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THE ELECTRICAL RESISTIVITY METHOD IN CASED BOREHOLES

by

CLIFFORD J. SCHENKEL

Abstract

The resistivity method in cased boreholes with downhole current sources is investigated
using the integral equation (IE) technique. The casing and bther bodies are characterized as
conductivity inhomogeneities in a half-space. For sources located along the casing axis, an
axially symmetric Green’s function is used to formulate the surface potential and electric field
(E-field) volume integral equations. The situations involving off-axis current sources and
three-dimensional (3-D) bodies is formulated using the surface potential IE method. The solu-
tion of the 3-D Green'’s function is presented in cylindrical and Cartesian coordinate systems.
The methods of moments is used to solve the Fredholm integral equation of the second kind

for the response due to the casing and other bodies.

The numerical analysis revealed that the current in the casing can be apprdximated by its
vertical component except near the source and the axial symmetric approximation of the cas-
ing is valid even for the 3-D problem. The E-field volume IE method is an effective and
efficient technique to simulate thé response of the casing in a half-space, whereas the surface

potential approach is computationally better when multiple bodies are involved.

Analyzing several configurations of the current source indicated that the casing response
is influenced by four characteristic factors: conduction length, current source depth, casing
depth, and casing length. _‘ The conduction length, the most important factor, relates the casing
conductance with the coriductivity of the host medium and is an indicator of the ability of the
pipe to carry tﬁe current along its length. When the source is located within the casing, the

/
characteristic parameters can be reduced to. three ratios: the conduction length to casing length



(conduction ratio), the source position to casing length, and the casing depth to casing length.
For a conduction ratio that is approximately greater than two, the fields from the casing are
similar to those produced by a line source. When the source is located beneath the casing, the
distortion of the fields is also dependent on the casing-source separation distance. For a
current source near the casing (« 100 casing diameters), the casing greatly distorts the fields
when compared to those produced by a pole source. When the source is greater than 100 cas-
ing diameters from the pipe, only the region near the casing is affected. The numerical simu-
lations indicate that cross-hole and downhole to surface time monitoring studies may be con-
ducted with very little casing effect. An energized casing or a dipole source at the end of the
casing can enhance the anomalies produced by a conductive zone. The use of casing in

experiments that monitor injection or extraction processes may be advantageous.

Numerical analyses indicate thai resistivity measurements through metal casing (MTC) is
feasible provided one can distinguish voltage differences in the order of 10’s puV/m per
Ampere. The discontinuity of the E-fields correspond to the layer boundary and the rate of
change of the E—t:1e1d is inversely proportional to the resistivity of the adjacent formation. For
a simple layer model, the formation resistivity can be estimated by the ratio of the potential
and its second derivative provided that the casing conductance can be obtained. For an unk-
nown casing conductance, two set of measurements are needed to calculate the formation
resistivity. At the places where the contact resistance is low, the current tends to leak into the
fomiation more readily and the formation resistivity will be underestimated. A transmission
network, to incorporate the current channeling effects, can be used to simulate the MTC
method. The bdnehole fluid resistivity has negligible e'ffects on the resistivity measurements in
the casing. Van‘aﬁons of the casing conductance only affect the measurements when the
discontinuity lies within the span of the array, while variations of the cex;l—ent annulus have
- great effects on the estimate of the formation resistivity. Geometric factors, such as length

and radius of the casing, as well as the array location within the casing affect the resistivity

measurements. The resolution of the layer boundary is limited to the electrode spacing needed



to estimate the second derivative. The radius of investigation is independent of the electrode
spacing: using different electrode spacings will not provide any additional information about
the conductance of the cement or the formation. To determine the true formation resistivity in
the presence of a cement annulus is not possible without prior knowledge of the thickness or

resistivity of the cement,

~ The downhoie to surface field experimeht, conduced at a Dupont test well near Waverly,

Tennessee, showed that the signals can be measured in a resistive environment. Not only are

casing effects large for measurements near the well, but they can be seen at the far electrodes

even for sources located far below the casing. The modeling indicated that strong interactions

between the casing and near surface formations exist.
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CHAPTER 1

INTRODUCTION

The use of downhole current sources in resistivity mapping can greatly enhance the
detection and delineation of subsurface features (Merkel and Alexander 1971, Daniels 1978,
| and Daniels and Dyck 1984). Theoretical studies of a spheroidal target (Snyder and Merkel
1973, Dobecki 1980, and Lytle 1982), as well as numerical integral equation results for arbi-
trary objects (Daniels 1977, Yang and Ward 1985, and Beasley and Ward 1986) have shown
an enhanced xespbnse of the body when downhole sources are used. Wilt and Tsang (1985),
using a three-dimensional finite difference modeling algorithm developed by Dey and
Morrison (1979) to simulate the migration of contaminants, indicated that nearly an order of
magnitude sensitivity can be obtained with the mise-a-la-masse configuration. Asch (1990)
presented a differencing scheme to minimize near-surface variations which further enhances
the sensitivity to changes in resistivities at depth. Sehsitivity to variations in resistivities
makes the downhole methods ideally suited for monitoring subsurface processes such as injec-
tion in enhanced oil recovery, leakage or injection of contaminants at a waste site, or ext‘rac-i

tion and reinjection processes in geothermal production.

For many of the above applications, the wells are cased with steel, which distorts the
fields in the medium and leads to an erroneous interpretation of the field data (Holladay and
West 1984 énd Wiliiams and Wait 1985). If the casing is used as an electrode, the results
may be unpredictable because the current leaves the pipe irregularly due to the variability of

the contact resistance 'bew}een the casing and formation (Kauahikaua et al., 1980).

The purpose of this work is to examine the resistivity method for current sources in

wells cased with steel. This research begins with an analysis of the distortion of the fields in



the half-space when current sources are placed on the axis and beyond the end of the casing.
Since many holes are left uncased for some distance at the bottom, the first objective was to
determine how interpretable data would be for downhole to surface and cross-hole
configurations of electrodes. Through an understanding of how the fields are distorted by the
interaction of the casing, source, and host medium, one may develop methods which compen-
sate or minimize the deviations. With this knowledge, field tests can be designed to reduce
the distortion caused by the casing or even to use the casing effect in the éxperimem_ Since
the formulation of the numerical solution for this problem was perfectly general, a second
objective of the reseanchv became the analysis of the fields when the current source was inside

the casing.

Previous Research

The effect of casing on electrical survey data has been the subject of numerous studies
in the geophysical literature. In this section, the publications on resistivity measurements in

the presence of the casing are reviewed.

Several authors have investigated the distortion effects of nearby casing on surface resis-
tivity configurations. Wait (1983) analyized the effect of a vertical semi-infinite conductor on
the apparent resistivity for a surface pole-pole array. His numerical results indicate that the
apparent resistivity can be sen’oqsly affected by the conductor even when the electrodes are
located at a distance of more than ten times the pipe radius. In his formulation, a surface
impedance on the conductor was incorporated to allow for an oxidized layer or coating. This

impedance layer appears to reduce the effects of the conductor on the apparent resistivity.

Holladay and West (1984) studied the effects of well casing on surface dipole-dipole
resistivity and induced polarization (IP) surveys. To examine the factors which affect the
measurements, they used the semi-infinite pipe solution and an integral solution approach
using the Galerkin weighted residuals technique to determine the currents in the pipe. They

studied the effects of the casing length on the apparent resistivities. In the evaluation of the



field data, multiple pipes were used. In obtaining the response of the multiple pipes, they
ignored the casing inte;'actions and determined the response by the superposition of the fields
due to a single pipe at several casing locations. They indicated that the metal casing may
strongly distort the response of the desired signal on surface surveys. Important factors
included the pipe conductance, the distance of the pipe from the survey stations, and the pipe

length and radius.

Johnson et al. (1987) also investigated the effects of a finite length pipe for surface sur-
veys. They assumed that the pipe can be approximated by a set of finite length cufrent line
sources which resulted in a set of linear equations. The potentials are obtained by matrix
inversion of the linear equations. In their ‘study, a thin surface layer was introduced to
account for the contact resistance between the pipe and host medium. They calculated the
apparent resistivities for pole-pole, Schlumberger, and dipole-dipole arrays. In the'ir pole-pole
analysis, they showed that the apparent resistivity near the casing decreases as the pipe
lengthens.

In most of the studies of subsurface elecmde configurations, the currents are injected in
- the borehole and the potentials are measured at various points in the medium. If a well is
cased in steel, point source approximations cannot are invalid. Sill and Ward (1978) used the
well casing as a buried electrode for their mise-a-la-masse experiment at the Roosevelt Hot
Springs geothermal field in Utah, as did Kauahikaua et al. (1980) for their mise-a-la-masse
mapping of a high temperature geothermal reservoir in Hawaii. Sill (1983) used the well as a
source to monitor an injection test at Raft River, Idaho to determine if measurable changes
that might indicate the direction of fluid flow could be observed. Rocroi and Koulikov (>1985)
delineated a known resistive hydrocarbon deposit in the USSR by injecting current into two
cased wells. - |

All of these studies 'were based on the common assumption that a constant line source

can be used to represent a pipe excited by a source in or on it. The highly conductive
/

grounded casing is supposed to act like a transmission line which distributes the current along



its length. If the casing is very long or the surrounding formations are conductive, the current
will not extend uniformly along the entire length of casing. This may have occurred in the
experiment of Kauahikaua et al. where they indicated that the current appeared not to flow in

the lower section of the casing.

Other studies, which do not use the line source approximation, attempt to solve the prob-
lem analytically. In early works, the solutions for the pipe nespbnse were obtained by making
a simplifying assumption that it can be represented by a solid cylinder éxtented to infinity
(Wait 1952 and Smythe 1968). Later, the cylindrical multi-layered infinite or semi-infinite
pipe response was investigated for both direct current (DC) and electromagnetic (EM) sources
locatgd inside or outside the pipe (Otto 1968, Gianzero and Rau 1977, and Wait 1982, and

Wait and Williams 1985).

LaBrecque and Ward (1988) investigated the effects of well casing on surveys for frac-
ture location using a downhole source. They used the pipe model of Holladay and West
(1984) and combined it with Beasley and Ward’s (1986) rectangular body model to produce
an integral equation for the electric fields. Like Holladay and West, they used the two-
dimensional approximation where the electric fields in the pipe are radially symmetric. The
fracture was modeled with a thin vertical prism so that only a single row of elements was
needed to define the target. Their study showed that large distortions of the apparent resistivi-
ties may occur when the source is near the end of the casing. They indicated that for
borehole to surface surveys the effects of the casing are small for a source completely below

the casing and for receivers at least one casing-length away from the pipe.

Twp non-conventional techniques, measurements while drilling (MWD) ‘and measure-
ments through casing (MTC), measure signals in the presence of a steel drill string or casing.
These methods have been developed due to technological advances in electronics so that
minute signals may be measured in hostile environments. The MWD method collects realtime
information during drilling operations. Holbrook (1985) determines propegties of the invasion

_zone with resistivity measurements during drilling. Sorensen (1989) has measured formation



resistivity while auger drilling using the "Ellog" method. The MTC logging method measures
the electrical resistivity of the formation through metal casing. Several patents, Kaufman
(1989), Vail (1989a,b), and Gard et al. (1989), describe devices that are capable of measuring
through casing, but only Vail is known to have developed and tested such a tool. These non-

conventional resistivity applications are investigated in greater detail in the thesis.

Scope of Research

Four tasks constitute the objectives of this thesis. The first is the development of the
theory and computer algdxithms based on the integral equation method to determihe the poten-
tials due to a cased well and other three-dimensional objects in the half-space (Chapters II-
IV). The second is the evaluation of the casing effect and the parameters that influence the
behavior of the fields (Chapter V). The thifd is the numerical ana]ysis of several field situa-
tions involving steel cased wells: downhole current electrode surveys, measurement-while-
drilling, and measurements through casing logging (Chapters V-VI). The last is the applica-
tion of the algorithm to evaluate the field data from a survey conducted in a cased well

(Chapter VII).

Chapters II ahd III present two forms for the theofetical formulation of the integral equa-
tion method. The first makes use of the surface integration of the potential fields. The second
uses a the volume integral of the electric fields. In Chapter II, the integral equations are
derived from fundamental expressions. Chapter III evaluates the Green’s function expressions

for both types of integral equations.

The application of Green’s theorerﬁ to the field equations results in a Fredholm iptcgral
equation of the second kind for the unknown fields. The integral equation expresses the unk-
nown (field) function as superposition of the primary field caused by the applied source and
the scattered field due to— the inhomogeneities. For this problem, the inhomogeneities are
caused by a conductivity contrast between the disturbing bodies (pipes anq other objects) and

the background medium. In deriving the expression for the integral equations, a ring Green'’s



function is required for the axial symmetric problem and a point Green’s function is used for"

the three-dimensional problem.

The integral equation is solved by an approximate method of point matching over sub-
sectional bases (Harrington, 1968). This method involves the expansion of the unknown func-
tion into a series of weighting and basis functions at N discrete points in or over the region of
interest. Each basis function exists only over a subsection of the region and the corresponding
piecewise constant weighting function will only affect the approximaﬁ'oﬁ of the unknown
function over that subsection. This results in reducing the integral equation into a set of linear
equations which must be satisfied at the discrete points. The linear equations are simultane-
ously solved to determine the unknown basis functions. Once the basis functions are found,

the linear form of the integral equation is used to calculate the fields in the medium.

The accuracy and validity of the theoretical formulation and the computer algorithm is
tested in Chapter IV. Convergence and reciprocity properties of the numerical results are used
to check the accuracy or self-consistency of the method. The validity of the formulation and
algorithms is checked by comparison to knownuanalytic solutions and published results. The
analytic solutions for a semi-infinite vertical annulus and horizontally layered media are used
to check the numerical results for models with radial and horizontal boundaries, respectively.
The situation involving both boundaries is checked by comparison to the numerical results of

Gianzero and Anderson (1982).

In Chapter V, the casing effects are examined for several situations involving steel cased
wells and downhole sources. The semi-infinite vertical annulus and the electric field volume
integral equation method are used to determine the important parameters for the fields within
the pipe. In the half-space, the electric field volume integral equation method is used to illus-
trate the pipe effects on the potential fields. Position, thickness, diameter (radius), and length
of the pipe, as well as the' conductivities of the casing and background medium are the impor-

tant parameters which influence the casing response.
: ’

Several current electrode configurations are used to determine the casing influence on



downhole to surface and cross-hole measurements. Additionally, these effects are examined
for a configuration in which the casing segments are separated by insulators of various length
and are used as downhole current and potential electrodes. By separating several segments in
a well, multiple downhole sources or receivers can be used to image a target. The response of

the medium to a dipole source at the end of the pipe is also examined.

Several numerical examples are used to simulate practical situations. The first simula-
tion involves the monitoring of an injection plume with cross-hole and vdownhole-surface
measurements. The second is the transmission of a signal through the earth during MWD
operations. -

Chapter VI presents the numerical analysis of the MTC method. Kaufman (1990) inves-
tigated the behavior of the potential and its derivative for a borehole with casing based on
models of an infinite-length vertical annulus in a homogeneous medium. This chapter exam-
ines the resistivity measurements through a finite-length casing in a homogeneous or layered
medium. The algorithm based on the IE approach is used to investigate the effect in varia-
tions of the casing conductance, borehole fluid resistivity, and cement annulus. Geometric
factors, such as casing dimensions and location within the casing, may affect the resistivity.
measurements and must be studied. In addition to these topics, the relations of layer boundary

resolution and radius of investigation to the electrode spacing are examined.

The evaluation of a downhole-surface fesistivity survey ‘conducted near Waverly,
Tennessee is presented in Chapter VII. Three radial dipole surface arrays measure the vol-
tages for a succession of downhole current sources. The primary objective of the survey was
to determine if borehole to surface measurements were feasible in a resistive environmen.
Data of acceptable quality. was analyized by numerically simulating the apparent resistivities.
The surface IE method was used to produce the surface response of a partially cas’ed well in a
high resistive (> 1000 ©-m) layered medium. Finally in Chapter VIII, the results of this study

are summarized and discussed.



CHAPTER 11

INTEGRAL EQUATION FORMULATION

Physical phenomena which can be represented by fields are usually éxpressed by partial
differential equations. A solution is found when the field, governed by the partial differential
equation (PDE), satisfies the particular set of boundary conditions which are appropriate to the
given physical situation.

For geophysical situations, the geometry of the boundary value problem is so complex
that solutions are usually obtained numerically. The finite difference and finite elements
method, the most commonly used techniques, require a complete gridding of the solution
domain which must be fine enough to resolve the features of interest, usually the. inhomo-
geneities. However, strong constraints are placed on the resolution of the field for a large
domain due to the limited memory of the computer. Another drawback to these methods is
that the solution of the field is calculated for the entire domain although one may only need a

solution for a single point.

For situations where finite-size inhomogeneities are located within a domain, the integral
equation (IE) may be a more convenient technique. The boundary value problem is recast
into an IE which ihcorporates the boundary conditions directly into the formulation. This
method involves only the inhomogeneities or their boundaries, and any external sources which
are usually specified. Thus, the solution within the entire domain need mot be calculated,
although it may be obtaingd from the IE.

The use of the IE method to model geophysical problems is well documented in the
literature. Typically in electrical problems, the Fredholm integral equation of the second kind

is obtained by applying Green’s theorem to the field equation and employing the boundary



conditions. In terms of scattering theory, the IE is the representation of the total field which
is the supeiposition of a primary field and the scattered field. The primary or incident field
arising from a known source radiates in an idealized medium, usually homogeneous or lay-
ered. The scattered field, also known as the secondary field, is due to the inhomogeneities

with contrasting properties. located in the idealized medium.

~ The scattered field can be described by a surface charge distribution that accumulates on
the surfaces of the homogeneities. This method is typically used for the DC resistivity prob-

lem. Several examples of the IE involving the surface charge distribution can be found in

Dieter et al. (1969), Snyder (1976), or Eskola (1979). The other method, commonly used in -

electromagnetic (EM) modeling, is to describe the scattered field by a volume distribution of
current density or current dipole moment within the inhomogeneity (Hohmann, 1971, Ting and

Hohmann, 1981, SanFilipo and Hohmann, 1985, and Robertson, 1987).

This chapter will present the derivation of surface and volume IE methods as applied to
the DC resistivity problem. The first approach uses the surface integral of the potential on the
inhomogeneity to calculate the poltentials in the medium. This "surface potential method" is a
description of the physical phenomenon of the surface charges accuinulau'ng on the discon-
tinuities in the medium. Commonly, the surface IE solves for the surface charges on the inho-

mogeneity, but the method using surface potentials is much simplier to use. Only one IE is

required to solve the problem, whereas the surface charge method needs two equations: one to-

calculate the surface charges and another to find the potential function at the field point. The
formulation of the surface potential boundary IE approach follows that of Hvozdara (1982 and
1983) and Eidranta (1986). The second method determines the potential fields in the medium
by using the volume distribution of current density. This method is.not commonly used for
DC vresistivity modeling, although Holladay and West (1984) and Beasley and Ward (1986)
have applied this techniquAe. For this chapter, the familiarity with Green’s functions is helpful

and can be found in Kellogg (1953), Morse and Feshbach (1953) or Tai (1971).

itw
S
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2.1 Surface Potential Integral Equation

The boundary or surface IE method incorporates the surface boundaries of the inhomo-
geneities in its formulation. The surface charges on the boundaries can be described as a
source density distribution. The IE technique involving a source density distribution is
referred as the "source density" method. This technique requires that the source density distri-
bution must first be solved and the field solution is then calculated from an integral expression
that relates the field to the source density distribution. This method requires two integral
equations, one for the source density distribution and another for the field solution. If the
boundary values of the field play the role of the source density distribution, the formulated
expression is a "direct" boundary IE. This method makes use of Green’s theorem which
results in the expression of the harmonic function! as the superposition of a (surface charge)
single-layer and a (dipole) double-layer potential function.

This chapter will present the derivation of the direct boundary IE formulated for the DC
resistivity problem in an infinite medium. The haﬁnomc function is the scalar potential field
which is derived from the continuity equation, Faraday’s and Ohm’s laws. For this problem,
the single-layer and double-layer functions will contain the infinite medium Green’s function
and its normal derivative, respectivity. By applying the boundary conditions, the IE is
reduced to the double-layer function containing the harmonic function and the normal deriva-

tive of the Green’s function.

2.1.1 Potential Field Equation

The partial differential equation which govems the potentials can be derived from funda-
mental relations of electromagnetic (EM) theory. For a point source of current located at r,,

the continuity equation at a field point r is (Panofsky and Phillips, 1964):

1 A function is harmonic within a closed region if its second derivatives exist and are continuous, and it satisfies
Laplace’s equation at all points of that domain inducing its boundary (Kellogg, 1953).

2
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V-Jr)=18@r -1y 2.1.1-1)
where J is the current density, / is the current of ‘the current source, and &(r — r,) is the Dirac

delta function defined in Appendix A. Using Faraday’s law and noting that the electric field,
E is irrotational:

VXE= - %—‘:=o 2.1.1-2)

The electric field can be written as a gradient of a scalar potential, ¢:

E= -V¢ (2.1.1-3)
Using Ohm’s law:
J=cE (2.1.14)

and equation (2.1.1-3), substituting into equation (2.1.1-1) yields the differential equation:

V. —oVo=I8(c-1r) —> Vi%=- —(l;-[Vc * Vo +18(r - ro)] ' (2.1.1-5)
For a homogeneous region, there is no conductivity gradient and equation (2.1.1-5) becomes

the govemning field equation, the familiar Poisson’s equation:

V2= - éS(r -r) 2.1.1-6)
As can be seen from equation (2.1.1-6), the scalar potential is the harmonic function which is

being sought.

2.1.2 Surface Integral Equation Formulation

From the governing field equation (2.1.1-6) and with the use of the Green’s function,
Appendix A, the IE will be formulated. As stated previously, the harmonic function can be
.represented as the sum of the single-layer and double-layer potential functions. However, by
applying the boundary conditions on the inhomogeneity, the expression of the harmonic func-

tion in the IE can be reduced to a double-layer potential and the applied external fields.

Consider an inhomogeneity of conductivity o, and volume V; in an infinite homogeneous

medium of conductivity o, with volume V, (Figure 2-1). The boundary of: region 0 is the sur-
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face IT of the body (nommal unit vector np point towards medium 0) and surface I" of the -

sphere at infinity (outward normal unit vector nr). Region 1 has surface IT as its boundary.

Source in the Host Medium

Assume there is a point source of current / located at r, in region 0. The differential

expréssion which describes the potentials in the homogeneous region is:

V2o(r) = — ;’;5« ~r) - 2.12-1)

In region 1, there are no sources and Laplace’s equation is valid:

V2,(r) =0 _ 2.1.2-2)
The boundary conditions are:
Go(r) = di(r) (r on IT) (2.1.2-3a)
9¢o(r) _ a,(r) ‘
Go g - (o) g (ronlIl) (2.1.2-3b)
lim ¢o(r) =0 (ronl) (2.1.2-3¢c)

Iris oo

If the field point of interest, r is located in region O, the Green's function (Appendix A)

satisfies the same differential equation as the potential function, ¢,:

Vi@, )= -8r-r") 2.1.24)
with the boundary condition: lim g(r,r)=0 (2.1.2-5)
Ir-r ioe

The solution satisfying equations (2.1.2-4) and (2.1.2-5) is:

g )= = —1 (2.1.2-6)

an Ir-r"|
Mulu'piy equation (2.1.2-1) by g and equation (2.1.2-4) by - ¢,, add the two expres-

sions, interchange r and r°, and integrate over the volume V,, resulting in:
[ e #3926 - 00yv 2 e, )]

]

Y

[— Lo (r, )8 1) + ()3 - r)|dv° (2.1.2-7)
Go [4
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The right side of equation (2.1.2-7) is:

- J‘ [—;—g @, r* )" - ro)}dv' + J' [%(l" 3@ — r)]dv' = = ¢p(r) + ¢o(r) (2.1.2-8)
0 . v

Yo ()

where the first term of the right side of equation (2.1.2-8) is the equation for the incident (pri-

mary) field of a point source due to current, /:

1 1
4nog Ir —r,!

0p(r) = Giog (o) = 2.1.2:9)

The left side of (2.1.2-7) is converted to surface integrals by Green'’s theorem:

[ e o7 a6 - 06OV 866 1] - n6ey a7
So »

= [ © ¥ 00> - 06"V g e )] - mrey

r
+ [ s o7 06 - 0t aV 0] - [ - o] a5” @12:10)

As Ir’ | — oo, the first surface integral of equation (2.1.2-10) vanishes as the result of the pro-
perties of the Green’s function and potential at infinity. Therefore, the integral equation in

region 0 is;

o= - [ )=o) a5 + [0 )sTse st @12:12)
34 1

Equation (2.1.2-12) is the general form found in Stratton (1941) where the harmonic
function may be expressed as the superposition of the fields due to the applied sources within
region 0 and to sources or charges outside the region. These charges outside the region can
be replaced by an equivalent surfabe distribution on IT which will produce the pmpér value of
the harmonic function within the region. The equivalent surface layérs are the single-layer

(left integral) and double-layer (right integral) potential functions. _The single-layer is

2 Green’s theorem is:
J. [\VV"G —9V'2\u]dv‘ = J‘ [\VV'Q - GV'\y] -n'ds” = j \ya—e, - eﬂf— ds®
, . < 1.l on on
where V* is the region of interest, S* is the surface enclosing V°, n" is the outward unit normal vector on S°,
and oy/on” is the directional derivative of the function Y in the normal direction to the surface.
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equivalent to the potential of a single layer of charge distributed over IT1. The double-layer

represents the potential produced a layer of dipoles on the surface IT.

In region 1, Laplace’s equation is valid for the potential function, ¢;(r) and the Green’s
function since the point of interest is outside the body. Hence, the goveming equations for
the potential and Green's function are:

Vi (r)=0 ' (2.1.2-13a)
V% (r,r')=0 (2.1.2-13b)
Using the same procedure employed to obtain equation (2.1.2-7) yields:
J. [g (T, IV 2%,0c") - 0, WV g (r, r° )] av' =0 (2.1.2-149)
Y

Applying Green’s theorem, results in the following relation:

[er e o = o2y as @.12-15)
I n n on

Using the continuity of normal current density boundary condition, equation (2.1.2-3b), and
substituﬁng for the left side of equation (2.1.2-15), gives a relation of normal surface deriva-

tive of the potential in terms of the normal surface derivative of the Green’s function:

[so 20 a5 = 2 o0 )2ra e r) as° (2.1.2-16)
n £ an. 60 n a * ’

n

By using the continuity of the potential boundary condition, equation (2.1.2-3a), letting:
o) = do(r”) = 43 (") " onD, (2.1.2-19)
substituting equation (2.1.2-10) into the right side of equation (2.1.2-17), and inserting this

into the integral of equation (2.1.2-12) will give (after some minor algebra);

DR - I VO TP _
do(r) = ¢p(r) + [l 0_0] Jﬂ(b(r )an° g(r,r')ds (2.1.2-18)

Equation (2.1.2-18)-is the desired IE for the potential at a point in the region 0. This IE
has eliminated the single-layer function such that the harmonic function ¢, is expressed as the

sum of the extemal sources and the double-layer potential function distributed over the surface
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of the inhomogeneity. The double-layer function is the surface integral that contains the nor-

mal derivative of the Green’s function and the unknown boundary values of the function ¢.

Source in the Inhomogeneity
Now, consider the field point r to be in region 1. The goveming equations for the
potential and the Green’s function are:
V2,(r) = 0 | | (2.1.2-192)
Vi, r')= -8 ~r") (2.1.2-19b)
with the boundary conditions of equations (2.1.2-3) and (2.1.2-5) for the potential and Green’s
function. Using Green’s theorem for ¢, and g results in :

J [g r, )WV 2%, - 6,V @, v )]dv' = th(r‘ @ - r)dv’ = ¢y(r)
, Vl

41

= [ o7 06 - 06V 5, )] - i) a5”

n

= 6= [0S0 d - [atrew et 21220
. - n oD on

With the current source in region O, the goveming equations m region O for the potential and

Green’s function are:

Vor) = — -8 - 1) 2.1.2-21a)
1
Vi@, r')=0 (2.1.2-21b)

Again using Green’s theorem and the boundary condition of ¢, and g at infinity:

[ e r97"200- 000V 2 1) |av” = - [ Lg 186" - v = - 00t

Vo Yo

= 6l - f[g(r. )=o) = 4ol )58 . r‘)} a' =0 (21222
o - on on

Using the boundary conditions, equations (2.1.2-3a) and (2.1.2-3b), on equation (2.1.2-20),
results in the following expression:

d
on’

9

- g(r, r’)ds" (2.1.2-23)
on

n

Jae. a6y as = e+ [ o
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Substituting into equation (2.1.2-20), yields:

3 e e " .
s® e |- [ e s

_% :
o= 26w+ [ 00

_ %00+ 19 1] [ oo £ s ]
- 01¢P(r)+[c, 1] jn¢(r) =rg(r 1) ds 2.1.2:24)

Factoring out oy/c;, equation (2.1.2-24) is:

_% _ 9] [ o r-Petr £y as”| = 52 1295
¢ = or op(r) + [l Co] J‘n¢(r ) P g, v )ds o] do(r) (2.1.2-25)

Equation (2.1.2-25) shows that the formula for the potential in region 1 can be expressed in a
form that involves the IE of region 0, equation (2.1.2-10), multiplied by the conductivity ratio
of the host and inhomogeneity. This relation is important when developing an algorithm to
solve for the potentials in both regions. Equation (2.1.2-25) allows a single routine to calcu-
late the potentials in both regions by merely incorporating a condition statement within the

routine.

For the mise-a-la-masse situation (sources within the inhomogeneity), the potential must
now satisfy Poisson’s equation for field points in region 1 and Laplace’s equation in region 0.
The Green’s function will satisfy its respective goveming equation for its doméin. By follow-
ing the same procedures as before, equations (2.1.2-18) and (2.1.2-24) are also the expressions

for the mise-a-la-masse case.

An advantage of the surface potential IE, equation (2.1.2-18), over the IE involving the
surface charge distribution is the relaxation of' the restriction that the boundary be a Liapunov
(smooth) surface. It can be applied t§ the more general Kellogg regular surfaces, allowing
inclusions of comers or edges (Brebbia et al., 1984). Another advantage is only one IE is
required to determine the _.-'potentials on the boundary and in the medium. Whereas, the other
method needs two expressions: one to find the surface charges and the other to calculate the

potential in the medium.
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2.1.3 Singularity

The evaluation of the singularity of the double-layer pdtential function follows the dis-
cussion of Okabe (1976). The surface integrals of equations (2.1.2-18) and (2.1.2-24) are
improper since the integrand goes to infinity as r approaches r’. To investigate the behavior
of the surface potential near the singularity, the surface boundary, IT is broken into two sur-
faces: one is an arbitrarily small disc of radius € << 1 containing the point r" with surface II;
the Aother involvés the remaining surface of IT — IT; which Aexcludes r (Flgﬁm 2-2). Now the
integral of equation (2.1.2-18) can be written as:

. d o e e D ey e R IR )
J;«r)an.g(r,r)ds - J;,?;ﬁ:)an'g("')‘“ + J'neq:(r)an.g(r,r)ds (2.1.3-1)

The first integral over IT — I, is proper, since the singular point has been removed from
the integrand, and can be evaluated. Since € can be arbitrarily small, the potential function is
essentially constant over the area II, with the value of ¢(r*) which can be taken out of the

integral:

0
on*

" - a L L L - * L] | L] -
[oer2egieryas = o) [ Soseras = —oehd [ sera” @132
I, " n, _ n,
where the relation between the normal derivatives of the Green'’s function (2.2.1.3) was used.
To evaluate the integral, a cylindrical coordinate system was used where the origin is
located at the center of the disk. The field point r is placed a distance B from the surface on
the vertical axis, which coincides with the normal unit vector of the surface. The surface
position r” is located a distance o from the origin on the tangential axis (Figure 2-2). From
Figure (2.1.3-2), the following relations hold:

12
lr—r"l= [(B -02+©- a)z] =@*+ad)'? , (2.1.3-3a)

3 _ 2 . )
;=35 M4 & =adadd (2.1.3-3b)

Substituting these into the integral of equation (2.1.3-2) will give:

0 [ geryar e L2 [ g Laf]
- 5 * = - 5 Ld d = = = 30 DPCEERT Y
R ] B R RN
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2 (_ade __13[m, om |
3[3 ,[)(B2+ a2)l/2 - 2 aB [(B + E) B] (213_4)

0|

By letting r — r°, which is equivalent to § — 0, the evaluation of the integral is:

-,% Jneg(r.r‘)ds‘ —%g@o%[(ﬁhe’)m—ﬁ]

i
|

1. B -1 -
> %u_?o [(Bz‘* TNT 1] =3 (2.1.3-5)
The use of relations (2.1.3-5), (2.1.3-2), and (2.1.3-1) and substitution ixito equation (2.3-20)

will yield the IE which is now proper everywhere on I':

- - gl- L i- * * _1_ * - o
6o(r) = ¢p(r) + [l 60] Jn¢(r ) o g(r.r)ds + So(r)¥(r. 1) (2.1.3-6)

where 8(r, r’) is the Kronecker delta function defined by:

8(r,r')={1' r=r (2.1.3-7)
0, r#r

The numerically integration of equation (2.13-6) can be performed as though the singu-
larity did not exist in the integrand since the singularity has been excluded (theoretically) in
the formulation. After the numerical integration, the contribution of the singularity (if applica-

ble) can then be added to the numerical solution.

2.1.4 Half Space Problem

The derivation of the half-space problem is similar to that of the whole-space. The ini-
tial configuration is the same as Figure (2-1) except that region 0 which was surrounded by an
infinite radius sphere T' is now enclosed by two surfaces. The first is a hemisphere, again
called T', located at infinity with unit normal nr. The second is the planar half-space surface

¥ with unit normal ny. Figure (2-3) illustrates the half-space situation.

The same PDE govem the behavior of the potentials: Poisson’s equation for the medium
~ containing an external source and Laplace’s equation for the source-free region. In addition to

the boundary conditions of the potentials and the normal current densities of equation (2.1.2-
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2), there is a boundary condition for the planar half-space surface, ¥:

ddo
com =0 (ron'P) 2.14-1)

The Green’s function satisfies the same equations as in Section 2.1.2. In addition to the
Green’s function behavior at infinity, a boundary condition is needed for the surface ¥, equa-

tion (2.2.1.4),

ag(r, r‘l =0 . (r-r"lonVy) (2.14-2)

an\y

The solution satisfying the goveming equation and the boundary conditions will result in the

half-space Green’s function, equation (2.2.1):

g(r,r')=%[ 1,1 ] (2.14-3)

Ir=rl " Ir-ryfl
where r; is the image location of the source position r*.
Applying Green’s theorem to the field equation for the Green’s function and potentials
will result in the same expression as equation (2.1.2-10) plus another surface integral to

account for the planar surface ¥ which is:

+ _[ g(r, r.)_a_dgg(;l_%(r.)m‘_) ds* (2.1.44)
"y an\y Bn\y

The integrand will vanish when the boundary conditions (2.1.4-1) and (2.1.4-2) are applied to
this term. The same procedure that was applied in Section 2.1.2 can be employed to obtain

the IE for all the half-space cases: |
c‘ L] . a L d L
$o(r) = ¢p(r) + [l - ——] | 0@ )=5g(r 1) ds . (2.14-5)
Go n on

where the pﬂinary potential term of equation (2.1.4-5) also involves an image term:

1 1
+
47t00 [ br — r0| Il' - ro.,l

i
¢p(r) = —g(r. ro) = (2.1.4-6)
o o
and ro,; is the image location of the source location r,. Figure (2.1-4) shows the inhomo-

geneity and external source with their images.
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The expressions for a single body in a homogeneous medium that have been derived in

the previous sections can be extended to incorporate multiple bodies. The derivation in this

section will deal with two bodies in a homogeneous space. The extension to the multiple

bodies case will be apparent from the derivation.

Consider two separated bodies of conductivities, volumes, and boundaries of o, V;, IT;

and o,, V,, I,, respectively, set in a homogeneous medium with a conductivity of o, volume

Vs, and outer boundary IT,. The directions of the normal unit vector of the surfaces are shown

in Figure (2-5). For the field point and current source located in region 0, the following field

equations for the potentials and Green’s function are:

Vio(r) = — ;j;&r-ro) and Vig(r,r')= - &r—1")

V2,(r) = 0 " and V%(rr')=0
V2,(r) =0 and VZg(r,r')=0

The boundary conditions for the potentials are:

1im q)o(l') =0
Iris = .
9do(r) )
%) =4  ad oo aq:f,; . ;::)
= 9do(r) _ Oh,(r)
oD =60 0 onp, s onp,

(in region 0) (2.1.5-1)
(in region 1) (2.1.5-2)

(in region 2) (2.1.5-3)

(r on Ty (2.1.5-4)
(r on I1})(2.1.5-5)

(r on I,)(2.1.5-6)

Applying Green’s theorem to equation (2.1.5-1) and using equations (2.1.5-4) and (2.3-5)

boundary conditions, gives:

[ e 77" 2006 - 003" 22 6, 1) =~ 06662 + 000

Y

= - J [g(r, r) 9 do(r’) — bor™) 9

m, on} on}

I,

g, r ):l ds”

- | [g(r, F )20l - 0 =g r‘)] as" @157)
ni aﬂl /

where the notation for the partial derivatives, 2 . i, is used for convenience.

on I, an;
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For region 1, Green’s second identity yields:
[ [ee 726 - 06 W s . )| av” =0

v .
= I [g(r,r' n

m,

which leads to:

,L

jdn(r) Sree ) as” | (2.15-8)

Using boundary conditions of equation (2.1.5-5) yields:

L - G L] L
j‘ —a.'¢1(l' )ds" = — J o )-a—.g(r. r') ds(2.1.5-9)
I, o 0 *m on; Go *q, an;

For region 2, a similar expression is obtained:

[ e as a 2.1.5-10)
m, °° "y
Substitution into equation (2.1.5-7) and inclusion of the singular term gives:
r c 5T b
00(r) = 05(0) + |1 - —‘} [ oo
) \ Go Hl a l
r 62 . .
+ 11— —] ¥, r) 2.1.5-11)
L Co . _ .

where the potentials in the integrals are on the surface of the bodies.

It is apparent from the above derivation that the expression of ecjuation (2.1.5-11) can be
"extended to Q-bodies. By summing over all the bodies, the multiple bodies problem can be
treated like the single body problem. The IE for the potentials that incorporates the interaction

and effects of the Q-bodies can be expressed as:

Q o-q v
= - ‘ “Y(r, r° 2.1.5-12
) = 0) + 3 [1 GJ an¢(r - B 1) @15-12)

Section (2.3.3) contains the discussion of solving the linear form of the IE which incorporates

the interactions of the Q -bodies.



22

22 Electric Field Volume Integral Equation

The use of the volume IE to solve for the electric fields of small three-dimensional inho-
mogeneities was introduced by the studies of Raiche (1974), Hohmann (1975), and Weidelt
(1975). The method consists of replacing an inhomogeneity by a volume distribution of point
scattering /cun‘ent (densities). The scattering currents can be represented by the product of the
anomalous conductivity contrast and the total electric field. This approach also allows an
inhomogeneity to have different electrical properties with no modification of the formulation.
The scattered fields outside the inhomogeneity are found by integrating the appropriate

Green’s function with the scattering currents.

The volume IE approach is not commonly used for the DC resistivity problem since this
method is more complicated to use than the surface IE method. First, the E-field volume IE is
a vector expression that requires three sets of scalar equations that must be solved simultane-
ously to determine the E-fields. Whereas, the potential or surface charge IE is a scalar expres-
sion which results in a smaller set of linear equations to be solved. Second, the volume IE
method requires that the volume of the body be discretized versus the surface discretization
used for the surface IE method. The volume discretization may be much more involved if the
body has a complex shape. If the problem requires only a single component of the E-field or
can be reduced to thin objects, the volume IE method becomes practicalv for solving DC resis-

tivity problems.

| Holladay and West (1988) presented the use of the volume IE method to investigate the
effects of the well casing on surface resistivity measurements. They simpliﬁed the problem by
assuming only the vertical E-field existed within the casing. Beasley and Ward (1986) used
the volume IE approach to model a fracture in a hydrothermal field where the fracture was
modeled as a single row of volume elements. LaBrecque and Ward (1988) combined the two

methods to study the effects of well casing on resistivity surveys for fracture location.

All of the above DC resistivity studies assumed that the E-field volume IE existed and
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presented no derivations of this method for the DC problem. This section will formulate the
electric field volume integral equation for the DC resistivity problem. To calculate the poten-
tial in the medium, two integral equations are needed; one to calculate the electric fields
within the body and the other to determine the potential fields. The Poisson’s equation for a
vector potential function is derived from Maxwell’s equations. Since the scattering current
density is a vector quantity, the infinite medium Green’s function is in a dyadic form. The
formulations of multipie inhomogeneities and the half-space boundary will not be presented in
this section since these deviations are similar to those of the previous sectibn (surface integral

equation).

22.1 Electric Field Equation

The integral equation is derived from the field equation of electromagnetic t.heoxy. The
coupled dependence of the magnetic field H and the electric field E is described by Maxwell’s
equations. Using Ampere’s law, the xﬁagnetic and electric fields due to an impressed (pri-

mary) current source, J' in a homogeneous region is:

VxH=cE+J B @2.1-1)

~where ¢ is the conductivity of the medium.
From the solenoidal (magnetic-Gauss) Law, the magnetic field is divergentless, i.e.,

V-H=0 | ©(2.12)

Hence, one can represent H as a curl of a vector function:

H=VxA (2.2.1-3)

where A is a Schelkunoff vector potential.
Faraday’s law for a DC source field shows that the electric field is irfotational,

VxE:-%—It} — VxE=0 (2.2.14)

so one can derive the electric field as the gradient of a scalar function:

E= - Vo (2.2.1-5)
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Substitution of (2.2.1-3) and (2.2.1-5) into (2.2.1-1) yields:

VxVxA= —oVo+JF (2.2.1-6)
Applying a vector identity to the left side of (2.2.1-6), results in:
VV:-A-V-VA=VV-A-VAA= gV +J 22.1-D
Since ¢ is arbitrary, one can arbitrarily impose a restriction. For convenience, impose the
Lorentz gauge:
V-A=-0¢ (2.2.1-8)
This leads to the desired expression:
VA= - J » (2.2.1-9)
which is the vector form of Poisson’s equation applied to the homogeneous regions containing

the current source.

Equation (2.2.1-9) is .the PDE that must be satisfied to solve for the vector potential.
This vector equation can be written in terms of the scalar component of A and the unit base

vectors (u,) of the coordinate system.

VZA = - Ji - sz A,,u,, = - ZJ)‘;Uk —> Z Vz(Akl.lk) = Z - Jkillk (2.2.1-10)
k k k k

The Laplacian operator (V?) operates on both A, and u,. For the case of the Cartesian

coordinates’, the base vectors are constant and equation (2.2.1-10) can be written as:

Y (VAu =Y, - Jiug (22.1-11)

k k
Equation (2.2.1-11) indicates that a solution to the vector equation is obtained by summing the
solutions of its scalar components. Hence, only the scalar equations are needed in order to
solve the problem. .

VA, = -Ji (@l k) (22.1-12)

Once 4, is found, the scalar pbtemial ¢ and the electric field E can be found from the respec-

tive equations, (2.2.1-8) and (2.2.1-5).

3 Generally, the Laplacian of a vector is formulated by the vector identity: V?2A = V(V - A) - V x V x A,
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2.2.2 Solution of the Electric Field Equation

For an impressed current source located within an unbounded homogeneous medium, the
general solution for the vector potential of equation (2.2.1-11) can be found by solving the

PDE using a transform technique (Bafios, 1966) which is:

1 J‘(r ) i -
A(r) = 4“v'[- — Idv = jg(n).] ")dv* (2.2.2-1)

where g(rr’) is the whole-space Green’s function (see Appendix A).
Thus, if the current density J is known then the vector potential A can be found. By

using the relationship of equation (2.2.1-8), the scalar potential can be obtained:

v

. o\ xis o l it
v [‘;[.3("" W (e )dv } =-|3 [g(r,r W )]dv
- VI %[g(r,r‘)V'—J‘(r‘) + Vg (r,r‘)-J‘(r‘)]dv‘ (2.2.2-2)

The divergence operation is applied in the field coordinate system r, whereas J' is in the

source system. Therefore, this term is zero and equation (2.2.2-2) is:

0= - [ TVae) T (22.2-3)

From equation (2.2.1-5), the electric field is:

v v

E= -Vé= v{ j ?ly-Vg(r,r‘) < Ji(r")dv ] j -(1,— [Vg @r’) ¥ )]dv‘ 22249
Now, expanding the integrand on the right side of equation (2.2.2-4) gives:

V[Vg(r,r') . J"(r')] = [J‘(r') . V]Vg(r,r') + [Vg(r,r') -~V]J" ")
FFE)X VX Ve@mr) + Vamr ) x VX (") (22.2-5)
The second aﬁd last term on the right side of equation (2.2.2-5) are zero since the vector
operators and J' are in different reference (coordinate) systems. The third term is zero by the
vector identity: V x V\y; O. Applying the concept of the the dyadic Green’s function

(Appendix A) equation (2.2.1-5) can be written as:
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=¥ -8’y =8ax’) - J (") (2.2.2-6)
The desired form of the electric field is obtained:
E@) = [Grr®) - Fa' v’ (2.2.2-7)
v‘

The dyadic Green’s function is defined for field points outside the inhomogeneity in
Appendix. A. But when the field point r is within the volume V*, the volume integral is
improper. The singularity must be removed from the integration and evaluated separately at
the singular point. As shown by Van Bladel (1961 and 1964) and presented by Ward and

Hohmann (1988), the dyadic Green'’s function is:

Gar)= :1,— {P[VVg rr )] - %8(1' - r')Y} (2.2.2-13)

where P[ - ] denotes the principal value integration.

2.2.3 Electric Field Integral Equation Formulation

The previous section focused on the impressed current source in an unbounded homo-
geneous medium. However, when there are inhomogeneities within the medium, the
impressed current source will "induce" currents within the inhomogeneities. At any point in
the medium, the total field observed is the sum of the incident (primary) field caused by the
impressed source and the scattered (secondary) field due to the scattering currents in the inho;
mogeneities with contrasting properties. Since the scattered field can be written in terms of

the total field, the integral equation is solved for the total field using a numerical technique.

Consider an unbounded homogeneous medium (host) with volume, V; and conductivity
o; and an inhomogéneity (body) with a volume V, and conductivity o, contained within it
(Figure 2-5). Let there be a impressed current density source J' within the host medium.
Since the body has a different conductivity than the surrounding medium, some of the incident
field (denoted by the superscript i) will be "deflected” to produce a scattered field (superscript
s). The total field observed at a point r in the host will come from from both the incident and

scattered fields. Hence, the electric and magnetic total fields can be decomposed into the
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scattered fields. Hence, the electric and magnetic total fields can be decomposed into the

incident and scattered fields:
E=E +FE
H=H +H

Ampere’s law for the entire medium is:

VxH=0oE+J

where:

. rinV
c=dﬂ={h rinVa

o, rinV,

(2.2.3-1a)
(2.2.3-1b)

(22.3-2)

(2.2.4-3)

The incident field that would apply everywhere in the absence of the inhomogeneity would

satisfy the following:

VxH =¢E +J
Subtracting (2.2.3-4) from (2.2.3-2) yields:

Vv x [H - H‘] = o(r)E - 6,E 5 UxH = cE° + [c(r) - cl]E

“The anomalous conductivity contrast is:

o
o(r)— o, =Ac =
1 {0
Thus, equation (2.2.3-5) can be written as:

VxH =gE +JF

and

J =Ac E

2—0; , rinV,
» r'mV1

(2.2.34)
(2.2.3-5)
. (2.2.3-6)

(2.2.3-7)

(2.2.3-8)

Equation (2.2.4-7) is Ampere’s law applied to the scattered fields. On the left side of

equation (2.2.4-8), J* is the equivalent scattered current that replaces the body and is the

source of the secondary field. - On the right side, E is the total electric field and Ac is the con-

ductivity contrast between'.'the body and host. Adding the primary field, equation (2.2.3-3), to

the scattered field, equation (2.2.3-7), yields the expression for the total fields with the primary

and equivalent scattered sources.
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VxH + VxH =GE +J + 61E* + J
— VxXH=GE+J +JF (2.2.3-9)
Using the procedures of Section (2.2.1) will result in the PDE for the vector potential due to
the incident and scattered sources:

VA= -3 -F , (2.2.3-10)
The solution to this PDE is:

A=A’ +A" = I g )@ )dv® + Jg (XY ol (o )dv'l (2.2.3-11)
2

ViV,
The left integral is the vector potential due to the incident field which is known. The right is
attributed to the scattered field which is dependent on the conductivity contrast and the unk-

nown total electric field.

Using the relations of equation (2.2.1-8) on the incident field and the scattered potential,

equations (2.2.2-3) and (2.2.2-8a), yields the desired expression of the scalar potential:
o) = ¢'(r) + ‘}[ Vig@r') - Ac EG¢")dv" (22.3-12)
2

Applying the relation of (2.2.1-5) on this equation gives the the Fredholm integral equation of

the second kind for the electric field:

E() = E'(r) + J Gar') - ac EG v’ (2.2.3-13)
2
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2.3 Numerical Solution of the Integral Equations

The next objective of this chapter is to solve the surface IE of Section (2.1) and volume
IE of Section (2.2). A common method to solve the functional form IE is to reduce it into a
set of linear equations which can be solved by matrix procedures. This is accomplished by an
approximation technique known as the method of moments, aiso called the method of point

matching over subsectional bases or method of weighted residual (see Appendix B).

This method involves the expansion of the unknown field function into a series of piece-
wise constant basis functions and Dirac delta weighting functions at N discrete points in the
region of interest. Each basis function exists only over a subsection within the region. The
corresponding weighting function will only affect the approximation of the unknown function
over that subsection. The integral over the region is then approximated as a summation of
integrals over the subsections. This linear form of the equation must now be satisfied at each
N discrete points. As a result, a matrix equaﬁon is obtained and can be ‘solved to determine

the unknown field functions.

2.3.1 Surface Integral Equation

The surface IE of Section (2.1):

o(r) = ¢p(r) + C[ ¢(r')as. gxrx’)ds” + %¢(r')8(r.r') (2.3.1-1)
where: C=1- S
, . : Go

1s transformed into the matrix equation by the following procedure. By using N piecewise

constant basis functions, equatibn (2.3.1-1) can be approximated by:

_ N
0F) = 05(r) + C| SR, £2)00r3) + - 9(e)8(r, 72) 23.12)
n=1
where:
K, e = [ Vgm0 mn 60 ds” = [ =Cogtr,el) s (23.1-3)
n ! n, on
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The potential for each n-segment can be determined by using equations (2.3.1-2) and -
(2.3.1-3). If one lets the field point lie on the m-th segment (denoted by r,), which is
equivalent to using the Dirac delta weighting function 8(r - r,) for all N-segments, the

integral equation can be written as:

N
OFm) = bolrm) + C[zx(r,. FOG) + 5 0w, r:)] (2.3.14)

n=l

- Using the property of the Kronecker delta function and rearranging equation (2.3.1-4), yields:

N N
06(En) = BOEn) = CEK(Em, 12000 = T [BOn - CK.‘..] o) 2.3.1-5)
a=1 n=1
where:
am.n = 8(]',,,, l’:)
Kmm = K@rp. 1)

and B = 1 - %AC = %41 + 6,/Gy).

Equation (2.3.1-5) is the desired form of the matrix equation that can be solved for the poten-

tial on each segment.

2.3.2 Volume Integral Equation

The volume IE of section (2.2) involving vectors and dyadics instead of scalar quantities

can be wn'ttén as:
Er) =E'®)+ [G@r’) - AcE(" )av" (2.3.2-1)
-

The method of moments procedure to obtain a solution with the vectors is the same as that of
the scalar. Using N piecewise constant basis functions, equation (2.3.2-1) can be approxi-

mated by:

E(r) = E'(r) + )’f e - E@ry) (2.3.2-2)

n=1

where:

Far) = A, [Birrdv’ ) (2.3.2-3)
:
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The electric field for each n-segment can now be determined from equations (2.3.2-2) and

(2.3.2-3) by applying the Dirac delta weighting function for each segment. The electric field

relation for the m-th segment becomes:

. N .
E,=E,+ YT, E,

a=l

where:

En = E(rw)
E', =E(rn)
flm = r.(rm Ny : )
Rearranging equation (2.3.24) gives:

Eim:'ifzm.'En—Em: %(gm.n—f‘m).E“

n=]

The §,,, is defined by:

8, m=n

gmz{t =

where T is the identity dyadic and O is the null dyadic.

(2.3.24)

(2.3.2-53)
(2.3.2-5b)
(2.3.2-5¢)

(23.2-6)

1 (2.3.2-7)

Equation (2.3.2-7) is now in the form of a partitioned matrix equation which can be solved for

the unknown E -field in each segment.

23.3 Matrix Equation

Equations (2.3.1-5) and (2.3.1-6) can be expressed as a matrix equations of the form:

. N
8n = Y, Oulps

n=1

(2.3.3-1)

where g,, is the known source field, a, is the unknown field, and I,, is the linear integral

operator. Table (2-1) shows the relation of the field components of the surface IE and volume

IE with the linear matrix equations (2.3.3-1).
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Surface IE Volume 1E
Em ¢p(rs) E'(rn)
O, o(rs) E(r;)
Lun B8, — CK,p B ~ Tn

Table (2-1)

In vector notation, equation (2.3.3-1) can be expressed as:
g=al (2.3.3-2)

where § and @ are vectors and [ is a matrix. From equation (2.3.3-1), the unknown fields of

the inhomogeneity @ are found by:

(2.3.3-3)

Rl

1

b ]
aa|

where 1! is the inverse of matrix I.

Equation (2.3.3-3) solves for the unknown field a, for each segment at r, on/in the inhomo-
geneity. The field at point r in the medium can be calculated by substituting a,, which
represents the potential or electric field of the n-th segment of the inhomogeneity, into the

respective scattering field of equation (2.3.1-2) or (2.3.2-2).

Since equation (2.3.3-1) is linear, the matrix equation can easily be extended to include
multiple bodies (inhomogeneities). For @ -inhomogeneities, the matrix equation can be

expressed as:

Ne

Q n
n, =2 |2 Onlma| —> Gi=3 AjL; (2.3.34)
j=1

1 q=1 |n, =

Mo

q

2
where: (i,j=1t0n=3 N,) and (m,, n, = 1 to N,) are the segment indices and N, is the
g=l

total number of segments for the ¢-th inhomogeneity. The elements of A can be found by:

A=L"G (2.3.3-5)

where L™ is the inverse of L and has the dimensions (] x 7).



33

The matrix L of equation (2.3.4) can be thought of as a partitioned matrix composed of

(Q x @) submatrices in the form of:

Lay - Lany

e (2.3.3-6)

[l
]

Lagy * * * Loy
This partitioned matrix accounts for the interaction within and between the inhomogeneities.

The diagonal matrices L, incorporate the interaction of the segments of the g-th body onto
itself and has the dimensions (Ng. xN;). The off-diégonal partitioned matrices L, with
(N, x N,) elements, represent the interaction between the p-th and g-th bodies. This matrix
contains the effects of the segments for the ¢g-body onto the elements of p-body, whefeas the

converse holds for matrix L.

It is worth noting that for the DC resistivity problem the matrix 7 is a full, diagonally
dominant, real matrix and can be very large. For an infinite homogeneous medium, this
matrix can be symmetric if elements of equal size are uséd for the segmentation of the inho-
mogeneity. Additionally, the elements of the matrix I contain information on the interaction
between the segments of the inhomogeneity and have no primary source field information.
Hence, the unknown fields @ of the inhomogeneity can be solved for any source configuration

once the inverse matrix I is obtained.

Knowledge of the matrix and the kind of problem being solved is important in solving
the linear equations. If a problem involves many different source configurations and a single
scatterer configuration, the computational effort can be greatly reduced by saving the inverse
matrix [~ and using. it to calé:ulate all the source configurations. Since only scatter informa-
tion is contained in I, the matrix only needs to be solved once. Dependi;ljg on the problem,

several matrix inversion -algorithms, the Gauss-Jordan elimination, LU decomposition, and

singular value decomposition (SVD), are commonly used.
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If the properties of the inhomogeneity change during the analysis of the problem, as
~ would occur for an iterative inversion problem, the unknown fields must be calculated and the
inverse matrix I may‘ not be needéd. For these types of problems, the SVD is frequently
used to solve for the unknown fields. The iterative techniques, such as the conjugate gradient
method (Sarkar and Rao, 1982), are becoming popular for solving large sparse sets of linear
equations. Many other methods exist that can be employed to solve linear equations but are

beyond the scope of this thesis.
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Region 1

V1 oy

Figure 2-1: The generalized geometrical and electrical configuration of an inhomogeneity
within an infinite medium for the potential surface IE method. (Current source position is not
shown.)



> 3

r(o,B)

E(@,0)

. .

" Figure 2-2: The configuration of small surface element of the singular cell for the potential
surface IE method. ‘
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Region 1

Vi oy

Figure 2-3: The generalized geometrical and electribal configuration of an inhomogeneity
within a half-space for the potential surface IE method. (Current source position is not
shown.) :
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Region 1
V; o

Figure 2-4: The generalized geometrical and electrical configuration of two inhomogeneities
within a whole-space for the potential surface IE method. (Current source position is not
shown.)
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Figure 2-5: The generalized configuration of the impressed current source and the scattering body used
for the E-field volume IE method. .
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CHAPTER III

GREEN’S FUNCTION SOLUTIONS

In the previous chapter, two forms of the IE used to calculate the potential field of an
arbitrary inhomogeneity were derived and a numerical method to solve these expressions was
introduced. The inhomogéneity produces the scattered field which can be characterized by a
source density distribution. The first type of source density is the double-layer potential
which is distributed over the surface of the body. The second kind is the volume distribution
of current densities within the inhomogeneity. In either case, an integral containing the
Green'’s function must be evaluated in order to calculate the source density. For the remainder

of the chapter, this integral will be called the "Green’s function integral”.

Since the region of interest is a half-space, the image method is used to satisfy the sur-
face boundary condition that no vertical current exist at the half-space surface. The image
sources, with the same strengths and polarities as the primary sources, are placed on the oppo-
site side of the half-space boundary. The resulting field is the sum of the primary sources and
their images. The same procedure is used to calculate the effects of the half-space on the

scattered ﬁelds;

The majority of this discussion will deal with a specific inhomogeneity, a vertical
annulus or pipe, and the determination of the Gréen’s function integral for this situation. Both
the potential surface-IE and E-field volume IE approaches are solved for the axial symmetric
(axisymmetric) configuration. For the axisymmetric problem, the bodies are discretized into
cylindrical rings. The so}ution of the Green’s function integral of the ring elements requires

the use of the axisymmetric Green'’s function.

'I_'he Green’s function integral of the surface potentials for the threc_;-dimensional (3-D)

case will be investigated in both the Cartesian and cylindrical coordinate systems. Flat-surface

40
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The Green's function integral of thc surface potentials for the three-dimensional (3-D)
case will be investigated in both the Cartesian and cylindrical coordinate systems. Flat-surface
and arc-surface segments are used to describe the body for the Cartesian and cylindrical coor-
dinate systems, respectively.. The 3-D Green’s functions in both coordinate systems are
needed to solve these integrals. |

Additional bodies, axisymmétric and off-axis, are incorporatéd with the pipe model. The
~ fields which are due to the addition of axisymmetric plumes can be obmﬁed by using the
axisymmetric Green’s function and the multiple body fom_mlation. To determine the fields

caused by the pipe and an off-axis -body. a 3-D "mix coordinate system is used. This
mixed system uses arc-surface segments for the pipe and the flat-surface segments for the off-
axis body to determine the scattered field. If the body and/or applied sources are a sufficient
distance from the pipe, an axisymmetric Green’s function can be used to simplify the compu-

. tations by approximating the response of the pipe with circular ring segments instead of the

arc segments,
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3.1 Axisymmetric Problem

The Green’s function integrals are solved for the axisymme:m'c'r case. This is accom-

plished by using the axisymmetric Green’s function which is derived in Appendix C by satis-
fying Poisson’s equation for the Dirac delta source function in cylindrical coordinates. This
Green's function is used to represent the situations where the primary source(s) and axisym-
metric objects(s) are coaxial. Along with solving the Green’s function integral, a "ring" bn’-
mary source term is found for the potential and electric field (E-field) using the axisymmetric

Green's function.

The first part of this section solves the Green’s function surface integral K(r, r’). This
surface integral is comprised of the surface normal derivative of the Green’s function
integrated over the surface element. The second part finds the Green’s function volume
integral fr, r*) by integrating the components of the dyadic Green’s function over the volume
of the cell. For the E-field solution, a second IE is required to determine the potential fields

in the medium caused by the scattered currents of the circular ring segments.

3.1.1 K(r, r') Formulation

Figure (3-1) illustrates the axisymmetric model configuration of a finite-length pipe and,
for simplicity, a single current source coaxially located. Let the surface of the earth be z =0
with the positive vertical z axis directed downward. The location of the current electrode on
the vertical axis is at z,. The origin of the radial direction is at the center of the pipe. The
pipe is described by its length: L, inner radius: b, outer radius: ¢, and a conductivity of o,.
The earth, host medium, has a conductivity of o, Other bodies, such as the borehole fluid
and/or casing cement, may be included in the problem but are not needed in solving for the

Green’s function.

+ In the cylindrical coordinate system, a position of a point can be described by a radial, azimuthal, and vertical
- coordinates (p, 6, z). The problem has axial symmetry when only the radial and verticak coordinates are required
to define the position.
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Recall that the Green’s function surface integral for the surface IE, equation (2.3.1-3), is

of the form:

aa. g, r")ds" (3.1.1-1)

K@, r')= JV'g(r, r') n@’)ds® = nj

s. -
where n is the directional cosine of the surface normal unit vector n. For the pipe, or an
annular-shaped object, there are two components, i.e., radial and vertical, to the surface

integral. Hence the Green's function integral of equatiori (3.1.1-1) can be written as:

K, r )-nj = —g(r. r')ds' =nK,(r, r )+npr(r r) (3.1.1-2)

The first, K, deﬁn:s the flat horizontal ring surface associated with the top and bottom
parts of the annulus. The second, K, describes the inner and outer vertical walls of the.
annulus. Figure (3-2) illustrates the two surfaces associaiedeith an annular objec_t. The com-

- ponents of the directional cosines of the unit surface normal, n, and n, are defined as positive

downward and outward, respectively. For this problem, they are either + one or zero.

Horizontal Surfaces
‘The z-component of K(r, r*) is given by the following expression:

2r b

a « . a . - - -
L = . ’ . .1‘
S [ 6113

K(r,r')=

S.
The half-spaée axisymmetric Green’s function, appendix equation (C-7), is substituted into
equation (3.1.1-3) and is evaluated over the width of the annulus, interval (b, ¢). The expres-

sion now becomes:

K, = —f JJoO»p)Jo(kp )[ Ar-rtly graee” >]dxp dp" © (3.1.14)

~where the evaluation over the e-mtegral from O to 2r was accomplished.

Since equation (3.1.1-4) is linear, rea»rra‘nging the operations yields:

17 ai
2 doz’
Evaluating the Bessel integral yiclds:

K, = [.u,-, |y v >] 1o dp ool (3.1.1-5)



b b c :
o0 dp® = l[Jo(kp' p dp’ - (j)lo(?»p' )p"dp”

= -—l-[bJ (Ab) - cJ (u)] = i}f‘,(—l)f" ; J10p))
= X 1 1 Y pl 1 J

j=1

where p; = b and p; =c.

Evaluating the 2" -derivative term yields:

- L] 2
aa, [e‘”‘" I 4 hess )] = )\[sgn(z—z') e - e"‘"’] = XZ(i);e_m
Z i=1

where: o; = lz-z°|, ay = (z+z°), &), = sgn(z-z"), and (&), =

Combining the terms yields the solution for K, :

K =3 [z S e zl(-ly"p,lxom, Mohp)d
£
= 15, 217 Fuotorpin)

i=1 j=1
where F,q is found in Luke (1962):

pkK(k)

2n(ab)*

pkK(k)
2na

—2’%‘(‘%’% + -;—Ao(\p,k), a<b

-

—;‘Ao(\ll.k) L a>b

Fioo(a, b, p) = afe™1,(Aa)o(Ab)dA = 1
0

o N~

.

Aoy, k) is the Heuman lambda function,

2_|_4ab ity = | —P22
¢ [p2+(a+b)2} md sy [p2+(a—b)z}

Vertical Surfaces
The p-component of K(r, r’) is:

2n %6

K,(r, r')= j

Integrating 6° from 0 to 21t and using equation (3 1.1- 8) in equation (3.1.1-10) gives:

[-ﬂz-z |+ ek(z+z )]dlp dZ

18
p=°2"_[_
Z0
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(3.1.1-6)

(3.1.1-7)

(3.1.1-8)

(3.1.1-9a)

(3.1.1-b)

(3.1.1-10)
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= %p‘ !%Jo(kp') | [e-”“" + e"‘”")]dz' d (3.1.1-11)
%

where z¢ =29+ Az and z¢ =zo—A2.

The p° -derivative is:

_a_z._%ap‘) = - AL000) (3.1.1-12)

The evaluation of the 2" -integration in equation (3.1.1-8) yields:

7 15 13
J‘I[e-llz-fl + el(xﬂ')]dz‘ = Ie-ll:-fldz‘ + J'e-(zﬂ_.)dz' (3.1.1-13)
L1 0 Io

Three resulting cases occur for the evaluation of the absolute value in the first integral of

the right side of equation (3.1.1-11).

r

5

je-uz°-z)dz- - — _;_[e"u!o =z) _ C—M'o “)] z <25

9. ’
zg 15 1
feriely =d feMegt = - %[e—w-m_ e‘““‘o’] 222§ (3.1.1-14)
1Y Ty .

0 ¢ '

. - . . - o &
feMedz® 4 J;e"“‘ ;" = - %[e u‘ﬂ°)+°_u‘°ﬁ)‘2] 25 <z <z§
5

The solution of the second integral in equation (3.1.1-13) is:

g
Je—uz«u')dz‘ = - %[e-k(zﬂo) - e.utﬂo )] (3.1.1-15)
)

Combining equations (3.1.1-13) and (3.1.1-14) yields the solution for the z* -integration:

zg
J'[C-MH‘I + el(z+z‘)]dz‘

5

4 - ) . 0 z<z5
- —le 4 +cwz+cm3-eh‘—,0 for z22¢
M+ + o 2 =

1< —Aay £
—xé(t)ke - 208(z,25) . | (3.1.1-16)
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where o, = lz—z3 1, op=lz=251, 03=(z+2¢). 04=(z+25), and &(z,z§) equals unity for

25 <z <z¢ or zero otherwise. Combining the terms of equations (3.1.1-15) and (3.1.1-16)

gives:
- 4
K, = %P' P:Op' )Jo(lp)[Z(i)xe-m‘ - 28(z,z5)|d A
k=1
4
= L T Fio” £.04) - Fuoe” 9.0 8z 25) (3.1.1-17)

k=1

Equations (3.1.1-8) and (3.1.1-17) are the expressions for the components of the Green’s func-
tion surface integral used to evaluate the response of the annulus surfaces in a half-space. To
calculate the potential fields on the surface of the annulus and in the medium, these two
expressions, equations (3.1.1-8) and (3.1.1-17), must be used in the scattering term of the sur-

face IE, equation (2.3.1-3).

312 T, r*) Formulation

The same model configuration, Figure (3-1), is used where the pipe of length (L), thick-
ness (t), inner (b) and outer (¢) radii is coaxial with the single current source which is located
on the vertical axis at z,. As in the previous section, the field point is represented by r and
the scattered position is defined as r*. Usually the conductivity of the borehole fluid is much

closer to the conductivity of the surrounding host than the casing conductivity.

Ofiuid» Ohost << Opipe

For this section, the problem is simplified by assuming that 6.4 = Gae = Go When comparing
with the casing conductivity, ;. Figure (3-3) shows a segmented cell of the pipe used for the
volume integral equation approximation. The scattering current can be decomposed into two
components: J5 and J;. The location of the center of the cell is (0, zy) and has a center radius,

half-height, and half-thickness of a, Az = h,/2 and Aa = ¢/2, respectively.

The expression of the Green’s function volume integral for the volume IE, equation

(2.3.2-3), is in a dyadic form: _ K
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Fe.ry=ac| Bar, ryav” | (3.1.2-1)
oo

where Ac = 6, — 6, and the axisymmetric dyadic Green’s function is found in equation (3G-9)
in Appendix 3G. For the axisymmetric problem, there are four elements to T
Tppe pp°  Tppe p2°

[f‘(r, r )] = (3.1.2-2)
Tppe 2p° Ige z2°

where the P component, I,; relates the a-component of the field at point (r) to the b-
component of the scattering current at r'. For the axisymmetric problem, equation (3.1.2-1)
is: '

Pa.r'y=acf [ B(r, ") p’do*dp’dz” =2rac | [ B, ") p"dp’dz®  (3.1.2-3)
. z'p'e‘ I.P. .

Using appendix equation (A-11), equation (3.1.2-3) can be written as:
P, ') = - 289 [ [vVe@ 1) p'dp’ds” - (3.124)
Co

!.P.

The elements of the dyadic T function are:

20 2
Tppe Do ap dp°  9dp oz
= - 21;AC J‘ J. V g(rr l'.) p'dp. dZ‘ (3'1'2-5)
rzp‘ g ° ot 9 0 9 9

oz ap’ 3 oz

where;

g(r,r)= %J‘ Jo(hp" VO(M)[ e Ma-tTl g Ae) ]dl
]
is the expression for the axisymmetric Green’s function, equation (3G-7) in Appendix C.

The solutions for the ' components are derived in Appendix D'and are:

AaAc & o k; 1+k2
I,.=2 +)P E(k;) - 2K(&;)| - 3.1.2-6
PP 0_0 ‘é{( )t 41t(pa )3,2 [ k,2 ( l) ( l) ep} ( a)

AaAc & ; k; ;2 +p?-a?
. =2 3.1.2-1f ——|K(k) - =P 7% g 3.1.2-6b
P’ Go ,Z;'( ) 21ta(pa)”2{ (ki) w2t (p-ay (ki) ( )
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aAaAc & : k; o2+ a% - p? ] .
for = 312D Ktk = —5 K 3.1.2-6
pre Go g’( ) 2mp(pa)” ki) w’+ (@ -p)zE( ) ( c)
alAalAc & o; k3
Fer = = 2 3.1.2-6d

where K(k) and E(k) are the complete elliptic integrals of the first and second kind, respec-
tively, and k; was defined in equation (3.1.1-9b). The values of ()f = 1, in equation (3.1.2-
6a), and ()7 =1, in equation (3.1.2-6d), are dependent on z, z, and Az in appendix equa-
tions (D4-4) and (D1-12), respectively. In equation (3.1.2-62), the g, is equal to 1/a? in the

singular cell and zero otherwise.

Highly Conductive Pipe

At this point, consider the behavior of E-fields within the pipe. Figure (3-4) shows the
interface befween the host medium and pipe with conductivities of 6, and o,, respectively.
The boundary condition (b.c.) of the continuity of the tangential E-fields requires that the

tangential components of the E-fields on both sides of the interface be equal, i.e.,
Er,=Er, (3.1.2-7)
The b.c. of the continuity of the normal component of the current densities J insists that:

' c
ng=ly, — EN1=-°—(:EN° (3.1.2-8)

Typically, the conductivity of a metal pipe (o;) is 6-10 orders of magnitude larger than
that of the host medium (c,). Hence, the normal E-field within the pipe vessemially is nil, i.e.,
Ey, =0. Figure (3-5) is a plot comparing the components of the E-fields within a infinite-
length pipe with the conductivity ratio o,/ 6, = 1078, In terms of Figure (3-4), E, represents
the normal component and E, is the tangential component of the E-field. Exeept for the posi-
tions very near the source depth, the E,-field is much greater than the E,-field. This shows
that the vertical E-field wimin the pipe dominates the response for source-receiver separations

greater than 0.1m.
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Recall that the E-fields within the pipe are found by solving the linear matrix equation
which approximates the IE. This matrix equation is formed by letting the field point r,
approach the scattering source position r, for all segments. Since only the E,-field exists
within the pipe, the '« is the only component needed to form the matrix equation. For the
highly conductive pipe, the dyadic T function integral can be reduced to the scalar quantity

.., equation (3.1.2-6d).

Potential Field

Unfortunately, equation (3.1.2-6d) is limited to calculating the E,-fields within the pipe
segments. To determine the potential fields in the medium from the scattered currents within ‘

the pipe, the integral equation (2.2.3-12) is required.

o(r) = ¢ (r) + ¢s(r) (3.1.29)
The scattered potential of equation (3.1.2-9) can be expressed as:

0.9 = — == [ Ve(r1") - A0BG)dv”
J

_ __ég_ i . ‘ - -
= o VJ: azg(r, r )E,(r )dv

- %:-E, (r')[% f g, r )dv'] | (3.1.2-10)

V.

The bracketed term in equation (3.1.2-10) is formulated in Appendix E and is:

L] * 4 . k“
aa_zvj. g(r, r")dv =aAai§ (3.1.2-1) o K(;) (3.1.2-11)

Substituting this into equation (3.1.2-10), one can calculate the scattered potential in the
medium caused by the scattered currents of the ring segments, and hence, the total potential in

_ the half-space from equation (3.1.2-.9).
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3.2 Three-Dimensional Problem

The solution of the Green’s function surface integral: K(r, r’), equation (2.3.1-3), for the
three-dimensional problem follows steps similar to those of the axisymmetric case. The prob-
lem now assumes no geometric symmetry and must be modeled by using flat or curved sur-
face elements. In this section, the procedures necessary to describe the pipe/annulus by flat
surface elements or curved quadrilaterals are given. The Cartesian coordinate system is used
to derive K(r, r*), for the flat triangular and rectangular surface elements. 'I"he solution of the
Green’s function surface integral for the curved qﬁadrilateral segments is derived in the

cylindrical coordinate system.

32.1 Cartesian Coordinate System K(r, r’) Formulation

Figure 3-6 illustrates two surface elements used to approximate the two shapes encoun-
tered when defining the pipe surface. The top and bottom horizontal surfaces of the pipe can
be described by triangular elements. Two triangles are ;'equired to approximate this curvi-
linear quadrilateral. To approximate the curved vertical surface of the outer and inner pipe
walls, a series of rectangles is used. The number of surface elements needed to describe the

side surfaces is reduced by a factor of two by using rectangular elements instead of triangles.

In this section, the Green’s function surface integral for the triangular cells will be
derived first foilowed by the solution using rectangular elements. The derivations are based
on the method described by Barnett (1972, 1976) and Paul (1974) where the surface integrals
over tﬁang;xlar domains are solved in Cartesian coordinates for the TE based on surface charge
distribution. Unlike the solution using triangular cells, K(r, r*) for the rectangular elements

are exact and require no numerical integration.

The formulation for:the triangular cells is very useful since the surface of any 3-D body
can be approximated by a set of triangular segments. Assume that the triangular segments
that define the surface of the body are arbitrarily oriented with respect to the x, y, and z axes

(Figure 3-7). By using the 3-D Green’s function, appendix equation (A-6), the Green’s
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function surface integral, equation (2.3.1-3), can be expressed by the following:
- . . . . 1 (I' - r.) - »
K, r )=£V g r) nr)ds = ——!-r—_——.l—;'n(r ) ds (3.2.1-1)
Expanding this in terms of the x, y, and z components yields:

ds*(x*,y".z%) (32.1-2)

1 £(x—x')nx + -y ny + (z-z")n,

Koer)= -9 [(x=x") + 0"V + (22" I

where n,, n,, and n, are the directional cosines of the surface normal unit vector n.

Sincc the segment is arbitrarily oriented, evaluating all of the surface integrals that
describe the pipe is difficult. The evaluation is made much easier by rotating the coordinate
system such that one of the coordinate axes is perpendicular to the surface of the segment and

another coordinate axis is parallel to a side of the triangular segment.

If the apices of the triangulér cell are numbered as shown in Figure (3-7), the following

unit vectors can be defined:

S13 S12 X 813
1= — n=——

= = T, x5 m=mn X | (3.2.1-3)

where:

Sij = (X —x)X+ (O —y)y + (2 — 2)2
Now the desired coordinate transformation can be achieved By letting:
= l-r .V = m°r w =

u n-r
ut 1 - . . . n- l'. (3.2.1-4)

°r vV = m-°r wo=

Using these relations, the following are true:

C-r)-nr’) = w-w") _
fr=r"l = [u-=u")+@-v" )1+ @w-w")j*
ds' = du*av’
Equatibn (3.2.1-1) can now be written as:
Kr, )= - =) n(r') ds*

1 - (W—W.) - * .
= - d 2.1-5
4"”[(u—u')2+ ="+ (w-w" )2 dudv @ )
¢ ,
A shift of the origin to the field point location is done for convenience so equation (3.2.1-5)



52

1s:

492 P3
. 1 r
= = 3.2.1-6
K, r) 41t!£(p2+q2+r2)3'2 dp dq 4n.!1‘;‘;(p2+q +r2)3(2dpdq ( )
where: 7 p=u’-u g=v'-v r=w'-w

Integrating with respect to p -variable yields:

92 P3
1 rp
K : 3.2.1-7
(.17 = 41:I @+r)p*+g2+rH% ) a ( )
1

The p-variable in equation (3.2.1-7) is a linear function of ¢, i.e.,

pi=pi@) =gq +h (fori=1and3) (32.1-8)
where g; (slope) and A; (intercept) are the following:

pP2— P P192 — P29
1= ——— hy=————
92— 9 92— 4 (32.1-9)
P2—pP3 Paq2—P2q2
g3= ——— hy= —————
q2— 1 g2 — 41

- The g-integral is accomplished by using a Gauss-Legendre method for numerical integration.

For the rectangular surface element, the K(r, r’) formulation follows the same pro-
cedures as was done for the triangular segment. The coordinate system is rotated and
translated so as to make the integral evaluation simple. If the apices of the rectangular ele-
ment are numbered as in Figure (3-8), the previous procedures up to and including equation
(3.2.1-7), are the same as above. Unlike the triangular element, the p-variable integration is
independent of ¢. Hence, the integration with respect to the g-variable can be done analyti-
cally. After some manipulations and algebra, the solution to the general form of the integral

is:

p = -1 qap 21.
J‘(q2+ r2)(p2+q2+ rz)%_dq tan {r(p2+ P rz)%] (3.2.1-10)

Hence, the Green’s function surface integral for the rectangular elements reduces to four arc-

tangent functions and can be expressed as:

D3
- oot
14

r(p?+ g%+ r?*

q2

(32.1-11)

q1
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3.2.2 Cylindrical Coordinate System K(r, r') Formulation

To approximate the surface of the pipe using the flat rectangles and triangles, many ele-
ments are required. This results in a very large linear system of equations which much be
solved to determine the unknown fields on the surface of the elements. One could reduce the
size of the matrix of unknowns by describing the surface with curved-quadrilateral elements.
Figure (3-9) shows the two surface elements that are used to approximate the pipe surface.
The vertical walls can be enclosed with a series of curved-rectangular sufface elements. A
flat-surfaced, curve-sided quadrilateral segment is used to define the horizontal pipe surface.

By using the cylindrical coordixiate system, K(r, r") for the quadrila;eral segments can be
derived. for completeness, two formulations will be presented in the section. The first formu-
lation is for the "blue collar" form of K(r, r*) which is in terms of trigonometric functions and
can easily be calculated on a computer. The second derivation is an elegant form which is

expressed as elliptic integrals and can be used for limiting approximations.

If the coordinates of the field and source points are (p, 6, z) and (r", 8°, z*), respectively,

then for an arbitrary azimuthal componem,' ¢, the following relations exist:

r—r" =[pcos(6-90") - pcos(¢—6")1p + [p sin(6—¢) + p"sin(¢—0°)1d + (z — z")2(3.2.2-1)
Since ¢ is arbitrary, let 8 = § so equation (3.2.2-1) is:

r—r =[p-pcos®-6")1p +p’ sin(6-6")0 + (z - z°)2 | (3.2.2-2)

Y%
r=r"l= [p2 +p°% - 2pp°cos(6-0") + (z - z')z] _ (3.2.2-3)
The first formulation of the Green’s function surface integral is given below. Using

equations (3.2.2-2) and (3.2.2-3), the expression for the K(r, r") is:

K@, r") =£V'g(r, r) n@)s’ = - ﬁl‘(r#_’:—l); *n(r’)ds"

ds"(p*,0%,z") (3.2.24)

_ 1 f[p - p cos(6-6")In, + p”sin(8-6")ng + (z — z*)n,
s [p*+p"% - 2pp cos(6-0) + (z — 2" P
where n,, ng, and n, are the directional cosines of the surface normal vector, n.
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For the pipe, no surfaces exist such that ng # 0. The horizontal surfaces have n, = 0 and
n, = +1 and the vertical surfaces have n, = £1 and n, = 0. Hence, equation (3.2.2-4) can be

decomposed into two components:

Ky, r') = Zl_ j[ I ’, |)3 p'dp']dﬁ' (3.2.2-53)
Ky (@, r )_H [ jP— o wfff‘e Y dz* ]de (32.2-5b)

where Ir — r*| is defined by equation (3.2.2-2b) and Ky and Ky are the horizontal (#) and
vertical (V) components of the Green's function surface integral, reépectively. The solutions

to the brabketed terms in equation (3.2.2-5) are:

P2
o _ (=2 o . [p?-pp°cos®-8")+(z ~2"Y) ¢ ~z) -
1, (®-6°) I'i -3 ap (p? - pPcos’ (608" )+ (z —2°)] Ir-rl 0 (?' -2-62)
1
2 Z2
. Ip**-pp cos(9—9 1 [p°2-pp’cos(8-0")] (z-2z)| .
d =- 2.2-6b
V@ :'[ br—r" P @’ [p2+ p’ 2 - 2pp°cos(6-0")] Ir -1l , @ )
1

In the above formulation, there are no complicated functions involved and both
integrands can easily be calculated. To obtain K(r, r"), equation (3.2.2-5) must be numerically
integrated with respect to 6°-variable. To simplify the integration, let y* = 8" — 0, where 9, is
the azimuthal location of the center of the surface arc-element (see Figure 3-10). The general

form of the components of K(r, r") can be expressed as:

1 8, V=48
= an [0 -01d0" = o= [ 1,6 -0y MY = Ilk(\v vy (3:2.2-7)
T 1 \V|="Ae —AO

where y=0 -0, A0 is the half arc-length of the surface element, and the subscript k

represents either the horizontal or vertical component of K(r, r").

The following procedure is the second formulation of the Green’s function surface

integral. The general form of the K(r, r") can be written as:

- L3 * - L 1 * ® &

K(r, =|V . . ds = — - < do dr’

® ) ! g{r.x) @ )ds 4“1:[9‘3" Ir—rlp 2
]

f—Loa0'p"ar"  (3.2.2-12)
Lr -1
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where Ir — r’ | is defined by equation (3.2.2-3) and I'" is the integration variable which is per-

pendicular to the surface normal vector, n. The integral in the brackets can be expressed as:

rde" = [F(\y,k)]wz——[F(w,k)]wz (32.2-13)

1 -
Iep" 2 J "

where F(y, k) is the incomplete elliptic integral of the first kind and:

2 o= B2l 4pp”
a> e+’ Y+ @ -2")

v = 20-0+29)
W= 20 29)
Again, there are two surface elements for the pipe: horizontal and vertical. Hence, the
Green’s function integral is expressed as the horizontal (H) and vertical (V) components:

1
T 4rn

l

* 2% ) dp" (32.2-14a)

Ky(r,r')= * 2 )ptde’ (3.2.2-14b)

.b.

Evaluating the partial derivatives yields the integrands:

Iy, 2") =2z —z‘)'

V2
[E(\II, k) - ——s—‘%} (3.2.2-152)
l

Y2
N ksinycosy |k i
',z )= [p R E(y, k) - 1 = Psintg)” s F(y, k) . (3.2.2-15b)
1

where E(y, k) is the incomplete elliptic integral of the second kind and:
¥ =p-p?+@-2")
R*> = @-p' P+ -2")
- The evaluation of the equauon (3.2.2-14) may be computationally time consummg In

each step, one needs to evaluate the integral of the Green’s function where the elliptical
integrals is needed. The calculation of these elliptical integrals requires a routine involving an
infinite series and many time consuming conditional statements. Thus, using equation (3.2.2-
6) may result in a computationally faster evaluation of the K(r, r’) than using equation (3.2.2-

15).
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3.3 Off-axis Geometry and Asymmetric Approximations

Thus far, the method to determine the responses of several coaxially located or three-
dimensional bodies has been presented. Now, the objective is to present a method which can ‘
calculate the coupled response of a pipe/well casing (annular-shaped body) and an arbitrarily
located 3-D body (see Figure 3-11).

For the majority of the configurations involving the pipe and off-axis podies. the surface
IE approach is simple and convenient. With the exception of thin objects, the volume IE
method may be quite cumbersome to discretiée the body. For thin objects, like fractures, the
volume IE approach can model the fracture as a single layer of rectangular blocks. But for a
larger body, the humber of volume elements needed to approximate it greatly increases and
the process of volume discretization becomes complicated. The procedure used to discretize a
surface is simpler than discretizing a volume. Additionally, the number of unknowns that
must be solved are fewer using the surface IE method. For the surface IE approach, the unk-
nowns are the potentials which are scalar quantities versﬁs the vector quantities, the E-fields,
used in the volume IE method. Thus, the potential surface IE formulation described in
Chapter 2 may be a better method to calculate the coupled response of the pipe and an off-
axis body.

In Section (3.2.1), the formulation of the Green's function surface integral K(r, r') was
derived for any arbitrary body. The Green’s function integral for triangular surface elements, .
équation (3.2.1-7), can be used to calculate the fields due to the 3-D body. The casing
response is approximated by either the Cartesian or cylindrical coordinate formulation of
K(r, r"). By substituting the appropriate Green’s function surface integral intb .equation (2.6-
1), the response of any body that is near or in contact with the pipe can be calculated. Using
the procedure in Section_:2.6 for multiple bodies, the potentials in the medium can be deter-

mined.

Discretizing the surface of the body and pipe with triangular cells reguires a tremendous

number of segments. This results in a very large set of linear equations that must be solved
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in order to determine the unknown field for each segment. If the pipe surface can be approxi-
mated with annular segments, as in the axisymmetric method, the number of unknowns for the
pipe will be reduced. This reduction is proportional to the number of ring segments needed to

replace the arc segments.

The model study of LaBrecque and Ward (1988) used such a method in their volume IE
formulation to determine the electric field responses of fractures located near the steel cased
well (see Chapter 1). They combined the integral equation formulation fof the axisymmetric
and 3-D problems. The electric fields in the well casing were assumed to be radially sym-
metric. Thus, the axisymmétric Green's function was applied to the casing. The fracture was
modeled as an off-axis tabular body which was discretized with rectangular blocks. The 3-D

Green’s function of Beasley and Ward (1986) was used for the tabular body.

The use of the axisymmetric Green’s function for the pipe was based on the work of
Holladay and West (1984). They indicated that if the off-axis source distances are "much
greater” than the radius of the pipe, then an axisymmetric Green's function may substitute for
the 3-D Green's function. Their approximation was numerically tested by comparing the zero
“and first order solution coefficients for a variety of source positions with an infinite-cylinder

model.

The axisymmetric approximation is based on the assumption that the annular region sur-
roundingv any point on the pipe is at the same potential (equipotential). This phenomenon may
be possible because of the extremely large pipe conductivity. If a surface segment of pipe is
an equipotential surface, then the arc element of equation (3.2.2-13), see Figure (3-10) can be
evaluated about the-circumference of the pipe, i,e, A8 =xn. Since the integration is evaluated
about the entire ring segment, the azimuthal center of the arc can be arbitrarily chosen. For
convenience, let 6, =0 angi then equation (3.2.2-13) becomes:

Ve Kk
w2 (pp")?

Io= %k'[F(“” k)] (3.3-1)

where the following two identities were used:



58

F(-y, k) - F(y, k) .
F(2, k) = K(k) (3.3-2)

From Luke (1962), equation (3.3-1) can be written as:

- ‘ . 21t [[ee
kK(k - ~Alz-2" - -* .
19=2n[;(”—5)3—n} = 28] 1o Walhpre . = {L[ Jo8" Wohple 'dx]de (333)

The Green’s function surface integral becomes:

.y _ l a . __1_ 3 == . _lh_‘°| s &
Ke(r, ') = o 11 5,5 1o P dr’ = awd o 1[ h T oo Wo(Ap)e e dx]de pdr’
= [T 2| LT 2o ot a0 dr = [ 2gie ey (334)
x‘l on’ 47!1[ go on’

where g(r, r') is the axisymmetric Green's function.

From this derivation, if the annular surface is a near-equipotential surface, then the axisym-
metric approximation of the pipe segment may be used. The validity of this assumption will
be investigated in the next chapter by comparing the solutions of the 3-D Cartesian and the

axisymmetric formulations.
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Figure 3-1: A generalize& model of the finite-length pipe coaxial with a current source within
a homogeneous half-space.



Horizontal Surface

Vertical Surface

Figure 3-2: The surface elements associated with the ring segment of the pipe. The inner and
outer surfaces are described by the vertical cylindrical shell (left). The top and bottom surfaces
are approximated by the horizontal disk (right)
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Figure 3-3: The volume segment used to define the pipe for the volume IE method. The
scattered current densities are decomposed into two components: radial (Jp) and vertical J1,).
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Figure 3-4: The E-field behavior in the two mediums.is dependent on the boundary condition
at the interface: tangential electric fields and normal current densities are continuous.
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Figure 3-5: The log plot of the radial and vertical E-fields within a semi-infinite pipe coaxial
with a current point source located at the half-space surface.
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Figure 3-6: The surface elements used to approximate an arc sections of the pipe. For the
3-D Cartesian coordinate formulation, triangular and rectangular surface elements are used.
The arrows represent the surface normals of the surface elements. !
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Figure 3-7: A graphical representation of the transform of the rectangular surface elements
from the x, y, z- to the p, q, r-coordinate system.
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Figure 3-8: A graphical representation of the of the transform of the rectangular surface element from the
X, Y, Z- to the p, q, r-coordinates.
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Figure 3-9: The surface elements used to approximate an arc sections of the pipe. For the
3-D cylindrical coordinate formulation, curvilinear-quadilateral and curvilinear-rectangular sur-
face elements are used. The arrows represent the surface normals of the surface elements.
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Figure 3-10: The generalized representation of the elemental arc-segment located at r', which is
integrated about 6', and field point placed at r in the cylindrical coordinate system.
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Figure 3-11: The generalized configuration of the 3-D problem with an arbitrarily located pipe,
body, current source, and field point in a half-space.
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CHAPTER 1V

CONSISTENCY, ACCURACY, AND VALIDITY

The theoretical formulation and programming of the numerical algoﬁM§ that solve the
IE problem are checked by evaluating the consistency, accuracy, and validity of the results.
Two numerical algorithms were developed to calculate the potentials for the axisymmetric
problem based on the two IE approaches. The computer code founded on the volume IE uses
the vertical E-field approximation and calculates the potentials in the half-space, whereas the
routine based on the surface IE method is more general and can compute the potential any-

where in the medium.

The method of moments, used to solve both integral equations, approximates the integral
over the body (region) by summing subsectional integrals located at discrete points. The shape
of the bbdy may also be approximated at these points with surface or volume elements. For
each subsection, the unknown "continuous" function is assumed constant. A linear matrix
equation for the unknown function is produced and then solved. By increasing the number of
discrete points, a better approximation of the unknown function and shape of the body can be

achieved. If there were an infinite number of points, an exact solution could be obtained.

Since the number of points is limited to the size and speed of the available computer,
"truncation'i errors will .occur due to the approximation, and render the solution unreliable. In
Section 4.1, the sélf-consistency and accilracy are investigated by evaluating the convergence
and reciprocity properties of the numerical results. Since errors can also occur during the
theoretical formulation and ;;mgramming of the computer algorithm, the solution must be
chegked before it can be considered valid.. In Section 4.2, the validity of thg method will be

evaluated by the comparison of analytic and published solutions with the IE results.

70
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4.1 Self-Consistency and Accuracy

A valuable test for the self-consistency of the numerical method is the convergence of the
solution as the number of model subsections increases. By decreasing the size of the seg-
ments, the IE mﬁst be satisfied at more points on the body resulting in a better approximation
of the unknown function. If the solutions vary greatly for the different cell sizes, then the
numerical technique is not consistent and may not be reliable. The convergence of the solution
for an increasing number of segments indicates that the method is self-consistent which is

necessary for reliability.

The convergence of the solution does not imply a reliable solution. Another check on the
numerical technique is based on the theorem of reciprocity. Applying reciprocity to this prob-
lem, the same results should be obtained if the source and receiver are interchanged. Since
reciprocity was not enforced in the development of the algorithm, this theorem can be used to

test the accuracy of the numerical results.

Fig:Jre (4-1) illustrates the model used for the convergence and reciprocity tests. The
vertical annulus or pipe with length L = 50m, inner radius b = 10.16cm, and thickness
t = 1.27cm is divided into N equal length segments of height AL. It is coaxial with a point
current source (unit strength) which is located at the surface. The resistivities of the pipe and

background medium are p; = 10° Q'm and py = 10 Q:m, respectively.

Convergence Check

The convergences of the potentials at three locations (top, middle, and bottom) on the
surface of the pipe are evaluated for the surface IE approach and shown in Figure (4-2). The
number of the equidimensional cells varied from 1 cell (AL = 50m) to 500 cells (AL = 0.1m).
The total number of surface elements needed to describe the surface of the pipe is 2(N, + N,)
where N, and N, are the nux;xber of elements in the vertical énd radial directions, respectively.
Each vertical cell requires two surface elements, and the horizontal segments need one surface

element each. A convergent solution was obtained at about 200 cells (AL = 0.25m), while a
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reasonable result could be obtained at 250 cells (AL = 0.2m).

Figure (4-3) illustrates the convergences of the E-fields within the pipe where the E-fields
are calculated with the volume IE method. With the use of volume elements, only N segments
are necessary to define the pipe. The number of cells ranged from 10 segments (AL = Sm) to
500 segments (AL =0.05m). The figure illustrates that the convergence of E-fields is véry

rapid. A good approximation can be obtained with about 50 segments (AL = 1.0m).

The convergence of the fields appear to be dependé:nt upon the pipe dimensions and the
model geometry, but was most influenced by the conductivity contrast between the pipe and
host. A cell size of approximately two pipe radii was sufficient to give accurate results for the
surface potential IE method. The E-field volume IE method converges much more rapidly and

requires a cell size of 5-10 pipe radii to produce an accurate response.

Reciprocity Check

For the reciprocity check, two pole-pole array configurations were used (Figure 4-4).
Since the source was placed off-axis from the pipe, the results were calculated using the
axisymmetric approximation. The first pole-pole electrode combines a surface radial line and
downhole array. The surface line (#1-#5) has the electrodes placed every Sm from 25m to Sm
from the pipe. ﬁowever, the downhole array (#6-#11) has an interval of 10m which starts at .
the top and terminates at the bottom of the pipe. The seéond array configuration is set off-axis
from the pipe Sm in the y-direction and extends from -25m (#1) to +25m (#11) on the x -axis
with a Sm interval. The tables in this section are tabulated such that each row represents the

source position on the array and the columns are the receiver locations.

Table (4-1) preser;ts the results using the combination array of the calculations for the
surface IE method. The table of the potentials is nearly diagonally symmetric indicating that
reciprocity for this problem 1s upheld. Most of the deviation between two reciprocal values
was less than one percent. The largest (= 1.5%) occurred for the case when either the source

. . ’
or receiver was at the end of the pipe.
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When the volume E-field IE approach was u_scd, the calculated results (Table 4-2) were
very similar. The largest deviation (= 3%) occurred for the array with an electrode at the bot-
tom of the pipe. Additionally, a 3% deviation was observed for the reciprocal pair, electrodes
of #5 and #6, (the top of the pipe and the first point away from the pipe). This deviation may
be due to the vertical component approximation used for the E-field in the pipe. When the
field point is adjacent to the source location, the majority of the field contribution is due to the
radial component of the E-field which is neglected in the single component E-field approxima-
tion.

Table .(4-3) represents the potentials calculated for the off-axis line. The comparison of
the corresponding potentials of the two methods shows little difference. Both are diagonally
symmetric and have nearly identical values for the potential at every source receiver combina-
tion. Although not shown, the deviations of all reciprocal pairs for both methods were less

than one percent.

These results indicate that both methods uphold the recipfocity theorem and are accurate
for nearly all array configurations. The largest deviations occurred for the situation where elec-
trodes are placed at the ends of the pipe. The axisymmetric approximation is accurate if the
off-axis source is not located'too close (> 5m) to the pipe for downhole receivers. For the sur-

face IE method, this source-pipe separation may be smaller.
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4.2 Validity

The validity of the axisymmetric formulation and computer program is checked by com-
paring the numerical results with the analytical and numerical solutions for three situations.
The first check, which verifies the situation of radial boundaries, is the comparison of the
potentials due to a conductive semi-infinite vertical annulus at the surface, z = 0. The second
test compares the apparent resistivities for a lateral log configuration in a layered medium to
validate the numerical solution for the horizontal boundaries case. The third comparison is the
calculated apparent resistivity for a normal log configuration in a medium involving both radial

and horizontal boundaries.

Radial Boundaries

An expression for the potentials and E-fields can be obtained by modifying the solution
for the infinite vertical annulus which can be found in Wait (1982). The method of images is
used to produce the semi-infinite annulus solution. The solutions are in the form of cosine and
sine transforms and can easily be coded into an algorithm. Because of the long length of the
pipe, the limited number of surface elements, and the surface position of the source and
receiver points, the length of the vertical surface eleménts increased with depth. This segmen-
tation seems appropriate since the major interactions between the elements and source are
greatest near the surface. For the semi-infinite annulus and numerical pipe models, a thickness
of 1.27mm and an inner radius of 10.16cm were used. For the numerical model, the pipe was
10km long. The resistivities were 10° Qm and 1 Qm for the pipe and the host medium,
respectively. The coaxial current source was placed on the surface, z = 0, and had a strength

of 1 Ampere.

Figure (4-5) is the plot of potentials on the half-space surface for the analytical and 1400
elements numerical solutions."‘ The numerical results differ (= 40%) from the analytical solu-
tions near the pipe and quickly converge to the analytical values for increasing radial distance.
The differences are due to the lack of surface elements needed to appmximaté the highly con-

ductive pipe. Because of the high conductivity contrast, very small surface elements are
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needed to obtain a good approximation of the potentials on the pipe. For a long pipe model, a
large number of the small elements is required. This makes the numerical calculation intract-

able since a very large matrix must be inverted to obtain the potentials.

Horizontal Boundaries

The layered medium solution can be obtained from Van Nostrand and Cook (1966). For
this casé, the solution ié in the form of a zero order Hankel transform. An algorithm for this
problem, called "POTWEI..L';, can be found in the U.C. Berkeiey's Engineering Geoscience
computer library. Figure (4-6a) is the three-layer model used for this comparison. The top
and bom_)m layers have a resistivity of 10 Q'-m. The 100 Q-m target (middle) layer is 3m thick
located 49m below the surface. For the numerical calculation, the infinite extent of the target
layer was approximated by placing the outer boundary at 5.5km. A lateral log configuration
was used where the cﬁmnt electrode (A) is 1m from the center (O) of the two potential eléc-
trodes (M and N). The separation of the potential electrodes is 20cm. Lii(e the semi-infinite
annulus model, the target layer was segmented such that the lengths of the surface elements

increased with radial distance away from the source.

Two types of numerical solutions were checked: a point solution and a (10cm radius) ring
solution. The ring solution is used in situations where the source and/or potential electrodes
are in contact with a cylindrical object, such as a pipe. Figure (4-6b) is a plot of the apparent
resistivities for the analytical and the two numerical solutions. All three cur§es are essentially

the same for this situation.

Dual Boundaries’

A numerical technique that determines the potentials for the situation involving both the
radial and horizontal boundari__els. is described by Gianzero and Anderson (1982). Their method
obtains the solution for the pétentials by iteratively solving a system of singﬁlar integral equa-
tions. This system is the result of suitably matching the boundary conditions/ of the problem.

~Gianzero and Anderson illustrated their work by applying it to several logging configurations.
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One such case is shown in Figure (4-7a) which simulates a 16 inch (0.4064m) normal log
in a two layer medium with an 8 inch (0.2032m) diameter mud-filled borehole. The mud resis-
tivity in the borehole, assumed infinite in extent, is 1 Q'm. The top and bottom layers, also
assumed infinite in the radial and vertical directions, have resistivities of 10 Q-m and 100 Q-m,
respectively. The model used for the surface IE technique described in Chapter 3 has a
100 Q'm layer with a radius of Skm, placed Skm below the surface in a 10 Q-m host medium,
and a 10km long cylinder with a resistivity of 1 Q:m. The large dimensions are used to

approximate the infinite extent of the layers and borehole.

Figure (4-7b) illustrates a comparison between the computed response of the Gianzero
and Anderson (GA) method, the measured response obtained by a resistor network model,‘ and
the calculated values of the surface integral equation (SIE) method. The results of the SIE
method are nearly equivalent to that of the GA method. The comparison to the network

method shows minor differences but still has excellent agreement.

Axisymmetric Approximation

In addition to these checks, the validity of the axisymmetric approximation for both forms
of the IE methods is tested by comparing the potentials calculated on a radial array with the 3-
D formulation for a vertical finite-length pipe. The two types of cell segmentation used to
represent the pipe are shown in Figure (4-8). The first is the 3-D Cartesian coordinate approxi-
mation where the surfaces are substituted by rectangular and triangular segments. The other

applies the axisymmetric approximation and uses the circular ring cells.

The dimensions df the pipe are L =25m, ¢t = 10.16cm, and b = 1.27cm. The resistivi-
ties are po = 10 Q'm and p; = 10° Q'm. The potential electrode array starts at 2m away from
the pipe and has an interval of 2m. Figure (4-9) shows the potentials on the radial array for

two current electrode posidoné: within the pipe and 4m orthogonal to the electrode array.

1 The resistor network values are taken from the Gianzero and Anderson paper which references the study of
Segesman (1962). 4
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The plots indicate that the axisymmetric approximation for the off-axis source will give a
good result. The volume IE approach shows some-discrepancy for the near-pipe electrodes.

However, the differences diminished when the number of volume cells was increased.

43 Summary

The 'tests applied in this section indicate that the IE methods will give correct results.
The discrepancies encountered are due to the numerical approximation caused by the discretiza-
tion and can be reduced by decreasing the segmentation size. The axisymmetric approximation
will give an accurate solution provided that the pipe is discretized with small enough segments

compared to the given field and source positions.



SIE Potentials (mV)
Sources Receivers
1 2 3 4 5 6 7 8 9 10 11
1 — 317 157 103 75 46 46 45 45 45 41
2 317 - 316 155 99 52 52 52 51 51 46
3 157 316 --- 312 148 61 60 60 59 59 53
4 103 155 312 -~ 299 74 73 72 71 70 62
5 75 99 148 299 - 96 094 92 91 91 78
6 45 52 60 73 9% - 199 199 198 197 164
7 45 52 60 72 93 199 - 199 198 197 164
8 45 51 60 71 92 199 199 - 198 198 164
9 45 51 59 2! 91 198 198 198  --- 198 165
10 45 51 59 n 91 197 198 198 198 - 166
11 42 47 54 63 80 167 167 167 167 168 -—--
. . . [215’ -rl ]
Reciprocal Pairs Percent Deviation | ———x100%
(s+r)
Sources Receivers
1 2 3 4 5 6 7 8 9 10 11
1| =
2 000  ---
3 000 000 ---
4 001 001 000 -
5 005 005 004 003 -
6 054 067 083 096 007 ---
7 043 052 062 075 050 0.01 -
8 0.18 0.19 018 014 012 002 002 -
9 009 014 020 026 024 006 005 004 -
10 035 041 048 054 047 015 014 012 009 -
11 1.05 119 136 151 158 151 151 150 148 149 -
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Table 4-1: Potentials (top) calculated with the surface IE method for sources and receivers
located on the positions numbered in Figure (4-4). Percent deviation (bottom) of the recipro-
cal pairs of the electrodes from the top table. Pipe model: L = 50m, b = 10.16cm, ¢ = 1.27cm,
and N = 502 (N, = 250, N, = 1). Resistivity: p; = 1.0° Q'm and py = 10 Q'm.



VIE Potentials (mV)
Sources Receivers
1 2 3 4 5 6 7 8 9 10 11
1 - 317 157 103 75 44 45 45 45 45 45
2 317 - 316 155 99 50 51 51 51 51 51
3 157 316 - 312 148 58 59 60 60 60 59
4 103 155 312 - 299 69 71 72 T2 172 T
5 75 99 148 299 - 83 99 93 93 93 91
6 45 51 59 69 86 - 212 211 210 210 204
7 45 51 59 71 91 211 - 211 210 210 205
8 45 51 60 71 92 210 211 - 211 210 205
9 45 51 60 72 93 210 210 211 - 211 205
10 45 52 60 72 93 210 210 211 211 - 206
11 46 52 60 72 93 211 211 211 212 213  ---
. . . 2ls = rl
Reciprocal Pairs Percent Deviation [(T;—;—XIOO%]
Sources Receivers
» 1 2 3 "4 5 6 7 8 9 10 11
1 ——
2 000 -
3 000 000 ----
4 001 001 000 ----
5 004 004 004 003 ---
6 025 028 025 004 284 -
7 022 025 029 038 063 000 -—-
8 010 011 013 0.15 024 002 001 -
9 005 007 009 009 001 004 004 003 —--
10 021 024 027 028 016 010 010 008 006 -
11 176 199 224 250 266 3.17 317 316 314 310 ----
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Table 4-2: Potentials (top) calculated with the volume IE method for sources and receivers
located on the positions numbered in Figure (4-4). Percent deviation (bottom) of the recipro-
cal pairs of the electrodes from the top table. Pipe model: L = 50m, b = 10.16cm, ¢ = 1.27cm, ~
and N = 250. Resistivity: p; = 1.0 Q'm and py = 10 Q'm.



SIE Potentials (mV); N = 402 (Nz=200,Np=1)
Sources Receivers

1 2 3 4 5 6 7 8 9 10 11

1 - 317 158 104 76 56 49 43 38 34 31
2 317 - 316 156 101 73 58 50 43 38 34
3 158 316 - 313 151 96 72 59 50 43 38
4 104 156 313 - 306 142 94 72 59 50 43
5 76 101 151 306 — 290 138 94 72 58 49
6 59 73 9 142 290 --- 290 142 96 73 59
7 49 58 72 94 138 290 - 306 151 101 76
8 43 50 59 72 94 142 306 - 313 156 104
9 38 43 50 59 72 9% 151 313 -- 316 158
10 34 38 43 50 58 73 101 156 316 - 317
11 31 34 38 43 49 60 76 104 158 317 -

VIE Potentials (mV); N = 200
Sources Receivers

1 2 3 4 5 6 7 8 9 10 11

1 - 317 158 104 76 59 49 43 38 34 31
2 317 - 316 156 101 73 58 50 43 38 34
3 158 316 - 313 151 96 72 59 50 43 38
4 104 156 313 - 306 142 94 72 59 50 43
5 76 101 151 306 - 290 138 94 72 58 49
6 59 73 9 142 290 --- 290 142 96 73 59
7 49 58 72 94 138 290 --- 306 151 101 76
8 43 50 59 72 94 142 306 - 313 156 104
9 38 43 50 59 72 9 151 313 - 316 158
10 34 38 43 50 58 73 101 156 316 --- 317
11 31 34 38 43 49 59 76 104 158 317  ---
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Table 4-3: Potentials calculated for the off-axis electrode array for sources and receivers
located on the electrodes numbered in Figure (4-4). The top and bottom tables are calculated
with the surface and volume IE methods, respectively. Pipe model: L = 50m, b = 10.16cm,
and ¢ = 1.27cm. Resistivity: p; = 1.0° Q'm and py = 10 Q:m.
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Figure 4-1: The generalized model of the pipe coaxial with a point source, in a half-space.
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~Figure 4-2: The plot of the potentials at three locations (top, middle, and _bottom) on the pipe
“surface for increasing number of cells. The axisymmetric surface IE formulation calculated

the potentials.
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Figure 4-4: The array configurations used for the reciprocity check. One electrode array combines
the radial surface and downhole lines and the other is an off-axis line.
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Figure 4-5: A log plot of the potentials vs. the radial surface position for a vertical semi-
infinite length annulus. The 1400 cell numerical model calculated the poténtials using the sur-

face IE method.
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Figure 4-8: The discretization of a generalized circular ring cell using the 3-D Cartesian
coordinate formulation (left) and the axisymmetric approximation (right).
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the potentials (bottom) calculated with the 3-D Cartesian coordinate, axisymmetric surface,
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CHAPTER V

NUMERICAL ANALYSIS OF CASING EFFECTS

In Chapters II and III, the IE solutions were developed for a ﬁﬁite-length vertical
annulus (pipe) in a conductive medium with arbitrarily located current sources. In Chapter
IV, the computer algorithms, based on the surface and volume IE formulations, were exam-
ined and validated by performing convergence tests, reciprocity checks, and comparisons. The
algorithm was proven accurate in situations involving boundaries that are horizontal, vertical,
or a combination of both. In this chapter, the algorithms will be used to investigate several

geophysical situations involving resistivity methods in steel-cased wells.

The validity of the line source approximation, used by Sill and Ward (1978), Kauahikaua
et al. (1980), Sill (1983), and Rocroi and Koulikov (1985), is investigated. These authors
considered the casing as a line source of current. The actual situation is simulated here by
placing a current source in contact with the inner wall of the casing. By placing the current
electrode beyond the end of the pipe, the casing effects and the spatial extent of the distortion
are evaluated for downhole to surface and cross-hole measurements. The determination of the
casing effects is important to correctly interpret field measurements acquired in the presence of
the steel casing. The coupling effects between adjacent pipe segments separated by insulating
segments are studied next. If the coupling is small, the separated casing segments can be used
as dowr;hole current and potential electrodes for DC tomography (Daily and Yorkey, 1988 and
Shima and Saito, 1988). ,- Further, there is the intriguing possibility that the separated seg-
ments, used as current elé;:uodes, may be able to direct or focus currents (Jackson, 1981 and
Parra et al., 1986). A dipole gap at the end of the pipe can simulate the DC limit for certain

types of electromagnetic signal telemetry through the earth for measurement-while-drilling
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(MWD). One can also use the algorithm to model a MWD resistivity logging operation.
Lastly, the algorithm is used to simulate several field situations which involve steel cased

wells.

While eang these situations, the factors or parameters that influence the fields will
be identified. The geometrical and electrical variables; position, thickness, diameter, and
length of the pipe, as well as conductivities of the casing and background medium appear to
be important factors that influence the pipe response. The effects of these \;ariables are deter-
mined by examining their effects on the vertical electric fields (E,) in the pipe. During this
analysis, several of the geometrical and electrical variables will be combined into characteristic

parameters that describe the fields.
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5.1 Source on or in the Casing

As indicated in the introduction, several field studies have been conducted using an ener-
gized casing or pipe as a line source. For this situation, the casing or pipe is energized by
placing a current source in contact with the casing. Kauahikaua et al. in their mise-2-la-masse
experiment to map a geothermal reservoir noted that the current appeared not to extend to the
lower sections of the casing. Rocroi and Koulikov, using two energized casings to delineate a
hydrocarbon deposit, showed in their models that the apparent resistivities were dependent on

the location of the current source within the casing.

The objectives here are to examine the use of the casing as a source, to study the effects
of the casing parameters on the fields, and to determine the situations when the line source
approximation is valid. The parameters that influence the fields are identified by using several

- configurations of the pipe and current source. A semi-infinite pipe configuration examines
half-space boundary effects on the E, behavior. The whole-space and half-space problems are
studied with a finite length pipe to determine the effect of i)oundan'es at both ends of the pipe.
The potentials calculated for a finite-length casing are compared to the potentials of a point
source to investigate the region distorted by the casing and to a line source to evaluate the line

source approximation for an energized casing. -

5.1.1 Semi-Infinite Length Pipe

Consider a highly conductive semi-infinite length vertical annulus with thickness ¢,
center radius a, and conductivity 6. in a homogeneous half-space with conductivity . A
curreht source of strength I is applied to the top of .the. pipe (Figure 5.1-1). An expression for
the E, can be obtaiﬁed for an elemental section of the pipe located sufficiently far from the

source such that the radial E-field is negligible (see Figure (3-5) in Chapter III).
By using Ohm'’s law, the potential difference A¢ across the section can be expressed as:

1AL
Se

Ab=I.R, = , (5.1-1)



93

where AL is the segment length, I, is the current within the segment, S, is the pipe conduc-

tance | defined by Kaufman (1990) as:

S. = 2nato, =4nalAac, (5.1-2)
and Aa = /2 is the half-thickness of the pipe. Multiplying equation (5.1-1) by AL™ and let-

ting AL shrink to zero about some point in the section, the E,-field can be approximated:

A I
Ale_:oz% =E =3 (5.1-3)

The current in the elemental section I, is the portion of the applied current I which has
not dissipated into the surmundmg formation. The amount of current leakage is dependent on
the host medium conductivity, pipe conductance, and distance from the current source. There-
fore, E, is proportional to the applied current source and inversely proportional to the pipe
conductance, i.e., E, « I/S, and can be normalized by the factor (I/S.).

Kaufman (1990) indicated that for an infinite pipe the E, can be approximated by the

transmission line equiva_ieni (Sunde, 1968):

1 Az
E, = —exp|- for Az <(S./60)'?(5.14
z 28, P[ (Sclco)ln} (Sc/c0) ( )
where Az is the source-receiver separation distance and is defined, in terms of vertical positién

of the source zys and field (receiver) z, as:

Az = Iz — 24l (5.1-5)

In equation (5.14), the factor of one-half accounts for equal distribution of current flow

in both directions of the infinite pipe. For a semi-infinite pipe and a source placed on the
half-space surface, the factor is unity instead of one-half since all the current in the pipe
would flow downwz;rd due to the boundary. The term in the denominator of the e#ponent is

defined as the "(effective) conduction length" of the (infinite) pipe §, and is given as:

1 The pipe conductance seems to be a misnomer since its units are [ S-m ] instead of [ S ], the units of conduc-
tance. It is actually, although not mentioned in Kanfman's paper, the inverse of the unit length longitudinal
resistance. Hence, the units of the pipe (longitudinal) conductance are [(m)~'] = [ Sml.
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drnaAac, 12 '
—_— (5.1-6)

8 = (8./00)% = [ o

The conduction lengt.h_of the pipe relates the pipe conductance with the conductivity of
the background medium and is an indicator of the pipe’s ability to carry current along its
length. When the conduction length is short, the current in the pipe quickly leaks into the sur-
rounding medium. A long conduction length indicates that the pipe conductance is large com-
pared to the surrounding medium conductivity so that the current travels in the pipe with little
leakage into the formation. The conduction length is similar in definition to the skin depth
_ used in electromagnetics. At Az = §,, the field amplitude has dissipated to approximately 37%
(e™!) of the field at Az = 0.

Figure (5.1-2) shows the normalized E, variations for a semi-infinite pipe with the
current source placed at the surface (zqs = 0). This plot shows that the decay of the field is
dependent only upon the conduction lengths. All the field curves have decayed to approxi-
mately ¢! of their original values at Az = §,. For an infinite annulus, all curves would con-
verge to 1/2 at Az =0. The only difference between the two sets of plots is a factor of one-

half due to the half-space boundary.

The E, in the semi-infinite pipe can be characterized by a parameter By that normalizes

the conduction length by the source depth. It is given by the following:

8 (S./00)"

Bs = (5.1-7)
. Zas Zgs
The vertical position is also normalized and defined as:
=22 (5.1-8)
Z0s

Figure (5.1-3) shows two plots of the normalized E, in a semi-infinite pipe for Bs <1 and
Bs = 1. All curves to the right of the z; = 1 represent downgoing E, which is positive. To the
left of zg = 1, the upgoing E, is negative. Since current densities are proportional to the E-

field, these plots also represent'the amount of current flowing in that portion of the pipe.
: ’
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These curves indicate that the half-space boundary and the Bs-ratios dictate the distribu-
tion of the fields or current flow in the pipe. The amplitudes of the upgoing and downgoing
E, are dependent on the longitudinal resistance of the pipe for the sections above and below
the source (zg = 1). Since the half-space surface has infinite resistance, the Bg-ratio (conduc-
tion length to source depth ratio) will determine the amplitudes of the upgoing and downgoing

fields.

For large Bg-ratios (Bs 2 2), most of the current is traveling downward due to the surface
boundary effect on the upgoing fields. The upgoing curves which are impeded by the surface
boundary resemble the fields for By = 1.75 with a shift of the vertical axis. As the Bs-ratios -
decfeases, the disparity between the upgoing and downgoing fields decreases and their ampli-
tudes tend toward one-half at z; = 1. The half-space boundary has less effect so that more
current is able to flow upwards and leak into the surrounding medium. For small Bg-ratios
(Bs < 0.3), there is very little difference between the amplitudes of the upgoing and downgoing
fields at the source depth. The downgoing fields behave like those of the infinite-length pipe.
However, the upgoing fields are still affected by the half-space boundary. The deviation from

the infinite-length field curves is dependent upon the Bs-ratios.

5.1.2 Finite-Length Pipe

When the pipe is finite in length (see Figure 5.1-4), the behavior of the fields will be
dependent upon the length of the pipe and the relative source position. The parameters that
characterize the fields should refiect the finite length. This can be achieved by dividing the
~ numerator and denominator in the exponential in equation (5.A1-4) by the length of the pipe
(L). -Thus, the apprbximation in equation (5.14) which describes the behavior of the E, will
- not be affected. The parameter called the conduction ratio, o, is introduced. It is the ratio of

the conduction length to pipe length and is given as:

o o

(s —2zr) L . , (5-1-9)

The normalized vertical position, z, is:
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Az Az
R (5.1-10)

Two length variables, ALy and ALg, will be used to define the lengths from the source to the

top and bottom of the pipe, respectively.
ALy =lzgs—2p | and  ALp =lzg — 245 | (5.1-11)

where zr and 2 are the depth to the pipe top and bottom, respectively. Another parameter is
introduced to account for the source position in the pipe relative to the pipe length. This

parameter is called the relative source position, S/L-ratio, and is defined as:

Gos=2) _ Ay ALy

= G—m - L 'L

(5.1-12)

Figure (5.1-5a) shows the normalized whole-space E, of several oy-ratios with the
source located at the top of the pipe (S/L =0). At first glance, these fields resemble the
downgoing fields of the semi-infinite pipe. But when compared to the semi-infinite pipe
curves, the whole-space fields fall off more rapidly due to the boundary conditions at the bot-
tom of the pipe. The boundaries have the greatest effect on the fields when oy > 1.75 (

&, > 1.75L) so that the normalized E, in the pipe appears to have the same response.

Evaluating the effects of source position on the E, (Figures 5.1-5b to 5.1-5d) indicates
that the behavior of the fields in the pipe is dictated by the lorigimdinal resistance of the upper
and lowgr sections. The longitudinal resistance is the equivalent resistance of the pipe section
observed at the source and is related to the inverse of the section length. Since the pipe is in
the whole-space, the E,-fields for 0.5 > S/L > 1 are the mirror imdge of 0<S/L £0.5. As the
oy -ratio decreases, the boundary has less influence on the fields in the pipe. Hence, the
differences between the upgoing and downgoing fields at the source decrease and the E, value

approaches one-half.

The effects of the half-space boundary on the finite-length pipe is seen by comparing the
nommalized E, for S/L = 0.5 of the whole-space (Figure 5.1-5d) and the half-space (Figure

5.1-6) cases. Due to the surface boundary condition E, = 0 at z; = 0, the upgoing half-space
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E,-fields are smaller than the whole-space fields. The effect of the half-space is the greatest in
the upper portion of the pipe. The downgoing half-space fields are similar to those of the
whole-space since both have the same boundary condition. At the bottom end of the pipe, the
boundary condition is that E, = 0 due to the large conductivity contrast between the pipe and
medium. The results indicate the the fields are influenced by the pipe depth. However, this
effect is minor compared to the effects caused by the conduction ratio and relative source

position.

5.1.3 Potentials in the Mediilm

The potentials ¢ in the half-space can be characterized by the same parameters defined in
the previous section. Recall that the relationship of the conductivities between the background
host medium and the pipe is incorporated in the conduction length. The potentials in the

medium are presented as logarithmic-cbntour plots.

From the analysis of the current source within the pipe and o >1.75 (§, > 1.75L), it
was found that the potentials were proportional to the current / and inversely proportional to
the background conductivity o, and pipe length L. For a given conduction length, pipe depth,

and source position, the normalized potential is given as:

: o )
I A
o =¢ [_—_4100'0L] (5.1-13)

For current sources located within the pipe, the normalized field positions, p, and z,
and conduction ratio o, are used since the fields are independent of the pipe length. The

radial p; and vertical z;z components of the normalized field position are given as:
PL = p/L and 2y = z/L (5.1'14)

where p and z are the radial and vertical coordinates of the field point, respectively. The area
of interest is within the bounds z; = (0, 2) and p; = (0.01, 2.01). The pipe is placed at the sur-

face (zr = 0) and several current source positions S/L are used.
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Contour plots of the potentials calculated for a current source located within the pipe
(S/L < 1) are presented in Figures (5.1-7) to (5.1-10). Each figure is composed of several
plots which are the normalized total field for several o, -ratios and the normalized primary
field. From these figures, there are certain cases (og < 1.75) where the potentials appear simi-

lar to those produced for oy > 1.75. For these situations, let:

o = 175 2xlaL] - . (5.1-15)

where ALy and ALy are defined by equation (5.1-11) and max [AL] is the maximum length of
ALy and ALg.

For o7 > oy, all the normalized potentials have nearly identical contour plots and are
independent of the source position. The pipe alters the fields such that the potentials appéar
as fields produced by a line source showing no evidence of the primary source position.
When o < og, the normalized potentials are dependent on the source position. The source
position is evident from the curvature of the equipotential lines. The values of the total field
approaches the pnmary field due to the reduced pipe effect. For very small oy -ratios
(o < 0.05), the currents in the pipe leak quickly into the surrounding medium. The pipe has
almost no influence on the potentials, and thus the total and primary potentials are nearly the

same.

The distortion of the potentials caused by the pipe can be analyzed by observing the

behavior of the ratio between the total and primary fields:

Ry = % | (5.1-16)

For a non-distorted field, R, is unity. A R, greater than one indicates that the pipe effects add
to the primary field, and a R, less than one implies that the pipe contribution reduces the field.
Coincidentally, the R,-ratio is also the ratdo of the apparent resistivity to that of the back-

ground medium for a pole-pole survey.

The half-space primary field from a single current source is given as:,
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= = (& 4
4ncy | lr—rgl  Ir — 1%l 416,
0 () 0 0

o ! |: L : ] L_¢ (5.1-17)

where r, r,, and r’, are the location of the field (measurement) point, current source, and

source image, respectively. Solving for the array geometric factor G yields:

G = 4,«,0% (5.1-18)

The apparent resistivity for a pole-pole survey is:

= i 1 l = i -1 -
Pa =41 T |Tr—rq + r= gl 4r 7 G (5.1-19)
where ¢ is the (total) potential measurement at the field position. Substituting for G in equa-

tion (5.1-19) with equation (5.1-18) yields:

-1 9 Pe_ 0 _p - (5.1-20
- Pa So Go > Po %o ¢ - G120

where pp = Vog.

Figures (5.1-11) is a series of contour plots for o, =2 and various source positions
within the pipe. The model configuration is similar to that of the previous section. The
shaded areas in the plots are the locations where the total field ‘is within 5% of the primary

field, i.e., the distortion of the potential due to the pipe is 5% or less.

When the R ,-ratios are calculated, the results indicate that the area affected by the pipe
is dependent upon the source position. Large pipe effects are observed for situations where
the current source is near the pipe ends (S/L = 0.0 and 1.0). The largest distortion occurs
when the source is near the bottom of the pipe (S/L > 0.8). The configuration which shows
the least overall distortion is where sources are located very near the pipe center (S/L = 0.5).
Surface and cross-hole measurements would be the least affected by the pipe. The distortion
of greater than 5% occurs Within 04L on the surface aﬁd 0.6L at the ;;)urce depth. The
source positions slightly below the pipe center (S/L = 0.65 - 0.70) appear to give optimum
results for measurements below the pipe. The non-distorted area begins approximately 0.2-

0.4L beyond the pipe end. ’
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5.1.4 Line Source Approximation

To evaluate the line source approximation, the ratio between the total potential and the
potential due to a line source is calculated. A ratio near unity indicates that the energized cas-
ing behaviors like a line source. The potential produced by a finite-length equipotential con-
ductor in a half-space is:

' ®.2) __ I [z —z2r+p%+(z —2r)] [z + 252 + pFV2 + (z + 23)]
¥Oe )= rcues — o)l — P+ PR+ G —2)] G + 20+ PP @ 4 ap)]

(5.1-21)

where zr and zz are depths to the top and bottom of the casing, respectively.

Figures (5.1-12) to (5.1-16) are the contour plots of the potential ratio for several source
positions. Each figure has four plots for different conduction ratios. The shaded areas
represent the locations where the total field is within 1% of the potentials produced by a
finite-length line source. The figures show that the line source approximation is dependent on
the oy -ratio.
Except for the area near the surface and within one pipe length, a 1% or less deviation
occurs for oy > og. The largest deviatjons occurs when the source is placed at the ends of the
pipe for o <0.5. When the source is placed near the middle of the pipe, the region of distor-
_tion is the smallest. A 1% or less deviation occurs for field points that are at least one-half
pipe length away from the casing.

| For a resistive host (large oy -ratio), the line source approximation of the casing is valid
at all field positions. . The deviation is less than 5% at all points within the medium for any
source depth within the casing. The spatial distortion increasé¢s as the conduction ratio
decreases. In a conductive medium, the line sourée approximation greatly distorts the poten-
tigls and is dependent on the source position within the casing. For 5% or less deviations,
surface measurements cannot be less than one casing length away from the pipe when
oy, = 0.5. Cross-hole surveys can be conducted as close as 1/2 pipe length to the casing if the

.ﬁeld points are at least 1/2 casing length beneath the surface.
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5§.1.5 Summary

The E,-fields in the pipe are found to be proportional to the applied current source and
inversely proportional to the pipe thickness, radius, and conductivity, i.e., the pipe conduc-
tance. Like E,, the potentials are also proportional to the current source, but are inversely
proportional to the background conductivity and pipe length.

In general, E, and potentials can be characterized by the following four parameters: the
conduction length of the pipe (§,), position of the current source (), the length of the pipe
(L), and depth to ﬁxe pipe (T). All the parameters contain some geometric aspect of the prob-
lem, i.e., the positions, distances, and dimensions. Of the four parameters, only the conduc-
tion length of the pipe is based on the electric properties of the problem. It relates the pipe
conductance with the background medium conductivity and is an indicator of the pipe’s ability
to carry current along its length. When the current source is located within the pipe, all
parameters and spatial variables can be normalized by the. pipe length reducing the number of
characteristic parameters to three. They are the conduction ratio (ay ), relative source position
(S/L), ahd pipe depth to pipe length ratio (zr/L).

When the current source is within the pipe boundaries, the conduction ratio appears to be
the most important parameter that chmadeﬁzes the response of the pipe. The behavior of the
- E, is mainly affected by the conduction ratio and source location. The depth to the pipe has

only a minor effect on the E, in the pipe.
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5.2 Source Beyond Casing End

In many instances, the wells are only steel cased in the upper portion of the borehole
and open at depth. Bevc and Morrison (1990) conducting a monitoring experiment of a steam
injection, and Schenkel and- Morrison (1990b) in another field study (see Chapter 7) have
reported anomalously high apparent resistivities at locations near the well. Both experiments,
downhole to surface resistivity surveys, were conducted in wells that were partially cased with
steel. The steel casing can strongly distort the response of the desired signals which may lead
to erroneous interpretation of the field data- (Holladay and West, 1984).

The main objective of this section is to evaluate the distortion caused by the casing on
borehole to surface and cross-hole resistivity surveys for current sources placed beyond the
end of the pipe. The areas where the potentials are greatly distorted must be determined and
avoided. If it is not possible to avoid these regions, then the pipe influence must be deter-
mined to distinguish casing effects from the target response. The electric fields within the

casing are studied, as are the potentials in the medium.

5.2.1 E,-Fields in the Casing

For current sources located beyond the pipe end, the pipe-source separation (As), is used

to describe the current source location and is defined as:
As =l zgs — 25 | 5.2-1)

Figure (5.2-1) illustrates the E, for a constant pipe-source separation withv the conduction
length varying. The sharp fall-offs at the top and bottom of the pibe are caused by the boun-
dary conditions at the ends of the pipe. The E, values near the bottom of the pipe are similar
for all conduction lengths. But aloﬂg the pipe, the fields decay according to its conduction
length.

Figure (5.2-2) are plots of the E, in the pipe for increasing separation distance from the

pipe end These values correspond to oy -ratios of 2, 0.5, 0.2, and 0.1, respectively. using
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600m, 150m, 60m, and 30m for the conduction lengths.2 For these plots, the top of the pipe
was located at the surface and had a length of 300 meters. From the figures, the fields
asymptote to zero towards the surface and decrease with increasing pipe-source separation dis-
tance. For large conduction lengths, the fields become more symmetric and uniform near the

pipe center as the separation increases.

When the source is located beyond the end of the pipe, an equivalent S/L -ratio will not
produce the same E, for different pipe lengths. Figure (5.2-3) shows normalized E, values for
different source separation distances calculated from a 30m pipe which has a conduction
length of 60m (o =2 for this conﬁgumﬁon). Comparing Figure (5.2-3b) to Figure (5.2-2a)
(8, = 600m or oy =2) shows that several of the curves match each other if the spatial vari-
ables are norrhalized by the pipe length. This indicates that a relationship exist between the
E, in the pipe and the pipe_ length, conduction length (conductivities), and current source posi-
tion.® But this relation is much more complex than the simplified approximation of equation
(5.1-4). Hence,b the pipe length must be included as a parameter for a current source beyond

the pipe end.

. §2.2 Potentials in the Medium

The potentials ¢ in the half-space can be characterized by the same parameters deﬁned in
the previous section. For this analysis, the top of the finite-length pipe is located at the sur-
face and several conduction lengths are used. The field position (p, z) and pipe location (zr)
cannot be normalized by the pipe length. The current source position, pipe length, and con-
duction length §; are needed to calculate the fields. A 300m long pipe is placed at the surface
(zr =0) and severalxconduction lengths are used. The area of interest is from Om to 600m in

the vertical direction and from 3m to 603m in the radial direction. The source depth, which

2 For sources beyond the pipe end, the E, in the pipe is dependent on the pipe length, so that the conducnon Ta-
tio a; cammot be used.

3 Although not shown, changing the variables of conduction leng!h for both pipe lengths resulted in propomonal
* variations of the E,-fields. Hence, the E-fields- are still dependent on the conduction lerfgth.
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also cannot be normalized, is described in terms of pipe-source separation As, given in equa-
tion (5.2-1).

Several source-pipe separations ranging from 0.Im to 10m are used to evaluate the dis-
tortion caused by the pipe (Figures 5.2-4 to 5.2-8). For a given separation distance, the calcu-
lation of the fields using &, > 1.75L produces the same nommalized potentials. As can be
expected, the area of the non-distorted field decreases as the conduction length decreases for
all source locations. For large conduction lengths and current source slightly below the pipe
end, the equipotential lines are still parallel to the pipe. However, the potential is not com-
pletely masked by the pipe effect since the equipotential lines enclose the current source. As
the separation distance increases, the total field asymptotes to the primary field since the pipe
effects become less pronounced. At approximately 10m separation, the maximum amplitude
of the two are equivalent and the pipe has a very small influence on the potentials except at
field positions very near the pipe. With decreasing conduction lengths, the effects of the pipe
are even further reduced. At &, =15m, the pipe becomes essentially transparent for As > 2m
and the equipotential lines intersecting the pipe are nearly perpendicular to it.

As in Section (5.1), the distortion of the potentials caused by the pipe is evaluated by the
ratio between the total and primary fields, R,. Recall that R, is unity for a non-distorted field
and is also the ratio of the apparent resistivity to that of the background medium for a pole-

pole survey.

Figures (5.2-9) and (5.2-10) are logarithmic-contour plots of the normalized primary field
for source positions beyond the end of the pipe. The model configuration for Figure (5.2-9)
has the pipe located at the surface with a length of 300m and a conduction length of 600m.
For this situation, the pipe-source separation distance used in the field calculation ranged from
0.1m to 20m. For the results of Figure (5.2-10), the pipe-source separation is fixed at 0.5m
and the conduction length varied from 60m to 600m. The shaded areas in the plots are the
locations where the total field is within 5% of the primary field, i.e., t.pe distortion of the

potential due to the pipe is 5% or less.
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Figure (5.2-9) indicates that the influence of the pipe decreases as the separation distance
increaées. For small separation distances, R; is similar to that produced by the source at the
pipe end. Only areas far from the pipe have little distortion of the fields. As the source
moves farther from the pipe, the distorted areas decrease in spatial extent and the amplitudes
of the potentials approach the primary field values. At 15m and greater, only the area adja-
cent the pipe shows large pipe effects. The area between the pipe and source shows minor

changes due to the pipe. Little casing effects are seen in the areas below the source.

Figure (5.2-10) shows a decrease of the distortion as the conduction length decreases.
The 5% or more distortion extends approximately two casing lengths beneath the casing and
radially outward from the well at the surface. For decreasing conduction lengths, the two dis-
torted areas near the surface and below the casing are significantly reduced. When compared
with the 600m conduction length, the extent of the distortion is reduced by appr(;ximately a

factor of two for the 60m conduction length.

52.3 Summary

Once the current source is beyond the end of the pipe, the E,-fields and potentiais are
dependent on the pipe length and the characteristic parameters cannot be normalized by the
pipe length. For this situation, the source position was conveniently defined in terms of the
pipe-current source separation distance instead of the source depth. Both E,-fields in the pipe
and potentials in the medium are largely influenced by the pipe-current source separation dis-
tance, conduction length, and pipe length. The effect of the pipe decreases as the pipe-current

source separation distance increases and as the conduction length becomes smaller.

A 107°Q:m caéing with a 10cm inner radius and 6m thickness will have a conduction
length of 623m in a 100Q'm half-space. The potentials in the region very near the pipe are
substantially influenced by the pipe for a source 100 casing diameters below the end of the
casing. For a field distortion 5% or less, the surface measurements must not be clbser than

172 pipe length. In cross-hole resistivity surveys, the affected area is greatfly reduced; surveys
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can be conducted as close as 1/6 the casing length for with a distortion of 5% or less. In a
conductive 1Q-m half-space, the pipe conduction length is reduced to 62m. surface measure-
ments can be as close as 1/4 pipe length for 5% or less distortion of the fields, while the

cross-hole survey can be conducted as close as 1/10 pipe length from the pipe.
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5.3 Multiple Pipe Segments

By separating several segments in a borehole (Figure 5.3-1), as was done by Bevc and
Morrison (1990), multiple sources or receivers can be used to image the target in a downhole
survey. Downhole current electrodes can be created by energizing the isolated segments.
Likewise, the insulated segments could be used as potential electrodes. If additional wells are
.dn'lled with multiple segments, then cross-hole measurements can be mgde and processed
using DC imaging techniques (Daily and Yorkey, 1988 and Shima and Saito, 1988). The
imaging technique requires that the interaction between segments is such that the sources and
receivers show point-like behavior. Thus, the main purpose of this sectioﬂ is to evaluate the
coupling effects of the adjacent casing segments and determine when the point-like approxi-

mation may be used.

‘The interaction between separate coaxial pipe segments is investigated by using a long
upper segment (fixed casing) and short lower segments (e]ectrodes). Figure (5.3-2) illustrates
the configuration of the two pipe segments with lengths, L, and L,, separated by a distance
Ad. The behavior of E, in the pipe segments and the potentials in the half space was investi-
gated by varying the pipe separation distances Ad, segment lengths L conduction lengths §;,
and current source positions within the active segment.“ The E,-fields and potentials are nor-
malized with the same factors used in the previous sections, I/S, and I/4ncoL,, respectively.
The parametexﬁ and spatial variables are not normalized, thereby eliminating confusion regard-

ing which of the pipe lengths is used for the normalization.

For the following analysis, the pipe segments will have the same conductance with the
upper segment, C,, is fixed at the surface and of length L, = 300m. Several lower segment
lengths L,, conduction lengths &, , and separation distances Ad are used to illustrate the distor-

tion caused by the passive: segment.

4 The term "active” is used to describe the pipe segment containing the current source. Whereas, “passive”

refers to the source free casing segment. y
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5.3.1 E-fields in the Casing

Figures (5.3-3) to (5.3-6) are the normalized E, in the passive C,. In Figure (5.3-3), the
E,-fields are calculated for several conduction lengths for L, = 5m, Ad = 5m, and the current
source placed in the center -of the lower segment. In Figure (5.34), the E,-fields in C, are
plotted when the source is placed at the top of the 5Sm lower segment and several separation
distances are used. The influence of different lengths for the lower segment, 2m below the
upper segment, is seen in Figure (5.3-5). The effects of current source position in the 5m

active segment, that is separated 2m from the upper casing, are illustrated in Figure (5.3-6).

The E,-fields in passive C, are similar to the fields produced by a current source below a
single pipe. The fall-off of the fields is mainly dominated by the conduction length as seen in
Figure (5.3-3). Figure (5.34) shows that the E,-fields in C, become smaller and more sym-
metric for longer separation distances.‘ For a given separation distance and conduction length,
the longer length of the active pipe segment results in smaller E, (Figure 5.3-5). Since the
current is distributed along the length of C,, the effect on C, is reduced for long C, segments.
Figure (5.3-6) illustrates that the E, in C, is independent of the current source position in C,.
Its effect can be approximated by a current source placed at a distance Ad + L,/2 from the end

of C, in absence of C,.

Since the length of the lower active segment is short, the E, in the active segment Cz
resembles the field for a current source placed within the pipe that is below the half-space sur-
face. Hence, the E, in the active segment is not shown. For a given conduction length, the
fields of different active pipe lengths L, appear the same if the position and separation are
normalized with the respective pipe length. The E,-fields for all §; > 1.75L, are the same for

a known separation distance and pipe length.

5.3.2 Potentials in the Medium

Contour plots of the log-potential and the total-primary potential ratio are used to deter-

¢
mine the region affected by the addition of the passive segment. If the distortion of the fields
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caused by the passive segment is small, the ratio of the potentials is close to unity. The
greater the deviation from one, the larger the distortion. The potentials and distortion due to
the lower segment are illustrated for various lengths of C, (Figure 5.3-7), separation distances,

and conduction lengths (Figures 5.3-8 to 5.3-11).

In general, the behavior of the potentials is similar to that of the current source located
beneath a single casing. For short separation distance and large conduction lengths, the equi-
potential lines are nearly parallel to the upper casing. As the active segment length increases,
separation distance increases, or conduction length decreéses the total potentials asymptote to
the values of the primary fields. The extent of the affected area near the surface is reduced
for longer L,, whereas the distorted region ncar the lower segment shows a larger reduction
for longer segment lengths. For short separation distances, there is a large distorted region
near the surface adjacent to the upper casing and in the vicinity of the lower segment. When
the separation distance is increased, there is a reduction of the distorted areas indicating that
there is less interaction between the two pipes. For large conduction lengths, the potentials
adjacent to the lower pipe appear similar to those produced by a line source although this is
difficult to observe from the figures. The potentials along the upper segment are affected such
that the equipotential lines are nearly parallel to the pipe. The distortion increases along the
passive casing towards the surface and radially outward. The areal extent of the distortion is
downwards along the lower segment and extents far below the active lower segment. As the
cohduction length decreases, the coupling between the pipes is small. Thus, the upper seg-
ment carries less current and the equipotential lines along C, merge into the the pipe and the

distorted area is significantly reduced in the region.

53.3 Additional Segments
Next, a Sm segment is placed below the long and short segments to evaluate the varia-
tions of the potentials due to the additional segment. This configurations can be represented

‘by the upper three segments in Figure (5.3-1). Contour plots of the log-pdtentials and total to
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primary ratio for the two 5m segments placed below the 300m casing. For the analysis, a

current source placed in either of the two Sm segments.

Figures (5.3-12) to (5.3-15) are the contour plots with the source in the upper short seg-
ment using several conduction lengths and separation distances. Comparing these plots to the
results of the single casing and the casing and short segment configurations show only slight
differences of the potentials in the medium between the three situations. The distorted area is
nearly the same as that for the single casing. This indicates that the lower passive segment

has negligible effects on the fields.

Figures (5.3-16) to (5.3-19) are contour plots for the same situation except that the
current source is located in the lower short segment. These figures show that the response is
slightly different from the single casing situation. Since the center passive segment lies
between the bottom active segment and the upper passive casing, the center segment acts as a
conduit for the currents to flow into the upper casing. Thus, the spatial distortion is larger

than that for the situation of the single casing.

5.3.4 Summary

The behavior of the fields is dependent on any factors that increase the effective conduc-
tance of the passive segment. Short separation distances, as well as long segments and con-
duction lengths appear to have the most influence on the behavior of the fields. The location
of the current source within the active segment has no influence on the fields. Placing the
source anywhere on the active segment is equivalent to a current source located at a distance
of Ad + L,/2 below the upper casing. The length of the active pipe has a minor influence on

the fields.

The interaction between the two pipe segments results in the reduction of potentials adja-
cent to the upper segmeflt, with a corresponding increase in the fields below this segment.
The separation distance between the two segments and the conductance length have the most

.
influence on the potentials. When the separation distance is short, the interaction between the
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two pipes is great, distorting the region outward from the casing near the surface and down-

ward below the segments. This effect is accentuated when the conduction length is large.

For the two segment configuration, the major contribution to the distortion is due to the
long surface casing. For additional segments, the effects are small if they are located below
the long surface casing and short active segment. If a segment is between the active segment
and surface casing, its addition would effectively increase the conductance between the active
segment and surface casing. This causes the spatial distortion of the potentials to be larger

that that of the single casing or double segment configurations.
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5.4 Dipole Current Source

Consider a dipole current source located at the end of the casing where one pole is
located in or near the casing end and the other below. This configuration may be used for
downhole to surface or cross-hole surveys as will be shown in the next section. By attaching
the polarized current source to insulated segments, measurement-while-drilling (MWD) opera-

tions can be simulated.

The fields from a grounded dipole source can be calculated by the superposition of posi-
tive and negative pole sources. Thus, the analyses from the previous sections can be applic;.d
to this situation. The E, in the casing and the potentials in the medium are examined to deter-
mine the effects of the conduction length, dipole gap5 length, and a lower segment on the
fields. Throughout this section, the E,-fields and the potentials are normalized by the factors
1/S, and I/4no,, respectively. Additionally, the potentials are plotted at logarithmic contour

intervals of approximately one-half.

5.4.1 Conduction Length

Consider a fixed dipole, with a gap length Az, = 0.2m, located at the end of a 300m cas-
ing (Figure 54.1). Several conduction lengths (600, 300, 150, and 60m) are used for the cas-

ing which extends to the surface. For this analysis, no lower segment is used.

Figure (5.4-2) shows that the E,-fields in the casing for various conduction lengths are
similar to those produced by a source at the end of the pipe. The figure indicates that the
fall-off of E, is strongly dependent on the conduction length and is slightly greater than that

of the single source due to the effect of the hegative pole below the pipe.

For this situation, the primary potentials due to the dipole source are the same for all
conduction lengths since Q_nly the medium conductivity is varied and this is incorporated into

the normalization (Figure .5.4-3). Figure (5.4-4) shows the total potentials produced by the

5 The dipole gap length is the distance between the two current source poles. ‘ 4
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dipole source in the presence of the casing. 'For large conduction lengths, the behavior of the
potentials‘is similar to that produced by a line and pole source of opp(;site polarity. In the
vicinity of the casing, the zero potential line is shifted up towards the pipe. Away from the
casing, the equipotential line asymptotes to the zero potential of the dipole field. As the con-
duction length decreases, the potentials become more symmetric about the source such that the
equipotential lines merge into the adjacent caSing.

The most intriguing aspect of the casing effect is that the amplitudes of the potentials are
much larger than the fields of the primary potentials. This amplification effect is the largest
near the casing and is at least two orders of magnitude. Away from the casing, the effect is
reduced by a factor of -10. For a fixed dipole gap length, this distortion is reduced for smaller

conduction lengths.

5.4.2 Dipole Gap Length

The effects of the dipole gap length (Azy) on the E,-fields in the pipe is shown in Figure
(5.4-5). The model used for this evaluation is a 300m casing extending to the surface with a

conduction length of 600m. '

The behavior of the curves is similar to those of the E,-fields from the single source at
the end of ihe casing. The single source configuration is the limiting case of the infinite gap
length. The amplitudes of all the E, curves produced by a finite gap length will be less than
this limiting case. The amplitudes of the E, are dependent on the gap length of the dipole.
For a long gap length, the negative pole is situated far below the casing and has little
influence on the fields in the casing. Hence, the shorter gap lengths will result in smaller E, -
fields within the casing.

Figure (5.4-6) illustrates the effects of the dipole gap length on the primary potentials in
the medium. The plots s.flow that the primary fields are dependent on the dipole gap length.
The potentials away from the source are proportional to the dipole length Az,. The presence

of the casing for the different gap lengths are illustrated in Figure (5.4-73. As with the pri-
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mary fields, the total potentials increase with increasing dipole length although it appears that
this relationship is not linear. The potentials are similar to those described in the previous
case for the conduction length effects. The total potentials appear to be caused by a line and

pole source which are much larger than the primary fields of a dipole source.

5.4.3 Lower Segment Length

The effects of the length of an separated segment attached to the negative pole of the
source is examined. Both the 300m upper surface casing and lower separated segment with a
length of L, have a conduction length of 600m and are separated by a distance of 0.2m (Fig-
ure 5.4-8). For this problem, the positive pole is placéd at the bottom of the casing and the

_negative pole is located at the top of the segment.

The E,-fields in the upper casing and lower segment are shown in Figure (5.4-9) for
various lengths of the lower segment. The fields in the upper casing increase as the lower
segment length increases. The asymptotic limit for these curves is the E,-field produced by a
pole. This behavior is due to the current distribution in the lower segment which reduces the
influence of the pole in the segment on the upper casing. The response of the E,-fields in the
lower segment is similar to that in an active segment of the single source case. As with the
other dipole configurations, ﬂae fall-off of the fields is slightly greater than the decay of the
single pole in the upper casing.

All of the primary fields in Figure (5.4-10) are the same since the dipole gap
(Azg = 0.2m) and conduction length (§; = 660m) did not vary. Figure (5.4-11) is a series of
contour plots of the total potentials for several lengths of the lower segment. The fields in the
medium behave like those produced by two line sources of opposite polarity. The potentials
" near the casing and the segment increase as the lower segment length increases. Also, the
potentials are more symmém’c about the current source as the lower segment length increases.

Again, the total potentials are much greater than the primary fields of the dipole.

4



5.4.4 Surface Response

The potentials and the total-primary ratio are calculated on the half-sﬁéce surface to
illustrate the magnification of 'th.e potentials caused by the casing with the dibole source as
opposed to the potentials from a dipole source with no casing. Several dipole gaps and lower
segment lengths are used to illustrate the effect. A 300m upper casing with a conductance of
3883S'm is placed in a 100Q-m half-space (this is equivalent to a conduction length of approxi-

mately two).

Figure (5.4-12) illustrates the effects of the dipole gap length on the potentials. The
curves for different gap lengths are nearly parallel to each otﬁer. The fall-off of the potentials
is greater than that of the single pole curve. As the gap length increéses, the potentials
increase and approach the single pole case. However, the fotal-pdmary ratio is reduced as the
gap length increases. For surface positions near the casing, the total fields can be 2-3 orders
of xﬁagnitude greater than the primary field. In the far-field, the potentials are reduced by a

factor of 5 to 10.

The influence of the lower segment length on the potentials and the total-primary ratio is |
shown in vFlgure (5.4-13). For this problem, the casing separation (dipole gap) is 0.2m. .From
this figure, both the potentials and the total-primary ratio increase as the lower segment
lengthens. The potentials are magnified by the presence of the upper casing and lower seg-
ment. Near the casing, the potentials are 300-3000 times larger than the primary fields. The
distortion is reducedvby an order of magnitude when the field point is approximately one cas-

ing length away from the well.

5.4.5 Summary _

In the presence of the casing and/or a segment of ‘casing below upper casing, the poten-
tials in the medium are miuch larger than the fields from-the dipole source alone. The fields
are influenced by the dipole gap, conductioh length, and separated segment length. The poten-

tials in the half-space are increased when any of these factors is increased/'.b Although the far-
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fields are greatly affected, the largest deviations of the potentials occurs near the casing and

segment where they are approximately 100-1000 times greater than the primary fields.
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5.5 Numerical Examples

In this sectibn, two examples are used to simulate field situations that may be encoun-
tered with steel cased wells. The first model simulates the monitoring of an injection experi-
ment; the cross-hole and downhole to surface surveys are considered. The last example is
directed to the low frequency limit of an electromagnetic telemetry scheme used in measure-

ment while drilling (MWD).

5.5.1 Injection Monitoring Simulations

The principle behind the monitoring of an injection experiment can be illustrated in the
simple cross-section in Figure (5.5-1). Consider electric current injected into the earth
between a downhole electrode A and a remote surfaée electrode B. In a homogeneous
médium, the currents from the source (position A;) radiate away from the hole producing a
predictable set of voltages at measuring potential electrodes located at the surface or in an
adjacent well. When the electrode is located in a ione of high conductivity, caused for exam-
ple by the injection of conductive fluids, the current pattern is distorted by the zone as shown
by the currexit flow lines when the electrode is at position A,. This distortion produces a per-
turbation in the voltages observed at the measuring arrays. This method can be used to moni-

tor the changes associated with an injection over time.

For many injection situations, the wells are cased with steel. The fluids are usually
injected through a perforated zone in the casing or out the Bottom of the pipe into the sur-
rounding formation. Not only does the steel casing distort the voltages at the potential elec-
trodes, but there will be a coupling efféct between the injected fluid and steel césing which
can also distort the voltages. The objectives of this study are two fold: (1) to determine if the
spatial changes associated with the injection can be measured at the potential electrodes and
(2) to determine if the c;sing will reduce or distort these changes so that they may not be
measurable or disﬁnguiéhable. The cross-hole and downhole to surfacevsuweys are used for

. . /
the monitoring simulations.
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Cross-Hole

Consider a well cased with steel and perforated at some depth. Conductive fluids are
injected through the perforated section into the surrounding media producing, under ideal con-
ditions, a cylindrical zone which is often referred to as a plume. As the fluid is continuously
injected, this plume will increase in size over time. For this problem, the steel casing is ener-
gized by a downhole source and an array of potential electrodes is located in an open-hole

adjacent to the injection well.

Two models are used for this numerical example. The first model is the injected plume
in a homogeneous half-space with the downhole source placed within the plume (mise-a-la-
masse). The second model, shown m Figure (5.5-2), consists of the plume and the casing in

“the host medium. The current source is placed inside the casing at the same depth (200m) as

in the mise-a-la-masse conﬁguration.6

The 300m casing which has a resistivity of 10°Qm is embedded in a 100Q'm homo-
geneous medium. The 1Q'm, disk-like plume is injected into the formation at a depth of
200m. A radius R represents the spatial extent of the 2m thick plume during the injection
process. The cross-hole measuring array, which is located 100m from the injection well, has

the potential electrodeé spaced 5m apart and extends to a depth of 400m.

Figures (5.5-3) and (5.5-4) are plots of the potentials and E,-fields in the monitoring
well for the plume only (circles) and plume with casing (squares). The backgmﬁnd or pre-
injection fields, i.e., the fields in absence of the plume, are represented by the dashed (casing)
and solid (no casing) lines. Radii of 25m (black) and 50m (white) are used for the plume.
Both figures consist of two plots: one is the field (potential or E,) and the other is the

difference between the injection and pre-injection fields.

Figure (5.5-3a) shows that the pre-injection potentials dominate the signature of the

6 This depth is used for convenience. For the parameters used in this example, the analysis of Section 5.1 indi-
cates that the potentials in the medium are independent of the source location within the casing.

N
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fields. The plume produces small changes or perturbations on the background in the uncased
model. An interesting phcnomenon 6ccurs when the casing is incorporated in the model. The
perturbations caused by the plume are enhanced when the casing is present (Figure 5.5-3b).
However, the near-surface response is also quite large and may be misinterpreted as an ano-
maly.

Since pole measurements may be difficult to acquire in field situations, the E,-fields
were calculated from differences of adjacent electrodes. Figure (5.5-4a) has the E,-fields for
non-casing and casing models. The background E,-fields for the mise-a-la-masse case are
much larger than those in a cased well, and the injected plume produces perturbations on the
background fields in both cases. The differences in the E,-field due to the plume with the

casing present are much larger than those of the mise-a-la-masse configuration (Figure 5.5-4b).

To understand the response of the potentials for the two situations, the current patterns
in the medium and conductive plume are illustrated in Figure (5.5-5). For the mise-a-1a masse
configuration (top), the currents are first channeled into the plume and then dissipated into the
surrounding formation. The perturbations observed at the cross-hole array have a larger peak

and greater fall-off. The plume effectively moves the source closer to the potential array.

When the casing is present, two differences in current pattemns are observed. First, the
pipe energized by the pole current source it behaves like a line source; in the absence of any
inhomogeneity, the currents would flow in a radial direction away from the casing. Second,
the currents radiating from the casing are channeled into the conductive plume. Away from
the casing, the currents in the plume leak into the formation as in the uncased mise-a-la-masse
situation. The effects of current channeling into the plume from a line source provides a rela-
tively greater focusing effect at the cross-hole array than the simple current channeling in the

plume for a source in an uncased well.

Downhole to Surface

/
In the next example, consider the conductive fluid to be injected at the bottom of the
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steel casing. The measuring array of electrodes is placed on the surface radially away from
the injection well and the current source is located below the casing. The values of the

parameters were chosen such that the numerical results simulated a field injection test.]

Figure (5.5-6) illustratés the models used for this numerical analysis. The first model,
which excluded the pipe and fluid in the borehole, had an injection plume in a homogeneous
half-space. The second figure shows a model of a plume and a pipe filled with fluid embed-
ded in a homogeneous half-space. The fluid resistivity is 1Q-m while the host had a resistivity
of 1000Q‘m. The pipe has a length of 750m (= 2460 ft) and two conduction lengths of 13.5m
and 426.7m are used to represent an insulated and conductive pipe, respectively. The disk-
like plume emerging from the end of the pipe has a height of 2m and its radius varies to
simulate its growth during the fluid injection. The values of the plume radius are 0.1m, 3&1,

10m, 30m, 100m, and 300m.

Two source configurations are used in the modeling. The first is the downhole source
placed 1m beyond the end of the pipe within the plume (mise-a-la-masse). The remote elec-A
trode is assumed to be at infinity. The second is the downhole dipole with its center located
3m beyond the pipe’s end and an electrode separation of 4m. One electrode is within the
body and the other is located in the host below the plume. The surface array has a potential
electrode spacing of 15m. The voltage differences between these electrodes are used to calcu-

late the apparent resistivity.

The next six figures (5.5-7) to (5.5-12) are the apparent resistivity (top plot) and the per-
cent difference (bottom plot) for the three models: plume only, resistive pipe and fluid, and
conductive pipe and fluid. The apparent resistivities for the pipe models are plotted on a
semi-logarithmic scale; all other plots are linear. The downhole pole-sourcé is used for Fig-
ures (5.5-7) to (5.5-9) and Figures (5.5-10) to (5.5-12) have a dipole as the current source.

The percent difference is used to monitor changes in apparent resistivities due to the increase

7 Chapter VII discusses the downhole-surface resistivity survey conducted at DuPont’s Hemby Branch test well
near Waverly, Tennessee in early October 1989.
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in size of the plume. The percent difference, 8, is calculated by the following expression:

5 = L P 1009,
Po
where p, and p; are the apparent resistiv_ities of the background (no plume) and with the inho-
mogeneity (plume), respectively.

The plots of Figure (5.5-7) (plume and pole-source) indicate that the plume must be of
significant size (>> 30m) to to be distinguishable from the background measurements. Only
the 100m and 300m apparent resistivity curves show significant deviations from the back-'
ground value of 1000 Q-m. The percent difference curves show this more clearly: the 100m

plume shows a maximum difference of only 3%, and the difference increases to 23% for the

300m plume.

Figure (5.5-8) shows responses for the resistive pipe filled with fluid and for the pole-
source. The pipe effects are secen on the near-well apparent resistivities. The percent
difference plot show values over 2% (near-well electrodes) for all the plume radii. The pipe
and fluid appears to accentuate the surface response of the plume especially at the near-well
electrodes. The apparent resistivity and the percent difference for the cc_;nductive pipe with
fluid are shown in Figure (5.5-9). The pipe significantly distorts the apparent resistivities. -
This effect extends along the entire array but has a much‘ smaller effect at the far-field elec-
trodes. The presence of the conductive pipe greatly increases the percent differences for all
radii of the plume. .

Figures (5.5-10) to (5.5-12) are equivalent to the plots of Figures (5.5-6) to (5.5-8) with
a dipole current source instead of a pole source. All the iesponses show sizable differences
from the backgroun;i values. With this electrode configuration, evén the small radius (3m)
" show deviations from the background level. The percent difference plot of Figure (5.5-12)
shows that the 100m and 30% curves are nearly the same for the distances shown in the
figure. Thus for the conductive pipe, the size of the large plumes may not be distinguishable

“from one another if the electrode arréy does not radially extend far from the well.
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Conclusion

This results suggest that a cross-hole and downhole to surface surveys to monitor in time
an injection experiment in cased wells may be possible. Using an energized casing as a
source or placing a dipole source at the end of the casing enhances the response of the
injected plume. When compared to background measurements, the anomalies produced by the
plume with the casing present are significantly larger than those without the casing. Thus,
using the casing in monitoring of an injection may be advantageous to demﬁne the extent of

a plume.

5.5.2 Measurement While Drilling

Measurement while drilling (MWD) is a method that pmvidés realtime downhole infor-
mation during drilling operations. Commonly, the MWD tool is composed of two systems
that are assembled in a drill collar and placed above the drill bit (Figure 5.5-13). The first is
the sensor package that acquires the data. The second is the telemetry system which relays

the information to the surface.

The information collected by the sensors can be divided into two categories: drilling
information and formation properties. Drilling information includes hole direction and inclina-
tion used for directional drilling. Other information, such as downhole weight-on-bit, torque,
temperature, and pressure can be acquired. Fprmation characteristics, natural gamma ray

emissions and electrical resistivity, are also typically gathered with MWD sensors.

There are several telemetry methods by which signals are sent from downhole to the sur-
face (Gravley, 1983). One method transm.it the signals by generating pressure waves in the
drilling mud. The pressure waves can be frequency modulated or pulsed. Another technique
transmits the information__ through electrical conductors inside the pipe. The pipes are pre-
wired such that the circulz;r conductor is insﬁlated from the drill pipe by two concentric dielec-
tric rings (Holbrook, 1985). A third method sends an acoustic signal through the drill string.

/

Since these acoustic waves have high attenuation, repeaters are needed in the drill string to
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relay the signal to the surface.

The last transmission technique, which is the ‘topic of this section, is the electromagnetic
telemetry method. The signals are transmitted through the earth to surface receivers by a EM
source near the drill bit. The attenuation of the signals is dependent, in part, on the electrical
properties of the medium. The DC limit of the EM telemetry is investigated in this example.
If the DC responses are small for a configuration, the EM signal are probably. not measurable
since the DC value is the upper asymptotic limit. Two major factors thaf affect the signal
amplitudes vare the depth of the transmitter and the conduction length of the dnll stem. Recall

that the conduction length relates the drill stem conductance and the formation conductivity.

Figure (5.5-14) illustrates the simplified model used for the EM telemetry problem. The
transmitter is simulated by a current dipole (I = 1Amp) placed across an insulated gap at the
end of the drill string. Thus, the drill string will act as a long line source and the lower collar
and bit behave like a short line source of opposite polarity. For this example, a model with
short dipole gap Azg=02m and no lower drill collar L, = 0.0m is considered. The 10°Q-m
drill string, which varies in length L, from 100m to 3000m, has a thickness of 6mm, has an
inner radius of 10cm, énd is embedded in a homogeneous half-space. Resistivities of 1, 10,
and 100Q-m are used for the half-space which correspond to conduction lengths of 62, 197,

and 623m, respectively.

Figure (5.5-15) shows thc potential difference or voltage (AV) on the surface measured
between the drill string and radial surface electrodes. Figure (5.5-16) plots the voltage meas-
ured between the well and an electrode at the S00m as a function of drill string length L,.
For short string lengths, the voltages quickly reach their asymptotic values. The voltages are
proportional to the holst resistivity and the inverse of the string length. As the drill string is
lengthened, the signals in the 1Q'm formation are significantly reduced (AV = 107-107*V for
L, > 1000m). The signals:txansmitted in the 10Q:m host begin to deteriorate (AV < 107¢V) for
lengths greater than 3000m. In a resistive environment (100Q'm), the si,gnals are relatively

large even for the 3000m drill pipe (AV =1073V). For great lengths, the voltages are
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proportional L™. The transition length to this fall off appears to occur at approximately 1-3

conduction lengths.

For this example, a "worst case" scenario was considered. The analysis in Section 5.4
indicates that the voltages can be improved by lengthening the dipole gap or introducing a
lower collar. Figure (5.5-17) illustrates that the voltage can be increased by increasing the
dipole gap or lower collar length. These values correspond to a model with a 300m drill
string and 100Q'm host formation. The maximum increase appears to asyﬁlptote to 4-5 times

that of a model with no collar and 0.2m dipole gap.

Lastly, this configuration can be used as a MWD resistively tool. The current pattern in
the medium is shown in Figure (5.5-18) for an insulated collar separated from the drill string
with a dipole source placed across the gap. For this configuration, the currents are emitted
from the collar into the formation and return to the upper drill pipe. Its current pattern
appears similar to that produced by an open-hole focus log. Other current electrodes may be
added to the adjust the focusing of the current, to further resemble the current pattern of a
focus log. By placing potential electrodes near the center of the lower collar, a MWD focus

log can be simulated.

These results indicate that EM telemetry through the earth is péssiblc in resistive forma-
tions. For a conductive earth, the signals transmitted at depth may be greatly attenuated and
may be difficult to receive at the surface. The signal strength at the surface can be improved -
by increasing the dipole gap or lengthening the the drill collar. Additionally, this
configuration has a current pattern resembling those produced by an open-hole focus log.

Thus, one may be able to simulate MWD resistivity logging configurations.
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Figure 5.1-1: Generalized configuration of the semi-infinite vertical annulus in a homogeneous

half-space, applied current source, and field position.
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Figure 5.1-2: Semi-log ‘blot of the normalized E, in a semi-infinite pipe for several §, values
with current source placed at the surface. E, is normalized by the factor /7S, .
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Bs =1 (bottom) with current source located at zg = 1. The spatial variables and E, are normal-
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Figure 5.1-4: Generalized configuration of the finite léength pipe in a homogeneous half-space,
applied current source, and field position. '
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Figure 5.1-5a: Semi-log plots of the normalized whole-space E, in a pipe for several o, -ratios
with current source located at S/L =0.0. The spatial variables and E, are normalized by the
pipe length L and factor //S,, respectively. \
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Figure 5.1-5b: Semi-log plots of the normalized whole-space E, in a pipe for several o -
ratios with current source located at S/L = 0.1. The spatial variables and E, are normalized by
the pipe length L and factor //S,, respectively.
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Figure 5.1-Sc¢: Semi-log plots of the normalized whole-space E, in a pipe for several o, -ratios
with current source located at S/L = 0.3. The spatial variables and E, are normalized by the
pipe length L and the factor 1/S,, respectively.
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Figure 5.1-5d: Semi-log plots of the normalized whole-space E, in a pipe for several oy -
ratios with current source located at S/L =0.5. The spatial variables and E, are normalized by
the pipe length L and the factor //S,, respectively.
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Figure 5.1-6: Semi-log‘:plots for several oy -ratios of the normalized half-space E, with current
source located at S/L =0.5. The spatial variables and E, are normalized by the pipe length L
and the factor 1/S,, respectively. - o
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Figure 5.1-7a: Log—coﬁtour plots of the normalized half-space potentials due to a pipe for
several o, -ratios with current source located at S/L = 0.0. The spatial variables and potentials
are normalized by the pipe length L and the factor //4ncoL, respectively.
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Figure 5.1-7b: Log-coﬁtour, plots of the normalized half-space potentials for a pipe using
several o, -ratios and the primary field (lower right) with current source located at S/L = 0.0.
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Figure 5.1-8a: Log-ooﬂtour plots of the normalized half-space potentials due to a pipe for
several o, -ratios with current source located at S/L = 0.5. The spatial variables and potentials
are normalized by the pipe length L and the factor I /4ncol, respectively.
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Figure 5.1-8b: Log-contour plots of the normalized half-space potentials for a pipe using
several oy -ratios and the primary field (lower right) with current source located at S/L = 0.5.
The spatial variables and potentials are normalized by the pipe length L and the factor / fAntcel ,

respectively.
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Figure 5.1-9a: Log-cori'tour plots of the normalized half-space potentials due to a pipe for
several o, -ratios with current source located at S/L = 0.7. The spatial variables and potentials
are normalized by the pipe length L and the factor I/4no,L, respectively.
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Figure 5.1-9b: Log-coritour plots of the normalized half-space potentials for a pipe using
several a; -ratios and the primary field (lower right) with current source located at S/L = 0.7.
The spatial variables and potentials are normalized by the pipe length L and the factor //4ncoL,
respectively. ,
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Figure 5.1-10a: Log-cd'ntour plots of the normalized half-space potentials due to a pipe for
several o, -ratios with current source located at S/L = 1.0. The spatial variables and potentials
are normalized by the pipe length L and the factor /74ncoL, respectively. '
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Figure 5.1-10b: Log-contour plots of the normalized half-space potentials for a pipe using
several o, -ratios and the primary field (lower right) with current source located at S/L = 1.0.
The spatial variables and potentials are normalized by the pipe length L and the factor I/4ncolL,
. respectively. . ‘
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Figure 5.1-11a: Contour plots of the ratio of the total to primary fields due to a pipe and
oy =2 with current source located within the pipe: 0.0 < S/L £0.5. The spatial variables and
potentials are normalized by the pipe length L and the factor //4ncoL , respectively. The dotted
area represents 5% or less deviation of the total field from the primary field. Coincidentally,
these plots are the ratio of the apparent and background resistivities for a pole-pole survey.
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Figure 5.1-11b: Contour plots of the ratio of the total to primary fields due to a pipe and
o, =2 with current source located within the pipe: 0.5 < S/L < 1.0. The spatial variables and
potentials are normalized by the pipe length L and the factor I/4ncoL, respectively. The dotted
area represents 5% or less deviation of the total field from the primary field. Coincidentally,
these plots are the ratio of the apparent and background resistivities for a pole-pole survey.
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Figure 5.1-12: Contour :plots of the ratio of the total to finite-length line source potential for
several qy -ratios with the current source located at S/L = 0.0. The dotted area represents loca-
tions where the total potential is within 1% of the line source potentials.
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Figure 5.1-13: Contour iplots of the ratio of the total to finite-length line source potential for
several oy -ratios with the current source located at S/L = 0.3. The dotted area represents loca-
tions where the total potential is within 1% of the line source potentials.
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Figure 5.1-14: Contour:'plots of the ratio of the total to finite-length line source potential for
several o -ratios with the current source located at S/L = 0.5. The dotted area represents loca-
tions where the total potential is within 1% of the line source potentials.
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Figure 5.1-15: Contour- plots of the ratio of the total to finite-length line source potential for
several o, -ratios with the current source located at S/L = 0.7. The dotted area represents loca-
tions where the total potential is within 1% of the line source potentials.
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Figure 5.1-16: Contourv'.'plots of the ratio of the total to finite-length line source potential for
several o, -ratios with the current source located at S/L = 1.0. The dotted area represents loca-
tions where the total potential is within 1% of the line source potentials.
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Figure 5.2-1: Semi-log :'plots of the normalized half-space E, in a 300m pipe for several §,
with As = 10m. The E, is normalized by the factor 1/S. .
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Figure 5.2-2a: Semi-log plots of the normalized half-space E, in a 300m pipe for several As
with § = 600m. The E, is normalized by the factor I/S.. Cor
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Figure 5.2-2b: Semi-log plots of the normalized half-space E, in a 300m pipe for several As
with & = 150m. The E, is nomalized by the factor 1/S,.
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Figure 5.2-2c: Semi-log plots of the normalized half-space E, in a 300m pipe for several As
with §, = 60m. The E, is normalized by the factor 1/S..
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Figure 5.2-2d: Semi-log plots of the normalized half-space E, in a 300m pipe for several As
with §;, =30m. The E, is normalized by the factor //S,.

A



150

w
é
a.
b
<
o
w
N
3
I
=
[+
o
2
o
S
.4 T ; i ; ¥ ¥
0 6 10 15 20 26 30,
POSITION (m)
w
o
=)
-
a
=
<
o
s
N
|
I
=
o«
o
z
o
Q

I 10 5 20 25 30
POSITION (m)

Figure 5.2-3: Semi-log blots of the normalized half-space E, in a 30m pipe for As< 1m (top)
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Figure 5.2-4: Log contour plots of the normalized half-space potentials due to a 300m pipe
for several §, with current source located at As = 0.10m. The potential is normalized by the

factor I/4nool .
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Figure 5.2-5: Log contour plots of the normalized half-space potentials due to a 300m pipe
for several §, with current source located at As = 0.50m. The potential is normalized by the
factor I/4nol .
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Figure 5.2-6: Log contour plots of the normalized half-space potentials due to a 300m pipe-
for several §, with current source located at As = 1.0m. The potential is normalized by the
factor I/4nGol . )
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Figure 5.2-7. Log contéur plots of the normalized half-space potentials due to a 300m pipe
for several §; with current source located at As = S Om. The potential is normalized by the
factor I/4ncol .
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Figure 5.2-8: Log confbur plots of the normalized half-space potentials due to a 300m pipe
for several §, with current source located at As = 10.0m. The potential is normalized by the
factor I/4ncol .
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Figure 5.2-9a: Contour plots of the ratio of the total to primary fields due to a 300m pipe for
8, = 600m and current source located below the pipe at As = 0.Im to 1m. The potential is nor-
malized by the factor I/4ncoL. The dotted area represents 5% or less deviation of the total
field from the primary field. Coincidentally, these plots are the ratio of the apparent and back-

ground resistivities for a pole-pole survey.
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Figure 5.2-9b: Contour plots of the ratio of the total to primary fields due to a 300m pipe for
8, = 600m with current source located below the pipe at As = 2m to 10m. The potential is nor-
malized by the factor //4ncel. The dotted area represents 5% or less deviation of the total
. field from the primary field. Coincidentally, these plots are the ratio of the apparent and back-
ground resistivities for a pole-pole survey.
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Figure 5.2-9c: Contour plots of the ratio of the total to primary fields due to a 300m pipe for
8, = 600m with current source located below the pipe at As = 15m to 20m. The potential is
normalized by the factor I/4nc,L. The dotted area represents 5% or less deviation of the total
field from the primary field. Coincidentally, these plots are the ratio of the apparent and back-
ground resistivities for a pole-pole survey.
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Figure 5.2-10: Contour plots of the ratio of the total to primary fields due to a 300m pipe for
several §, with the current source located 0.5m below the pipe. The potential is normalized by
the factor I/4rcel. The dotted area represents 5% or less deviation of the total field from the
primary field. Coincidentally, these plots are the ratio of the apparent and background resis-
tivities for a pole-pole survey.
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Figure 5.3-1: Generalized configuration of the multiple casing segments coaxial with an arbi-
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Figure §.3-2: Model of the two pipe segments coaxial with an arbitrarily located pole current
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Figure 5.3-3: Semi-log plots of the normalized E, in the 300m C, for several §, with
Ad = 0.2m, L,=5m, and current source located at the center of C,. E, is normalized by the fac-
tor 1/S,. : .
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Figure 53-7a: Log-corftour plots of the normmalized half-space potentials due to the 300m C,
for several L, with §, = 600m, Ad = 0.2m and current source located at the center of C,. The
potentials are normalized by the factor //4ncl ;.
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Figure 5.3-7b: Log-coﬁtour plots of the total-primary ratio for the same model as Figure 5.3-
7a. The irregularly spaced contour levels are: +2, *1.5, *1.25, and +1. The dotted area
represents 0.5% or less deviation. -
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Figure 5.3-8a: Log-coﬁtour plots of the normalized half-space potentials due to the 300m C,
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Figure 5.3-8b: Log-coxi'tour plots of the total-primary ratio for the same model as Figure 5.3-
8a. The irregularly spaced contour levels are: *2, 1.5, £1.25, and +1. The dotted area
represents 0.5% or less deviation.
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Figure 5.3-9a: Log-contour plots of the normalized half-space poténtials due to the 300m C,
for several Ad with §; = 300m, L, = 5.0m and current source located at the center of C,. The
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Figure 5.3-10a: Log-contour plots of the normalized half-space potentials due to the 300m C,
for several Ad with 8, = 150m, L, = 5.0m and current source located at the center of C,. The
potentials are normalized by the factor //4nc,L ;.



171

Ad = 0.20m Ad = 0.50m

J
L

VERTICAL POSITION (m)

Ad = 2.00m Ad = 5.00m

A W W Wk W W O O W

3 3

VERTICAL POSITION {m)

: 303
RADIAL POSITION (m) RADIAL POSITION (m)

Figure 5.3-10b:. Log-céntour plots of the total-primary ratio for the same model as Figure
5.3-10a. The irregularly spaced contour levels are: 2, £1.5, #1.25, and 1. The dotted area
represents 0.5% or less deviation.
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Figure 5.3-11a: Log—co'htour plots of the normalized half-space potentials due to the 300m C,
for several Ad with & = 60m, L,=50m and current source located at the center of C,. The
potentials are normalized by the factor //4ncolL;.
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Figure 5.3-11b: Log-cdhtour plots of the total-primary ratio for the same model as Figure
5.3-11a. The irregularly spaced contour levels are: £2, +1.5, +1.25, and +1. The dotted area

represents 0.5% or less deviation.
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Figure 5§3-12a: ng-coﬁtour plots of the normalized half-space potentials due to the 300m C,
and two underlying 5m segments (C, and C,) for several §, with Ad = 0.2m and current source
located at the center of C,. The potentials are normalized by the factor I/4ncol .
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Figure 5.3-12b: Log-co"'ntour plots of the total-primary ratio for the same model as Figure
5.3-12a. The irregularly spaced contour levels are: :1:2 +1.5, £1.25, and +1. The dotted area
represents 0.5% or less deviation. -
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Figure 5.3-13a: Log-coﬁtour plots of the normalized half-space potentials due to the 300m C,
and two underlying 5m segments (C, and C,) for several §, with Ad = 0.5m and current source
located at the center of C,. The potentials are normalized by the factor I/4nc,L ;.
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Figure 5.3-13b: Log—cd'ntour plots of the total-primary ratio for the same model as Figure
5.3-13a. The irregularly spaced contour levels are: :l:2 +1.5, £1.25, and x1. The dotted area
represents 0.5% or less deviation.



178

6 =600.0m 6§ =300.0m

[ WA e W W WA W WA W W W

-3I00
VERTICAL POSITION (m)

5 =150.0m & = 60.0m

-300
VERTICAL POSITION (m)

w_.s00

RADIAL POSITION (m) RADIAL POSITION (m)

Figure 5.3-14a: Log-coﬁtour plots of the normalized half-space potentials due to the 300m C,
and two underlying 5m segments (C, and C,) for several §, with Ad = 2.0m and current source
~ located at the center of C,. The potentials are normalized by the factor I/4nc,L ;.
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Figure 5.3-14b: Log-céntour plots of the total-primary ratio for the same model as Figure
5.3-14a. The irregularly spaced contour levels are: £2, +1.5, +1.25, and £1. The dotted area
represents 0.5% or less deviation.
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Figure 5.3-15a: Log-cohtour plots of the normalized half-space potentials due to the 300m C,
and two underlying Sm segments (C, and C) for several §, with Ad = 2.0m and current source
located at the center of C,. The potentials are normalized by the factor I/4ncoL .
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Figure 5.3-15b: Log-contour plots of the total-primary ratio for the same model as Figure
5.3-15a. The imregularly spaced contour levels are: +2, £1.5, £1.25, and +1. The dotted area
represents 0.5% or less deviation. C
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Figure 5.3-16a: Log-cofltour plots of the normalized half-space potentials due to the 300m C,
and two underlying 5m segments (C, and C,) for several §, with Ad = 0.2m and current source
located at the center of C5. The potentials are normalized by the factor 7 l4rcol .
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Figure 5.3-16b: Log-cbntour plots of the total-primary ratio for the same model as Figure
5.3-16a. The irregularly spaced contour levels are: 12, +1.5, £1.25, and 1. The dotted area

represents 0.5% or less deviation.
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Figure 5.3-17a: Log-cé‘mour plots of the normmalized half-space potentials due to the 300m C,
and two underlying Sm segments (C, and C,) for several §, with Ad = 0.5m and current source
located at the center of C;. The potentials are normalized by the factor //4ncgl .

£



185

6 =800.0m - 6§ =300.0m

VERTICAL POSITION (m)

6 =150.0m 6=60.0m

VERTICAL POSITION (m)

3 383 603 3 303 803
RADIAL POSITION (m) RADIAL POSITION (m)

Figure 5.3-17b: Log-céntour plots of the total-primary ratio for the same model as Figure
5.3-17a. The irregularly spaced contour levels are: 2, +1.5, £1.25, and *1. The dotted areca
represents 0.5% or less deviation.
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Figure 5.3-18a: Log-cohtour plots of the normalized half-space potentials due to the 300m C,
and two underlying Sm segments (C, and C,) for several §; with Ad = 2.0m and current source
located at the center of C;. The potentials are normalized by the factor //4nol,.
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Figure 5.3-18b: Log-cbmour plots of the total-primary ratio for the same model as Figure
5.3-18a. The irregularly spaced contour levels are: £2, £1.5, £1.25, and *1. The dotted area

represents 0.5% or less deviation. '
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Figure 5.3-19a: Log-cohtour plots of the normalized half-space potentials due to the 300m C,
and two underlying 5Sm segments (C, and C,) for several §, with Ad = 2.0m and current source
located at the center of C;. The potentials are normalized by the factor I fAnool .
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Figure 5.3-19b: Log-cdntour plots of the total-primary ratio for the same model as Figure
5.3-19a. The imregularly spaced contour levels are: +2, +1.5, +1.25, and +1. The dotted area
represents 0.5% or less deviation.
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Figure 5.4-1: Generalized configuration of a 300m casing coaxial with a dipole current source
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Figure 5.4-3: Contour plots of the normalized half-space potentials of a dipole source with
Az = 0.2m located 300m below the surface for several §;,. A logarithmic contour interval of
0.5 is used. The potentials are normalized by the factor I/4nc, x 1075,
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Figure 5.4-5: Semi-log':' plots of the nommalized E, in the 300m C, for several Az, with
8§, = 600m. The E, is normalized by the factor //§, . :
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Figure 5.4-6a: Contour plots of the normalized half-space potentials using a dipole source
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Figure 5.4-6b: Contour plots of the normalized half-space potentials using a dipole source
with Azg= 1.0, 2.0, 5.0, 10.0m located 300m below the surface with §, = 600m. A loga-
rithmic contour interval of 0.5 is used. The potentials are normalized by the factor
1/4nGy x 1075, /
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Figure 5.4-7a: Contour "'plots of the normalized half-space potentials due to the 300m C, for
Azy= 0.05,0.1, 0.2, and 0.5m with §, = 600m. A logarithmic contour interval of 0.5 is used.

The potentials are normalized by the factor I/4nc, x 1072,
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Figure 5.4-7b: Contour plots of the normalized half-space potentials due to the 300m C, for
Azg= 1.0, 2.0, 5.0, and 10.0m with §, = 600m. A logarithmic contour interval of 0.5 is used.
The potentials are normalized by the factor /4ncy x 1073,
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- Figure 5.4-9a: Semi-log plots of the normalized E, in the 300m C, for several L, with
8, = 600m and Azo = 0.2m. The E, is normalized by the factor I/S..
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Figure 5.4-9b: Semi-log plots of the nommalized E, in C, for several L, with L, =300m,
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Figure 5.4-10a: Contour plots of the normalized half-space potentials of the dipole source
with of Az, = 0.2m located 300m below the surface with §, = 600m for L,= 0, 1, 2, and 10m.
A logarithmic contour interval of 0.5 is used. The potentials are normalized by the factor
11410y x 1075. /
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Figure 5.4-11a: Contour plots of the normalized half-space potentials due to the 300m C, for
L,= 0,1, 2, 10m with §, =600m for Az, =0.2m. A logarithmic contour interval of 0.5 is
used. The potentials are normalized by the factor I/4nc, x 1072,
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with the pole source model. Legend shows the length of the plume.
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casing, fluid, and plume with the pole source model. Legend shows the length of the plume.
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CHAPTER VI

RESISTIVITY MEASUREMENTS THROUGH METAL CASING

In recent years, there has been increased interest in measuring formation resistivity
through metal casing. Measurements made through casing can aid in characterizing existing
reservoirs for effective recovery of oil and gas, as well as géothexmal heat, without the cost
and time of drilling new wells. Measuring the resistivity of adjacent formations may be useful
to locate oil that was missed during the original logging prior to insertion of the casing. The
method may also monitbr changes in resistivity caused by subsurfacevprocesses such as injec-
tion or leakage of contaminants from a waste site, flooding operationé fof enhanced oil

recovery, or processes of geothermal production.

In the past, logging in cased wells has been limited to measuring parameters of
downhole flow, casing conditions, and cement integrity. Information on formation properties
was mainly obtained through gamma ray or.neutron scattering methods, but the radius of
investigation of these techniques is limited to tens of centimetexs. Several seismic techniques
are capable of measuring some formation pérametefs but msi\sﬁvity or induction logs appeared
impossible to acquire since the highly conductive metal casing short circuits any current.
Several patents however, have necently been issued which describe methods and devices that
are capable of measuring the formation resistivity through casing (Kaufman 1989, Vail 1989a

and 1989b, Gard et al. 1989). Currently, Vail is known to have developed and tested such a

device, called Through-Casing Resistivity Apparatus (TCRA).

The patents of “Kaufman and Vail discuss the use of two pairs of voltage measurements
(three-point measurement) in contact with the casing to calculate the formation resistivity.

Gard et al., using a single pair of voltage measurements also in contact with the casing, sug-
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gested that the formation can be continuously logged through the casing by making two
traverses. All these methods use a compensation technique to “correct” for the unknown cas-

ing conductance, i.e., wall thickness and conductivity.

Kaufman (1990) investigated the behavior of the potential and its derivatives for a
borehole with casing based on models of an infinite-length conductive pipe in a homogeneous
medium. He showed that the second vertical derivative of the potential is proportional to the
casing conductance and formation resistivity for receivers located in the "intermediate zone"
from the current source. He concluded that for a known casing conductance S, , the formation
resistivity p, can be calculated at the depth where the potential ¢ and its second derivative are

measured by the expression:

Lo

= 6-1)

¢=pfsc

The objective of this chapter is to investigate the validity of Kaufman’s and Vail's
approach to determine the formation resistivity through metal casing for a finite length pipe
and surrounding annulus in a layered medium. The annulus sunou;ldmg the casing can
represent contact resistance or a cement layer. The IE approaches, which were derived in
Chapter II and III, are used to calculate the potentials and E-fields on the casing and to simu-
late the resistivity measurements through casing (MTC) logging technique for a variety of pipe

and layer pararheters.

In addition to logging simulations, the effects of variations of the casing conductance
and surrounding cement layer are studied. Variations in either the casing or cement layer may
alter the result of the measurements since the currents tend to leak out in areas where the
resistances are small. The patents, that were previously cited, claim to be able to compensate
for vaxiatibns in the casmg conductance, but actually can only account for variations that
occur over distances greater than the array dimension. It will be shown that compensation for

short distance variations (less than the electrode separation) requires an additional term.
/ )
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The effects of potential electrode separation on the layer boundary resolution and radius
of investigation are also examined. Kaufman suggested that the resolution of the layer boun-
dary is dependent on the ability of the electrode array to approximate the second derivative.
The radius of in?estigaﬁon needs to be studied, as it may also be dependent on the electrode
spacing. If this is the case, one may be able to compensate for its inﬂuence and determine the

formation resistivity as function of distance from the well.
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6.1 Resistor Circuit Relation

The second order differential equation (DE) given from Kaufman can be derived by
resistor circuit relations. Figure (6-1) illustrates the resistor circuit for the casing and adjacent
formation. The circuit can be consider as a series of resistors, repxesenﬁng the casing, inter-
sected by shunt resistors that depict the formation resistance. The resistance of the formation
at the i-th node can be determined by measuring the current leaking from the casing into the
adjacent formation at the node by measuring the potentials across the two, i'and i+1, sections

above and below the i-th node (at three points) on the casing.

Ohm'’s law, V =IR, is used to determine the relation between the current /;, voltage V;,

and casing resistance R; in the i-th section of the casing:

ViSi -
V" = U,- - Ui-l = IiR,' _> I,' = Kz— (6-2)

where U; is the potential measured at the i-th node and S;, the casing conductance' for the i-th
section, is defined by Kaufman (1990) as:

R | 1 pilz -
S; = [?] = [—AT,A_,] = 2na;4;0; (6-3)

and a;, f;, and o; are the center radius, thickness, and conductivity in the i-th casing section,
respectively. To obtain the relation for the current /;; flowing from the i-th node into the for- _

mation, Ohm’s law is again applied:

: Uu -U.
Vf,":U,-—U..:If;Rf" —) 1/,-=T (6-4)

Kaufman defines the term "transverse resistance"? T; of the medium as:
_ T; = LRy, (6-5)
- where L; is the height of a cylindrical 1ayer used to represent the formation adjacent to the i-th

node. This height is one-half the sum of the lengths of the sections above and below the i-th

The casing (longitudinal) conductance is discussed in Chapter V, Section 5.1

2 Transverse resistance appears to be a misnomer since its units are [ Q'm ] instead of [ Q ], the units of resis-
tance. It is actually the inverse of the unit length leakage conductance. Thus, the units of the transverse resis-
tance are [ (S/m)™! ] ={ Qm ]. )
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node, 1.e.,

Az; + Az
The factor one-half is used since the adjacent i—1 and i-+1 nodes account for the other halves
of the section lengths needed to calculate the transvérse resistance at those nodes. Substituting

equations (6-5) and (6-6) into (6-4) yields:

_ Ui -Us) (Az; +Az4y) Ui (Az; + Az4y)

ri T, > T, 2 6-7)

where U. is measured at a point sufficiently far from the source and U; such that

U; - U.=U;. The use of Kirchoff’s current law at the i-th, Iy; = I; - I4,, yields:

Ui Az +424) ViSi  ViaSia
T; 2 Az; Az

(6-8)

Let As; = S, — S; represent the deviation of the casing conductance S; from the average
conductance, where the average conductance S, = (S; + S;,;)/2 is measured across the three-

electrode array. Now, equation (6-8) can be written as:

69

T; 2 Az; Az, -

U (A2 +824) | Vi Via | | Vilsi  ViaAsin
- ‘ az; Az

If the electrode separation distances are the same, ie., Az; = Az;,; = Az, then equation (6-10)

becomes:

Wi = Vi) (Vilks; - anAsm)} (6-10)

U =T, [Sc A2 AZ2
If the casing conductance between both sets of electrodes is the same, then As; = As;,; = 0 and

equation (6-10) is:

Vi = Vi)

= (6-11)

U; =TS,

Equation (6-11) is the discrete form of the secohd order DE, equation (6-1) given by
Kaufman. It sﬁggests tha{ if the casing conductance is known, the transverse resistance can be
calculated from the potential and its second derivativeT This expression cannot account for

: ’
casing conductance variations, such as changes in thickness and conductivity, that span dis-
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tances shorter than the potential array length 2Az.

To account for the shorter variations of the casing conductance in the transverse resis-
tance calculations, the second term in equation (6-10) which compensates for casing conduc-
tance variations between the electrode pairs is required. It accounts for the differences in the
voltages ‘due to the variations of the casing conductances between the two sets of potential
electrodes. This term is similar to Vail’s "second order error” term that he indicates is due to
the product of the differences in resistances between the sets of electrodes and leakage current

‘flowing into the formation.

There are two interpretations of the relationship between the transverse resistance and
formation resistivity. Kaufman indicates that the currents flowing outside the casing are radial
due to charge build-up on the outer casing surface. Hence, an annular disk, representing the
region where the radial current flows, could be used to calculate the transverse resistance
which is:

P e .

where b and ¢ are the inner edge (outer pipe radius) and outer edge of the annular disk,
respectively.

Equation (6-12) shows that the value of the transverse resistance is dependent on the for-
mation resistivity and the logarithm of the ratio between the outer and inner radius of the
annular disk. Kaufman compared the approximation of the E-fields in the borehole with the
solution of an analogous transmission line problem and deduced that the formation resistivity
could replace the transverse resistance in the transmission line solution, i.e.,

T, - o (6-13)
In his analysis, Kaufman _compared equation (6-12) and (6-13) and stated that the outer edge
of the annular disk with zero potential would be located at a sufficient distance from the

borehole, "sufficient” being defined by the equation: |

c=be™ (6-14)
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It is not obvious that equations (6-13) and (6-14) are valid. A comparison with an
approximation is not sufficient to validate the relation of the inner and outer radii in equation
(6-14). According to equation (6-14), if the inner radius of the annulus is 0.1m = 4", then
¢ = 54m is sufficient so that the outer edge of the annular disk has zero potential. In practice,
this distance may be adequately far from the casing so that the potential at this radius is
effectively zero. However, the choice of sufficient distance for zero potential greatly dictates
the value of the transverse resistance of equation (6-12). If one selects the 6uter radius of the
disk to be at infinity, where the potential is actually zero, the transverse resistance will become
infinitely large. With no theoretical evidence to support équation (6-14), this expression for
sufficient distance appears to be an accommodating relation to obtain the formation resistivity

directly from the transverse resistance.

Equation (6-11) is also the general form of Vail’s equation. In his formulation, the
transverse resistance is based on the apprbximation given by Tagg (1964) for the resistance of
a grounded electrode in a half-space.3 Vail’s expression, which has been misinterpreted from

Tagg’s formula, is:

T,=p5-In| == (6-15)

1 2Az
a

where Az is the electrode separation and a is the radius of the pipe.

Equations (6-12) and (6-15) appear similar in form but have different representations.
Kaufman’s formulation of the transverse resistance is based only on the properties of the for-
mation, whereas Vail incorporates the geometrical properties of the measuring array in his
description of the transverse resistance. Intuitively, one would expect that the transverse resis-
tance is .similar to the apparent resistivity and is dependent on the formation properties, as
well as the geometry of the array. The factors that influence the transverse resistance will be

presented later in this chaﬁter.

3 See equation (6-20) in Section 6.3.1 for Tagg’s approximation.
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6.2 Electrode Arrays for Unknown Casing Conductance

For an unknown casing conductance, two independent sets of measurements are needed
to determine the transverse resistance by equation (6-10) or (6-11). Figure (6-2) illustrates the
two electrode configurations that estimate the casing conductance and measure the potential
and its second derivative. To compensate for the variations in the casing conductance and to

approximate the second derivative, three potential electrodes, M, N, and M’, are needed.

For the first array configuration, the calibration or compensation state, the current / is

- applied at the source electrodes A and B which are in close proximity to the potential elec-
trodes. Due to the large contrast in conductivities between the casing and adjacent formation,
essentially all of the current will flow within the casing. Thus, the voltages V; and V, meas-
ured across their respective electrode pairs, MN and NM’, will reflect the cdnductan;ie of the
casing between the electrode pairs. By measuring V; and Vé separately and knowing the

current strength, the conductance for each section can be estimated from Ohm'’s law: '

5 =12 (fori =1,2) (6-16)

This expression assumes no current leakage into the formation. There may be some leakage if
the potential electrodes are located "too far" from the current source in a highly conductive

formation.

With the second electrode configuration, the measurement state, the current electrode B
is moved to a remote position (infinity in theory). Now the current must not only flow in the
casing but also through the formation. The measured vbltages V, and V,, as well as the
potential Uy, will reflect both the casing and formation resistivities. By subtracting the two
voltages, an approximation of the second derivative is obtained. With the estimate of the cas-
ing conductance and second derivative, the transverse resistance is calculated from equation

(6-10) or (6-11).

Equation (6-16) suggests that the transverse resistance can be described in terms of the
/

E-fields of the calibration and measurement states. The casing conductance for the i-th section
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can be determined from the calibration state, and written in terms of the E-field:

V: I.€
c _¢ L=t
Ef = , - S EC 6-17)

Substituting for §; in equation (6-8) and noting that V; is the voltage difference across the i-th

section in the measurement state, the transverse resistance can be expressed as:

E¥ EM]T
E—.'C - E—il ) (6-18)

U;
T"=F

where E€ and E¥ are the E-fields determined from the calibration and measurement states,
respectively. This expression shows that the transverse resistance is inversely proportional to

the difference between the measurement-calibration E-field ratio of the two sets of electrodes.

6.3 Casing Effects

The effects of the geometrical and electrical properties of the casing on the transverse
resistance are now investigated. A 107 Q:m casing with length L, (inside) diameter ID, and
thickness, ¢ is embedded in a homogeneous half-space. For this analysis, the separation
between the current and center potenﬁal electrode is AN = 4m. The potential electrode spac-
ing is set at MN = NM’ = 2m.

Figure (6-3) is the transverse resistance for a 200m casing with thicknesses® of 1/4",
3/8", and 1/2" and ID° of 4", 6", and 8" in a 10 Q'm medium. Variations due to the different
casing thickness only resulted in a change of approximately 1.5 percent in the transverse resis-
tance. The casing diameter appears to have a greater inﬂuenqe on the transverse resistance
where the larger casing diameters decrease the transverse resistance. Variations of about 3-7

percént occur for different diameters depending on the thickness.

The transverse resistance appears to be related to the inverse of the diameter. Large

diameter casing producesf the small transverse resistance, whereas the small diameter pipe

4 The thicknesses of 1/4, 3/8, and 1/2" correspond to 0.635, 0.9525, and 1.27 cm, respectively.
5 These inside diameters correspond to inner radii of 2, 3, and 4" or 5.08, 7.62, and 10.16cm, respectively.
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results in large resistance. For small casing diameters, the casing thickness has some
influence on the transverse resistance. For large diameter casing, different thicknesses have

negligible changes of the transverse resistance.

Figures (6-4) to (6-6) ane plots of the transverse resistance calculated for a 20.32cm (8")
ID, 1.27cm (1/2") thick casing using several casing lengths in a host formation with resistivi-
ties of 1, 10, and 100 Q-m. The figures indicate that the transverse resistance is dependent on
the formation resistivity and the casing length. Near the half-space surface, the larger forma-
tion resistivity and longer casing length result in é greater deviation of the transverse resis-
tance fmm> the formation resistivity. Away from the surface, the transverse resistance is
dependent on the conduction ratio of the casing. 'Recall that the conduction ratio is inversely

proportional to the casing length.

When the conduction ratio is greater than one-half, the transverse resistance is mainly
affected by the length of the casing. The deviation of the transverse resistance from the true
resistivity is proportional to the logarithm of the casing length. This is especially true for high
formation resistivities. All the transverse resistance curves are convex in shape where the
values slowly decrease with depth in the upper portion of the casing and then rapidly decay

near the bottom.

For conduction ratios less than one-half, the transverse resistance near the surface is
dependent on the logarithm of the casing length and partially on the formation resistivity.
Near the casing ends, the transverse resistances are large at the surface and small at the bot-
tom of the casing. Toward the center, the curve becomes concave and the transverse resis-

tance approaches the formation resistivity.

The current leakage is strongly influenced by the boundary conditions at the ends of the
casing. When the conduction ratio is greater than one-half, current leakage is nearly the same
along the casing. Thus, the transverse resistance will strongly depend on the casing length
and position. When this ratio is less than one-half, the casing length is effectively much

greater than the length of conduction. Away from the ends, the effects of the boundaries are
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reduced since much of the current can dissipate into the formation. Hence, the transverse

resistance gives a better estimate of the formation resistivity.

6.3.1 Geometric Variations

These results suggest that a correction factor G must be applied to the transverse resis-
tance T to obtain the formation resistivity. This relation can be eipnessed as:

T=p; G - (6-19)

For a conduction ratio greater than one-half, the factor G compensates for the geometric

parameters, such as casing diameter, length, and measuring (field) position. When the ratio

falls below one-hailf, the electrical parameters and the source position must be included in the

compensation.

As discussed previously, Tagg’s approximation the resistance of a grounded electrode in
the half-space with an "average" resistance calculated for an ellipsoid of revolution where its
length L is much greater than the radius a. Using Tagg’s result, the correction factor can be

written as:

1 2L
G, = gln[ " ] (6-20)

Equation (6-20) shows that this factor is dependent on the logarithm of the ratio of the length
to radius. This expression assumes a uniform average value along the entire conductor.‘ It
will only shift the transverse resistance curve and cannot compensate for the variations along
the casing as seen in Figures (6-4) to (6-4).

Sunde (1968) presented a formula for the potential along a conductor in a half-space
based on constant léakage of current. From this expression, a geometric factor can be written

as:

12
1 [(z + L2+ az] +(G +L1)

172 (6-21)
[(z - L2+ a2] +(z -Ln)
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Equation (6-21) incorporates the field position on the conductor, as well as the length and
radius. However, for this formulation, the location of the current source is assumed to be at

the surface.

Figures (6-7) to (6-9) are the formation resistivities calculated from the transverse resis-
tances using the correction factor, equation (6-21). These plots show that for large conduction
ratios, the variations of the transverse resistance due to position can be partially corrected.
The curves are flattened and the deviations from the true formation resistivity are slightly
reduced. However, for the long casing length (600m), one tends to grossly overcorrect the

transverse resistance, whereas for the short length (50m), one severely underestimates the
correction. For small conduction ratios, the variations of the transverse resistance curves are
not accurately compensated. The curves are overcorrected and the deviations are larger than

the values without the application of the correction factor.

Since G, assumes a fixed source location and constant leakage of current, it can only
account for the geometrical effects for large conduction ratios. It cannot compensate the
transverse resistance along the casing for small conduction ratios since the boundary effects
are greatly reduced. Thus, the source location and electrical parameters must be incorporated
into the formulation of the correction factor. This may be done by assuming the currents
within the casing behave like the those in a transmission line problem. The current can be

represented as a superposition of upgoing and downgoing currents in the form:

Iz)=1I, [ﬂ’exp[—(z—_z-())—] +1”exp[(z - ZO)] } (6-22)

& S
where §; is the conduction length, (z — zy) is the distance from the current source depth, I, is
the current strength, ‘I U and /P are the upgoing and downgoing coefficients that are found by
solving a transmission line boundary value problem. Once the current is found, the correction
factor G can be obtained by integrating the current over the length of the conductor:

L

G = LJ‘ I(z’)[(z - z')2 + az]—mdz' ; (6-23)
2, 3, :
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where z* is the depth of the elemental segment.

Incorporating the source position and electrical properties into the correction factor may
be more complicated than solving the actual problem. Hence, at this time it may be better to
note that these parameters must be included in the correction factor in order to effectively

compensate for the effects of the casing and the formation interaction.

6.3.2 Conductance Variations

The effects .of variations in the casing conductance are investigated. Gard et al. indi-
cated that variations of the conductance are due to manufacturing tolerances, chemical compo-
sition of the metal, corrosion, and other environmental factors. Often, several casing segménts
with different radii and thicknesses are inserted in a single hole. The use of casing segments
with different conductance properties may cause problems at the places where the two seg-
ments meet. Additionally, the collars which join the casing segments will change the conduc-

tance locally.

Equations (6-11) and (6-10) are used to illustrate the effects of conductance variations
and the errors associated Wim this situation. Recall that equation (6-11) assuines no variations
of the conductange within the electrode array, whereas equation (6-10) can incorporate small
scale variations. Figure (6-10) is a model of two segments with different conductances used
to study the variation effects on the E-field, measured conductance, and nﬁnsverse resistance.
Both segments have equal lengths of 100m and inner radii of 0.1016m. The conductivity-
thickness products of the top and bottom segments are o,¢; and oy,, respectively. The three-
electrode array is used for the two independent sets of measurements needed to simulate an
unknown casing éoﬁductance situation. The potentials are measured at elgc_:trodes M, N, and
M’ and the current is injected at electrodes A and B.

Figures (6-11) to (6-::13) illustrate differences of equations (6-11) and (6-10) for a casing
that has a conductance discontinuity. Equation (6-11) is not corrected for casing variations,

whereas equation (6-10) compensates for these variations. The spacings of the electrodes used
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for this analysis are MN = NM’ = 2m and AN = BN = 4m. A discontinuity of the casing
conductance occurs at the interface between the two segments due to the difference of the
thickness. The thicknesses of the upper and lower segments are 12.7cm and 6.35cm, respec-
tively. The positions along the casings are relative to the interface with the increasing dis-
tances going downward. The conductivities of the segments and host medium are 10° S/m
and 1.0 S/m, respectively.

The calibration E-fields and the estimate of the casing conductance are shown is Figure
(6-11). The E-field across electrodes MM’ represents that of the uncompensated measurement
and is the average value of the E-fields for MN and NM’. From the E-fields, the casing con-
ductance can be calculated and it is inversely proportional to these fields. These estimates are

slightly larger (2-5 percent) than the actual value used for the model.

The potentials and E-fields for the meaSurement state are illustrated in Figure (6-12).
The potentials are essentially constant showing very small variations. The E-fields are similar
to those of the calibration state. There are slight variations between the two measurement E-
fields due to the distance the measuring electrodes are from the current elec_trode. This
difference is larger on the positive side of the interface indicating that the casing conductance

is smaller than that of the negative side.

Figure (6-13) is the estimate of the second derivative calculated from the E-fields of the
fneasurement state. Theoretically, the second derivative for this situation is a spike located at
the discontinuity and zero everywhere else. The plot shows that the spike is approximated by
a triangular-shaped response. This function is flat at | d | 2 2m, is linear from | d | < 2m, and
has a minimum at d = Om. The width of this "triangle" is the same as the length of the
tl_lree-electrode array. These results indicate that smaller electrode spacing produces better

resolution of a casing junction.

The transverse conductance, which is the inverse of the transverse resistance, would have
a large error in the vicinity of the interface if the effects of the change in casing conductance

- were not included in the calculations (Figure 6-13b). Curve G1 is equivalent to the first term
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in equation (6-10), or equation (6-11),v which cannot compensate for the discontinuity of the
conductance. Curve G2 represents the second term in equation (6-10) which corrects for these
variations of the conductance. Curve Gc is the difference of G1 and G2 which is the
transverse conductance compensated for the casing conductance discontinuities. For locations
away from the interface ( d | > 2m), the casing segments may be corrected with equation (6-
11). If a discontinuity lies within the electrode array, equation (6-10) must bev used to com-
pensate for the changing conductance. |

This analysis suggests that small spatial variations in the casing conductance may be
compensated by applying equation (6-10). The effects of the discontinuity only occur at the
locations where the three-electrode array lies over the interface. When the measurements are
beyond one array length from the interface, the measurements are not affected by the discon-
tinuity. The situation of a collar joining two casing segments would produce similar results.
Since the spatial width of the discontinuities due to the collar are usually much smaller than
the size of the array spacing, the deviations caused by the.collar should be much like those of

the two adjoining segments situation.

6.4 MTC Logging - Layers

The resistivity measurement through casing method is simulated with a of a target layer
and an unknown casing conductance. The E-fields and transverse resistance are determined
for several resistivities of the target layer. Since the casing conductance is unknown, two
electrode configurations are used: one to estimate the casing conductance and another to calcu-
late the transverse resistance. The second derivative is approximated with a three point meas-
urement. Using equation (6-10), the transverse resistance is obtained .from the three-point

measurement and casing conductance estimate.
Figure (6-14) illustrates the model used for this analysis. The simplified model consists

of a finite-length conductive casing filled with fluid embedded in a thr_ee-}ayer medium. For

simplicity, the resistivity of 10 Q-m is used for the top layer, bottom layer, and borehole fluid.
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The casing has a resistivity of 10 Q'm and length of 100m. The target layer is 3m thick with
its top located 49m below the surface. To approximate a layer of infinite extent, the outer
boundary of the layer is placed at 5000m. The equally spaced potential electrodes, M, N, and
M’, are straddled by two current electrodes, A and B All electrodes are placed in contact
with the casing. For models with a single current source, electrode B is placed at "infinity",

the remote position.

The calculated voltage difference for a lateral-log configuration is shéwn in Figure (6-
15). These voltage differences, which are nommalized by the potential electrode separation |
(MN = 0.5m), represent an estimate of the electric fields on the casing and are proportional to
the current leakage. The separation from the source to center potential array, AQO, was 2.0m.
Tﬁe resistivities of 1 Q'm and 100 Q'm are used for the target layer. The discontinuity of the
curves correspond to the change in resistivity. For the conductive layer, the increased rate of
voltage drop is due to the increased current leakage into the adjacent formation. _A resistive
formation has the opposite effect and a decreased rate of change is observed through the target

layer.

A resistivity log of through casing measurements with unknown casing conductivity is
simulated using the parameters in Figure (6-14) and the numerical results for several resistivi-
ties of the target layer are illustrated in Figure (6-16). The resistivity values for the target
layer ranged from 1 Q'm to 100 Q'm. For this analysis, the separation between current and
center potential electrode, AN, was 2.25m. The potential electrode spacings, MN and NM’,

were 1.0m.

Figure (6-16) shows that the resolution of the layer boundaries is about 2.0m which
correspond to the length of potential electrode spacing.6 The transverse resistance curves
respond to the resisﬁvity, boundaries of the model remarkably well. The value of the

transverse resistivity is slightly larger than the resistivity of the homogeneous (no layer)

6 The resolution of the layer boundary will be investigated later in this chapter. z
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model. This deviation (= 10%) is probably due to the effects of the casing and array
geometries discussed in the pmvioﬁs section. When the target layer is resistive, the transverse
resistance is larger then the true formation resistivity. This discrepancy increases for increas-
ing layer resistivity: for-a 100 ‘Q-m layer, the transverse resistance is 20-30% greater than the
layer resistivity. For a conductive target layer, the transverse resistance underestimates the
layer resistivity. This effect is contrary to the discrepancies associated with the geometric
variations. This behavior of the transverse resistances indicates that the currents in the casing
are channeled towards and leaks out into the formations .vwith low resistivity. Greater current

leakage results in a larger E-fields, and thus a smaller transverse resistance.

When the electrode array spans across the interface, the conductive layer has a greater
influence on the transverse resistance than the resistive layer. The thickness of resistive beds
may be underestimated, whereas conductive layers thickness may be overestimated in an MTC
lég. Oneb would assume that the transverse resistance value at the interface should be approxi-
mately equal to the average of the resistivities of the two layers. Actually, the transverse
resistance for an array that spans an interface is inversely proportional to the weighted average
of E-field rates of change. The weighting is proportional to the fractional length of the array
in a particular formation. Hence, the transverse resistance of a resistive layer in the _vicinity of

an interface will always appear more conductive than its true resistivity.

6.5 Borehole Fluid Effects

The influence of the borehole fluid on the transverse resistance for the MTC method is
examined using several resistivities for the fluid. The unknown casing conductance is simu-
lated, thus two sets of measurements are required. Figure (6-17a) is the cross-section of the
casing filled with fluid in a layered medium. A 3m target layer is placed between an overly-
ing 49m layer and basal l;alf-space. The resistivity of the target layer is 1 Q-m while 10 Q'm
is used for the resistivity of the other two formations. The 100m casing has a thickness of

/

1.27cm, inner radius of 10.16cm, and resistivity of 10° Qm. The electrodes are placed in
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contact with the inner wall of the casing. The separation between the current and center

potential electrodes is 2.25m, while 1.0m is used for the potential electrode spacing.

The effects on the transverse resistance for various borehole fluids is illustrated in Figure
(6-17b). The plot shows that all of the transverse resistance curves are the same for different
borehole fluid resistivities. The resistivity of borehole fluid ranged from 1 Q'm to 20 Q'm. It
appears that the borehole fluid resistivity has a‘ negligible influence on the transverse resistivity
measﬁremems. Some minor effects may appear if the electrodes were not m contact with the

casing, since the current has a chance to dissipate before reaching the casing.

6.6 Electrode Separation

In this section, the effects of electrode separation on the resolution of the layer boundary
and radius of investigation are examined. In .Section 6.3, the results indicate that thé vertical
resolution is dependent on electrode spacing. The radius of investigation (RI) may also be
dependent on electrode separation. Currently, there is no information about the investigation

distance for the MTC method.

6.6.1 Vertical Resolution

Equation (6-11) indicates that the transverse resistance can be obtained from the ratio of
the potential and its second derivative provided the casing conductance is known. This rela-
tion shows that the resolution of the transverse resistance is limited to the electrode spacing

needed to approximate the second derivative.

Figure (6-18) illustrates the effects of the potential electrode separation on the layer
boundary resolution. The model used consist of a 100m casing embedded in a two-layer
medium. The resistivities of the upper layer and basal half-space are 1 Q'm and 10 Q'm,
respectively. The casing ‘has a resistivity of 107 Q'm, thickness of 1.27cm, and inner radius
of 10.16cm. The distance from the current electrodes to the center potential electrode is
2.25m. The potential electrode spacings of 0.2m, 6.5m, and 1.0m show that the boundary

resolution improves as the separation becomes smaller. The resolution distance is
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approximately the length of the three-electrode array 2Az which is needed to estimate the
second derivative.

Figure (6-18) confirms the results of Section 6.4 that the conductive layer has a greater
influence on the transverse resistance in the vicinity of the interface than the resistive layer.
The value at the interface is much closer to the resistivity of the conductive layer. On the
resistive side of the interface, the transverse resistance approaches the true resistivity value
slightly less than one electrode spacing from the boundary. For shorter eleéuode separations,

this effect still exists but appears less pronouned since the vertical resolution has improved.

6.6.2 Radius of Investigation

For typical resistivity logging methods, increasing the separation of the electrodes
increases the radius of investigation (RI). Thus, annular boundaries, which are not detected
for a short electrode separation, may be discernible with longer spacing. A general rule of
thumb for the RI of resistivity methods is approximately one-half the separation distance. In
this section, the effects of the electrode separation on the RI are examined for the TCL

method.

Figure (6-19) illustrates the model configuration used for this evaluation. A 50m length
of casing with a resistivity of 10 Q'm is surrounded by an annulus with thickness Ar and
resistivity p.., and a 10 Q-m homogeneous medium. Three potential electrodes are placed on
the inner wall at the center of the casing with a separation Az. The cuneﬁt electrodes are
placed 2m from the outer potential electrodes. Resistivities of 5 Q-m and 20 Q-m are used for

the annulus to represent a conductive and resistive annular layer.

“The result of iﬁcreasing the electrode separation Az is shown in Figure (6-20). The solid
" and dashed lines representlthe transverse resistance for a homogeneous medium, no annulus.
The other curves are the itransverse resistance for different values of Arz. Note that all the
curves are essentially parallel to one another and somewhat flat, with approximately 10% vari-

! / . .
ation from the 1m to 20m separations. The oscillation of the curves for small separations is
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due to poor discretization of the casing indicating that smaller segments are needed for short

electrode separations.

These results indicate that the RI is independent of the potential electrode separation dis-
tance. If the RI was dependent on the electrode spacing, the curves in Figure (6-20) would
start near the annulus resistivity for short Az and then asymptote to background resistivity as
Az increases. The rate at which the curves approach p, is dependent on the thickness of the
center annulus. For a radially thin annulus, the curves in Figure (6-20) wbuld approach the

background resistivity for shorter electrode separations than a thick annulus.

For a borehole with no casing, the equipotential lines from a pole current source are
spherical in a homogeneous medium. When a vertical boundary is present, these equipotential
lines are perturbed and can be detected by the electrodes in the well. A‘long_ electrode spac-
ing can to detect perturbations caused by an annular boundary that is radial far from the well.
If the well is cased in steel, the equipotential lines are now parallel to the vertical boundary of
the annulus. Although the potentials are affected, the potential lines are not distorted by the
annular boundary. Thus, all arrays with different electrode spacing will essentially measuré

the same response.

6.7 Cement Annulus

The results at the end of the previous section make determining the formation resistivity
in the presences of an annular layer, like a cement layer, very difficult. In an uncased
borehole, a tool with short electrode spacing can acquire data related to the resistivity of the
annular zone. With this information, the formation resistivity may be approximated from
measurements made with long electrode spacing. The resistivity measurqd in a well with an
annular zone is a combination of the annular layer and the formation. When the hole is cased,
the combined resistivity rr;easured in the presence of the annular layer cannot be distinguished
~ from a formation wh_ich has an equivalent resistivify since modifying the/: electrode spacing

does not change the radius of investigation.
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Kaufman (1990) determines the transverse resistance in the presence of an annular layer
by assuming only a radial current distribution outside the casing.” Thus, the transverse resis-
tance can be considered as the series resistance of a medium, an annular layer and host back-

ground (Figure 6-21a). Kaufman expresses this as:®

= Pea ~Pr | AL : .
T=p; + o ln[ - +1] (6-24)
where a_, is the inner radius, Az is the thickness, and p,, is the resistivity of the cement

annulus and p, is the resistivity of the host medium.

The series resistance, calculated with equation (6-24), are compared to transverse resis-
tance in Figure (6-20). The resistances as a function of the annulus thickness for selected
electrode separation distances (Figure 6-21b). Although the transverse resistances are larger
than the series resistances, the behavior of the resistances generally agree with each other.
For small thickness of the annulus, the resistance approaches the background medium resis-
tivity. As Ar increases, the transverse resistance asymptotes to the center annulhs resistivity.
The larger transverse resistance can be expected since it is dependerit on the casing conduction
length (see Section 6.5.1). This figure also confirms that the transverse resistance is indepen-
'd¢nt of the electrode spacing. Similar responses of the transverse resistance are obtained for

different electrode separation.

. The effects of thickness variations of the cement annulus in a homogeneous medium are
illustrated in Figure (6-22a). The model used for this simulation is a 50m long casing sur-
rounded by a 20 Q-m cement annulus which has two thicknesses. The upper 25m is 1.0m
thickness and the lqwer portion is 0.2m thick. Figures (6-22b) to (6-22d) correspond to the
three host resistivities of 1 Q:m, 5Qm, and 10 Q-m. Two electrode spacings are used to
determine if variations of the thickness produce any.signiﬁcant changes of the transverse resis-

tance.

7 A radial current pattern can only exist for an infinite-length perfect conductor.

8 This expression is based on equation 52 in Kaufman (1990), but his equation does not ¢orrespond to the nota-
tion in his Figure 1d. ’ .
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For small host resistivities, the transverse resistances agree with the series resistances
calculated using equation (6-24). There is essentially no difference between measurements
made with either electrode spacing. As the host medium resistivity increases, two observa-
tions are apparent. First, the transverse resistances of the two electrode spacings are slightly
different where the longer spacing results in smaller vaiues. Unfortunately, the deviations are
about 2% on either side of the thickness discontinuity which are insignificant. Second, there
is a large discrepancy of the transverse and series resistances on the thick side (shaded area)
of the cement annulus, whereas the resistance values are about the same on the thin side

(unshaded). This difference increases as the resistivity of the host medium increases.

The effects of the cement layer on the resolution of a target of a layer are shown in Fig-
ure (6-23). A uniform 20 Q'm cement annulus with thickness Ar is sandwiched between a
50m casing and a three-layer medium (Figure 6-23a). The upper layer and basal half-space
have resistivities of 10 Q-m, while the 10m target layer has a resistivity of 5§ Q'm. In com-
parison thh the series resistances, the discrepancies between the values tend to decrease in
the resistive formation and increase in the conductive layer as the cement thickness increases.
Thus, the target response tends to "blend in" with the background as the annulus becomes

thicker.

Figure (6-24) illustrates the effects of thickness variation of the cement annulus on the
transverse resistance response for a layered medium. The same model of Figure (6-23a) is
used for this analysis, except the thickness of the cement in the target zone was allowed to
vary. . Two thicknesses, 20cm and Ocm, are used for the cement annulus. For a curve (A-B)
in the figure, A is the thickness (in centimeters) of the cement adjacent to the host and B is

the thickness in the target layer.

The curve (00-00), representing no cement annulus, is 10-20% larger than true formation
resistivity which is probably due to geometric variations (Section 6.5.1). When a uniform
20cm cement annulus is placed, curve (20-20), the transverse resistance increases due to the

4

resistive cement layer. When a 20cm cement layer is present only within the target zone,
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curve (00-20), the transverse resistance in the target layer slightly smaller the resistivity of the
host medium. From the transverse resistance curve (00-20), the layer is almost indistinguish-
able from the background. Reversing the situation, cement adjacent to the host and no
annulus in the target layer, results in the opposite effect. Now, the transverse resistance out-
side the target layer is much larger compared with the other curves. The response in the tar-
get zbne is smaller that those of the no annular layer case. The anomalous response
corresponding to the presence or absence of the resistive cement armulus' indicates that the
currents in the casing are channeling toward and leak out into the zones where the contact
resistance is low. This may, in part, explain the large discrepancies associated with the thick

cement annulus in Figure (6-22c¢).

Acquiring measurements with different electrode separations in a cased well provides no
additional information about the conductance of the cement. If the thickness or .resistivity of
the cement zone is known, then the series resistance representation, equation (6-21), can be
used to estimate the transverse resistanc: for a uniform annulus. However, this expression
tends to undercompensate the transverse resistance fof an annulus that has variable thickness.
These results indicate again that the currents in the casing leak into the formations where the

contact resistance is small.

6.8 Summary

The numerical results clearly show the feasibility of determiﬁing formation resistivity
through metal casing.b When the casing conductance is unknown, two measurements with
different electrode configurations are needed to determine the formation resistivity at a given
depth. One is used to calculate the casing conductance and the other to-estimate the second
derivative of the potential.»_ A three-point measurement on the inner surface of the metal cas-
ing is needed to approxin;ate the second derivative of the potentials. Using equation (6-11),
the formation resistivity can be calculated from the three-point measurement, the potential, and

/

the estimate of the casing conductance.
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An analysis of electrical logging through metal casing was done for the case of a finite-
length casing in a layered or half-space medium. A surface integral equation approach was
used to determine the potentials on the casing. The casing, borehole fluid, and layers were
modeled as inhomogeneities in the background medium. For the simulations, all electrodes
were in contact with the inner wall of the casing. The length and radius of the casing, as well
as the location within the casing are geometric factors that influence the méasuxeménts. Vari-
ations of the casing conductance also have an effect on the transverse resistance. The
borehole fluid appears to have negligible influence on the formation resistivity measurements.
Variations of the casing conductance only affect measurements where the electrode array lies
over the discontinuity. Equation (6-11) can only compensate for spatial variations of the con-
ductance that are longer than the electrode array span. The small sﬁatial variations can be
compensated by using equation (6-10).

Numerical results appear to confirm that the discontinuities of the E-fields correspond to
the boundaries of the layer and the rate of change of the field is inversely proportional to the
resistivity of the adjacent formation. The calculated values of transverse resistance compared
closely to the resistivities of the layer model. The behavior of the transverse resistance indi-
cates that the currents in the casiﬁg leaks out into the formations with low resistivity. Thus,
the resistivity of formations that are more conductive than the surrounding medium is underes- -
‘timated, whereas the transverse resistance for resistive layers is larger than the true layer resis-
tivity. When the electrode array spans across the interface, the conductive layer has a greater
influence on the transverse resistance than the resistive layer since the transverse resistance is
inversely proportional to the weighted average of the rates of change of the E-fields. Hence,
the transverse resistance of a resistive layer in the vicinity of an interface will always appear

more conductive than its true resistivity.

The vertical resolution of the layer boundaries is limited to the potential electrode spac-

ing needed to approximate the second derivative. The response of the MTC log in the vicinity

'

of an interface of two electrically contrasting beds is influenced by the more conductive layer.
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Whereas conductive layers may be overestimated, thicknesses of resistive beds may be

underestimated.

Variations in parameters of a the cement annulus have a great influence on the estimate
of the formation resistivity. As with the layered medium simulation, the current in the casing
tends to leak out in areas where the contact resistance is small. However, using several elec-
trode lengths does ‘not provide any additional information about the cement conductance since
the radius of investigation appears to be independent of the electrode spaéing. Thus, deter-
mining the true formation resistivity in the presence of a cement annulus may not be possible

without prior knowledge of the thickness or resistivity of the cement layer.
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_Figure 6-10: Model of two adjacent casing segments with different condyctance pioperties in
a half-space and electrode array.
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array (see Figure 6-2) calculated for electrode pairs: MN, NM’, and MM". *
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Figure 6-12: The potentials (top) and electric fields (bottom) of the megsurement state array
(see Figure 6-2) for electrode pairs: MN, NM’, and MM'.



Second Derivative (uV/m**2)

Transverse Conductance (S/m)

o
1

0
[3,]
-l

-10 -

-15 1

-20

Position (m)

262

Figure 6-13: The estimate of the second derivative (top) and transverse conductance (bot-
tom). Curves G1 and G2 are equivalent to the first and second terms of equation (6-10),

curve Gc.
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Figure 6-14: Model of a filled-fluid casing in a layered medium and elecjrode configuration.



264

—4&— 1Qm

No Layer
471 —— 100Qm

E
g
a
Q
a
93 7 Casing: 1E-6Qm
54 — Host: 10Qm
55 1 AO=20m
] | ' MN = 0.5 m
56 ] ) T T l L Rl T 1 T i L4 1 ] ¥ ] L] Nl T 4 ¥ T l 1 T T {
-70 -65 -60 -55 -50 -45 -40

AU/Az (uV/m)

Figure 6-15: Lateral log electrode array (top) used for E-field calcujations. The E-field
response (bottom) with increasing depth for a 1 Q'm and 100 Q-m layer (shaded area).



265

45 TH e 10
|.- m
] [ —o0— 2Qm
- —o— sam
7 oa[ — No Layer
es|[ —e&— 50Qm

Depth (m)

‘\A' I"
53 — 5
54 7 :: Casing: 1E-6 Q-m
7 :j Host: 10 O-m
55 — }
R AN=BN= 225m
{ MN=MN=10m
56 | T 17T 7117 — T T T T
3 3 10 30 100

Transverse Resistance (€ m)

300

Figure 6-16: Transverse resistance calculated using equation (6-11) fog the model of Figure
(6-14). Several resistivities are used for the target layer (shaded area).



A
2.25m
M —
im
Y N
im
M’ —
B
Target Layer
Fluld ——>
10 2-m
Casing —
— 100m

Depth (m)

T

miarn@rmeame 20 QM

1Q-m
2Q-m
5Q-m
10Qm

Pipe: 1E-6 Q-m
Host: 10 Q-m
Layer: 1Qm

AN =BN=225m
MN=MN=10m

T 1 T

1

Transverse Resistance (Q-m)

Figure 6-17: a) Model of fluid-filled casing in a layeréd medium and electrode array (left).
b) Transverse resistance for several resistivities of the borehole fluid (right).

30

99¢ .



51
52 —
E -
£ 2]
Q
3 4| ——®— o02m
4
54 | —8—— 05m
7 ]
i 1.0m B
1 Pipe: 1E-6 Q-m g
55 N Host: 10 Q-m 5
i Layer: 1Q-m FI
4 2
‘]| AN=BN=225m o
56 1 T T Ty ¥ L] L L L) l T
~ 3 1 3 10 30

Transverse Resistance (Q-m)

Figure 6-18: Model of the casing in a layered medium and electrode configuration (left) used to
calculate the transverse resistance (right) for several electrode spacing.

L9t



268

Casing

25m Annulus
pca
50m
At >

Cenfer Line

Figure 6-19: Model used to examine the relation of electrode spacing Az and center annulus
thickness At. Center electrode is fixed and current electrodes are located 2m from the outer

potential electrodes.
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Figure 6-21: Model of 50m casing in a 10 Q-m host (top) used to calculate the series resis-
tance, equation (6-21), and transverse resistance, equation (6-11), for several annular
thicknesses (bottom). The transverse resistances are calculated for several electrode spacings
and the center electrode is fixed at 2m. The resistivities of the anntlus are 5 Qm and

10 Q'm.



Casing

E
=
Q.
[}]
o 1
1 i —o— Az =2m
30 1 ' —_——— -
] | At=20cm Az.:4m
] | —-—-- Series
35 ] ' Host: 1 Q-m
] ! Cement: 20 Q-m
! Casing: 1e-6 Q-m
40 ,‘,,,
3 4 5 6 7 8
~ , T (Q-m)
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CHAPTER VII

FIELD EXAMPLE - DOWNHOLE TO SURFACE RESISTIVITY SURVEY -

The contents of this chapter are based on a n‘:poxtl submitted to the EPA on "The Feasi-
bility Test of the Downhole-to-Surface Resistivity Method for Mapping the Areal Extent of
Contaminants at Depth" by Schenkel and Morrison (1990b). The survey was conducted at
DuPont’s Hemby Branch test well 3.5 miles north of Waverly,2 Tennessee from the second to
the sixth of October 1989. For the borehole-to-surface resistivity experiment, three radial sur-

face arrays measured the voltages for a succession of current electrode depths in the well.

The test site is physiographically located in the westemn part of the Western Highland
Rim province which borders the Kentucky Lake/Tennessee River. The geology of the area is
predominantly limestone formations with occasional dolomite and shale units. The limestone
layers varied greatly in compdsition and in occurrence of fractures. Table (7-1) shows the
stratigraphic units and their approximate depths obtained from core samples at the site. The
topography near the well site can be described as rolling hills and ridges that are dissected by
streams. The maximum relief in this area was approximately 150 feet. The drilling site was
terraced into the side of a ridge. Figure (7-1) shows the topography and array configuration

of the test area. J

The first and major objective of this test was to determine the background noise levels
for the voltage measurements and the practical values of electric current that can be achieved
with the power supply of the LBL? acquisition system in a resistive environment. In resistive

limestone formations, we had no data on the effective contact resistance of the downhole elec-

US-British units were used in the report and are used in this chapter.
2 Waverly is located approximately 50-60 miles west of Nashville.

3 LBL is an abbreviation for Lawrence Berkeley Laboratory. Past experiments have been conducted in very con-
ductive sediments and there has been no problem in injecting 20 to 30 Amps. ’
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trode. The second goal was to interpret the field data with simplified models using the surface

IE method described in Chapters II and I

7.1 Field Experiment Design

The principle of operation of this method is as follows. Electrical current is injected into
the ground between a downhole electrode and a remote electrode on the surface. In a homo-
geneous medium, the current flows essentially radially away from the hole producing a
predictable set of voltages at a radial array of measuring (potential) electrodes on the surface.
When the current electrode is located in a zone of high conductivity, caused for example by
the injection of a fluid with high tds, the current pattern is distorted by the zone. This distor-
tion produces perturbations in the normal voltages seen on the measuring array. As injection
continuous, a plume develops which can be monitored over time by the voltage changes. If
the response of an arbitrary background conductivity distribution is known, then thé changes

due to the injection plume can be mapped.

The design of the experiment at the DuPont well is illustrated in Figure (7-2). At the
time of the experiment, the well was drilled to a depth of approximately 2500 feet with steel
~casing down the first 450 feet. The acquisition system is shown in the schematics 'pf figure
(7-3). This system éonsists of a timer/clock which controls the switching of the current
transmitter and the sampling of the receiver or voltage measurement. The details of each are

described below:
Timer/Clock

The timer is composed of a Hewlett-Packard (HP) function generator, which outputs an
80 Hz TTL square wave, and a divide-by circuit, which reduces the frequency to 0.05 Hz.
The low frequency square wave controls the transmitter waveform, and the high frequency
uiggets the receiver sampling rate. The setting of the frequency was chosen so as to reduce
telluric noise and elecmpagneﬁc coupling. The high frequency sampling rate is dependent

on the maximum speed of the scanner and voltmeter and the number of data channels desired.

Transmitter



277

The transmitter was powered by 220 Volts three-phase power which was produced by a
5 kWatt generator was supplied by DuPont. This AC is rectified and switched to produce a
square wave voltage with a period of 20 seconds. This voltage waveform is controlled by a
variable transformer at the input to the rectifier and can be varied from 0 to 200 Volts. The
output of this switching rectifier is connected directly to the current electrodes which deliver
the current to the ground. At the test site, 3-5 Amps was being supplied to the resistive
gmﬁnd. The current is monitored by a precision resistor serially comnmected in the output
current path. The voltage measured across the resistor, calibrated at 10 wV/Amp, is opﬁcally

isolated to prevent coupling between the transmitter and receiver.

The remote current electrode consists of a 4 feet by 8 feet sheet of steel which is buried
in a slit trench as shown in Figure (7-2). The slit trench is backfilled with soil and saline
water. The remote electrode was located on a ridge approximately 1700 feet southwest from
the well and elevated about 100 feet above the hole. The downhole current electrode is a 6
feet length steel pipe 4 inches in diameter. The electrode is lowered down the borehole by a
steel cable insulated from the electrode by a length of polypropylene rope. The insulated
current cable is aﬁached directly to the electrode and is taped to the steel cable at 50 foot
intervals. The current cable, connecting the remote and downhole current electrodes to the
transmitter, is #6 AWG copper with a tough 600V neoprene insulation. The insulated cable

attached to the remote electrode was placed along the power line access road.
Receiver

The voltages are measured between adjacent potential electrodes along three radial lines.

The voltage measuring cables are multiconductor with 18 outlets spaced 15 meters apart, so
that 17 dipoles are measured on each line. The potential electrodes were small 1 inch (diame-
ter) by 6 inch copper-copper sulfate porous pots which were placed in 8-12 inch holes and
covered during the experiment with wooden lids. The holes were filled with water to reduce

the contact resistance.
The radial cables bring the voltages at each potential electrode back to the data acquisi-
tion van which is parked near the transmitter. The acquisition system is composed of anti-
, : y

alias filters, an HP 3495A scanner, and an HP 3456A digital voltmeter. The input voltages
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from the 17 dipoles and the current monitor are filter by four-pole Butterworth filters with a
cutoff frequency of 3 Hz. The filtered signals are sequentially sampled by the scanner and

measured by the voltumeter.

All the voltage differences on each radial line are sent from the voltmeter to an HP 330
computer where they are processed simultaneously. The measured signals are averaged over
10 to 20 periods of the transmitted current. The voltage-to-current (V/I) ratio averages and
the standard vdelviations are calculated for every channel and stored into the computer. For
each 10 second half-cycle of the current waveform, one channel would contain 20 sample
points. Of the possible 20 samples, only 8 points, which showed no contamination from

"filter ringing" and polarity switching, were used for the processing.

7.2 Field Procedures

The resistivity survey was conducted from October second to sixth. The first day was
spent setting up the receiver and transmitter system. The last day was used for picking up the
equipment, loading the system onto the truck, and transferring the data to floppies. The
second day, October third, was spent checking the receiver system and background noise lev-
els. The majority of the remaining time was used modifying software and hardware to correct
for the problems caused by the resistive environment and repairing equipment damaged by
.outside sources. The total measurement time was less than 12 hours accumulated during the
fourth and fifth of October. Many of the problems encountered during this experiment were

not previously seen and were due to the highly resistive environment.

The main problem caused by the highly resistive earth was that the acquisition system
was not configured to read large V/I signals. In the past, expeﬁments were done in fairly
conductive sediments so that the acquisition system was configured to read V/I signals in the
range of tens to hundreds of pV/Amp. At the test site, some of the signals were over two
orders of magnitude greater. Signals of this size exceeded the maximum of the voltmeter for
the low signal setting and: were clipped. Unfortunately, the computer program did not identify
this situation but instead set all the values to zero which caused some problems. To handle

: /
these large signals, the voltmeter maximum setting was shifted up an order of magnitude and
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the software had to be modified to accommodate the change. After this modification, the vol-
tages from the current monitor were below the resolution of the voltmeter. Since the dynamic
range of the voltmeter could not be modified and no other shunt resistors were available to
modify the current monitor voltage, an amplifier was used to increase the signal of the current
monitor. Nearly the entire day of October fourth, was used to identify and correct these prob-

lems.

Other problems which occurred and caused a lost of time were: damage to one voltage
measuring cable by the county roadside grass cutter, damage to the steel support cable and to
the insulated current cable of the downhole electrode, and damage to the transformer of the

transmitter caused by the large voltages applied on the transmitter.

7.3 Field Results

Background Noise and Field Data

Table (7-2) shows the noise level and the standard deviation at the test site calculated for
a sampling size of 800 points per channel. The background and cultural noise at the site was
extremely low. In most of the channels the noise level was below or near the resolution of
the voltmeter. The standard deviation varied from channel to channel but was still quite

small, less than 100 pV.

Originally, ten levels with 200 foot separation were planned. Due to unforeseen prob-
lems, the experiment concentrated on two depth levels. The two locations were the zone with
brecciated limestone at about 1900-2300 feet and the area near the end of the casing, 450-500

feet. In the brecciated limestone zone, several repeat measurements were taken.

Table (7-3) is me tabulation of the field data for different current electrode depth levels.
The range of the V/I signal amplitudes were from 170.0 to 0.5 mV/A. The largest signals,
which occurred for current electrodes near the casing, were thought to be due to the channel-
ing of current up the conductive casing. The standard deviations were small for thesg signals
which shbws in the percent of the standard deviation-to-signal ratio. This ratio was one per-
cent or less for nearly all cases. The cases where this ratio was larger oceurred when the sig-

nal was near zero.
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Repeat Measurements

Repeat measurement test were conducted at several (downhole current) electrode depth
levels to check consistency of the measurements. Measurements were acquired for a depth
separated in time ranging from one hour to one day. The percent differences for an electrode
depth level are calculated from two temporally separated measurements and are listed in Table
(7-4). The tests were conducted at shallow (500 ft) and deep (= 1500 ft) electrodes for line 2
and only at the deep electrode depths for lines 2 and 3.

Most of the channels of lines 1 and 3 were repeatable to less than 2.5 percent. In gen-
eral, the values for line 2 were 5 percent or less but in some cases exceeded 100 percent. For
the shallow depths, the measurements of line 2 were acquired on October fourth and were
repeatable to less than 1.6 percent. Most of the values at the shallow electrode depths were
repeatable to less than 0.2 percent. The large percent differences appeared—to occur for V/I
signals of less than 3.0 mV/Amp and 10.0 mV/Amp for line 2 and lines 1 and 3, respectively.

The poor repeat measurements may be attributed to two main factors. The first is the |
array configuration and the influence of the remote (current) electrode. The second is the vari-
ability of the current waveform. The geometry of the potential arrays and the current elec-
trodes was an improper conﬁguration to obtain optimum V/I signals. In many instances, the
remote electrode was closer to the measuring potential electrodes than the downhole electrode.
With this configuration, the remote electrode affected the fields which resulted in small (near
zero) V/I signals for many of the channels. Even for changes that are in the range of the
standard deviations of the noise (= 0.1 mV/Amp), large percent differences can occur if the
signals are small. The variability of the current waveform at depth caused problems for
repeatable measurements. The inconsistency of the waveform can be seen by the large stan-
dard deviations. The standard deviations for the greater depths were over an order of magni-
tude larger than that for the shallow depths. At depth, the formations were much more resis-
tive than near the surfacg_. The transmitter and the generator were exerted to their limit to
inject enough current into; the resistive formations to obtain a measurable signal. By running
at the load limit, greater variations in the current waveform can occur which results in large

/
standard deviations.
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Noise-Signal Relation

Figures (7-4) to (7-6) are scatter plots for each array line of the V/I signal versus its
standard deviation (noise). The upper plot of each figure is the data for electrode depths close
to the casing (< 700 ft). The lower plot is the measurements for electrodes away from the
pipe (= 1500 ft). “The "100 level" line is an approximate maximum noise level, 100 pV/Amp,
that was determined from the standard deviation of the noise test. For data with little noise,
lthe scatter pattern should be below this line: The "1%" line represents the one percent noise-
to-signal (N/S) ratio. Points lying below this line have N/S ratios of less that one percent.
Note from the figures, that measurements can be above the 100 pV/Amp noise level and stll
have N/S ratios well below one percent. The "integer" line shows the smallest value possible
for the survey. It is the result of the conversion of the data, V/I signals and standard devia-

tions, to an integer format. It also represents a N/S ratio of 0.01 percent.

The optimal scatter pattern would be one which is "flat" below the 100 level line. This
type of response would represent a constant noise level for all signal sizes. Unfortunately, the
data show some l_cind of linear cdrrelation between the sigrlal and the standard deviation. The
measurements that have a large correlation and are above the 100 pV/Amp are: 7004d (all
lines), 1500-5u (line 3), and 1700-5u (line 3). At this time, the source(s) for this noise corre-
lation with the signal is unknown. | '

A pattern was observed with the noise levels and is well illustrated with the deep elec-
trodes of line 3. The open symbols in this plot represent measurements taken as the electrode
was lowered down the well. The solid symbols are the measurements acquired as the elec-
trode was pulled upward which are taken in reverse order of the downward measurements.
The "+" and "x" are also data taken for the upward going electrode but have no equivalent
downgoing measurements. As can be‘ seen from the plot, the open symbols have the lowest
noise levels. The solid symbols, 2300-1900 ft, have slightly higher noise ievels with the 1900
foot level having the largest. The last two upward measurements, 1700-1500 ft, have very
large noise levels. In faci, damage to the current and support cables were discovered after the
last measurement. The high noise levels of the upward measurements may be due to the

. /
current leakage through the damaged current cable which had several gashes along its length.
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7.4 Data Analysis

Although most of the data had standard deviation of one percent or less, repeat measure-
ments were inconsistent especially for the deeper electrode levels. The correlation of the
noise and signal reduced the amount data could be analyzed. At the time of the analysis of
the data, no well completion information was received and only the electric logs for the depths
below the casing (> 450 ft) were available to estimate formation depths and resistivities.
Becausé of the suspect quality of the field data and the limited information available, the
majority of the analysis was limited to models based on the data set of line 2. |

7.4.1 Apparent Resistivities

The apparent resistivities of each channel for the three lines are plotted in Figures (7-7)
to (7-9) and listed in Table (7-5). The apparent resistivities show several characteristics.
First, most of the values follow similar trends and fluctuations along the array lines for vari-
ous source locations. Next, the magnitude of the apparent resistivities greatly increases for the
stations nearer the well. Last, negative apparent resistivities were observed on line 1 and line

2.

The trends and fluctuations are primarily due to topography and lateral inhomogeneities
in the near surface. The anomalously large apparent resistivities near the well are due to inho-
mogeneities at or near the well distorting the fields near the well. This distortion of the fields
can also be caused by the channeling of current through the conductive casing as discussed
earlier in this thesis. Both of these effects were observed by Bevc et al. (1989) in a similar

survey at Coalinga, Califomia.

The negative values of apparent resistivities indicate that the electric fields or currents
are in the opposite direction to those flowing at the same point in a homogeneous half-space.
This is caused by several factors: array configuration, layering, and inhomogeneities. If the
remote electrode is not placed far enough away to simulate an infinite electrode, it will affect
the current paths. With certain layered cases, negative apparent resistivities can be obtained
with numerical models for the array configuration used for this experiment. The conductive

pipe located above the current source also will greatly accentuate this phenomenon of negative
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apparent resistivities.

A layered earth model was used to simulate the apparent resistivities of Table (7-5).
With a five-layer model, the negative apparent ;esistivitiés that were observed could be pro-
duced. But, the spatial fluctuation along the array and the large magnitudes near the well
could not be obtained. The fluctuations observgd were caused by topography and near-surface
inhomogeneities. These effects could be minimized by applying a differencing scheme to the
data. To use such a method, additional data in formations with different electrical responses
must be collected. Hence, the analysis in this section will not account fof the topographic and
near-surface effects but will focus on the near-well effects. The large apparent resistivities
near the well were assumed to be caused by the steel casing contaminating the signals. The
program that can simulate the casing effects was available to model the data but required axial
symmetric geometry. This symmetry was numerically created by superposing two data sets to
produce a downhole current dipole source ahd eliminating the off-axis remote current source.
For this analysis, one of the current électmdes was stationary, called "reference”, and the

other, called "roving", was moved in the well.

Table (7-6) gives thé dipole-dipole apparent resistivities calculated for a reference elec-
trode located one foot from the bottom of the casing at a depth of 451 feet. The roving elec- -
trode is placed at the .o‘ther electrode depth levels. With the exception of channel 9 of line 1,
the negative values of apparent resistivities seen (Table 7-5) are eliminated. From Table (7-6),
the axial symmetry of the apparent resistivities along the arrays is greatly improved. Previ-
ously, the values for a given radial distance from the wéll could vary several orders of magni-
tude. These variations could be produced by the array geometry, sdurce locations, and a lay-
ered earth. After creating an axial symmetric dipole source, the apparent resistivities for a

given channel showed some axial symmeiry and differed only by small factors.

Since the geometry of this experiment is assumed to have axial symmetry, only one
array line of the dipole-dipole measurements is needed for the analysis. The data of line 2
was used for two reasonsi' First, the topography effects on each channel measurement of line
2 should be nearly equal and small since the the line was placed on a gently sloping terrain.

- Second, this line had relatively low noise levels for nearly all the measurerients.
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Figure (7-10) is a semi-log plot of the dipole-dipole apparent resistivities for line 2.
From this plot, it appears that the deep roving electrode levels (= 1500 ft) were in formations
with the same resistivity. The near-casing roving electrode levels (< 500 ft) were in forma-
tions which only differ slightly in resistivities. The 700 foot level values may represent meas-
urements where the rovinQ electrode was in a completely different formation from the near-
casing and deep levels. The near-well effects exist for approximately the first 3 to 5 channels.
There may be near-surface effects along the array causing the small fluctuations and the step-
like effects. Channels 206 through 213 of the shallow levels have an upward trend in the
apparent resistivity. Whereas, the trends for the deep electrode levels of these channels are .

nearly constant and may be somewhat downward.

7.4.2 Numerical Modeling

The objective of the modeling is to come to a conceptual understanding of the field data
and to determine feasible scenarios which can describe the data. These simplified models are
based on general characteristics of the data and other information available. From the dipole-
dipole apparent resistivity data of line 2, there are several cha‘racteristics that were used as

guidelines for the models:
1) Large values of the apparent resistivities are observed near the well (first 3-5) channels. }

2) For the deep roving electrode levels (= 1500 feet), the apparent resistivities are nearly all

the same.

Excluding the near-well and near-surface effects;

3) The apparent resistivities tend to decrease for increasing roving electrode depth levels with
the exception of the 483 foot level.

4) The apparent resistivities have trends along the array line. For the shallow roving elec-
trode levels (< 700 feet), the values tend to increase for increasing channel numbers. For
deep roving electrode levels (2 1500 feet), the apparent resistivities are constant or may

even decrease with larger channel numbers.

The other sources of information were the geologié-stmtigraphic section based on core sam-
/

ples (Table 7-1) and the electric logs only for depths below the casing (seé Table 7-7).
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Layered-Earth Models

With only the information obtained from the electric logs for formations below the cas-
ing (450 feet), the earth below the casing could be represented by a three-layer model. This
model has a resistive half-space basement, 30,000 -m, which begins at a depth of 1083 feet.
This is overlain by a conductive layer, 200 Q-m, with its top located at 482 feet. Above this
layer is a resistive formation of unknown thickness and its resistivity constrainted to the

values of 500 to 5000 Q-m. With respect to the guidelines, this model produced poor results.

In order to follow the guidelines 2-4, the addition of at least one layer is required in the
upper 450 feet. An estimate of the depth of the interface between the first and second layer as
262 feet. It was obtained from the stratigraphic section which shows at this depth is the top of
the Chattanooga Shale. Figure (7-11) is the model and the apparent resistivity for the four-
layer case. The resistivities of the first and second layer were chosen so that the model output
matched the far-fields data (last few channels). In doing this, the resistivity of the second
layer (5000 ‘m) which extends below the casing is about 1.5-2.5 times higher than what the
electric logs showed. From the plot, the guidelines 2, 3, and the first part of 4 appear to be

satisfied.

According to Table 7-1, the Chattanooga Shale is a relativity thick shale formation (30-
45 feet) sandwiched between (limestone?) units. From the electric logs, the shale units gen- -
erally appears to be much less resistive than the limestone and dolomite units which dominate
the area. Figure (7-12) is the model and calculated apparent resistivity that incorporated this
shale unit. With this model, the resistivity of the bottom three layers were kept the same as
the previous model. The resistivities of the first two layers, both contained within the first
300 feet, varied so that the far-field data and guidelines 2-4 were satisfied. This five-layer
model has a conductive second layer (160 Q-m) sandwiched between two resistive formations
(5000 ©Q-m). With the addition of the extra layer,r guideline 4 was satisfied much better. Like

the four-layer model, the near-casing (< 500 ft) apparent resistivity curves overlapped.
Pipe-Layer Models

With the exception of the near-well data, most of the apparent resistivities could be
' 4

simulated with layer models. The large values seen for the near-well channels (guideline 1)
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are caused by inhomogeneities at or around the well and cannot be modeled with layers. The
anomalously large values of the apparent resistivities were assumed to be caused by the steel
casing and/or the borehole fluid channeling current up and distorting the fields near the well.
The computer algorithm described in Chapter III can simulate this situation. The program is
based on an integral equation approach of the potential fields and can model the casing, fluid,

and several layers.

The new models were based on the five-layer model of the previous section. All depths
and the resistivities of the bottom two layers were the same as the five-layer model. The
resistivities of the upper three layers are allowed to vary so that the calculated values of the
(outer) far-field channels matches the field data. No information was available to determine
the properties of the casing and the borehole fluid. To illustrate the effects of the pipe and
borehole Mﬂuid, the following values were used for the model. The borehole fluid column, that
went down to the bottom of the well (= 2500 feet), had a resistivity of 10 Q-m. Tt.xe metal
casing, which terminated at 450 feet, and was chosen to have a thickness of 0.5. inch. Two
values of resistivities were used for the casing to simulate the quality of the contact between

the casing and the‘foxmations.

The first model simulates a poor pipe-formation contact or possibly an insulated pipe.
Figure (7-13) is the model and the calculated apparent resistivity for a casing resistivity of 0.1
Qm. the resistivities of the top three layers slightly changed from the five-layer model. The
resistivity of the first and third layers was half the value of the five-layer model (2500 'm).
the conductive layer was reduced by a third from 160 to 50 Q-m. The values used for the
resistivity of the third layer are very close to the estimated values obtained from the electric
logs.

The apparent resistivities of the pipe model follow the guidelines 1-4 of the field data.
Excluding the near-surface effects, three main differences are seen. First, -the calculated
values are larger than the ﬁeld data for the middle channels. Second, the effects of the casing
is seen through the entinez array for the curves representing roving electrode levels 700 feet
and below. Third, the near-well channels have apparent resistivities much smaller than those

of the field data. The first two discrepancies are probably due to the re!'sistivity of the top



287

layer being too large, thus extending the pipe effects throughout the array. The last difference
indicates that the conductivity of the casing (area) is probably too small. This results in less

distortion of the near-well fields and leads to smaller apparent resistivities.

The second model simulates the situation where the pipe-formation contact is good (the
pipe acts as a good conductor). For this case, the resistivity of the pipe was 10~* Q'm and
produced the plot in Figure (7-14). The resistivity of the top layer is much more conductive
(200 Q-m) than was previously used (2500 Q-m). For the second layer, -the resistivity (50
Q-m) is half the value of the first pipe-layer model. Since the resistivity of the third layér was

close to the well-log values, it remained the same 2500 Q-m.

The calculated apparent resistivity curves follow.the guidelines 1-4 and in general match "
the field data well. Neglecting the neaf-surface effects, the apparent resistivities of Figure (7-
14) and Figure (7-10) are very similar. The curves for the near-casing roving electrode levels
(< 500 feet) follow the general trends of the field data extremely well. In the deeper levéls -
700 feet) there are diffemnce§ seen between the model results and the field data. “The conduc-
tive pipe produced a larger apparent resistivity for the near-well channels which are slightly
larger than the field data. These effects extended into the middle channels but is much less
pronouned than the previous pipe-layer model. These discrepancies indicate that the conduc-
tance of the pipe and/or borehole fluid used for the model were too high. The far-field chan-
nels have values ‘that are smaller than the field data but are still very close. This indicates that

the top layers used for the model are too conductive.

~ In October 1990, the electﬁc logs for the depth between 50 to 400 feet and a progress
report, which contained conductivity results from borehole fluid samples (2100-3500 ft), were
obtained. The resistivity from the upper log (50400 ft), lower log (450-2100 ft), and the fluid
test were estimated -and listed in Table (7-7). The log shows that the relatively conductive
(= 200 Q'm) Chattanooga Shale is‘ located at a depth of 260 feet to 320 feet and is
' sandwiched in between ;esistjve (= 2000 Q'm) formations. The upper log verifies the
assumption used for the x;xodeiing that a conductive layer exist between resistive formations.
Unfortunately, the electric log for the upper 50 feet was not received so that the electrical pro-

4

perties of the surface layers are unknown.
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The upper electric logs tend to agree with the resistive pipe modeling results for the for-
mation resistivities. The conductive pipe model produced resistivity values that are too small.
By reducing the pipe and/or fluid conductance (eith_er by modifying the geometrical or electri-
cal parameters), higher formation resistivities of the upper layers are needed in order to match
the field data. This results in the desired modification of the model so that a better fit to thé

data can be obtained.

7.5 Summary and Conclusion

The background noise at the site was very low. For most of the channels, the noise was
below or at the resolution of the voltmeter. The test showed noise levels of much less than
100 pV. In the resistive environment, approximately 3 to 5 Amps could be injected into the
ground with the power source and transmitter. _The signal amplitudes ranged from 0.5 to 170
WV/Amp with the largest signals occurring near the well. Most of the data had standard devi-
ations of less than the one percent of the signal amplitudes and were below the noise level of

100 uV/Amp.

The quality of repeat measurements varied depending on the depth and array line. For
the shallow depths, the maximum deviation of the repeat measurement was 1.57 percent with
most of the values being less than 0.2 percent. For the greater depths, the same array line
could only repeat to values of 5 percent or less, but exceeded 100 percent for several chan-
nels. Poor repeat measurements were due to two factors: an inconsistent waveform caused by
the highly resistive formations at depth and exerting the power source/transmitter to its load
limit, and the close spatial proximity of the remote current electrode affecting the fields such
that signals were not optimal. Several of the data sets showed high linear correlation between
the signal and the noise. The source of this éorxelation is not known at this time but is thought

to be caused by current leakage through the downhole cable.

The raw field data was influenced by several factors which caused trends, fluctuations,
and jumps in the appareht resistivities as well as large near-well amplitudes and negative
values. The trends, fluctuations, and jumps were most likely caused by topography and near-

/ .
surface lateral inhomogeneities. These effects can be minimized by applying a percent
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differencing technique (Asch and Morrison, 1989), but were not analyzed in this report. The
negative apparent resistivities are mainly the result of the proximity of the remote current elec-
trode. This effect can be simulated with a simple layered ear;h model and two current
sources. This negative values can be eliminated by creating an axial symmetric source such
as a downhole dipole. The anomalously large apparent resistivities may be due to near-well

effects such as the casing as simulated by models.

The modeling analysis indicates that the field data can be simulated with a simplified
"~ model consisting of a conductive casing, borehole fluid, and four or five layers. The values of
the outer channels can be'prdduced by a layered earth model. The large anomalous apparent
resistivities near the well are caused by casihg effect. These responses may also be due to
any near-well inhomogeneity that can produce equivalent effects. The pipe-layer models show
an interaction between the casing and the near-surface layers strongly exists. The highly con-
ductive pipe requires conductive near-surface layers to diffuse the anomalous currents quickly
and thus restricting their effects near the well. A similar effect can be obtained with more
resistive near-surface layers and pipe having a smaller conductance. Although it was not
shown, additional model simulaﬁons suggested t.hét borehole fluid in the uncased portion of

the well is needed to act as a conduit for the currents of the downhole electrodes.

The numerical injection simulations in Chapter V indicate that in a resistive environment
the monitoring of a conductive plume may be possible. Additionally, the metal casing or pipe
may accentuate the ability to detect the changes that occur during the injection. Improw)ed
modeling algorithms where n@n—symmeuic plumes are incorporated are needed to determine if

directions of the plume can be determined from surface measurements.

The numerical results must be cautiously interpreted since they are based on idealized
geometries and estimates of the depths and resistivities of the formations. Since the resistivity
method is a nonunique problem, there exist numerous models that can produce results that
corresponds to the data. ‘But, all these models will have similar conductance characteristics.
The results obtained in this analysis do give a conceptual understanding on the behavior of the

casing and formation interactions.
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Several recommendations are suggested to help improve the acquisition and quality of

the data for future experiments.

Move the remote current electrode away from the well at least five times the maximum

depth of the downhole electrode.
Use a larger power source and/or transmitter to inject more current (= 10 Amps) into the
ground.

Use a protected downhole current cable to guard againstv cuts, niches, and "balling-up"

during movement of the electrode.

Isolate and place all filters at the site of the potential electrodes and then line drive the sig-
nals to the acquisition van.

Use longer péfiods and stack more waveforms to increase signal-to-noise ratio.

Modify software to include additional in-field checks of the signal quality.

Determine the electrical properties of the near-surface layers, casing, and borehole fluid to
aid .and improve interpretations.

Use the steel éasing as a current source.

Place measurement dipoles orthogonal to the radial lines to reduce the effect of the casing.

This experiment has given some insight to the problems that can be encountered in a resistive

environment. To overcome these additional problems, new approaches and improvements of

field procedures and acquisition system were identified. From this experiment, it appears that

measurements can be acquired and interpreted in an environment with high resistivity.
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Age Formation Depth to Top (ft)
Mississippian Fort Payne Fm ' 53
New Providence Sh m
Maury Sh m
Devonian Chattanooga Sh * 264
Camden-Harriman Fms 308
Ross Fm
Birdsong Sh 454
Rockhouse Ls 483
Silurian : Decatur Ls 510
Brownsport Group
Lobelville Ls 557
BobLs 592
Beech River Ls 610
Wayne Group
Dixon Ls 662
Lego Ls 703
Waldron Sh 731
Laurel Ls 734
Osgood Ls 746
Brassfield Ls - 787
Ordovician Fernvale Ls 845
Hermitage Fm 879
Stone River Group
Carters Ls 1096
Lebanon Ls 1186
Ridley Ls 1305
Murfreesboro Ls 1456
Well Creek Fm 1734
Knox Group
Mascot Dolomite (upper) 2018
(middle) 2498 —— Oct 1989
(lower) 2824
Kingsport Fm 3117
Longview Fm 3419
Chepultepec Fm 3534

4200 — Aug 1990

Table 7-1: Gcologic/stratigraphic section obtained from core samples in the test well. '

* Tennessee division of Geology has adopted the age classification Mississippian and Devonian for the Chat-
tanooga Shale (Wilson and Stearn, 1968). ,
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Background Noise Test

Line 1 Line2 Line 3
Dipole }| Noiss STD | Noise STD | Noise STD
Channel | (V) V) | V) @V) | V) @V)
1 85 838 | -11.7 643 84 74.7
2 35 85 -1.5 137 0.8 8.0
3 39 9.8 05 119 2.7 17.8
4 0.0 0.0 -19 93 2.7 169
5 80 214 1.1 347 -2.8 224
6

7

8

9

51 120 -1.1 8.1 -0.7 10.6
92 148 0.2 6.5 21 9.5
-51.6 458 2.1 102 14 9.9
636 508 19 300 -0.1 27.6

10 3.7 157 -39 146 1.0 13.6
11 6.5 357 -39 331 2.7 293
12 69 291 3.0 325 44 258
13 28 162 -1.8 7.6 -2.9 6.8
14 0.9 63 2.1 58 -0.8 73
15 62 408 73 394 1.7 327
16 -1.8 131 43 15 -33 85

17 - 30 107 2.7 8.0 0.9 6.1

Table 7-2: Background noise levels and standard deviations at the test site for a sample size
of 800 points per channel.
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VI signals (mV/Amp)
File Channel Number
(feet-day) 1 2 3 4 5 6 7 8 9

0451-5w || -124.87 | <7136 | -39.74 | 26.58 | 6393 | 47.39 | 65.00 | -77.87 | 921
0453-5w || -119.78 | 6820 | -38.01 | 2557 | -61.69 | -45.60 | 6254 | 7641 | -7.09
0460-5w - - - - - - - - -
0483-5w - - - -] - - - - -
0500-4d - - - - - - - - -
0500-4d - - - - - - - g -
07004 || 4364 | 2545 | -1345 | 880 | -28.79 | -18.88 | -24.84 | 2258 | -9.69
1500-4d 0.0 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1500-5u || -44.75 | -32.62 | -2097 | -10.19 | -29.80 | -2031 | 2730 | -25.05 | -10.80
1700-5u || 4011 | -28.13 | -17.14 | -893 | 2894 | -19.22 | 2535 | 2328 | 9.65
19004d | 3646 | 2153 | -1084 | -6.65 | 27.85 | -17.26 | 2221 | 2067 | 8.14
1900-5d | -38.73 | 22.12 | -1047 | -6.47 | 2840 | -17.67 | 2241 | 2136 | 830
1900-5u | -38.15 | 2213 | -1124 | -6.80 | -28.08 | -17.80 | 2292 | 21.10 | 832

2100-5d -38.77 | -23.05 | -11.83 <134 | 2894 | -18.19 | 2349 | -21.84 -8.66
2100-5u -39.92 | 2339 | -12.06 -1.37 | 2899 | -18.60 | -24.09 | -22.05 -8.81

2300-5d -37.64 | 2223 | -1133 -6.80 | -2825 | -17.88 | -23.04 | -21.35 -838
2300-5u -38.62 | -22.56 | -11.47 -6.92 | -28.50 | -18.09 | -2334 | -21.57 853

V/ signals (mV/Amp) [ T-pp (Amp)

File Channel Number
(feet-day) 10 11 12 13 14 15 16 17 I1 2

04515w || 25.79 | -24.29 | 45.35 | -53.76 | -59.12 | -59.65 | -52.57 | 46.14 | 8.65 | 8.68
0453-5w || -24.62 | 2330 | -44.07 | -52.60 | -58.14 | -58.47 | -51.73' | 45.40 | 8.11 | 8.13
0460-5w -~ - -~ - - - -~ - -
0483-5w - - - - - - - - - -
0500-4d - - - - - - - - - -
0500-4d - - - - - - - - - -
0700-4d || 826 | -898 | -23.27 | -3337 | 40.09 | 3820 | -35.87 | -31.54 | 791 | 7.94
1500-4d 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 |00 |00
1500-5u || 9.8 | 996 | -25.87 | -37.40 | -45.08 | 4279 | 40.10 | 3533 | 7.76 | 1.74

1700-5u -8.20 9.12 | 2477 | 3641 | -4428 | 4182 | -3930 | -34.62 | 752 | 751

1900-4d -6.81 -7.83 | -22.99 | 3492 | -42.87 | 40.13 | -38.12 | -3333 | 8.29 | 832
1900-5d -1.05 -8.01 | -23.76 | -35.30 | -44.05 | 40.69 ) -3892 | -33.66 | 8.18 | 8.20
1900-5u -6.98 -8.04 | -2335 | -3540 | 4345 | 40.68 | -3851 | -33.82 | 8.14 | 8.15

2100-5d <132 -829 | -24.03 | -3540 | -44.01 | 4082 | -3899 | -33.73 | 6.85 | 6.86
2100-5u -743 -8.46 | -23.97 | -3590 | 4393 | 4122 | -38.96 | -34.19 | 6.64 | 6.65

2300-5d -1.06 -8.12 | -23.52 | -35.56 | -43.63 | -40.87 | -38.65 | -33.81 | 7.13 | 7.14
2300-5u -1.20 -823 | -23.66 | -35.72 } -43.78 | 41.03 | -38.80 | -3398 | 8.11 | 8.12

Table 7-3a: Line 1 field data for different current electrode depth levels. The top table has
channels 1-9 and bottom table has channels 10-17 and currents I1 and I2. The signals are in
the form of voltage per unit current and the currents are peak-to-peak values.
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V/I signals (mV/Amp)
File ' Channel Number
(feet-day) 1 2 3 4 | 5 6 7 8 9

0451-5w || -148.76 | 8030 | -45.68 | 4295 | -39.23 | -22.03 | -18.18 | -14.50 | -14.06
0453-5w }} -141.79 | -7638 | -4329 | 40.73 | -36.97 | -20.68 | -16.94 | -13.39 | -1293
0460-5w || -12498 | -67.09 | -3725 | -35.18 | -3139 | -17.32 | -1391 | -10.71 | -10.19
0483-5w -38.68 | -1930 -1.10 -6.88 -3.48 -0.17 1.40 297 3.75

0500-4d -22.02 | -10.43 -2.06 -2.18 0.76 225 341 4.59 536
0500-4d -21.99 | -1036 -2.13 221 0.74 224 341 4.59 534

0700-4d -48.16 | 24.63 | -11.66 | -10.89 -1.75 -2.82 -1.01 0.80 1.70

1500-4d -4137 | -20.86 955 -8.89 -5.67 -1.51 0.21 1.95 295
1500-5u -55.79 | -31.44 828 | -10.29 -1.12 -2.39 052 139 244
1700-5u -48.61 | -26.50 -8.05 -9.11 573 1 -145 038 2.26 337
1900-4d -38.15 | -18.80 -187 -137 -3.713 -0.08 1.70 3.53 471
1900-5d -39.23 | -19.36 793 -1.50 3.72 -0.08 1.72 3.62 474
1900-5u -3990 | -19.59 -8.27 -1.75 -4.03 -0.28 153 3.38 457

2100-5d -40.89 | -20.23 859 -8.09 430 -0.45 139 3.30 444
2100-5u -42.26 | -20.90 9.12 -8.55 4382 -0.76 1.10 3.00 4.18

2300-5d -39.69 | -19.51 -8.23 -1.73 -3.96 -0.22 1.59 3.45 4.66
2300-5u -40.47 | -1991 -8.51 -1.99 424 -0.39 1.44 331 450

V/I signals (mV/Amp) | I-pp (Amp)
File Channel Number
(feetday) || 10 11 12 13 14 15 16 17 njn

0451-5w || -11.93 | 9.70 | -745 | -559 | -431 | -3.11 | -2.27 | -0.74 | 8.66 | 8.68
0453-5w || -1094 | -8.82 | -6.70 | 495 | -3.64 | -243 | -1.67 | -025 | 811 | 8.13
0460-5w -850 | -6.69 | 4.88 | -339 [ -2.05 | -0.86 | -0.33 0.77 | 8.12 | 8.15
0483-5w 402 | 420 | 453 | 4.64 | 623 7.38 6.82 630 | 8.11 | 813

0500-44 539 |1 536 | 541 | 536 | 6.8l 7.89 122 659 | 891 | 8.93
0500-4d 539 | 535 | 541 535 | 6.81 7.89 122 6.59 | 891 | 894

0700-4d 236 | 3.03 | 3.78 | 427 | 6.21 7.89 7.65 7.83 | 793 | 7.96
1500-4d 356 | 419 | 490 | 533 | 7.48 9.40 9.13 938 | 2.10 | 2.10
1500-5u 319 | 393 | 478 | 531 7.60 9.65 9.41 973 | 756 | 154
1700-5u 406 | 473 | 552 | 599 | 838 | 1052 | 10.22 | 1049 | 7.39 | 736
1900-4d 531 | 589 | 662 699 | 9.57 | 11.79 | 11.49 | 11.67 | 829 | 832
1900-5d 544 | 594 | 683 | 7.05 | 9.77 | 1191 | 11.78 | 11.82 | 8.15 | 8.17
1900-5u 517 | 5.78 651 690 | 943 | 11.69 | 1131 | 11.55 | 8.27 | 8.28
2100-5d 514 | 570 | 657 | 682 ] 952 | 11.62 | 11.54 | 1159 | 6.62 | 6.63
2100-5u 482 | 547 | 624 | 667 | 9.19 | 11.44 | 11.09 | 11.36 | 6.42 | 6.43

2300-5d 527 | 588 | 666 | 696 | 9.60 | 11.78 | 11.57 | 11.75 | 7.31 | 733
2300-5u 512 | 574 | 650 | 689 | 945 ] 11.72 | 11.36 | 11.60 | 8.00 | 8.01

Table 7-3b: Line 2 field data for different current electrode depth levels. The top table has
channels 1-9 and bottom table has channels 10-17 and currents 11 and I12. The signals are in
the form of voltage per unit current and the currents are peak-to-peak values.

/
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V/1 signals (mV/Amp)
File Channel Number
(feet-day) 1 2 3 4 5 6 7 8 9
0451-5w I -16059 | -30.93 | -121.66 | -124.54 | 99.23 | -127.41 | -117.90 | -99.81 | -107.58
0453-5w || -154.40 | -29.07 | -119.12 | -121.66 | -96.65 | -124.54 | -11536 | -97.52 | -105.11

0460-5w 0.0 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0483-5w 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0500-4d 4296 097 -58.34 -56.10 | -46.09 -61.37 -64.89 | -54.05 -58.53
050044 0.0 0.0 0.0 0.0 0.0 0.0 00 }° 00 0.0

0700-4d -64.64 -4.68 -71.02 -69.14 | -5591 -T131 -73.45 | -61.68 -66.63
150044 -58.74 -2.28 -70.28 -67.81 | -54.06 -75.16 -71.68 | -59.95 -64.73
1500-5u -71.28 -6.81 -71851 -76.62 | -61.76 -89.28 -8432 | -70.01 -71551
1700-5u -66.07 -525 -75.82 -74.11 | -59.69 -85.98 -81.46 | -671.70 -7298
190044 -5736 -0.11 -74.64 -11.02 | 5730 -80.61 -77.07 | -64.47 -69.57

1900-5d -60.64 -0.12 -75.51 -72.42 | -5837 -81.80 -78.43 | -6538 -70.16
1900-5u -61.69 -3.01 -74.89 -72.96 | -58.70 -82.28 -78.65 | -65.63 -70.77

2100-5d -62.63 -1.60 -75.63 -713.41 | -59.02 -82.30 -71894 | -65.77 -70.60
2100-5u -63.13 337} -75.54 -73.93 | -59.27 -82.713 -79.06 | -65.91 -71.04

2300-5d -61.44 -1.99 -74.92 -72.90 | -58.66 -82.00 -78.57 | -65.36 -7031
2300-5u -62.05 -2.53 -74.69 -73.01 | -58.83 -82.18 -718.73 | -65.55 -70.60

_ V/1 signals (mV/Amp) | I-pp (Amp)
File : Channel Number

(feet-day) 10 1mn | 12 13 14 15 16 17 Il 2
0451-5w || -104.17 | -92.36 | -84.35 | -69.37 | -68.16 | -71.17 | -56.98 | -70.65 | 8.67 | 8.69
0453-5w || -101.75 [ 90.52 | -82.62 | -68.15 | -67.10 | -70.10 | -56.23 | -69.82 | 8.12 | 8.15
0460-5w - - - - - - - -- - -
0483-5w - - - -- - - - - - -
0500-4d || -5695 | -51.41 | 4839 | -43.00 | 44.03 | -46.82 | -38.96 | -49.89 | 8.94 | 897
0500-4d - - - - - - - - - -

0700-4d -64.66 | -57.85 | -53.82 | -46.64 | -47.10 | -49.77 | 4098 | -51.91 | 7.40 | 743

1500-4d -62.69 | -56.70 { -52.45 | -45.76 | -4634 | 4895 | 4047 | -51.32 | 2.10 | 2.10
1500-5u -7322 | -65.28 | -60.89 | -52.90 | -5357 | -56.26 | 4633 | -58.82 | 7.70 | 7.68
1700-5u -71.03 | -63.26 | -59.08 | -51.64 | -5245 | -55.15 | 4548 | -57.91 | 7.39 | 7.38
1900-4d -67.28 | -61.14 | -56.53 | -49.50 | -5035 | -53.18 | 44.09 | -56.09 | 831 | 8.34
1900-5d -68.00 | -61.67 | -57.21 | -49.80 | -51.11 | -53.71 | 44.48 | -56.74 | 8.15 | 8.17
1900-5u -68.70 | -61.37 | -57.50 { -50.23 | -5134 | -53.95 | 44.66 | -56.93 | 8.48 | 8.50
2100-5d -68.53 | -61.92 | -57.60 | -50.01 | -51.34 | -53.91 | -44.63 | -56.94 | 6.82 | 6.82
2100-5u -68.97 | -61.73 | -57.88 | -50.28 | -51.50 | -54.13 | -44.76 | -57.05 { 6.59 | 6.60

2300-5d -68.17 | -61.49 | -57.40 | -49.81 | 5125 | -53.86 | -44.48 | -56.80 | 7.16 | 7.17
2300-5u -68.48 | -61.56 | -57.61 | -49.95 | -51.36 | -53.97 | 4455 | -56.90 | 7.97 | 7.97

Table 7-3c: Line 3 field data for different current electrode depth levels. The top table has
channels 1-9 and bottom table has channels 10-17 and currents I1 and I2. The signals are in

the form of voltage per unit current and the currents are peak-to-peak values.
: ’
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Percent Difference: 2(V 1~V )/(V+V)* 100%

2100-5d

File 1 500-4d1 | 1500-4d | 1900-4d | 1900-4d | 1900-5d 2300-5d
File 2 500-4d2 | 1500-5u | 1900-5d | 1900-5u { 1900-5u | 2100-5u | 2300-5u
Channel ’
1 -- - -6.03 -4.51 1.52 292 -2.58
2 - - -2.69 -2.74 -0.05 -1.48 -148
3 -- - 345 -3.64 -7.08 -1.85 -1.26
4 - - 2.83 -2.20 -5.04 042 -1.71
5 -- - -197 -0.83 1.14 -0.15 -0.90
6 - - -2.34 -3.03 -0.69 222 -1.17
7 - - -0.89 -3.14 224 -2.51 -1.29
8 - - -3.26 -2.07 1.20 -0.96 -1.03
9 -- - -1.99 -2.18 -0.19 -1.66 -1.70
10 - - -3.38 -2.47 091 -1.49 -1.92
11 -- - 225 -2.70 -045 -2.07 -1.34
12 - - -3.26 -1.53 1.74 028 .56
13 -- - -1.10 -1.38 -0.28 -1.40 0.47
14 -- - 272 -1.36 137 0.18 0.33
15 - - -1.40 -1.37 0.03 -0.97 0.41
16 - - -2.07 -1.01 1.06 0.06 0.37
17 -- - -0.96 -1.45 -0.49 -1.34 0.49

Table 7-4a: Percent difference of the apparent resistivities for line 1 at various current elec-
trode depth levels.
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Percent Difference: 2(V -V )/(V+V)* 100%
File 1 | 500-4d1 | 1500-4d | 19004d | 19004d | 1900-5d | 2100-5d | 2300-5d
File 2 || 500-4d2 | 1500-5u | 1900-5d | 1900-5u | 1900-5u | 2100-5a | 2300-5u
Channel
1 009 | -2969 | -2.80 451 -1.71 330 -193
2 0.33 4047 | -290 409 -1.19 3.28 2.02
3 -1.57 1420 | -0.76 498 422 | 589 -3.36
4 -0.58 1461 | -L76 505 -3.29 5.51 326
5 -1.16 | -22.61 021 787 -8.08 | -11.37 6.83
6 0.81 4533 571 | -111.11 | -11500 | -51.33 | -5422
7 019 | 21593 | -162 10.21 11.82 | 23.40 10.30
8 0.13 3336 | -2.60 426 6.85 9.47 422
9 027 1875 | -0.63 2.96 3.59 5.98 338
10 - 008 1111 | 241 2.72 5.13 6.36 2.79
11 0.05 638 | -0.78 2.01 2.79 4.14 227
12 0.02 256 | -3.17 158 | . 476 5.1 245
13 0.15 031 | -0.88 1.32 2.20 226 0.99
14 0.06 155 | -2.09 143 3.52 3.58 1.58
15 0.05 264 | -1.03 . 0.85 1.87 1.63 047
16 0.06 296 | 247 | 155 4.02 3.91 1.83
17 0.06 368 | -132 105 | 237 2.02 123

Table 7-4b: Percent difference of the apparent resistivities for line 2 at various current elec-
trode depth levels.
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Percent Difference: 2(V -V )/(V+V)* 100%
File 1 | 5004d1 | 15004d | 19004d | 19004d | 1900-5d | 2100-5d | 2300-5d
File 2 | 500-4d2 { 1500-5u | 1900-5d | 1900-5u | 1900-5u | 2100-5u | 2300-5u
Channel
1 - 1929 | -557 728 | 172 | 079 099
2 - 99.82 769 | -18584 | -184.75 | -71.11 2372
3 - -11.08 -1.15 0.33 0.82 0.12 0.31
4 - 21221 -1.96 270 -0.75 071-] -015
5 - -13.31 -185 | -240 -0.55 043 -0.28
6 - -17.18 -147 -2.05 -0.58 0.52 0.22
7 - -16.21 -175 | 203 -0.28 0.15 20.20
8 - -15.49 -140 . -1.79 -0.39 .20 -0.29
9 - -15.38 -0.85 -1.72 -0.86 0.62 041
10 - -15.49 -1.06 -2.10 -1.04 0.64 045
11 -- -14.07 -0.86 -0.38 0.49 0.32 0.11
12 - -14.89 -121 -1.71 -0.50 -0.48 037
13 -- -14.48 -0.60 -1.46 -0.86 20.53 027
14 - -14.50 -1.50 -1.96 045 0.30 0.22
15 - -13.92 -0.99 -145 -0.45 041 0.21
16 -- -13.51 -0.90 -1.30 -0.40 -0.30 -0.15
17 - -13.62 -1.16 -1.49 -0.33 0.19 -0.18

Table 7-4c: Percent difference of the apparent resistivities for line 3 at various current elec-
trode depth levels.
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Apparent Resistivity (Q-m)

File Channel Number .
(feet-day) 1 2 3 4 5 6 7 8
0451-5w 6116 2287 1011 596 1352 989 1384 1730
0453-5w 5941 2213 978 579 1317 961 1343 1710
0460-5w - - - - - - - -
0483-5w - - - - - - - -
0500-44 - - - - - - - -
0500-44d - - - - - - - -
0700-44 7208 2778 1130 619 1797 1088 1364 1211
1500-44 - :

1500-5u | 37780 | 25174 | 15026 6874 19155 12579 16457 14835
1700-5u || 39729 | 27933 | 17191 9115 30290 20788 28555 27525

1900-4d || 40486 | 26044 | 14504 | 10022 48348 35519 56310 68342
1900-5d || 43007 | 26757 | 14009 9751 49302 36363 | . 56817 70623
1800-5u || 42363 | 26770 | 15039 | 10248 48747 36630 58110 69763

2100-5d || 46762 | 32541 | 20286 | 16135 89080 93563 | 361811 | -350579
2100-5u || 48149 | 33021 | 20680 | 16201 89234 95672 | 371053 | -353950

2300-5d || 48237 | 35428 | 24066 | 21803 | 185604 | -2688630 | -141245.| -67623
2300-5u || 49493 | 35954 | 24364 | 22188 | 187247 | -2720208 | -143084 -68319

Apparent Resistivity (Q-m)

File Channel Number
(feetday) [ 9 10 11 | 12 13 14 15 16 17
0451-5w 158 634 613 | 1481 | 1730 | 1902 | 1964 | 1770 | 1537
0453-5w 122 608 591 | 1445 | 1698 | 1876 | 1931 | 1746 | 1516
0460-5w - R - - - - - - -
0483-5w -- - - - - - - - -
0500-44d - - - - - - - - -
0500-4d - - - - - - - - -

0700-4d 320 362 380 | 1258 | 1584 | 1824 | 1793 | 1613 | 1357

150044 -- -- - - -- --
1500-5u || 1094 | 1110 | 1056 | 3806 | 3481 | 3763 | 4000 .| 3092 | 2465
1700-5u || 1099 | 1103 | 1065 | 4099 | 3625 | 3928 | 4220 | 3209 | 2544
190043 }} 1009 989 980 | 4150 | 3646 | 3971 | 4280 | 3243 | 2542
1900-5d | 1029 | 1024 | 1003 | 4289 | 3686 | 4081 | 4340 | 3311 | 2567
1900-5u || 1031 | 1014 | 1007 | 4215 | 3696 | 4025 | 4339 | 3276 | 2580
2100-5d || 1141 { 1124 | 1092 | 4626 | 3826 | 4207 | 4535 | 3418 | 2644
2100-5u || 1161 | 1141 | 1114 | 4615 | 3880 | 4199 | 4580 | 3415 | 2680
2300-5d ) 1155 | 1130 | 1110 | 4752 | 3941 | 4267 | 4680 | 3464 | 2704
2300-5u | 1176 | 1152 | 1125 | 4780 | 3959 | 4282 | 4699 | 3477 | 2718

Table 7-5a: Apparent resistivities of line 1. for channels 1-8 (top) and channels 9-17 (bot-
tom). o
/
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Apparent Resistivity (QQ-m)
Hle : Channel Number
(feet-day) ) 2 3 4 5 6 7 8

0451-5w 12045 3385 | 1409 | 1123 946 | 517 | 431 | 357
0453-5w 11721 3272 | 1355 | 1078 902 | 491 | 406 | 332
0460-5Sw 11117 3041 | 1224 973 796 | 426 | 344 | 2713
0483-5w 4415 1053 274 220 100 5 -37 -82

0500-4d 3058 653 89 - -23 67 | -100 { -137
0500-4d 3054 649 93 78 22 -66 | -100 | -137

0700-4d || -23938 | 14685 | 2336 | 1388 760 | 234 75 -55
1500-44 -6010 { -3371 | -1728 | -1820 | -1326 | -407 66 | 734
1500-5u -8106 | -5081 | -1499 | -2107 | -1664 | -645 | -163 | 523
1700-5u -6888 | -4091 | -1359 | -1691 | -1174 | -329 97 | 646
1900-4d -5323 | -2824 | -1275 | -1292 -709 -16 | 384 | 873
1900-5d -5474 | -2908 | -1285 | -1315 -707 -16 | 389 | 896
1900-5u -5567 | -2942 | -1340 | -1358 -766 -57 | 346 | 836

2100-5d -5649 | -2985 | -1356 | -1368 -780 87 | 292 | 749
2100-5u -5838 | -3084 | -1439 | .-1446 -874 | -147 | 231 681

2300-5d -5447 | -2845 | -1276 | -1276 -696 40 § 319 | 740
2300-5u -5554 | -2903 | -1320 | -1319 -746 <72 1 289 | 710

Apparent Resistivity (Q-m)

File Channel Number

(feet-day) 9 10 11 12 13 14 15 16 17

0451-5w 365 331 290 241 196 165 130 103 37
0453-5w 338 305 265 218 175 140 102 76 12
0460-5w 273 243 205 162 122 80 37 15 -38
0483-5w -108 | -123 | -137 | -159 | -175 =255 -328 -328 -329
0500-4d -166 | -175 | -184 | -199 | -212 -290 -363 -360 -355
0500-4d -165 | -175 | -184 | -199 | -211 -290 -363 360 -355
0700-4d -113 | -156 | 200 | -254 | -294 -442 -585 -592 -636

1500-4d || 1349 | 2036 | 3101 | 4980 | 8182 | 21396 | 119161 | -55975 | -24802
1500-5u 1116 | 1822 | 2910 | 4857 | B156 | 21727 | 122317 { -57679 | -25735
1700-5u | 1090 | 1499 | 2012 | 2735 | 3504 5883 9055 11097 14968
1900-4d i 1280 | 1592 { 1955 | 2444 ;| 2884 4437 6180 6856 | 7990
1900-5d || 1288 | 1631 | 1972 | 2522 | 2909 4530 6243 7029 8093
1900-5u || 1242 | 1550 | 1919 ; 2403 | 2847 4372 6128 6749 7908
2100-5d || 1089 | 1366 | 1645 | 2063 | 2336 3567 4714 5215 5779
2100-5u 1025 | 1281 | 1578 | 1960 | 2285 3443 4700 5011 5664
2300-5d 1070 | 1298 | 1554 | 1891 | 2127 3161 4186 4445 4887
2300-5u 1034 | 1261 | 1517 | 1846 | 2105 3112 4165 4364 4825

Table 7-Sb: Apparent resistivities of line 2 for channels 1-8 (top) and channels 9-17 (bot-

tom).
/
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Apparent Resistivity (£2-m)

File Channel Number
(feet-day) 1 2 3 4 5 6 7 8
0451-5w || 5659 | 776 | 2500 | 2278 | 1707 | 2141 | 1986 | 1714
0453-5w || 5490 | 737 | 2470 | 2244 | 1676 | 2108 | 1955 | 1684
0460-5w - - - - - - - .
0483-5w - - - - . - - .
0500-4d 1849 | 29 | 1485 | 1257 956 | 1342 | 1273 | 1063
0500-4d - - < - - - - C .
070044 |l 4611 { 263 | 3342 | 2847 | 2082 | 2670 | 2399 | 1934
1500-4d | 6422 | 229 | 6545 | 5868 | 4365 | 5683 | 5093 | 4016
1500-5u || 7792 | 686 | 7312 | 6631 | 4987 | 6751 | 5991 | 4690

1700-5u j| 7364 ] 544 | 7333 | 6705 | 5065 | 6859 | 6124 | 4806

1900-4d || 6471 12 | 7398 | 6615 | 5024 | 6664 | 6017 | 4760
1900-5d || 6842 13 | 7484 | 6745 | 5118 | 6762 | 6123 | 4828
1900-5u || 6960 | 318 | 7423 | 6796 | 5147 | 6802 | 6140 | 4846

2100-5d |l 7123 | 171 § 7620 | 6973 | 5291 | 6972 | 6325 | 4991
2100-5u |} 7180 | 361 | 7611 | 7023 | 5314 | 7008 | 6335 | 5001

2300-5d jf 7027 | 215 | 7635 | 7020 | 5342 | 7067 | 6413 | 5057
2300-5u || 7097 | 273 | 7611 | 7031 | 5357 | 7082 | 6426 | 5072

Apparent Resistivity (2-m)

File Channel Number
(feet-day) 9 10 11 12 13 14 15 | 16 17
0451-5w 1904 | 1912 | 1764 | 1678 | 1436 | 1466 | 1587 | 1314 | 1683
0453-5w 1869 | 1876 | 1736 | 1649 | 1415 | 1447 | 1566 | 1299 | 1666
0460-5w - - - - - - - - -
0483-5w - - - - - - - - -
050044 1168 | 1161 | 1077 | 1043 955 | 1007 | 1101 942 | 1238
0500-4d - - - - - - - - -

0700-4d || 2030 | 1932 | 1706 | 1575 | 1359 | 1370 | 1449 | 1197 | 1523
150044 || 4100 | 3765 | 3239 | 2857 | 2383 | 2316 | 2354 | 1881 | 2315
1500-5u |j 4783 | 4398 | 3728 | 3316 | 2755 | 2677 | 2706 | 2153 | 2653
1700-5u |f 4903 | 4526 | 3832 | 3410 | 2847 | 2770 | 2798 | 2226 | 2746
1900-4d || 4867 | 4466 | 3858 | 3398 | 2841 | 2766 | 2805 | 2241 | 2759
1900-5d || 4908 | 4514 | 3892 | 3439 | 2858 | 2807 | 2832 | 2260 | 2791
1900-5u || 4951 | 4560 | 3873 | 3456 | 2882 | 2820 | 2845 | 2270 | 2800

2100-5d |{ 5080 ] 4682 | 4022 | 3564 | 2954 | 2902 | 2924 | 2332 | 2878
2100-5u || 5111 | 4712 | 4010 | 3582 | 2970 | 2911 | 2936 | 2338 | 2884
2300-5d |} 5162 | 4754 | 4079 | 3628 | 3005 } 2958 | 2983 | 2372 | 2930
2300-5u | 5183 | 4776 | 4084 | 3641 | 3013 | 2964 | 2989 | 2376 | 2935

Table 7-S5c: Apparent resistivities of line 3 for channels 1-8 (top) and channels 9-17 (bot-

tom).
: ’
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Apparent Resistivity (Q-m) 0451-5w.dat

File Channel

(ft-day) 1 2 3 4 5 6 7 8
0453-5w || 17467 | 7289 | 3328 (| 1839 | 4193 | 3645 | 5621 | 3859
0460-5w - - - - - - - -
0483-5w - - - - - - - -
0500-44 - - - - - - - -
0700-4d 5653 | 2082 958 584 | 1123 933 | 1396 | 2098
1500-4d - - - - - ’

1500-5u 4165 | 1295 494 379 746 | 585 832 | 1219
1700-5u 4367 | 1431 589 404 754 | 599 860 | 1236

1900-4d4 4529 | 1640 749 453 772 | 635 918 | 1279
1900-5d 4413 | 1621 758 457 760 | 626 914 | 1264
1900-5u 4443 | 1620 738 450 767 624 903 | 1270

2100-5d 4395 | 1584 720 435 744 612 885 | 1243
2100-5u 4336 | 1573 714 435 743 603 872 | 1238
2300-5d 4442 | 1606 31 446 756 615 890 | 1247
2300-5u 4392 | 1596 727 443 751 611 884 | 1242

Apparent Resistivity (Q-m) 0451-5w.dat

File _ Channel
(ft-day) 9 10 11 12 13 14 15 16 17
0453-5w || 5586 | 5096 | 4987 | 8796 | 10018 | 9454 | 11734 | 10472 | 10371
0460-5w - - - - - - - - -
0483-5w - - -- - - - - - -
0500-44d - -- - - - - - - -
0700-4d -17 979 957 | 1820 2038 | 2090 2366 2240 2156
1500-44 - - - - - - - - --
1500-5u 32 512 474 817 804 734 856 745 689
1700-5u -8 528 488 836 825 748 871 760 702

1900-4d 21 561 520 891 876 800 929 805 757
1900-5d 18 554 514 860 858 742 902 760 738
1900-5u 17 556 513 877 854 771 903 783 728

2100-5d 10 540 499 838 841 732 880 742 719
2100-5u 8 537 494 840 818 736 862 743 692
2300-5d 16 543 500 849 825 742 867 750 1 704
2300-5u 13 539 496 844 818 735 860 742 694

Table 7-6a: Apparent resistivities of line 1 for channels 1-8 (top) and channels 9-17 (bottom)
using the dipole-dipole configuration where the reference electrode is 1 foot below the end of
the casing and the roving electrode location varies.
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Apparent Resistivity (Q2-m) 0451-5w.dat

File Channel
(ft-day) 1 2 3 4 5 6 7 8
0453-5w )| 23922 | 9022 | 4608 | 4043 | 4234 | 2745 | 2836 | 2923
0460-5w || 26827 9964 | 5351 | 4649 | 4822 | 3134 | 3196 | 3262
0483-Sw || 30834 | 11393 | 5982 | 5249 | 5286 | 3467 | 3460 | 3530
0500-4d || 24609 | 9018 | 4655 | 4062 | 4026 | 2608 | 2570 | 2585
0700-4d 7004 | 2525 | 1240 | 1054 | 1006 628 | 597 580

1500-4d 5583 1987 952 789 733 443 | 401 | 379
1500-5u 4834 1633 985 757 702 424 | 389 366
1700-5u 5160 1781 981 775 72 438 402 379
190044 5667 2024 980 809 759 462 | 426 403
1900-5d 5612 | 2006 978 806 759 463 427 405
1900-5u 5511 1998 969 800 753 458 423 400
2100-5d 5506 1969 957 789 743 452 | 417 395
2100-5u 5436 1947 943 778 732 445 411 388
2300-5d 5554 1988 963 794 748 455 419 396
2300-5u 5514 1975 956 789 742 451 416 393

Apparent Resistivity (Q2-m) 0451-5w.dat

File Channel

(ft-day) 9 10 11 12 13 14 15 16 17

0453-5w || 3500 | 3663 | 3874 | 3932 | 4073 | 5042 | 6109 | 6367 | 6180
0460-Sw || 3912 | 4131 | 4319 | 4395 | 4532 | 5554 | 6597 | 6805 | 6288
0483-5w || 4186 | 4415 | 4557 | 4667 | 4748 | 5815 | 6871 | 7042 | 6443
0500-4d j} 3043 | 3184 | 3265 | 3304 | 3337 | 4019 | 4709 | 4799 | 4367
070044 665 680 690 697 704 866 | 1046 | 1089 | 1085
1500-4d 417 409 398 386 375 445 520 522 510
1500-5u 405 399 391 383 374 449 530 534 528

1700-5u || 418 | 412 | 402 | 393 | 384 | 460 | 542 | 544 | 537
19004d || 444 | 437 | 427} 418 ] 407 | 490 ] 575 | 581 | 573
1900-5d || 445 | 440 | 428 | 424 | 409.| 497 | 580 | 593 | 580
1900-5u || 441 | 433 | 423 | 415 | 404 | 485 | 5711 | 573 | 567
2100-5d || 434 | 428 | 416 | 410 { 395 | 480 | 557 | 570 { 555
210050 || 428 | 420 | 410 | 401 | 390 | 468 | 550 | 551 | 545
2300-5d || 436 | 428 | 417 | 409 | 395 | 476 | 555 | 562 | 552
2300-5u || 432 | 424 | 414 | 404 | 393 | 471 | 553 | 553 | 546

Table 7-6b: Apparent resistivities of line 2 for channels 1-8 (top) and channels 9-17 (bottom)
using the dipole-dipole configuration where the reference electrode is 1 foot below the end of
the casing and the roving electrode location varies.
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Apparent Resistivity (Q-m) 0451-5w.dat

Fle Channel
(fi-day) 1 2 3 4 5 6 7 8
0453-5w || 21264 | 4307 | 4906 | 5256 | 4836 | 5851 | 5824 | 6052
0460-5w - - - - - - - -
0483-5w - -

0500-4d || 22841 | 4005 | 6759 | 6820 | 5351 | 6450 | 6310 | 6197
0700-4d 6681 | 1191 | 1846 | 1822 | 1385 | 1639 | 1545 | 1447
1500-4d 5295 958 | 1354 | 1315 987 | 1129 | 1020 | 920
1500-5u 4643 806 | 1137 | 1110 819 823 741 687
1700-5u 4870 850 | 1196 | 1155 853 881 70 | 727
1900-4d 5289 | 1014 | 1218 | 1217 897 { 987 876 790
1900-54 5121 | 1014 | 1196 | 1185 874 | 961 847 770
1900-5u 5067 919 | 1212 | 1173 867 951 842 764
2100-5d4 5001 961 | 1188 | 1158 856 945 830 755
2100-5u 4975 903 | 1190 | 1146 | -850 | 936 828 752
2300-5d 5049 946 | 1202 | 1165 860 | 947 834 760
2300-5u 5018 929 | 1208 | 1163 856 | 944 831 755

Apparent Resistivity (Q-m) 0451-5w.dat

File ' Channel
(ft-day) 9 10 11 12 13 14 15 16 17
0453-5w || 7652 | 8914 | 8107 | 9120 | 7645 | 7974 9605 | 8003 | 10440
0460-5w - - - - - - - - .-
0483-5w - | - - -- - - - - -
0500-4d || 7693 | 8679 | 8882 | 9241 | 8040 | 8723 | 10423 | 9113 | 12365
0700-4d || 1729 | 1881 | 1871 | 1897 | 1625 | 1736 2035 | 1756 2371
1500-4d || 1052 | 1096 | 1023 999 811 824 923 756 975
1500-5u 787 818 777 735 565 550 619 487 597

1700-5u 831 854 811 766 587 570 637 501 609

1900-4d 900 936 855 827 643 629 694 544 672
1900-5d 886 917 | 840 806 633 602 674 527 642
1900-5u 871 899 848 798 619 594 665 520 633
2100-5d 868 894 823 784 616 583 653 510 617
2100-5u 857 883 828 776 608 578 645 504 612
2300-5d 869 896 827 782 616 579 645 | 507 612
2300-5u 862 889 826 | 776 611 575 641 505 608

Table ;I-6c: Apparent resistivities of line 3 for channels 1-8 (top) and channels 9-17 (bottom)
using the dipole-dipole configuration where the reference electrode is 1 foot below the end of
the casing and the roving electrode location varies.



305

Formation Depth to Top (ft) Resistivity (2-m)
l7
Fort Payne Fm 53 : - 50'
New Providence Sh 7?7 30,000 Z
Maury Sh m 2000 é
Chattanooga Sh 264 200 7z
Camden-Harriman Fms 308 000 é
Ross Fm . > 400'
Bil'dsong Sh 454 = < 450!
Rockhouse Ls - 483 40 %
| 400 N
Decatur Ls 510 . §
Brownsport Group 30 N
Lobelville Ls 557 §
BobLs 592 N
Beech River Ls 610 40 §
Wayne Group _ N
Dixon Ls ' 662 100 §
Lego Ls 703 - N
Waldron Sh 731
Laurel Ls 734 200 §
Osgood Ls 746
Brassfield Ls 787 1000 Q
200
Fernvale Ls 845 : §
Hermitage Fm 879 150 N
Stone River Group ' §
Carters Ls 1096 10.000 N
Lebanon Ls 1186 2 N
Ridley Ls 1305 20,000 §
Murfreesboro Ls 1456 ’ N
Well Creek Fm 1734 30900 §
Knox Group ' ’ N
Mascot Dolomite (upper) 2018 N
(middle) 2498 o
(lower) 2824 > 10,000
Kingsport Fm 3117
Longview Fm , 3419 35,000
Chepultepec Fm 3534
4200

Resistivity values cstim_aied from electric logs (received October 1990)
Resistivity values estimated from electric logs (received October 1989)
Resistivity values obtained from fluid samples (received October 1990)

Table 7-7: Formation resistivities obtained from electric logs and borehple fluid samples.
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Figure 7-1: Map and array configuration at Dupont’s Hemby Branch test well near Waverly,
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Figure 7-4: Scatter plots of the signal (V/I) vs. standard deviation (STD) of the field data for
line 1; shallow (top) and deep (bottom). '
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Figure 7-5: Scatter plots of the signal (V/I) vs. standard deviation (STD) of the field data for

line 2; shallow (top) and dee_:p (bottom).
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Figure 7-6: Scatter plots of the signal (V/I) vs. standard deviation (STD) of the field data for
line 3; shallow (top) and deep (bottom).
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Figure 7-7: Apparent resistivities calculated from the field data for line 1;.,shallow (top) and
deep (bottom).
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Figure 7-8: Apparent resistivities calculated from the field data for line 2;,shallow (top) and

deep (bottom).
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Figure 7-10: Ilustration of the dipole-dipole configuration (top) used to calGulate the apparent
resistivities (bottom) for line 2.
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Figure 7-11: Four layer model (top) used to calculate the apparent resistivities (bottom).
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Figure 7-12: Five layer model (top) used to calculate the apparent resistivities (bottom).
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Figure 7-13: Pipe (resistive) and five layer model (top) used to calculate the apparent resistivi-
ties (bottom).
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Figure 7-14: Pipe (conductive) and five layer model (top) used to calculate the apparent resis-
tivities (bottom).



CHAPTER VIII

DiISCUSSION

The resistivity method in cased boreholes with downhole cun'ent‘sources has been
analyzed using th_e integral equation (IE) technique. With the IE method, the casing and other
bodies are represented as inhomogeneities in a background medium. For coaxial sources,
there is axial symmetry ahd the casing can be characterized by ring segments. In this case,
surface potential and E-field volume integral equation methods were used to solve the prob-
lem. A solution for the more complicated situation involving off-axis current sources and
three-dimensional (3-D) bodies was formulated using the surface potential method. This solu-
tion which uses the 3-D Green’s function was presented in both Cartesian and cylindrical

coordinate systems.

Self-consistency and comparison checks showed that the theoretical formulation and
numerical algorithms are valid and accurate. Numerical checks revealed that the current in the
casing can be approximated by its vertical component except near the source and that the axial

symmetry approximation for the casing is valid even for the 3-D problem.

During the analysis, it was found that the E-field volume IE method was an effective
and efficient technique to simulate the response of the casing in a homogeneous medium.
However, once other objects, such as layers, were included in the model, the surface potential
IE approach was computationally better. Although more segments are needed to describe the
casing for the surface po_tential IE approach, the number of unknowns to solve in the matrix
equation is smaller than that for the E-field volume IE method. For the former, the surface of '
a body is discretized and the unknowns are scalar, v;'hereas for the latter tfle volume is discre-

tized and the unknowns are vectors quantities.

320
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Several configurations of the casing and current source were used to analyze the effects
of the casing. In general, the field quantities are dependent on four characteristic factors.
These are the conduction length, current source depth, casing depth, and casing length. The
conduction lengﬁl is the most important factor that influences the casing response in the
medium. It relates the casing conductance to the conductivity of the host medium and is an

indicator of the ability of the pipe to carry the current along its length.

When the source is located within the casing, the fields and spatial variables can be nor-
malized by the éasing length, reducing the characteristic parameters to 'three ratios: the con-
duction length © casing length (conduction ratio), the source position to casing length, and the -
casing depth to casing length. For a conduction ratio that is greater than two, the fields from
the casing are similar to those produced by a line source. In a resisti&e medium, the line
source approximation is valid for all field positions; the deviation is less than 5% at all points
in the medium. In a conductive environment, surface measurements cannot be closer than one

casing length but can be as close as 1/2 casing length for cross-hole surveys.

When the source is located beneath the ;:asing, the distortion of the fields also depends
on the casing-source separation distance. For a current source near the casing (< 100 casing
diameters), the casing greatly distorts the fields when compared to those produced by a pole
source. When the source is greater than 100 casing diaméters from the pipe, only the region
near the casiﬁg is affected. For 5% or less distortion, surface surveys must not be made
closer than 1/2 the casing length. Measurements can be made as close as 1/6 pipe lengths for

crosshole surveys.

The numerical results of Chapter VI show that resistivity measurements through metal
casing are feasible provided one can distinguish small voltages.l The discontinuity of the E-
fields corresponds to the layer boundary and the rate of change of the E-field is inversely pro-

portional to the resistivity of the adjacent formation.?

1 The E-fields, which are proportional to I/S,, are in the order of 10's 1V/m per Ampere.

2 For the formation resistivity range of 1 to 1000 Q'm, the rates of change of the E-fields are approximately 10.0
to 0.01 pV/m? per Ampere.
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For a simple layer model, the formation resistivity can be estimated from the ratio of the
potential and its second derivative provided that the casing conductance can be obtained. For
an unknown casing conductance, two sets of measurements are needed to calculate the forma-
tion resistivity. One determines the casing conductance while the other meélsures the poten-
tials used to estimate the second derivative. The resolution of the layer boundary is limited to

the electrode spacing used to estimate the second derivative.

The borehole fluid resistivity has a negligible effect on the resistivity measurements in
the casing. However, there are many other factors which can affect the measurements.
Geometric factors, such as length and radius of the casing, as well as the array location within
the casing affect the resistivity measurements. Variations of the casing conductance only
affect the measurements when the discontinuity lies within the span of the array. The expres-
sion used by the patents cited in Chapter VI, equation (6-11), can only compensate for spatial
variations of the casing that are longer than the array length. To compensate for smaller vari-
ations, an additional term is required (see equatibn 6-10).

Variation of the cement annulus parameters has a great effect on the estimate of the for-
mation resistivity. At places where the contact resistance is low, the current tends to leak into
the formation more readily and the formation resistivity will be underestimated. Since the
radius of investigation is independent of the electrode spacing, no additional information about
the cement coﬁductanoe can be obtained by using different electrode spacing. Thus, estimat-
ing the true formation resistivity in the presence of a cement annulus may not be possible

without prior knowledge of the thickness or resistivity of the cement.

The analysis of the downhole to surface field experiment showed that voltage measure-
ments in a resistive environment are possible and that these voltages are quite large. Not only
are casing effects large for measurements near the well, but they can also be seen at the far
electrodes even for sources located far below the casing. Modeling indicates that strong
interactions between the casing and near surface forrﬁations exist. The cu;rents from the cas-

ing are channeled into the conductive layers and dissipate slowly into the resistive formations.
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Thus, the far-field electrodes are influenced by the casing and formation interaction.

Further Studies

The algorithms used here were limited to simulate problems involving downhole sources
and axisymmetric bodies v(logging, downhole to surface, and cross-hole surveys). A numerical
code must be developed to combine the axisymmetric and 3-D solutions to simulate situations
involving the casing and arbitrary 3-D bodies. The integral equation using the layered
Green’s function must be formulated to solve the problem involving the casiﬁg and 3-D tar-
gets in a layered ea;th. In this thesis, the layers were characterized as inhomogeneities. Here,
formulating the integral equations with the layered Green’s function may be computationally
more efficient. Although employing this type of Green's function eliminates the use of ana-
1ytic solution for the half-space Green'’s function, the matrix that must be inverted to solve for

the unknowns will be much smaller, thus saving computational effort.>

The numerical simulations indicate that cross-hole and downhole to surface monitoring
studies are not much affected by casing effects. In the practical example of using a dipole
source at the end of the casing to monitor an injected conductive fluid (plume), the anomalies
were enhanced by the presence of fhc casing. The enhanced response of a conductive zone
was also observed when the casing was energized in another simulation. Thus, it may be
advantageous to use the casing in experiments that monitor iﬁjecﬁon Or extraction processes.
A detailed analysis is needed to determine the configurations of the source, casing, and
receivers that maximize the mspoﬁse and to verify whether a similar result is obtained with a

resistive plume.

Iterative inversions or imaging of a target in the presence of the casing are numerically
intractable if the forward model of the casing and target uses the IE approach. Most of the
computation and memory-will be used to calculate the fields of the casing. If a set of line

sources can be used to sufficiently approximate the casing response, iterative inversion and

3 Recall that the number of operations to invert a matrix of §ize N x N is approximately N3.
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imaging techniques may become numerically feasible. One could use the IE algorithm to cal-
culate the current distribution in the pipe for the homogeneous or layered medium problem.
This current distribution can then be used as the "first guess" for the line sources. For non-

linear inversion techniques, the strengths of the line sources are adjusted at each iteration.

"It appears that the transmission line formulation for the MTC method is valid. If this is
true, then calculating the formation resistivity using the transmission line analogy presented by
Kaufman (1990) will be orders of magnitude more efficient than using the ‘IE method. How-
ever, this transmission line analogy (see Section 6.1) may also produce erroncous results.
This formulation cannot account for current channeling effects m the formation since it
assumes that the currents outside the casing are radial. To incorporate this effect, a transmis-
sion network with series and shunt resistors in the formations and annular zones is needed.
This transmission network possibly may be used to explain the anomalous response caused by

a cement annulus with variable thickness.

The analysis of the downhole to surface field data showed that the casing effects were
large and radially symmetric. Hence, casing effects on field measurements can be minimized
by placing the measuring dipoles orthogonal (azimuthally) to the radial lines. This
configuration is insensitive to radial penurbaﬁom, such as casing effects and, unfortunately,
plume responses. However, certain combinations of both azimuthal and radial dipoles may
able to detect the anomalies produced by an injection plume, especially if there is a preferen-
tial flow direction of the fluid. A sensitivity analysis involving axisymmetric and non-
axisymmetric bodies in the presence of the casing is needed to determine optimal array

configurations that will give a large plume response with minimal casing effects.
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APPENDIX A

GREEN’S FUNCTION

For this study, the partial differential equation (PDE) that must be satisfied is Poisson’s
equation, either in scalar or vector form. Since the region of the homogeneous medium is
considered unbounded, the Green’s function method is a convenient technique to solve the
inhomogeneous PDE. This technique represents the solution in terms of its source distribu-
tion. A solution to the inhomogeneous PDE is found for a unit driving source function, also
known as an impulse or Dirac delta function. The general solution is written as.a superposi-
tion of the impulse response solutions for the vDirac delta source at different locations. The
strength of the general source at a particular point increasés or decreases the effects of the unit
source function at that point. The solution to a unit source function is called the Green's

function.

Scalar Green’s Function

Several forms of Green’s functions exist depending on the governing PDE and boundary
conditions. The various forms will not be given (see Morse and Feshbach, 1953 or Tai, 1971
for further discussion). This section will consider the Green’s function related to the govern-

ing equation of (2.1-11) which is:

Vi@ r')= —8r-r") | (A-D

where r is the field (observation) point, r" is the source point, g is the Green’s function for
the unbounded homogeneous medium in this problem, and &r — r") is the Dirac delta function

defined as:
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[ 8@ -r")av’ ={1 iV (A-2)

v 0 , rnotinV’
The solution which satisfies (A-1) and the boundary condition, h_T g, r’)=0is:

86 = o a3
Equation (A-3) is only given; see Morse and Feshbach (1953), Tai (1971), or Ward and
Hohmann (1988) for the derivation of g(r,r"). From equation (A-3), the following relation
| can be shown:
Ve, r')= - Vg@r’) (A-9)
For many geophysical problems, the surface of the earth must be considered. Thus, a
Green’s function is needed for a half-space. For this situation, an additional boundary condi-
tion is required:
Vg, r')-n=0 (A-5)
where n is the unit vector of the half-space (plane) surface.

Morse and Feshbach (1953) and Kellogg (1953) made use of the method of images to
obtain the half-space Green’s function which satisfies equations (A-1) and (A-5). The half-
space Green'’s function is:

1 1 | 1

g(r,r)=z-; |r-—r'|+|r—r,'| (A-6)

where r; is the image location of the source point r”, see Figure (A-1).

Dyadic Green’s Function

Equation (A-4) is the scalar Green’s function that can be used to solve the scalar inho-
mogeneous PDE. 'f'he vector form of the inhomogeneous PDE requires the use of the dyadic
Green’s function. The dyadic Green’s function can be derived directly by solving the vector
form of the PDE or by ﬁle steps used in Section (2.2). Before showing the dyadic Green’s

function, a brief review on dyads is presented.
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A dyad is defined by the juxtaposition ab where there is neither a scalar nor vector pro- -
duct of the vectors a and b (Balanis, 1989). In general, a dyad has nine components and in
matrix form can be represented by:

albl albz albg-

[ab = azb)_ azbz a2b3 (A-7)

asby asby asb;
The sum of the dyad is called a dyadic, B and for the case of equation (A-7) is:
3 » r. -~
B= Za,,b,, = ﬁl albl b1+§2 azbl bl"l"ﬁg a3b1 b1+
n=l ﬁl albz 62 + ﬁz azbz 62 + 53 agbz 52 + (A'S)

51 a1b3 Bg + ﬁz a2b3 53 + 53 a3b3 53

where &; and b; are unit vectors and a; and b; are components of a and b. The dyadic B
satisfies the relation:

» _ (c-ab=c-ab=c-B : (A-9)
The quantities ab are operators such that the scalar product of the center expression in equa-
tion (A-8) is a vector pointed along the a base vectors with magnitude equal to the com-
ponents of ¢ along the b base vectors. In general, ¢+ B # B° -c but ¢ - B =B - ¢ where 8" is
the conjugate of B.

The dyadic Green'’s function 8(r, r") is defined as:

&, ") = El-VVg @ ) (A-10)
where the operator (VV) is called the double gradient dyad. By using the relation of equation

(A-4), the following property exists:

Ga.r') = é_—VVg(r, r)=s - %VV'g(r, r’) .(A-ll)

The tensor of the dyadic Green’s function can be written as:

2 az
- "™ "Manan, ™ Mo,
06y uyGouy 1y,Ghaug ) P P P
[e(l" r')] = Gty WGRU, WGHus| = —|ly=—=—U; Ul Uy———us|g(r, r XA-12)
(¢) 312311 alz al 2813
WG au; usGauy usGiagus 32 P
Barar,  Maren W™ |
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where /; and w; for (i=1, 3) are the components and unit vectors The non-asterisk and asterisk

" superscripts represent the field and source coordinate system, respectively.

The dyadic Green’s function components Gos can be though of as relating the a-
component of the electric field at point (r) to the B-component of the scattering current at
point (r’). By applying the reciprocity theorem, the dyadic Green’s function can take the
form (Harrington, 1961):

Geaa(r, v’ ) =Gpo(r, 1) (A-13)
which indicates that the dyadic Green’s function is symmetric.

In addition to the matrix component representation of the dyadic Green’s function, it can
be represented by vectors in the form:

e(l', l'.) = ll]Gl + llsz + “3G3 B (A-14)
where:

Gy = Gyt + Gyouy + Gyt  (A-15)
The solution of the dyadic Green’s function can be found by decomposing it into three vec-
tors; one for each component of the unknown field to be solved. The solution for the‘ vectors:
G, G, and G, each satisfying the component form of the PDE and boundary conditions, are

combined using equation (A-11) to form the dyadic Green’s function which satisfies the PDE.
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APPENDIX B

NUMERICAL APPROXIMATION: METHOD OF MOMENTS

The integral equations derived in Chapter 2 are in the form of the Fredholm integral
equation of the sgcond kind. Very few of these types of equations, frequently encountered in
geophysical electromagnetic (EM) problems, can be solved analytically in closed form. How-
ever, there are several approximation methods available that can obtain satisfactory solutions.
One such technique is the method of moments, also known as the method of weighted residu-
als or point matching over subsectional basis. A solution to the field problem is obtained by
reducing a functional equation into a matrix equation, and then solving the matrix equation by
known techniques. Harrington (1968) is an excellent general reference on matrix methods to
compute the solutions of ﬁeld problems. Hohmann (1988) and Balanis (1989) are more

specific and apply the method of moments to EM field problems.

This appendix will outline the method of moments described by Balanis as applied to the
solving the IE. An IE can be represented as a linear inhomogeneous equation of the form:

L{f)=g (B-1)

where L is an integral operator, g is the known source or excitation function, and f is the

unknown field or response function. Both f and g can be scalar or vector quantities. If the

solution to equation (B-1) exist and is unicjue for all g, the inverse operator L™} exists such

that:

f=L") (B-2)
Since g is known, equation (B-2) represents the solution to the problem. To linearize the

problem, the unknown field can be expanded into a finite series.!

1 An exact solution can be obtained if the series is an infinite summation.
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N
=X af, (B-3)

n=1

where a, are the constant coefficients and f, are the basis or expansion functions.

At this point, one would like to choose a basis function that can accurately represent the
unknown function while minimizing the computational effort. In practice, there are two
classes of basis functions used. The first is the entire domain (ED) basis function where the
bases exist over the entire region of interest. Although no segmentation of the domain is
required, the ED basis functions usually have difficulty in modeling complicated or afbittary
" unknown functions. One common ED basis set is that of sinusoidal functions. Other ED

functions can be generated by polynomials, such as Tschebyscheff, Maclaurin, or Legendre.

The second class of basis function is the subdomain or subsectional bases. These bases
exist only over subregions of the domain of interest. Unlike the ED basis functions, the sub-
sectional bases may be used without a priori knowledge of the unknown function. Several
kinds of subsectional basis functions exist: piecewise constant, piecewise linear, and piecewise
sinusoid. The most common and easiest t0 use is the piecewise constant basis function which

also is used for the method of methods. .It is defined by:

1, rer,

fn=fa(0) =11(r, l',.)={0' rér, (B-4)

This basis function, a rectangular function, is one only in the subregion where r, is defined

and zero at all other locations.

Retuming to the problem of solving the linear inhomogeneous equation, by substituting

equation (B-3) into equation (B-1) yields:

L(Zn: a..fu)=§L(f..)=g (B-5)
* Since an approximation is used for the unknown ﬁeld,‘ there will be a residual € such that:
e=¢g —;a..L(f,.) | (B-6)

The objective of the method of moments is not to force the msid9a1 to zero at every
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point n, but to produce a vanishing residual in an average sense over the entire domain. This
is done by taking the inner product2 of the residual, equation (B-6), with a set of N weighting

or testing functions (w,,) and setting the weighted residuals for all m to zero:

N
<wm'8> = <wnng > —Zan <wm’L(fu)> =0 (B'7)
r=l

This will force the residuals € to be orthogonal to the weighting functions which results in:

Wy, 8> = i o, <w,,L(f,)> ‘ (B-8)

n=l

Equation (B-8) is a set of N linear equations and can be written in matrix form as:

o] - o]
If L,. is nonsingular, then its inverse (L,,™) exist and the solution for the unknown

coefficients o, becomes:

o] - o]
The weighting function must be chosen such that the elements of w, are linearly
independent. Otherwise, the N linear equations will not be independent and the matrix L,,,

may be ill-conditioned. Another factor which affects thé choice of the weighting function is

the ease of evaluation for the matrix elements {L,.,].
For the method of moments, the weighting functions are replaced by the Dirac delta
functions. This results in obtaining the solution at discrete points in the region of interest. In

equation (B-8), replacing w,, with the Dirac delta function results in:

<8r-tahg> =Y <8r-rtahL(f)> (B-12a)
lsu-rm)-g(r) dr=za,‘[8<r—r,.> «L(f,(@))dr (B-12b)
= g0, =X el (B-12¢)

2 The inner product between vectors A and B is:
<AB> =’[[A* -B] dv
where A* is the complex conjugate of A.
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The use of the Dirac delta function in equation (B-12) relaxes the condition that equation (B-
S) be valid for the entire domain and only enforces the condition at the N-points r,. Addi-
tionally, the Dirac delta weighting function does not increase the complexity of evaluating the
linear operator L(f,).

The method of moments uses the piecewise constant function, equation (B-4), as the
basis function for equation (B-lZc). This results in set of the linear equations that is solved
by equation (B-11). For the method of moments, the general form of the set of linear equa-

tions can be expressed as:

g(rm) = Z auL (H(rmv rn» ’ ’ (B-l3)



APPENDIX C

AXISYMMETRIC GREEN’S FUNCTION

In this appendix, the half-space axisymmetric (ring) Green’s function uses the Dirac
delta source function and its image and must satisfy the goveming field equation, Poisson’s
equation:

V@, r)= - 8r-r") (C-1)

In an axisymmetric cylindrical coordinate system, the Laplacian of the Green’s function and

the Dirac delta function can be written as:

az 1 a 82 ) - L 1 * L] - L]
[5},—2 (12, ?}g@, 0705 = = e [B-p0e-) + o5 e )| (CD)

The representation of the Dirac delta function in the cylindrical coordinate system is found in
Stinson (1976). The delta function term on the far left of equation (C-2) represents the pri-
mary source and the right term is its image. The image is offset in the negative z* position
-with respect to the primary so that the boundary condition at the surface is satisfied. Thus,

equation (C-2) is the partial differential equation (PDE) that will be solved.

Taking the Hankel transform of zero order, equation (C-2) becomes:

| 32
[% - lz]ga, 7,072 = ") [Be-27) + B4 ©3

where Jo(x) is the Bessel function of the first kind of order zero.

Applying the Fourier transform, results in the following:

- [}3 + kz]g(l, k,p',2")= - %Jo(xp')[e-‘**' + e"“'],_ _ (C-4)

which leads to:
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-1 ° oy o
g0 k.o, 27 = 224 7] naph e ] ©)
The inverse Fourier transform of equation (C-5) is:
. e __1_-_1_[ 2 2]'1 . [-’b' ih.] ke
g(l,z,p,z)—2nj;2nl+k Johp )le ™ + e |e dk
_ 1 . [ —Alz—ge1 -um‘)]
= 4nxjo(7.p e +¢€ (C-6)

Inverse Hankel transforming yields:

2. z, pc , z.) = Zl;t_"']oa’pa)[c'-z.h—z‘l + e‘u‘""]JoO»P)dl
) 0
= %j}oap)]o(lp‘)[e‘*"“‘ s e"“““"]dl C-D
0 .
Equation (C-7) is the half-space axisymmetric Green’s function that satisfies Poisson’s equa-

tion. It can be expressed in terms of elliptical integrals but will be left in this form for con-

venience.

The axisymmetric dyadic Green’s function is found by applying the double gradient

dyad, equation (A-10), to the axisymmetric scalar Green’s function which can be expressed as:

Ga.r)= %VVg )= - %VV'g @ r) -

p 82 po z_az_pc
' - . 1 apap‘ azap. . L .
- a(P,z.Pvz)=—'o_‘ az o aZ o g(psz’p ,Z) (C_g)
[

opaz® e



APPENDIX D

THE ? FUNCTIONS

This appendix describes the derivation of the solutions for the axisymmetric Green's
function volume integral P-function. This T*-function can be expressed as:
e, r')y= - z_n_Ag_J» jVV'g (r.r’)p'dp°dz* ®-1)
cl 'opo
where g(r, r') is the axisymmetric Green’s function, equation (C-7) in Appendix C. The ele-

ments of the dyadic T'-function are:

9.3 3.3

I‘PP' Isz' ap ap‘ ap 9z
- ZZAG II g, r*)ptdp'dz” D-2)

Tipr T G IR 3 _d

25307

The remaining sections contain the derivation of the solution for each T component.

D1 The I',,. -Function

Using the axisymmetric Green’s function, the I',,. -function is

L = 289 j.[ 9 9 [—4{;! oo Wop)( e Mo 4 g Mo )dxﬂp‘dp‘dz‘

(] p - E- az'
= i‘iy'” (7o “o* *l = _a- _a__ Alz=—2"1 “Mz+z") . )
01‘([ |;;[Jo(7vp )p dp H oz ;[ 32" (e +e )dz ]Jo()\,p)dl (D1-1)

The Bessel integral in equation (D1-1) is:

]

[7000° 307 dp" = 25 [ Joho" Mo ad” = - [67,08) - er,000)] ©12)
P b ’
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where b =a + Aa and ¢ =a - Aa.

Equation (D1-2) is the solution of the integration, but can be approximated by the following
procedure. Rearranging the bracketed term of equation (D1-2), one obtains:

Aal/i(Ma+4a) - J1(Ma-Aa))] + Ma[Jl(X(a+Aa )+ J1(Ma-2a)| (D1-3)
The Taylor series expansion of the Bessel terms gi\}es:

J1(Ma+Aa)) = J,(Aa) + (Ma) '(Aa) + (4a )P (Aa) + - - . (D1-4a)

and

J1(Ma~Aa)) = J(Aa) - (MaV’(Aa) + MAaY T Pa) - - - - (D1-4b)

Substituting these expressions into equation (D1-3) yields:

20| Oa ) 'Oa) + 04),00a) + - - | + 2 8al],00) + Q2P PO + -] ©15)

If one assumes that the pipe thickness 2Aa is much less than the distance to the source
and the pipe conductivity is much greater than the surrounding medium, then the "thin sheet"
approximation can be used. For small thickness, the higher order terms of Aa are negligible

and equation (D1-5) can be approximated by the following:

28a)2a) ' 0a) + 280 0a) = 2Aal[(la)ll'(_la) + Jl(ka)] = mx[wooa)] |
= 2Aa},2afo(7\a) (D1-6)
The A? is cancelled by the A2 term in equation (D1-2) and the Bessel integral becomes:
[Jo0. p")p"dp" =2aAalo(Aa) (D1-7)

P
The evaluation of the exponential terms of equation (D1-1) is accomplished by the fol-

lowing procedure:

J j{_a_[ e My e':u”z.) ]} dz" 0 9 J'( el M) )dz*

- Sz—z. oz" = Egz_,.
: - IR E(Az) = i-a_ zJ"’e°7d‘"‘|d:.r‘ + zfe"‘(”‘.)dz' (D1-8)
0z 0z dz 0z | 7. _ ,
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where zg = zo+ Az, zg =zo— Az and Az = h,/2. Three cases occur for the evaluation of the

first integral in equation (D1-8):

zg

Je—klz-z'ldz‘
L1

g

e as" = -

)

ZA<Zo"'AZ

zg
={ Jeeg" =

)

—i—L‘*""‘ il ’] : z>20+ Az (D1-9b)

z g
- + - -
je"’“"‘ Md:* + Ie"""'"’dz' = -%[2 —e e, w-'°)] , 20—Az <z <zg+Az
z

2o

.

For the second integral on the right side of equation (D1-8), the solution is:

+ +
%o %o

z5 zg

Combining equations (D1-9) and (D1-10) yields,

- MO M) M) | TMeseg) , z<zo—Az

= + _ - _ + -
EQz) = -7![ 4TI _ M) Reng) | Mek) S g+ Az (D1-11)
_e—k(zg—z)_e-k(z-zo‘)_e—l-(zﬂa’)fe—uzﬂ6)+2 , 20-Az <z <zo+Az

Taking the partial derivative with respect to z of equation (D1-10) yields:

0
Ee(h2) = - & (2) = - —-E(2)
b e T _ M) M) M) A
- + —A(z-25 = 0 - )
=1+e M""O)_eu‘ ;°)+ex(x+z°)_el(z+z°) » Z>2zp+Az i (D1-12)

e—l(za'-z) _ e—l(z-za) + e—J«(z-na) _ e—l.(z+16)

+ , 20— Az <z<zo+ Az

The second partial derivative with respect to z gives:

Aag-n) | Magon) | Maszd)  Me+zg)
LM M) M) M) z <zg-Az

Aos(Rz) =27 + eI _ M) | M) M)

_ e—l(za-z) _ e—l(z—zg) + e—l(zﬂ(;’) _ e—?\.(z+za)

. 2 >20+Az (D1-13)

, Zog—Az <z<zp+ Az
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The following form is used to simplify the expression in equation (D1-13).

d d S inz A
Moo (A2) = 3;5:- Az)= - ‘a—z'§z(7¢) =L Y R®)e (D1-14a)

i=1
where: oy =lz—z3l, op=lz—z5l, o@3=(+z8), ou=(+z3), (D1-14b)

and the values of (#)f = +1 are dependent on z, zg, and Az in equation (D1-13).

Combining the evaluations of the Bessel and exponential terms, equation (D1-1) is:

. . -
T = f.% | [—,‘;[wlam - alac)]J [x Tere ‘“'}Jo(xp)dx

: I T —AQ.
= £Z @) [b£ JiAb W oApde " id — c! J1(Ae ) o(hp)e m‘dl} (D1-15)

2013

The general solution for the integral in equation (D1-15) has the form of equation (3.1.1-9):

. . -, . .
P { Ji" Wo(p)e” ‘d = Fioo(p’, p, &) (D1-16)
Thus, the form of the solution can be expressed as:

4
Fps = “ZA_:; pIREIH [Floo(b. P, o) — Figolc, ps a.)] v D1-17)
1 =1

Using equation (D1-2), the approximate solution of the p’-integration, equation (D1-1)

is:

T, = A—"II [Za AaJ(ha )] [x @7 e‘“"‘]Jo(xp)dx

2 i=1
4 >y
= RSy [ JoaV ahpe*Aan (D1-18)
i=1

The integral of the above equation (D1-18) can be found in Luke (1962) and is:

3

[ 6aVop)e ™ 2dn (D1-19)
0

= dnpa ™ (k)

where:

ki = [——L——“ 2 }m D1-20)

‘T o+ (p+a)
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and E(k) is the complete elliptic integral of the second kind.

Several tests were done to check the approximation solution equation (D1-2) with the
exact solution equation (D1-17). These tests showed that the two solutions gave nearly the
same results when using typical values of the pipe model. Since the exact solution required
much more time to compute than the solution of the approximation, the approximate expres-

sion (D1-19) was used to solve the problem.

The approximation solution used for . is:

_ alaAc s 1%
T = o, Z( ).[4 Toa)? (L) (k.)} D1-21)

D2 The Iy« Function

The integral form of Iy« can be found by axisymmetric Green'’s function:

A Jd T . —Alz—2* 242" P PR
Tpe = _6”[_ 3 L[Jo(lp Wop)( e M1 4 o= ’)dl”p dp’ dz

_G - d “Alz—2"1 —Mz4z") . i -
o l[[jloow )p dp ][ 1o (e +e )dz ][apfoap)]dx D2-1)

The Bessel integral evaluation is the same as that used for the I',.. -function, equation (D1-7):
[1006"0" 20" = +[or00) - en,000)] (DS-22)
= 2aAal y(Aa) (D2-2b)

where b =a + Aa and ¢ =a - Aa.

The evaluation of the z" -integration is also the same as equation (D1-11):

éz()‘z) =

d [ “Alz—z"| Az +: ')] .
—|e -e 2 )d
3 z

_ e—l(:g-—z) + e—l(z&—z) _ e—k(z-o-zg) + e—k(z-no‘)

, 2< 2
Mz ¥y —Mz—z= Mzzt _ — 4 . -
=Y m TV L T TN D s (=T E e (D23)
_e—x(za'-z)+e~7.(z-zo')_e-M:+la)+e-7‘-(l+26') , 25<z< 2

where: og=lz—-z3l, m=lz-2z5l, o3=@G+z§), oag4=(0"+2z27), (D2-4a)
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zd =zg+Az and zg =zg- Az (D2-4b)
Evaluating the p-derivative of the zero order Bessel function and using equations (D2-2a) and

(D2-3), the solution of equation (D2-1) is:

Tpee = ;‘;’ 2[[ (b7,00) - dlo\c)]][‘fg;l (—1)"e""*][—ulap)]dx

Z( 1)'*‘[ b[ 110610 - ‘f Jlacy,oup)e“‘“‘dx] D2-5)
1i=1

The general solution for the integral in equation (D2-4), found in Luke (1962), is:

Fuoe” p. o) =" [ 100"V 10 A= —B o [0k DKe) - 260)]  ©26)
0 npp ) “k: . .

where:

4 . 12
ki=|—ro—s| (D2-7)
|:0-i2 +@+p )2] | \
K(k) and E(k) are the complete elliptic integrals of the first and second kind, respectively.

The form for the exact solution of equation (D2-1) is:

4
S 3 (1y# [Fuo(b . 05) ~ Fynoc b a.)] D2-8)

prr =
201 i=1

Using the approximation for the p"-integration (equation D1-7), equation (D2-1) can be writ-

ten as:

Cor = 5| [MMOW)][):(—I)' § '}[—wxp)]dx

= aAaAO'
4]

S0 [ saaviape™ | ©29)

The integral Qf the above equation (D2-9) is (Luke, 1962):

. k (l,2+¢12“p2
fJo(MV1W)e Ml—z—(——)l—nl (k:) - —+(——)5E(k,-)} (D2-10)

Again, the approximation’ solution, equation (D2-10), gave nearly the same result as the exact
one for the model parameters used. Hence, the approximate expression for I';,» can be used

and is: ’ ]
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k 2, .2 2
Ty = "A"A"g( D e s K D = oy D2-11)

D3 The I,,.-Function
The derivation for T, . -function is contained in this section. The I}, -function can be

expressed as:

Tipe = 5 | I[ e ﬁfo(xp‘voapxe%*‘ue%*'"m]é‘dp‘dz‘]

L ]p‘dp‘

[I 2 (el g )d;] Jo(Ap)IMD3-1)

Taking the p* -derivative of the integrand gives:

-l

The solution of the p" -integral of (D3-2) is much more complex than in the previous sections.

Ac

b
) ]p‘dp‘ = - [ -0 )" dp" = %‘[Ix’o(x)dx - _(‘;)’Jo(}’)d}’] (D3-2)
) 0

The following steps are used to find I5,,.. Both the integrals on the right side of (D3-2) have
the same form and can be evaluated by integration by parts:

w

Jor (@) = —wiotw) + oo = Zw{Honnm) - Beiow)] @33
1]

where Hy(w) and H;(w) are Struve functions of the zero and first order, respectively. By let-

. ting x =Ab, y =Ac,

Fw) = Ho(w)/1(w) , (D3-4a)
and
. Gw) =H(w)lo(w), (D3-4b)
equation (D3-2) can be expressed as:
1 |=n T
- [ 108" )] -1 {Ex[m) - 6] - Zy[Fo) - G(y)]} (D3-62)

%b[F(x) - G(x)} - lzt-c[F(y) - G(y)] (D3-6b)
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Equations (D3-6) are the solution to the p’ -integration. Unfortunately, the A-integration
of equation (D3-1) cannot be solved analytically using equation (D3-6). Therefore, an approx-

imation of equation (D3-6) will be calculated. Rearranging the terms of equation (D3-6a)

yields:
z1 {[xF(x) - y¥0)] - [z6x) - G(y)]} ©3-)
The Taylor series expansion of the F(x) and F(y) are:
F(x) = F(Ma+Aa)) = FQAa) + (Ma)F'(Aa) + (Ma)FP(a) + - - - (D3-8a)
and
F(y) = F(Ma—Aa)) = FQa) — (Ma)F'(Aa) + (Ma P FP(Ag) - - - - (D3-8b)

The left bracketed term of equation (D3-7) can be written as:

[xF(x) - yF(y)] = l(a+Aa)[F + (\Ma)F’ + (A2 )’ FP + - -
- Ma—Aa)[F - (Ma)F’ + (Ma )’FP — - - ]

= 2{M[(/\A¢1)F’+ AAa)’ PP + . . ] + MaF + M2y’ F? + - - ]} (D3-9)

where F = F(\a).
If the thickness is much less than the distance to the field point and the éonducﬁvity of
the pipe is much greater than the surrounding medium, then the vhigher order terms of Ag are

negligible and equation (D3-9) can be approximated:

[xF(x) - yF(y)] = 2Ma[F(M) + (xa)F'(Aa)] (D3-IOa) |

Likewisé for the right bracketed term:

[x G(x) - yG(y)] = 2Ma[G(M) + (Aa)G'(Aa )]' (D3-10b)

The derivatives of F and G are:

Ji(w)

F(w) = Jy'(w)He(w) + Jy(w)Ho'(W) = [Jo(W) - }Ho(W) + J:(W)[% - Hl(w)jl

Jiw)Ho(w) 2
w

= Jo(w)Ho(w) — + ;Jl(wv) = J1(w)H (w) (D3-112)

and
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H
G'(w) = Jo'(w)H (W) + J(w)H (W) = = J1(w)H,(w) +Jo(w)[ﬂo(w) - ILW)J

J
=Jo(w)Ho(w) = J1(w)H;(w) - OH‘:(W) (D3-11b)

Using the relation of equations (D3-4) and (D3-11) for F, G, F’, and G’, the right side of
equation (D3-10) becomes:

[FOa) + AaF )] = Hoa 100 + xa[nomma) - BlMCD | 24,00 - Hlaawxa)]

= M[Jo(la)ﬂoaa) + ‘12;110\0) - 11(7*4)“1(7\5)] (D3-12a)

and

J H,(\a
(G0 + MaGAa)] = HiAa Y oOa) + Aa[ﬂowvooa) - H,0a),0a) - 7 2A2) )]

= halJo(Aa)Ho(Aa) - J1(Aa)H;(0a) ~ (D3-12b)

Using the relation between equations (D3-10) and (D3-12), equation (D3-7) becomes:

2 HI(M)]JW)H

- —}%{Na Aa[Jo(M)Hoom - Jl(xa)nl(xa)]}= 2aMary(Aa)  (D3-13)

The expression used to approximate the p° -integral follows:

%% {2}&1 Aa[JO(Aa YH,(a) +

- [ [ az' Joap‘)]p‘dp‘ = 2aAalJy(Aa) (D3-14)
]

The exponential term of equation (D3-1) is equivalent to the ones of the previous sections:

[_aa;_[e-llz-z‘l + e—Mz+z‘]dz' = %‘[[C_MI,—:.I + e—'/\-(zﬂ']dz‘ = E_,,()\-Z) - _ az‘ 0\2) (D3-15)

z

The solution to the exponential term is found in equation (zz-12) and can be written as:

- e—wg-z) + e__%'(z‘;-z) - e_u’"a) + e—u”"’-) z<zg
4
Ay—z ¥ Ay = = + - — . A
&Z(Xz)= e Az z°)+e Az zo)_e ?v(l+lo)+e Mz+zq) , oz >z(-)|- =Z("1)le § (D3-16)
_ . i=1
_ e-k(za‘—z) 4o ME0) _ e—l(z+z§) + e ) , 25 $z<z§
4
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where: ay=lz—z5l, op=lz-2z5l, o3=@E+23), ou=(z+2z25), (D3-17a) -
2§ =z+Az and 25 =z-Az (D3-17b)

Using equations (D3-14) and (D3-17), the solution for equation (D3-1) can be expressed as:

T, =29 o [umu,aa)][z(-l)' ']Jo(xp)dx

i=1

. -
= 28480 5 1y [7:0a) 6002 (D3-18)

C1 ia
The above integral has the same form of equation (2.3.2-10) except the a ‘and p terms have

reverse roles. Therefore, using the derivation from Section (2.3.2), the expression (D3-18) is:

2,2 2
j eV Todn = P E(k.-)] D3-19)

T oa)” [ ©) = ay

and the expression for I',,. becomes:

_adado g ol k| aieta’ o
T = 4252 50D {m - [K(k.) o <k.>J} (D3-20)

D4 The I'y--Function

The integral form of the I'yoe -function can be expressed as:

L
A Jd 0 Alz—z —Mz+z A
Tope =T°1,J.pf.[‘ 3 % L[Joap W op)( e Ml 4 e ’m] p'dp’d:
- Ao f|2er0en|etde|[ [t e ey ]| Lraan @41)
o1 - o . op

The p” -integration is the same one as equation (D3-14) which is approximated by the follow-

git

The 2" -integration is also evaluated by equation (D1-11) and is:

ing:

) ]p‘dp‘ = 2aAa)] (Aa) (D4-2)

-
z

j[e'”‘".' + e~ Mz4") ]dz. = ;OJ) = - '}:ép(’»—z) (D4-3)

~which can be written as: ;
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e—l(za’-z) _ e—l(za—z) _ e—l(z-e—za) + e—k(zﬂa)

+ . z<z§—Az

- —_— ., —_— ., + P, -
Ey(hz) =3 — e TN 4 OO _ HNG) NG s g4 A (D4-4)

“Mzg-2) _ e-k(z—za) _ e—l(zﬂa) + e-l.(z-'»za) —9

+e , 20—Az<z<Lz0+ A2

where: oy=lz —z3l, ay=lz-2z5l, oy=@E+z5), o= +23),

2§ =zo+ Az and zg =zo- Az

The following form is used to simplify the expression in equation (D4-4):

' 4
';—'gp(h) = 'i_ [Z(i)‘pe‘mi - sz]v (D4-5)

i=l

where €, =2 for z5 <z <:z§, and g, = 0 for all other z values.

Lastly, the p-derivative of equation (D4-1) is:

1) = = M0) D4-6)
Using equations (D4-3), (D4-5), and (D4-6), the solution of e(;uaﬁon (D4-1) can be expressed

as:

Ac T

Tppe = 20, [ZaAa)Jl().a)] [— %[é(i),”e-m" - e,ﬂ[—- Ml()\.p)]dl

. - " -
_ alAalAc E[(i).P j]l(MVI(M)e mﬂ)\dl—szjjl(xa)«llo“p)wl] D4-7)
0 0

S i

The solution of the left integral in equation (D4-7) is:

T Aoy o k; 1+k2
iNdA = ) — 2K (k: -
l J1a) (\p)e ind ipa) [ Iz E(k;) — 2K(k;) (D4-8)
where k'2=1 - k2
The integral on the right of equation (D4-7) requires some manipulation. Let:
oo a e
[110ay,000dh = ~ 52 [ ToAa) \Op)dA (D4-9)
0 .
The integral on the right side of equation (D4-9) is:
- p7l . p>a
[Jeha) \Ap)dr =1 (a)" , p=a : ~ (D4-10)
0

0 , p<a
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Taking the negative a-derivative yields:

1

3 P . p>a .
- -3 2a)? , p=a =7 for (p=a) (D4-11)
0 , p<a

Recall that €, =2 only for zg <z <zg, otherwise € =0. So the integral on the right side of

equation (D4-7) is:

€= & £ J10a V(A = ;12— for (p=a)and (z5 <z <23 ) (D4-12)

Equation (D4-12) only occurs when evaluating the singular cell. Hence, the final form of the

solution for Ippe is:

AaAc & 0;k; 1442
Ty = 2 +)P 2 Ek;) - 2K - -1
PP o, E{( ), 41:(pa)3’2 [ ¥? (k:) ( )] ep} , (D4-13)
where:
1 - +
€, = = (p=a)and(zo <z <zg)

a
0 , otherwise



APPENDIX E

THE GRADIENT INTEGRAL

This appendix solves the bracketed term in equation (3.1.2-10) which is:

[ g.r)av’ = 21:53;_[ j{:—};{ Jow‘yo(xp)[e4hq‘l _ e—w".)]dx}p'dp'dz'
A LR

9
azv

1.° LR » —alz—2" “Mz4r* .
=3] |:J:-’o(7\vp )" dp H{[e et gt g ]Jo(xp)dx
P z .
From appendix equation (D1-7), the p -integration is approximated by:

[Jodp*)p"dp" = 2aa] (ha)
p.
The exponential term is found in appendix equation(D2-3) and is:
0

2 j_[e-vw" e de* = £, 02) = z<-1>' ra,

where: oy = lz — (z¢ + A2)l, 0p = Iz — (z¢ — A2)], a3—[z + (zo+ Az)], and oy = [z + (z¢ ~

Combining the results, equation (E1) is:

5 s — aba] 3-1e I o0a Vo)A = ZOX jfowyoap)e A

0 i=1

The integral in equation (E4) is found in Luke (1962):

% A k;
[ Jaha )0 " =~ Kiks)

where: 40a 12
=i %pa
ki [a,-2+(p+a)2:!

ED

(E2)

(E3)

Az)].

&)

(ES)

(E6)

and K(k) is the complete elliptic integral of the first kind. The solution of equation (E-1) is:

j g, r)dv’ = Z (-1 ———=K(k;)

(p )1/2
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