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Systems/Circuits

Disengagement of Motor Cortex during Long-Term Learning
Tracks the Performance Level of Learned Movements

Eun Jung Hwang,p Jeffrey E. Dahlen,p Madan Mukundan, and Takaki Komiyama
Neurobiology Section, Center for Neural Circuits and Behavior, Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of
California San Diego, La Jolla, California 92093

Not all movements require the motor cortex for execution. Intriguingly, dependence on motor cortex of a given movement is
not fixed, but instead can dynamically change over the course of long-term learning. For instance, rodent forelimb movements that
initially require motor cortex can become independent of the motor cortex after an extended period of training. However, it remains
unclear whether long-term neural changes rendering the motor cortex dispensable are a simple function of the training length. To
address this issue, we trained mice (both male and female) to perform two distinct forelimb movements, forward versus downward
reaches with a joystick, concomitantly over several weeks, and then compared the involvement of the motor cortex between the two
movements. Most mice achieved different levels of motor performance between the two movements after long-term training. Of the
two movements, the one that achieved higher trial-to-trial consistency (i.e., consistent-direction movement) was significantly less
affected by inactivation of motor cortex than the other (i.e., variable-direction movement). Two-photon calcium imaging of motor
cortical neurons revealed that the consistent-direction movement activates fewer neurons, producing weaker and less consistent popu-
lation activity than the variable-direction movement. Together, the motor cortex was less engaged and less necessary for learned
movements that achieved higher levels of consistency. Thus, the long-term reorganization of neural circuits that frees the motor cortex
from the learned movement is not a mere function of training length. Rather, this reorganization tracks the level of motor perform-
ance that the animal achieves during training.

Key words: motor cortex inactivation; motor learning; mouse motor cortex; mouse reaching; movement consistency; mul-
tiple movement learning

Significance Statement

Long-term training of a movement reshapes motor circuits, disengaging motor cortex potentially for automatized execution of the
learned movement. Acquiring new motor skills often involves learning of multiple movements (e.g., forehand and backhand strokes
when learning tennis), but different movements do not always improve at the same time nor reach the same level of proficiency.
Here we showed that the involvement of motor cortex after long-term training differs between similar yet distinct movements that
reached different levels of expertise. Motor cortex was less engaged and less necessary for the more proficient movement. Thus, disen-
gagement of motor cortex is not a simple function of training time, but instead tracks the level of expertise of a learned movement.

Introduction
The primary motor cortex (M1) is central to learning and execu-
tion of various skilled movements (Sanes and Donoghue, 2000;
Graziano, 2006; Makino et al., 2016; Peters et al., 2017b; Papale
and Hooks, 2018). However, not all movements require intact
M1 for execution (Darling et al., 2011). For instance, species-spe-
cific innate motor behavior and/or gross movements, such as
grooming, locomotion, and climbing, can spontaneously recover
from lesion in M1 or its corticospinal output (Berridge and
Whishaw, 1992; Muir and Whishaw, 1999; Lemon et al., 2012).
Distinct movement modules, even if they are sequenced together
to serve one behavioral goal, may differ in their M1 dependence.
In a reach-to-grasp task, for example, forelimb reaching move-
ments may be restored after M1 lesion, whereas grasping
remains severely impaired (Lemon et al., 2012; Lemke et al.,
2019). Confounding the matter, M1 dependence is not fixed
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even for a given movement, but instead it can change across dif-
ferent contexts and learning stages. Inactivation of mouse M1
impairs whole-body turning when turns are induced by sensory
stimulus, but not when mice make turns spontaneously
(Heindorf et al., 2018). Mouse forelimb reaching movements
with a joystick require M1 early in training, but not once the
movements have been well learned and stereotyped (Hwang et
al., 2019a).

In parallel to the longitudinal change of M1 dependence, the
neural activity pattern in M1 dynamically changes during long-
term learning. Most intriguingly, in layer 2/3 of the mouse M1,
trial-to-trial consistency of population activity accompanying the
learned movement gradually declines during the extended period
of training after the motor skill is stereotyped, suggesting decou-
pling between M1 activity and the learned movement (Hwang et
al., 2019a). In layer 5, the level of movement-related neural activity
gradually decreases over the course of learning, selectively for cor-
ticostriatal neurons (Kupferschmidt et al., 2017). The dynamic na-
ture of M1 engagement also agrees with longitudinal functional
imaging of the human brain, which shows that the level of M1 ac-
tivity associated with learned movements changes over the course
of long-term motor learning (Ungerleider et al., 2002; Ma et al.,
2010). Furthermore, perturbation of M1 activity in humans indi-
cates that M1 is important for maintaining a learned motor skill
during the early period of consolidation after learning, but not
later, implying a transfer of motor memory from M1 to elsewhere
with the passage of time during the consolidation period
(Muellbacher et al., 2002).

A number of studies have found such changes in the M1 de-
pendence of a learned movement during long-term learning, and
parallel reorganization of motor circuits that may underlie that
change. However, it remains elusive what are the factors that reg-
ulate M1 dependence. It has been proposed that M1 might pro-
vide a teaching signal, guiding plasticity in the downstream
motor circuits, such as the striatum, so that the downstream
areas can gradually take over control of the learned movements
independent of M1 (Kawai et al., 2015; Wolff et al., 2019). Such a
transfer of movement control from M1 to elsewhere might take
place to allow highly reliable, autonomous execution of stereo-
typed movement patterns (Dhawale et al., 2019; Merel et al.,
2019). If so, offloading motor control from M1 would be benefi-
cial only after animals have learned to perform task-related
movements with a high reliability. Thus, a potentially important
factor that may regulate M1 disengagement might be the level of
motor performance, such as accuracy, efficiency, and consistency
of learned movements. In other words, the influence of M1 on
the downstream motor circuits might be modified as a function
of the achieved motor performance. This hypothesis makes a
testable prediction that similar but distinct movements that are
trained in parallel may exhibit different degrees of M1 depend-
ence even after similar lengths of training if they attain different
levels of motor performance. The current study tests this predic-
tion and presents experimental results supporting the hypothesis
that M1 involvement after long-term training depends on how
well the animal performs the learned movement.

Materials and Methods
Animals. All procedures were in accordance with protocols approved

by the University of California San Diego Institutional Animal Care and
Use Committee and the guidelines of the National Institute of Health.
Mice (6 weeks or older, male and female; calcium imaging: cross
between Gad2-IRES-Cre [JAX 010802] and Rosa26-CAG-LSL-tdTomato
[JAD007914]; optogenetic inactivation: PV-Cre [JAX 008069], or cross

between PV-Cre and Ai32 [JAX 024109]) were housed in a room with a
reversed light cycle (12 h-12 h). Experiments were performed during the
dark period.

Behavioral apparatus. The behavioral apparatus was housed in a
soundproof box (40 � 40 � 40 cm), and training sessions were per-
formed in the dark. The components of the task included a joystick
(M11L061P; CHProducts), a 17 inch computer monitor (for visual stim-
ulus presentation, placed ;15 cm from the right eye of the mouse;
E1713Sb; Dell), and a water port with photodiodes to sense licking. The
joystick handle was custom-machined and fitted with a 1/16-inch thick
brass rod that mice manipulated with their left forepaw. An electromag-
net (EM050-3-222; APW) can mechanically immobilize the joystick at
the origin. The joystick could be moved from the origin in any direction
within the 90 degree range between forward (180°) and downward
(270°) and had a dynamic range of 50 mm in each direction (see Fig. 1A,
B). The 2D position of the joystick was continuously recorded at 1 kHz
using a data acquisition card (USB6008; National Instruments) and cus-
tom MATLAB software. An open source real-time software package
BControl (http://brodywiki.princeton.edu/bcontrol/) was used to control
and record the task-sequence execution, stimulus selection, auditory cue
presentation, and reward dispensing. The presentation of visual stimuli
(100% contrast, full-field, square wave drifting gratings 0.04 cycles/
degree and 3 cycles/s) was implemented using an open source MATLAB
Psychtoolbox (http://psychtoolbox.org/).

Two-direction joystick task. In the two-direction joystick task, one of
two orthogonal visual stimuli (forward or downward drifting gratings)
was presented on the computer monitor. Two seconds after visual stimu-
lus onset, an auditory cue (6 kHz pure tone) marked the answer period
(up to 10 s) during which moving the joystick into the target zone (here-
after referred to simply as “target entry”) led to a water reward. The vis-
ual stimulus and auditory cue remained on throughout the answer
period. The target zone associated with the forward drifting gratings is
the area spanning the polar angular space between 180° and 210° and
the radial distance beyond a set threshold (6-10 mm; see Fig. 1B). The
target zone for the downward gratings is the area spanning the angular
space between 240° and 270° and the radial distance beyond the same set
threshold. Errors (i.e., entering the incorrect target and movements
before the “go” cue) triggered a white noise and led to an immediate trial
termination. After reward, trial termination because of errors, or no
response, and after the joystick returned to the origin, an intertrial inter-
val (ITI, 4 s) began. During the ITI, the joystick was immovable, fixed at
the origin by the electromagnet. At the end of the ITI (simultaneously
with the beginning of the visual stimulus onset in the next trial), the elec-
tromagnet was disengaged and the joystick became movable.

Mice were trained under head fixation in the behavioral setup ;1 h
per day over a period of 556 3 d (mean6 SE across 22 mice). The task
was shaped to reach the final version described above through three
training blocks. In the first training block (10 6 1 d), mice received a
water reward as long as they moved the joystick to the correct target
within a 30 s answer period (even if they hit the incorrect target first). As
mice become proficient at moving the joystick in both directions, we
increased the target distance from 6 mm up to 10 mm, and we decreased
the response time to 10 s until they reached the targets during the answer
period in.80% of trials.

In Block 2 (14 6 2 d), mice were trained to refrain from moving the
joystick before the go cue by immediately terminating a trial with a white
noise error sound if they initiated movements before the go cue. Mice
were rewarded if they successfully withheld their movement until the go
cue and reached the correct target during the answer period. Entering
the incorrect target before the correct target was not penalized. Block 2
training continued until mice achieved withholding performance.55%.
Withholding performance continued to improve during the subsequent
Block 3 training, reaching 736 2.2% (mean 6 SE across 22 mice) with-
holding during the last 11 training sessions.

In Block 3 (32 6 4 d), trials were immediately terminated if mice
moved before the go cue (as in Block 2) or reached the incorrect target.
Training continued in Block 3 until correct choice performance reached
70%. The fraction of correct choice was computed for all trials that
reached a target regardless of whether or not trials were successfully
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withheld. Once this performance criterion was met, the ITI length was
increased up to 4 s (from 1 s). After achieving expertise during training
(.55% of correct withholding and.70% of correct choice), mice began
the optogenetic inactivation experiment or underwent a second surgery
for the subsequent imaging experiment.

Inactivation experiment. An efficient way to suppress excitatory out-
put from a brain region in selective trials is to photo-activate GABAergic
neurons which potently inhibit local pyramidal neurons in the region (Li
et al., 2019). A number of studies have used this indirect photoinhibition
to successfully inactivate local cortical regions (Olsen et al., 2012; Z. V.
Guo et al., 2014; Peters et al., 2014; J. Z. Guo et al., 2015; Hwang et al.,
2019a). Hence, we opted to inactivate M1 by photoactivating parvalbu-
min (PV)-expressing GABAergic inhibitory neurons. Mice (either PV-
Cre, n=6; or PV-Cre::Ai32, n=4) were implanted with a head fixation
bar (i.e., headbar). PV-Cremice were bilaterally injected with a virus car-
rying Channelrhodopsin-2 (ChR2; AAV2-1-EF1A-DIO-hChR2-eYFP,
UPenn Vector Core) through a thinned skull window over the forelimb
region of M1 (0.3 mm anterior to bregma, 1.5 mm lateral to the mid-
line);;100 nl of virus was injected at one location at each of two depths:
200 and 600mm from the dura. The viral expression of ChR2 was typi-
cally confined within ;1 mm from the injection sites (see Fig. 3A,B).
PV-Cre::Ai32 mice received bilateral glass windows over the forelimb
region of M1. After surgery, mice followed the same training protocol
outlined above before inactivation experiments. Once mice reached ex-
pertise, we inspected the previously thinned skull or glass windows for
clarity, rethinning or replacing the glass window if necessary.

The inactivation experiment was performed across 10 daily sessions.
Control and M1 inactivation sessions (see Fig. 3C) were alternated ses-
sion-by-session, or in a block manner (e.g., 5 inactivation sessions

followed by 5 control sessions). In control sessions, the bifurcated LED
fibers (Doric Lenses) were pointed above the headbar; whereas in M1
inactivation sessions, LED fibers were placed directly above M1 in both
hemispheres (see Fig. 3C). Aside from LED fiber placement, all proce-
dures were identical between control and M1 inactivation sessions.

In both control and inactivation sessions, we randomly selected
;15% of trials as light-on trials in which 465 nm blue light (i.e., light-on
trials) was transmitted through the bifurcated LED fibers (7.5 mW per
fiber). In light-on trials, light was continuously on from visual cue onset
to the end of trial. A trial ended when the mouse made a premature
movement before go cue (2 s after visual cue onset), when the mouse
moved the joystick into any target within the answer period (10 s from
go cue), or when the answer period was timed out. So, the light could
stay on continuously for up to 12 s. Extracellular recording in our previ-
ous study confirmed that this approach with a continuous light effec-
tively suppresses most of the neural activity in visual cortex where ChR2
was virally expressed in PV inhibitory neurons (Hwang et al., 2019a).

The two groups of mice that expressed ChR2 in PV neurons either
virally or trans genically produced statistically indistinguishable results
(see Fig. 5; Table 1), and we combined the two groups when presenting
results in the main text.

Imaging experiment. After achieving expertise in the behavioral task,
we temporarily suspended training and allowed mice unlimited access to
water for at least 2 d before craniotomy and virus injections. The craniot-
omy spanned the forelimb region of M1 in the right hemisphere. Virus
(AAV2-1-hSyn-GCaMP6f diluted in saline 1:8; UPenn Vector Core) was
injected at 5 sites (;20 nl per site) in M1 at a depth of;250mm beneath
the dura in layer 2/3. After injections, the craniotomy was covered with a
glass window fixed in place with dental cement.

Figure 1. Long-term motor learning in the two-direction joystick task. A, Behavioral task setup. A head-fixed mouse grabs the joystick with its left paw and makes forelimb reaches in the
forward and downward directions. B, Two-direction joystick task rule. Each trial begins with either forward or downward drifting gratings on the monitor, and the mouse must press the joy-
stick in the same direction as the visual stimulus after an auditory tone to receive a reward. C, Learning curve for the fraction of correct choices. Data are mean6 SE (n= 22 mice). The aver-
age fraction of correct choices in the first 11 training sessions was compared with the average fraction in the last 11 training sessions across 22 mice (paired bootstrap test; Table 1; see
Materials and Methods). D, Learning curve for the target acquisition time (i.e., duration between movement onset and target entry). The same illustration format and statistical test as in C. E,
Example rewarded movements in early versus late training sessions (1 session/day). Green and purple traces represent forward and downward movements, respectively. Fifteen movements
were randomly selected in each direction in each session. F, Learning curve for movement consistency (i.e., the average trial-to-trial correlation coefficient between pairs of movement trajecto-
ries from rewarded trials in the same direction). The higher the correlation is, the more consistent the trajectories across trials are. The same illustration format and statistical test as in C.
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Table 1. Summary of statistical testsa

Figure Test statistics and model variables Test 95% CI

1C D = Late – Early
Fraction correct choices

Paired bootstrap 0.20 , D , 0.28

1D D = Late – Early
Target acquisition time

Paired bootstrap �0.87 , D , �0.46

1F D = Late – Early
Trial-to-trial trajectory correlation

Paired bootstrap 0.07 , D , 0.16

2D D = Consistent – Variable
Trial-to-trial trajectory correlation

Paired bootstrap 0.11 , D , 0.18

2E D = Consistent – Variable
Target acquisition time

Paired bootstrap �0.23 , D , �0.02

2F D = Consistent – Variable
Fraction of correct choices

Paired bootstrap 0.06 , D , 0.20

4B, panel 1 x = Consistent or variable direction Mixed-effects model �0.01, slope, 0.08
y = D no response
x = Inactivation or Control Mixed-effects model �0.03, slope, 0.36
y = No response, consistent direction
x = Inactivation or Control Mixed-effects model �0.01, slope, 0.41
y = No response, variable direction

4B, panel 2 x = Consistent or variable direction Mixed-effects model �0.10, slope, 0.09
y = D premature response
x = Inactivation or Control Mixed-effects model 0.07, slope, 0.46
y = Premature response, consistent direction
x = Inactivation or Control Mixed-effects model 0.10, slope, 0.41
y = Premature response, variable direction

4B, panel 3 x = Consistent or variable direction Mixed-effects model �0.11, slope, 0.10
y = D no target entry
x = Inactivation or Control Mixed-effects model 0.14, slope, 0.41
y = No target entry, consistent direction
x = Inactivation or Control Mixed-effects model 0.14, slope, 0.37
y = No target entry, variable direction

4B, panel 4 x = Consistent or variable direction Mixed-effects model 0.10, slope, 0.53
y = D incorrect target entry
x = Inactivation or Control Mixed-effects model �0.06, slope, 0.18
y = Incorrect target entry, consistent direction
x = Inactivation or Control Mixed-effects model 0.20, slope, 0.54
y = Incorrect target entry, variable direction

4C, panel 1 x = Consistent or variable direction Mixed-effects model �0.65, slope, 0.25
y = D reaction time
x = Inactivation or Control Mixed-effects model �0.41, slope, 1.33
y = Reaction time, consistent direction
x = Inactivation or Control Mixed-effects model �0.11, slope, 0.53
y = Reaction time, variable direction

4C, panel 2 x = Consistent or variable direction Mixed-effects model 0.01, slope, 0.60
y = D target acquisition time
x = Inactivation or Control Mixed-effects model �0.03, slope, 0.43
y = Target acquisition time, consistent direction
x = Inactivation or Control Mixed-effects model 0.20, slope, 1.03
y = Target acquisition time, variable direction

4C, panel 3 x = Consistent or variable direction Mixed-effects model �0.12, slope, 0.08
y = D trial-to-trial trajectory correlation
x = Inactivation or Control Mixed-effects model �0.13, slope, 0.04
y = Trial-to-trial trajectory correlation, consistent direction
x = Inactivation or Control Mixed-effects model �0.11, slope, 0.03
y = Trial-to-trial trajectory correlation, variable direction

4C, panel 4 x = Consistent or variable direction Mixed-effects model 0.06, slope, 1.38
y = D SD target acquisition time
x = Inactivation or Control Mixed-effects model �0.10, slope, 0.55
y = SD target acquisition time, consistent direction
x = Inactivation or Control Mixed-effects model 0.23, slope, 1.88
y = SD target acquisition time, variable direction

4C, panel 5 x = Consistent or variable direction Mixed-effects model �0.35, slope, 1.02
y = D path length
x = Inactivation or Control Mixed-effects model �0.30, slope, 0.16
y = Path length, consistent direction

(Table continues.)
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Table 1. Continued

Figure Test statistics and model variables Test 95% CI

x = Inactivation or Control Mixed-effects model �0.41, slope, 0.92
y = Path length, variable direction

4D, panel 1 D = Consistent – Variable
D no response

Paired bootstrap �0.10 , D , 0.01

D = Inactivation – Control, consistent direction
No response

Paired bootstrap 0.01 , D , 0.34

D = Inactivation – Control, variable direction
No response

Paired bootstrap 0.20 , D , 0.41

4D, panel 2 D = Consistent – Variable
D premature response

Paired bootstrap �0.11 , D , 0.06

D = Inactivation – Control, consistent direction Premature response Paired bootstrap 0.02 , D , 0.46
D = Inactivation – Control, variable direction Premature response Paired bootstrap 0.11 , D , 0.44

4D, panel 3 D = Consistent – Variable
D no target entry

Paired bootstrap �0.09 , D , 0.15

D = Inactivation – Control, consistent direction
No target entry

Paired bootstrap 0.14 , D , 0.46

D = Inactivation – Control, variable direction
No target entry

Paired bootstrap 0.14 , D , 0.36

4D, panel 4 D = Consistent – Variable
D incorrect target entry

Paired bootstrap �0.54 , D , �0.06

D = Inactivation – Control, consistent direction Incorrect target entry Paired bootstrap �0.08 , D , 0.17
D = Inactivation – Control, variable direction
Incorrect target entry

Paired bootstrap 0.16 , D , 0.49

4E, panel 1 D = Consistent – Variable
D reaction time

Paired bootstrap �0.27 , D , 0.89

D = Inactivation – Control, consistent direction
Reaction time

Paired bootstrap �0.26 , D , 1.39

D = Inactivation – Control, variable direction
Reaction time

Paired bootstrap �0.04 , D , 0.91

4E, panel 2 D = Consistent – Variable
D target acquisition time

Paired bootstrap �0.79 , D , �0.11

D = Inactivation – Control, consistent direction
Target acquisition

Paired bootstrap �0.05, D , 0.58

D = Inactivation – Control, variable direction
Target acquisition

Paired bootstrap 0.32 , D , 0.96

4E, panel 3 D = Consistent – Variable
D trial-to-trial trajectory correlation

Paired bootstrap �0.06 , D , 0.19

D = Inactivation – Control, consistent direction
Trial-to-trial trajectory correlation

Paired bootstrap �0.13 , D , 0.07

D = Inactivation – Control, variable direction
Trial-to-trial trajectory correlation

Paired bootstrap �0.18 , D , 0.06

4E, panel 4 D = Consistent – Variable
D SD target acquisition time

Paired bootstrap �1.46 , D , �0.01

D = Inactivation – Control, consistent direction
SD target acquisition time

Paired bootstrap �0.06 , D , 0.85

D = Inactivation – Control, variable direction
SD target acquisition time

Paired bootstrap 0.37 , D , 1.61

4E, panel 5 D = Consistent – Variable
D path length

Paired bootstrap �0.83 , D , 0.37

D = Inactivation – Control, consistent direction
Path length

Paired bootstrap �0.35 , D , 0.28

D = Inactivation – Control, variable direction
Path length

Paired bootstrap �0.26 , D , 0.69

5A, panel 1 x = Consistent or variable direction Mixed-effects model �0.02, slope, 0.12
y = D no response

5A, panel 2 x = Consistent or variable direction Mixed-effects model �0.13, slope, 0.14
y = D premature response

5A, panel 3 x = Consistent or variable direction Mixed-effects model �0.22, slope, 0.12
y = D no target entry

5A, panel 4 x = Consistent or variable direction Mixed-effects model 0.28, slope, 0.70
y = D incorrect target entry

5B, panel 1 x = Consistent or variable direction Mixed-effects model �1.23, slope, 0.34
y = D reaction time

(Table continues.)
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Table 1. Continued

Figure Test statistics and model variables Test 95% CI

5B, panel 2 x = Consistent or variable direction Mixed-effects model �0.20, slope, 0.88
y = D target acquisition time

5B, panel 3 x = Consistent or variable direction Mixed-effects model �0.10, slope, 0.19
y = D trial-to-trial trajectory correlation

5B, panel 4 x = Consistent or variable direction Mixed-effects model �0.21, slope, 1.93
y = D SD target acquisition time

5B, panel 5 x = Consistent or variable direction Mixed-effects model �1.00, slope, 1.25
y = D path length

5C, panel 1 x = Consistent or variable direction Mixed-effects model �0.02, slope, 0.04
y = D no response

5C, panel 2 x = Consistent or variable direction Mixed-effects model �0.15, slope, 0.12
y = D premature response

5C, panel 3 x = Consistent or variable direction Mixed-effects model �0.08, slope, 0.17
y = D no target entry

5C, panel 4 x = Consistent or variable direction Mixed-effects model �0.27, slope, 0.40
y = D incorrect target entry

5D, panel 1 x = Consistent or variable direction Mixed-effects model �0.75, slope, 0.58
y = D reaction time

5D, panel 2 x = Consistent or variable direction Mixed-effects model 0.05, slope, 0.42
y = D target acquisition time

5D, panel 3 x = Consistent or variable direction Mixed-effects model �0.21, slope, 0.06
y = D trial-to-trial trajectory correlation

5D, panel 4 x = Consistent or variable direction Mixed-effects model 0.11, slope, 0.72
y = D SD target acquisition time

5D, panel 5 x = Consistent or variable direction Mixed-effects model 0.20, slope, 0.93
y = D Path length

6A x = Movement consistency Mixed-effects model �2.80, slope , �1.37
y = D incorrect target entry

6B x = Movement consistency Mixed-effects model �3.61, slope , �0.12
y = D target acquisition time

6C x = Movement consistency Mixed-effects model �5.38, slope , �1.26
y = D SD target acquisition time

7C, left x = Consistent or variable direction Mixed-effects model 0.00, slope, 0.01
y = Peak population average activity

7C, right D = Consistent – Variable
Peak population average activity

Paired bootstrap 0.00 , D , 0.03

7D, left x = Consistent or variable direction Mixed-effects model 0.00, slope, 0.01
y = Mean population average activity

7D, right D = Consistent – Variable
Mean population average activity

Paired bootstrap 0.00 , D , 0.01

7F, left x = Consistent or variable direction Mixed-effects model 0.00, slope, 0.03
y = Fraction of active neurons per trial

7F, right D = Consistent – Variable
Fraction of active neurons per trial

Paired bootstrap 0.01 , D , 0.04

7G, left x = Consistent or variable direction Mixed-effects model �0.02, slope, 0.01
y = Amplitude of active neurons per active trial

7G, right D = Consistent – Variable
Amplitude of active neurons per active trial

Paired bootstrap �0.03 , D , 0.01

7H, left x = Consistent or variable direction Mixed-effects model 0.12, slope, 0.22
y = Fraction of tuned neurons

7H, right D = Consistent – Variable
Fraction of tuned neurons

Paired bootstrap 0.10 , D , 0.22

7I, left x = Consistent or variable direction Mixed-effects model 0.00, slope, 0.04
y = Reliability of tuned neurons

7I, right D = Consistent – Variable
Reliability of tuned neurons

Paired bootstrap 0.01 , D , 0.04

8A, Left x = Consistent or variable direction Mixed-effects model 0.00, slope, 0.04
y = Fraction of active neurons per trial

8A, Right x = Consistent or variable direction Paired bootstrap 0.01 , D , 0.04
y = Fraction of active neurons per trial

8A, Left x = Consistent or variable direction Mixed-effects model �0.02, slope, 0.01
y = Amplitude of activation neurons

8A, Right x = Consistent or variable direction Paired bootstrap �0.01 , D , 0.01
y = Amplitude of activation neurons

(Table continues.)
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Following surgery and recovery, mice resumed training until per-
formance recovered to presurgery levels and GCaMP6f expression was
sufficient to image (2-5weeks after surgery). We imaged cortical activity
in layer 2/3 at the depth of ;200mm (see Fig. 7A) with excitation at
925 nm from a Ti-Sa laser (Mai Tai; Spectra-physics) using a two-photon
resonant scanning microscope (B-scope; Thorlabs). Each imaging field
was 512� 512 pixels covering 472� 508mm and scanned at ;28.4Hz.
Each behavior-imaging session continued until mice became disengaged
from the task, completed 170 rewarded trials, or the session reached 1 h,

whichever occurred first. Mice completed;1596 30 (mean6 SE across
15 sessions) rewarded trials in each behavior-imaging session. We
imaged 26 1 fields per mouse (mean 6 SE across 7 mice, range: 1-5),
one field per session, across 8 mice. In our analyses that compared the
two movement directions in relation to their asymmetric movement
consistency, data from 1 mouse were excluded as this mouse showed
nearly equal movement consistency between the two directions.

Movement analysis. Movement onset was defined as the first time at
which the joystick velocity exceeded 20 mm/s continuously for 20ms

Table 1. Continued

Figure Test statistics and model variables Test 95% CI

8A, Left x = Consistent or variable direction Mixed-effects model 0.11, slope, 0.22
y = Fraction of tuned neurons

8A, Right x = Consistent or variable direction Paired bootstrap 0.04 , D , 0.2
y = Fraction of tuned neurons

8A, Left x = Consistent or variable direction Mixed-effects model 0.00, slope, 0.08
y = Reliability of tuned neurons

8A, Right x = Consistent or variable direction Paired bootstrap 0.01 , D , 0.08
y = Reliability of tuned neurons

8B, left x = Consistent or variable direction Mixed-effects model 0.01, slope, 0.03
y = Fraction of active neurons per trial

8B, Right x = Consistent or variable direction Paired bootstrap 0.01 , D , 0.03
y = Fraction of active neurons per trial

8B, Left x = Consistent or variable direction Mixed-effects model �0.01, slope, 0.02
y = Amplitude of activation neurons

8B, Right x = Consistent or variable direction Paired bootstrap �0.01 , D , 0.02
y = Amplitude of activation neurons

8B, Left x = Consistent or variable direction Mixed-effects model 0.11, slope, 0.22
y = Fraction of tuned neurons

8B, Right x = Consistent or variable direction Paired bootstrap 0.09 , D , 0.20
y = Fraction of tuned neurons

8B, Left x = Consistent or variable direction Mixed-effects model �0.00, slope, 0.03
y = Reliability of tuned neurons

8B, Right x = Consistent or variable direction Paired bootstrap 0.00 , D , 0.03
y = Reliability of tuned neurons

8C, left x = Consistent or variable direction Mixed-effects model 0.00, slope, 0.03
y = Fraction of active neurons per trial

8C, right x = Consistent or variable direction Paired bootstrap 0.01 , D , 0.04
y = Fraction of active neurons per trial

8C, left x = Consistent or variable direction Mixed-effects model �0.02, slope, 0.01
y = Amplitude of activation neurons

8C, right x = Consistent or variable direction Paired bootstrap �0.03 , D , 0.01
y = Amplitude of activation neurons

8C, left x = Consistent or variable direction Mixed-effects model 0.08, slope, 0.10
y = Fraction of tuned neurons

8C, right x = Consistent or variable direction Paired bootstrap 0.05 , D , 0.18
y = Fraction of tuned neurons

8C, left x = Consistent or variable direction Mixed-effects model 0.01, slope, 0.01
y = Reliability of tuned neurons

8C, right x = Consistent or variable direction Paired bootstrap 0.02 , D , 0.00
y = Reliability of tuned neurons

9B, left x = Consistent or variable direction Mixed-effects model 0.00, slope, 0.02
y = Trial-to-trial population activity correlation

9B, right D = Consistent – Variable
Trial-to-trial trajectory correlation

Paired bootstrap 0.00 , D , 0.01

10A x = Movement consistency Mixed-effects model �0.10, slope ,�0.04
y = Peak population average activity

10B x = Movement consistency Mixed-effects model �0.28, slope , �0.04
y = Fraction of active neuron per trial

10C x = Movement consistency Mixed-effects model �1.34, slope , �0.42
y = Fraction of tuned neurons

10D x = Movement consistency Mixed-effects model �0.23, slope , �0.03
y = Reliability of tuned neurons

10E x = Movement consistency Mixed-effects model �0.18, slope , �0.03
y = Trial-to-trial population activity correlation

aTest statistics are D in paired bootstrap tests and the slope in mixed-effects models. Plots in Figure 4 include three statistical tests, each corresponding to comparison of inactivation effects between consistent and variable
direction, comparison of behavior between inactivation and control in the consistent direction, and comparison of behavior between inactivation and control in the variable direction.
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and the joystick was displaced at least 1.1 mm from the origin. Target
entry was defined as the first time at which the joystick entered a target
zone. Movement offset was defined as the first time at which the joystick
velocity fell below 20 mm/s continuously for 20ms after target entry. A
movement bout was bounded by movement onset and offset. The peri-
movement period was defined as temporal window from �0.5 to 2.25 s
from movement onset, which included the whole movement bout for
99% of all successful trials. A small fraction of trials (4.0%) was excluded
from our analyses, as movements in those trials progressed along the
edges of the dynamic range of the joystick from the origin to the target,
and we could not reliably estimate the animal’s movement control in the
direction perpendicular to the edge. Reaction time and target acquisition
time were measured as the time from go cue to movement onset, and
the time from movement onset to targe entry, respectively. Path length
was measured as the cumulative displacement from movement onset to
target entry.

Movement consistency: In each session, movement consistency in
each direction was computed as the average trial-to-trial movement cor-
relation across all pairs of movements that entered the correct target.
Trial-to-trial movement correlation was measured using the Pearson’s
correlation coefficient between the two joystick traces (the concatenated
x and y position time series) during the perimovement period.

Consistent versus variable direction: We computed movement consis-
tency for each direction in the last 11 training sessions and designated
the direction associated with a higher mean consistency as the consistent
direction, and the other as the variable direction. The consistent direc-
tion identified this way exhibited a higher movement consistency in a
majority of the 11 sessions in all but 1 mouse in the imaging experiment.
In this exceptional mouse, movement consistency was nearly identical
between the two directions and was higher for the consistent direction in
5 of 11 sessions. This mouse in the imaging experiment was excluded
from all analyses in which we inferred differences related to asymmetric
movement consistency between the two directions.

Neural activity analysis. Single-cell activity: Using custom MATLAB
software, fluorescence images were aligned frame by frame to compen-
sate for lateral motions. ROIs corresponding to individual neurons were
manually drawn on the motion-corrected fluorescence images by cir-
cumscribing the cell bodies based on their GCaMP6f fluorescence inten-
sity distinguishable from the background (mean: 160 neurons/session,
range: 77-289). Pixels inside each ROI were considered as a single cell,
whereas pixels extending radially outward from the cell boundary by 2-6
pixels were considered background. In the case the background included
other cells’ ROIs, those pixels were excluded. To estimate the activity of
a single cell, 70% of the average pixel intensity in its background was
subtracted from the average pixel intensity inside the cell (Hwang et al.,
2017). The time series of the background-adjusted intensity was trans-
formed to dF/F by dynamically estimating the baseline intensity (i.e., the
eighth percentile of the intensity distribution in the 20 s window cen-
tered at each time point). dF/F was further transformed into spiking rate
using the open source algorithm Suite2P (http://www.suite2p.org), in
which the time constant of calcium sensor was set to 0.7 s.

Movement-related activation: A neuron was considered activated in a
given trial during movement if its average activity during the perimove-
ment period (�0.5 to 2.25 s from movement onset) exceeded a neuron-
specific threshold. The threshold of each neuron was determined based
on the distribution of its average activity during the baseline period (�3
to 0 s from cue onset). The baseline period covers the last part of the ITI
during which mice are generally still. We present data analyses using
mean1 2 SD of the baseline activity as the set threshold. However,
results are robust across a wide range of thresholds (see Fig. 8A,B).

Activation reliability: For a given neuron, we computed the fraction
of trials in which the neuron was activated during the perimovement pe-
riod for each direction, respectively. A reliability of 1 indicates that the
neuron is activated in every trial in which movement is made to the cor-
responding direction. A reliability close to zero indicates that the neuron
is rarely activated.

Preferred direction of a neuron: For each neuron, the direction associ-
ated with a higher activation reliability was designated as its preferred
direction. We also performed tuning analysis only using neurons that

showed reliability difference between the two directions of at least 0.01
and found similar trends to the results using all neurons (see Fig. 8C).

Trial-by-trial population activity correlation: The population activity
correlation between two trials was measured as the correlation coeffi-
cient between the two concatenated perimovement activity time series of
all neurons in the imaged population.

Statistical analysis.We collected data frommultiple sessions for each
animal in both inactivation and imaging experiments. As data (e.g., inac-
tivation effects for consistent and variable direction) from the same ses-
sion and from the same animal are not independent samples, we used
linear mixed-effects models when assessing a statistically significant
influence on a dependent variable y (e.g., inactivation effect) by an inde-
pendent variable x (e.g., consistent vs variable direction) as follows. First,
we fit our data with three mixed-effects models shown below, using the
MATLAB function fitlme.

Model1 : y;11 x1 1janimalð Þ1 ðxjanimalÞ

Model2 : y;11 x1 1janimalð Þ1 ðxjanimalÞ1 ðxjanimal : sessionÞ

Model3 : y;11 x1 1janimalð Þ1 ðxjanimalÞ1 ð1janimal : sessionÞ

In all three models, y is a linear function of x, but different random
effect terms are added. In Model 1, random effects are added to account
for the slope and the intercept that vary across animals. Models 2 and 3
include an extra random effect term that reflects dependence of data
measured within each session. In Model 2, the extra random effect term
accounts for the slope that varies across each animal’s multiple sessions.
In Model 3, the extra random effect term accounts for the intercept that
varies across each animal’s sessions. The two additional random effect
terms in Models 2 and 3 could not be used simultaneously because of
the limit in our sample size (i.e., the number of parameters become
larger than the number of observations when including both terms).
After fitting all three models, we selected the model that best explains
our data as follows. We first compared Model 1 to Model 2 and to
Model 3, using a likelihood ratio test as Model 1 is nested within the
other two models. If neither Model 2 nor Model 3 is significantly better
than Model 1 based on the likelihood ratio test, we selected Model 1 as
the best model. Otherwise, we compared the log-likelihood between
Models 2 and 3 and selected the one with a higher log-likelihood as the
best model. If the fixed-effect slope in the best model is significantly dif-
ferent from zero (p, 0.05), we considered that there is a significant
modulation of y by x (e.g., inactivation effect is significantly different
between consistent and variable direction).

In addition to the mixed-effect model analysis, we performed a more
conservative conventional significance test in which we computed the
mean across multiple sessions per animal and performed nonparametric
paired bootstrap test (Hwang et al., 2019b), to check the robustness of
the mixed-effect model results.

The details of the test statistics and CIs of all statistical tests in the pa-
per are described in Table 1.

Results
Long-term learning of the two-direction joystick task
To examine the relationship between motor performance and
M1 involvement after long-term training, we trained mice to per-
form forelimb reaching movements in two distinct directions
using a joystick for several weeks (55 6 3 d, mean 6 SE across
22 mice; 1 session/day). In this task, the mouse grabbed the joy-
stick with their left paw and could move it from the origin in any
direction between forward and downward directions (Fig. 1A).
Each trial began with a visual stimulus, either forward or down-
ward drifting gratings, on a monitor placed on the right side of
the mouse. Two seconds after the visual cue onset, an auditory
tone instructed the mouse to move the joystick (the “go” cue).
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The mouse received a water reward if they moved the joystick
beyond a set distance in the same direction as the visual stimulus
(“target”; Fig. 1B). If the mouse moved the joystick before the go
cue, moved the joystick into the incorrect target, or did not attain
either target within the answer period (10 s), the trial was termi-
nated without a reward.

Over the course of training, task performance improved grad-
ually (Fig. 1C). The fraction of trials in which animals chose the
correct target increased, indicating that they learned to associate
the visual cues with the correct movement targets and learned to
maneuver the joystick accurately to the correct targets. In parallel
to the increased fraction of correct choices, the quality of move-
ments that entered the correct targets (i.e., rewarded movements)
also improved, similar to our previous observation in a single-
direction joystick task (Hwang et al., 2019a). First, rewarded
movements became more efficient as indicated by the decreased
target acquisition time (i.e., time from movement onset to target
entry) (Fig. 1D). Furthermore, rewarded movements became
more consistent from trial to trial (Fig. 1E). We quantified the
consistency of rewarded movements in each direction using the
average correlation coefficient between the trajectories of those
movements, and found that movement consistency significantly
increased with training (Fig. 1F).

Different levels of consistency of the two learned movements
Although the overall task performance and movement quality
improved after long-term training, the attained task performance
and movement quality differed between the two directions. In
most mice, movement consistency that was measured using
between-trial trajectory correlation was higher for one direction
than the other, reliably across sessions in the end of training (Fig.
2A). We examined movement consistency in the last 11 training
sessions in each animal and classified which direction was more
consistent (Fig. 2A). In 15 of 22 mice, movements in the forward
direction were more consistent than the downward direction,
and the opposite in 7 mice. To assess the robustness of the asym-
metric movement consistency between the two directions, we
examined the number of sessions of 11 in which the forward
direction was more consistent for each animal. If the asymmetry
reflects random variability across sessions, the number of ses-
sions that show higher consistency for the forward direction
would be close to 5 and 6 as expected by a binomial distribution
with a chance of 0.5 for each direction. On the other hand, if the
asymmetry reflects a true, persistent difference between the two
directions in each animal, the number of sessions with higher
consistency for the forward direction will be closer to 11 or 0.
Compatible with the latter scenario, we found that the

Figure 2. Asymmetric motor performance between the two reach directions. A, The trial-to-trial trajectory correlation in the last 11 training sessions of the example mouse shown in Figure
1E, separately for each direction. The forward movements are more consistent across trials than the downward movements, reliably across sessions in this mouse. B, The distribution of the
number of sessions of the last 11 in which the trial-to-trial trajectory correlation is higher for movement in the forward than downward direction, across 22 mice. Red line indicates the
expected, null distribution when the direction with a higher correlation is randomly chosen with a chance of 0.5 (i.e., binomial distribution). C, The distribution of the number of sessions of the
first 11 in which trial-to-trial trajectory correlation is higher for movement in the forward than downward direction across 22 mice. The same illustration format as in B. D, The trial-to-trial tra-
jectory correlation as a function of training session, respectively, for consistent and variable directions. The consistent direction of each mouse was defined as the direction associated with a
higher trajectory correlation during the last 11 training sessions. Animals that exhibited the same consistent direction in at least 7 sessions of the last 11 were included. Data are mean6 SE
(n= 21 mice). The mean correlation coefficient in the last 11 sessions was compared between the consistent and variable direction across 21 mice (paired bootstrap test; Table 1). E, The frac-
tion of correct choices, respectively, for the consistent and variable directions defined solely based on the trial-to-trial trajectory correlation. The same illustration format and statistical test as in
D. F, The target acquisition time. The same illustration format and statistical test as in D.
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distribution is skewed to both ends, differently from the binomial
distribution (Fig. 2B). Unlike the last training sessions, the equiv-
alent analysis on the first 11 training sessions resulted in a distri-
bution more similar to the binomial distribution (Fig. 2C),
indicating that asymmetry in movement consistency had not
been established in the early training days.

After defining the consistent and variable directions for each
animal based on movement consistency in their last days of
training, we examined the task performance and movement
quality separately for the two directions. In this analysis, we
removed 1 mouse which showed a weak asymmetry as a consist-
ent direction was not robust across sessions (i.e., the movement
consistency was higher for the forward direction in 5 of 11 ses-
sions). However, results described below remain valid even when
this mouse is included. By definition, movement consistency was
significantly higher in the consistent than variable direction dur-
ing the last 11 training sessions (Fig. 2D). However, it is notewor-
thy that the consistent direction defined from the last 11 training
sessions had already started exhibiting significantly higher move-
ment consistency after session 18, indicating that the asymmetry
gradually developed and was maintained over the course of
training. In addition, the target acquisition time was significantly
shorter for the consistent than variable direction (Fig. 2E). Thus,
movements in the consistent direction were not only more simi-
lar across trials, but also more efficient in achieving the goal than
movements in the variable direction. We also compared choice
behavior in response to the visual cues associated with each
direction and found that the fraction of correct choice was signif-
icantly higher for the cue associated with the consistent direction
than of the variable (Fig. 2F). The number of trials performed in

each direction over the course of training was not significantly
different between the two directions (3419 6 228 vs 33026 267
for consistent vs variable direction; mean 6 SE across 22 mice;
paired bootstrap test, p=0.25). Thus, the amount of training
likely does not explain the observed behavioral differences
between the two directions. At present, we do not know the exact
origins of the behavioral differences. Nonetheless, in most mice,
we found robust asymmetry in task performance and movement
quality between the two directions after long-term training.

Variable movements are more dependent on M1
To examine the relationship between M1 dependence and motor
performance, we conducted inactivation experiments in 10
expert mice. To inactivate M1, we activated PV-expressing inhib-
itory interneurons that express ChR2 (see Materials and
Methods; Fig. 3A,B) by shining blue light into the cranial win-
dows over the forelimb region of M1 bilaterally (Fig. 3C). Each
mouse was also subjected to a control experiment in separate be-
havioral sessions in which light was applied to their headbar
away from the cranial windows, but otherwise identical to the
inactivation experiment (Fig. 3C). To remove any potential non-
specific effects, such as distraction, because of the mice seeing
the stimulation light, all inactivation effects reported hereafter
were assessed by comparing the headbar control and M1 inacti-
vation trials. The statistical significance of inactivation effect on
any variable of interest was assessed using a linear mixed-effects
model in which the variable of interest was modeled as a linear
function of the treatment (i.e., control or inactivation) with ran-
dom effects across animals, and across animals and sessions (see
Materials and Methods). If the fixed-effect slope of the model is

Figure 3. M1 inactivation experiment. A, A widefield fluorescence image of a whole brain extracted from a PV-Cre mouse injected with AAV2-1-EF1A-DIO-hChR2-eYFP in the motor cortex
(M1). Black dotted lines indicate the boundary of ChR2-eYFP expression. Red dotted lines indicate the thinned skull areas over M1. B, A coronal slice near the forelimb region of M1 from a PV-
Cre mouse injected with AAV2-1-EF1A-DIO-hChR2-eYFP (left) and a magnified view (right). PV1 neurons are labeled with red fluorophore from a PV antibody staining. ChR21 neurons express
eYFP. Most ChR2-expressing neurons are PV1. C, Inactivation experiment setup. LED light is placed over the headbar bilaterally in control sessions, or over M1 in inactivation sessions. Each
mouse performed 5 control and 5 inactivation sessions (1 session/day).
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significantly different from zero (i.e., the variable of interest is
significantly modulated by the treatment), we declared that the
inactivation effect is significant. The mixed-effect model allows
us to account for the variables measured from multiple experi-
mental sessions in each mouse without collapsing all the sessions
from each animal by averaging. We also compared inactivation
effects (D = inactivation – control) between the consistent and
variable directions, using a similar mixed-effects model in which
the inactivation effect was modeled as a linear function of the
movement direction with the random effects described above.

Figure 4A displays example movement trajectories in control
versus inactivation condition. In the control condition, this
mouse made the correct directional movements as instructed by
the visual cue for both directions, and movements in the forward
direction were more consistent across trials (Fig. 4A, left col-
umn). Inactivation of M1 did not generally alter consistent-
direction (i.e., forward) movements. In contrast, compared with
the control condition, response to the cue associated with the

variable direction was often erratic when M1 was inactivated
(Fig. 4A, right column). To systematically examine inactivation
effects on task performance, we quantified the fractions of errors
in response to the cues instructing the consistent and variable
directions. The consistent and variable directions of each mouse
were defined in the same way as described in the previous sec-
tion, using their last 11 training sessions before the inactivation
experiment started. Four different types of errors were assessed
in this task: (1) no response, (2) premature response before the
go cue, (3) response but no entry to either target, and (4) entry to
the incorrect target. Single trials can be assigned to more than
one error type, such as error Types 2 and 3 or error Types 2 and
4. We found that M1 inactivation induces only marginal changes
in the fraction of no response in both directions (Fig. 4B). In
contrast, inactivation significantly increased the fraction of pre-
mature response in both directions, and the size of inactivation
effect was not significantly different between the two directions
(Fig. 4B). The increased fraction of premature response appears

n = 8 mice

A B

C

E

D

Figure 4. Asymmetric effects of M1 inactivation between the two reach directions. A, Movement trajectories in a control (left) versus inactivation (right) session. Negative displacements
along the x axis correspond to movements in the forward direction, whereas negative displacements along the y axis correspond to the downward direction. Top (bottom) traces are move-
ments in response to the forward (downward) drifting gratings. Red vertical lines indicate movement onset. There are incorrect choices in response to the downward drifting gratings in inacti-
vation trials. In this mouse, movements in the forward direction were more consistent than in the downward direction during the last training sessions before the inactivation experiment. B,
The effect of M1 inactivation (D = inactivation – control) on the fraction of errors. Four types of errors are examined: no response, premature response, no target entry, and incorrect target
entry. The consistent and variable directions of each mouse are determined from their last 11 training sessions before the inactivation experiment. Thin lines indicate individual sessions. The
direction dependence of inactivation effect was estimated from the slope of a linear mixed-effect model in which the direction is the independent variable and inactivation effect is the depend-
ent variable (see Materials and Methods; Table 1). The red line and pink shade in each plot represent the 95% CI of the fixed-effect slope, and the statistical significance of the slope is also
specified. A significant slope indicates that the inactivation effect shows a significant direction dependence. In the fraction of no response, 19 of 50 individual sessions are overlapped as their
inactivation effects were zero (i.e., D = 0) for both directions. C, The effect of M1 inactivation on the kinematics of movements that successfully entered the correct target. The same illustration
format and statistical tests as in B. D, The same as in B, but per animal basis. The average effect was compared between the consistent and variable direction across 10 mice (paired bootstrap
test). E, The same as in C, but per animal basis.
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to be consistent with the view that motor cortex is involved in
suppressing movements (Ebbesen and Brecht, 2017). M1 inacti-
vation also significantly increased the fraction of trials in which
movement was initiated but failed to enter any target, and the
effect size was not significantly different between the directions
(Fig. 4B), suggesting that M1 inactivation impairs the animals’
ability to complete learned movements in this task. Nevertheless,
in a majority of inactivation trials (60 6 16%; mean6 SE across
10 mice), movements reached the targets. Of those target entry
trials, we examined the fraction of incorrect target entry and
found that inactivation significantly increased incorrect target
entry in response to the cue instructing the variable direction but
not the consistent (Fig. 4B). In other words, animals under M1
inactivation erred more frequently by moving to the consistent-
direction target in response to the cue instructing the variable
direction but not vice versa. These results, based on the linear
mixed-effects model that took into account all individual session
data, were reproduced in the conventional per-animal basis anal-
ysis (Fig. 4D). Therefore, M1 inactivation induced deficits in
withholding and completing learned movements in response to
the cue for both directions, suggesting that M1 plays a role in
suppressing movements and maintaining the initiated motor
program. In addition, M1 inactivation increased the fraction of
incorrect target entry selectively when mice were required to
make movements in the variable direction, suggesting that the
production of the variable-direction movement relies on M1
more strongly than the consistent-direction movement.

To further examine the M1 dependence of learned move-
ments, we compared inactivation effects on kinematics of the
movements that successfully entered the correct target between
the two directions. We found that inactivation effects on the
mean and variability of target acquisition time were selectively
significant in the variable direction but not the consistent, and
the effect sizes were significantly larger for the variable direction
(Fig. 4C,E). That is, compared with the control condition, move-
ments in the variable direction entered the target more slowly
and the target acquisition time was more variable across trials
when M1 was inactivated. On the other hand, the kinematics
of movements in the consistent direction were not signifi-
cantly affected by M1 inactivation. We found that these inac-
tivation results are similar between the two groups of mice,
virally versus transgenically expressing Ch2 in PV neurons
(Fig. 5). Therefore, M1 appears to be more strongly involved
in the kinematic control of movements in the variable direc-
tion than in the consistent.

Our analyses thus far compared inactivation effects in a bi-
nary categorical manner (i.e., consistent vs variable) and found
significantly larger inactivation effects on task performance and
movement kinematics in the variable direction than the consist-
ent. This finding poses the question of whether M1 dependence
of learned movements is modulated by movement consistency at
a finer scale beyond the binary manner comparison. To test this
idea, we used the raw measures of movement consistency for
each mouse as the independent variable of the aforementioned
linear mixed-effect model, instead of the binarized movement
direction (see Materials and Methods). We found significantly
negative slopes in the mixed-effect model for the fraction of
incorrect target entry, the mean target acquisition time, and the
variability of target acquisition time (Fig. 6). That is, inactivation
effects on these variables were significantly modulated by the
continuously varying movement consistency such that move-
ments are progressively less affected by M1 inactivation as move-
ment consistency increases.

Optical illumination heats brain tissue, which could suppress
spiking activity in the region and thus alter behavior even in the
absence of opsins (Owen et al., 2019). Our inactivation results
might have been mediated by such nonspecific effects of light in
M1. However, regardless of the exact mechanism underlying the
perturbation of M1 activity, our interpretation still holds that the
variable-direction movement is more strongly affected by M1 ac-
tivity perturbation than the consistent-direction movement.

Relationship between learned movement consistency and M1
activation level
To investigate how M1 activity relates to movement consistency,
we recorded the activity of neurons in M1 while expert mice per-
formed the two-direction task (n= 7 mice). We virally expressed
the genetically encoded calcium indicator GCaMP6f (AAV2-1-
hSyn-GCaMP6f) in the forelimb regions of M1 and imaged the
activity of individual neurons using two-photon microscopy
(Fig. 7A).

We first compared the population average activity (i.e., activ-
ity averaged across all neurons in each imaging field) during
rewarded movements that successfully entered the correct target
between the consistent and variable directions. The consistent
and variable directions of each mouse were identified based on
their last 11 training sessions before the imaging experiment
began, identically to the inactivation experiment. We found that
the population average activity was stronger when mice made
movements to their variable direction than to their consistent
(Fig. 7B). Both the peak and mean amplitudes of the population
average activity during the perimovement period were signifi-
cantly larger for the variable direction than the consistent (Fig.
7C,D).

The stronger population average activity during movements
in the variable direction may arise frommultiple origins, namely,
(1) the number of neurons activated during each trial is greater
for the variable direction than for the consistent, and/or 2) the
activity of each neuron activated during movement is stronger
for the variable direction than for the consistent. To test the first
possibility, we classified whether each neuron was activated or
not during movement in each trial (Fig. 7E). A neuron was con-
sidered activated in a given trial if its perimovement period activ-
ity exceeded a threshold determined from the distribution of its
baseline period activity (mean6 2 SDs; see Materials and
Methods). We found that a significantly larger fraction of neu-
rons was activated per trial when mice made movements in the
variable than consistent direction (Fig. 7F). To examine whether
the second possibility also contributes to the observed difference
in the strength of population activity, we compared the ampli-
tude of perimovement activity of activated neurons in each trial
between the two directions. Incompatible with the second possi-
bility, we found that the amplitude of the activated neurons was
not different between the two directions (Fig. 7G). Thus, the
stronger population average activity for the variable direction is
mainly driven by a larger fraction of M1 neurons being activated
when mice make movements in the variable direction than the
consistent.

To further investigate the different levels of M1 activation
between the two directions, we characterized the activation reli-
ability and preferred direction for each neuron. The activation
reliability is defined as the fraction of trials in which each neuron
is activated, and the preferred direction is the movement direc-
tion associated with a higher reliability (see Materials and
Methods). We found that a significantly larger fraction of neu-
rons prefers the variable direction (Fig. 7H). That is, a larger
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fraction of neurons is activated more frequently for the variable
direction. Furthermore, the activation reliability across trials in
the preferred direction was higher for neurons which preferred
the variable direction than for those of the consistent (Fig. 7I).
We found that the neuronal activity difference between the con-
sistent and variable direction movements is robust across differ-
ent activation thresholds and tuning strengths (Fig. 8). These
results together indicate that a larger fraction of M1 neurons is
preferentially and more reliably activated during movements in
the variable direction, resulting in a larger overall fraction of acti-
vated M1 neurons and thus larger ensemble average per trial for
the variable direction.

Relationship between learned movement consistency and M1
activity consistency
The higher activation reliability of neurons preferring the vari-
able direction is unexpected given that movement trajectories to

the variable direction are by definition less consistent across tri-
als. So we asked whether this counterintuitive activity pattern
extends to the reliability at the population activity level. Figure
9A displays example perimovement population activity from
individual trials in the consistent versus variable directions in 1
animal, showing more consistent population activity in the vari-
able direction than the consistent, similar to the single-neuron
reliability. To systemically compare the reliability of population
activity across trials, we quantified the trial-to-trial consistency
of population activity using a correlation coefficient separately
for each direction (see Materials and Methods). We found that
the population activity is indeed less consistent during move-
ments in the consistent direction than in the variable (Fig. 9B).

These differential activity patterns between the consistent and
variable directions suggest that the engagement and consistency
of the M1 population may vary at a finer scale according to the
continuously varying movement consistency. To test this idea,
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Figure 5. M1 inactivation effects, separately analyzed for two experimental groups. A, B, The same analyses as Figure 4B, C, but only with 6 mice in which ChR2 were expressed in PV neu-
rons virally. C, D, The same analyses as Figure 4B, C, but only with 4 transgenic mice (PV-Cre::Ai32).

Hwang, Dahlen et al. · Learning-Dependent Disengagement of Motor Cortex J. Neurosci., August 18, 2021 • 41(33):7029–7047 • 7041



we examined various features of population activity as a function
of the continuous varying movement consistency across mice.
These activity features included the peak amplitude of population
average activity, the fraction of activated neurons per trial, the
fraction of directionally tuned neurons, the reliability of direction-
ally tuned neurons, and the trial-to-trial population activity corre-
lation (Fig. 10A–E). In support of our prediction, we found
significantly negative slopes in all five variables, indicating that the
engagement of the M1 population and their trial-to-trial consis-
tency gradually decrease as the consistency of learned movements
increases. Therefore, in addition to movement dependence on
M1, the engagement of the M1 population also changes during
long-term training in accordance with the increasing consistency
of the learned movement. The counterintuitive finding that the
M1 population is more consistent during more variable move-
ments further highlights the notion that M1 population disengages
gradually as a learned movement becomes highly consistent.

Discussion
Learning new motor skills often involves learning of multiple
movement components (e.g., forehand and backhand strokes
when learning tennis), but different movements do not always
improve at the same time nor reach the same level of proficiency.
Analogously, we trained mice to perform forward and downward
forelimb reaching movements concomitantly over several weeks,
but the two-directional movements attained different levels of
motor performance. Intriguingly, the asymmetric levels of motor
consistency between the two-directional movements revealed
that motor consistency is a critical factor influencing long-term
changes in neural circuits that control the learned movement.
Within each animal, the more consistent movements were less
affected by M1 inactivation than the variable direction and
accompanied by weaker and less consistent M1 population activ-
ity. Across animals, the M1 population activity and inactivation
effects varied with each animal’s motor consistency; the more
consistent the learned movement is, the less engaged and less
necessary M1 is. Thus, M1 dependence and engagement are not
a mere function of training time. Instead, movements that ac-
quire higher levels of expertise become more disconnected from
M1 control.

Relationship between movement consistency and M1 activity
consistency
The higher trial-to-trial variability of M1 population activity dur-
ing more consistent movements appears counterintuitive.
However, the seemingly counterintuitive result may be explained
by our previous finding from a single-direction forelimb reach
task (Hwang et al., 2019a). In that study, we found that the
learned movement becomes highly consistent and independent
of M1 after long-term learning, but the corresponding popula-
tion activity in M1 becomes less consistent from trial to trial,
compared with the middle stage of learning (Fig. 10F). This
long-term change may reflect rewiring among neurons in M1,
influencing their correlative firing patterns (Meamardoost et al.,
2020). Considering the previous finding, the two different move-
ments in the current study might be at different learning stages.
The animals were learning the variable-direction movement
more slowly, such that our experiments might be timed at their
mid-stage learning (Fig. 10G). In contrast, the consistent-direc-
tion movement was learned more quickly; thus, the experiments
were done closer to late-stage learning (Fig. 10F). Accordingly,
the consistent movement would be more strongly decoupled
from the M1 activity, which allows M1 activity to be more vari-
able across trials than the variable movement.

Learning-related activity changes in different layers of M1
Although our inactivation experiments silenced M1 activity pre-
sumably throughout the cortical layers, our imaging experiments
examined neuronal activity only in layer 2/3. Layer 2/3 and layer
5 show different patterns of learning-related changes (Masamizu
et al., 2014; Peters et al., 2017a), and inhibiting layer 5 activity
can impair expert-level motor performance in certain tasks
(Biane et al., 2019; Sauerbrei et al., 2020). However, the involve-
ment of layer 5 at the expert stage might be task-dependent as
learning-related disengagement has also been found in layer 5
neurons. The level of movement-related activity of M1 layer 5
neurons that project to the dorsolateral striatum (DLS) gradually
decreases over the course of motor skill learning (Kupferschmidt
et al., 2017). Furthermore, selective blockade of synaptic trans-
mission from the DLS-projecting M1 neurons during early, but
not late, training impairs motor learning, indicating an early
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Figure 6. M1 inactivation effects modulated by the consistency of learned movements. A, The effect of M1 inactivation on the fraction of incorrect target entry as a function of the move-
ment consistency (i.e., the trial-to-trial trajectory correlation) of each animal that was computed from their last 11 training sessions for each direction separately. Different colors for different
mice. For illustration purposes, inactivation effects for each animal were shown as mean6 SE across their inactivation sessions. Solid circles represent PV-Cre mice with virally expressed ChR2.
Empty circles represent PV-Cre::Ai32 mice. The dependence of inactivation effect on the movement consistency was estimated using a linear mixed-effect model, similar to Figure 4B, but move-
ment consistency that continuously varied across animals was used as the independent variable. B, The effect of M1 inactivation on the mean target acquisition time as a function of movement
consistency. The same format and statistical test as in A. C, The effect of M1 inactivation on the variability of target acquisition time as a function of movement consistency. The same format
and statistical test as in A. Inactivation effects on the fraction of incorrect target entry, mean target acquisition time, and variability of target acquisition time showed significantly negative
slopes (Table 1), indicating that effects decrease proportionally with movement consistency.
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transient role of the corticostriatal projection neurons in
motor skill learning (Wolff et al., 2019). Thus, in some
tasks, corticostriatal neurons in M1 layer 5 may also become
decoupled from the learned movement once the learned
motor skill is consolidated.

The origins of different motor performance between the
two-directional movements
The two forelimb movements in our task attained different levels
of motor performance despite the almost equal durations and

trial numbers of training. The direction with better performance
was idiosyncratic such that some animals were better in the for-
ward direction versus other animals that preferred the downward
direction. A multitude of factors may contribute to the unequal
performance. For instance, dynamics of the joystick device (i.e.,
relationship between the motion and torque) are not perfectly
symmetric between the two directions, possibly rendering one
direction easier to control than the other. The biomechanics
involved in moving the forelimb (e.g., the used muscle groups
and their coordination) are also intrinsically different between

B C

E F

A

D

G

IH

Figure 7. M1 neural activity modulated by the consistency of learned movements. A, The session-average fluorescence image of an example whole field of view in M1. Right two images
represent magnified views showing individual neurons expressing GCaMP6f. B, The population average activity during movements in the consistent versus variable directions in an example M1
field. Data are mean6 SE across trials. The consistent and variable directions of each mouse were defined from their last training sessions before the imaging experiment. C, The peak ampli-
tude of perimovement, population average activity during movements in the consistent versus variable directions. Left, The movement direction dependence of the peak amplitude was
assessed using a mixed-effect model similar to Figure 4B. Red line and pink shade in each plot represent the 95% CI of the slope, and the statistical significance of the slope is
specified (Table 1). Significant slopes indicate a significant dependence of the activity amplitude on the movement direction. Right, The same as at left, but per animal basis
analysis. The average across sessions was taken for each animal. The amplitude was compared between the consistent and variable directions across 7 mice (paired bootstrap
test). The same illustration format and statistical tests were applied to C–D and F–I. D, The mean amplitude of perimovement, population average activity. E, The activity of
two example neurons in three forward and three downward movement trials. In each plot, the left side of the activity is aligned to cue onset, whereas the right side is
aligned to movement onset. Cell 1 is tuned to the forward direction (consistent direction) as it is more reliably activated during the perimovement period in forward move-
ment trials. Cell 2 is tuned to the downward direction. F, The fraction of neurons activated per trial when movement is made to the consistent versus variable direction. G,
The perimovement activity amplitude of neurons that are activated. H, The fraction of neurons tuned to the consistent versus variable directions. I, The reliability of activa-
tion during movement to the preferred direction in consistent direction versus variable direction tuned neurons.
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Figure 8. M1 activity comparison between the consistent- and variable-direction movements. A, The same format and analyses as Figure 7F-I, but using mean1 1.5 SD of the baseline ac-
tivity as the per-neuron activation threshold. B, The same as in A, but using mean1 2.5 SD of the baseline activity as the per-neuron activation threshold. Note the similar trends in the direc-
tion dependency across different thresholds. C, The same as in A, but only using neurons that showed reliability difference between the two directions of at least 0.01. The trends are similar to
the analyses using all neurons.

Figure 9. The consistency of M1 population activity modulated by movement consistency. A, M1 population activity during 5 rewarded trials in the consistent (top) versus variable (bottom)
directions. Each row of the heat map represents a single neuron, and neurons are sorted based on the time of their peak activity in the first trial. B, The trial-to-trial population activity correla-
tion for the consistent versus variable directions. The same illustration format and statistical tests as in Figure 7C.
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the two directions (d’Avella et al., 2006). The posture imposed by
head fixation may make one direction more awkward to coordi-
nate than the other. A combination of such factors that could dif-
fer from device to device and from animal to animal may
underlie the different skill levels achieved between the two
directions after a similar amount of training. A remaining
open question is whether further training would allow ani-
mals to achieve a higher consistency for the variable-direc-
tion movement; thus, the variable-direction movement
would become less dependent on M1, and its associated M1
activity would become less consistent. One possibility is
that learning of distinct but similar movements may inter-
fere with each other as they compete for common neural
resources (Shadmehr and Brashers-Krug, 1997; Cantarero
et al., 2013). In such a case, removing interference during
further training by practicing the variable direction alone
might result in improvement. Testing this possibility may
further illuminate the neural mechanisms underlying motor
learning of multiple novel movements and suggest efficient
ways to teach complex motor skills consisting of various
distinct movement components.

Increased incorrect choices in response to the variable-
direction cue with M1 inactivation
In addition to the altered kinematics selectively in the vari-
able-direction movement, we found that M1 inactivation
increases the fraction of the consistent-direction movement
in response to the cue instructing the variable-direction
movement, but not vice versa. The increased rate of the
consistent-direction movement, by itself, might suggest

various interpretations regarding the role of M1. First, M1
may perform sensorimotor association between visual cues
and the appropriate motor goals, and M1 inactivation could
impair this associative function, resulting in inaccurate tar-
get selection or inaccurate activation of a movement plan to
the consistent direction, which may be the default preferred
direction in our task. Second, M1 may be involved in sup-
pressing highly consistent movements, in favor of less con-
sistent movements to allow the exploration necessary for
learning. Inactivation of M1 could then interfere with this
selective suppression, increasing the rate of the consistent-
direction movement.

Given other additional inactivation effects we observed,
however, we favor the interpretation that M1 is actively
involved in the control of variable-direction movements,
whereas consistent-direction movements are controlled by
M1-bypassing circuits. When animals choose a movement
from a known, fixed set of alternatives as in our task, senso-
rimotor areas in the brain may prepare multiple movement
plans until information to determine the correct response
becomes available (Cisek and Kalaska, 2010; Klaes et al.,
2011; Heindorf et al., 2018). In our task, the brain might
simultaneously prepare both forward and downward
reaches. Under the normal condition, the preparatory activ-
ity for the correct movement might prevail following the
cue while the other degrades. However, when M1 is inacti-
vated, the preparatory activity in M1 is perturbed, and the
preparatory activity elsewhere may dominate the motor
response. That is, the consistent movement prepared in the
circuit bypassing M1 may not be suppressed when M1 is

Figure 10. Disengagement of M1 modulated by motor performance. A, The peak amplitude of M1 population average activity as a function of movement consistency.
Different colors for different mice. For illustration purpose, inactivation effect for each animal was shown as mean 6 SE across imaging sessions. The dependence of the ac-
tivity amplitude on the movement consistency was estimated using a linear mixed-effect model similar to Figure 6A. The significant slope indicates that the amplitude is sig-
nificantly modulated by the movement consistency (Table 1). B, The fraction of M1 neurons activated per trial during perimovement period as a function of movement
consistency. The same illustration and statistical test as in A. C, The fraction of tuned neurons as a function of movement consistency. The same illustration and statistical
test as in A. D, The activation reliability of tuned neurons as a function of movement consistency. The same illustration and statistical test as in A. E, The trial-to-trial popu-
lation activity correlation as a function of movement consistency. The same illustration and statistical test as in A. F, G, The change of motor performance and movement
consistency, M1 activity consistency, and M1 dependence over the course of long-term training proposed by Hwang et al. (2019a). The two-directional movements in the cur-
rent study take different time courses of learning. Movements in the consistent direction (top) may correspond to the later phase of learning than movements in the variable
direction (bottom).
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inactivated, resulting in an increased fraction of trials in
which the consistent-direction movement is executed. This
interpretation fits well with our other findings that (1) even
when variable-direction movements are made under M1
inactivation, they still exhibit altered kinematics; and (2)
the normal M1 activity is strongly related to the kinematics
of the variable-direction movement.

Benefits of M1 disengagement from learned movements
It is unknown why the control of learned movements moves
from M1 to elsewhere. A tempting hypothesis is that the
random explorative nature of M1 activity is adaptive for
learning and refinement of new skills, but such an explora-
tion may introduce unwanted variability for well-learned
movements. So once movements are well learned and do
not require further refinement any longer, it might be bene-
ficial for the learned movement to be under the control of a
neural pathway in which activity is more stable than M1.
Analogous to this concept, it has been shown in songbirds
that the relative influence of a songbird brain area LMAN, a
source of motor variability that promotes song learning,
gradually weakens while the influence of another brain area
that generates stereotypic activity patterns increases as the
learned song becomes crystalized (Garst-Orozco et al.,
2014). Functional imaging and perturbation in the human
also suggest that, following motor learning, the neural cir-
cuit representing the learned motor program changes and
that this change may be associated with the increased func-
tional stability of learned movements (Shadmehr and
Holcomb, 1997; Muellbacher et al., 2002). Recent studies
report that DLS might be an important node of an alterna-
tive pathway bypassing M1 in the late stage of learning
(Dhawale et al., 2019; Wolff et al., 2019). Given the earlier
evidence that automatic, habitual responses rely on DLS
(Yin and Knowlton, 2006), a transfer of control from M1 to
DLS might also facilitate the automatized execution of
learned movements that is often a feature of highly skilled
movements (Passingham, 1996; Schmidt et al., 2018). Such
a transfer would also make the limited resources of M1
available for learning of new movements.
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