equation (6-

11). If a discontinuity lies within the electrode array, equation (6-10) must be used to com-

pensate for·the changing conductance. 

This analysis suggests that small spatial variations in the casing conductance may be 

compensated by applying equation (6-10). The effects of the discontinuity only occur at the 

locations where the three-electrode array lies over the interface. When the measurements are 

beyond one array length from the interface, the measurements are not affected by the discon-

tinuity. The situation of a collar joining two casing segments would produce similar results. 

Since the spatial width of the discontinuities due to the collar are usually much smaller than 

the size of the array spacing, the deviations caused by the collar should be much like those of 

the two adjoining segments situation. 

6.4 MTC Logging - Layers 

The resistivity measurement through casing method is simulated with a of a target layer 

and an unknown casing conductance. The E-fields and transverse resistance are determined 

for several resistivities of the target layer. Since the casing conductance is unknQwn, two 

electrode configurations are used: one to estimate the casing conductance and another to calcu-

late the transverse resistance. The second derivative is approximated with a three point meas-

uremenl Using equation (6-10), the transverse resistance is obtained from the three-point 

measurement and casing conductance estimate. 

Figure (6-14) illustrates the mOdel used for this analysis. The simplified model consists 

of a finite-length conductive casing filled with fluid embedded in a three-layer medium. For 
~ 

simplicity, the resistivity oflO Q·m is used for the top layer, bottom layer, and borehole fluid. 
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The casing has a resistivity of 10~ n·m and length of 100m. The target layer is 3m thick with 

its top located 49m below the surface. To approximate a layer of infinite extent, the outer 

boundary of the layer is placed at 5000m. The equally spaced potential electrodes, M, N, and 

M', are straddled by two current electrodes, A and B. All electrodes are placed in contact 

with the casing. For models with a single current source, electrode B is placed at "infinity", 

the remote poSition. 

The calculated voltage difference for a lateral-log configuration is shown in Figure (6-

15). These voltage differences, which are normalized by the potential electrode separation 

(MN = O.5m), represent an estimate of the electric fields on the casing and are proportional to 

the current leakage. The separation from the sou~ to center potential array, AO, was 2.Om. 

The resistivities of 1 n·m and 100 n·m are used for the target layer. The discontinuity of the 

curves correspond to the change in resistivity. For the conductive layer, the increased rate of 

voltage drop is due to the increased current leakage into the adjacent formation. A resistive 

formation has the opposite effect and a decreased rate of change is observed through the target 

layer. 

A resistivity log of through casing measurements with unknown casing conductivity is 

simulated using the parameters in Figure (6-14) and the numerical results for several resistivi­

ties of the target layer are illustrated in Figure (6-16). The resistivity values for the target 

layer ranged from 1 n·m to 100 n·m. For this analysis, the separation between current and 

center potential electrode, AN, was 2.25m. The potential electrode spacings, MN and NM', 

were 1.Orn. 

Figure (6-16) shows that the resolution of the layer boundaries is about 2.Om which 

correspond to the length of potential electrode spacing.6 The transverse resistance curves 

respond to the resistivity boundaries of the model remarkably well. The value of the 

transverse resistivity is slightly larger than the resistivity of the homogeneous (no layer) 

6 The resolution of the layer boundary will be investigated later in this chapter. 
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model. This deviation (= 10%) is probably due to the effects of the casing and array . 

geometries discussed in the previous section. When the target layer is resistive, the transverse 

resistance is larger then the true formation resistivity. This discrepancy increases for increas-

ing layer resistivity: for a 100 n'm layer, the transverse resistance is 20-30% greater than the 

layer resistivity. For a conductive target layer, the transverse resistance underestimates the 

layer resistivity. This effect is contrary to the discrepancies associated with the geometric 

variations. This behavior of the transverse resistances indicates that the currents in the casing 

are channeled towards and leaks out into the formations with low resistivity. Greater current 

leakage results in a larger E-fields, and thus a smaller transverse resistance. 

When the electrode array spans across the interface, the conductive layer has a greater 

influence on the transverse resistance than the resistive layer. The thickness of resistive beds 

may be underestimated, whereas conductive layers thickness may be overestimated in an MfC 

log. One would assume that the transverse resistance value at the interface should be approxi-

mately equal to the average of the resistivities of the two layers. Actually, the transverse 

resistance for an array that spans an interface is inversely proportional to the weighted average 

of E-field rates of change. The weighting is proportional to the fractional length of the array 

in a particular formation. Hence, the transverse resistance of a resistive layer in the vIcinity of 

an interface will always appear more conductive than its true resistivity. 

65 Borehole Fluid Effects 

The influence of the borehole fluid on the transverse resistance for the MfC method is 

examined using several resistivities for the fluid. The unknown casing conductance is simu-

lated, thus two sets of measurements are required. Figure (6-17a) is the cross-section of the 

casing filled with fluid in a layered medium. A 3m target layer is placed between an overly-

ing 49m layer and basal half-space. The resistivity of the target layer is 1 n'm while 10 n'm 

is used for the resistivity of the other two formations. The 100m casing has a thickness of 
I 

1.27cm, inner radius of 1O.16cm, and resistivity of lO~ n·m. The electrodes are placed in 
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contact with the inner wall of the casing. The separation between the current and center 

potential electrodes is 2.25m. while l.Orn is used for the potential electrode spacing. 

The effects on the transverse resistance for various borehole fluids is illustrated in Figure 

(6-17b). The plot shows that all of the transverse resistance culVes are the same for different 

borehole fluid resistivities. The resistivity of borehole fluid ranged from 1 n'm to 20 n·m. It 

appears that the borehole fluid resistivity has a negligible influence on the transverse resistivity 

measurements. Some minor effects may appear if the electrodes were not in contact with the 

casing. since the current has a chance to dissipate before reaching the casing. 

6.6 Electrode Separation 

In this section. the effects of electrode separation on the resolution of the layer boundary 

and radius of investigation are examined. In Section 6.3. the results indicate that the vertical 

resolution is dependent on electrode spacing. The radius of investigation (RO may also be 

dependent on electrode separation. Currently. there is no information about the investigation 

distance for the MTC method. 

6.6.1 Vertical Resolution 

Equation (6-11) indicates that the transverse resistance can be obtained from the ratio of 

the potential and its second derivative provided the casing conductance is known. This rela­

tion shows that the resolution of the transverse resistance is limited to the electrode spacing 

needed to approximate the second derivative. 

Figure (6-18) illustrates the effects of the potential electrode separation on the layer 

boundary resolution. The model used consist of a 100m casing embedded in a two-layer 

medium. The resistivities of the upper layer and basal half-space are 1 n~m and 10 n·m. 

respectively. The casing has a resistivity of 1<J6 n·m. thickness of 1.27cm, and inner radius 

of 10. 16cm. The distance from the current electrodes to the center potential electrode is 

2.25m. The potential electrode spacings of O.2m. O.5m, and 1.Om sho'ry' that the boundary 

resolution improves as the separation becomes smaller. The resolution distance is 
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approximately the length of the three-electrode array Uzwhich is needed to estimate the 

second derivative. 

Figure (6-18) confirms the results of Section 6.4 that the conductive layer has a greater 

influence on the transverse resistance in the vicinity of the interface than the resistive layer. 

The value at the interface is much closer to the resistivity of the conductive layer. On the 

resistive side of the interface. the transverse resistance approaches the true resistivity value 

slightly less than one electrode spacing from the boundary. For shorter electrode separations, 

this effect still exists but appears less pronouned since the vertical resolution has improved. 

6.6.2 Radius of Investigation 

For typical resistivity logging methods, increasing the separation of the electrodes 

increases the radius of investigation (RI). Thus, annular boundaries, which are not detected 

for a short electrode separation, may be discernible with longer spacing. A general rule of 

thumb for the RI of resistivity methods is approximately one-half the separation distance. In 

this section, the effects of the electrode separation on the RI are examined for the TCL 

method. 

Figure (6-19) illustrates the model configuration used for this evaluation. A 50m length 

of casing with a resistivity of 1O~ n·m is surrounded by an annulus with thickness ill and 

resistivity Pca and a 10 n·m homogeneous medium. Three potential electrodes are placed on 

the inner wall at the center of the casing with a separation f:lz. The current electrodes are 

placed 2m from the outer potential electrodes. Resistivities of 5 n·m and 20 n·m are used for 

the annulus to represent a conductive and resistive annular layer. 

The result of increasing the electrode separation f:lz is shown in Figure (6-20). The solid 

and dashed lines represent the transverse resistance for a homogeneous medium, no annulus. 

The other curves are the-transverse resistance for different values of ill. Note that all the 

curves are essentially parallel to one another and somewhat fiat, with approximately 10% vari-
! 

ation from the 1m to 20m separations. The oscillation of the curves for small separations is 
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due to poor discretization of the casing indicating that smaller segments are needed for short 

electrode separations. 

These results indicate that the RI is independent of the potential electrode separation dis-

tance. If the RI was dependent on the electrode spacing, the curves in Figure (6-20) would 

start near the annulus resistivity for short llz and then asymptote to background resistivity as 

llz increases. The rate at which the curves approach PI is dependent on the thickness of the 

center annulus. For a radially thin annulus. the curves in Figure (6-20) would approach the 

background resistivity for shorter electrode separations than a thick annulus. 

For a borehole with no casing, the equipotential lines from a pole current source are 

spherical in a homogeneous medium. When a vertical boundary is present, these equipotential 

lines are perturbed and can be detected by the electrodes in the well. A long electrode spac-

ing can to detect perturbations caused by an annular boundary that is radial far from the well. 

If the well is cased in steel, the equipotential lines are now parallel to the vertical boundary of 

the annulus. Although the potentials are affected, the potential lines are not distorted by the 

annular boundary. Thus, all arrays with different electrode spacing will essentially measure 

the same response. 

6.7 Cement Annulus 

The results at the end of the previous section make detetmining the fotmation resistivity 

in the presences of an annular layer, like a cement layer, very difficult. In an uncased 

borehole, a tool with short electrode spacing can acquire data related to the resistivity of the 

annular zone. With this infotmation. the fotmation resistivity may be approximated from 

measurements made with long electrode spacing. The resistivity measured in a well with an 

annular zone is a combination of the annular layer and the fotmation. When the hole is cased, 

the combined resistivity measured in the presence of the annular layer cannot be distinguished 

from a fotmation which has an equivalent resistivity since modifying the electrode spacing 
~ 

does not change the radius of investigation. 
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Kaufman (1990) determines the transverse resistance in the presence of an annular layer 

by assuming only a radial current distribution outside the casing.7 Thus, the transverse resis­

tance can be considered as the series resistance of a medium, an annular layer and host back­

ground (Figure 6-21a). Kaufman expresses this as:8 

T = PI + P~ :z: PI {: + 1] (6-24) 

where QCQ is the inner radius, III is the thickness. and PeG is the resistivity of the cement 

annulus and PI is the resistivity of the host medium. 

The series resistance, calculated with equation (6-24), are compared to transverse resis-

tance in Figure (6-20). The resistances as a function of the annulus thickness for selected 

electrode separation distances (Figure 6-21b). Although the transverse resistances are larger 

than the series resistances, the behavior of the resistances generally agree with each other. 

For small thickness of the annulus, the resistance approaches the background medium resis-

tivity. As llt increases, the transverse resistance asymptotes to the center annulus reSistivity. 

The larger transverse resistance can be expected since it is dependent on the casing conduction 

length (see Section 6.5.1). This figure also confums that the transverse resistance is indepen-

dent of the electrode spacing. Similar responses of the transverse resistance are obtained for 

different electrode separation. 

The effects of thickness variations of the cement annulus in a homogeneous medium are 

illustrated in Figure (6-22a). The model used for this simulation is a 50m long casing sur-
-

rounded by a 20 n·m cement annulus which has two thicknesses. The upper 25m is 1.Om 

thickness and the lower portion is O.2m thick. Figures (6-22b) to (6-22d) correspond to the 

three host resistivities of 1 n·m, 5 n·m, and 10 n·m. Two electrode spacings are used to 

determine if variations of the thickness produce any significant changes of the transverse resis-

tance. 

7 A radial current pattern can only exist for an infinite-length perfect conductor. 

8 This expression is based on equation 52 in Kaufman (1990). but his equation does not ~orrespond to the nota­
tion in his Figure Id. 



246 

For small host resistivities, the transverse resistances agree with the series resistances 

calculated using equation (6-24). There is essentially no difference between measurements 

made with either electrode spacing. As the host medium resistivity increases, two observa-

tions are apparent First. the transverse resistances of the two electrode spacings are slightly 

different where the longer spacing results in smaller values. Unfortunately, the deviations are 

about 2% on either side of the thickness discontinuity which are insignificant Second, there 

is a large discrepancy of the transverse and series resistances on the thick side (shaded area) 

of the cement annulus, whereas the resistance values are about the same on the thin side 

(unshaded). This difference increases as the resistivity of the host medium increases. 

The effects of the cement layer on the resolution of a target of a layer are shown in Fig-

ure (6-23). A uniform 20 n·m cement annulus with thickness III is sandwiched between a 

sOm casing and a three-layer medium (Figure 6-23a). The upper layer and basal half-space 

have resistivities of 10 n·m, while the 10m target layer has a resistivity of 5 n·m. In com-

parison with the series resistances, the discrepancies between the values tend to decrease in 

the resistive formation and increase in the conductive layer as the cement thickness increases. 

Thus, the target response tends to "blend in" with the background as the annulus becomes 

thicker. 

Figure (6-24) illustrates the effects of thickness variation of the cement annulus on the 

transverse resistance response for a layered medium. The same model of Figure (6-23a) is 

used for this analysis, except the thickness of the cement in the target zone was allowed to 

vary. Two thicknesses, 20cm and Oem, are used for the cement annulus. For a curve (A-B) 

in the figure, A is the thickness (in centimeters) of the cement adjacent to the host and B is 

the thickness in the target layer. 

The curve (00-00), representing no cement annulus, is 10-20% larger than true formation 

resistivity which is probably due to geometric variations (Section 6.5.1). When a uniform 

20cm cement annulus is placed, curve (20-20), the transverse resistance increases due to the 
( 

resistive cement layer. When a 20cm cement layer is present only within the target zone, 
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curve (00-20), the transverse resistance in the target layer slightly smaller the resistivity of the 

host medium. From the transverse resistance curve (00-20), the layer is almost indistinguish-

able from the background. Reversing the situation, cement adjacent to the host and no 

annulus in the target layer, results in the opposite effecL Now, the transverse resistance out-

side the target layer is much larger compared with the other curves. The response in the tar-

get zone is smaller that those of the no annular layer case. The anomalous response 

corresponding to the presence or absence of the resistive cement annulus indicates that the 

currents in the casing are channeling toward and leak out into the zones where the contact 

resistance is low. This may, in part, explain the large discrepancies associated with the thick 

cement annulus in Figure (6-22c). 

Acquiring measurements with different electrode separations in a cased well provides no 

additional information about the conductance of the cement. If the thickness or resistivity of 

the cement zone is known, then the series resistance representation, equation (6-21), can be 

used to estimate the transverse resistance for a uniform annulus. However, this expression 

tends to undercompensate the transverse resistance for an annulus that has variable thickness. 

These results indicate again that the currents in the casing leak into the formations where the 

contact resistance is small. 

6.8 Summary 

The numerical results clearly show the feasibility of determining formation resistivity 

through metal casing. When the casing conductance is unknown, two measurements with 

different electrode configurations are needed to determine the formation resistivity at a given 

depth. One is used to calculate the casing conductance and the other to- estimate the second 

derivative of the potential. A three-point measurement on the inner surface of the metal cas-

ing is needed to approximate the second derivative of the potentials. Using equation (6-11), 

the formation resistivity can be calculated from the three-point measurement, the potential, and 
! 

the estimate of the casing conductance. 
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An analysis of electrical logging through metal casing was done for the case of a finite-

length casing in a layered or half-space medium. A surface integral equation approach was 

used to determine the potentials on the casing. The casing, borehole fluid, and layers were 

modeled as inhomogeneities in the background medium. For the simulations, all electrodes 

were in contact with the inner wall of the casing. The length and radius of the casing, as well 

as the .location within the casing are geometric factors that influence the measurements. Vari­

ations of the casing conductance also have an effect on the transverse resistance. The 

borehole fluid appears to have negligible influence on the formation resistivity measurements. 

Variations of the casing conductance only affect measurements where the electrode array lies 

over the discontinuity. Equation (6-11) can only compensate for spatial variations of the con-

ductance that are longer than the electrode array span. The small spatial variations can be 

compensated by using equation (6-10). 

Numerical results appear to confinn that the discontinuities of the E-fields correspond to 

the boundaries of the layer and the rate of change of the field is inversely proportional to the 

resistivity of the adjacent formation. The calculated values of transverse resistance compared 

closely to the resistivities of the layer modeL The behavior of the transverse resistance indi-

cates that the currents in the casing leaks out into the formations with low resistivity. Thus, 

the resistivity of formations that are more conductive than the surrounding medium is underes-

. tirnated, whereas the transverse resistance for resistive layers is larger than the true layer resis-

tivity. When the electrode array spans across the interface, the conductive layer has a greater 

influence on the transverse resistance than the resistive layer since the transverse resistance is 

inversely proportional to the weighted average of the rates of change of the E-fields. Hence, 

the transverse resistance of a resistive layer in the vicinity of an interface will always appear 

more conductive than its true resistivity. 

The vertical resolution of the layer boundaries is limited to the potential electrode spac-

ing needed to approximate the second derivative. The response of the MTC log in the vicinity 
~ 

of an interface of two electrically contrasting beds is influenced by the more conductive layer. 
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Whereas conductive layers may be overestimated, thicknesses of resistive beds may be 

underestimated. 

Variations in parameters of a the cement annulus have a great influence on the estimate 

of the formation resistivity. As with the layered medium simulation, the current in the casing 

tends to leak out in areas where the contact resistance is small. However, using several elec­

trode lengths does not provide any additional information about the cement conductance since 

the radius of investigation appears to be independent of the electrode spacing. Thus, deter­

mining the true formation resistivity in the presence of a cement annulus may not be possible 

without prior knowledge of the thickness or resistivity of the cement layer. 
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Figure 6-19: Model used to examine the relation of electrode spacing ~z and center annulus 
thickness ~t. Center electrode is fixed and current electrodes are located 2m from the outer 
potential electrodes. 
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tance, equation (6-21), and transverse resistan~, equation (6-11), for several annular 
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CHAPTER vn 

FIELD EXAMPLE - DOWNHOLE TO SURFACE REsISTIVITY SURVEY 

The contents of this chapter are based on a report1 submitted to the EPA on ''The Feasi­

bility Test of the Downhole-to-Surface Resistivity Method for Mapping the Areal Extent of 

Contaminants at Depth" by Schenkel and Morrison (1990b). The survey was conducted at 

DuPont's Hemby Branch test well 3.5 miles north of Waverly,2 Tennessee from the second to 

the sixth of October 1989. For the borehole-to-surface resistivity experiment, three radial sur­

face arrays measured the voltages for a succession of current electrode depths in the well. 

The test site is physiographically located in the western part of the Western Highland 

Rim province which borders the Kentucky Lake/fennessee River. The geology of the area is 

predominantly limestone formations with occasional dolomite and shale units. The limestone 

layers varied greatly in composition and in occurrence of fractures. Table (7-1) shows the 

stratigraphic units and their approximate depths obtained from core samples at the site. The 

topography near the well site can be described as rolling hills and ridges that are dissected by 

streams. The maximum relief in this area was approximately 150 feet. The drilling site was 

terraced into the side of a ridge. Figure (7-1) shows the topography and array configuration 

of the test area. 

The first and major objective of this test was to determine the background noise levels 

for the voltage measurements and the practical values of electric current that can be achieved 

with the power supply of the LBL3 acquisition system in a resistive environment. In resistive 

limestone formations, we had no data on the effective contact resistance of the downhole elec-

1 US-British units were used -in the report and are used in this chapter. 

2 Waverly is located approximately 50-60 miles west of Nashville. 

3 LBL is an abbreviation for Lawrence Berkeley Laboratory. Past experiments have been conducted in very con­
ductive sediments and there has been no problem in injecting 20 to 30 Amps. 
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trode. The second goal was to interpret the field data with simplified models using the surface 

IE method described in Chapters II and III. 

7.1 Field Experiment Design 

The principle of operation of this method is as follows. Electrical current is injected into 

the ground between a downhole electrode and a remote electrode on the surface. In a homo­

geneous medium, the current flows essentially radially away from the' hole producing a 

predictable set of voltages at a radial array of measuring (potential) electrodes on the surface. 

When the current electrode is located in a zone of high conductivity, caused for example by 

the injection of a fluid with high tds, the current pattern is distorted by the zone. This distor­

tion produces perturbations in the normal voltages seen on the measuring array. As injection 

continuous, a plume develops which can be monitored over time by the voltage changes. If 

the response of an arbitrary background conductivity distribution is known, then the changes 

due to the injection plume can be mapped. 

The design of the experiment at the DuPont well is illustrated in Figure (7-2). At the 

time of the experiment, the well was drilled to a depth of approximately 2500 feet with· steel 

casing down the first 450 feet. The acquisition system is shown in the schematics of Figure 

(7-3). This system consists of a timer/clock which Controls the switching of the current 

transmitter and the sampling of the receiver or voltage measurement. The details of each are 

described below: 

Timer/Clock 

The timer is composed of a Hewlett-Packard (lIP) function generator, which outputs an 

80 Hz TIL square wave, and a divide-by circuit, which reduces the frequency to 0.05 Hz. 

The low frequency· square wave controls the transmitter wavefonn, and the high frequency 

triggers the receiver sampling rate. The setting of the frequency was chosen so as to reduce 

telluric noise and electro~agnetic coupling. The high frequency sampling rate is dependent 

on the maximum speed of the scanner and voltmeter and the number of data channels desired. 

Transmitter 
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The transmitter was powered by 220 Volts three-phase power which was produced by a· 

5 kWatt generator was supplied by DuPont. This AC is rectified and switched to produce a 

square wave voltage with a period of 20 seconds. This voltage waveform is controlled by a 

variable transformer at the input to the rectifier and can be varied from 0 to 200 Volts. The 

output of this switChing rectifier is connected directly to the current electrodes which deliver 

the current to the ground. At the test site, 3-5 Amps was being supplied to the resistive 

ground. The current is monitored by a precision resistor serially coIDlected in the output 

current path. The voltage measured across the resistor, calibrated at 10 J.1V/Amp, is optically 

isolated to. prevent coupling between the transmitter and receiver. 

The remote current electrode consists of a 4 feet by 8 feet· sheet of steel which is buried . 

in a slit trench as shown in Figure (7-2). The slit trench is backfilled with soil and saline 

water. The remote electrode was located on a ridge approximately 1700 feet southwest from 

the well and elevated about 100 feet above the hole. The downhole current electrode is a 6 

feet length steel pipe 4 inches in diameter. The electrode is lowered down the borehole by a 

steel cable insulated from the electrode by a length of polypropylene rope. The insulated 

current cable is attached directly to the electrode and is taped to the steel cable at 50 foot 

intervals. The current cable, connecting the remote and downhole current electrodes to the 

transmitter, is #6 A WG copper with a tough 600V neoprene insulation. The insulated cable 

attached to the remote electrode was placed along the power line access road. 

Receiver 

The voltages are measured between adjacent potential electrodes along three radial lines. 

The voltage measuring cables are multiconductor with 18 outlets spaced 15 meters apart, so 

that 17 dipoles are measured on each line. The potential electrodes were small 1 inch (diame­

ter) ~Y 6 inch copper-copper sulfate porous pots which were placed in 8-12 inch holes and 

covered during the experiment with wooden lids. The holes were filled with water to reduce 

the contact resistance. 

The radial cables bring the voltages at each potential electrode back to the data acquisi­

tion van which is parked near the transmitter. The acquisition system is composed of anti­
~ 

alias filters, an lIP 3495A scanner, and an lIP 3456A digital voltmeter. The input voltages 
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from the 17 dipoles and the current monitor are filter by four-pole ButteIWorth filters with a 

cutoff frequency of 3 Hz. The filtered signals are sequentially sampled by the scanner and 

measured by the volttneter. 

All the voltage differences on each radial line are sent from the volttneter to an HP 330 

computer where they are processed simultaneously. The measured signals are averaged over 

10 to 20 periods of the transmitted current. The voltage-to-current (V If) ratio averages and 

the standard d~viations are calculated for every channel and stored into the computer. For 

each 10 second half-cycle of the current waveform, one channel would contain 20 sample 

points. Of the possible 20 samples, only 8 points, which showed no contamination from 

It filter ringing" and polarity switching, were used for the processing. 

7.2 Field Procedures 

The resistivity survey was conducted from October second to sixth. The first day was 

spent setting up the receiver and transmitter system. The last day was used for picking up the 

equipment. loading the system onto the truck, and transferring the data to floppies. The 

second day, October third, was spent checking the receiver system and background noise lev­

els. The majority of the remaining time was used modifying software and hardware to correct 

for the problems caused by the resistive environment and repairing equipment damaged by 

outside sources. The total measurement time was less than 12 hours accumulated during the 

fourth and fifth of October. Many of the problems encountered during this experiment were 

not previously seen and were due to the highly resistive environment. 

The main problem caused by the highly resistive earth was that the acquisition system 

was not configured to read large VII signals. In the past, experiments were done in fairly 

conductive sediments so that the acquisition system was configured to read V II signals in the 

range of tens to hundreds of JlV/Amp. At the test site, some of the signals were over two 

orders of magnitude greater. Signals of this size exceeded the maximum of the volttneter for 

the low signal setting and were clipped. Unfortunately, the computer program did not identify 

this situation but instead set all the values to zero Which caused some problems. To handle 
I 

these large signals, the volttneter maximum setting was shifted up an order of magnitude and 
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the software had to be modified to accommodate the change. After this modification. the vol­

tages from the current monitor were below the resolution of the voltmeter. Since the dynamic 

range of the voltmeter could not be modified and no other shunt resistors were available to 

modify the current monitor voltage, an amplifier was used to increase the signal of the current 

monitor. Nearly the entire day of October fourth, was used to identify and correct these prob­

lems. 

Other problems which occurred and caused a lost of time were: damage to one voltage 

measuring cable by the county roadside grass cutter, damage to the steel support cable and to 

the insulated current cable of the downhole electrode, and damage to the ttansfonner of the 

transmitter caused by the large voltages applied on the transmitter. 

7.3 Field Results 

Background Noise and Field Data 

Table (7-2) shows the noise level and the standard deviation at the test site calculated for 

a sampling size of 800 points per channel. The background and cultural noise at the site was 

extremely low. In most of the channels the noise level was below or near the resolution of 

the voltmeter. The standard deviation varied from channel to channel but was still quite 

small. less than 100 IlV. 

Originally. ten levels with 200 foot separation were planned. Due to unforeseen prob­

lems. the experiment concentrated on two depth levels. The two locations were the zone with 

brecciated limestone at about 1900-2300 feet and the area near the end of the casing. 450-500 

feet. In the brecciated limestone zone. several repeat measurements were taken. 

Table (7-3) is the tabulation of the field data for different current electrode depth levels. 

The range of the V II signal amplitudes were from 170.0 to 0.5 m V / A. The largest signals. 

which occurred for current electrodes near the casing. were thought to be due to the channel­

ing of current up the conductive casing. The standard deviations were small for these signals 

which shows in the percent of the standard deviation-to-signal ratio. This ratio was one per­

cent or less for nearly all cases. The cases where this ratio was larger ocqurred when the sig­

nal was near zero. 
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Repeat Measurements 

Repeat measurement test were conducted at several (downhole current) electrode depth 

levels to check consistency of the measurements. Measurements were acquired for a depth 

separated in time ranging from one hour to one day. The percent differences for an electrode 

depth level are calculated from two temporally separated measurements and are listed in Table 

(7-4). The tests were conducted at shallow (500 ft) and deep ~ 1500 ft) electrodes for line 2 

and only at the deep electrode depths for lines 2 and 3. 

Most of the channels of lines I and 3 were repeatable to less than 2.5 percent In gen­

eral, the values for line 2 were 5 percent or less but in some cases exceeded 100 percent For 

the shallow depths, the measurements of line 2 were acquired on October fourth and were 

repeatable to less than 1.6 percent Most of the values at the shallow electrode depths were 

repeatable to less than 0.2 percent The large percent differences appeared to occur for VII 

signals of less than 3.0 mV/Amp and 10.0 mY/Amp for line 2 and lines 1 and 3, respectively. 

The poor repeat measurements may be attributed to two main factors. The first is the 

array configuration and the influence of the remote (current) electrode. The second is the vari­

ability of the current waveform. The geometry of the potential arrays and the current elec­

trodes was an improper configuration to obtain optimum V II signals. In many instances, the 

remote electrode was closer to the measuring potential electrodes than the downhole electrode. 

With this configuration, the remote electrode affected the fields which resulted in small (near 

zero) V II signals for many of the channels. Even for changes that are in the range of the 

standard deviations of the noise (= 0.1 mY/Amp), large percent differences can occur if the 

signals are small. The variability of the current waveform at depth caused problems for 

repeatable measurements. The inconsistency of the waveform can be seen by the large stan­

dard deviations. The standard deviations for the greater depths were over an order of magni­

tude larger than that for the shallow depths. At depth, the formations were much more resis­

tive than near the surface. The transmitter and the generator were exerted to their limit to 

inject enough current into the resistive formations to obtain a measurable signal. By running 

at the load limit, greater variations in the current waveform can occur which results in large 

standard deviations. 
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Noise-Signal Relation 

Figures (7-4) to (7-6) are scatter plots for each array line of the VII signal versus its 

standard deviation (noise). The upper plot of each figure is the data for electrode depths close 

to the casing (~ 700 ft). The lower plot is the measurements for electrodes away from the 

pipe ~ 1500 ft). The "100 level" line is an approximate maximum noise level, 100 J.1V/Amp. 

that was detennined from the standard deviation of the noise test. For data with little noise. 

the scatter pattern should be below this line; The "1%" line represents the ,one percent noise­

to-signal (N/S) ratio. Points lying below this line have N/S ratios of less that one percenL 

Note from the figures. that measurements can be above the 100 J.1V/Amp noise level and still 

have N/S ratios well below one percenL The "integer" line shows the smallest value possible 

for the survey. It is the result of the conversion of the data. VII signals and standard devia­

tions. to an integer formaL It also represents a N/S ratio of 0.01 percenL 

The optimal scatter pattern would be one which is "flat" below the 100 level line. This 

type of response would represent a constant noise level for all signal sizes. Unfortunately. the 

data show some kind of linear correlation between the signal and the standard deviation. The 

measurements that have a large correlation and are above the 100 J.1V/Amp are: 700-4d (all 

lines). 1500-5u (line 3). and 1700-5u (line 3). At this time. the source(s) for this noise corre-

lation with the signal is unknown. 

A pattern was observed with the noise levels and is well illustrated with the deep elec­

trodes of line 3. The open symbols in this plot represent measurements taken as the electrode 

was lowered down the well. The solid symbols are the measurements acquired as the elec­

trode was pulled upward which are taken in reverse order of the downward measurements. 

The "+" and "x" are also data taken for the upward going electrode but have no equivalent 

downgoing measurements. As can be seen from the plot. the open symbols have the lowest 

noise levels. The solid symbols. 2300-1900 ft. have slightly higher noise levels with the 1900 

foot level having the largesL The last two upward measurements. 1700-1500 ft. have very 

large noise levels. In fact. damage to the current and support cables were discovered after the 

last measuremenL The high noise levels of the upward measurements may be due to the 
. I 

current leakage through the damaged current cable which had several gashes along its length. 
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7.4 Data Analysis 

Although most of the data h~d standard deviation of one percent or less, repeat measure­

ments were inconsistent especially for the deeper electrode levels. The correlation of the 

noise and signal reduced the amount data could be analyzed. At the time of the analysis of 

the data, no well completion information was received and only the electric logs for the depths 

below the casing (> 450 ft) were available to estimate formation depths and resistivities. 

Because of the suspect quality of the field data and the limited information available, the 

majority of the analysis was limited to models based on the data set of line 2. 

7.4.1 Apparent Resistivities 

The apparent resistivities of each channel for the three lines are plotted in Figures (7-7) 

to (7-9) and listed in Table (7-5). The apparent resistivities show several characteristics. 

First, most of the values follow similar trends and fluctuations along the array lines forvari­

ous source locations. Next, the magnitude of the apparent resistivities greatly increases for the 

stations nearer the well. Last, negative apparent resistivities were observed on line 1 and line 

2. 

The trends and fluctuations are primarily due to topography and lateral inhomogeneities 

in the near surface. The anomalously large apparent resistivities near the well are due to inho­

mogeneities at or near the well distorting the fields near the well. This distortion of the fields 

can also be caused by the channeling of current through the conductive casing as discussed 

earlier in this thesis. Both of these effects were observed by Bevc et al. (1989) in a similar 

survey at Coalinga, California. 

The negative values of apparent resistivities indicate that the electric fields or currents 

are in the opposite direction to those flowing at the same point in a homogeneous half-space. 

This is caused by several factors: array configuration, layering, and inhomogeneities. If the 

remote electrode is not placed far enough away to simulate an infinite electrode, it will affect 

the current paths. With Certain layered cases, negative apparent resistivities can be obtained 

with numerical models for the array configuration used for this experiment The conductive 

pipe located above the current source also will greatly accentuate this phenomenon of negative 
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apparent resistivities. 

A layered earth model was used to simulate the apparent resistivities of Table (7-5). 

With a five-layer model, the negative apparent resistivities that were observed could be pro­

duced. But, the spatial fluctuation along the array and the large magnitudes near the well 

could not be obtained. The fluctuations observed were caused by topography and near-surface 

inhomogeneities. These effects could be minimized by applying a differencing scheme to the 

data. To use such a method, adcUtional data in formations with different electrical responses 

must be collected. Hence, the analysis in this section will not account for the topographic and 

near-surface effects but will focus on the near-well effects. The large apparent resistivities 

near the well were assumed to be caused by the steel casing contaminating the signals. The 

program that can simulate the casing effects was available to model the data but required axial 

symmetric geometry. This symmetry was numerically created by superposing two data sets to 

produce a downhole current dipole source and eliminating the off-axis remote current source. 

For this analysis, one of the current electrodes was stationary, called "reference", and the 

other, called "roving", was moved in the well. 

Table (7-6) gives the dipole-dipole apparent resistivities calculated for a reference elec­

trode located one foot from the bottom of the casing at a depth of 45.1 feet. The roving elec­

trode is placed at the other electrode depth levels. With the exception of channel 9 of line 1, 

the negative values of apparent resistivities seen (Table 7-5) are eliminated. From Table (7-6), 

the axial symmetry of the apparent resistivities along the arrays is greatly improved. Previ­

ously, the values for a given radial distance from the well could vary several orders of magni­

tude. These variations could be produced by the array geometry, source locations, and a lay­

ered earth. After creating an axial symmetric dipole source, the apparent resistivities for a 

given channel showed some axial symmetry and differed only by small factors. 

Since the geometry of this experiment is assumed to have axial symmetry, only one 

array line of the dipole-dipole measurements is needed for the analysis. The data of line 2 

was used for two reasons: First, the topography effects on each channel measurement of line 

2 should be nearly equal and small since the the line was placed on a gently sloping terrain . 

. Second, this line had relatively low noise levels for nearly all the measurements. 
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Figure (7-10) is a semi-log plot of the dipole-dipole apparent resistivities for line 2. 

From this plot. it appears that the deep roving electrode levels ~ 1500 ft) were in formations 

with the same resistivity. The near-casing roving electrode levels (S; 500 ft) were in forma­

tions which only differ slightly in resistivities. The 700 foot level values may represent meas­

urements where the roving electrode was in a completely different formation from the near­

casing and deep levels. The near-well effects exist for approximately the first 3 to 5 channels. 

There may be near-surface effects along the array causing the small fluctuations and the step­

like effects. Channels 206 through 213 of the shallow levels have an upward trend in the 

apparent resistivity. Whereas, the trends for the deep electrode levels of these channels are 

nearly constant and may be somewhat downward. 

7.4.2 Numerical Modeling 

The objective of the modeling is to come to a conceptual understanding of the field data 

and to determine feasible scenarios which can describe the data. These simplified models are 

based on general characteristics of the data and other information available. From the dipole­

dipole apparent resistivity data of line 2, there are several characteristics that were used as 

guidelines for the models: 

1) Large values of the apparent resistivities are observed near the well (first 3-5) channels. 

2) For the deep roving electrode levels ~ 1500 feet), the apparent resistivities are nearly all 

the same. 

Excluding the near-well and near-surface effects; 

3) The apparent resistivities tend to decrease for increasing roving electrode depth levels with 

the exception of the 483 foot level 

4) The apparent resistivities have trends along the array line. For the shallow roving elec­

trode levels (S; 700 feet), the values tend to increase for increasing channel numbers. For 

deep roving electrode levels ~ 1500 feet), the apparent resistivities are constant or may 

even decrease with larger channel numbers. 

The other sources of information were the geologic-stratigraphic section based on core sam­
~ 

pIes (Table 7-1) and the electric logs only for depths below the casing (see Table 7-7). 
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Layered-Earth Models 

With only the information obtained from the electric logs for formations below the cas­

ing (450 feet), the earth below the casing could be represented by a three-layer model. 'Ibis 

model has a resistive half-space basement, 30,000 n·m, which begins at a depth of 1083 feet 

'Ibis is overlain by a conductive layer, 200 n·m, with its top located at 482 feet Above this 

layer is a resistive formation of unknown thickness and its resistivity constrainted to the 

values of 500 to 5000 n·m. With respect to the guidelines, this model produced poor results. 

In order to follow the guidelines 2-4, the addition of at least one layer is required in the 

upper 450 feet An estimate of the depth of the interface between the first and second layer as 

262 feet It was obtained from the stratigraphic section which shows at this depth is the top of 

the Chattanooga Shale. Figure (7-11) is the model and the apparent resistivity for the four­

layer case. The resistivities of the first and second layer were chosen so that the model output 

matched the far-fields data (last few channels). In doing this, the resistivity of the second 

layer (5000 n·m) which extends below the casing is about 1.5-2.5 times higher than what the 

electric logs showed. From the plot, the guidelines 2, 3, and the first part of 4 appear to be 

satisfied. 

According to Table 7-1, the Chattanooga Shale is a relativity thick shale formation (30-

45 feet) sandwiched between (limestone?) units. From the electric logs, the shale units gen­

erally appears to be much less resistive than the limestone and dolomite units which dominate 

the area. Figure (7-12) is the model and calculated apparent resistivity that incorporated this 

shale unit. With this model, the resistivity of the bottom three layers were kept the same as 

the previous model. The resistivities of the first two layers, both contained within the first 

300 feet, varied so that the far-field data and guidelines 2-4 were satisfied. This five-layer 

model has a conductive second layer (160 n·m) sandwiched betWeen two resistive formations 

(5000 n·m). With the addition of the extra layer, guideline 4 was satisfied much better. Like 

the four-layer model, the near-casing « 500 ft) apparent resistivity curves overlapped. 

Pipe-Layer Models 

With the exception of the near-well data, most of the apparent resistivities could be 
~ 

simulated with layer models. The large values seen for the near-well channels (guideline 1) 
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are caused by inhomogeneities at or around the well and cannot be modeled with layers. The 

anomalously large values of the apparent resistivities were assumed to be caused by the steel 

casing and/or the borehole fluid channeling current up and distorting the fields near the well. 

The computer algorithm described in Chapter m can simulate this situation. The program is 

based on an integral equation approach of the potential fields and can model the casing, fluid, 

and several layers. 

The new models were based on the five-layer model of the previous section. All depths 

and the resistivities of the bottom two layers were the same as the five-layer model The 

resistivities of the upper three layers are allowed to vary so that the calculated values of the 

(outer) far-field channels matches the field data. No information was available to determine 

the properties of the casing and the borehole fluid. To illustrate the effects of the pipe and 

borehole fluid, the following values were used for the model The borehole fluid column, that 

went down to the bottom of the well (= 2500 feet), had a resistivity of 10 n·m. The metal 

casing, which terminated at 450 feet, and was chosen to have a thickness of 0.5 inch. Two 

values of resistivities were used for the casing to simulate the quality of the contact between 

the casing and the formations. 

The first model simulates a poor pipe-formation contact or possibly an insulated pipe. 

Figure (7-13) is the model and the calculated apparent resistivity for a casing resistivity of 0.1 

n·m. the resistivities of the top three layers slightly changed from the five-layer model. The 

resistivity of the first and third layers was half the value of the five-layer model (2500 n·m). 

the conductive layer was reduced by a third from 160 to 50 n·m. The values used for the 

resistivity of the third layer are very close to the estimated values obtained from the electric 

logs. 

The apparent resistivities of the pipe model follow the guidelines 1-4 of the field data. 

Excluding the near-surface effects, three main differences are seen. First,--the calculated 

values are larger than the field data for the middle channels. Second, the effects of the casing 

is seen through the entire array for the curves representing roving electrode levels 700 feet 

and below. Third, the near-well channels have apparent resistivities much smaller than those 
! 

of the field data The first two discrepancies are probably due to the resistivity of the top 
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layer being too large, thus extending the pipe effects throughout the array. The last difference 

indicates that the conductivity of the casing (area) is probably too small. This results in less 

distortion of the near-well fields and leads to smaller apparent resistivities. 

The second model simulates the situation where the pipe-foI1l1ation contact is good (the 

pipe acts as a good conductor). For this case, the resistivity of the pipe was 1<J' n·m and 

produced the plot in Figure (7-14). The resistivity of the top layer is much more conductive 

(200 n·m) than was previously used (2500 n·m). For the second layer, ·the resistivity (50 

n·m) is half the value of the first pipe-layer model. Since the resistivity of the third layer was 

close to the well-log values, it remained the same 2500 n·m. 

The calculated apparent resistivity curves follow. the guidelines 1-4 and in general match 

the field data well. Neglecting the near-surface effects, the apparent resistivities of Figure (7-

14) and Figure (7-10) are very similar. The curves forthe near-casing roving electrode levels 

($; 500 feet) follow the general trends of the field data extremely well. In the deeper levels ~ . 

700 feet) there are differences seen between the model results and the field data. The conduc­

tive pipe produced a larger apparent resistivity for the near-well channels which are slightly 

larger than the field data. These effects extended into the middle channels but is much less 

pronouned than the previous pipe-layer model. These discrepancies indicate that the conduc­

tance of the pipe and/or borehole fluid used for the model were too high. The far-field chan-
I 

nels have values that are smaller than the field data but are still very close. This indicates that 

the top layers used for the model are too conductive. 

In October 1990, the electric logs for the depth between 50 to 400 feet and a progress 

report, which contained conductivity results from borehole fluid samples (2100-3500 ft), were 

obtained. The resistivity from the upper log (50-400 ft), lower log (450-2100 ft), and the fluid 

test were estimated -and listed in Table (7-7). The log shows that the relatively conductive 

(::: 200 n·m) Chattanooga Shale is located at a depth of 260 feet to 320 feet and is 

sandwiched in between resistive (::: 2000 n·m) fOI1l1ations. The upper log verifies the 
,f 

assumption used for the modeling that a conductive layer exist between resistive fOI1l1ations. 

Unfortunately, the electric log for the upper 50 feet was not received so that the electrical pro­

perties of the surface layers are unknown. 
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The upper electric logs tend to agree with the resistive pipe modeling results for the for­

mation resistivities. The conductive pipe model produced resistivity values that are too small. 

By reducing the pipe and/or fluid conductance (either by modifying the geometrical or electri­

cal parameters), higher formation resistivities of the upper layers are needed in order to match 

the field data. This results in the desired modification of the model so that a better fit to the 

data can be obtained. 

75 Summary and Conclusion 

The background noise at the site was very low. For most of the channels, the noise was 

below or .at the resolution of the voltmeter. The test showed noise levels of much less than 

100 IlV. In the resistive environment, approximately 3 to 5 Amps could be injected into the 

ground with the power source and transmitter. The signal amplitudes ranged from 0.5 to 170 

IlV/Amp with the largest signals occurring near the well. Most of the data had standard devi­

ations of less than the one percent of the signal amplitudes and were below the noise level of 

100 IlV/Amp. 

The qUality of repeat measurements varied depending on the depth and array line. For 

the shallow depths, the maximum deviation of the repeat measurement was 1.57 percent with 

most of the values being less than 0.2 percent. For the greater depths, the same array line 

could only repeat to values of 5 percent or less, but exceeded 100 percent for several chan-

nels. Poor repeat measurements were due to two factors: an inconsistent wavefOIm caused by 

the highly resistive formations at depth and exerting the power source/transmitter to its load 

limit, and the close spatial proximity of the remote current electrode affecting the fields such 

that signals were not optimal. Several of the data sets showed high linear correlation between 

the signal and the noise. The source of this correlation is not known at this time but is thought 

to be caused by current leakage through the downhole cable. 

The raw field data was influenced by several factors which caused trends, fluctuations, 

and jumps in the apparent resistivities as well as large near-well amplitudes and negative 

values. The trends, fluctuations, and jumps were most likely caused by topography and near­
I 

surfaCe lateral inhomogeneities. These effects can be minimized by applying a percent 
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differencing technique (Asch and Morrison, 1989), but were not analyzed in this report. The 

negative apparent resistivities are mainly the result of the proximity of the remote current elec­

trode. This effect can be simulated with a simple layered earth model and two current 

sources. This negative values can be eliminated by creating an axial symmetric source such 

as a downhole dipole. The anomalously large apparent resistivities may be due to near-well 

effects· such as the casing as simulated by models. 

The modeling analysis indicates that the field data can be simulated with a simplified 

model consisting of a conductive casing, borehole fluid, and four or five layers. The values of 

the outer channels can be produced by a layered earth model. The large anomalous apparent 

resistivities near the well are caused by casing effect. These responses may also be due to ' 

any near-well inhomogeneity that can produce equivalent effects. The pipe-layer models show 

an interaction between the casing and the near-surface layers strongly exists. The highly con­

ductive pipe requires conductive near-surface layers to diffuse the anomalous currents quickly 

and thus restricting their effects near the well. A similar effect can be obtained with more 

resistive near-surface layers and pipe having a smaller conductance. Although it was not 

shown, additional model simulations suggested that borehole fluid in the uncased portion of 

the well is needed to act as a conduit for the currents of the downhole electrodes. 

The numerical injection simulations in Chapter V indicate that in a resistive environment 

the monitoring of a conductive plume may be possible. Additionally, the metal casing or pipe 

may accentuate the ability to detect the changes that occur during the injection. Improved 

modeling algorithms where non-symmetric plumes are incorporated are needed to determine if 

directions of the plume can be determined from surface measurements. 

The numerical results must be cautiously interpreted since they are based on idealized 

geometries and estimates of the depths and resistivities of the formations. Since the resistivity 

method is a nonunique problem, there exist numerous models that can produce results that 

corresponds to the data. But, all these models will have similar conductance characteristics. 

The results obtained in this analysis do give a conceptual understanding on the behavior of the 

casing and formation interactions. 



.290 

Several recommendations are suggested to help improve the acquisition and qUality of 

the data for future experiments. 

• Move the remote current electrode away from the well at least five times the maximum 

depth of the downhole electrode. 

• Use a larger power source and/or transmitter to inject more current (= 10 Amps) into the 

ground. 

• Use a protected downhole current cable to guard against cuts, nicheS, and "balling-up" 

during movement of the electrode. 

• Isolate and place all filters at the site of the potential electrodes and then line drive the sig-

nals to the acquisition van. 

• Use longer periods and stack more wavefonns to increase signal-to-noise ratio. 

• Modify software to include additional in-field checks of the signal qUality. 

• Detennine the electrical properties of the near-surface layers, casing, and borehole fluid to 

aid and improve interpretations. 

• Use the steel casing as a current source. 

• Place measurement dipoles orthogonal to the radial lines to reduce the effect of the casing. 

This experiment has given some insight to the problems that can be encountered in a resistive 

environment. To overcome these additional problems, new approaches and improvements of 

field procedures and acquisition system were identified. From this experiment, it appears that 

measurements can be acquired and interpreted in an environment with high resistivity. 
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Age Formation Depth to Top (ft) 

Mississippian Fort Payne Fm 53 
New Providence Sh ??? 
Maury Sh ??? 

Devonian Chattanooga Sh * 264 
Camden-Harriman Fms 308 
RossFm 

Birdsong Sh 454 
Rockhouse Ls 483 

Silurian DecaturLs 510 
Brownsport Group 

Lobelville Ls 557 
BobLs 592 
Beech River Ls 610 

Wayne Group 
Dixon Ls 662 
Lego Ls 703 
Waldron Sh 731 
Laurel Ls 734 
OsgoodLs 746 

Brassfield Ls 787 

Ordovician FernvaleLs 845 
Hermitage Fm 879 
Stone River Group 

Carters Ls 1096 
Lebanon Ls 1186 
Ridley Ls 1305 
Murfreesboro Ls 1456 
Well Creek Fm 1734 

Knox Group 
Mascot Dolomite (upper) 2018 

(middle) 2498 - Oct 1989 
(lower) 2824 

Kingsport Fm 3117 
LongviewFm 3419 
Chepultepec Fm 3534 

4200 - Aug 1990 

Table 7-1: Geologic/stratigraphic section obtained from core samples in the test well. 

... Tennessee division of Geology has adopted the age classification Mississippian and Devonian for the Chat­
tanooga Shale (Wilson and Stearn. 1968). 
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Background Noise Test 

Line 1 Line 2 Line 3 

Dipole Noise STD Noise STD Noise STD 
Channel (JJ.V) (JJ.V) (JJ.V) (JJ.V) (JJ.V) (JJ.V) 

1 8.5 83.8 -11.7 64.3 8.4 74.7 
2 3.5 8.5 -1.5 13.7 0.8 8.0 
3 3.9 9.8 0.5 11.9 -2.7 17.8 
4 0.0 0.0 -1.9 9.3 -2.7 16.9 
5 8.0 21.4 -1.1 34.7 -2.8 22.4 
6 5.1 12.0 -1.1 8.1 -0.7 10.6 
7 9.2 14.8 0.2 6.5 2.1 9.5 
8 -51.6 45.8 -2.1 10.2 1.4 9.9 
9 63.6 50.8 1.9 30.0 -0.1 27.6 

10 3.7 15.7 -3.9 14.6 1.0 13.6 
11 6.5 35.7 -3.9 33.1 2.7 29.3 
12 6.9 29.1 -3.0 32.5 4.4 25.8 
13 2.8 16.2 -1.8 7.6 -2.9 6.8 
14 0.9 6.3 -2.1 5.8 -0.8 7.3 
15 6.2 40.8 -7.3 39.4 1.7 32.7 
16 -1.8 13.1 -4.3 7.5 -3.3 8.5 
17 3.0 10.7 -2.7 8.0 0.9 6.1 

Table 7-2: Background noise levels and standard deviations at the test site for a sample size 
of 800 points per channei. 
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VII signals (mY/Amp) 

Fue Channel Number 
(feet-day) 1 2 3 4 5 6 7 8 9 
0451-5w -124.87 -7136 -39.74 -26.58 ~3.93 -47.39 ~5.00 -77.87 -9.21 
0453-5w -119.78 ~8.20 -38.01 -25.57 ~1.69 -45.60 ~2.54 -76.41 -7.09 
0460-5w - - -- - - - -- - -
0483-5w -- - - - - - -- - -
0500-4d - - - - - - - -- -
0500-4d - - -- - - - -- - -
0700-4d -43.64 -25.45 -13.45 -8.80 -28.79 -18.88 -24.84 -22.58 -9.69 

lS00-4d 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
1500-5u -44.75 -32.62 -21).97 -10.19 -29.80 -20.31 -2730 -25.05 -10.80 

1700-5u -40.11 -28.13 -17.14 -8.93 -28.94 -19.22 -2535 -23.28 -9.65 

19OO-4d ~36.46 -21.53 -10.84 -6.65 -27.85 -17.26 -22.21 -20.67 -8.14 
1900-5d -38.73 -22.12 -10.47 -6.47 -28.40 -17.67 -22.41 -21.36 -830 
1900-5u -38.15 -22.13 -11.24 -6.80 -28.08 -17.80 -22.92 -21.10 -832 

2100-5d -38.77 -23.05 -11.83 -7.34 -28.94 -18.19 -23.49 -21.84 -8.66 
2100-5u -39.92 -2339 -12.06 -7.37 -28.99 -18.60 -24.09 -22.05 -8.81 

2300-5d -37.64 -22.23 -1133 -6.80 -28.25 -17.88 -23.04 -21.35 -838 
2300-5u -38.62 -22.56 -11.47 -6.92 -28.50 -18.09 -2334 -21.57 -8.53 

YII signals (mY/Amp) I-pp (Amp) 

File Channel Number 
(feet-day) 10 11 12 13 14 15 16 17 11 12 
0451-5w -25.79 -24.29 -45.35 -53.76 -59.12 -59.65 ·52.57 -46.14 8.65 8.68 
0453-Sw -24.62 -2330 -44.07 -52.60 -58.14 -58.47 -51.73 -45.40 8.11 8.13 
0460-5w -- - -- - -- - -- - -- --
0483-5w -- - -- - -- - -- - -- --
0500-4d -- - -- - -- - -- - -- --
0500-4d -- -- -- - -- - -- - -- --
0700-4d -8.26 ~8.98 -23.27 -3337 -40.09 -38.20 -35.87 -31.54 7.91 7.94 

1500-4d 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
1500-5u -9.18 -9.96 -25.87 -37.40 -45.08 -42.79 -40.10 -3533 7.76 7.74 

1700-5u -8.21) -9.12 -24.77 -36.41 -44.28 -41.82 -39.30 -34.62 7.52 751 

1900-4d -6.81 -7.83 -22.99 -34.92 -42.87 -40.13 -38.12 -3333 8.29 832 
1900-Sd -7.05 -8.01 -23.76 -35.30 -44.05 -40.69 -38.92 -33.66 8.18 8.20 
1900-5u ~.98 -8.04 -23.35 -35.40 -43.45 -40.68 -38.51 -33.82 8.14 8.15 

2100-5d -7.32 -8.29 -24.03 -35.40 -44.01 -40.82 -38.99 -33.73 6.85 6.86 
2100-5u -7.43 -8.46 -23.97 -35.90 -43.93 -41.22 -38.96 -34.19 6.64 6.65 

2300-Sd -7.06 -8.12 -23.52 -35.56 -43.63 -40.87 -38.65 -33.81 7.13 7.14 
2300-5u -7.20 -8.23 -23.66 -35.72 -43.78 -41.03 -38.80 -33.98 8.11 8.12 

Table 7-3a: Line 1 field data for different current electrode depth levels. The top table has 
channels 1-9 and bottom table has channels 10-17 and currents 11 and U. The signals are in 
the fonn of voltage per unit current and the currents are peak-to-peak values. 

! 
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VII signals (mV/Amp) 

HIe Channel Number 
(feet-day) 1 2 3 4 5 6 7 8 9 

0451-5w -148.76 -8030 -45.68 -4295 -39.23 -2203 -18.18 -14.50 -14.06 
0453-5w -141.79 -7638 -43.29 -40.73 -36.97 -20.68 -16.94 -1339 -12.93 
046O-5w -124.98 -67.09 -37.25 -35.18 -3139 -17.32 -13.91 -10.71 -10.19 
0483-5w -38.68 -1930 -7.10 -6.88 -3.48 -0.17 1.40 2.97 3.75 

0500-4d -22.02 -10.43 -2.06 -218 0.76 225 3.41 4.59 536 
0500-4d -21.99 -1036 -2.13 -221 0.74 2.24 3.41 4.59 534 

0700-4d -48.16 -24.63 -11.66 -10.89 -7.75 -2.82 -1.01 0.80 1.70 

1500-4d -4137 -20.86 -9.55 -8.89 -5.67 -1.51 0.21 1.95 2.95 
1500-5u -55.79 -31.44 -8.28 -10.29 -7.12 -239 -0.52 139 2.44 

1700-5u -48.61 -26.50 -8.05 -9.11 -5.73 -1.45 038 226 337 

1900-4<1 -38.15 -18.80 -7.87 -737 -3.73 -0.08 1.70 3.53 4.71 
1900-5d -39.23 -1936 -7.93 -7.50 -3.72 -0.08 1.72 3.62 4.74 
1900-5u -39.90 -19.59 -8.27 -7.75 -4.03 -0.28 1.53 3.38 4.57 

2100-5d -40.89 -20.23 -8.59 -8.09 -430 -0.45 139 3.30 4.44 
2100-5u -42.26 -20.90 -9.12 -8.55 -4.82 -0.76 1.10 3.00 4.18 

2300-5d -39.69 -19.51 -8.23 -7.73 -3.96 -0.22 1.59 3.45 4.66 
2300-5u -40.47 -19.91 -8.51 -7.99 -4.24 -0.39 1.44 3.31 4.50 

VII signals (mV/Amp) I-pp (Amp) 

File Channel Number 
(feet-day) 10 11 12 13 14 15 16 17 II 12 
0451-5w -11.93 -9.70 -7.45 -5.59 -4.31 -3.11 -2.27 -0.74 8.66 8.68 
0453-5w -10.94 -8.82 -6.70 -4.95 -3.64 -2.43 -1.67 -0.25 8.11 8.13 
046O-5w -8.50 -6.69 -4.88 -3.39 -2.05 -0.86 -0.33 0.77 8.12 8.15 
0483-5w 4.02 4.20 4.53 4.64 6.23 7.38 6.82 6.30 8.11 8.13 

0500-4d 5.39 5.36 5.41 536 6.81 7.89 7.22 6.59 8.91 8.93 
0500-4<1 5.39 5.35 5.41 535 6.81 7.89 7.22 6.59 8.91 8.94 

0700-4d 2.36 3.03 3.78 4.27 6.21 7.89 7.65 7.83 7.93 7.96 

1500-4d 3.56 4.19 4.90 5.33 7.48 9.40 9.13 9.38 2.10 2.10 
1500-5u 3.19 3.93 4.78 5.31 7.60 9.65 9.41 9.73 7.56 7.54 

1700-5u 4.06 4.73 5.52 5.99 8.38 10.52 10.22 10.49 7.39 736 

1900-4<1 5.31 5.89 6.62 6.99 9.57 11.79 11.49 11.67 8.29 8.32 
1900-5d 5.44 5.94 6.83 7.05 9.77 11.91 11.78 11.82 8.15 8.17 
1900-5u 5.17 5.78 6.51 6.90 9.43 11.69 11.31 11.55 8.27 8.28 

2100-5d 5.14 5.70 6.57 6.82 9.52 11.62 11.54 11.59 6.62 6.63 
2100-5u 4.82 5.47 6.24 6.67 9.19 11.44 11.09 11.36 6.42 6.43 

2300-5d 5.27 5.88 6.66 6.96 9.60 11.78 11.57 11.75 7.31 733 
2300-5u 5.12 5.74 6.50 6.89 9.45 11.72 11.36 11.60 8.00 8.01 

Table 7-3b: Line 2 field data for different current electrode depth levels. The top table has 
channels 1-9 and bottom table has channels 10-17 and currents 11 and 12. The signals are in 
the form of voltage per unit current and the currents are peak-to-peak values. 

~ 
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VII signals (mV/Amp) 

File Channel Number 
(feet-day) 1 2 3 4 5 6 7 8 9 

0451-5w -16059 -30.93 -121.66 -124.54 -99.23 -127.41 -117.90 -99.81 -10758 
0453-5w -154.40 -29.07 -119.12 -121.66 -96.65 -124.54 -115.36 -9752 -105.11 
046O-5w 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0483-5w 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0500-4<1 -42.96 0.97 -58.34 -56.10 -46.09 -6737 -64.89 -54.05 -5853 
0500-4d 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0700-4<1 -64.64 -4.68 -71.02 -69.14 -55.91 -7731 -73.45 -61.68 -66.63 

1500-4<1 -58.74 -2.28 -70.28 -67.81 -54.06 -75.16 -71.68 -59.95 -64.73 
15OO-5u -71.28 -6.81 -7851 -76.62 -61.76 -89.28 -84.32 -70.01 -7551 

17oo-5u -66.07 -5.25 -75.82 -74.11 -59.69 -85.98 -81.46 -67.70 -72.98 

1900-4<1 -5736 -0.11 -74.64 -71.02 -5730 -80.61 -77.07 -64.47 -6957 
19OO-5d -60.64 -0.12 -75.51 -72.42 -5837 -81.80 -78.43 -6538 -70.16 
19OO-5u -61.69 -3.01 -74.89 -72.96 -58.70 -82.28 -78.65 -65.63 -70.77 

21oo-5d -62.63 -1.60 -75.63 -73.41 -59.02 -82.30 -78.94 -65.77 -70.60 
21OO-5u -63.13 -337 -75.54 -73.93 -59.27 -82.73 -79.06 -65.91 -71.04 , 
23oo-5d -61.44 -1.99 -74.92 -72.90 -58.66 -82.00 -78.57 -65.36 -7031 
23oo-5u -62.05 -253 -74.69 -73.01 -58.83 -82.18 -78.73 -6555 -70.60 

VII signals (mV/Amp) I-pp (Amp) 

File Channel Number 
(feet-day) 10 11 12 13 14 15 16 17 11 12 

0451-5w -104.17 -92.36 -84.35 -69.37 -68.16 -71.17 -56.98 -70.65 8.67 8.69 
0453-5w -101.75 -90.52 -82.62 -68.15 -67.10 -70.10 -56.23 -69.82 8.12 8.15 
0460-5w -- - - -- - -- -- -- - --
0483-5w -- - - -- - -- - -- -- --
0500-4<1 -56.95 -51.41 -4839 -43.00 -44.03 -46.82 -38.96 -49.89 8.94 8.97 
0500-4<1 -- - - -- - -- - -- - --
0700-4<1 -64.66 -57.85 -53.82 -46.64 -47.10 -49.77 -40.98 -51.91 7.40 7.43 

1500-4<1 -62.69 -56.70 -52.45 -45.76 -46.34 -48.95 -40.47 -51.32 2.10 2.10 
15OO-5u -73.22 -65.28 -60.89 -52.90 -5357 -56.26 -46.33 -58.82 7.70 7.68 

17oo-5u -71.03 -63.26 -59.08 -51.64 -52.45 -55.15 -45.48 -57.91 7.39 738 

1900-4<1 -67.28 -61.14 -5653 -49.50 -5035 -53.18 -44.09 -56.09 8.31 8.34 
1900-5d -68.00 -61.67 -57.21 -49.80 -51.11 -53.71 -44.48 -56.74 8.15 8.17 
1900-5u -68.70 -61.37 -5750 -50.23 -51.34 -53.95 -44.66 -56.93 8.48 8.50 

2100-5d -6853 -61.92 -57.60 -50.01 -51.34 -53.91 -44.63 -56.94 6.82 6.82 
2100-5i1 -68.97 -61.73 -57.88 -50.28 -5150 -54.13 -44.76 -57.05 6.59 6.60 

2300-Sd -68.17 -61.49 -57.40 -49.81 -51.25 -53.86 -44.48 -56.80 7.16 7.17 
2300-5u -68.48 -61.56 -57.61 -49.95 -5136 -53.97 -4455 -56.90 7.97 7.97 

Table 7-3c: Line 3 field data for different current electrode depth levels. The top table has 
channels 1-9 and bottom table has channels 10-17 and currents 11 and 12. The signals are in 
the fOITIl of voltage per unit current and the currents are peak-to-peak values. 
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Percent Difference: 2(V I-V iJ/(V I+V 2)* 100% 

File 1 500-4dl 1500-4d 1900-4d 1900-4d 1900-5d 2100-5d 2300-5d 
File 2 500-4d2 1500-5u 1900-Sd 1900-5u 1900-5u 2100-5u 2300-5u 

Channel 

1 -- - -6.03 -4.51 152 -2.92 -2.58 
2 - - -2.69 -2.74 -0.05 -1.48 -1.48 
3 -- - 3.45 -3.64 -7.08 -1.85 -1.26 
4 - - 2.83 -2.20 -5.04 -0.42 -1.71 
5 -- - -1.97 -0.83 1.14 -0.15 -0.90 
6 -- - -2.34 -3.03 -0.69 -2.22 -1.17 
7 -- - -0.89 -3.14 -2.24 -251 -1.29 
8 -- - -3.26 -2.07 1.20 -0.96 -1.03 
9 -- - -1.99 -2.18 -0.19 -1.66 -1.70 

10 -- - -3.38 -2.47 0.91 -1.49 -1.92 
11 - - -2.25 -2.70 -0.45 -2.07 -1.34 
12 -- - -3.26 -1.53 1.74 0.28 -0.56 
13 -- - -1.10 -1.38 -0.28 -1.40 -0.47 
14 -- -- -2.72 -1.36 1.37 0.18 -0.33 
15 -- - -1.40 -1.37 0.03 -0.97 -0.41 
16 -- - -2.07 -1.01 1.06 0.06 -0.37 
17 -- - -0;96 -1.45 -0.49 -1.34 -0.49 

Table 7 -4a: Percent difference of the apparent resistivities for line 1 at various current elec­
trode depth levels. 
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Percent Difference: 2(V I-V iJI(V l+V iJ* 100% 

FIle 1 500-4<11 1500-4d 1900-4d 1900-4d 1900-5d 2100-5d 2300-5d 

FIle 2 500-4d2 1500-5u 1900-Sd 1900-5u 1900-5u 2100-5u 2300-5u 

Channel 

1 0.09 -29.69 -2.80 -4.51 -1.71 -3.30 -1.93 

2 0.33 -40.47 -2.90 -4.09 -1.19 -3.28 -2.02 

3 ~1.57 14.20 -0.76 -4.98 -4.22 -5.89 -3.36 
4 -0.58 -14.61 -1.76 -5.05 -3.29 -5.51 -3.26 

5 -1.16 -22.61 0.21 -7.87 -8.08 -11.37 -6.83 

6 0.81 -45.33 5.71 -111.11 -115.00 -51.33 -54.22 

7 0.19 -215.93 -1.62 10.21 11.82 23.40 10.30 

8 0.13 33.36 -2.60 4.26 6.85 9.47 4.22 

9 0.27 18.75 -0.63 2.96 3.59 5.98 3.38 
10 0.08 11.11 -2.41 2.72 5.13 6.36 2.79 
11 0.05 6.38 -0.78 2.01 2.79 4.14 2.27 
12 0.02 2.56 -3.17 1.58 4.76 5.11 2.45 

. 13 0.15 0.31 -0.88 1.32 2.20 2.26 0.99 
14 0.06 -1.55 -2.09 1.43 3.52 3.58 1.58 
15 0.05 -2.64 -1.03 0.85 1.87 1.63 0.47 
16 0.06 -2.96 -2.47 1.55 4.02 3.91 1.83 

17 0.06 -3.68 -1.32 1.05 2.37 2.02 1.23 

Table 7-4b: Percent difference of the apparent resistivities for line 2 at various current elec­
trode depth levels. 
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Percent Difference: 2(V I-V 2)J(V l+V:z)* 100% 

File 1 5OO4d1 IS004d 19004d 19004d 1900-Sd 2100-Sd 2300-Sd 
File 2 s004d2 IS00-Su 1900-5d 1900-5u 1900-Su 2100-Su 2300-5u 

Channel 

1 -- -19.29 -5.57 -728 -1.72 ~.79 ~.99 

2 - -99.82 -7.69 -185.84 -184.75 -71.11 -23.72 

3 - -11.08 -1.15 ~.33 0.82 0.12 0.31 
4 -- -12.21 -1.96 -2.70 ~.75 ~.71· ~.IS 

5 -- -13.31 -1.85 -2.40 ~.sS ~.43 ~.28 

6 - -17.18 -1.47 -2.05 -0.58 ~.S2 -0.22 
7 -- -16.21 -1.75 -2.03 ~.28 ~.IS ~.20 

8 - -15.49 -1.40 -1.79 -0.39 ~.20 -0.29 
9 -- -15.38 -0.85 -1.72 -0.86 ~.62 -0.41 

10 -- -15.49 -1.06 -2.10 -1.04 -0.64 -0.45 
11 -- -14.07 ~.86 -0.38 0.49 0.32 -0.11 
12 -- -14.89 -1.21 -1.71 -0.50 -0.48 -0.37 
13 -- -14.48 -0.60 -1.46 -0.86 .:0.53 ~.27 

14 -- -14.50 -1.50 -1.96 -0.45 -0.30 -0.22 
15 -- -13.92 -0.99 -1.45 -0.45 -0.41 -0.21 
16 -- -13.51 -0.90 -1.30 -0.40 -0.30 -0.15 
17 -- -13.62 -1.16 -1.49 -0.33 ~.19 -0.18 

Table 7-4c: Percent difference of the apparent resistivities for line 3 at various current elec­
trode depth levels. 

\ 
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Apparent Resistivity (Q-m) 

File Channel Number 
(feet~y) 1 2 3 4 5 6 7 8 
0451-5w 6116 2287 1011 596 1352 989 1384 1730 
0453-5w 5941 2213 978 579 1317 961 1343 1710 
0460-5w - - - - - - - -
0483-5w - -- - - - - - --
0500-4<1 - -- - - - - - --
0500-4<1 - - - -- - - - -
0700-4<1 7208 2778 1130 619 1797 1088 1364 1211 
1500-4<1 - - - -- - - - -
1500-5u 37780 25174 15026 6874 19155 12579 16457 14835 
1700-5u 39729 27933 17191 9115 30290 20788 28555 27525 
1900-4<1 40486 26044 14504 10022 48348 35519 56310 68342 
19OO-5d 43007 26757 14009 9751 49302 36363 56817 70623 
19OO-5u 42363 26770 15039 10248 48747 36630 58110 69763 
2100-5d 46762 32541 20286 16135 89080 93563 361811 -350579 
2100-5u 48149 33021 20680 16201 89234 95672 371053 -353950 
2300-5d 48237 35428 24066 21803 185604 -2688630 -141245 -67623 
2300-5u 49493 35954 24364 22188 187247 -2720208 -143084 -68319 

Apparent Resistivity (Q-m) 

File Channel Number 
(feet~y) 9 10 11 12 13 14 15 16 17 
0451-5w 158 634 613 1481 1730 1902 1964 1770 1537 
0453-5w 122 608 591 1445 1698 1876 1931 1746 1516 
0460-5w -- -- - - -- -- - - --
0483-5w -- -- - - -- -- - - --
0500-4<1 -- -- - - -- -- - - --
0500-4<1 -- -- - - -- -- - - --
0700-4<1 320 362 380 1258 1584 1824 1793 1613 1357 
1500-4<1 -- -- - - -- -- - - --
1500-5u 1094 1110 1056 3806 3481 3763 4000 . 3092 2465 
1700-5u 1099 1103 1065 ·4099 3625 3928 4220 3209 2544 
1900-4<1 1009 989 980 4150 3646 3971 4280 3243 2542 
19OO-5d 1029 1024 1003 4289 3686 4081 4340 3311 2567 
19OO-5u 1031 1014 1007 4215 3696 4025 4339 3276 2580 
2100-5d 1141 1124 1092 4626 3826 4207 4535 3418 2644 
2100-5u 1161 1141 1114 4615 3880 4199 4580 3415 2680 
2300-5d 1155 1130 1110 4752 3941 4267 4680 3464 2704 
2300-5u 1176 1152 1125 4780 3959 4282 4699 3477 . 2718 

Table 7-5a: Apparent resistivities of line 1 for channels 1-8 (top) and channels 9-17 (bot­
tom). 
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Apparen.t Resistivity (Q-m) 

File ChaJUlel Nwnber 
(feet-day) 1 2 3 4 5 6 7 8 

0451-5w 12045 3385 1409 1123 946 517 431 357 
0453-5w 11721 3272 1355 1078 902 491 406 332 
0460-5w 11117 3041 1224 973 796 426 344 273 
0483-5w 4415 1053 274 220 100 5 -37 -82 

0500-4d 3058 653 89 77 -23 ...fJ7 -100 -137 
0500-4d 3054 649 93 78 -22 ...fJ6 -100 -137 

0700-4d -23938 14685 2336 1388 760 234 75 -55 

1500-4d -6010 -3371 -1728 -1820 -1326 -407 66 734 
1500-5u -8106 -5081 -1499 -2107 -1664 -645 -163 523 

1700-5u -6888 -4091 -1359 -1691 -1174 -329 97 646 

1900-4d -5323 -2824 -1275 -1292 -709 -16 384 873 
1900-Sd -5474 -2908 -1285 -1315 -707 -16 389 896 
1900-5u -5567 -2942 -1340 -1358 -766 -57 346 836 

2100-5d -5649 -2985 -1356 -1368 -780 -87 292 749 
2100-5u -5838 -3084 -1439 -1446 -874 -147 231 681 

2300-Sd -5447 -2845 -1276 -1276 -696 -40 319 740 
2300-5u -5554 -2903 -1320 -1319 -746 -72 289 710 

Apparent Resistivity (Q-m) 

File Channel Nwnber 
(feet-day) 9 10 11 12 13 14 15 16 17 

0451-5w 365 331 290 241 196 165 130 103 37 
0453-5w 338 305 265 218 175 140 102 76 12 
0460-5w 273 243 205 162 122 80 37 15 -38 
0483-5w -108 -123 -137 -159 -175 -255 -328 -328 -329 

0500-4d -166 -175 -184 -199 -212 -290 -363 -360 -355 
0500-4d -165 -175 -184 -199 -211 -290 -363 -360 -355 

0700-4d -113 -156 -200 -254 -294 -442 -585 -592 -636 

1500-4d 1349 2036 3101 4980 8182 21396 119161 -55975 -24802 
1500-5u 1116 1822 2910 4857 8156 21727 122317 -57679 -25735 

1700-5u 1090 1499 2012 2735 3504 5883 9055 11097 14968 

1900-4d 1280 1592 1955 2444 2884 4437 6180 6856 7990 
1900-5d 1288 1631 1972 2522 2909 4530 6243 7029 8093 
1900-5u .1242 1550 1919 2403 2847 4372 6128 6749 7908 

2100-5d 1089 1366 1645 2063 2336 3567 4774 5215 5779 
2100-5u 1025 1281 1578 1960 2285 3443 4700 5011 5664 

2300-5d 1070 1298 1554 1891 2127 3161 4186 4445 4887 
2300-5u 1034 1261 1517 1846 2105 3112 4165 4364 4825 

Table 7-Sb: Apparent resistivities of line 2 for channels 1-8 (top) and channels 9-17 (bot­
tom). 
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Apparent Resistivity (Q-m) 

File Channel Number 
(feet-day) 1 2 3 4 5 6 7 8 
0451-5w 5659 776 2500 2278 1707 2141 1986 1714 
0453-5w 5490 737 2470 2244 1676 2108 1955 1684 
0460-5w - - - - - - - -
0483-5w - - - - - - - -
OSOO-id 1849 -29 1485 1257 956 1342 1273 1063 
0500-id - - - - - - - -
0700-id 4611 263 3342 2847 2082 2670 2399 1934 
1500-id 6422 229 6545 5868 4365 5683 5093 4016 
1500-5u 7192 686 7312 6631 4987 6751 5991 4690 
1700-5u 7364 544 7333 6705 5065 6859 6124 4806 
1900-id 6471 12 7398 6615 5024 6664 6017 4760 
1900-5d 6842 13 7484 6745 5118 6762 6123 4828 
1900-5u 6960 318 7423 6796 5147 6802 6140 4846 
2100-5d 7123 171 7620 6973 5291 6972 6325 4991 
2100-5u 7180 361 7611 7023 5314 7008 6335 5001 
2300-5d 7027 215 7635 7020 5342 7067 6413 5057 
2300-5u 7097 273 7611 7031 5357 7082 6426 5072 

Apparent Resistivity (Q-m) 

File Channel Number 
(feet-day) 9 10 11 12 13 14 15 16 17 
0451-5w 1904 1912 1764 1678 1436 1466 1587 1314 1683 
0453-5w 1869 1876 1736 1649 1415 1447 1566 1299 1666 
0460-5w - - - - - - - - -
0483-5w - - - - - - - - -
0500-id 1168 1161 1077 1043 955 1007 1101 942 1238 
0500-id - - - - - - - - -
0700-id 2030 1932 1706 1575 1359 1370 1449 1197 1523 
1500-id 4100 3765 3239 2857 2383 2316 2354 1881 2315 
1500-5u 4783 4398 3728 3316 2755 2677 2706 2153 2653 
1700-5u 4903 4526 3832 3410 2847 2170 2798 2226 2746 
1900-id 4867 4466 3858 3398 2841 2766 2805 2241 2759 
1900-5d 4908 4514 3892 3439 2858 2807 2832 2260 2791 
1900-5u 4951 4560 3873 3456 2882 2820 2845 2270 2800 
2100-5d 5080 4682 4022 3564 2954 2902 2924 2332 2878 
2100-5u 5111 4712 4010 3582 2970 2911 2936 2338 2884 
2300-5d 5162 4754 4079 3628 3005 2958 2983 2372 2930 
2300-5u 5183 4776 4084 3641 3013 2964 2989 2376 2935 

Table 7-Sc: Apparent resistivities of line 3 for channels 1-8 (top) and channels 9-17 (bot­
tom). 
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Apparent Resistivity (n-m) 0451-5w.dat 

FIle Channel 
(ft-day) 1 2 3 4 5 6 7 8 
0453-5w 17467 7289 3328 1839 4193 3645 5621 3859 
0460-5w - - - - -- - - --
0483-5w - - - - - - - -
05oo-4d - - .- - - - - --
0700-4d 5653 2082 958 584 1123 933 1396 2098 
15oo-4d - - - - - - - -
15OO-5u 4165 1295 494 379 746 585 832 1219 
17oo-5u 4367 1431 589 404 754 599 860 1236 
19OO-4d 4529 1640 749 453 772 635 918 1279 
19OO-Sd 4413 1621 758 457 760 626 914 1264 
19OO-5u 4443 1620 738 450 767 624 903 1270 
21oo-Sd 4395 1584 720 435 744 612 885 1243 
21OO-5u 4336 1573 714 435 743 603 872 1238 
23oo-5d 4442 1606 731 446 756 615 890 1247 
23oo-5u 4392 1596 727 443 751 611 884 1242 

Apparent Resistivity (n-m) 0451-5w.dat 

File Channel 
(ft-day) 9 10 11 12 13 14 15 16 17 
0453-5w 5586 5096 4987 8796 10018 9454 11734 10472 10371 
0460-5w - -- -- - - - -- -- --
0483-5w - -- -- - - - -- -- --
0500-4d - -- - - - - -- -- --
0700-4d -17 979 957 1820 2038 2090 2366 2240 2156 
1500-4d - -- -- - - - -- -- --
1500-5u -32 512 474 817 804 734 856 745 689 
1700-5u -8 528 488 836 825 748 871 760 702 
1900-4d 21 561 520 891 876 800 929 805 757 
1900-5d 18 554 514 860 858 742 902 760 738 
1900-5u 17 556 513 877 854 771 903 783 728 
2100-5d 10 540 499 838 841 732 880 742 719 
2100-5u 8 537 494 840 818 736 862 743 692 
2300-5d 16 543 500 849 825 742 867 750 704 
2300-5u 13 539 496 844 818 735 860 742 694 

Table 7-6a: Apparent resistivities of line 1 for channels 1-8 (top) and channels 9-17 (bottom) 
using the dipole-dipole configuration where the reference electrode is 1 foot below the end of 
the casing and the roving electrode location varies. 
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Apparent Resistivity (Q-m) 0451-5w.da1 

File Channel 
(ft-day) 1 2 3 4 5 6 7 8 
0453-5w 23922 9022 4608 4043 4234 2745 2836 2923 
0460-5w 26827 9964 5351 4649 4822 3134 3196 3262 
0483-5w 30834 11393 5982 5249 5286. 3467 3460 3530 
05oo-4d 24609 9018 4655 4062 4026 2608 2570 2585 
07oo-4d 7004 2525 1240 1054 1006 628 . 597 580 
15oo-4d 5583 1987 952 789 733 443 401 ' 379 
15OO-5u 4834 1633 985 757 702 424 389 366 
17oo-5u 5160 1781 981 775 722 438 402 379 
19oo-4d 5667 2024 980 809 759 462 426 403 
1900-5<1 5612 2006 978 806 759 463 427 405 
19OO-5u 5577 1998 969 800 753 458 423 400 

21OO-5d 5506 1969 957 789 743 452 417 395 
21OO-5u 5436 1947 943 778 732 445 411 388 
23oo-5d 5554 1988 963 794 748 455 419 396 
23oo-5u 5514 1975 956 789 742 451 416 393 

Apparent Resistivity <Q-m) 0451-5w.dat 

File Channel 
(ft-day) 9 10 11 12 13 14 15 16 17 
0453-5w 3500 3663 3874 3932 4073 5042 6109 6367 6180 
0460-5w 3912 4131 4319 4395 4532 5554 6597 6805 6288 
0483-5w 4186 4415 4557 4667 4748 5815 6871 7042 6443· 
05oo-4d 3043 3184 3265 3304 3337 4019 4709 4799 4367 
07oo-4d 665 680 690 697 704 866 1046 1089 1085 
15oo-4d 417 409 398 386 375 445 520 522 510 
15OO-5u 405 399 391 383 374 449 530 534 528 
17oo-5u 418 412 402 393 384 460 542 544 537 
19OO-4d 444 437 427 418 407 490 575 581 573 
19OO-5d 445 440 428 424 409 497 580 593 580 
19OO-5u 441 433 423 415 404 485 571 573 567 
21oo-5d 434 428 416 410 395 480 557 570 555 
21OO-5u 428 420 410 401 390 468 550 551 545 
23oo-5d 436 428 417 409 395 476 555 562 552 
23oo-5u 432 424 414 404 393 471 553 553 546 

Table 7-6b: Apparent resistivities of line 2 for channels 1-8 (top) and channels 9-17 (bottom) 
using the dipole-dipole configuration where the reference electrode is I foot below the end of 
the casing and the roving electrode location varies. 
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Apparent Resistivity (Q-m) 0451-5w.dat 

FIle Channel 
(ft-day) 1 2 3 4 5 6 7 8 
0453-5w 21264 4307 4906 5256 4836 5851 5824 6052 
0460-5w - - - - - - - -
0483-5w - - - - -- - - -
0500-4d 22841 4005 6759 6820 5351 6450 6310 6197 
0700-4d 6681 1191 1846 1822 1385 1639 1545 1447 
150041 5295 958 1354 1315 987 1129 1020 920 
15OO-5u 4643 806 1137 1110 819 823 741 687 
17oo-5u 4870 850 1196 1155 853 881 790 727 
190041 5289 1014 1218 1217 897 987 876 790 
19OO-Sd 5121 1014 1196 1185 874 961 847 770 
19OO-5u 5067 919 1212 1173 867 951 842 764 
21OO-5d 5001 961 1188 1158 856 945 830 755 
21oo-5u 4975 903 1190 1146 ··850 936 828 752 
23oo-5d 5049 946 1202 1165 860 947 834 760 
23oo-5u 5018 929 1208 1163 856 944 831 755 

Apparent Resistivity (Q-m) 0451-5w.dat 

FIle Channel 
(ft-day) 9 10 11 12 13 14 15 16 17 
0453-5w 7652 8914 8107 9120 7645 7974 9605 8003 10440 
046O-5w - - -- -- - - -- -- --
0483-5w - - -- -- - - -- -- --
05OO-4d 7693 8679 8882 9241 8040 8723 10423 9113 12365 
070041 1729 1881 1871 1897 1625 1736 2035 1756 2371 
150041 1052 1096 1023 999 811 824 923 756 975 
15OO-5u 787 818 777 735 565 550 619 487 597 
17oo-5u 831 854 811 766 587 570 637 501 609 
190041 900 936 855 827 643 629 694 544 672 
19OO-Sd 886 917 840 806 633 602 674 527 642 
19OO-5u 871 899 848 798 619 594 665 520 633 
21OO-5d 868 894 823 784 616 583 653 510 617 
21OO-5u 857 883 828 776 608 578 645 504 612 
23oo-5d 869 896 827 782 616 579 645 507 612 
23oo-5u 862 889 826 776 611 575 641 505 608 

Table 7-6c: Apparent resistivities ofline 3 for channels 1-8 (top) and channels 9-17 (bottom) 
~sing the dipole-dipole configuration where the reference electrode is 1 foot below the end of 
the casing and the roving electrode location varies. 



Formation Depth to Top (ft) Resistivity (Q-m) 

Fort Payne Fm 53 
? 

50' 50000 New Providence Sh n? 
Maury Sh n? 2000 

Chattanooga Sh 264 200 Camden-Harriman Fms 308 2000 RossFm ? 
400' 

Birdsong Sh 454 40 450' 
Rockhouse Ls 483 

400 
DecaturLs 510 
Brownsport Group 80 Lobelville Ls 557 

BobLs 592 
Beech River Ls 610 

40 Wayne Group 
Dixon Ls 662 100 Lego Ls 703 
Waldron Sh 731 200 LaurelLs 734 
OsgoodLs 746 1000 Brassfield Ls 787 

200 
FernvaleLs 845 
Hermitage Fm 879 

150 Stone River Group 
Carters Ls 1096 

10000 Lebanon Ls 1186 
Ridley Ls 1305 20,000 ~urfreesboroLs 1456 
Well Creek Fm 1734 to 

Knox Group 30,000 

Mascot Dolomite (upper) 2018 
(middle) 2498 > 10,000 (lower) 2824 

Kingsport Fm 3117 
LongviewFm 3419 35,000 
Chepultepec Fm 3534 

4200 

o Resistivity values estimated from electric logs (received October 1990) 

~ Resistivity values estimated from electric logs (received October 1989) 

Iii Resistivity v~lues obtained from fluid samples (received October 1990) 
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Table 7-7: Fonnation resistivities obtained from electric logs and boreh!?le fluid samples. 
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Figure 7-1: Map and array configuration at Dupont's Hemby Branch test well near Waverly, 
Tennessee. 
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Figure 7-2: illustrations of the field experiment design;'potential electrode placed in the ground 
(top left), downhole current electrode (top right), potential array configuration (center), and 
remote current electrode (bottom)_ 
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Figure 7-4: Scatter plots of the signal (VII) vs. standard deviation (STD) o{ the field data for 
line 1; shallow (top) and deep (bottom). 
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line 3; shallow (top) and deep (bottom). 
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CHAPTER VIII 

DISCUSSION 

The resistivity method in cased boreholes with downhole current sources has been 

analyzed using the integral equation (IE) technique. With the IE method, the casing and other 

bodies are represented as inhomogeneities in a background medium. For coaxial sources, 

there is axial symmetry and the casing can be characterized by ring segments. In this case, 

surface potential and E-field volume integral equation methods were used to solve the prob-

lem. A solution for the more complicated situation involving off-axis current sources and 

three-dimensional (3-D) bodies was formulated using the surface potential method. This solu-

tion which uses the 3-D Green's function was presented in both Cartesian and cylindrical 

coordinate systems. 

Self-consistency and comparison checks showed that the theoretical formulation and 

numerical algorithms are valid and accurate. Numerical checks revealed that the current in the 

casing can be approximated by its vertical component except near the source and that the axial 

symmetry approximation for the casing is valid even for the 3-D problem. 

During the analysis, it was found that the E-field volume IE method was an effective 

and efficient technique to simulate the response of the casing m a homogeneous medium. 

However, once other objects, such as layers, were included in the model, the surface potential 

IE approach was computationally better. Although more segments are needed to describe the 

casing for the surface potential IE approach, the number of unknowns to solve in the matrix 

equation is smaller than that for the E-field volume IE method. For the former, the surface of 

a body is discretized and the unknowns are scalar, whereas for the latter the volume is discre­
~ 

tized and the unknowns are vectors quantities. 
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Several configurations of the casing and current source were used to analyze the effects 

of the casing. In general, the field quantities are dependent on four characteristic factors. 

These are the conduction length, current source depth, casing depth, and casing length. The 

conduction length is the most important factor that influences the casing response in the 

medium. It relates the casing conductance to the conductivity of the host medium and is an 

indicator of the ability of the pipe to carry the currem along its length. 

When the source is located within the casing, the fields and spatial variables can be nor-

malized by the casing length, reducing the characteristic parameters to three ratios: the con-

duction length to casing length (conduction ratio), the source position to casing length, and the 

casing depth to casing length. For a conduction ratio that is greater than two, the fields from 

the casing are similar to those produced by a line source. In a resistive medium, the line 

source approximation is valid for all field positions; the deviation is less than 5% at all points 

in the medium. In a conductive environment, surface measurements cannot be closer than one 

casing length but can be as close as 1{2 casing length for cross-hole surveys. 

When the source is located beneath the casing, the distortion of the fields also depends 

on the casing-source separation distance. For a current source near the casing « 100 casing 

diameters), the casing greatly distorts the fields when compared to those produced by a pole 

source. When the source is greater than 100 casing diameters from the pipe, only the region 

near the casing is affected. For 5% or less distortion, surface sUlveys must not be made 

closer than 1{2 the casing length. Measurements can be made as close as 1/6 pipe lengths for 

crosshole surveys. 

The numerical results of Chapter VI show that resistivity measurements through metal 

casing are feasible provided one can distinguish small voltages. l The discontinuity of the E-

fields corresponds to the !ayer boundary and the rate of change of the E-field is inversely pro­

portional to the resistivity of the adjacent formation. 2 

1 The E-fields, which are proportional to lISe, are in the order of lO's Jj.V/m per Ampere. 
. I 

2 For the fonnation resistivity range of 1 to 1000 n·m, the rates of change of the E-fields are approximately 10.0 
to 0.Q1 Jj.V/m2 per Ampere. 
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For a simple layer model, the fonnation resistivity can be estimated from the ratio of the 

potential and its second derivative provided that the casing conductance can be obtained. For 

an unknown casing conductance, two sets of measurements are needed to calculate the fonna-

tion resistivity. One determines the casing conductance while the other measures the poten-

tials used to estimate the second derivative. The resolution of the layer boundary is limited to 

the electrode spacing used to estimate the second derivative. 

The borehole fluid resistivity has a negligible effect on the resistivity measurements in 

the casing. However, there are many other factors which can affect the measurements. 

Geometric factors, such as length and radius of the casing, as well as the array location within 

the casing affect the resistivity measurements. Variations of the casing conductance only 

affect the measurements when the discontinuity lies within the span of the array. The expres-

sion used by the patents cited in Chapter VI, equation (6-11), can only compensate for spatial 

variations of the casing that are longer than the array length. To compensate for smaller vari-

ations, an additional term is required (see equation 6-10). 

Variation of the cement annulus parameters has a great effect on the estimate of the for-

mation resistivity. At places where the contact resistance is low, the current tends to leak into 

the fonnation more readily and the fonnation resistivity will be underestimated. Since the 

radius of investigation is independent of the electrode spacing, no additional infonnation about 

the cement conductance can be obtained by using different electrode spacing. Thus, estimat-

ing the true formation resistivity in the presence of a cement annulus may not be possible 

without prior knowledge of the thickness or resistivity of the cement. 

The analysis of the downhole to surface field experiment showed that voltage measure-

ments in a resistive environment are possible and that these voltages are quite large. Not only 

are casing effects large for measurements near the well, but they can also be seen at the far 

electrodes even for sources located far below the casing. Modeling indicates that strong 

interactions between the casing and near surface fonnations exist. The currents from the cas­
~ 

ing are channeled into the conductive layers and dissipate slowly into the resistive fonnations. 
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Thus, the far-field electrodes are influenced by the casing and formation interaction. 

Further Studies 

The algorithms used here were limited to simulate problems involving downhole sources 

and axisymmetric bodies (logging, downhole to surface, and cross-hole surveys). A numerical 
<' 

code must be developed to combine the axisymmetric and 3-D Solutions to simulate situations 

involving the casing and arbitrary 3-D bodies. The integral equation using the layered 

Green's function must be formulated to solve the problem involving the casing and 3-D tar-

gets in a layered earth. In this thesis, the layers were characterized as inhomogeneities. Here, 

formulating the integral equations with the layered Green's function may be computationally 

more efficient. Although employing this type of Green's function eliminates the use of ana-

lytic solution for the half-space Green's function, the matriX that must be inverted to solve for 

the unknowns will be much smaller, thus saving computational effort.3 

The numerical simulations indicate that cross-hole and downhole to surface monitoring 

studies are not much affected by casing effects. In the practical example of using a dipole 

source at the end of the casing to monitor an injected conductive fluid (plume), the anomalies 

were enhanced by the presence of the casing. The enhanced response of a conductive zone 

was also observed when the casing was energized in another simulation. Thus, it may be 

advantageous to use the casing in experiments that monitor injection or extraction processes. 

A detailed analysis is needed to determine the configurations of the source, casing, and 

receivers that maximize the response and to verify whether a similar result is obtained with a 

resistive plume. 

Iterative inversions or imaging of a target in the presence of the casing are numerically 

intractable if the forward model of the casing and target uses the IE approach. Most of the 

computation and memory. will be used to calculate the fields of the casing. If a set of line 

sources can be used to sufficiently approximate the ,casing response, iterative inversion and 

3 Recall that the nwnber of operations to invert a matrix of size N X N is approximately N 3
• 
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imaging techniques may become numerically feasible. One could use the IE algorithm to cal­

culate the current distribution in the pipe for the homogeneous or layered medium problem. 

This current distribution can then be used as the "first guess" for the line sources. For non­

linear inversion techniques, the strengths of the line sources are adjusted at each iteration. 

It appears that the transmission line formulation for the MTC method is valid. If this is 

true, then calculating the formation resistivity using the transmission line analogy presented by 

Kaufman (1990) will be orders of magnitude more efficient than using the IE method. How­

ever, this transmission line analogy (see Section 6.1) may also produce erroneous results. 

This formulation cannot account for current channeling effects in the formation since it 

assumes that the currents outside the casing are radial. To incorporate this effect, a transmis­

sion network with series and shunt resistors in the formations and annular zones is needed. 

This transmission network possibly may be used to explain the anomalous response caused by 

a cement annulus with variable thickness. 

The analysis of the downhole to surface field data showed that the casing effects were 

large and radially symmetric. Hence, casing effects on field measurements can be minimized 

by placing the measuring dipoles orthogonal (azimuthally) to the radial lines. This 

configuration is insensitive to radial perturbations, such as casing effects and, unfortunately, 

plume responses. However, certain combinations of both azimuthal and radial dipoles may 

able to detect the anomalies produced by an injection plume, especially if there is a preferen­

tial flow direction of the fluid. A sensitivity analysis involving axisymmetric and non­

axisymmetric bodies in the presence of the casing is needed to detennine optimal array 

configurations that will give a large plume response with minimal casing effects. 
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ApPENDIX A 

GREEN'S FuNCTION 

For this study, the partial differential equation (PDE) that must be satisfied is Poisson's 

equation, either in scalar or vector form. Since the region of the homogeneous medium is 

considered unbounded, the Green's function method is a convenient technique to solve the 

inhomogeneous PDE. This technique represents the solution in terms of its source distribu-

tion. A solution to the inhomogeneous PDE is found for a unit driving source function, also 

known as an impulse or Dirac delta function. The general solution is written as a superposi-

tion of the impulse response solutions for the Dirac delta source at different locations. The 

strength of the general source at a particular point increases or decreases the effects of the unit 

source function at that point. The solution to a unit source function is called the Green's 

function. 

Scalar Green's Function 

Several forms of Green's functions exist depending on the governing PDE and boundary 

conditions. The various forms will not be given (see Morse and Feshbach, 1953 or Tai, 1971 

for further discussion). This section will consider the Green's function related to the govern-

ing equation of (2.1-11) which is: 

(A-I) 

where r is the field (obseIVation) point, r· is the source point, g is the Green's function for 

the unbounded homogeneous medium in this problem, and O(r - r·) is the Dirac delta function 

defined as: 
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J * * {I ~(r - r)dv = ' 
v* 0 , 

r in y* 

r not in y* 
(A-2) 

The solution which satisfies (A-I) and the boundary condition, lim g(r, r*) = 0 is: r __ 

*) 1 1 
g(r, r = -4 1 *1 2t r - r 

(A-3) 

Equation (A-3) is only given; see Morse and Feshbach (1953), Tai (1971), or Ward and 

Hohmann (1988) for the derivation of g(r, r*). From equation (A-3), the, following relation 

can be shown: 

* V* * V g (r, r ) = - g (r; r ) (A-4) 

For many geophysical problems, the surface of the earth must be considered. Thus, a 

Green's function is needed for a half-space. For this situation, an additional boundary condi-

tion is required: 

Vg(r,r*)'n=O 

where n is the unit vector of the half-space (plane) surface. 

(A-5) 

Morse and Feshbach (1953) and Kellogg (1953) made use of the method of images to 

obtain the half-space Green's function which satisfies equations (A-I) and (A-5). The half-

space Green's function is: 

* 1 [1 1] g(r,r)=42t Ir-r*1 + Ir-r/*I (A-6) 

where r; is the image location of the source point r* , see Figure (A-I). 

Dyadic Green's Function 

Equation (A-4) is the scalar Green's function that can be used to solve the scalar inho-

mogeneous PDE. The vector form of the inhomogeneous PDE requires the use of the dyadic 

Green's function. The dyadic Green's function can be derived directly by solving the vector 

fonn of the PDE or by the steps used in Section (2.2). Before showing the dyadic Green's 

function, a brief review on dyads is presented. 
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A dyad is defined by the juxtaposition ab where there is neither a scalar nor vector pro- ' 

duct of the vectors a and b (Balanis, 1989). In general, a dyad has nine components and in 

matrix form can be represented by: 

[

albl alb2 alb3]' 
[ab] = a2bl a2b2 a,p3 

a3bl a3b2 a~3 

(A-7) 

The sum of the dyad is called a dyadic, U and for the case of equation (A-7) is: 

3 

U = La"b" = al alb l 61 + 82 a,pl 61 + 83 a3bl 61 + 
,,=1 

~a~2~+~a,p2~+~a~2~+ (A-8) 

81 alb3 63 + 82 a2b 3 63 + 83 a3b3 63 

where ai and 6i are unit vectors and ai and bi are components of a and b. The dyadic U 

satisfies the relation: 

(c • a)b = c • ab = c • U (A-9) 

The quantities ab are operators such that the scalar product of the center expression in equa-

tion (A-8) is a vector pointed along the a base vectors with magnitude equal to the com­

ponents of c along the b base vectors. In general, c • U * U· . c but c . U = U . c where U· is 

the conjugate of U. 

The dyadic Green's function {!(r, r·) is defined as: 

(A-lO) 

where the operator (VV) is called the double gradient dyad. By using the relation of equation 

(A-4), the following property exists: 

i't • 1, • 1 VV. • \J(r, r ) = -VVg(r, r ) = - - g(r, r ) 
0' 0' 

(A-ll) 

The tensor of the dyadic Green's function can be written as: 

iP ifl a
2 

U1"i2U1 Ul a/
1
a/

2 
u2 Ul a/

1
a/

3 
U3 

[DIGIIDI UIG 12u 2 

DIG "D:] I 

11 

[t!(r, r·)] = U2G21Ul 
a

2 ifl a
2 

U2G 22U2 U2G n U3 =-
u2a/2a/1 Ul 

U2-2 U2 
U2 alzal3 U3 

g(r, r·XA-12) 
0' a/ 2 

, U3G 31 U l U3G 32U2 U3G 33U3 
a 2 ifl fP 

U3 al
3
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1 
Ul U3 al

3
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where Ij and Uj for (i =1, 3) are the components and unit vectors The non-asterisk and asterisk 

superscripts represent the field and source coordinate system, respectively. 

The dyadic Green's function components Gafi can be though of as relating the a­

component of the electric field at point (r) to the p-component of the scattering current at 

point (r*). By applying the reciprocity theorem, the dyadic Green's function can take the 

form (Harrington, 1961): 

Gafi(r, r·) = GPa(r, r*) 

which indicates that the dyadic Green's function is symmetric. 

(A-13) 

In addition to the matrix component representation of the dyadic Green's function, it can 

be represented by vectors in the fom: 

. (A-14) 

where: 

(A-15) 

The solution of the dyadic Green's function can be found by decomposing it into three vec-

tors; one for each component of the unknown field to be solved. The solution for the vectors: 

Gh G2, and G3, each satisfying the component form of the PDE and boundary conditions, are 

combined using equation (A-ll) to form the dyadic Green's function which satisfies the PDE. 
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Figure A-I: The positions of the point source and its image with respect to the half-space 
plane. Both are used to calculate the half-space Green's function. 
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APPENDIX B 

NUMERICAL APPROXIMATION: METHOD OF MOMENTS 

The integral equations derived in Chapter 2 are in the form of the Fredholm integral 

equation of the second kind. Very few of these types of equations, frequently encountered in 

geophysical electromagnetic (EM) problems, can be solved analytically in closed form. How­

ever, there are several approximation methods available that can obtain satisfactory solutions. 

One such technique is the method of moments, also known as the method of weighted residu­

als or point matching over subsectional basis. A solution to the field problem is obtained by 

reducing a functional equation into a matrix equation, and then solving the matrix equation by 

known techniques. Harrington (1968) is an excellent general reference on matrix methods to 

compute the solutions of field problems. Hohmann (1988) and Balanis (1989) are more 

specific and apply the method of moments to EM field problems. 

This appendix will outline the method of moments described by Balanis as applied to the 

solving the IE. An IE can be represented as a linear inhomogeneous equation of the form: 

L(f) = g (B-1) 

where L is an integral operator, g is the known source or excitation function, and f is the 

unknown field or response function. Both f and g can be scalar or vector quantities. If the 

solution to equation (B-1) exist and is unique for all g, the inverse operator L -1 exists such 

that: 

(B-2) 

Since g is known, equation (B-2) represents the solution to the problem. To linearize the 

problem, the unknown field can be expanded into a finite series. l 

1 An exact solution can be obtained if the series is aninfinite sununation. 
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N 

/ = L, a.../,. (B-3) 
,.=1 

where a,. are the constant coefficients and /,. are the basis or expansion functions. 

At this point, one would like to choose a basis function that can accurately represent the 

unknown function while minimizing the computational effort. In practice, there are two 

classes of basis functions used. The first is the entire domain (ED) basis function where the 

bases exist over the entire region of interest. Although no segmentation of the domain is 

required, the ED basis functions usually have difficulty in modeling complicated or arbitrary 

unknown functions. One common ED basis set is that of sinusoidal functions. Other ED 

functions can be generated by polynomials, such as Tschebyscheff, Maclaurin, or Legendre. 

The second class of basis function is the subdomain or subsectional bases. These bases 

exist only over subregions of the domain of interest Unlike the ED basis functions, the sub-

sectional bases may be used without a priori knowledge of the unknown function. Several 

kinds of subsectional basis functions exist piecewise constant, piecewise linear, and piecewise 

sinusoid. The most common and easiest to use is the piecewise constant basis function which 

also is used for the method of methods. It is defined by: 

I,. =/,.(r) = TI(r, r,.) = {
I, 

0, 

r E r,. 

r fi r,. (B-4) 

This basis fuitction, a rectangular function, is one only in the subregion where r,. is defined 

and zero at all other locations. 

Returning to the problem of solving the linear inhomogeneous equation, by substituting 

equation (B-3) into equation (B-1) yields: 

L(L, a,./It) = L, L(j,.) = g (B-5) 
,. ,. 

Since an approximation is used for the unknown field, there will be a residual E such that 

e=g-L,a,.L(j,.) (B-6) 
" 

The objective of the method of moments is not to force the residual to zero at every . ~ 
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point n, but to produce a vanishing residual in an average sense over the entire domain. This 

is done by taking the inner product2 of the residual, equation (B-6), with a set of N weighting 

or testing functions (Will) and setting the weighted residuals for all m to zero: 

N 

< Will' £ > = < Will' g > - L all < Will' L(jll) > = 0 
11=1 

(B-7) 

TIlls will force the residuals £ to be orthogonal to the weighting functions which results in: 

N 
< Will' g > = L a,. < wIII,L(jIl) > (B-8) 

11=1 

Equation (B-8) is a set of N linear equations and can be written in matrix form as: 

(B-1O) 

If LIIIII is nonsingular, then its inverse (LIIIII -1) exist and the solution for the unknown 

coefficients a" becomes: 

(B-ll) 

The weighting function must be chosen such that the elements of Will are linearly 

independent. Otherwise, the N linear equations will not be independent and the matrix L",,, 

may be ill-conditioned. Another factor which affects the choice of the weighting function is 

the ease of evaluation for the matrix elements [LIIIII ]. 

For the method of moments, the weighting functions are replaced by the Dirac delta 

functions. TIlls results in obtaining the solution at discrete points in the region of interest. In 

equation (B-8), replacing W", with the Dirac delta function results in: 

< ~r - rill), g > = L < o(r - rill), L(j,,) > 
" l o(r - rill) • g(r) dr = ~ a,,! ~r - rill) • L(j,,(r» dr 

~ g(r)lr=r = L a"L(j,,(r»lr=r 
1ft 1ft 

2 The inner product between vectors A and B is: 

< A, B > = l [A*,' B] dv 

where A* is the complex conjugate of A. 

(B-12a) 

(B-12b) 

(B-12c) 
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The use of the Dirac delta function in equation (B-!2) relaxes the condition that equation (B-· 

5) be valid for the entire domain and only enforces the condition at the N-points r",. Addi-

tionally, the Dirac delta weighting function does not increase the complexity of evaluating the 

linear operator L(j,,). 

The method of moments uses the piecewise constant function, equation (B-4), as the 

basis function for equation (B-12c). This results in set of the linear equations that is solved 

by equation (B-1!). For the method of moments, the general form of the set of linear equa-

tions can be expressed as: 

g(r",) = L «"L(II(r"" r,,» (B-!3) 
" 



ApPENDIX C 

AxISYMMETRIC GREEN'S FuNCTION 

In this appendix, the half-space axisymmetric (ring) Green's function uses the Dirac 

delta source function and its image and must satisfy the governing field equatiOn, Poisson's 

equation: 

(C-l) 

In an axisymmetric cylindrical coordinate system, the Laplacian of the Green's function and 

the Dirac delta function can be written as: 

[ cj2 1 a a2 
] •• 1 [~ • \s: • su • S:f • J - + -- + - g(p. z, p • z ) = - - u{p-p JU(z-z ) + V\p-p )V\z+z ) 

ap2 p ap az2 21tp 
(C-2) 

The representation of the Dirac delta function in the cylindrical coordinate system is found in 

Stinson (1976). The delta function term on the far left of equation (C-2) represents the pri-

mary source and the right term is its image. The image is offset in the negative z· position 

. with respect to the primary so that the boundary condition at the surface is satisfied. Thus, 

equation (C-2) is the partial differential equation (POE) that will be solved. 

Taking the Hankel transfonn of zero order, equation (C-2) becomes: 

(C-3) 

where Jo(x) is the Bessel function of the first kind of order zero. 

Applying the Fourier tranSform, results in the following: 

- [A2 +k2]g(A,k,pO,zO)= - 2~Jo(A.pO)[e-ihO +ei,b°l (C-4) 

which leads to: 
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The inverse Fourier transfonn of equation (C-5) is: 

gQ... z, p*, z*) = 2~ I 2~ [A,2 + k2r1Jo<AP*)[e-ih* + eih*]eihdk 

= 4~ JoQ..p*)[e4.Iz-S-1 + e4.{Z+Z*>] 

Inverse Hankeltransfonning yields: 

g(p, z, p*, z*) = -41 jJoQ..p·)[e4.b:-S-1 + e4.{%~*>]JoQ..p)dA, 
1t o 

= _l_jJoQ..p)JoQ..p*)[e4.lz-S-1 + e-l.(Z+Z*~d,A, 
41t 0 
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(C-5) 

(C-6) 

(C-7) 

Equation (C-7) is the half-space axisymmetric Green's function that satisfies Poisson's equa-

tion. It can be expressed in tenns of elliptical integrals but will be left in this fonn for con-

venience. 

The axisymmetric dyadic Green's function is found by applying the double gradient 

dyad, equation (A-lO), to the axisymmetric scalar Green's function which can be expressed as: 

~ * 1 VV * 1 vv· * u(r, r ) = - g(r, r ) = - - g(r, r ) 
0' 0' 

[ 

a2 * p--p 
* * 1 apap· 

e(p, z ,p ,z ) = - a a2 * 
p apaz* Z 

(C-9) 



ApPENDIX D 

THE r FuNCTIONS 

This appendix describes the derivation of the solutions for the axisymmetric Green's 

function volume integral i'-function. This i'-function can be expressed as: 

i'( "). 2~a J JVV" ( ")"d "dz" r, r = - -- g r, r p p 
al •• 

• p 

(0-1) 

where g(r, r") is the axisymmetric Green's function, equation (C-7) in Appendix C. The ele­

ments of the dyadic i'-function are: 

a a a a -- --[rpp" rp~l ap ape ap az· 
= - 2~a J J g(r, r·) p. dp" dz· 

r.p. r a l •• a a a a u* • p 
az ape ---az az· 

(0-2) 

The remaining sections contain the derivation of the solution for each r component 

Dl The r u* -Function 

Using the axisymmetric Green's function, the rue -function is 

(01-1) 

The Bessel integral tn equation (01-1) is: 

... 1 c " •.• 1[ 1 P o().p )p d P = ')..2 J J O(AP »).p Ad p ="i bJ 1 (A.b ) - cJ 1 (Ae )J 
p b ~ 

(01-2) 
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where b = a + lla and c = a - lla. 

Equation (D1-2) is the solution of the integration, but can be approximated by the following 

procedure. Rearranging the bracketed term of equation (D1-2), one obtains: 

(D1-3) 

The Taylor series expansion of the Bessel terms gives: 

(D1-4a) 

and 

(D1-4b) 

Substituting these expressions into equation (D1-3) yields: 

(D1-5) 

If one assumes that the pipe thickness Ua is much less than the distance to the source 

and the pipe conductivity is much greater than the surrounding medium, then the "thin sheet" 

approximation can be used. For small thickness, the higher order terms of lla are negligible 

and equation (D1-5) can be approximated by the following: 

Ua').3aJ l'(Aa) + UaAJ lCA,a) = Ua)'[(Aa)Jl'(Aa) + J l(Aa)] = Ua)'[AaJ o(Aa)] 

= Ua).2aJo(Aa) 

The ).2 is cancelled by the ).-2 term in equation (D1-2) and the Bessel integral becomes: 

f J oCA, p.)p. d p. = 2a llaJ o(Aa ) 
p. 

(D1-6) 

(D1-7) 

The evaluation of the exponential terms of equation (01-1) is accomplished by the fo1-

lowing procedure: 

(01-8) 
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where Z6 = Zo + f}.z, zii = Zo - f}.z and f}.z = h./2. Three cases occur for the evaluation of the 

first integral in equation (01-8): 

·t J e-i..I.-z·ldz· 

'0 

z < Zo - f}.z 

·et 
= J e-i..(·-I·)dz· = z > Zo + f}.z (01-9b) 

'ii 

For the second integral on the right side of equation (01-8), the solution is: 

,et '0 
Je-i..(,+z·)dz· = - ~ Je-i..(,+z·)dz· = 
'ii 'ii 

1 [ -i..(.+zet) -i..('+zii)] - - e -e 
A. 

(01-10) 

Combining equations (01-9) and (01-10) yields, 

-i..(.t -.) -i..(,o -I) -i..(,+,o) -i..(,+zo) 
-e +e -e +e Z < Zo - f}.z 

1::("1-) ___ 1 -i..(.-Io) -i..(.-Io) -i..(.+.cr) -i..('+zii) 
<"I\.Z A. +e -e -e +e Z > Zo + f}.z (01-11) 

-i..(. 0-1) -i..(%-Io) -i..(z+·cr) -i..(,+zo) 2 
-e -e -e +e + Zo - f}.z ~ Z ~ Zo + f}.z 

Taking the partial derivative with respect to z of equation (01-10) yields: 

-i..(. 0-') -i..('O-l) -i..(,+zo) -i..(.+zo) 
+ e - e + e - e ,z < Zo - f}.z 

-i..(z-lo) -i..(,-,o) -i..(z+.cr) -i..('+'o) = +e -e +e -e Z > Zo + f}.z (01-12) 
-i..(.cr -.) -i..(.-IO) -i..(,+,o) -i..(z+.o) 

+ e - e + e - e • Zo - f}.z ~ Z _~ Zo + f}.z 

The second partial deriva~ve with respect to z gives: 

-i..(,o-,) -i..(.o-') -i..(.+z.o) -i..(z+.o) 
- e + e + e - e , Z < Zo - f}.z 

-i..(.-.o) -i..(,-,o) -i..(,+,o) -i..(z+,o) 
+e -e +e -e 

I 
Z > zo+ f}.z (01-13) 

-i..(,o-l) -i..(.-.o) -i..(,+,o) -i..(z+.o) 
-e -e +e -e Zo-!:U ~z ~zo+& 
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The following form is used to simplify the expression in equation (01-13). 

o ~ 0 ~ -l.a. /J;zz. (Az) = ~~:" (Az) = - ~~z (Az) = A ~(±);'e • 
oZ oz i=1 

(Ol-14a) 

where: al = Iz-zcf 1 , a2 = Iz-zo 1 , a3 = (z+zcf) • CX4 = (z+zcf) , (01-14b) 

and the values of (±)l = ±1 are dependent on z, Zo. and Az in equation (01-13). 

Combining the evaluations of the Bessel and exponential terms, equation (01-1) is: 

r .. = :. W (WIQJ» - cJ1Q.c)l][" t. (±)f e·',}"Q.p)dl. 

= ~CJ ~ (±);' [bf J lQ.b)J o(A.p)e -l.aidA - c f J l(A.c)J o(A.p)e -l.a.;dA] (01-15) 
CJl.=I. ~ ~ 

The general solution for the integral in equation (01-15) has the form of equation (3.1.1-9): 

-
p. I J 1(A.p·)J0(A.p)e -l.aidA = FlOO(p·, p, 0.;) (01-16) 

Thus, the form of the solution can be expressed as: 

(01-17) 

Using equation (01-2), the approximate solution of the p. -integration, equation (01-1) 

is: 

(01-18) 

The integral of the above equation (01-18) can be found in Luke (1962) and is: 

- . a. k·3 

J J I'l ~)J I'l ,,) -l.aiAdA - · · E(k ) 
o 0\"" 0\''1-' e - 47t(pa)312 (1-k;)2 i 

(01-19) 

where: 

k. = 4pa [ l
In 

• a?+(p+a? 
(01-20) 



· 350 

and E(k) is the complete elliptic integral of the second kind. 

Several tests were done to check the approximation solution equation (01-2) with the 

exact solution equation (01-17). These tests showed that the two solutions gave nearly the 

same results when using typical values of the pipe model. Since the exact solution required 

much more time to compute than the solution of the approximation, the approximate expres-

sion (01-19) was used to solve the problem. 

The approximation solution used for r zz* is: 

(01-21) 

D2 The rpz* Function 

The integral fOIm of rpz* can be found by axisymmetric Green's function: 

(D2-1) 

The Bessel integral evaluation is the same as that used for the r zz* -function, equation (01-7): 

~ J o(A.p • )p. d p. = ~ [bJ I CAb) - cJ I (Ae )] (OS-2a) 
p 

:: 2a l!.aJ o(M ) (02-2b) 

where b = a +!la and c = a - !la. 

The evaluation of the z· -integration is also the same as equation (01-11): 

-')..(%6-%) -')..(%O~) -')..(H%6) -')..(H%O) 
- e + e - e + e , z< Zo 

-')..(%-'0+) :. -')..('-'0-) -')..('+%0+) -')..('+%0-) = - e + e - e + e z> Z6 (02-3) 

-')..(%6-%) -')..('~O) -')..(%+%6) -')..('+%0) + 
-e +e -e +e ., zo~z~zo 

where: (ll = Iz - Z6 I, Clz = Iz - Zo I, (l3 = (z + Z6) , C1.t = (z~+ zo) , (02-4a) 
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Z6 = Zo + !:J.z and zii = zo';" !:J.z (D2-4b) 

Evaluating the p-derivative of the zero order Bessel function and using equations (D2-2a) and 

(D2-3), the solution of equation (D2-1) is: 

r ... ~ : 1 [ it IV ,Q.b l - c1,(Ac l)] ~ (-I)' e -"'j[ -1J ,(lpl] d~ 

= ~~ ~ (-li+{bI J 1Q..b)Jl(Ap)e 44id'A. - cI J 1(Ac)Jl(Ap)e ~d'A.] 
The general solution for the integral in equation (D2-4), found in Luke (1962), is: 

Fuo(p·, 1', c:x;) = 1'·1 J 1(Ap·)Jl(Ap)e 44id'A.= 1C(Pp~·)1I2ki [(2-k?)K(ki ) - 2E(ki )] 

where: 

k· = pp 
[ 

4. ]112 
I c:x;2+(p+p.i 

(02-5) 

(02-6) 

(02-7) 

K(k) and E(k) are the complete elliptic integrals of the first and second kind, respectively. 

The form for the exact solution of equation (D2-1) is: 

(02-8) 

Using the approximation for thep· -integration (equation DI-7), equation (02-1) can be writ-

ten as: 

(02-9) 

The integral of the above equation (02-9) is (Luke, 1962): 

- k [ 222 l 44. i CX; Ta -I' f J OCAa)Jl(A.p)e IAdA. = 112 K(ki ) - 2 2 E(k;) 
o ~~) cx;$~ 

(02-10) 

Again, the approximation: solution, equation (02-10), gave nearly the same result as the exact 

one for the model parameters used. Hence, the approximate expression for r pZ- can be used 

and is: 
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(D2-11) 

D3 The rap.-Function 

The derivation for rap. -function is contained in this section. The rap. -function can be 

expressed as: 

Taking the p. -derivative of the integrand gives: 

- J[~Jo(Ap·)lp·dP· = - J -').Jl(Ap·)p·dp· = ~[fxJo(X)dx - JYJo(Y)dyj (D3-2) 
p. dP J p. II. 0 0 

The solution of the p. -integral of (D3-2) is much more complex than in the previous sections. 

The following steps are used to find r,p.' Both the integrals on the right side of (D3-2) have 

the same form and can be evaluated by integration by parts: 

lroJ1(ro)dro = - wJo(w) + IJo(ro)dro = ;W[Ho(W)Jl(W) - H1(W)Jo(W)] (D3-3) 

where Ho(w) and H1(w) are Struve functions of the zero and first order, respectively. By let-

ling x = Ab , y = A.c , 

F(w) = Ho(W)Jl(w), 

and 

equation (D3-2) can be expressed as: 

- J. [ ~:o J t(ApO>]pO dpo = ~ {~ X[F(x) - G(x)]- ~ Y[F(y) - G(y)]} 

= ; b[F(X) - G(X)).- ~C[F(y) - G(y)] 

(D3-4a) 

(D3-4b) 

(D3-6a) 

(D3-6b) 
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Equations (D3-6) are the solution to the p. -integration. Unfortunately, the A-integration 

of equation (D3-1) cannot be solved analytically using equation (D3-6). Therefore, an approx­

imation of equation (D3-6) will be calculated. Rearranging the teIIDs of equation (D3-6a) 

yields: 

~ ~ ([XF(z) - yF(Y)]- [xG(z) -G(y)]} (D3-7) 

The Taylor series expansion of the F(x) and F(y) are: 

F(x) = F(A.(a +AD» = F(A.a) + (A.Aa )F'(A.a) + (AAa iF(2)(A.a) + ... (D3-8a) 

and 

F(y) = F(A.(a -AD» = F(A.a) - (A.Aa )F'(A.a) + (AAa )2F(2)(A.a) - ... (D3-8b) 

The left bracketed tenn of equation (D3-7) can be written as: 

~ F(x) - y F(Y)] = A(a +AD) [F + (AAa )F' + (A.Aa )2F(2) + ... ] 

- A.(a-AD)[F - (AAa)F' + (AAa)2F(2) - ... ] 

= 2 {M[ Q.Aa)F' + Q.Aa )3F(3) + ... ] + AAa[F + <A.Aa )2~) + ... J} (D3-9) 

where F = F(M). 

If the thickness is much less than the distance to the field point and the conductivity of 

the pipe is much greater than the surrounding medium, then the higher order teIIDs of AD are 

negligible and equation (D3-9) can be approximated: 

[XF(X) - YF(Y)] = 2A.Aa[F(M) + (M)F'(A.a)] 

Likewise for the right bracketed teIID: 

[x G(x) - Y G(y)] = 2A.Aa[ G(A.a) + (M )G'(M)] 

The derivatives of F and G are: 

and 

(D3-lOa) 

(D3-lOb) 

(D3-11a) 
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G'(w) = Jo'(w)H,(w) + J .,(w)H«w) = - J ,(w)H,(w) + J o(w) [HO(W) - H'~W)] 
JoHl(W) = Jo(w)Ho(w) - J1(w)H1(w) - (D3-11b) 

w 

Using the relation of equations (D3-4) and (D3-11) for F, G, F', and G', the right side of 

equation (D3-10) becomes: 

~(Aa) + 1.a F'(Aa)] = H.,(1.a)J ,(Aa) + 1.a[ H.,(1.a)J.,(1.a) - Ho(Aa ~ ,(Aa) + ~ J,(Aa) - H, (Aa)J ,(Aa)] 

= 1.a~ o(Aa)H.,(1.a) + ~ J ,(Aa) - J, (Aa )H, (Aa)] (03-120) 

and 

Using the relation between equations (D3-1O) and (D3-12), equation (D3-7) becomes: 

~ ~ {2).'a "" [J.,(1.a )H.,(1.a) + [~ - H ,(1.a )jJ ,(Aa )]} 

- ~ i{2A.2a.1a~0(Aa)Ho(Aa) - Jl().a)H1(Aa)J} = 2a.1aJ.J1().a) 

The expression used to approximate the p. -integral follows: 

(D3-12b) 

(D3-13) 

(D3-14) 

The exponential term of equation (D3-1) is equivalent to the ones of the previous sections: 

The solution to the exponential term is found in equation (zz-12) and can be written as: 

-),,(zo -z) -),,('0 -z) -),,(z-no) -),,('+'0) 
- e + e:. - e + e , i < Zo 

Sz(Az) = 
-),,(.-10) -),,(.-10) -),,(:+'0) -),,(.+zo) + 

- e + e - e + e , Z > Zo 
4 . -'-a. 

= L(-l)'e • (D3-16) 
-),,(10 -z) -),,(1-"0) -),,(z+'o) -),,(z-no) 

- e + e - e + e • Zo S Z S Z6 
;=1 
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where: o.l=lz-ztl, 0.2=lz-zol, 0.3=(Z+Zt). ~=(Z+ZO), (D3-17a) 

zt = z + & and Zo = z -/lz (D3-17b) 

Using equations (D3-14) and (D3-17), the solution for equation (03-1) can be expressed as: 

(D3-18) 

The above integral has the same form of equation (2.3.2-10) except the a and p tenns have 

reverse roles. Therefore, using the derivation from Section (2.3.2), the expression (D3-18) is: 

(D3-19) 

and the expression for rzp. becomes: 

r - al:J.alla ~(-1); { Ie; 
zp· -.LJ 112 

al ;=1 2M (pa) 
(D3-20) 

D4 The rw-Function 

The integral fonn of the r pp. -function can be expressed as: 

The p. -integration is the same one as equation (D3-14) which is approximated by the follow-

ing: 

- J [~Jo(Ap·)lp. dp· = 2al:J.a')Jl(A.a) 
p. ap J ' (04-2) 

The z· -integration is also evaluated by equation (D1-11) and is: 

(04-3) 

which can be written as: 
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-I..(zo-z) -I..(zo-I) -1..(1+10) -I..{H10) 
+e -e -e +e , z < zo-/lz 

~p(A.z) = -1..(1-10 ) -1..(1-10) -1..(1+10) -1..(1+10) 
-e +e -e +e , z > Zo + /lz (044) 

4(zo-%) -1..(1-%0) -1..('+%0) -I..(H·O) 2 
+e -e -e +e - Zo - /lz ~ z ~ Zo + /lz 

where: al = Iz - zt 1 , ~ = Iz - Zo 1 , a3 = (z + zt) , <X4 = (z + zo) , 

zt = Zo + /lz and Zo = Zo - /lz 

The following form is used to simplify the expression in equation (044): 

(04-5) 

where EI = 2 for Zo ~ z ~ zt, and E. = 0 for all other z values. 

Lastly, the p-derivative of equation (04-1) is: 

o op J 0(A.p) = - IJ l(A.p) (04-6) 

Using equations (D4-3), (04-5), and (D4-6), the solution of equation (04-1) can be expressed 

as: 

rpp. = ~~l [2a&lAllCAil)J[ - ~ ~~C±)fe-Aai -Ezll[ -Al 1(Ap)]dA 

= a&lll.CJ ±[C±)f j J lCAil)J lCj.p)e -AaiAdA - EI j J l(Aa)J l(Ap)AdA.] 
CJl ;=1 0 0 

The solution of the left integral in equation (D4-7) is: 

The integral on the right of equation (04-7) requires some manipulation. Let: 

The integral on the right ~ide of equation (04-9) is: 

, p >a 

, p =a 
, p < a 

(04-7) 

(04-8) 

(04-9) 

(04-10) 

'. 
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Taking the negative a -derivative yields: 

{ 

p-1 • P > a } 
- ~ (2a r 1 • p = a = _1_ 
~ 2a2 

o . P < a 
for (p = a) (D4-11) 

Recall that Ez = 2 only for Zo < Z < Z6. otherwise E = o. So the integral on the right side of 

equation (D4-7) is: 

Ep = EzI J 1(Aa)J1(Ap)'Ad'J... = :2 for (p = a) and (zo < Z < Z6 ) (D4-12) 

Equation (D4-12) only occurs when evaluating the singular cell. Hence. the final fonn of the 

solution for r pp* is: 

r _ a Ila lla ~.{(+)p a; k; 
pp* - ~ - I 3/2 

a1 ;=1 41t(pa) [
1+k'2 l} 72E(k;) - 2K(k;)J - £p , (D4-13) 

where: 

(p = a) and (zo < z < zt) 

otherwise 



ApPENDIX E 

THE GRADIENT INTEGRAL 

TIlis appendix solves the bracketed term in equation (3.1.2-10) which is: 

From appendix equation (D1-7), the p. -integration is approximated by: 

J J O('Ap· )p. d p. = 2a!YJ.J oQ..a ) (E2) 
p. 

The exponential term is found in appendix equation(D2-3) and is: 

d J [ '1·1 ".):1. . 4 . -A.a. - e-.... z-z - e-..... z+z ~dz = ~z(A.z) = !: (-I)'e I 

dZ z. j=1 
(E3) 

where: (XI = Iz - (zo + & )1, (X2 = Iz - (zo - & )1, (X3 = [z + (zo + & )], and <l4 = [z + (zo - & )]. 

Combining the results, equation (EI) is: 

:z j. g (r, r· )dv· = alulI ~(-I)j e-AajJ oQ..a)J O(Ap)dA = a.1a~(-li I J o(Aa)J o(A.p)e -AajdA 

The integral in equation (E4) is found in Luke (1962): 

j J o(Aa )J o(A.p)e -Aaj d A = k
j 

112 K(kj ) 

o 1C(pa) 

where: 

[ 
4 

]

112 
k- = pa 

, (Xj 2 + (p + a)2 

(E4) 

(E5) 

(E6) 

and K(k) is the complete elliptic integral of the first kind. The solution of equation (E-l) is: 

dJ •• 4 . kj 
:l g(r,r )dv =!:(-1)' II2K(kj ) 

uZ v • j=1 1C(pa) 
(E7) 
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