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Abstract

Blood coagulation is a complex system comprised of numerous biochemical reactions.
Due to this complexity, mathematical modeling has been used to increase the overall un-
derstanding of the system as a whole, determine previously unknown mechanisms, and to
predict system responses. These models, however, may involve uncertainty in both param-
eter values and kinetic schemes that describe the reactions; this dissertation examines two
such ideas. First, we examine the interactions between a specific coagulation factor, FXa,
and an experimental tool designed to measure its action, a chromogenic substrate. Second,
we examine a more complex mathematical model in regards to its parametric uncertainty.
Chapter 1 gives a background on the mathematical tools used in this dissertation and
necessary for uncertainty quantification (UQ) and an overview of the two aforementioned
systems. In Chapter 2 we demonstrate how an application of UQ identifies a new model
for product inhibition between FXa and its chromogenic substrate, which is validated ex-
perimentally. In Chapter 3 we conduct an extensive local and global sensitivity analysis for
a mathematical model of flow-mediated blood coagulation. We determined that for many
cases a local analysis is sufficient to understand the uncertainty in the model’s output, but
that for certain cases there are classes of parameters that exhibit strong synergistic be-
havior, and so a global method that is capable of resolving interaction effects is necessary.
These results motivated the work in Chapter 4 where we used global sensitivity analysis
on a mathematical model to identify a novel mechanism for recovering a normal clotting
response in hemophilia A; the potential mechanism was further supported by experimental
validation. Chapter 5 summarizes the conclusions from the preceding chapters and presents
ongoing work relating to the two projects.
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Chapter 1

Introduction

From the mysteries at the heart of the cell to the formation of new species, biological
systems with their complicated origins and evolving adaptation can sometimes leave us
with more questions after studying them than we had before [1]. Mathematical models,
which transform a physical system into the clear rule-based language of mathematics, are
necessary to study such complex systems. This translation from the physical world to a
mathematical model is never perfect, or as statistician George Box put it, “All models are
wrong, but some are useful” [2], which means they can still give us deeper insight into the
confusing physical world than we originally had. The creation of a model is rarely the final
goal. Instead, one hopes to use the model to learn more about the original physical system
and to predict what will occur in novel situations. One way to do this is by understanding
how uncertainty in the model - both from its inputs and its form - drive uncertainty in the
model predictions. Two classes of methods designed for this are Uncertainty Quantification
(UQ) and Sensitivity Analysis (SA). These methods give insight into the importance of
parameters in a system and can be used as a predictive tool to guide experimental design
and generate new hypotheses.

The focus of this dissertation will be on applying these methods to one such complex
system: hemostasis, which is the arrest of bleeding from an injured vessel and encompasses
blood coagulation and blood clot formation. Over the last several decades, many models
have been proposed to better understand the intricacies of the hemostatic system, with
varying mathematical levels of accuracy and complexity [3]. These models are formulated
using different mathematical tools, such as the Law of Mass Action [4], with some only
focusing on subsets of the coagulation system, for example, the role of platelet deposition
and surface mediated biochemical reactions to clot formation [5]. Importantly, even with
the abundance of extant models, open questions about the clotting system exist, leading
to a novel model being developed, an old model reinterpreted, or both. However, with so
many coexistent models, some natural questions arise: How accurate can these models be?
What, if anything, does the uncertainty in a model mean? Which parameters of the model
are most important to successful coagulation? The quickly growing discipline of UQ gives
us some tools to answer these questions. A merging of applied mathematics, statistics,
and experimental design, UQ offers a useful structure to calibrate, fit, and validate math-
ematical models incorporating uncertainty. This dissertation will showcase applications of
UQ methods to 1) provide evidence for a missing reaction in a common chemical assay, 2)
perform a detailed sensitivity analysis of a coagulation model, and 3) identify a potential
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therapeutic target for a bleeding disorder.
We will first present a review of the mathematical methods used in this dissertation

and background information on the coagulation system itself. Chapter 2 provides evidence
for product inhibition in certain chromogenic assays, which is confirmed and validated
by experimental evidence. In Chapter 3, we present a detailed sensitivity analysis of a
coagulation model, comparing the results of local and global methods. Chapter 4 describes a
potentially novel method of rescuing normal bleeding with Hemophilia A, by the unintuitive
lowering of certain clotting proteins. Chapter 5 describes future directions and extensions
for this work.

1.1 Background on Uncertainty Quantification
The models considered in this thesis are deterministic, i.e., where a fixed input returns a

fixed output, as opposed to a truly random model, such as Brownian motion (for more infor-
mation, see [6]). However, while the models are deterministic, they still display stochastic
output, owing to the inherent uncertainty in the model’s parameters. The methods de-
scribed below offer a means to better understand how this parametric uncertainty maps
to a model’s predictions, an important aspect for the types of biological models we will be
focusing on.

Classification of Uncertainty

General uncertainty can be divided into two classes, aleatoric and epistemic, depending
on its source [7, 8]. The line between these categories is frequently blurred, especially as
complex systems are continued to be better understood, but it is still a useful distinction
for modeling purposes.
Aleatoric Often called statistical uncertainty, aleatoric uncertainty arises from either a truly
random process, such as quantum interactions, or from a system that is so complex that
it is indistinguishable from random, e.g., the roll of a die. If we had absolute information
about the rolling die, such as the exact angle and force of impact, the strength and direction
of wind currents, etc., then we could theoretically predict the die roll with no uncertainty.
Since such precise information is not available, we are forced to treat the die as a “known
unknown”. Because of this, aleatoric uncertainties may be best represented as a true random
variable with an associated probability distribution. Many physical parameters are aleatoric
in nature, such as the rate of two proteins interacting or the occurrence of a mutation in a
gene. Importantly, such uncertainties cannot be mitigated with increased precision. Rather,
multiple replicate experiments are required to determine an average measurement.
Epistemic Also called systematic uncertainties, epistemic errors stem from a lack of knowl-
edge about the full system, such that if we were to obtain more information, we would be
able to reduce or remove the uncertainty. One source of epistemic error is numerical inac-
curacy in computations (e.g., rounding error, truncation error, etc.). These errors are often
biased due to floating point arithmetic and are not a function of the underlying system. One
important type of epistemic uncertainty is model discrepancy where, due to simplification
or lack of knowledge, the model of a system does not accurately simulate the underlying
reality. Every model contains these systematic errors to some extent, so quantifying their
impact is important to understanding the reliability of the model.
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1.1.1 Forward UQ

A major goal of UQ is to propagate error from uncertain model parameters to com-
putable model outputs (see Figure 1.1), allowing for the creation of a prediction interval for a
quantity of interest (QoI). Uncertain model parameters are first reinterpreted as probabilis-
tic random variables with defined probability distributions. Given a standard mathematical
model,

Y = f(X , ~θ) (1.1)

where f represents the model, Y the model output (i.e., the QoI), X the independent
variables of the model (e.g., space or time), and ~θ = (θ1, . . . , θN ) the N uncertain model
parameters. We interpret ~θ as a N dimensional random variable with associated probability
space (Ω,F , P ), where Ω is the overall sample space, F is the set of measured states, and
P is a function mapping states to probabilities, and then reinterpret our QoI as a random
variable itself, with its own associated probability space. After the model simulations, the
last step in error propagation is finding statistics or properties of this QoI distribution, e.g.,
its mean, variance, skew, etc.

Two main approaches are used to compute these statistics: Monte-Carlo methods and
Surrogate Models, each with unique trade offs between accuracy and computational cost.

Figure 1.1: Schematic of Forward UQ or error propagation. Uncertain inputs,
represented here as θi, θj , θk with their own distributions, are propagated through a model,
from which a quantity of interest (QoI) is computed. Because the inputs are described by
distributions, the QoI will necessarily have a distribution as well.

Monte-Carlo Approach

One method of propagating uncertainty from parameters is to directly evaluate the
model with parameters sampled from their specified distribution. This is only possible if
the distributions of the parameters is known. First, a collection of M samples are drawn,
{~θ1, . . . , ~θM}, according to their individual distribution, P (~θ). These samples are then
evaluated in the model,

Yi = f(X , ~θi), (1.2)
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yielding an ensemble of model evaluations. Note, the evaluations here are deterministic
according to their model f . These samples are then used to directly compute statistics of
the QoI distribution in the classical fashion: the expected value,

E [Y] ≈ 1
M

M∑
i=1
Yi, (1.3)

and the variance

Var [Y] ≈ 1
M(M − 1)

M∑
i=1

M∑
j>i

(Yi − Yj)2. (1.4)

While intuitive and simple to implement, this approach suffers from slow convergence. The
mean converges asymptotically like 1/

√
M (due to the central limit theorem), which for

computationally intensive models may be infeasible.
Several improvements to this method have been suggested, namely Quasi-Monte-Carlo

(e.g., Latin Hyper Cube) and sparse grid sampling methods [9, 10]. Both take advantage
of low-discrepancy sequences to more efficiently sample the parameter distributions. For
example, to draw N samples according to a Latin Hyper Cube sampling approach, the
parameter space is first divided into N equal partitions, and then the N samples are drawn
from the partitions uniformly. This prevents random samples from clustering together and
instead forces points to more fully explore the entire domain.

Surrogate Models

Many models of interest are computationally complex, such as PDE-based simulations
of fluid flow, ignition, and hydrology. These models typically contain large numbers of
parameters, incorporate complex physics, and have individual run times exceeding several
hours. This makes sampling based approaches for UQ highly infeasible. One potential
solution is to construct a surrogate model, variablly refferred to as a meta-model or reducded
order model depending on the field. These models are approximations for the original
simulation but with drastically lower model run times and yet are capable of reproducing
the original model output within a specified tolerance.

Several such surrogate model candidates have been proposed, ranging from simple re-
gression to more sophisticated Gaussian processes models (i.e., kriging) [11]. All, however,
rely on being able to efficiently reproduce the model output response. In general, there
are two classes of surrogate models defined by how the approximations are implemented.
Intrusive methods, such as classical Polynomial Chaos [12], change the fundamental govern-
ing equations of the model. Non-intrusive methods, such as regression or collocation based
methods [13], use samples from the full forward model without altering the model itself.

1.1.2 Parameter Estimation

Another goal of UQ is the accurate estimation of model parameters that incorporate
sources of uncertainty, such as experimental error, model discrepancy, or randomly vary-
ing parameters (aleatoric uncertainty). Many approaches to parameter estimation rely on
optimization theory, making use of methods such as gradient descent, Newton’s method,
or pattern based searches such as Nelder-Mead [14–19]. These methods generally seek to
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minimize a loss function that measures the misalignment of the model output with the
available data,

L(~θ) =
∥∥∥Ỹ −D∥∥∥2

2
, (1.5)

where Ỹ is the model output and D is the data. This loss function can in practice be
difficult to work with as it may have rapidly changing gradients, saddle points, and sub
optimal local minima, which make the identification of the global extrema challenging to
obtain. Furthermore, this approach generally only allows the identification of a single point
estimate for ~θ with further analysis being required to determine confidence intervals or
statistics about the parameter estimates.

Maximum Likelihood Methods

With Maximal Likelihood Estimation (MLE) [18], instead of minimizing a loss function,
one attempts to maximize the probability of observing the collected data given a parameter
estimate, utilizing the so called “Likelihood” function,

L(~θ|x) = p~θ(x), (1.6)

where p~θ is a probability density function indexed by the parameter ~θ. Note, while p~θ(x)
necessarily integrates to 1, the Likelihood does not, since the independent variable is ~θ and
not x. Finding ~̃θ that maximizes the Likelihood gives the parameter estimate that makes
the data highly probable. The choice of p~θ(x) is determined by the user and the system
being modeled.

Bayesian

Instead of estimating a single best fitting parameter, the Bayesian framework interprets
model parameters as distributions, with ~θ understood to be a random variable drawn from a
distribution, ~Θ(ω), and the data as individual realizations [14, 20–22]. Bayesian parameter
estimation then results in a posterior distribution of ~θ, which incorporates information from
the observed data, e.g., the conditional distribution p(~θ|D). Computing this distribution in
practice requires the eponymous Bayes rule

π(θ|D) ∝ π(D|θ) π(θ), (1.7)

where D is the observed data, π(θ|D) is the sought after posterior distribution of the model
parameters, π(D|θ) is the likelihood of the data, and π(θ) is the prior distribution. This
prior encodes the relative belief about the parameters before observing new data and is
an important difference between Bayesian and non-Bayesian (i.e., Frequentist, see [23–25])
methods. If nothing is known about the parameters beforehand, then an uninformative (or
flat) prior is used. More likely, however, some information about the parameters is known,
such as sign or relative magnitude, which can be encoded in a prior distribution.

There are pros and cons to the inclusion of priors in parameter estimates [25]. Some
feel that prior distributions unnecessarily bias model estimates with the practitioners pre-
conceived parameter opinions, yet they offer a major advantage when working with systems
that have unidentifiable parameters. For example, in work described in Chapter 2, a kinetic
reaction with unidentifiable parameters is still able to be fit to data because information
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from the manufactured was able to be included as a prior. While these differences exist,
it is important to note that with moderate assumptions and an uninformative prior - such
as a uniform - it can be shown that the maximum a posteriori point from the Bayesian
approach is recovered in the data limit (i.e., the number of data points goes to infinity)
when using MLE [20]. What we gain from the Bayesian approach is a full understanding of
the parameter’s distribution, from which statistical quantities, like credibility intervals, can
be easily computed. Not without a cost, Bayesian methods require a larger computational
budget as an exponentially increasing number of samples are needed to fully explore the
high-dimensional posterior distribution.

Markov Chain Monte Carlo The direct evaluation of the posterior distribution is usually
impossible. If the likelihood and prior satisfy certain conditions (e.g., when the distributions
are conjugate to one another), then the posterior can be determined analytically; however,
such cases are rare in practice. In most practical applications, the posterior distribution
has to be found via numerical calculation, with Markov chain Monte Carlo (MCMC) being
the most common method used [26].

MCMC does not directly produce the posterior distribution, but instead gives a way
to draw samples from it. These samples allow for statistics of the posterior distribution,
such as its mean and variance, to be computed. A process to sample the distribution for θ,
i.e., a sampler for θ, is constructed by carefully defining an aperiodic and recurrent Markov
process such that its long time stationary distribution is the desired posterior. This is
accomplished by splitting the sampling process into two parts: 1) propose a new sample,
and 2) decide to accept or reject it. Different MCMC methods utilize distinct strategies
for the two steps, for example the standard Metropolis-Hastings algorithm [27] uses an
arbitrary proposal distribution (e.g., a uniform centered at the last sample) and carefully
adjusts the acceptance probability so that the posterior distribution is obtained. So long
as the Markov process is aperiodic with no absorbing states (i.e., ergodic), then a unique
equilibrium distribution is guaranteed to exist [26].

The major limitation of this approach is its computational expense. First, every step in
the Markov Chain requires an evaluation of the likelihood, which can be computationally
taxing if the model is complex and a large number of samples is required. Second, while
convergence is guaranteed, the number of samples needed to achieve convergence is difficult
to measure a priori. Because of this, several variants of MCMC have been developed that
try and mitigate these challenges, among them are the Hamiltonian method [28, 29], which
adds a momentum component to each parameter in order to accelerate convergence, and
slice sampling [30], which automatically adjusts the proposal step size for each parameter.
While MCMC methods have been used with thousands of unknowns [31], the applications
described in Chapter 2 are sampling a posterior with approximately 10 dimensions. Fur-
thermore, the likelihood model used in Chapter 2 is efficient to evaluate. With a modest
dimension size and a fast likelihood model, advanced MCMC methods are not necessary.

One of the simplest and most effective additions to the standard Metropolis-Hastings
algorithm is an adaptive learning of the parameter covariance (see Algorithm 1). In the
standard algorithm, parameters are assumed to be independent of each other, a property
that is likely inaccurate. This independence is encoded by the proposal distribution of the
MCMC sampler, which generates new potential sample points. When the proposal distri-
bution poorly matches the posterior (e.g., has a large Kullback-Leibler divergence), newly
generated samples will frequently be rejected, resulting in slow convergence to the poste-
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rior. Instead of continuing with the independence assumption, the parameter covariance
is numerically computed as successful samples are drawn. The efficiency of the sampler is
then increased significantly by using this covariance, which essentially uses the previously
computed samples as a template for generating new sample draws. To maintain ergodicity,
the covariance updates must be stopped at some point (e.g., a prescribed number of steps)
after which actual posterior samples may be taken. For the applications discussed in Chap-
ter 2, a normally distributed proposal is used and refined by the adaptive process described
above.

Algorithm 1 Adaptive Random Walk Metropolis-Hastings
Require: Initial parameters: θ0, Initial Likelihood: y0 = L(θ0|D), Initial Covariance:
V = I
loop {Repeat until convergence is reached}
θ̂ = θi−1 + z, where z ∼ NM (0, εV ) {Construct new parameters}
ŷ = L(θ̂|D) {Evaluate likelihood at new parameters}
A = ŷπ(θ̂)/yi−1π(θi−1) {Compute acceptance ratio}
r = random[0, 1] {Draw Uniform random between [0,1]}
if r < A, then {Update parameters}
θi = θ̂
yi = ŷ

else {Keep old parameters}
θi = θi−1
yi = yi−1

end if
if mod(i, T ) = 0 and i < B, then {Update covariance at preset intervals up until step
B}
V = COV ([θ0, · · · , θi])

end if
end loop

One method to determine MCMC convergence is the Geweke diagnostic [32], which
uses a standard difference between two sample means for the early and late sections of
the Markov chain trajectory. It assumes that while the chain has yet to converge to the
posterior distribution (a state known as “burn-in”), the chain mean will be different from
the converged state (see Figure 1.2A). A threshold for acceptance (typically α = 0.05) is set
and compared with the test. Other methods include comparing the sampled distributions
directly, such as with a Kolmogorov-Smirnov test [33], to determine if convergence has taken
place.

While the Markov-Chain provides samples of the posterior distribution, the samples are
generally correlated. This means that the ith sample contains most of the information from
the i-1st sample. To overcome this, the posterior chain is thinned [34] by only keeping 1 out
of every Mth sample, where M represents the number of lags, i.e., the number of adjacent
samples to skip (see Figure 1.2B), required to drop the autocorrelation of the chain below a
preset threshold (α = 0.05). This thinning removes the strongly correlated posterior samples
and drastically reduces the posterior sample size, simplifying any necessary post-processing.
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Figure 1.2: Examples of Burnin and Autocorrelation for an estimated param-
eter. The first 200,000 steps of the parameters MCMC trajectory (A) show an early con-
vergence to the posterior, with burnin occurring within 50,000 steps. The autocorrelation
of the chain (after burnin was removed) in (B) drops below the preset threshold of 0.05,
indicating posterior samples are no longer strongly correlated, after approximately 200 lags
(skipped samples in the chain).

1.1.3 Sensitivity Analysis

Sensitivity Analysis (SA) was developed to better understand the relationship between
changes in inputs and their corresponding changes in output QoIs. There are several uses
for general SA, including the reduction of the number of active parameters in a model and
the identification of an important subset of parameters for further analysis [35].

SA can be separated into two general classes: local and global sensitivity analysis (LSA
and GSA, respectively). LSA is used to examine how small, local perturbations to model
parameters affect model outputs about some nominal point in parameter space [8]. GSA
considers the impact of varying parameters simultaneously together over their full range of
possible values [36]. Doing so comes at the added cost of computational complexity. Where
LSA methods usually require O(N) function evaluations, GSA methods need significantly
more. The increased information yielded from GSA over LSA has up until recently not been
worth the added computational cost. For example, many of the most used GSA algorithms
were first described in the late 1980s, but have only become popular in the last decade [37].

Local Sensitivity Analysis

LSA includes methods for quantifying the effect of parameters varying over a small
range near a fixed point of the input space, x0 =

[
x0

1, x
0
2, · · · , x0

p

]
, with the mathematical

definition for the sensitivity of parameter i written as

φi = ∂Y
∂xi

(
xi
Y

)
, (1.8)

where Y is the measured QoI, xi is the ith parameter, and the product of xi/Y normalizes
the index [38]. These gradients can be computed analytically if the model contains gradient
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information [39], or numerically using a derivative approximation, such as finite differences
[40]. LSA is fast computationally, but inappropriate when the model input is uncertain or
when the model is non-linear [36, 41].

Global Sensitivity Analysis

Similar to the Bayesian framework for parameter estimation, GSA considers the under-
lying system output to be a random variable over a probability space of parameter inputs
and quantifies the sensitivity of a model output by its variance. Determining analytical
representations of system outputs with respect to the parameter space is only possible for
simple systems, e.g., linear systems, so most applications resort to Monte Carlo sampling
to explore the parameter space. While computationally taxing, Monte Carlo sampling is
easily implemented and applicable to all models, including those that contain non linearities
between model parameters [36]. While other methods exist, such as the direct evaluation of
global sensitivities via Polynomial Chaos expansions [42], this dissertation will only focus
on their direct estimation.

Sobol Indices One method of GSA, first described by Sobol in 1990 [43], measures the
portion of a model’s output variance attributable to an individual or set of parameters.
Called Sobol sensitivity indices (SIs), this GSA method relies on the analysis of variance
decomposition of a function to determine the fraction of variance for the QoI attributable
to each individual parameter. A major benefit of SIs is that they require only function
evaluations of the target model and no gradient information, making them applicable to
complex or black-box models. Additionally, since the contribution to the output variance
is the only quantity being determined, SIs are applicable to highly nonlinear models [44].
The method requires few strong assumptions, that parameters be independent and that the
variance of the measured QoI be finite, or equivalently, that the forward model f(x) be
square integrable, ∫

Ω
|f(x)2p(x)| dx < C, (1.9)

where p is the probability density function associated with x.
The SIs for a QoI, defined as a random variable, Q, with respect to a random parameter

of inputs, x = (x1, x2, . . . , xP ), with the forward model f(x), may be decomposed into

Var [Q(x)] = V =
P∑
j=1

Vj +
P∑
j=1

P∑
k=j+1

Vjk + · · ·+ V1...P . (1.10)

Here the Vj are the contributions to the variance of Q from the individual random variables
xj , Vjk are the second order terms, representing the contribution to the variance from the
interaction between random variables xj and xk, which builds up to V1...P , which represents
the variance contribution from all P parameters interacting together.

To determine each parameter’s individual effects on Q, the so-called First Order SIs are
formed by normalizing the first order variance terms by the total variance

Sj = Vj
V
, (1.11)

where
∑
Vj = 1 if and only if all interaction terms have zero contribution to the variance

of the model output Q. To measure a parameter’s overall impact on the variance of Q, the
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Total Order SIs capture the effect from both individual and interaction terms by summing
all variance terms that contain the j-th parameter, typically written as

STotj = 1− V−j
V

, (1.12)

where V−j is the set of all variance terms not containing the j-th parameter. Unlike the first
order case, the total order SIs can sum to greater than one since interaction terms between
parameters can be double counted.

Computing Sobol SIs While several methods for computing SIs exist, including the fashion-
ing of specialized surrogate models (Polynomial Chaos expansions) [35], the most straight-
forward calculation is through Monte-Carlo estimators, which directly compute the indices.
Several such estimators for partial variances are found in the literature [45–47], with varying
accuracy and efficiency. One estimator for first order SIs comes from Sobol [48], defined as

Vj ≈
1
N

N∑
k=1

Q
(
x(k)

)
Q
(
x(k)
j

)
−E[Q], (1.13)

where x(k) and x(k)
j are both samples of all model parameters, differing only in the j-th

parameter. While this estimator is capable of producing negative estimates - a non-physical
result as variance terms are always positive - it nevertheless produces estimates with low
absolute error when compared to other methods [45].

Similarly, the total variance SIs are computed using an estimator from Jansen [49],

V−j ≈
1

2N

N∑
k=1

[
Q
(
x(k)
j

)
−Q

(
x(k)
−j

)]2
, (1.14)

where again x(k) and x(k)
−j are sample points of the model parameters, differing in all pa-

rameters except the j-th parameter, for which they share the same value. Due in part to
the estimators non-negative nature, the calculation is extraordinarily efficient, producing
estimates with low error, especially compared with the first order variance estimator in
Equation (1.13).

Using the estimators given above, the total number of function evaluations required to
compute both first and total order SIs is N(P + 2), where N is the number of samples for
each individual parameter and P is the number of parameters in the model. It is common
practice to compute confidence intervals for the SI estimates, which can easily be generated
using a bootstrap approach [50].

Importance of Standardizing Model Outputs Due to the normalization taking place in Equa-
tion (1.11) and (1.12), and to the following property of Variance

Var [αx+ β] = α2Var [x] , (1.15)

the set of raw output for the QoI can be standardized, e.g., by subtracting sample means and
scaling by the sample standard deviations, without affecting the Sobol SIs. This standard-
izing, while never explicitly discussed in the literature, vastly improves the computational
efficiency of the estimator in Equation (1.13), especially when the magnitude of the QoI
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is large. This is due to the high variability inherent to the estimator’s product form be-
tween Q

(
x(k)

)
and Q

(
x(k)
j

)
. By preprocessing the raw QoI output, the variability in the

estimator is markedly decreased, leading to an overall lower variance in the estimate of the
SI.

Method of Morris First described in 1991 by Morris, this one-at-a-time method gives a
rough approximation of the total order SI (as in Equation (1.12)), but scales linearly with
the number of inputs [51]. Each dimension of the p-dimensional input parameter space is
discretized into p+1 steps. Paths are constructed through this discretized space where each
step changes a single parameter. At each step, the change in the QoI is measured. This
change is then averaged over a large number of paths (less than 50), to give an indication
of how an individual variable effects the model output.

Since this method does not have the necessary resolution to determine which parameters
are important, its primary use is to filter out parameters that can be neglected in a model.

1.2 Applications
The methods described above allow for the calibration, validation, and analysis of math-

ematical models. This next section gives background information for the two application
areas examined in this dissertation. Because the conversion of kinetic reactions to ordinary
differential equations is central to both applications, we will first briefly give an overview
on the use of the Law of Mass Action.

From Kinetic Reactions to Differential Equations Consider the standard kinetic reaction for
the enzyme-substrate interaction:

E + S
k+
−−⇀↽−−
k−

E:S kcat−−→ E + P, (1.16)

where the enzyme, E, binds with the substrate, S, at rate k+, unbinds at rate k−, and
forms the product, P , at rate kcat. The Law of Mass Action [52] states that in a well mixed
solution with constant temperature and pressure, the rate of a chemical reaction is directly
proportional to the product of the concentrations of the individual reactants. Given this
law and the reactions in Equation 1.16, we derive the follow system of differential equations

d

dt
[E] =− k+[E][S] + k−[E:S] + kcat[E:S], (1.17)

d

dt
[S] =− k+[E][S] + k−[E:S], (1.18)

d

dt
[E:S] = k+[E][S]− k−[E:S]− kcat[E:S], (1.19)

d

dt
[P ] = kcat[E:S], (1.20)

where [·] represents concentration. Given appropriate initial conditions for the chemical
species and values for the specified rates, this non-linear system of differential equations
is numerically solved to obtain the concentration of chemical species at a desired time.
While this system in itself will not be examined in detail, it is presented as a tool for
understanding to the reader. The following listed applications, with their own research
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cquestions and challenges, will make use of similiar systems of differential equations derived
using Mass Action kinetics.

1.2.1 Blood Coagulation

Blood coagulation has evolved over millions of years to maintain hemostasis and stop
bleeding. It can be separated into four phases: initiation, amplification, propagation, and
termination [53]. A schematic of the reactions involved in the blood coagulation system is
shown in Figure 1.3A. Briefly, whenever the cell lining in human vasculature, the endothe-
lium, is damaged, blood is exposed to the underlying proteins, including Tissue Factor
(TF). A clotting protein in the blood, factor VIIa (FVIIa), binds with TF forming the
FVIIa:TF complex. This enzyme complex activates other clotting proteins, namely FIX
and FX. Platelets on the subendothelium (SE) are activated and become a localized surface
for future clotting factors to be activated. The reduction of the dimension from free floating
proteins in the blood to surface bound proteins on the platelet surface increases the catalytic
efficiency of the clotting proteins. The activated form of FX (FXa) binds to the surface of
platelets and activates its cofactor - FV (FVa). The activated platelets aggregate around
the injury site and begin to form a leaky plug, slowing blood loss. The FVa:FXa complex,
called prothrombinase, is then able to activate a small amount of FII (prothrombin) into
FIIa (thrombin). Collectively, this cascade of reactions is responsible for the initiation of
the clotting process [53].

With the appearance of a small amount of thrombin, too little to fully form a clot on
its own, another pathway of reactions is accessible that results in the amplification of the
coagulation signal. Thrombin, the final enzymatic product of coagulation, quickly catalyzes
numerous clotting proteins (e.g. FV, FVIII, and FXI), activates additional platelets to cre-
ate more surfaces for coagulation, and cleaves fibrinogen into fibrin, creating the polymer
mesh which holds the platelet plug together. The newly activated FVIII (FVIIIa) binds
with the previously activated FIX (FIXa) creating the FVIII:FIX (tenase) complex, greatly
increasing the activation of more FX [54]. A strong positive feedback loop is thus estab-
lished, leading to the propagation of greater amounts of thrombin and consequently greater
amounts of fibrin, all leading to a stabilized clot.

Without some sort of termination, this process would continue well past the useful stage
of clot formation and could become a dangerous vessel occlusion. Fortunately, the clotting
system has several natural anticoagulants to limit the spread of the successfully formed clot,
including antithrombin (AT), tissue factor pathway inhibitor (TFPI), and protein C (PC),
among others. Collectively, these inhibitors are responsible for terminating the clotting
signal, inactivating various clotting proteins, and returning the system to a functionally
ready state [55]. While this summary provides enough background for this document,
interested readers are encouraged to explore further [53, 56, 57].

Static Vs Flow-Mediated Coagulation

Blood coagulation in vivo is always under flow within the human vasculature. As such,
there are several important biophysical and mechanical forces at play in the clotting system.
For example, red blood cells and fluid flow in the vessels cause platelets to be in a higher
density along the walls of the vasculature - a process called margination - where they are able
to more quickly react to injuries [58]. The target injury site is also continuously replenished

12



with new clotting proteins, so reactions must be inhibited by an anticoagulant process.
This coagulation under flow is in contrast with static coagulation, which is standard in
clinical clotting assays. In such assays, coagulation is studied without flow and with a
finite supply of reactants. While results derived from static coagulation experiments can
differ qualitatively from studies under flow [59], they have been instrumental in probing the
underlying mechanisms of the clotting system [60].

Mathematical Models of Coagulation

Hemostasis and fibrin formation constitute one of the best studied and most explored
systems in all of medical biology [62]. Nearly every individual kinetic reaction in the coag-
ulation system has been studied independently, with experimental estimates for most vital
kinetic rates [63]. However, many of these estimates show extreme variability [64], with
the same kinetic rate spanning a range of several orders of magnitude. The high inten-
sity and frequency of experimental studies of coagulation has allowed the development of
many mathematical models over the last several decades [65–70]. While some models are
phenomenologically based, most use the biochemical reactions and mechanical relationships
that have been well explored in the literature. These models are typically comprised of a
system of ordinary differential equations derived from biochemical reactions that ultimately
track the concentration of various clotting proteins over time. One popular model for static
coagulation was created by Hockin et al. in 2002. Their model used 34 differential equations
and 42 rate constants [71] to simulate a clotting response initiated by TF. While this model
has been extensively investigated in literature, its lack of platelets and flow make it a poor
choice for studying in-vivo coagulopathies, both of which are known to significantly effect
thrombin production [5, 72].

A more applicable model for the study of human bleeding pathologies, since it includes
both platelets and flow, was proposed in 2001 by Kuharsky and Fogelson [73] and was
later expanded on by Hussain and Leiderman [74–77]. This updated model, the Kuharsky-
Fogelson-Hussain-Leiderman (KFHL) model, simulates coagulation in a small, well-mixed
region above an injury site. The model incorporates several key clotting features, including
flow and platelet deposition. Coagulation proteins are assumed to either be free floating in
the plasma, bound to the subendothelium, or bound to an activated platelet surface. These
protein concentrations are tracked with a system of ordinary differential equations.

The KFHL model directly simulates flow, with new platelets and clotting proteins con-
tinuously being brought into the reaction zone, and removing activated platelets and pro-
teins from the system. A diagram of the reactions and compartments considered in the
model can be seen in Figure 1.3B. The KFHL model outputs a time-series for the con-
centration of each individual protein and the concentration of platelets in their different
configurations for the entire requested simulation time. Chapter 3 contains more informa-
tion on the model, with the full model equations in the supplement.

Coagulopathies

Uncontrolled bleeding, typically resulting from acute trauma, is a leading cause of pre-
ventable death worldwide [78]. Additionally, more than 1 in every 5000 males - approxi-
mately half a million individuals worldwide - are born with some form of hemophilia, i.e., a
genetic bleeding disorder characterized by lower than normal levels of various clotting pro-
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Figure 1.3: Schematic of elements considered in KFHL model. A) Diagram of
clotting reactions, with blue arrows indicating chemical transport, magenta arrows activa-
tion processes, green segments binding and unbinding from surface. Boxed proteins indicate
surface bound species while unboxed proteins are free floating in the plasma. Black lines
show the actions of enzymes (catalysts of chemical reactions), with solid lines the forward
direction and dashed the feedback loop. Red circles show inhibitory reactions. B) The
KFHL assumes multiple compartments, with the reaction zone in the middle and C) the
endothelial zone perpendicular to the flow. Image from [61].
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teins [79]. This document will focus on uncontrolled bleeding resulting from genetic bleeding
disorders. What follows is a brief summary of some of the different types of hemophilia.

Hemophilia A and B The most well-known and common form of severe hemophilia, type A
is identified by lower than normal amounts of clotting factor FVIII [80]. With symptoms
indistinguishable from type A, hemophilia type B is caused by a corresponding deficiency
in FIX and is only twenty percent as prevalent as type A. The severity of the disease, mild,
moderate, or severe, is determined by the percentage of clotting factor present in the blood,
as indicated by a blood assay [81]. When FVIII/FIX concentrations are severely deficient,
with 1% or less than normal, patients suffer from spontaneous bleeding and experience
significant bleeding after surgeries and accidents. If left untreated, severe hemophilia type
A or B can be deadly, requiring constant and expensive treatment [82].

Interestingly, patients with hemophilia type A and B typically have no issues with “pri-
mary hemostasis”, the stage of clotting responsible for forming the initial platelet plug. It
is in the propagation phase of clotting that symptoms occur. Due to the low concentration
of FVIII/FIX, these individuals form very little tenase complex, so only the extrinsically
activated FX is available to form prothrombinase. This leads to low levels of fibrin forma-
tion. While the platelet plug is successfully created, the fibrin needed to stabilize the clot
is not available, leading to a “leaky” clot. Severe patients typically experience bleeding into
joints and muscles, which can eventually lead to full immobility due to joint deformities if
left untreated.

Treatment in the form of FVIII/FIX concentrates, which are administered intravenously
at home, became widely available in the 1970s. This led to an improved quality of life for
many patients. Since the 1990s, these concentrates have largely been replaced by recombi-
nant therapies, which are not directly derived from humans or animals and are safer to use.
While several new treatments are currently in development, the total cost of treatment is
rising [83], with an average annual cost exceeding $270,000 USD [84].

No Bleeding Symptoms While hemophilia type A and B patients typically experience in-
creased bleeding risk in proportion to the degree of their protein deficiency (FVIII/FIX,
respectively), it is not uncommon to see severe hemophilia type A patients with much milder
symptoms [85]. The cause of this variability in bleeding phenotype is still largely unknown,
though both genetic and environmental factors are suspected. Examining a potential cause
for this variability is the subject of Chapter 4.

Hemophilia C Similar to types A and B, hemophilia type C is diagnosed as a deficiency in
the specific clotting protein FXI. Since type C patients rarely have spontaneous bleeding
events, it is regarded as a much milder form of hemophilia. Treatment, if any is needed at
all, comes in the form of recombinant FXI, much like types A and B.

1.2.2 Static Clotting Assays: Chromogenic Substrates

First developed as early as 1961 [86], chromogenic peptide substrates have been a sta-
ple method for the continuous monitoring of blood clotting reactions since the 1970s [87].
These chromogenic substrates (CS) are manufactured with a high selectivity and affinity
for specific enzymes which are required to study the individual reactions within the clotting
system. CS contain a para-nitroaniline peptide that, when cleaved by an enzyme, gives
rise to color formation (see Figure 1.4). This color change can in turn be measured with
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Figure 1.4: Schematic of Chromogenic Substrate usage in Experiments. Enzymes
cleave the chromogenic substrates and gives rise to color within a sample, which is detectable
by the absorption of light at the 405 nm wavelength. The absorbance (A) in time is converted
to concentration (C) using Beer’s Law, where ε is the molar absorptivity of the substrate
and ` is the path length of the light in the sample.

a spectrophotometer, which records the attenuation of a particular wavelength of light in
a medium over time. Because the physical dimensions of the experiment (i.e., the size of
the test tube) and the light absorptivity of para-nitroaniline are both constant, any change
in the absorbance time-series must be due to changes in the chemical concentration. This
idea is formalized in Beer’s Law [88],

A = ε`C, (1.21)

where A is the absorbance, ε is the molar absorptivity of the chemical compound, ` is the
path length of the experiment, and C is the chemical concentration.

Chemical reactions related to blood coagulation are complex phenomena, where a par-
ticular enzyme might have several natural targets. In such a system, the addition of an
exogenous substrate may result in undesired competition between it and the true enzyme
targets [89]. However, the effect is specific to the individual enzyme/substrate pair and
may only have limited practical effect on the system [90]. More importantly, the products
of the cleaved substrate may still interact with the enzyme, causing it to be inhibited in
the reaction [91]. This last point, while noted in the literature, has not been rigorously
examined. Chapter 2 explores a detailed analysis of the product inhibition resulting from
the interaction between a single coagulation enzyme, FXa, and its enzyme specific CS.
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Chapter 2

Assessing the Significance of
Product Inhibition In Chromogenic
Assays (Journal Article)

This chapter originally published as “Stobb, M.T., Monroe, D.M., Sindi, S.S., Leider-
man, K. (2019). Assessing the Significance of Product Inhibition In Chromogenic Assays.
Analytical Biochemistry.” Reprinted inaccordance with the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/) with some changes
for continuity. The co-authors listed in this publication directed and supervised research
which formed the basis for the dissertation. Physical experiments were performed by DMM.

2.1 Abstract
Chromogenic substrates (CS) are synthetic substrates used to monitor the activity of a

target enzyme. It has been reported that some CSs display competitive product inhibition
with their target enzyme. Thus, in assays where enzyme activity is continuously monitored
over long periods of time, the product inhibition may significantly interfere with the reac-
tions being monitored. Despite this knowledge, it is rare for CSs to be directly incorporated
into mathematical models that simulate these assays. This devalues the predictive power of
the models. In this study, we examined the interactions between a single enzyme, coagula-
tion factor Xa, and its chromogenic substrate. We developed, and experimentally validated,
a mathematical model of a chromogenic assay for factor Xa that explicitly included prod-
uct inhibition from the CS. We employed Bayesian inference, in the form of Markov-Chain
Monte Carlo, to estimate the strength of the product inhibition and other sources of uncer-
tainty such as pipetting error and kinetic rate constants. Our model, together with carefully
calibrated biochemistry experiments, allowed for full characterization of the strength and
impact of product inhibition in the assay. The effect of CS product inhibition in more
complex reaction mixtures was further explored using mathematical models.
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2.2 Introduction
Blood coagulation is a complex biochemical process in which dozens of plasma proteins

take part in a series of enzymatic reactions. The reactions culminate in the generation of
thrombin, an enzyme necessary for clot stabilization in vivo. One indicator of how well
blood will clot is its ability to generate thrombin. Assays to measure thrombin generation
are common to both clinical and research laboratories, used to monitor individuals clotting
potential, study treatments for bleeding disorders, and test anticoagulant drugs [1–5]. These
assays measure thrombin through a synthetic reporter whereby thrombin cleavage of either
a chromogenic [6–8] or fluorogenic [9, 10] substrate is monitored. The coagulation network
is inherently nonlinear with multiple positive and negative feedback loops, which can make
its thrombin generation response challenging to predict. Blood samples from two individ-
uals, that contain varying levels of plasma proteins, may give different results in thrombin
generation assays in the presence of an anticoagulant drug, but similar results in its absence
[11]. Since thrombin cleavage of a synthetic substrate is the sole output from these assays
that have dozens of inputs, it is difficult to determine a mechanism underlying the observed
differences using thrombin generation assays alone. Additional assays can be performed to
measure activity of coagulation enzymes that aid in thrombin generation, e.g., coagulation
factor Xa [12] or IXa [13]. Mathematical models can also be used, as an alternative to or
in addition to experimental assays, to address such challenges in predictiong coagulation
responses. In particular, mathematical models are used to numerically simulate the desired
enzyme and all other proteins or protein complexes within the assay, so that underlying
biochemical mechanisms can be explored theoretically.

Multiple mathematical models exist to simulate coagulation reactions; our group has
developed models of platelet surface-mediated coagulation under flow [14–19] to simulate
microfluidic assays [20–22] and others have been developed to simulate static thrombin
generation assays in the presence of phospholipid vesicles [23–27] and platelets [28]. Some
existing models of static thrombin generation assays have been used to address questions
with clinical relevance, e.g., to investigate normal variations of clotting factors in healthy
individuals [11, 29], complications of trauma and coagulopathies [30, 31], and to assess the
risk of disease [32].

The outputs from mathematical models, however, are only as trustworthy as the as-
sumptions underlying the model. For example, models of coagulation and thrombin gen-
eration rely on numerous assumptions regarding biochemical reaction schemes, kinetic rate
constants, and experimental noise in the assays that they are meant to simulate. To compli-
cate things even further, thrombin generation simulated with different existing mathemati-
cal models may give contrasting results, even when using the same initial concentrations of
plasma proteins [33]. For a model to be truly predictive and accurately simulate coagula-
tion reactions and perturbations, it must be carefully validated with the experiments that
it simulates and any additional sources of uncertainty should be identified and quantified.

In general, validating a model of enzyme reactions will consist of comparing a single
model output (one enzyme concentration) to absorbance or fluorescence data from an ex-
perimental assay; the experimental readout is a measure of synthetic substrate cleavage
by the enzyme. Since synthetic substrates both bind directly to their target enzyme and
are known to exhibit product inhibition (product from the cleaved substrate rebinds to the
enzyme) [34–36], their presence interferes with the reactions that they monitor. However,
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synthetic substrates are not explicitly included in mathematical models, except in a few
cases [12, 28]. In the current study, we carefully examine one synthetic substrate, a chro-
mogenic substrate specific for coagulation factor Xa, to better understand and quantify its
role both within a reaction mixture and within a mathematical model.

Chromogenic substrates (CS) are comprised of a peptide attached to a chemical group,
p-nitroaniline (pNA), which is released after cleavage by a target enzyme and consequently
gives rise to color [36]. Enzyme activity in the reaction mixture is then measured via photo-
spectrometry. The progress curve (measured absorbance) is proportional to the proteolytic
activity of the enzyme; the first derivative of the progress curve is related to the enzyme con-
centration. To obtain the desired enzyme concentration throughout the timecourse of the
reaction, the data is manipulated; the raw absorbance is transformed into a concentration
curve for the product (pNA) by a scaling that depends on the kinetics of the CS and certain
assay conditions [37], a numerical derivative is applied to this curve and this results in an
approximation to the enzyme concentration. However, this is only a good approximation
while the intact CS concentration is much higher than the enzyme concentration.

Chromogenic substrates are used in different ways, but are common for measuring kinetic
rate constants of single enzymatic reactions and also for continuously monitoring more
complex reactions such as those involved in blood coagulation. When CSs are used to
estimate kinetic rate constants, the data measured during the early part of the reactions
is often the only data used; the rate of the reaction (velocity) is estimated from the slope
of the progress curve, which is linear during the early stages of a single enzyme reaction.
Kinetic rate constants are then determined by analyzing the saturation curve that relates
the estimated velocities with various initial substrate concentrations [36, 38, 39].

Using data from the full progress curves, rather than using the initial rates alone, is
known to yield more accurate estimates of kinetic rate constants. With this method, instead
of differentiating the scaled absorbance data, one integrates a mathematical model that
tracks the concentrations of the reactants and products, and explicitly incorporates CS
[40, 41]. When CSs exhibit product inhibition, the reactions and kinetic rates describing
the inhibition should be included in the mathematical model, even when modeling simple,
steady state reactions [40, 42, 43]; since the full progress curves monitor the experiments for
long periods of time, and CS product is continuously being cleaved during that time, then
inhibition from the CS product may be increasingly significant in the assay. For continuous
monitoring of complex reactions that include multiple enzymes and inhibitors, and run for
long periods of time, such as coagulation reactions, the significance of CS interference has
not been rigorously established.

The objective of this study was to carefully examine product inhibition of a CS specific
for coagulation factor Xa, the enzyme that cleaves prothrombin into thrombin. We sought
to i) determine if the CS truly exhibited product inhibition, ii) estimate the kinetic schemes
and rates that described the product inhibition, and iii) better understand the impact of
incorporating the product inhibition into mathematical models. We used a combination of
mathematical modeling, statistical inference, and experimental biochemistry to characterize
product inhibition of the CS. We used model selection to determine which of two poten-
tial mathematical models would best describe the reactions within a simple chromogenic
assay; one model included production inhibition and one did not. We found that, while it
was possible to numerically simulate accurate progress curves with both models, including
product inhibition provided a statistically significant improvement to the fit. To validate
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our hypothesis that product inhibition was exhibited by the CS, we developed a novel vali-
dation experiment using excess cleaved CS product; only the model with product inhibition
was consistent with this experiment. We then used a mathematical model to simulate con-
centrations of reactants that cannot be measured experimentally. We found that, even in
a simple reaction, a mathematical model that does not include production inhibition from
CS overestimates the amount of free factor Xa. In a more complex reaction that allows
for generation and inactivation of factor Xa, the same model underestimates the amount of
factor Xa bound to CS and its product and additionally overestimates the amount of factor
Xa inactivated by antithrombin.

2.3 Materials and Methods

2.3.1 Experimental Procedures

All solutions were prepared in buffer containing 20 mM 4-(2-Hydroxyethyl)piperazine-
1-ethanesulfonic acid (pH 7.4), 150 mM sodium chloride, 0.2% polyethylene glycol. All
reactions were run in Falcon 96 well U-bottom microtiter plates. Absorbances were mea-
sured at 405 nm in a Molecular Devices ThermoMax microplate reader. Factor Xa was
purchased from Enzyme Research Labs (South Bend, IN) and repurified by pseudo-affinity
chromatography [44]. Antithrombin was purified from plasma as described previously us-
ing polyethyleneglycol (PEG) precipitation of plasma followed by heparin Sepharose chro-
matography, and ion exchange chromatography was used to remove traces of heparin [45].
Antithrombin activity was determined by thrombin inhibition assay using the second or-
der rate constant of 4×104 M−1sec−1 [46]. Factor Xa substrate (methoxycarbonyl-D-
cyclohexylalanyl-glycyl-arginine para-nitroanilide) was purchased from PentaPharm (Basel,
Switzerland).

Standard chromogenic assay

For each concentration of factor Xa, a working solution was prepared at twice the final
concentration. Fifty µL of this solution was added to the wells of a microtiter plate. Fifty
µL of buffer was also added to separate wells of a microtiter plate. One working solution
for each concentration of substrate was prepared at twice the final concentration. Fifty
µL of substrate was added to 50 µL of enzyme or buffer. Substrate was added with a
multichannel pipetter so that each row of the microtiter plate was started at the same time.
The microtiter plate was arranged so that each row represented a concentration of enzyme
(or buffer control). Absorbance at 405 nm was measured as a function of time.

Antithrombin inhibition assay

Factor Xa (125 nM) was incubated either in buffer or with 1.25 mM substrate for 2
hours at room temperature. Preliminary studies had shown that 2 hours was sufficient to
cleave all the substrate to product. Antithrombin was added to factor Xa to give: factor Xa
- 100 nM; antithrombin - 3200 nM; product 1 mM or none. At timed intervals the reaction
was diluted 1:10 into fresh substrate to give: factor Xa - 10 nM; antithrombin - 320 nM;
product - 100 ÂţM or none; substrate - 500 ÂţM. Cleavage of substrate was monitored at
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405 nm and the rate of substrate cleavage converted into a concentration of residual factor
Xa.

2.3.2 Conversion of Absorbance to Concentration

Since the output from the mathematical models are in units of concentration, we con-
verted the raw absorbance data to concentration for direct comparison. This conversion
involves an initial subtraction of background absorbance and an application of Beer’s Law.
The background absorbance from the microtiter plate is approximately 0.034 at 405 nm,
estimated with linear regression applied to absorbance data collected in the absence of reac-
tants (data not shown). This background absorbance was subtracted from all future exper-
imental data. Beer’s Law was used to convert from absorbance to concentration [37], where
the extinction coefficient for p-nitroaniline was 9920 M−1cm−1 [47] and the pathlength was
calculated by measuring the absorbance of a known concentration of p-nitroaniline. We ver-
ified that the concentrations of substrate we used were in a range such that BeerâĂŹs law
is still valid with the conditions and the microtiter plate reader. The absorbance readings
remained linear below substrate concentrations of approximately 600 µM (data not shown).

2.3.3 Kinetic Schemes

We assume potential kinetic schemes to describe the reactions between factor Xa and its
chromogenic substrate. The first is the Null scheme, described as a single enzyme cleaving
a single substrate into two products:

E + P :F k1−⇀↽−
k2

E:P :F kcat−−→ E + P + F. (2.1)

Here, the enzyme E represents the activated coagulation protein, factor Xa, the substrate
P :F is the intact chromogenic substrate Pefachrome-FXa, and the products P and F are
the peptide and the cleaved para-nitroanalide (pNA), respectively.

To allow for product inhibition, we modified the Null scheme to include a reversible
reaction between the enzyme, E, and cleaved CS product, P , where the off rate of this
reaction is assumed to be proportional to the off rate of the binding of intact CS to enzyme.
This Alternative scheme is described as follows:

E + P :F k1−⇀↽−
k2
E:P :F kcat−−−→ E:P + F, (2.2)

E + P
k1−−⇀↽−−
αk2

E:P. (2.3)

The parameter, α, is the constant of proportionality that controls the ‘strength’ of the
product inhibition. If α → 1, the P and P :F have equal binding affinity for the enzyme,
and the Null model is recovered as α → ∞. In practice, however, we found that much
smaller values of α can numerically approximate the Null model.

Naive Model

The Naive model considers the Null scheme (2.1) with the kinetic rates supplied by the
CS manufacturer: (kcat = 140s−1) and a Michaelis-Menten constant (KM = 106µM) to
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describe the CS kinetics. The Michaelis-Menten constant is also defined in terms of the
other rates as KM = (kcat + k2)/k1. Assuming the reaction mixture has sufficiently high
concentrations that are well combined, we apply the law of mass action [48] to derive a
system of ordinary differential equations (ODEs) for all species’ concentrations:

d[E]
dt

= −k1[E][P :F ] + (k2 + kcat )[E:P :F ],

d[P :F ]
dt

= −k1[E][P :F ] + k2[E:P :F ], (2.4)

d[E:P :F ]
dt

= k1[E][P :F ]− (k2 + kcat )[E:P :F ],

d[P ]
dt

= kcat [E:P :F ]

d[F ]
dt

= kcat [E:P :F ],

where [·] represents concentration. Only enzyme and substrate have nonzero initial concen-
trations, denoted by E0 and P :F0, and set to 5 nM and 400 µM, respectively. The kinetic
rates k1 and k2 are unspecified but are dependent on one another through KM and kcat .
We varied the ratio k1/k2 and observed no difference in model output (not shown) and
thus, in all subsequent analysis, k1 is held fixed at 10µM−1s−1, and k2 is computed via
k2 = k1KM −kcat . Numerical solutions to the Naive model (2.4) and initial concentrations
were calculated with numerical integrator, CVODE-BDF [49].

The Null Model: Incorporating Uncertainty

Uncertainty was considered in pipetting to account for pipetting error, in initial con-
centration of CS and pNa to account for previous hydrolysis, and in kinetic rate constants.
Error in pipetting occurs in every experiment (including replicates) and thus may be differ-
ent for each experiment. However, because each experimental replicate employs the same
stock solution, we assume the uncertain fraction of hydrolyzed CS is common to all exper-
iments. Finally, since the experiments are performed simultaneously with identical enzyme
preparation, the kinetic rates are assumed common to all experiments. Uncertainties were
included in the model above by allowing KM and kcat to vary as distributions instead of
point values, and by allowing the initial concentrations of the CS and enzyme to vary, also
as distributions, to account for both pipetting error and hydrolysis, each of which have a
distinct contribution. The ODE system from the Naive Model (2.4) with these uncertainties
incorporated becomes our Null Model:

d[E]
dt

= −k1[E][P :F ] + (k2 + kcat )[E:P :F ],

d[P :F ]
dt

= −k1[E][P :F ] + k2[E:P :F ], (2.5)

d[E:P :F ]
dt

= k1[E][P :F ]− (k2 + kcat )[E:P :F ],

d[P ]
dt

= kcat [E:P :F ]

d[F ]
dt

= kcat [E:P :F ],
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with initial conditions

[E]0 = Up(E0), (2.6)
[P :F ]0 = (1−Uh)Up(P :F0),

[E:P :F ]0 = 0,
[P ]0 = UhUp(P :F0),
[F ]0 = UhUp(P :F0),

where bolded symbols represent distributions rather than single values. Specifically, k2
= k1KM − kcat and kcat are distributions on the kinetic parameters (in practice k2 is
not directly varied, but rather KM and kcat ), Uh is the distribution for the fraction of
hydrolyzed CS, and Up(·) are distributions for the initial enzyme and CS concentration
due to pipetting error.

The Alternative Model: Incorporating Product Inhibition

The Alternative Model consists of the ODEs that result from applying the law of mass
action to the Alternative scheme (2.2), and incorporating uncertainty in the same way as
with the Null Model. Thus the Alternative Model consists of the following equations:

d[E]
dt

= −k1[E][P :F ] + k2[E:P :F ] + αk2[E:P ],

d[P :F ]
dt

= −k1[E][P :F ] + k2[E:P :F ], (2.7)

d[E:P :F ]
dt

= k1[E][P :F ]− (k2 + kcat )[E:P :F ],

d[E:P ]
dt

= kcat[E:P :F ] + k1[E][P ]−αk2[E:P ],

d[P ]
dt

= kcat [E:P :F ]− k1[E][P ] + αk2[E:P ],

d[F ]
dt

= kcat [E:P :F ],

with initial conditions

[E]0 = Up(E0), (2.8)
[P :F ]0 = (1−Uh)Up(P :F0),

[E:P :F ]0 = 0,
[E:P ]0 = 0,

[P ]0 = UhUp(P :F0),
[F ]0 = UhUp(P :F0),

where again bolded symbols represent distributions. The alternative Model has all the same
parameter distributions with the addition of α, which controls the strength of the product
inhibition.
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2.3.4 Uncertainty Propagation

The uncertain inputs, represented as distributions instead of single values, propagate
through the models and result in output distributions (see Figure 2.1). These output
distributions are estimated by Monte-Carlo sampling the input distributions and solving
the model ODEs 10,000 times. Statistics (e.g., mean and standard deviation) are then
calculated from the output distributions. For each time point, the model output distribution
was determined to be approximately normal (not shown).

Figure 2.1: Uncertainty Propagation. In our mathematical framework we consider
how uncertainties in model inputs (left), such as substrate hydrolysis (Uh), pipetting error,
and reported kinetic rates (KM & kcat ) are propagated into uncertainties in model outputs
(right). For simplicity, inputs are monte-carlo sampled from their distributions and the
model solved, yielding an approximation of the output distribution.

2.3.5 MCMC Estimation of Parameters

We employ a Bayesian framework [50] for estimating the uncertain parameters KM ,
kcat , Uh, and Up (for enzyme and CS) for a total of 3 + 2R learned parameters, where R is
the number of experimental replicates. The Bayesian approach generates a distribution for
each parameter rather than a single point estimate, which is propagated directly through
the forward model. The posterior distribution for the parameters is given by Bayes’ theorem

π(θ|Di,j,k) ∝ π(Di,j,k|θ) π(θ), (2.9)

where Di,j,k is the experimental data at time i, from initial enzyme concentration j, and
initial CS concentration k, θ is the vector of parameters, π(Di,j,k|θ) is the likelihood of the
data given the parameters, and π(θ) is the prior distribution of the parameters (discussed
below). An adaptive Metropolis-Hastings algorithm [50, 51] is used to numerically compute
the posterior distributions given the aforementioned experimental uncertainties. We veri-
fied that for the given prior distributions, the model output distribution is approximately
normally-distributed (see Figure 2.2), even when model inputs were sampled uniformly.
This motivated the use for a Normal likelihood function:

L(yi,j,k(θ)|Di,j,k) =
N∏
i=1

1√
2πσ2

i

e

(
−(yi,j,k(θ)−Di,j,k)2

2σ2
i

)
, (2.10)

31



where yi,j,k(θ) is the ODE model solution at time i with initial enzyme concentration j and
initial CS concentration k with parameters θ, and σ2

i is the variance at time i of the full
forward model, solved using the assumed prior distributions of the parameters. These time
dependent σ values control for the observed change in variance as time increases.

Figure 2.2: Determination of output distribution. Model output (blue histograms)
and best fitting normal distribution (red line) at three different times: 30 seconds (A,D), 5
minutes (B,E), and 20 minutes (C,F) generated by sampling (N=100,000) the input param-
eters of the forward model given in equations (2.5) and (2.6) with the prior distributions
from Table 2.1 (A-C) and with Uniform distributions (D-F).

Prior Distributions for Uncertain Parameters

We used manufacturer provided information and best practice experimental procedures
to select prior distributions for the unknown, uncertain parameters (see Table 2.1). Because
the manufacturer does not provide data used to derive their kinetic parameters, KM and
kcat , we were unable to directly infer the uncertainty in their reported estimates. For
simplicity, we set their prior distributions as normal distributions centered at the manu-
facturer reported value with a standard deviation set to allow a 95% confidence interval
of the distribution to span a range of ±10% of the parameter. Thus the prior distribu-
tions were set as KM ∼ N(106 µM, 5 µM) and kcat ∼ N(140s−1, 7.5s−1), noting that
the posterior distributions were not highly sensitive to this choice of variance. Substrate
hydrolysis (Uh) is unknown but assumed to be small. Fitting the model with a standard
least squares method yielded results for hydrolysis around 2.5% (not shown), so we used
a non-informative prior distribution of uniform between 0-20%. The prior distribution for
the pipetting errors of the initial concentration of enzyme and CS, Up(E0) and Up(P :F0),
were set as normal distributions centered at 0% with a standard deviation of 2.5%. We set
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the prior distribution for α as a non-informative uniform U(0,10).

Sampling the Posterior Distributions

The Geweke diagnostic [52], with default parameters, was used to determine that burn-
in had successfully occurred after 500,000 steps. The parameter covariance was adapted
for the first 100,000 steps and held fixed afterwards. Approximately 10 million steps were
recorded and thinned, resulting in a total of approximately 50,000 sample points. Forward
model evaluations employed parameter samples taken from the complete joint posterior
distribution, unless otherwise noted. While individually the parameter’s posterior distribu-
tions were approximately normal, a strong correlation between some parameters ruled out
sampling them independently for forward evaluations.

Model Selection

We used both Akaike’s Information Criterion (AIC) and the Bayesian Information Cri-
terion (BIC) to compare the Null and Alternative models listed above [53]. The equations
for each are given by

AIC = 2k − 2 ln(L̂) (2.11)
BIC = ln(N)k − 2 ln(L̂), (2.12)

where k is the number of fit parameters, L̂ is the likelihood of the data at the best fit model
values, and N is the sample size.

2.4 Results and Discussion
We performed a simple chromogenic assay in which fixed quantities of the enzyme, factor

Xa (E), and its chromogenic substrate (CS) are allowed to react. We considered two kinetic
schemes to describe the reactions within the assay: the Null and Alternative kinetic schemes;
the difference being that the Alternative scheme included product inhibition from the CS. To
determine the best mathematical description of the reactions, we used three mathematical
model approaches: i) a Naive mathematical model based on the Null kinetic scheme, using
kinetic rates reported by the CS manufacturer, ii) the Null model based on the Null kinetic
scheme and statistically inferring kinetic rates and sources of experimental uncertainty, and
iii) the Alternative model based on the Alternative kinetic scheme and statistically inferring
kinetic rates and sources of experimental uncertainty. Support for one of the three models
was experimentally validated with a multistage, continuous-monitoring experiment. Finally,
using our validated Alternative model, we theoretically explored various concentrations of
reactant species in the assays that go unmonitored in the experiment, e.g., true free enzyme
concentration.

2.4.1 Naive Model Does Not Quantitatively Agree with CS Assay

We tested if a mathematical model, based on the Null kinetic scheme Equation (2.1), em-
ploying either the kinetic rate constants reported by the CS manufacturer or rate constants
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determined by analyzing the initial rate of substrate cleavage at various substrate concen-
trations (Figure 2.3), would provide quantitative agreement with experiments in which a
fixed amount of factor Xa and its CS react over time. For the experiment, cleavage of
400 µM CS by 5 nM of factor Xa was continuously monitored. Figure 2.3 shows the mea-
sured absorbance (at 405 nm), converted to concentration using Beer’s law (see section on
Conversion of Absorbance to Concentration), compared to the analogous species, F, that
is produced with the mathematical model. The kinetic rates reported by the manufac-
turer, using different buffer conditions than these studies, for parameters are KM = 106 µM
and kcat = 140s−1. The parameters determined by the intial rate studies are KM = 129
µM and kcat = 79s−1. As shown in Figure 2.3, the concentration of F produced with the
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Figure 2.3: Naive mathematical model based on the Null kinetic scheme com-
pared with experimental data. For each concentration of substrate, the initial rate of
substrate cleavage was determined from the plot of product formation as a function of time
(black points). Fitting the data to the Michaelis-Menten equation (blue) gave an estimated
KM = 129 µM and kcat = 78s−1. B) The absorbance data (grey) and concentration of
F output from the mathematical model using the manufacturer supplied kinetic rates of
k−= 106 µM and kcat= 140s−1 (red) and experimentally measured rates (blue) in units of
absorbance (right axis) and concentration (left axis) for experiments with 5 nM of factor Xa
using the Null kinetic scheme (2.1), with no uncertainty assumed in the initial conditions
or model parameters.

mathematical model (red and blue) does not quantitatively agree with the experimental ab-
sorbance data (grays), with an average relative error of 18.5% and 6.6%, respectively. The
mathematical model predicts a faster rate of cleavage than that observed experimentally,
significantly more so for the model using the manufacturer rates. The lack of quantitative
agreement in such a simple system suggests that either the scheme on which the mathe-
matical model depends is incomplete, the kinetic rate constants are uncertain, or there are
sources of experimental uncertainty that must be accounted for.

2.4.2 Null Model: Introducing Uncertainty

We developed a mathematical and statistical framework that considers uncertainty in
the kinetic rate constants and experimental conditions. In this framework, the mathemati-
cal model was based on the Null kinetic scheme so that the lack of quantitative agreement
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between experimental and mathematical model outputs is assumed to come only from in-
accurate kinetic rates or experimental conditions. We assumed that potential sources of
experimental noise were due to pipetting error and substrate hydrolysis that occurred prior
to the experiment. We incorporated these sources of noise into the mathematical model by
considering them as uncertain parameter distributions, rather than point values. We then
employed a Bayesian approach to infer the parameter distributions from the experiments:
each uncertain parameter was assumed to have an uninformed prior distribution and, upon
propagation of these distributions through the mathematical model and using the likelihood
of the experimental data, we learned posterior distributions (schematic of this process in
Figure 2.1); see section on MCMC Estimation of Parameters for details on the parameter
inference procedure. The prior distributions (grey) and the histograms of the corresponding
posterior distributions (orange) for the Michealis-Menten constant, KM , the catalytic rate,
kcat , and the percent substrate hydrolysis, Uh are shown in Figure 2.4B-D, respectively,
with means and standard deviations listed in Table 2.1.
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Figure 2.4: Prior and Posterior distributions for α, KM , kcat , and hydroly-
sis. Prior (grey) and Posterior (histograms) distributions for KM , kcat , and hydrolysis
for both the Null (orange) and Alternative (blue) Model. The priors for the kinetic rates
were chosen such that a 95% confidence interval about the mean would be within ±10%
of the manufacturer reported values. The prior for α and Uh was set as maximum entropy
distributions, specifically uniform between 0 and 10, and uniform between 0 and 0.2, re-
spectively. Posterior distributions were computed using a Metropolis-Hastings algorithm
with approximately 5.0× 104 samples (after burnin and thinning). Black dashed bars show
the measured kinetic parameters from initial rate experiments.

The parameter distribution learning procedure supported a non-zero value for initial hy-
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drolysis (5.1 % ± 0.1 %), showing hydrolysis was non-negligible. The mean of the posterior
distribution for KM was approximately 75% higher that that reported by the manufacturer,
and the kcat was estimated to be approximately 50% lower. While it is possible the ob-
served difference in kcat could indicate a loss in enzyme activity over time, the basis for the
observed difference in KM is less clear.

Figure 2.5 shows the experimental data (gray) and the distribution of the concentra-
tion of F from Null model (orange). The Null model F distribution appears to be only a
single curve because the the posterior parameter distributions were very tight around their
means; in the figure we plot the mean along with a 95% credibility interval, represented by
the shaded region. There is a significant improvement in quantitative agreement between
the data and the Null Model over that of the Naive Model (compare Fig 2.5 (red) to Fig 2.3),
with an average error of 4.4% (down from 24.4%). However, because the estimated kinetic
rates were so different from the reported kinetic rates, the validity of the Null Model still
rests on the possibility that the values reported by the manufacturer are incorrect. Alter-
natively, the reported values could be correct, but the kinetic scheme could be incomplete,
leaving the possibility of an alternative scheme.
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Figure 2.5: MCMC fitted models compared with data. The Null (orange) and
Alternative (blue) model results are shown with the experimental data from 2.3 (circles).
The models were fit using an MCMC procedure and produce a distribution in time, which
was estimated by sampling the input variables according to their posterior distribution.
From this a 95% credibility interval (slight shaded regions) was constructed for each point
in time.
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Table 2.1: Model parameters and their distributions. Prior and Posterior estimates
of unknown parameters for both the Null and Alternative models. ∗Because there were
several individual initial concentrations measured, we only report here the overall average
pipetting error for all cases.

Parameter Prior Null
(mean±std)

Alternative
(mean±std)

KM N(106.0µM , 5.0µM) 180.3±3.6µM 110.4±5.0µM
kcat N(140.0s−1, 7.5s−1) 78.1±1.4s−1 78.7±1.5s−1

k1 Fixed at 10 µM−1s−1 N/A N/A
k2 Fixed at (KM · k1)− kcat N/A N/A
Uh N(0%, 20%) 5.1%±0.1% 3.6%±0.1%
α U(0.0, 10.0) N/A 2.5±0.1
Up(P :F0)∗ N(0%, 2.5%) -3.0%±0.8% -0.7%±0.9%
Up(E0)∗ N(0.0%, 2.5%) -2.1%±1.6% -2.1%±1.6%

2.4.3 Alternative Model: Including Product Inhibition

Because the posterior estimate for KM deviated so far from manufacturer reported
values, we considered the Alternative kinetic scheme Equation (2.2) that includes product
inhibition of the enzyme. We assumed the binding rate of enzyme to the cleaved CS product
and to the intact CS was equivalent; the off-rate of the enzyme from the cleaved CS product
was then multiplied by non-dimensional parameter, α, such that α = 1 gives equivalent
dissociation constants for the product and intact CS, i.e., strong product inhibition, and
increasing α weakens the product inhibition. Dynamics of the Null model are recovered as
α→∞.

We considered uncertainty in pipetting error, substrate hydrolysis, and kinetic rates and
learned new posterior distributions for each, assuming the same prior distributions as in
the previous section. Because no prior estimates were available for α, we considered a non-
informative (uniform) prior distribution between 0 and 10. We used the same framework for
parameter estimation for the Alternative model as we did for the Null Model. The output
distribution for the concentration of F, generated with the Alternative Model, is shown in
Fig 2.5 (blue), along with the mean of the output and a 95% credibility interval. While
both models fit the experimental data extremely well, the Alternative Model (blue) had a
decreased average relative error of 2.8%, down from 4.4% average relative error for the Null
model.

The prior and posterior distributions for α and the kinetic parameters are shown in
Figure 2.4 (blue), with means and standard deviations listed in Table 2.1. The uninformed
prior for α was converted to a very tight posterior distribution (2.5±0.1), indicating strong
statistical support for the presence of product inhibition. Moreover, inclusion of product
inhibition led to significantly better agreement between the prior and posterior distribu-
tions of KM , which suggests that the manufacturer reported value is consistent with our
experiments under the assumptions of the Alternative Model.

While the Alternative Model has a lower relative error rate than the Null Model (orange
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and blue in Fig 2.5), it also contains an additional parameter. To determine if the improve-
ment in model fit was statistically significant, or merely due to the additional complexity
in the Alternative Model, we performed a model selection test. The goal of such tests is to
choose among different models by calculating a quantity that penalizes the likelihood of the
data by the complexity of the model. We calculated the Akaikie’s Information Criterion
(AIC) and the Bayesian Information Criterion (BIC) for both the Null and Alternative
Model, evaluated at the mean of their posterior distributions. Both metrics penalize the
likelihood of the data with the complexity of the model, resulting in the Alternative model
and its one extra parameter (α) having a greater penalty. For either criteria, the difference
between the tested models gives evidence for statistical support, not the absolute numerical
value, where the model with the lower value is preferred. Observing a difference greater
than 10 indicates very strong statistical preference for the model with the lower value [54].
The differences between the models were computed as AICNull − AICAlt = 764.35 and
BICNull−BICAlt = 757.15. Thus, by either metric, we find statistical support for neglect-
ing the Null model in favor of the Alternative model even with the added parameter α and
considering agreement/disagreement with manufacturer reported values of kcat .

2.4.4 Alternative Model with Production Inhibition is Experimentally
Validated

We developed a two stage experiment to directly test our prediction of product inhibition
from cleaved CS product. First, factor Xa was incubated with antithrombin, and with
either 1 mM cleaved CS product (See section on Experimental Procedures) or no CS at all.
Second, subsamples from each mixture were taken at timed intervals, diluted into intact
CS, and monitored continuously, to measure the residual factor Xa that was not inactivated
by antithrombin. The experiment was designed so that the subsamples from both initial
mixtures, i.e., the one with CS product and the one with no CS, would result in the same
amount of CS cleavage in the second stage, if there was no product inhibition. Thus, the
initial velocities of each reaction in stage two would be identical, as they are proportional to
factor Xa bound to CS. This is not what was observed. Figure 2.6 shows estimates of factor
Xa bound to CS at timed intervals, where the initial rates from each timed subsample was
converted to concentration of factor Xa bound to CS by dividing by kcat . We have also
plotted the analogous output distributions (E:PF) from the Alternative model (blue) and
the Null model (orange) for each of the experimental conditions. The data in Figure 2.6
shows i) the resulting E:PF from the Null model is in poor agreement with the experimental
data, and ii) the resulting E:PF from the Alternative model is in excellent agreement with
the experiment, seen with the credibility intervals around the mean, and iii) disparate
concentrations of factor Xa bound to CS between the two experimental conditions, which
strongly supports the notion of experimentally-validated product inhibition.

2.4.5 Further Impact of Product Inhibition: A Theoretical Investigation

In the previous sections we demonstrated that product inhibition is present in reactions
with factor Xa and its CS. We also showed that, in an experiment with a fixed level of factor
Xa and its CS, both the Null model and Alternative model provided strong quantitative
agreement with both the absorbance data and one another, albeit with dissimilar kinetic
rates. We want to know how other species within the reaction mixture were impacted by the
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Figure 2.6: Estimated E:PF concentrations with model comparisons. Initial rates
of product formation from the antithrombin inhibition experiments gives an estimate of the
concentration of E:PF in the system (black/grey), with and without previously cleaved
substrate. The experiment was simulated using both the Null (orange) and Alternative
(blue) models. Uncertainty in the experiment arises from differences in replicates, while the
uncertainty in the model is due to pipetting error, hydroylsis, and uncertain kinetic rates,
all estimated from the data using a likelihood approach.
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model choice and, when simulating more complex reactions, how much this choice matters.
To investigate this, we used the Null model and Alternative model, with parameters fixed
to the means from the estimated posterior distributions, and looked at intermediate species
from our simple chromogenic assay reaction described above. We then used both models to
simulate a reaction in which factor Xa is generated by the enzyme complex TF:VIIa and
inactivated by antithrombin.

Figure 2.7 shows simulations of the experiment with fixed levels of Xa and CS. Panel
A shows free factor Xa that is not bound to CS (E – free enzyme, available to bind other
species) panel B shows the factor Xa that is bound to CS or CS product (E:P and E:PF
– enzyme not available to bind anything else), and panel C shows the concentration of F,
which we directly compare to absorbance, as shown previously. In each panel, we show the
concentrations of each species generated with the Null model in the absence of CS (green),
with the Null model in the presence of CS (orange), and with the Alternative model in the
presence of CS (blue). The concentrations of F are roughly the same for the two models
(panel C), but the resulting free enzyme, E, is drastically different (panel A). The Null
model suggests that most of E is bound to P:F initially (E drops from 10 nM to 3 nM)
but that it is all free again after about 40 minutes when all the CS has been cleaved; the
Alternative model suggests that product inhibition shifts the equilibrium such that only
about 38% of the enzyme is free (panel A) and the rest is bound to P or P:F (panel B).
Simulations of this simple reaction with the two models show that the model choice leads
to significantly different interpretations of the underlying reactions within the assay.

Next we considered a reaction in which factor Xa (E) was generated by TF:VIIa and
also inactivated by antithrombin. We were motivated by an experiment originally con-
ducted by Lu et al. [55] in which 170 nM factor X and 4.5 µM antithrombin were added
to a reaction mixture with 0.2 nM TF:VIIa. Factor Xa concentrations were measured by
subsampling, rather than continuous monitoring, which removes the possibility of produc-
tion inhibition. Thus, we have performed simulations without CS for comparison to this
experiment. (Note that this should be considered as the ’true’ reaction, with no interference
from synthetic substrates.) The green curves in Figure 2.8 show the concentrations corre-
sponding to the kinetic scheme and rates reported in their study, in the absence of CS, and
with the antithrombin concentration adjusted to the physiologic level of 3.2 µM. Factor Xa
concentration peaks around five minutes and is completely inactivated by about 30 minutes.
Comparing the results for the Null and Alternative models to these ’true’ results is more
interesting. With the Null and Alternative models, we used the same kinetic rates for the
activation of X by TF:VIIa as in the no CS case, but used the means of our estimated
distributions for all other kinetic rates.

Figure 2.8 shows the concentrations of free enzyme, E, bound enzyme (E:P + E:PF),
pNA (F), and enzyme inactivated by antithrombin (E:AT), in panels A-D, respectively.
Interestingly, the concentrations of F are indistinguishable between the Null versus the Al-
ternative model (see panel C). This means that both models would be considered ’validated’
against experimental data if validation included the single comparison of F to absorbance
data. However, investigation of other reactant concentrations tells a different story.

The presence of CS is clearly shown to interfere with the reactions, as seen by the
differing levels of free enzyme between the three simulations (compare orange and blue curve
to the green curve in panel A). However, results from the Null model and Alternative model
lead to different interpretations of the underlying reactions. The Null model overestimated
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Figure 2.7: Concentrations of reactants in fixed-enzyme assay, generated by
numerical simulation. Numerically computed concentrations of enzyme (A), enzyme
bound to CS and CS product (B), pNA (C). Results are produced with the Null Model in
the absence (green) and presence (orange) of CS, and with the Alternative model (blue).
Initial concentrations were 5 nM factor Xa and 400 µM CS; kinetic rates were set to the
means of the posterior distributions estimated in this study.

the true peak of E by 17.5% (peak of 47 nM compared to 40 nM with no CS) due to less
E being inactivated by antithrombin during the first 8 minutes of the reaction (panel D)
because it was bound to P:F (panel B). The Alternative model underestimated the true
peak of E by 30% (peak of 28 nM compared to 40 nM with no CS), and the peak was also
delayed by about 2 minutes (panel A). This is because in the Alternative model, the CS
product competes with antithrombin for free enzyme; thus, a considerable amount of E is
protected from inactivation because it is bound to CS (compare blue to orange curve in
panel B) and as a result, there is less free E.

2.5 Conclusion
In this study, we used a combined experimental, mathematical, and statistical approach

to examine the effects of product inhibition in reactions containing a CS and its target
enzyme, coagulation factor Xa. We developed two mathematical models based on distinct
kinetic schemes, one with product inhibition and one without. Next we used a Bayesian
approach to estimate parameter distributions for each model, based on the likelihood of ex-
perimental data. We found that both models with their estimated parameter distributions
could provide simulations consistent with the experimental data, although we found statis-
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Figure 2.8: Concentrations of reactants in enzyme generation assay, generated
by numerical simulation. Numerically computed concentrations of enzyme (A), enzyme
bound to CS and CS product (B), pNA (C), and enzyme inactivated by antithrombin (D).
Results are produced with the Null Model in the absence (green) and presence (orange) of
CS, and with the Alternative model (blue). Initial concentrations were 0.2 nM TF:VIIa, 170
nM factor X, 3.2 µM antithrombin, and 400 µM CS; kinetic rates for TF:VIIa activation
of FX were KM = 230 nM, kcat = 4.6/s, and antithrombin inactivation was 1.96 ×103/Ms
[55], all other kinetic rates were set to the means of the posterior distributions estimated in
this study.

tically significant support for product inhibition. We designed a novel experiment which
provided validation of our product inhibition model. Finally, to better inform the choice of
mathematical model when simulating simple and complex reaction mixtures, we reported
all concentrations that were output from the two models, including those that cannot be
measured experimentally. Outputs from the two models that represented a measurable
quantity (analogous to absorbance data) were indistinguishable; however, other quantities
showed significantly different behavior between the two models. Both models indeed showed
that the synthetic substrate strongly interferes with the reactions. We found that, when
simulating a reaction where an enzyme is generated and inactivated, a mathematical model
that does not account for product inhibition will seriously overestimate the amount of free
enzyme in the system and underestimate the amount of inactivation. If the enzyme plays
multiple, important roles when included in a more complex reaction, such as the roles of
factor Xa in thrombin generation, our study suggests that the enzyme’s synthetic substrate,
its kinetic schemes and corresponding rates must be carefully examined before comparing
output from corresponding mathematical models and absorbance data from experiments. In
particular, we found that when studying the characteristics of CSs, the following procedures
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were useful for independently assessing the experimental uncertainty: i) using experimental
replicates rather than technical replicates, ii) running experiments with buffer only, iii) run-
ning experiments with CS only and iv) running control experiments to complete substrate
conversion.
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Chapter 3

A local and global sensitivity
analysis of a mathematical model
of coagulation and platelet
deposition under flow (Journal
Article)

This chapter originally published as “Link, K. G., Stobb, M. T., Di Paola, J., Neeves,
K. B., Fogelson, A. L., Sindi, S. S., & Leiderman, K. (2018). A local and global sensitivity
analysis of a mathematical model of coagulation and platelet deposition under flow. PloS
one, 13(7), e0200917.” Reprinted inaccordance with the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/) with some changes for
continuity. KGL conducted the local analysis, all other co-authors listed in this publication
directed and supervised research.

3.1 Abstract
The hemostatic response involves blood coagulation and platelet aggregation to stop

blood loss from an injured blood vessel. The complexity of these processes make it difficult
to intuit the overall hemostatic response without quantitative methods. Mathematical mod-
els aim to address this challenge but are often accompanied by numerous parameters choices
and thus need to be analyzed for sensitivity to such choices. Here we use local and global
sensitivity analyses to study a model of coagulation and platelet deposition under flow. To
relate with clinical assays, we measured the sensitivity of three specific thrombin metrics:
lag time, maximum relative rate of generation, and final concentration after 20 minutes.
In addition, we varied parameters of three different classes: plasma protein levels, kinetic
rate constants, and platelet characteristics. In terms of an overall ranking of the model’s
sensitivities, we found that the local and global methods provided similar information. Our
local analysis, in agreement with previous findings, shows that varying parameters within
50-150% of baseline values, in a one-at-a-time (OAT) fashion, always leads to significant
thrombin generation in 20 minutes. Our global analysis gave a different and novel result
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highlighting groups of parameters, still varying within the normal 50-150%, that produced
little or no thrombin in 20 minutes. Variations in either plasma levels or platelet char-
acteristics, using either OAT or simultaneous variations, always led to strong thrombin
production and overall, relatively low output variance. Simultaneous variation in kinetics
rate constants or in a subset of all three parameter classes led to the highest overall output
variance, incorporating instances with little to no thrombin production. The global analysis
revealed multiple parameter interactions in the lag time and final concentration leading to
relatively high variance; high variance was also observed in the thrombin generation rate,
but parameters attributed to that variance acted independently and additively.

3.2 Introduction
When vascular injury causes blood to flow out of a vessel, the body’s response is hemosta-

sis. Often the hemostatic response is thought of as being comprised of two stages, primary
hemostasis and secondary hemostasis, though these processes begin simultaneously and are
intricately intertwined. Primary hemostasis involves formation of a platelet plug which pre-
vents the loss of blood cells and slows the outflow of plasma from the vessel. The plug forms
by platelet adhesion to collagen and von Willebrand factor on the injured vessel wall and
by aggregation of platelets to the wall-adherent platelets and to one another. Secondary
hemostasis involves formation of a fibrin mesh in and around the platelet plug that me-
chanically stabilizes the plug. Blood coagulation is a key process in secondary hemostasis;
it involves a network of enzyme reactions that produce the enzyme thrombin. Thrombin
removes small peptide chains from the plasma protein fibrinogen thereby producing fibrin
monomers. These monomers polymerize to form the fibrin mesh.

It is important to localize the hemostatic processes, in particular the production and
action of thrombin, to the site of injury. Doing so is a challenge because hemostasis oc-
curs in the presence of continued blood flow. A major part of accomplishing localization
relies on the fact that the critical coagulation enzymes are enzyme complexes that form on
surfaces of cells that are themselves part of or attached to the injured vessel. These in-
clude subendothelial cells and aggregated platelets. An important aspect of coagulation is
that coagulation reactions are regulated by the properties of these cellular surfaces in that
the formation of the enzyme complexes on them is influenced by the limited availability
of binding sites and by competition among coagulation proteins to bind to these sites [1].
Additional localization mechanisms involve inhibitors in the plasma or on the endothelial
cells which line intact vessels which clear active enzymes that are carried downstream of
the injury by flow.

The diversity and complexity of the processes comprising hemostasis make it extremely
difficult to intuit the system’s response without quantitative methods and a growing number
of mathematical models have been developed to try to address this challenge. Such models
can be powerful tools because they allow one to track the concentrations of every protein, en-
zyme complex, and cell during simulations of hemostasis. This makes them potentially very
helpful in interpreting experimental data, elucidating biochemical and biophysical mech-
anisms, and in guiding experimental design. Recently developed models differ from one
another in that they focus on different aspects of the hemostatic process and attempt to
simulate events under different conditions. For example, many models of coagulation were
developed as companion tools for static in vitro coagulation experiments using synthetic
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plasma with lipid vesicles providing the reaction surfaces in place of platelet surfaces [2–5]
or using whole blood [6, 7]. Most models regard all species as well-mixed and only track
the variation in concentrations in time. Others account for spatial and temporal variations,
treating transport from one location to another to simulate the reaction-diffusion waves
observed in some in vitro studies of coagulation in plasma [8, 9], to simulate in vitro flow
assays with whole blood [10, 11], or to simulate small vascular injuries under flow [11–19].

Mathematical models of static situations simulate a “closed system” in which coagula-
tion reactions occur in buffer (or plasma) in the presence of phospholipid surfaces (either
lipid vesicles or platelets), and there is no resupply of proteins. Although the biochemical
species vary from model to model because of differing assumptions on the underlying ki-
netic schemes, these models typically consist of a system of ordinary differential equations
used to track concentrations of coagulation proteins in time starting with prescribed initial
concentrations (initial conditions). The expressions that model enzymatic reactions are
formed using the classical two-step reactions of enzyme kinetics in which there are associ-
ation rates (k+) for binding of the substrate and enzyme, rates for the dissociation of the
enzyme-substrate complex (k−), and catalytic turn over rates (kcat) for the rate that the
complex turns over enzymes. Most of these models assume that there is a vast excess of cell
(phospholipid) surface [2–5, 7] and do not track the binding sites. The first model to track
limited numbers of cell binding sites [12] is the original version of the model considered
in this paper. That model was further developed in [14, 16, 20, 21] and inspired similar
models [4, 6]. These models account for reversible binding of proteins to these sites with
rates konand rates koff for binding and unbinding, respectively.

Experimentally-measured values of the Michaelis-Menten constant,KM= (k−+kcat)/k+,
and catalytic rate kcatcan be found in the literature for most of the coagulation reactions.
However, these rate constants are often measured in isolation, i.e., considering only one
reaction and the reactants involved in that reaction and are measured under varying exper-
imental conditions, e.g., temperature, chromogenic vs. fluorogenic substrate, etc., so there
is uncertainty in the parameter values. Further, it is questionable whether it is valid to use
Michaelis-Menton reaction kinetics to model enzyme reactions for which either the enzyme
or substrate, or both, are involved in other reactions. Hence, mass action descriptions of
complex formation, dissociation, and product formation may be preferable. To parameter-
ize such reactions, using the experimentally measured KM and kcat values, it is typical to
choose a value for one of kon or koffand use the measured kcat and KM values to determine
the other [12]. Similarly, for surface binding, published dissociation constants are ratios
Kd= koff/ kon of the parameters kon and koff needed for the mathematical model, and
again it is typical to choose koffand use the measured Kd to determine kon. Because of
the uncertainties in experimental measurements (of KM , kcat, Kd) and choices of kinetic
schemes and rates, there is considerable variation in the inputs to mathematical models.
How these uncertainties affect the models’ outputs is a major focus of this paper that we
address through a systematic local and global sensitivity analysis. As we will describe in
greater detail, we seek to understand how uncertainties in system inputs are propagated
to uncertainties in particular model outputs taken to represent clinically relevant clotting
behavior.

Mathematical models of microfluidic assays or small vessel injuries under flow simulate
“open systems” in which there is a continual supply of coagulation reactants and removal
of reactants and products at rates that depend on the flow rate. The supply and removal of
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coagulation proteins slow some reactions (e.g., by lowering the concentration of an enzyme)
and speed other reactions (e.g., by maintaining a near-constant level of the substrates).
Moreover, platelets provide their procoagulant surfaces to further enzyme production, but
also inhibit coagulation activity on the subendothlium when they pave it over during ad-
hesion and aggregation [12, 16, 22]. The contributions of these platelet-mediated processes
should depend on the platelet count, the rate of adhesion of platelets to the subendothelium,
and the numbers of binding sites on each platelet for the various coagulation proteins.

It is for precisely these nonintuitive situations that mathematical models are needed
to predict system responses. Of the models mentioned above, the ones developed by our
group are the most comprehensive in terms of coagulation reactions in plasma and also,
perhaps even more importantly, the reactions taking place on the subendothelium and the
surface of activated platelets [12, 14, 16, 20]. The sensitivity of mathematical models to
biophysical attributes, i.e., flow (shear) rate, platelet adhesion rates, activation rates, as
well as numbers of specific binding site numbers on activated platelet surfaces has never
been thoroughly studied. So, in addition to analyzing the model’s sensitivity to kinetic and
binding rates, investigating its sensitivity to biophysical parameters is a major goal of the
current work.

In what follows, we describe the main features of the mathematical model that we
analyze in this paper and then give an overview of sensitivity analysis methods and how
they have been applied to other models of coagulation.

3.2.1 Mathematical model of coagulation under flow

We analyze the model of Fogelson et al. [16] that simulates the clotting response due
to a small injury in a blood vessel wall. Here we give an overview of the model but more
details can be found in our previous works [12, 14, 16, 20]. The full list of reactions, rate
constants, and model equations can be found in S1 Appendix.

In the model, the clotting response is simulated within a small reaction zone located
just above a small patch of exposed subendothelium (SE). Tissue factor (TF) and collagen
embedded in the SE come into contact with clotting factors and platelets in the flowing
plasma (see Fig 3.1B) to initiate the response. The initial height of the reaction zone is
determined by the flow’s shear rate (the derivative of the tangential velocity component in
a direction normal to the vessel wall) and platelet and protein diffusivities. Clotting factor
concentrations in the reaction zone change due to their involvement in the coagulation
reactions depicted in Fig 3.1C and also by transport in and out of the zone. Similarly,
platelet concentrations change as platelets adhere to the injured wall, become activated, and
as platelets are transported in and out of the zone. As platelets build up in the reaction zone
the height and volume of the reaction zone increase with the volume of plasma and platelets
in it changing accordingly. The concentration of each species in the reaction zone plasma
is tracked with an ordinary differential equation; this choice relies on the assumption that
each species is uniformly distributed (well-mixed). An additional well-mixed endothelial
zone is located adjacent to the reaction zone, in the direction perpendicular to the flow
(Fig 3.1C) with height equal to that of the reaction zone and width dependent on the flow
shear rate and protein diffusion coefficients [14]. Thrombin produced in the reaction zone
can diffuse from the reaction zone into the endothelial zone, bind to thrombomodulin (TM),
and produce activated protein C (APC), which may then diffuse back into the reaction zone.
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Figure 3.1: Schematic of (A) coagulation reactions included in our model.
Dashed magenta arrows show cellular or chemical activation processes. Blue arrows show
chemical transport in the fluid or on a surface. Green segments with two arrowheads depict
binding and unbinding from a surface. Rectangular boxes denote surface-bound species.
Solid black lines with open arrows show enzyme action in a forward direction, while dashed
black lines with open arrows show feedback action of enzymes. Red disks show chemical
inhibitors. Schematic of (B) reaction zone and (C) endothelial zone.

Platelets are assumed to be either mobile and unactivated, or stationary, activated and
bound either to collagen in the SE or to other activated platelets. Platelets become activated
at prescribed rates upon contact with the SE, exposure to thrombin, or contact with other
activated platelets. The last of these types of activation is used as a surrogate for activation
by platelet-released ADP which we do not explicitly track in this model. Protein species are
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assumed to be either freely moving in the fluid, bound to the SE, or bound to an activated
platelet surface (APS). To move from the SE to an APS, or vice versa, a protein is subject
to flow and thus might be transported out of the reaction zone.

Fig 3.1A shows the schematic of the coagulation reactions we consider in the model.
The reactions involve many coagulation factors and cofactors: inactive enzyme precursors
(zymogens), active enzymes, as well as inactive and active cofactors. Although cofactors
have an active form, they do not function as enzymes, i.e., they do not activate other
proteins; rather, they make the enzymes to which they bind vastly more effective than the
enzymes would be alone. Next, we describe the coagulation reactions using the typical
Roman numeral notation to represent the factors involved in them. For example, we refer
to factor X as either ‘factor X’ or ‘fX’. Since most of the proteins have an inactive and active
form, we differentiate these forms with the letter ‘a’ attached to the Roman numeral, e.g.,
fXa represents the active form of factor X.

In Fig 3.1A, the zymogens are factors VII, IX, X, and II (prothrombin) and have corre-
sponding active enzyme factors VIIa, IXa, Xa, and IIa (thrombin), respectively. The inac-
tive/active cofactor pairs are V/Va, and VIII/VIIIa. Also seen in Fig 3.1A is that many of
the coagulation reactions occur only on a cellular surface, either SE or APS. We point out
that there are three important surface-bound enzyme-cofactor complexes: TF:VIIa on the
SE (“extrinsic tenase") and VIIIa:IXa (“intrinsic tenase" which below we refer to simply as
tenase) and Va:Xa (“prothrombinase”) on APS. Their substrates (i.e., the proteins that the
enzyme complexes activate) must also be bound to the cellular surface to become activated
[1].

As described above, our model incorporates specific binding sites on an APS to which
each zymogen/enzyme pair compete; this is in contrast to a competing view of a surface
on which all zymogen/enzyme pairs compete for one large number of shared binding sites
[23]. Our assumptions are based on numerous studies in [24–29] that underscore specific
binding of factors V/Va, VIII/VIIIa, IX/IXa, X/Xa, XI/XIa, respectively. Additional
support for the existence of two populations of FIXa receptors comes from a series of
studies,[30, 31], in which the authors characterized the numbers and binding parameters of
the receptors. Other assumptions about protein interactions follow, and further discussion
of them including citations to the literature can be found in [12, 14, 16]:

• Factors VII and VIIa can bind to TF in the SE. Factor Xa can activate fVII in plasma
and when it is bound to TF. Factor Xa can bind the TF:VII complex directly from
plasma without having to first bind the SE.

• Factors IX and X are activated by the TF:VIIa complex on the SE; they bind TF:VIIa
directly from plasma. Factor X is also activated by the VIIIa:IXa (‘tenase’) complex
on an APS.

• Cofactors V and VIII are activated by thrombin in plasma and by thrombin and fXa
on an APS.

• Factor IX is activated by fXIa in plasma and on an APS. Factor XI is activated by
thrombin in plasma and on an APS.

• The chemical inhibitors/inactivators that we include in the model are antithrombin
(AT), activated protein C (APC), and tissue factor pathway inhibitor (TFPI). Since
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the concentration of AT is high in plasma, we assume it acts in a first-order manner
to inactivate fluid-phase fIXa, fXa, fXIa, and thrombin. APC can bind to fluid-
phase and platelet-bound fVa and fVIIIa to permanently inactivate them with second-
order kinetics, but cannot bind to fVIIIa within a tenase complex or to fVa within a
prothrombinase complex. APC is produced in the endothelial zone by a complex of
thrombomodulin and thrombin. TFPI present in the plasma must first bind to fXa
and then the complex TFPI:Xa must bind to the TF:VIIa complex to inhibit it.

• The activity of the TF:VIIa complex decreases as platelet deposition on the injured
tissue increases, i.e., we assume that a platelet physically blocks the activity of the
TF:VIIa complexes on the patch of SE to which the platelet has adhered.

Each simulation with the mathematical model requires setting numerous input values.
We specify the initial plasma concentrations of platelet and protein species, the rate con-
stants for all reactions, the numbers of specific binding sites for coagulation factors on each
APS, the dimensions of the injury, the flow velocity near the injured wall, the diffusion coef-
ficients for all fluid-phase species, and the density of exposed TF. The outputs of the model
are the concentration of every protein species in the reaction zone at each instant of time
from initiation of the injury until the completion of the simulation, and the concentrations
of platelets attached either directly to the SE or to other platelets. A complete listing of
the model’s differential equations and of the base parameter values used in the simulations
can be found in S1 Appendix.

3.2.2 Uncertainty and sensitivity analyses

Sensitivity analysis (SA) refers to a broad set of mathematical approaches designed to
quantify how variation in model outputs may be attributed to model inputs (e.g., initial
conditions and rate constants) [32–34]. These approaches allow researchers to assess how
much trust to put in results obtained from a particular mathematical model. In addition,
because the relevant output behavior of high-dimensional systems, such as biochemical
reaction networks, is often dominated by relatively few parameters, SA provides a way to
isolate these parameters so that they can be targeted by further studies.

One of the most straightforward ways to perform a SA is to vary each model input pa-
rameter one at a time (OAT) while other input parameters remain constant. Such methods
typically assign importance to inputs by their impact on the approximate derivatives of
outputs with respect to a change in the input [33–35]. These methods are inherently “local"
in that they do not study the impact of varying parameters together. Local approaches can
be informative if there is little uncertainty in model inputs or if there is little interaction
between inputs (i.e., inputs act linearly or additively) [36]. However, it is unclear if this is
the case in coagulation due to multiple positive and negative feedback mechanisms. Thus,
in this study we employ both local and global methods to gain additional information about
model sensitivity.

Global sensitivity analysis (GSA) methods consider the changes in model outputs as
input parameters are allowed to vary simultaneously over specified ranges [32, 33, 35].
Typically, global methods require more computational work than local methods, but have
the ability to uncover relationships between multiple parameters and they cope well with
nonlinear and non-additive responses. GSA methods are often probabilistic in nature;

54



they consider the uncertainty in model inputs and outputs as probability distributions. In
these approaches the variance in model output is decomposed to attribute fractions of the
variance to individual model inputs and also groups of model inputs. Many variance-based
sensitivity methods consider Sobol indices [33] to express the decomposed variance as being
due to variations in a single model input in isolation (first-order Sobol index), variations
due to interactions involving two input parameters together (second-order Sobol index),
and so on to variations due to all possible interactions, (total order Sobol index) [33]. As
we describe in greater detail below, we utilize Sobol indices in our analysis and compute
them through Monte-Carlo sampling. Before developing the details of our SA approach, we
first describe prior SA studies of mathematical models of coagulation.

We are aware of four major SA studies of coagulation models, all of which simulate static
coagulation. Danforth and colleagues [37, 38] studied sensitivity to kinetic rate constants
and initial clotting factor concentrations in a model that simulates synthetic plasma in the
presence of lipid vesicles (not platelets) [3, 5] with the lipids present at excess concentrations.
They used an OAT, local SA that included varying individual kinetic rate constants in
their first study [37]. There they examined the changes in a number of output protein
species concentrations in time as kinetic rate constants were varied between 10 - 1000% of
their reported literature value. Overall, they identified 5 of 44 kinetic rate constants that
explained 50% of the variation in all model species’ outputs and 25% of the variation in
thrombin output. They report many of the highest sensitivities of thrombin levels to rate
constants for chemical inhibition/inactivation, i.e., by AT and TFPI, and to the reactions
involving TF and VIIa. In addition, they examined how uncertainty in the output varies
at a set of fixed time points, chosen to represent key moments in the process of thrombin
generation. For example, they examined the time of a thrombin “burst", described as
the time that the thrombin concentration rises rapidly to physiologically relevant levels
(the assume this level to be 2 nM). However, the timing of these events in their model
changed significantly due to variations in the kinetic rate constants themselves, and thus it
is not clear how one should interpret the sensitivities they computed at fixed time values.
In a subsequent study, Danforth and colleagues studied sensitivity in the same model to
variations in the initial plasma concentrations; there they analyzed sensitivity of three
thrombin metrics (analogous to the ones used in the current study) to individual variations
and pairwise variations of parameters within a “normal" range [38]. They reported that
individual variations in two factors (TFPI and prothrombin) accounted for about 50% of
the observed sensitivity of the model output. In regards to their three thrombin metrics,
they reported that the pairwise changes in factor levels resulted in higher output variation
than with individual variations. They found that the pairs, AT with TFPI, and AT with
prothrombin, had the largest effect on the time to 2 nM thrombin and the maximum
thrombin concentration. They concluded that the inhibitors TFPI and AT were the most
potent inducers of overall variation. In a closed, static system, it is clear that these inhibitors
play an important role in regulating thrombin generation because not only are they are the
sole inhibitors in the system, but because all enzymes susceptible to inhibition in a closed
system will be fully inhibited (or inactivated) in a finite amount of time. Our mathematical
model with platelets and flow is less sensitive to such inhibitors since the flow and platelet
coverage of the SE are often the dominant inhibitors of different parts of the process [12,
14, 16]; more discussion of these model differences will be described below.

Anand and colleagues used the SA method of Danforth to analyze sensitivity of a model
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of fibrin generation to kinetic rate constants [39, 40]. They reported that the fibrin con-
centration was most sensitive to the rate constants responsible for inactivation of FVIIIa
(both intrinsic and by APC). Although their model incorporated diffusion near an injury
patch in a static fluid, their sensitivity measure was reported for the average concentra-
tion throughout the spatial domain. The same group used this SA method in two follow
up studies of a static model of thrombin generation that included platelets; they investi-
gated the sensitivity of the model to rate constants [41] and to initial concentrations [42].
Thrombin generation was reported to be most sensitive to the rate constant responsible for
activation of FX by tenase; however this reaction was assumed to obey Michaelis-Menton
kinetics and it is unclear how this assumption affected the SA. In terms of the varied initial
concentrations, they reported that thrombin generation was most sensitive to initial levels
of FVIII and FVIIIa, but it is not clear why FVIIIa levels were varied in the study.

Chatterjee, Diamond, and colleagues [7] built on the models in [3, 5] and developed a
different static model that accounted for platelets and platelet activation. They used this
model to investigate the behavior of blood treated by corn trypsin inhibitor (CTI inhibits
the intrinsic pathway via XIa). They did not consider protein binding to and unbinding
from platelet surfaces, but instead assumed that reaction rates increased as a function of
number of activated platelets. A brief summary of a SA was included in S1 Appendix.
Similar to the approach taken by Danforth et al. [37], they conducted a local SA of 105
kinetic parameters. However, rather than a variance-based sensitivity, they considered the
derivatives of system outputs at a large set of points in parameter space in an OAT fashion.
Following the approach of Bentele et al. [43], their sensitivities were weighted by how closely
the resulting thrombin response matched the thrombin response with the mean parameter
values using a Boltzmann distribution. They then observed the most sensitive parameters
were those involved with direct TF and fVIIa interactions.

Finally, Luan and colleagues [6] studied the sensitivity of a model very similar to the
one used in this work, but without flow. Their model included binding/unbinding of pro-
teins to/from specific surface binding sites, but their analysis considered only the sensitivity
of kinetic rate constants (including binding rates) and not binding site numbers or other
aspects of platelet function. Their goal was to identify fragile mechanisms, small pertur-
bations to which the system output exhibited high sensitivity, and robust ones where the
system maintained its performance in the face of perturbation and uncertainty. They ar-
gued that the most sensitive (or fragile) mechanisms represented ideal therapeutic targets.
They conducted a local sensitivity analysis of 148 kinetic parameters, computing what they
called overall state sensitivity coefficients (OSSCs) following the approach taken in [44].
Four of the top five mechanisms they identified as fragile involved factors X and Xa or the
activation of platelets by thrombin. They found the mechanisms involving factors IX and
IXa were moderately robust by their definitions.

In this study, we use both local and global sensitivity analysis methods to better un-
derstand what information can be gleaned from each, in the context of coagulation and
platelet deposition under flow. As we explain in greater detail below, our local methods
consider the direction and magnitude of change for three metrics of thrombin production.
Our global sensitivity analysis methods consider the fraction of variance in these thrombin
metrics that is attributable to each parameter according to computed Sobol indices.

We have divided our sensitivity analysis into four parts according to the class of param-
eters under study: A) sensitivity to plasma levels of zymogens and inhibitors, B) sensitivity
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to kinetic rate constants including those for surface binding/unbinding, C) sensitivity to
biophysical and platelet attributes and, D) sensitivity to all classes of parameters consid-
ered together. In parts A and C we found the local and global analyses produced consistent
results in terms of ranking the overall sensitivity of the thrombin metrics to the parameters
in those classes. This suggests that the dominant impacts of input uncertainty in these
restricted classes may be understood through consideration of each parameter in isolation.
However, in parts B and D, we observed a number of instances where varying parameters
together resulted in much greater variance in model output than varying them in isolation.
While the variance attributable to higher-order effects was not a majority of the total sys-
tem variance in these cases, the higher-order effects were particularly pronounced for two
of our three output metrics when all parameters were varied together (part D). Overall,
our results provide compelling evidence that to fully characterize the behavior of coagu-
lation, the joint impact of multiple parameters should be considered. Beyond measuring
the amount of variance in the output, as we illustrate in our analysis, global methods also
proved useful for identifying groupings of parameters associated with extreme model output
behavior, which is notable since the parameters varied within normal physiological ranges.

3.3 Materials and methods
Here we describe the methods used to analyze the sensitivity of our model’s output. We

focus on the model’s production of thrombin and quantify this in terms of three metrics,
similar to those used in the in vitro experiments from our previous study [45]:

1. Lag time: A measure of how fast the system is turned on. Specifically, we quantify
the amount of time it takes for thrombin to reach 1 nM, denoted by t1nM . This
concentration of thrombin is known to have significant effects on platelet activation
and coagulation [46].

2. Maximum relative rate: A measure of how fast thrombin is produced once the
system is turned on. Specifically, it is defined by

max
t>t1nM

{
d[thrombin]

dt
/[thrombin]

}
,

where t1nM is the time it takes for thrombin concentration to reach 1.0 nM.

3. Final concentration: The total thrombin concentration after 20 minutes.

Fig 3.2 illustrates how these metrics relate to a curve of thrombin concentration vs. time. In
all comparisons that follow, we assess the variation and sensitivity of thrombin generation
according to these three metrics.

Next, we detail the mathematical and statistical methods used in our local and global
sensitivity analyses. We examined the sensitivity of the model’s output to three types
of parameter variations: (i) the plasma levels of seven zymogens and two inhibitors, (ii)
the values of 96 kinetic rate constants, and (iii) the platelet number density (“platelet
count"), the numbers per activated platelet of nine types of platelet surface binding sites,
and the rates of six platelet responses. We also studied the effect of the flow’s shear rate on
model outputs. We conducted local and global sensitivity studies in parallel for the plasma
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Figure 3.2: Schematic of Thrombin Metrics. Three physiologically relevant metrics of
Thrombin generation were calculated for sensitivity analysis: 1) lag time (Red), 2) maximum
relative rate of thrombin generation, measured after 0.1nM of thrombin have been obtained
(Green), and 3) final concentration, the total concentration of thrombin at 20 minutes
(Blue).

levels and platelet characteristics. For the 96-dimensional parameter space of kinetic rate
constants, a full global analysis would have been too computationally costly. For these
parameters, we used the Morris Method [47] as a screening method to determine a subset
that seemed likely to have a strong influence on the thrombin concentration, either through
direct effects by themselves or through interactions with other parameters. This subset was
then analyzed with our global methods. A similar process was carried out on the union of
the three classes of parameters to generate a subset that was then used for global analysis.

3.3.1 Local Sensitivity Analysis

The local approach we use is a variant of the one-at-a-time (OAT) method used by
Saltelli et al. [34, 48]. Our initial approach to local sensitivity was to pursue a derivative
based method to quantify the sensitivity of each metric with respect to changes in the
parameter. We used a centered difference to approximate the derivative with respect to
each parameter OAT at a range of parameter values (50%, 75%, 100%, 125%, and 150% of
the baseline values.) However, we observed some unexpected behavior with respect to the
system’s metrics which caused us to develop an alternative approach to local sensitivity.

Despite the nonlinearity of the model equations, and the multiple positive and negative
feedback loops in the coagulation system, we found that each of the metrics we were inter-
ested in behaved monotonically with respect to varying each plasma level and kinetic rate
constant OAT from 50% to 150% of the standard values. For example, in Fig 3.3 we show
how each of our three metrics varies with plasma levels and note that, as each level ranges
from 50% to 150% of its standard value, the metric is either monotonically increasing or
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decreasing. The monotonicity property was also seen for nearly all instances of OAT varia-
tion in platelet characteristics (see S1 and S2 Figs). The only exception was non-monotonic
variation in the lag time with the platelet count PLUP and adhesion rate kadh. Because of
this surprising behavior of system outputs, we quantified parameters by the absolute dif-
ference they produced in each metric when considering their extremal values (i.e., 50% and
150%). For each metric, we ranked the parameters by considering their relative absolute
difference.

More specifically, let x = (x1, x2, . . . , xP ) be the standard model parameter values and
mi(xj,y%) represent the value of the i-th metric when parameter j is chosen to be y% of its
standard value and all other parameters are chosen to be their standard value. We define
the local sensitivity of the i-th metric to the j-th parameter as:

LSij =
|mi(xj,150%)−mi(xj,50%)|

max
k

(|mi(xk,150%)−mi(xk,50%)|) . (3.1)

Each LSij is a number between 0 and 1 and we use these values to rank input sensitivities. In
our local sensitivity results (e.g., top of Fig 3.4), we color results in blue when LSij ∈ (0.75, 1],
magenta when LSij ∈ (0.25, 0.75] and cyan otherwise. In addition, because the response
of the system outputs is monotonic throughout the entire range, we show separately the
change in each metric for the 50% increase and decrease for each parameter indicating with
a up/down triangle if the metric increases or decreases.

Figure 3.3: Monotonicity of Change in Thrombin Generation due to Variation
in plasma levels. Variation in the three physiologically relevant metrics of thrombin
generation: 1) lag time; 2) maximum relative rate; and 3) final concentration that occur
with variations in plasma levels.

3.3.2 Morris Method

Because a full global analysis of all model parameters or of the 96 kinetic rate constant
subset was computationally expensive, we sought to select subsets of parameters that seemed
likely to have strong effects. To determine which model parameters may be considered to
have effects which are negligible, linear or involved in interactions with each other, we
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implemented the method of Morris [47]. Here, we briefly detail this method and discuss our
basis for selecting which parameters were used in our global sensitivity results.

The Morris method involves individually randomized OAT experiments and the calcu-
lation of two sensitivity measures µ∗, the Morris mean, and σ, the standard deviation. The
lower and upper bounds of the interval of sampling were set to 50% and 150% of the stan-
dard parameter values. The Morris design requires a random selection of a “base" sample
point x∗, which is a vector of length equal to the number P of parameters. Using five Morris
levels (p = 5), each parameter value is increased or decreased by 25% of its standard value
(∆ = 1/(p − 1) = 1/4). A sequence of P + 1 sample points x∗,x(1),x(2), . . . ,x(P ), called
a trajectory, is generated with the property that two consecutive points differ only one
parameter’s value. For this analysis, we generated 1000 random trajectories and selected
r = 25 samples in a way to maximize their “spread" in the input space. The spread is based
on the sum of the geometric distances between coupled points of any two fixed trajectories.
More details regarding sample selection are found in [49].

An elementary effect for each parameter on each metric was calculated from the sample
trajectories. For example, suppose that in the kth trajectory a step in the jth model param-
eter occurs between sample points x(`j)

k and x(`j+1)
k . For a given choice of parameters, x,

let mi(x) be the value of the ith metric of thrombin generation. The elementary effect for
model parameter j and trajectory k associated with the thrombin generation metric i is:

dij,k = 1
∆

∣∣∣mi

(
x(`j)
k

)
−mi

(
x(`j+1)
k

)∣∣∣ . (3.2)

The Morris mean and standard deviation for the jth parameter and the ith thrombin gen-
eration metric are defined as the empirical mean and variance over all trajectories:

µ∗i,j = 1
r

r∑
k=1

dij,k and σi,j =

√√√√ 1
(r − 1)

r∑
k=1

(dij,k − µ∗i,j)2,

where r is the number of trajectories. Thus the method produces a coordinate pair,
(µ∗i,j , σi,j), for each thrombin generation metric and each parameter. Typically, the coordi-
nate pairs {(µ∗i,j , σi,j)} are grouped into three sets according to those that have a negligible
effect on the metric (both µ∗i,j , σi,j small), a linear effect on the metric (µ∗i,j > σi,j with σ
small) and those likely to have interaction effects (µ∗i,j < σi,j with both µ∗i,j , σi,j large).

When determining which parameters to select for global analysis, we took a different
approach. First, we performed the procedure detailed above, with parameter space filling
trajectory selection, three times to generate path sets P1, P2, and P3. Because results
selected by this method are path-dependent, these multiple path sets allowed to mitigate
the risk of missing important parameters. Next, we normalized all µ∗i,j and σi,j by dividing
each by the largest values observed for that metric:

µ∗i,max = max
j
{µ∗i,j} and σi,max = max

j
{σi,j}.

This normalization restricts all coordinate pairs to the unit square. Inputs with an `2-
norm less than 0.5 are deemed to have negligible effects on thrombin generation, whereas
parameters with an `2-norm greater than or equal to 0.5 were viewed as potentially able
to induce significant change in thrombin generation (individually or via interactions). We
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selected all parameters whose normalized coordinate pair was at a distance ≥ 0.5 from the
origin for the lag time, maximum relative rate, or final concentration for any of the path
sets (P1, P2, and P3).

3.3.3 Global Sensitivity Analysis

Global sensitivity analysis considers the impact of varying parameters simultaneously
and uniformly over their full range of possible values, here values between 50% and 150% of
baseline. As such, we consider the underlying system output to be a random variable over a
probability space of parameter inputs, and quantify the sensitivity of a model output by its
variance. We estimate the effects of parameter variations by using Monte Carlo sampling
to explore our parameter space. While computationally taxing, Monte Carlo sampling is
easily implemented and applicable to all models, including those that contain non-linear
interactions among model parameters [33].

We quantify the variance of model outputs by Sobol sensitivity indices (SIs) [48, 50].
Assuming that parameters are independent, the variance of the i-th model metric, mi, with
respect to random parameter inputs x = (x1, x2, . . . , xP ), may be decomposed as:

Var [mi(x)] = V i =
P∑
j=1

V i
j +

P∑
j=1

P∑
k=j+1

V i
jk + · · ·+ V i

1...P . (3.3)

The total variance is a sum of first order effects of the j-th parameter on metric i, V i
j ,

as well as higher order effects from interactions of parameters. (For example, V i
jk is the

contribution to the variance of metric i from j-th and k-th parameters.) The first order SIs
are formed by normalizing the first order variance terms by the total variance

GSij =
V i
j

V i
, (3.4)

where
∑
GSij = 1 if and only if all interaction terms have zero contribution to the

variance of the model metric mi. The total order SI, GSi,Totj , captures the effect on V i of
parameter j, including those from interaction terms, by summing all variance terms where
the j-th parameter appears, typically written as

GSi,Totj =
V i − V i

−j
V i

, (3.5)

where V i
−j is the sum over the set of all variance terms not containing the j-th parameter.

Unlike the first order SIs, the total order SIs can sum to greater than one as all of the
interaction terms between parameters appear in each parameter’s total SI.

Several estimators for the partial variances are found in the literature [48], with varying
accuracy and efficiency. We have elected to use the first order variance estimator [50],
defined as

V i
j ≈

1
N

N∑
k=1

mi

(
x(k)

)
mi

(
x(k)
j

)
−E[mi], (3.6)

where x(k) and x(k)
j are each a sample of all model parameters and differ only in the

j-th parameter’s value. While true variances are never negative, this estimator may produce
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negative estimates, but it generally produces estimates with a low absolute error compared
to other methods [48].

Similarly, the total variance due to the j-th parameter, (i.e. the sum of all variance
terms containing the j-th parameter) is estimated using the following estimator (from [51]),
with

V i − V i
−j ≈

1
2N

N∑
k=1

[
mi

(
x(k)

)
−mi

(
x(k)
−j

)]2
, (3.7)

where again x(k) and x(k)
−j are sample points in the parameter space of the model pa-

rameters, however these differ in all parameter values except that of the j-th parameter, for
which they share the same value. Due to this estimator’s non-negative nature, it is extraor-
dinarily efficient, producing estimates with extremely low error, especially compared with
the first order variance estimator in 3.6. So while the true first order variance is less than
or equal to the total variance, the noise in the computed estimates can lead to violations of
this relationship.

The total number of function evaluations required are N(P + 2), where N is the num-
ber of samples for each individual parameter and P is the number of parameters. Unless
otherwise stated, we used N = 10, 000. Confidence intervals for the SI estimates were
generated using a bootstrap approach [52]. Unless otherwise specified, confidence intervals
were computed based on 5,000 resamples.

3.3.4 Robustness to Shear Rate

The shear rate we use in the sensitivity analyses of this paper is fixed at 100 s−1. Pre-
vious work [12, 14, 16, 45] includes the investigation of coagulation and platelet deposition
dynamics in an environment with this shear rate and other shear rates and shows that
large variations in shear rate affects thrombin generation. This raises the question of the
robustness of the sensitivity analyses to small perturbations in shear rate. Due to computa-
tional limitations, we did not test robustness of the global Sobol method to shear rate. We
did, however, explore the effects of small perturbations in shear rate on the Morris method
screening. The method of Morris with the same path set was conducted three times using
three shear rates, 90, 100, 110 (1/s). Results from this experiment represent the effects of a
10% change in shear rate (see S3 Fig) and give the associated `2-norm of the Morris sensi-
tivity measures µ∗, σ for lag time∗, maximum relative rate∗, and final amount. Parameters
with the normalized `2-norm of the Morris mean µ∗ and standard deviation σ greater than
0.5 for any of the path subsets were chosen for comparison across shear rates. The Morris
sensitivity norms for all three thrombin generation metrics are essentially the same across
all three shear rates. These results highlight that the method of Morris is not sensitive to
small perturbations in shear rate. We proceed with confidence in our analyses at a fixed
shear rate of 100 s−1.
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3.4 Results

3.4.1 Varying Plasma Levels

Plasma levels of procoagulant and anticoagulant species (e.g., zymogens and chemical
inhibitors) naturally vary between 50% and 150% of their baseline physiological value [53].
In this section we explore how thrombin generation is affected by variations within this
normal range of zymogen and chemical inhibitor levels. We use a local SA approach in which
thrombin generation is simulated using three samples from each zymogen and chemical
inhibitor level, 50%, 100%, and 150% of normal. We report only these three cases due to the
monotonicity in the model responses to changes in plasma levels (see Methods section). A
global SA was also used in which each zymogen and chemical inhibitor were simultaneously
sampled from a uniform distribution between 50% and 150% of normal, resulting in a total
of 110,000 distinct evaluations of the model. Fig 3.4 A-C show results from the local SA
and display the percent changes in each thrombin metric and identify the directionality
of the sensitivity for each measure of generation, with upward/downward facing triangles
indicating a 50% increase/decrease in the input from baseline. The color of the triangle
indicates overall sensitivity, LSij , where highest to lowest sensitivity is represented by the
ordering blue, magenta, and cyan. Fig 3.4 D-F display results from the global SA and
show the first and total order Sobol indices computed for each initial condition and metric.
The height of the bars indicate the fraction of variance that is attributable to the model
output from each parameter individually (first order) and from the parameter itself and its
interactions with other parameters (total order).

The local SA results in Fig 3.4 A-C reveal the most influential zymogen concentrations
when perturbed one at a time for each thrombin metric. We found that variations in fVIII
(Z8) and fV (Z5) levels have the greatest effect on the lag time. An increase/decrease of
fVIII and fV levels by 50% leads to approximately a 10% change in lag time from baseline.
This is equivalent to an increase/decrease of 25 seconds. Both chemical inhibitor levels,
TFPI and AT, have little effect on the lag time (Fig 3.4 A). Variations in fVIII and fIX
(Z9) levels, which influence the rate of formation of the tenase complex on platelets, have the
largest effect on the maximum relative rate of thrombin generation (Fig 3.4 B). Increasing
fVIII or fIX levels by 50% leads to less than a 10% increase in this rate. A stronger effect is
seen when both zymogens are (individually) decreased by 50%. The maximum relative rate
decreases by 14% and 13%, when fVIII and fIX levels are decreased. Lastly, prothrombin
(Z2) levels most dramatically affect the final concentration (see Fig 3.4 C). A 50% decrease
in prothrombin level results in a 20% decrease in thrombin levels (55 nM), making it the
largest OAT effect on thrombin generation produced by varying plasma levels.

The global SA results are in agreement with the findings of the local analysis in that
the ranking of the most influential parameters are nearly identical for the two methods on
all three metrics (p < 0.001 from a rank permutation test [54]). Varying all zymogen and
chemical inhibitor levels between 50% and 150% of normal simultaneously resulted in a
coefficient of variation in the lag time of 0.06 (Fig 3.4 D), indicating that the lag time is
robust to changes in plasma levels within the normal range. As in the local SA, fVIII and fV
play the largest role in changes to the lag time, accounting for 26% and 42% of the output
variance, respectively. The maximum relative rate of thrombin generation (Fig 3.4 E) had
the greatest coefficient of variation across all three metrics at 0.11. The global SA shows
that fVIII, fIX, and fX are the main contributors to the model variance, at 36%, 30%, and
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Figure 3.4: Sensitivity of total thrombin generation to plasma levels. Variation
in the A,D) lag time; B,E) maximum relative rate; C,F) final concentration; to zymogen
and chemical inhibitor levels using the local (OAT) method (A-C) and global Sobol method
(D-F). Local: Sensitivities LSij that lie between 0.75 and 1 (blue), between 0.25 and 0.75
(magenta), less than 0.25 (cyan) determine the rank-ordered list of initial levels. The
percent change of thrombin generation measures from baseline model output for each initial
condition are represented by triangles. The direction of variation of the input parameter
is indicated with an upwards or downwards facing triangle. Global: First and Total Order
Sobol indices are plotted as bars with errors of 2 standard deviation about the mean,
computed with 5,000 bootstrap samples of the original 110,000 function evaluations. The
coefficient of variation is included to provide a scale for the fraction of variance. No total
order index was statistically significantly larger than the first order index, indicating that the
model output is not significantly effected by interactions between the parameters considered
here.

16% respectively, as in the case of the local SA. The variation in the final concentration
(Fig 3.4 F) is entirely explained by variation in the plasma prothrombin levels. For all three
metrics, the output variance is dominated by the first-order effects of parameters. No total-
order Sobol index statistically exceeds the first-order index (p < 0.05). This implies that
the model is additive in this regime and is not strongly impacted by interactions between
parameters.

The samples used in the global SA not only allow us to probe the sensitivity of the model
parameters, but also to interrogate the resulting distribution of thrombin generation metrics.
Fig 3.5 shows the resulting output from the 110,000 samples of the coagulation model used
to compute the Sobol indices above in which plasma levels varied independently between
50% and 150%. Fig 3.5 A shows a quantile plot in time of the thrombin curves generated
from the samples, with the max/min corresponding to the empirical support (note, the lines
on the graph do not refer to actual thrombin curves but instead to computed quantiles).
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The individual distributions of the three thrombin generation metrics resulting from the
sampling are shown as histograms (final concentration in A, with lag time (y-axis) and the
maximum relative rate (x-axis) in B), along with their joint distribution, shown as a colored
2D histogram in B. The dependent relationship between the three metrics is clearly seen,
as lag time decreases almost linearly with the maximum relative rate, while the average
final concentration increases nearly linearly in the same range. While moderate variations
in each metric can be seen, the mean and median of the full collection is within 3% of a
baseline reference thrombin curve for all metrics, implying that though variations do exist,
the typical response is always consistent with that of the baseline case.

3.4.2 Varying Kinetic Rate Constants

In this section we explore how variations in the values of kinetic rate constants (KRCs)
affect thrombin generation. First, we use our local SA approach and vary the KRC values
to 50% and 150% of their baseline values. In addition to a local SA method, we performed a
screening using the method of Morris as a precursor to a global SA. The screening selected
parameters that either had large individual effects upon the model output or a high likeli-
hood of interacting with other parameters. With this screening, we determined a subset of
25 parameters (out of 96) to include in our global SA.

Local Sensitivity Analysis

We performed a local SA by varying each of the 96 KRCs individually and report the
25 most sensitive parameters in S4 Fig. The greatest effect on lag time (an increase of
27% or 1 min) occurred with a 50% decrease in the rate of activation of fX by TF:VIIa
kcatzm10:em7

. The greatest effects on the maximum relative rate of thrombin generation occurred
for variations in nine KRCs; a 50% change in any one of these altered this rate by about
20%. The nine KRCs are the rate koff8 of fVIII/fVIIIa unbinding from its platelet surface
binding sites, the rates of activation of prothrombin by prothrombinase kcatzm2 :PRO, of fX by
tenase kcatzm10:TEN , and of fIX by TF:VIIa kcatz9:em7

, the Michaelis-Menten constant for activation
of TF:VII by fXa KM

zm7 :e10 , the rates of fIX/fIXa binding to and unbinding from receptors
on platelet surfaces, kon9 and koff9 , and of thrombin binding to the platelet surface k∗,on2 . The
most dramatic effects on the final thrombin concentration occurred with 50% decreases in
the rate of prothrombin binding to platelets kon2 and the rate of activation of prothrombin to
thrombin kcatzm2 :PRO. These changes caused an 18% and 15% reduction in the final thrombin
concentration, respectively. The largest effect on any of the metrics was that which occurred
with a 50% reduction in the rate of activation of fX by TF:VIIa.

The local SA reveals that overall the ten most sensitive KRCs, when perturbed one at
a time to 50% or 150% of their baseline values, are kcatz9:em7

, kcatz10:em7
, and KM

zm7 :e10 , which are
involved in activation of fIX and fX by TF:VIIa on the subendothelium; kon9 , koff9 , and koff8
which influence the rate of formation of tenase on the platelet surfaces; kcatzm10:TEN , which
is the rate of activation of fX by tenase; kon2 and kcatzm2 :PRO which directly affect thrombin
production by prothrombinase; and k∗,on2 which affects the ability of thrombin to feedback
and activate the cofactors fVIIIa and fVa of tenase and prothrombinase, respectively. This
analysis identifies parameters that are potential candidates for the global SA, but selection
of this subset is not informed by interaction effects. This motivates our use of the method of
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Morris to do additional screening. We note that the maximum percent change in output for
any of these KRCs, varied one at a time, is less than 30% and that many of them induced
changes of less than 10%.

Method of Morris

The method of Morris procedure was applied to 96 kinetic rate constants with three
path sets P1, P2, and P3. S5 Fig highlights the KRCs screened as candidates for the global
Sobol method. Selection of parameters was based on the criteria that the normalized `2-
norm of the Morris mean µ∗ and standard deviation σ be ≥ 0.5 for any of the path subsets
and any of the thrombin generation metrics. The selected subset of 25 KRCs includes
activation rates of zymogens by enzymes, binding/unbinding rates on a platelet surface and
formation/dissociation rates of complexes. Kinetic rates with `2-norms ≥ 0.5 in all three
thrombin generation metrics include binding rates of fVIII/fVIIIa, fIX/fIXa, and thrombin
to their respective binding sites on an activated platelet surface (kon8 , kon9 , kon,∗2 ), activation
rates of fX by tenase and prothrombin by prothrombinase (kcatzm10:TEN , kcatzm2 :PRO), and the
formation rate of tenase (k+

em8 :em9
).

The activation rates of fIX and fX by TF:VIIa, the unbinding rates of fV/fVa, fVIII/fVIIIa,
fIX/fIXa, and fX/fXa from a platelet surface, the activation rates of fV by thrombin and
fXa, and the formation rate of prothrombinase on a platelet surface have significant Morris
sensitivity norms associated with lag time. All parameters selected except the binding rate
of prothrombin and the unbinding rates of thrombin, fV/fVa, and fX/fXa on the platelet sur-
face have significant Morris `2-norms associated with the maximum relative rate of thrombin
generation. Lastly, the binding rate of prothrombin, the unbinding rate of thrombin and
the formation rate of prothrombinase all have significant `2-norms associated with the fi-
nal concentration of thrombin. The final list of 25 kinetic rate constants all correspond
to the formation of tenase and prothrombinase on a platelet surface and the activation of
thrombin.

Global Sensitivity Analysis

Fig 3.6 shows the global SA for the 25 KRCs obtained by the Morris screening. The
KRCs were uniformly sampled, simultaneously, from 50% to 150% of their baseline values.
Note, only parameters with a non-trivial total order index are displayed (p < 0.05). While
not shown here, the local SA results for the omitted parameters agree well with the global
SA results in that they were all approximately zero. The coefficients of variation for all
metrics range between 0.12 for the final concentration and 0.37 for the maximum relative
rate and are significantly greater than those observed when varying plasma zymogen and
inhibition levels, indicating that the model output is more strongly dependent on the values
of the KRCs, at least when they are varied simultaneously and uniformly. The global Sobol
indices agree with the local SA results, yielding the same relative ranking of parameter
importance for the tested variables in all metrics (p < 0.05 from a rank permutation test
[54]). The global results show that several parameters have non-trivial interaction effects
(i.e., total order effect is statistically larger than the first order effect with p < 0.05), which
we have indicated with an asterisk. For lag time, both kcatzm10:em7

and koff8 have statistically
significant interaction effects (p < 0.05), which account for approximately 3% and 2% of
the total output variance, respectively. While the final concentration output is dominated
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by the two first order effects of kon2 , the binding rate of fII to the platelet surface, and
kcatzm2 :PRO, the activation of fII by prothrombinase, numerous significant interaction effects
also are present, most of which have no significant first order effect at all (i.e., the first
order term’s confidence intervals contain zero). These interaction effects are potentially
important, accounting for up to 10% of the variance in the final concentration.

Interestingly, the ability to simultaneously vary parameters results in radically different
output from the model than seen when they are varied in a OAT fashion. This is most
easily seen in the output distribution for thrombin (Fig 3.7 A), where the support spans
a significantly larger range than seen in the local SA of plasma levels. While the local
SA found a maximum change of less than 30% across all metrics, the global SA produced
variations exceeding 50% for all three thrombin generation metrics, even though parameters
were varied over the same individual range. The observed output for the three metrics fell
between 98-1200s for the lag time (39-482% of baseline), 0.011-0.267s−1 for the maximum
relative rate (11-281% of baseline) and 0.02-355.69nM for the final concentration (0-129%
of baseline).

3.4.3 Varying Platelet Characteristics

In this section we show how thrombin generation is modified due to variations in the
platelet characteristics (PCs) in our model, specifically the rate of platelet adhesion to the
subendothelium, rates of platelet activation by different agonists, platelet count (upstream
platelet concentration), and the number and type of receptors/binding sites on activated
platelet surfaces. We analyze local sensitivity by varying each platelet characteristic in a
OAT fashion, from 50 to 150% of their baseline values. Fig 3.8A-C show the most influential
platelet characteristics for each thrombin metric; the triangle colors and directionality are
as previously described. Fig 3.8D-F show the first and total order Sobol indices computed
for each platelet characteristic and metric, with the height of the bars indicating the fraction
of variance that is attributable to the model output from each parameter individually (first
order) and to the parameter including its interactions with other parameters (total order).

In Fig 3.8A-C, we see that varying the number N10 of binding sites for fX/fXa on each
activated platelet gives the greatest effect on the lag time; decreasing N10 by 50% leads to
a 24% longer lag time. Variations in six platelet characteristics (binding site number per
activated platelet for fIIa, fIXa, fVIII/fVIIIa and fII as well as platelet count and the platelet
rate of adhesion) have the most effect on the maximum relative rate of thrombin generation
(Fig 3.8B). A 50% reduction in platelet count or the rate of platelet adhesion increased the
maximum relative rate by about 20%, while a 50% increase in these parameters decreased
the maximum relative rate by about 10% (see Fig 3.8B). This reflects the role of platelet
coverage of the injury in physically inhibiting TF:VIIa activity.

Lastly, the binding site numbers for fII and fIIa most dramatically affect the final throm-
bin concentration (Fig 3.8C). An increase of 50% in the value ofN∗2 orN2 leads to an increase
of 28% or 22% in thrombin, respectively (Fig 3.8C). A 50% decrease in the two binding
site numbers results in a 28% and 25% decrease in thrombin levels, respectively. Increasing
or decreasing the binding site number for thrombin have the largest effects on the final
concentration.

The global SA is in agreement with the findings from the local SA, with regard to the
relative ranking of important parameters (p < 10−6) from a rank permutation test [54]).
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As seen when KRCs were varied, changes in the platelet characteristics had a much larger
impact on the model variance in all three metrics than when plasma levels of zymogens
and inhibition were varied, with coefficients of variations between 0.15 and 0.24. The lag
time (Fig 3.8D) was most strongly influenced by variations in N10, with 37% of the variance
explained by it alone. Two parameters, PLup, the upstream platelet concentration, and k+

adh,
the rate of platelet adhesion to the subendothelium, have statistically significant interaction
effects (p < 0.05), as indicated by their increased total order indices (marked with a star).
We note that the first order index for these two parameters are close to zero (less than 0.03),
indicating that variations in the two parameters individually contribute little to the model
output. Instead, only the interaction terms appear to be significant. This behavior is not
directly observed in the local analysis, but it may be hinted at in the non-monotonic nature
of the local SA endpoints for these two parameters (S2A Fig, solid black and dashed purple
curves). For the maximum relative rate metric, several parameters have a non-zero Sobol
index (Fig 3.8E), yet none explains more than 21% of the model output variance. Again,
PLup and k+

adh have statistically significant interaction effects but with non-trivial first
order effects at 12% and 10%, respectively. For the final concentration of thrombin, almost
90% of the output variation can be explained by the first order effects of three parameters:
PLup, N2, and N∗2 with 17%, 29%, and 41% of the variance, respectively. It is interesting to
note that while these parameters strongly influence the final thrombin concentration, they
appear to do so in a nearly independent fashion, as no parameters appear to have significant
interactions within this metric.

As with the KRC global results, the observed distribution of the thrombin curves
(Fig 3.9A) and the resulting distribution of the coagulation metrics (Fig 3.9B), have a
far larger variance than in the plasma level case. This is especially true for the final con-
centration of thrombin, where extremely high output is made possible by the combination
of high platelet count and large numbers of fII/fIIa platelet binding sites (results not shown
here).

3.4.4 Varying All Model Parameters

In the previous sections, we examined both the local and global sensitivity resulting
from variations in three classes of parameters: initial plasma levels, kinetic rate constants,
and platelet characteristics. In this section, the three classes are combined and a sensitivity
analysis on a subset of the parameters is performed. To identify a subset of parameters
that have either a large individual effect on the thrombin output or interact strongly with
other parameters, we again use the method of Morris to screen and select parameters. For
this screening, the associated `2-norm of the Morris sensitivity measures µ∗, σ for lag time,
maximum relative rate, and final concentration are shown in S6 Fig Parameters with the
normalized `2-norm of the Morris mean µ∗ and standard deviation σ greater than 0.5, for
any of the paths, were chosen as candidates for the parameter subset.

The result of the screen is a subset of 33 parameters: four from plasma levels (Z2, Z9, Z10, Z11),
six from platelet characteristics (PLup, N2, N5, N9, N

∗
9 , and N∗11), with the remaining 23

from kinetic rate constants. There are six kinetic rate constants in the new subset that
were not identified in the original Morris screen for KRCs only: kcatzm5 :em10

, kcatzm8 :em2
, KM

PC:TM :e2 ,
k−z7:e9 , and k

in
11. Six of the KRCs were also excluded from the new subset that were previously

identified in the KRC-only Morris screen: koff10 , k
off
5 , koff,∗2 ,KM

zm8 :em10
,KM

zm8 :em2
, and k+

em5 :em10
.
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We note that some of the parameters show significant sensitivity, according to the Mor-
ris method, for all three of the thrombin generation metrics: the activation rates of fX by
TF:VIIa and tenase (kcatzm10:em7

, kcatzm10:TEN ), the activation rate of prothrombin by prothrombi-
nase (kcatzm2 :PRO), the binding rates of thrombin and fVIII/fVIII to a platelet surface (kon,∗2 ,
kon8 ), the unbinding rate of fIX/fIXa from a platelet surface (koff9 ), the inactivation rate of
fXIa (kin11), and binding site numbers for fII, fIX/fIXa, and fXIa (N2, N9, N∗11).

Next, a global SA was performed on the identified subset of parameters, in which the
parameters again varied simultaneously between 50-150% of their baseline values. The
results of the global SA were compared to those from the local SA, for each of the parameters
in the subset, as shown in Fig 3.10. The local and global sensitivity analyses for the lag
time and final concentration metrics agree in terms of ranking the parameter importance
(p < 0.001 from a rank permutation test [54]), but for the maximum relative rate metric, the
local and global methods were in less agreement (p < 0.1). The global Sobol information
was able to identify interactions that influence the output variance for the lag time and
the final concentration metrics (Fig 3.10D,F) but not for the maximum relative rate metric
(Fig 3.10E).

In regard to the sensitivity of the lag time (see Fig 3.10D), the single parameter kcatz10:em7
had the largest individual effect, accounting for approximately 15% of the total model
variance, with the remaining parameters individually contributing less than 10%. A sum
of the non-zero first-order terms for the lag time reveals that approximately 87% of the
variance in lag time can be described by the individual effects of the sampled parameters,
with the remaining 13% being attributable to interactions between parameters. The large
importance of first-order effects helps to explain why the local and global parameter rankings
match so well, since first-order effects (the only effects that are measurable by local methods)
dominate the system in this regime.

The variance in the final thrombin concentrations at 20 minutes (see Fig 3.10F) was
dominated by the number of binding sites for prothrombin, N2, which accounted for more
than 30% of the total model variance. Also playing a significant role was the plasma level
of prothrombin, z2, the rate of prothrombin binding to platelet binding sites kon2 , the rate
of prothrombin activation by prothrombinase, Kcat

zm2 :PRO, and the platelet count PLup. The
sum of the first-order terms was approximately 84%, which means that about 16% of the
output variance was due to parameter interactions.

While no significant interactions were detected for the maximum relative rate (Fig 3.10E),
most of the parameters made small individual contributions to the output variance. A few
of the parameters, namely kon2 , KM

PC:TM :e2 , k
in
11, N9, N11, and z11 had nearly zero effect as

measured by first and total order Sobol indices. Of the parameters that did have an effect,
we note that even though they each only contributed a small amount (less than 10% of the
variance), there was still a high value for the coefficient of variation (about 40%). In other
words, our global analysis revealed that there was high variation in the output, relative to
the mean, due to a large number of individual, additive effects; this result would not have
been captured with local SA alone.

The coefficient of variation was, in fact, high for all three thrombin metrics, relative to
those from the previous studies in which we varied each parameter class individually. This
means that simultaneously varying all three types of parameters leads to higher variation in
the model output. This result can also be visualized by looking at the variation in thrombin
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time series output in Fig 3.11A. There we see very wide boundaries that encompass 90% of
the data for the thrombin time series plots (orange region) and also a large total area within
the grey dashed lines that represents the max/min boundary of all the data. In addition,
the data revealed that almost 1% of the model evaluations in this case failed to generate
1nM of thrombin by 20 minutes (blue dots in heatmap in Fig 3.11B).

We found that for the lag time and the final concentration, a fraction of the variance
originates from higher-order interactions among parameters whereas for the maximum rel-
ative rate, there were no interactions but a large number of individual additive effects.
Because it is difficult to determine exactly which parameters are directly interacting and
determine if they are interacting synergistically or antagonistically, we next further exam-
ine extreme behavior in the thrombin output to check for patterns or groupings in the
parameter variations that lead to the extreme behavior.

Conditional Input Distributions for Fast/Slow Thrombin Production

To determine if there is a clear way to identify groupings of interacting parameters,
we examined two extreme situations, one in which thrombin generation occurs quickly (fast
bursts) and one in which thrombin forms very slowly (low producers). To do this we further
filtered the simulations used for the global SA in Fig 3.11D-F. In particular, we characterized
those simulations that led to fast bursts or were low producers, defined by the smallest and
largest 1% of the recorded lag times. In other words, we conditioned the input parameters
on leading to fast or slow bursts, and then computed the resulting conditional distributions
of parameters.

Interesting patterns emerge in the resulting conditional parameter distributions, as
shown in Fig 3.12. We see that specific combinations of parameters, when varied in concert,
can achieve extreme responses in the thrombin production. For example, when we condition
on low production of thrombin, (Fig 3.12A,C), we observe very low values for kcatz10:em7

, k∗,on2 ,
KM
zm5 :em10

, kcatzm5 :em10
, kcatzm10:TEN , kcatzm2 :PRO, k

+
em8 :em9

, and N2 and a few others to a lesser degree.
In addition, we see higher values of KM

z10:em7
, koff8 , PLup, and N5. These parameter values

slow the production of thrombin by decreasing the activation of fX by TF:VIIa, the rate
that thrombin binds to platelet binding sites, the Michaelis-Menten constant for fV and
fXa on the platelet surface and the catalytic rate for the same reaction, the catalytic rate
for activation of fX by tenase, the catalytic rate for prothrombin conversion to thrombin
by prothrombinase, the formation of tenase complexes, and the number of binding sites
for prothrombin on the platelet surfaces. These parameter values slow the production of
thrombin by increasing the Michaelis-Menten constant for fX and TF:VIIa on the platelet
surface, the rate that fVIII/fVIIIa unbind from the platelet surface, the platelet count in
the plasma, and the number of platelet binding sites for fV/fVa.

When we condition on fast thrombin production, (Fig 3.12B,D), we observe very low
values for KM

z7:em10
, KM

z10:em7
, koff8 , and N5, with higher values for kcatzm7 :e10 , k

cat
z10:em7

, kcatzm10:TEN ,
kcatzm2 :PRO, k

+
em8 :em9

, and Z10. The skew of the distributions for the fast bursters are gener-
ally opposite from the skew of the same parameters for the low producers. In particu-
lar, reactions that increase/decrease the activation of fX by TF:VIIa intuitively affect the
fast/slow production, including higher fX levels in the plasma. Similarly, the reactions that
increase/decrease the activation of fX and prothrombin by tenase and prothrombinase in-
tuitively affect the fast/slow production. Not so intuitively, perhaps, are the distributions
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for the binding rates for fVIII/fVIIIa to the platelet, the platelet count in the plasma, and
binding site numbers for prothrombin and fV/fVa. But using our intuition with this model,
we speculate that allowing fVIII/fVIIIa to stay bound to the platelets longer with fewer
binding sites for fV/fVa can induce faster thrombin production in the following way: the
more fVIIIa is available on the platelet surface, the more tenase could potentially form and
thus the more fXa could be produced on the platelet surface; from here the fXa produced by
the tenase feeds back and activates more bound fVIII, especially since there is less fV bound
to the platelet that would compete with the fVIII for fXa. This is similar to the results in
our previous study showing that fXa produced by tenase has an impact on the timing of
the thrombin burst by feeding back to enhance more tenase formation [20]. Interestingly,
the slow bursters are characterized by high numbers of binding sites for fV/fVa but also a
highly skewed distribution for platelet count; here the platelets are inhibiting the system
by covering the activity at the SE, similar to the interplay between fXI and platelet count
reported in our previous study [16].

Thrombin metric dependence on parameter class

Further inspection of Figs 3.5B,3.7B, 3.9B, and 3.11B leads to two important obser-
vations. First, we see that the mean of each thrombin metric is very close to the value
produced when the input parameters are at their baseline level. Second, we see that these
means are similar independent of parameter class variation. However, we have also demon-
strated a wide range of coefficients of variation across the previous sections, with the highest
values resulting from simultaneous variation of all three classes of parameters. Even though
the thrombin metric means are similar, the spread in the thrombin metric output is shown
to vary greatly across parameter class.

The thrombin metric outputs are the result of hundreds of thousands of samples through
parameter space and can be represented as a three-dimensional cloud of points, where each
dimension is a different thrombin metric: lag time, max relative rate, and final concentra-
tion. Note that we have compiled four of these point clouds, one for each of the parameter
classes. To visualize the spread in the outputs, for each parameter class, we constructed a
hull around the point clouds and projected them onto all possible two-dimensional planes
to see how they compare. In Fig 3.13, we show these projections, with the result for each
parameter class overlaid on top of one another, where plasma levels are in black, platelet
characteristics are in blue, kinetic rate constants are in green, and the subset of all classes
is red. It is clear from Fig 3.13 that the spread in the thrombin metric outputs is largest
when all classes of parameters are varied simultaneously. In addition, we found that there
are strong negative correlations among certain thrombin metrics. To quantify this, we
computed the Pearson correlation coefficient between pairs of thrombin metrics. The corre-
lation coefficients between the lag time and maximum relative rate showed strong negative
correlation: -0.93, -0.68, -0.81, and -0.73, corresponding to variations in the plasma levels,
kinetic rate constants, platelet characteristics, and subset of all classes. Interestingly, the
Pearson correlation coefficients between lag time and final concentration were between -
0.23 and -0.41, showing weak negative correlation, while the coefficients between maximum
relative rate and final concentration ranged between 0.25 and 0.37, showing weak positive
correlation.
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3.4.5 Varying Flow

While higher blood flow velocities bring platelets and coagulation proteins to the site of
injury at a faster rate, they also carry away enzymes produced at that site at a faster rate.
Therefore, flow can both facilitate and inhibit thrombin generation and, thus, thrombus
formation. This makes it difficult to intuit the exact response that the system will have
to changes in flow. In this section, we show how thrombin generation in our model is
modified due to variations in shear rate over the range of those found physiologically. To
address overall variation in thrombin generation, samples using shear rates within the range
of 1-1500 (1/s) were generated.

Fig 3.14A shows variations in thrombin generation with respect to time for several shear
rates spanning the physiological range. Fig 3.14B-D highlight the effect of shear rate on the
three thrombin generation metrics. In our model, variations in shear rate lead to variations
in the volume of the reaction zone in which the model’s reactions occur because of changes
in the average boundary layer thickness. Therefore, rather than concentrations, we look at
the amount (fmols) of thrombin in the reaction zone to assess the effect of shear rate on
the system. To coordinate the three metrics of thrombin generation with those used in the
previous analyses, we redefined the first metric to be the time to 2(10−7) fmol (lag time∗).
This quantity was determined using the average volume of the reaction zone for shear rate
100 (1/s) to calculate the number of moles of thrombin that are in the reaction zone when
the thrombin concentration is 1 nM. The maximum relative rate∗ is calculated using the
corresponding amounts of thrombin. The third metric is the amount of thrombin in the
reaction zone at 20 minutes (final amount).

Lag time∗ varies from a little more than 200 seconds for shear rate 10/s to a little
less than 400 seconds for shear rate 1500/s (Fig 3.14B). It is interesting that lag time∗
has a minimum for a shear rate about 10/s. The maximum relative rate∗ metric rises to
a maximum at shear rate about 10/s and then falls by more than 50% as the shear rate
increases to 1500/s (Fig 3.14C). The final amount of thrombin in the reaction zone decreases
monotonically by about 10-fold as the shear rate increases from 1/s to 1500/s (Fig 3.14D).
The decrease is fastest as the shear rate increases from 10/s to 150/s.

In Fig 3.15, we show the effect of shear rate on total thrombin production and on
thrombin’s removal by flow, by lateral diffusion in a direction perpendicular to the flow
direction, and by chemical inhibition by AT. For shear rates between 1/s and 1500/s, the
removal of thrombin is dominated by the effects of flow. Indeed, the removal of thrombin
by AT is approximately one hundred-fold smaller than that by flow. For very low shear
rates (0.01/s to 0.4/s), the amount of thrombin removed by lateral diffusion or by chemical
inhibition by AT is each larger than the amount removed by flow. This is consistent with
static experiments which show significant removal of thrombin by AT inhibition [55, 56].

We also examined whether small variations in shear rate elicited large changes in model
output that could effect the sensitivity analyses of this paper. To do this, we conducted the
Method of Morris analysis on all model parameters at shear rates 90, 100, and 110 (1/s).
Results of this analysis are shown in S3 Fig. From those plots it is clear that small changes
in shear rate from the value 100/s used in most of our analyses do not effect the sensitivity
of thrombin generation to variations in the model’s parameters, and do not effect the results
of the Morris method based selection of parameters for the global SA.
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3.5 Discussion
In this study, we performed local and global sensitivity analyses of a mathematical model

of coagulation and platelet deposition under flow. For the local analysis, input parameters
were varied one at a time (OAT), whereas for the global methods, input parameters were
varied simultaneously. We quantified the sensitivity of three thrombin metrics: lag time,
maximum relative rate of generation, and final concentration after 20 minutes, to varia-
tions in three parameter classes: plasma levels, platelet characteristics, and kinetic rate
constants. In addition, we examined sensitivity of the metrics to a subset of the union of
all three parameter classes. For the cases of kinetic rate constants and all three parameter
classes varied simultaneously, due to the large number of parameters under consideration,
we performed subset selection using the method of Morris as a screening tool. Because our
mathematical model considers flow and thus, the effect of flow on platelet adhesion and
coagulation, we also examined the sensitivity of the thrombin metrics to changes in shear
rate and the removal by flow, diffusion, and chemical inhibition/inactivation.

3.5.1 Plasma levels

The local and global sensitivity analysis of the thrombin metrics due to variations in
initial plasma levels were in good agreement with one another. No OAT variation in plasma
levels led to more than a 20% change in any thrombin metric output; variations in pro-
thrombin (Z2) produced the largest change in output, specifically in the final concentration.
The results of global analysis reveals that there are no significant interactions between the
plasma levels and thus suggests that the model is additive in this regime. The coefficient
of variation for the maximum relative rate was 11% but was less than 1% for lag time and
final concentration, indicating relatively small overall sensitivity of the model to normal
variations in plasma levels. We also observed that all variations in plasma levels, using
local or global methods, led to strong and steady thrombin generation.

To our knowledge, Danforth and colleagues [38] were the first and only other group to
perform a sensitivity analysis on thrombin metrics, not simply overall thrombin sensitivity,
and thus our results would compare more naturally with theirs than with other SA ap-
proaches on coagulation models. One limitation of their methodology, however, is the small
number of parameters that they vary simultaneously (pairwise only), whereas our global
methods vary all plasma levels simultaneously. Another difference is that their model sim-
ulated a closed system, which can provide a partial explanation for their observation that
variations in initial levels of AT and TFPI had the most significant effects on the system.
We also only compare to their data in which the plasma levels were varied within a normal
range, but in their study and ours, there is always substantial thrombin generation by 20
minutes.

3.5.2 Platelet characteristics

The local and global sensitivity analysis of the thrombin metrics due to variations in
platelet characteristics were also in good agreement with each other. No OAT variation in
platelet characteristics led to more than a 28% change in any thrombin metric output, and
there was strong thrombin production in all cases. The prothrombin- and thrombin-specific
binding site numbers, N2, N

∗
2 , produced the largest % change in the final concentration
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while the platelet count and adhesion rate, PLup, k+
adh, produced the largest % change in

the maximum relative rate. The global analysis highlights that PLup, k+
adh have statistically

significant interaction effects. Interestingly, the non-monotonic behavior of the lag time
when PLup and k+

adh vary from 50% to 150% of the baseline values (S2 Fig) suggests such
interaction effects. Both parameters are involved with platelet adhesion and determine how
quickly the injury zone is paved over by platelets. Given that many reactions occur on
platelet surfaces, it is intuitive that the thrombin metrics would be affected by the platelet
count and rate of subendothelial coverage. The global analysis further suggests that the
model is additive for most parameters in this regime. The coefficients of variation were 15%,
24%, and 24% for the lag time, maximum relative rate, and final concentration, respectively.

3.5.3 Kinetic rate constants

The local sensitivity of thrombin metrics to kinetic rate constants (KRCs) showed that
the maximum percent change in thrombin metric output due to OAT variation of any KRC
is less than 30%. This means that in all of these simulations, there was always strong
and steady thrombin generation. The global SA, however, showed something considerably
different; when varying the KRCs simultaneously, there were situations (<1% of the total
samples) where thrombin never reached 1 nM within 20 minutes. Interestingly, this resulted
from variation in the KRCs from 50-150% of their baseline value. This is different from the
results shown in the 2009 study by Danforth and colleagues [37]. In this early study by this
group, overall thrombin sensitivity due to OAT variations of KRCs ranging from 10-1000%
of baseline values was quantified, but not sensitivity of specific thrombin metrics. However,
they showed that variations in the rate of TFPI inhibition (shown later to be one of their
more sensitive parameters) still resulted in substantial thrombin generation by 20 minutes
(see Fig 2A in [37]).

The global SA further revealed parameter interactions on a subset of KRCs selected
by the method of Morris screen. Specifically, relating to the variance in lag time, the
catalytic rate of activation of fX by TF:VIIa was found to interact with the rate that
fVIII/fVIIIa unbind from the platelet surface, albeit these interactions only accounted for
a small fraction of the variance. The coefficient of variation for the lag time was about
30%. The maximum relative rate metric had a larger coefficient of variation (37%) but
there were no significant parameter interactions observed; all of the parameters accounted
for small, additive, fractions of the variance. As for the variance in final concentration, the
rate that prothrombin binds to the platelet surface accounted for about 50% of the variance
but was not found to interact with other parameters, while the catalytic rate of activation
of prothrombin by prothrombinase (accounting for about 30% of the variance) was shown to
interact with other parameters that each accounted for only smal fractions of the variance.
It was not possible to discern which of these parameters were specifically interacting with
the others. The coefficient of variation for the final concentration was low, about 12%.

3.5.4 Varying all parameter classes

To our knowledge, this is the first sensitivity analysis of a model of coagulation in which
multiple parameter classes were varied simultaneously. A variation in the subset of all
parameter classes led to the largest change in output of thrombin metrics, compared to
variations in each parameter class alone. Interestingly, carrying out this variation in a OAT
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fashion leads to a maximum change in output of only about 25%, and again shows that
every simulation in this case would lead to strong and steady thrombin generation. The
global analysis further revealed potential interactions amongst parameters in regard to the
lag time and final concentration while the maximum relative rate had the highest coefficient
of variation but due to parameters that acted additively.

Again, the catalytic rate of activation of fX by TF:VIIa significantly affected the lag
time, along with the rate that fVIII/fVIIIa unbinds from the platelet surface and the cat-
alytic rate of activation of fV by fXa on the platelet surface. In addition to these KRCs,
potential interactions were found between these and other parameters within the platelet
characteristics class. The coefficient of variation for the lag time was about 36%. The fi-
nal concentration metric was affected by multiple parameters from all classes, but involved
platelet count and parameters associated with prothrombin: the plasma level for prothrom-
bin, the binding rate for prothrombin to the surface of platelets, the number of platelet
binding sites for prothrombin, and the catalytic rate of activation of prothrombin by pro-
thrombinase on the platelet surface. The coefficient of variation for the final concentration
was 23%. To better understand how the interactions affected extreme thrombin behavior,
we conditioned the input distributions for globally varied parameters for fast/slow thrombin
bursts. With this conditioning, we were able to clearly identify groups of parameters that
resulted in fast/slow bursting behavior.

3.5.5 Flow

We found that as the shear rate is increased from 1 s−1 to 1500 s−1, there is non-
monotonic behavior in the lag time and the maximum relative rate, while the final thrombin
amount decreases monotonically in this regime. A potential explanation for these results,
as shown in Fig 3.14A-D and Fig 3.15, is the following. At large shear rates the height of
the average chemical boundary layer and the platelet layers is smaller, producing a thinner
reaction zone. Although higher shear rates imply that more platelets are brought into the
reaction zone by the flow, the flow simultaneously washes more platelets away, which results
in fewer platelets in the reaction zone overall (and thus, fewer platelets surfaces on which
reactions may occur), although this also depends on adhesion and activation rates, proving
that the effect of flow on each individual process is complex. We found, however, that there
was both fewer active platelet surfaces and an increase in the removal of thrombin by flow
that together, resulted in longer lag times, slower maximum relative rates of generation,
and smaller final amounts.

3.5.6 Limitations of our methodology

While our results from global SA showed considerable interactions between kinetic pa-
rameters, we emphasize that these results depend on the specific distributions and ranges
that were chosen for each parameter. Because the uniform distribution is a maximum en-
tropy distribution, it is possible that we have either over or underrepresented interaction
strengths. Beyond the shape of the distribution, the range of viable kinetic rate constant
values would similarly impact these findings. More accurate information on reasonable
ranges of these values could greatly improve the ability of global SA methods to deter-
mine meaningful parameter interactions. In addition, we have assumed that parameters are
independently distributed. However, if these values are in fact correlated among individu-
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als (perhaps through a common genetic or biochemical mutation) an independent sampling
method may again over or underrepresent interaction strengths depending on the functional
consequences of the correlation. Finally, although the Morris method is a common screening
tool for large sets of parameters, we note it is possible that in our global SA method we
have missed interactions due to this screening method.

We note that the effects of flow and diffusion are given simplified treatment in this model.
Despite these assumptions, results from this model have led to multiple experimentally-
validated hypotheses regarding the TF-dependent threshold behavior of thrombin [57] and
the synergistic behavior between TF and exogenous FXIa [20]. Extensions to this model
include detailed fluid dynamics together with a continuum model of platelet aggregation
[17, 18]. Performing sensitivity analysis of those model extensions will be the focus of future
work.

3.5.7 Local versus global analysis: what have we learned?

One important question that has resulted from this study is how to determine if and
when it is more appropriate to use a local versus a global SA on models of complex biological
systems. In terms of identifying and ranking our model’s most sensitive parameters, we
found that the results of the local and global SA are in excellent agreement with one another,
in all cases. However, we found that there were cases where if we wanted to explain the
details of the variance in model outputs, the impact on the variance from parameters was
not independent. This suggests that if a parameter ranking is the primary interest, a local
SA may be sufficient, but if precise quantitative attribution of model output variance is
necessary, global SA should be employed.

Beyond the information on parameter interactions, our global SA determined parame-
ters whose variation significantly contributes to the variance of model output by themselves.
In addition, the global SA provided the opportunity to examine subsets of input parameter
space which were linked with strongly extremal output behavior, such as having a lag time
in excess of 20 minutes despite still being in normal parameter ranges. Global SA results
determined groupings of parameters that are more/less likely to lead to fast/slow throm-
bin bursting behavior. Finally, we note that all of our analyses were based on analyzing
normal parameter ranges, it is possible that dependencies between parameters will be even
stronger, and thus the global SA is more appropriate when considering disease states. Re-
sults of the local SA, method of Morris, and the global SA motivated the construction of
a tailored sensitivity analysis approach for the model system described above. However,
this methodology could potentially be employed to help identify biochemical and biophysi-
cal parameters that determine bleeding phenotype in some bleeding disorders, which is the
focus of our future work.
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Figure 3.5: Variation in thrombin generation as a result of varying plasma lev-
els. A) Left Axis: Thrombin concentration time series showing the mean (solid black line)
and boundaries that encompass 50% of the data (pink), 90% of the data (orange), and
the maximum/minimum of the computed solutions (gray-dashed) generated by uniformly
varying initial zymogen plasma levels from 50-150% of normal simultaneously (110,000 total
function evaluations). Right Axis: Marginal histogram of final thrombin concentration at
t = 1200 seconds. B) Heatmap and marginal histograms relating three important thrombin
generation metrics: lag time (y-axis), maximum relative rate (x-axis), and final concentra-
tion (color-axis). Results were obtained by post-processing samples used to compute the
global sensitivity indices. Dashed black bar in (A) and (B) represents the baseline case of
275nM of thrombin at 20 minutes.
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Figure 3.6: Sensitivity of thrombin generation to KRCs. Variation in the A,D)
lag time; B,E) maximum relative rate; C,F) final concentration; to platelet characteristics
using the local (OAT) method (A-C) and global Sobol method (D-F). Local: Sensitivities
LSij that lie between 0.75 and 1 (blue), between 0.25 and 0.75 (magenta), less than 0.25
(cyan) determine the rank-ordered list of kinetic rate constants. The percent change of
thrombin generation measures from standard model output for each initial condition are
represented by triangles. The direction of variation is indicated with an upwards or down-
wards facing triangle. Global: First and Total Order Sobol indices are plotted as bars with
errors of 2 standard deviation about the mean, computed with 5,000 bootstrap samples of
the original 540,000 function evaluations. The coefficient of variation is included to provide
a scale for the fraction of variance. PCs with Total Order index statistically significantly
larger than the First order index are indicated with a star.
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Figure 3.7: Variation in thrombin generation as a result of varying kinetic
rate constants. A) Left Axis: Thrombin concentration time series showing the mean
(solid black line) and boundaries that encompass 50% of the data (pink), 90% of the data
(orange), and the maximum/minimum of the computed solutions (gray-dashed) generated
by uniformly varying kinetic rates sampled uniformly between 50-150% of their nominal
value simultaneously (270,000 total function evaluations). Right Axis: Marginal histogram
of final thrombin concentration at t = 1200 seconds. B) Heatmap and marginal histograms
relating three important thrombin generation metrics: lag time (y-axis), maximum relative
rate (x-axis), and final concentration (color-axis). Results obtained by post-processing
samples used to compute the global sensitivity indices. Dashed black bar in (A) and (B)
represents the baseline case of 275nM of thrombin at 20 minutes.
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Figure 3.8: Sensitivity of thrombin generation to platelet characteristics. Vari-
ation in the A,D) lag time; B,E) maximum relative rate; C,F) final concentration; to
platelet characteristics using the local (OAT) method (A-C) and global Sobol method (D-
F). Local: Sensitivities LSij that lie between 0.75 and 1 (blue), between 0.25 and 0.75
(magenta), less than 0.25 (cyan) determine the rank-ordered list of platelet characteristics.
The percent change of thrombin generation measures from standard model output for each
initial condition are represented by triangles. The direction of variation is indicated with
an upwards or downwards facing triangle. Global: First and Total Order Sobol indices are
plotted as bars with errors of 2 standard deviation about the mean, computed with 5,000
bootstrap samples of the original 170,000 function evaluations. The coefficient of variation
is included to provide a scale for the fraction of variance. PCs with Total Order index
statistically significantly larger than the First order index are indicated with a star.
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Figure 3.9: Variation in thrombin generation as a result of varying platelet
characteristics. A) Left Axis: Thrombin concentration time series showing the mean
(solid black line) and boundaries that encompass 50% of the data (pink), 90% of the data
(orange), and the maximum/minimum of the computed solutions (gray-dashed) generated
by varying platelet characteristics uniformly between 50-150% of their baseline values si-
multaneously (170,000 total function evaluations). Right Axis: Marginal histogram of final
thrombin concentration at t = 1200 seconds. B) Heatmap and marginal histograms relat-
ing three important thrombin generation metrics: lag time (y-axis), maximum relative rate
(x-axis), and final concentration (color-axis). Results obtained by post-processing samples
used to compute the global sensitivity indices. Dashed black bar in (A) and (B) represents
the baseline case of 275nM of thrombin at 20 minutes.
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Figure 3.10: Sensitivity of thrombin generation to a subset of all model pa-
rameters. Variation in the A,D) lag time; B,E) maximum relative rate; C,F) final
concentration; to a subset of all model parameters using the local (OAT) method (A-C)
and global Sobol method (D-F). Local: Sensitivities LSij that lie between 0.75 and 1 (blue),
between 0.25 and 0.75 (magenta), less than 0.25 (cyan) determine the rank-ordered list of
platelet characteristics. The percent change of thrombin generation measures from standard
model output for each initial condition are represented by triangles. The direction of vari-
ation is indicated with an upwards or downwards facing triangle. Global: First and Total
Order Sobol indices are plotted as bars with errors of 2 standard deviation about the mean,
computed with 5,000 bootstrap samples of the original 740,000 function evaluations. The
coefficient of variation is included to provide a scale for the fraction of variance. PCs with
Total Order index statistically significantly larger than the First order index are indicated
with a star.
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Figure 3.11: Variation in thrombin generation as a result of varying a subset of
all model parameters. A) Left Axis: Thrombin concentration time series showing the
mean (solid black line) and boundaries that encompass 50% of the data (purple), 90% of
the data (orange), and the maximum/minimum of the computed solutions (gray-dashed)
generated by uniformly varying a subset of all parameters (found via the Morris method)
sampled between 50-150% of their nominal value simultaneously (740,000 total function
evaluations). Right Axis: Marginal histogram of final thrombin concentration at t = 1200
seconds. B) Heatmap and marginal histograms relating three important thrombin gener-
ation metrics: lag time (y-axis), maximum relative rate (x-axis), and final concentration
(color-axis). Results obtained by post-processing samples used to compute the global sen-
sitivity indices. Dashed black bar in (A) and (B) represents the baseline case of 275nM of
thrombin at 20 minutes.
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Figure 3.12: Conditional input distributions for globally varied subset of all
parameters, of thrombin lag time and final concentration. The subset of parameters
were sampled uniformly between 50-150% of their baseline value and the lag time of total
thrombin was computed. The input distributions were conditioned on a slow burst: the
largest 1% of lag time (A) and a fast burst: the smallest 1% of lag time (B). Distributions
were colored dark blue if the empirical skew was greater than 0.5 in magnitude and light
blue otherwise. Distributions of lag times for slow bursts (C) and fast bursts (D); skew
shown when the mean (dot) and median (square) are not aligned.
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Figure 3.13: 2D Projections of ouput coagulation metric envelopes for different
classes of varying inputs. Three classes of model parameters (plasma levels, a subset
of important kinetic rate constants, and platelet characteristics) are varied within normal
ranges. The envelope of three important coagulation metrics (lag time, maximum relative
rate, and final concentration) are recorded and projected into two dimensions, where A, B,
and C are the different orthogonal directions.
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Figure 3.14: Variation in thrombin generation as a result of varying shear rate.
A) Time series of the amount of thrombin showing the the maximum and minimum of
the data (blue) generated by varying the shear rate from 1-1500 (1/s) as well as thrombin
curves generated with shear rates 1, 10, 100, 500, and 1500 (1/s). Dependence of B) lag
time∗; C) maximum relative rate∗; D) final amount on shear rate.
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Figure 3.15: Effects of shear rate on production and removal of thrombin: Total
production and removal of thrombin by flow, diffusion and chemical inhibition by antithrom-
bin AT generated by varying shear rate from A) 1 - 1500 (1/s); B) 0.01 - 1 (1/s). At small
and large shear rates (1-1500 (1/s)), the removal of thrombin is dominated by the effects of
flow. Significantly smaller shear rates that approach static conditions result in diffusion and
chemical inhibition dominated removal of thrombin. Static experiments support significant
removal of thrombin by AT inhibition.
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3.6 Supplement

S1-S4 Tables list input parameters that describe the physical processes and coagulation
reactions we consider listed in S5-S12 Tables. Zi and Ei refer to zymogen i and enzyme
i in solution. A superscript ’m’ indicates a membrane-bound versions of these proteins
(e.g., Em7 refers to the TF:VIIa complex and Em5 refers to Factor Va bound to the platelet
surface). Concentrations are denoted in a similar way but with lower-case z and e. A
complex of Zi and Ej is denoted Zi : Ej and its concentration is denoted [Zi : Ej ]. Special
symbols are used for the platelet-bound ‘tenase’ VIIIa:IXa and ‘prothrombinase’ Va:Xa
complexes, TEN = VIIIa:IXa and PRO= Va:Xa, and [TEN ] and [PRO] denote their
respective concentrations. The special symbol TFPIa is used for the fluid-phase complex
TFPI:Xa, and [TFPIa] denotes its concentration. The inhibitors are denoted APC and
TFPI and their concentrations are denoted [APC] and [TFPI].

The concentrations of unactivated, subendothelial bound, and activated but not suben-
dothelial bound platelets are denoted PL, PLas , and PLva, respectively. Platelet binding
sites for coagulation proteins are denoted Pi or P ∗i . The former refers to binding sites for
the zymogen i or for zymogen and enzyme i. The latter refers to binding sites only for
enzyme i. The number of Pi or P ∗i binding sites is denoted Ni or N∗i . The concentration
pi or p∗i of each of these binding sites is needed in the model equations. It is obtained
by multiplying the corresponding Ni or N∗i , respectively, by the concentration of activated
platelets PLas + PLav.

Further discussion of model assumptions and parameter estimation can be found in [1, 2].
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[TF ]avail = [TF ]− zm7 − em7 − [Zm7 : E10]− [Zm7 : E2]− [Z10 : Em7 ]
−[Z9 : Em7 ]− [TPFI : E10 : Em7 ]− [Zm7 : E9]

pavail
PLAS = pPLAS − [PLsa]

pavail
5 = p5 − zm5 − em5 − [Zm5 : Em10]− [Zm5 : Em2 ]

−[APC : Em5 ]− [PRO]− [Zm2 : PRO]

pavail
8 = p8 − zm8 − em8 − [TEN ]− [Zm8 : Em10]− [Zm8 : Em2 ]

−[Zm10 : TEN ]− [APC : Em8 ]− [TEN∗]− [Zm10 : TEN∗]

pavail
9 = p9 − zm9 − em9 − [TEN ]− [Zm10 : TEN ]

−[Zm9 : Eh,m11 ]− [Zm9 : Em∗11 ]

p∗,avail
9 = p∗9 − em∗9 − [TEN∗]− [Zm10 : TEN∗]

pavail
10 = p10 − zm10 − em10 − [Zm5 : Em10]− [Zm8 : Em10]

−[PRO]− [Zm2 : PRO]− [Zm10 : TEN ]− [Zm10 : TEN∗]

pavail
2 = p2 − zm2 − [Zm2 : PRO]

p∗,avail
2 = p∗2 − em2 − [Zm5 : Em2 ]− [Zm8 : Em2 ]− [Zm11 : Em2 ]− [Eh,m∗11 : Em2 ]

pavail
11 = p11 − zm11 − e

h,m
11 − [Zm9 : Eh,m11 ]− [Zm11 : Em2 ]

p∗,avail
11 = p∗11 − e

h,m∗
11 − em∗11 − [Zm9 : Em∗11 ]− [Eh,m∗11 : Em2 ]

[TM ]avail = ([TM ]− [TM : Eec2 ]− [TM : Eec2 : APC])

94



d

dt
z7 = kflow(zup

7 − z7)− kon
7 z7[TF ]avail + koff

7 zm7 − k+
z7:e2z7e2

+k−z7:e2 [Z7 : E2]− k+
z7:e10z7e10 + k−z7:e10 [Z7 : E10]

d

dt
e7 = kflow(eup

7 − e7)− kon
7 e7[TF ]avail + koff

7 em7

+kcat
z7:e2 [Z7 : E2] + kcat

z7:e10 [Z7 : E10]

d

dt
zm7 = kon

7 z7[TF ]avail − koff
7 zm7 − k+

zm7 :e10
zm7 e10 + k−zm7 :e10

[Zm7 : E10]

−k+
zm7 :e2z

m
7 e2 + k−zm7 :e2 [Zm7 : E2]− zm7

d

dt
[PLsa]

1
pavail
PLAS

d

dt
em7 = kon

7 e7[TF ]avail − koff
7 em7

−k+
TPFI:e10:Em7

em7 [TFPI : E10] + k−TPFI:e10:Em7
[TPFI : E10 : Em7 ]

+kcat
zm7 :e10 [Zm7 : E10] + kcat

zm7 :e2 [Zm7 : E2]

+(kcat
z10:em7 + k−z10:em7

)[Z10 : Em7 ]− k+
z10:em7

z10e
m
7

+(kcat
z9:em7 + k−z9:em7

)[Z9 : Em7 ]− k+
z9:em7

z9e
m
7 − em7

d

dt
[PLsa]

1
pavail
PLAS

d

dt
z10 = kflow(zup

10 − z10)− kon
10z10 p

avail
10 + koff

10 z
m
10 − k+

z10:em7
z10e

m
7

+k−z10:em7
[Z10 : Em7 ]

d

dt
e10 = kflow(eup

10 − e10)− kdiff(e10 − eec10)− kon
10e10 p

avail
10 + koff

10 e
m
10

+kcat
z10:em7 [Z10 : Em7 ] + (kcat

z7:e10 + k−z7:e10)[Z7 : E10]− k+
z7:e10z7e10

+(kcat
zm7 :e10 + k−zm7 :e10

)[Zm7 : E10]− k+
z7
m:e10

zm7 e10

−k+
TFPI:e10

e10[TFPI] + k−TFPI:e10
[TFPI : E10]− kin

AT :e10e10

d

dt
zm10 = kon

10z10 p
avail
10 − koff

10 z
m
10 − k+

zm10:tenz
m
10[TEN ] + k−z10:ten[Zm10 : TEN ]

−k+
zm10:tenz

m
10[TEN∗] + k−z10:ten[Zm10 : TEN∗]

d

dt
em10 = kon

10e10 p
avail
10 − koff

10 e
m
10 + kcat

zm10:ten[Zm10 : TEN ]

+(kcat
zm5 :em10

+ k−zm5 :em10
)[Zm5 : Em10]− k+

zm5 :em10
zm5 e

m
10

+(kcat
zm8 :em10

+ k−zm8 :em10
)[Zm8 : Em10]− k+

zm8 :em10
zm8 e

m
10

+k−em5 :em10
[PRO]− k+

em5 :em10
em10e

m
5 + kcat

zm10:ten[Zm10 : TEN∗]
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d

dt
z5 = kflow(zup

5 − z5)− kon
5 z5 p

avail
5 + koff

5 zm5 − k+
z5:e2z5e2 + k−z5:e2 [Z5 : E2]

+n5
(
k+

adh p
avail
PLAS + kact

plt

(
[PLva] + [PLsa]

)
+ kact

e2
e2

(e2 + 0.001)
)
[PL]

d

dt
e5 = kflow(eup

5 − e5)− kon
5 e5 p

avail
5 + koff

5 em5

+kcat
z5:e2 [Z5 : E2] + k−e5:APC [APC : E5]− k+

e5:APC [APC]e5

d

dt
zm5 = kon

5 z5 p
avail
5 − koff

5 zm5 − k+
zm5 :em10

zm5 e
m
10 + k−zm5 :em10

[Zm5 : Em10]

−k+
zm5 :em2

zm5 e
m
2 + k−zm5 :em2

[Zm5 : Em2 ]

d

dt
em5 = kon

5 e5 p
avail
5 − koff

5 em5 + kcat
zm5 :em10

[Zm5 : Em10] + kcat
zm5 :em2 [Zm5 : Em2 ]

+k−em5 :APC [APC : Em5 ]− k+
em5 :APC [APC]em5

−k+
em5 :em10

em5 e
m
10 + k−em5 :em10

[PRO]

d

dt
z8 = kflow(zup

8 − z8)− kon
8 z8 p

avail
8 + koff

8 zm8 − k+
z8:e2z8e2 + k−z8:e2 [Z8 : E2]

d

dt
e8 = kflow(eup

8 − e8)− kon
8 e8 p

avail
8 + koff

8 em8 + kcat
z8:e2 [Z8 : E2]− 0.005e8

+k−e8:APC [APC : E8]− k+
e8:APC [APC]e8

d

dt
zm8 = kon

8 z8 p
avail
8 − koff

8 zm8 − k+
zm8 :em10

zm8 e
m
10 + k−zm8 :em10

[Zm8 : Em10]

−k+
zm8 :em2

zm8 e
m
2 + k−zm8 :em2

[Zm8 : Em2 ]

d

dt
em8 = kon

8 e8 p
avail
8 − koff

8 em8 + kcat
zm8 :em10

[Zm8 : Em10] + kcat
zm8 :em2 [Zm8 : Em2 ]

−k+
em8 :APC [APC]em8 + k−em8 :APC [APC : Em8 ]− 0.005em8

−k+
em8 :em9

em9 e
m
8 + k−em8 :em9

[TEN ]− k+
em8 :em9

em8 e
m∗
9 + k−em8 :em9

[TEN∗]
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d

dt
z9 = kflow(zup

9 − z9)− kon
9 pavail

9 z9 + koff
9 zm9 − k+

z9:em7
z9e

m
7 + k−z9:em7

[Z9 : Em7 ]

−k+
z9:eh11

z9e
h
11 + k−

z9:eh11
[Z9 : Eh11]− k+

z9:e11z9e11 + k−z9:e11 [Z9 : E11]

d

dt
e9 = kflow(eup

9 − e9)− kdiff(e9 − eec9 )− kon
9 pavail

9 e9 + koff
9 em9 + kcat

z9:em7 [Z9 : Em7 ]

−kin
AT :e9e9 + (kcat

z7:e9 + k−z7:e9)[Z7 : E9]− k+
z7:e9z7e9

+(kcat
zm7 :e9 + k−zm7 :e9)[Zm7 : E9]− k+

zm7 :e9z
m
7 e9

−kon
9 p∗,avail

9 e9 + koff
9 em∗9 + kcat

z9:eh11
[Z9 : Eh11] + kcat

z9:e11 [Z9 : E11]

d

dt
zm9 = kon

9 pavail
9 z9 − koff

9 zm9 − k+
zm9 :eh,m11

zm9 e
h,m
11 + k−

zm9 :eh,m11
[Zm9 : Eh,m11 ]

−k+
zm9 :em∗

11
zm9 e

m∗
11 + k−zm9 :em∗

11
[Zm9 : Em∗11 ]

d

dt
em9 = kon

9 pavail
9 e9 − koff

9 em9 + k−em8 :em9
[TEN ]− k+

em8 :em9
em8 e

m
9

+kcat
zm9 :eh,m11

[Zm9 : Eh,m11 ] + kcat
zm9 :em∗

11
[Zm9 : Em∗11 ]

d

dt
z2 = kflow(zup

2 − z2)− kon
2 pavail

2 z2 + koff
2 zm2

d

dt
e2 = kflow(eup

2 − e2)− kdiff(e2 − eec2 ) + kcat
z2m:PRO[Zm2 : PRO]

−kon
2∗ p

∗,avail
2 e2 + koff

2∗ e
m
2 − kin

AT :e2e2

+(kcat
z5:e2 + k−z5:e2)[Z5 : E2]− k+

z5:e2z5e2

+(kcat
z8:e2 + k−z8:e2)[Z8 : E2]− k+

z8:e2z8e2

+(kcat
z7:e2 + k−z7:e2)[Z7 : E2]− k+

z7:e2z7e2

+(kcat
zm7 :e2 + k−zm7 :e2)[Zm7 : E2]− k+

zm7 :e2z
m
7 e2

−k+
z11:e2z11e2 + (k−z11:e2 + kcat

z11:e2)[Z11 : E2]
−k+

eh11:e2
eh11e2 + (k−

eh11:e2
+ kcat

eh11:e2)[Eh11 : E2]

d

dt
zm2 = kon

2 pavail
2 z2 − koff

2 zm2 − k+
zm2 :PROz

m
2 PRO + k−zm2 :PRO[Zmz : PRO]

d

dt
em2 = kon

2∗ p
avail
2 e2 − koff

2∗ e
m
2 + (kcat

zm5 :em2 + k−zm5 :em2
)[Zm5 : Em2 ]− k+

zm5 :em2
zm5 e

m
2

+(kcat
zm8 :em2 + k−zm8 :em2

)[Zm8 : Em2 ]− k+
zm8 :em2

zm8 e
m
2

−k+
zm11:em2

zm11e
m
2 + (k−zm11:em2

+ kcat
zm11:em2 )[Zm11 : Em2 ]

−k+
eh,m∗
11 :em2

eh,m∗11 em2 + (k−
eh,m∗
11 :em2

+ kcat
eh,m∗
11 :em2

)[Eh,m∗11 : Em2 ]
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d

dt
[TEN ] = −k−em8 :em9

[TEN ] + k+
em8 :em9

em8 e
m
9

+(kcat
zm10:TEN + k−z10:TEN )[Zm10 : TEN ]− k+

zm10:TENz
m
10[TEN ]

d

dt
[PRO] = −k−em5 :em10

[PRO] + k+
em5 :em10

em10e
m
5

+(kcat
zm2 :PRO + k−zm2 :PRO)[Zm2 : PRO]− k+

zm2 :PROz
m
2 [PRO]

d

dt
[PLsa] = k+

adh p
avail
PLAS [PL]− k−adh[PLsa] + k+

adh[PLva] pavail
PLAS

d

dt
[PL] = kpflow

(
[PL]up − [PL]

)
−
(
k+

adh p
avail
PLAS + kact

plt

(
[PLva] + [PLsa]

)
+kact

e2
e2

e2 + 0.001
)
[PL]

d

dt
[PLva] = k−adh[PLsa]− k+

adh[PLva] pavail
PLAS

+
(
kact

plt

(
[PLva] + [PLsa]

)
+ kact

e2
e2

e2 + 0.001
)
[PL]

d

dt
[TFPI] = kflow([TPFI]up − [TFPI])− k+

TFPI:e10
e10[TFPI]

+k−TFPI:e10
[TFPI : Xa]

d

dt
[TFPI : E10] = −kflow[TFPI : E10] + k+

TFPI:e10
e10[TFPI]

−k−TFPI:e10
[TFPI : E10] + k−TFPI:e10:em7

[TFPI : E10 : Em7 ]

−k+
TFPI:e10:em7

em7 [TFPI : E10]

d

dt
[TFPI : E10 : Em7 ] = −k−TFPI:e10:em7

[TFPI : E10 : Em7 ]

+k+
TFPI:e10:em7

em7 [TFPI : E10]

−[TFPI : E10 : Em7 ] d
dt

[PLsa]
1

pavail
PLAS
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d

dt
[APC] = kflow

(
[APC]up − [APC]

)
− kdiff

(
[APC]− [APCec]

)
+(kcat

em5 :APC + k−em5 :APC)[APC : Em5 ]− k+
em5 :APC em5 [APC]

+(kcat
em8 :APC + k−em8 :APC)[APC : Em8 ]− k+

em8 :APC em8 [APC]

+(kcat
e5:APC + k−e5:APC)[APC : E5]− k+

e5:APC e5[APC]
+(kcat

e8:APC + k−e8:APC)[APC : E8]− k+
e8:APC e8[APC]

d

dt
[APC : Em8 ] = k+

em8 :APC em8 [APC]− (kcat
em8 :APC + k−em8 :APC)[APC : Em8 ]

d

dt
[APC : Em5 ] = k+

em5 :APC em5 [APC]− (kcat
em5 :APC + k−em5 :APC)[APC : Em5 ]

d

dt
[APC : E5] = k+

e5:APC e5[APC]− (kcat
e5:APC + k−e5:APC)[APC : E5]

d

dt
[APC : E8] = k+

e8:APC e8[APC]− (kcat
e8:APC + k−e8:APC)[APC : E8]

d

dt
[Z7 : E2] = kflow

(
[Z7 : E2]up − [Z7 : E2]

)
+ k+

z7:e2z7e2

−(kcat
z7:e2 + k−z7:e2)[Z7 : E2]

d

dt
[Z7 : E10] = kflow

(
[Z7 : E10]up − [Z7 : E10]

)
+ k+

z7:e10z7e10

−(kcat
z7:e10 + k−z7:e10)[Z7 : E10]

d

dt
[Zm7 : E10] = k+

zm7 :e10
zm7 e10 − (kcat

zm7 :e10 + k−zm7 :e10
)[Zm7 : E10]

−[Zm7 : E10] d
dt

[PLsa]
1

pavail
PLAS

d

dt
[Zm7 : E2] = k+

zm7 :e2z
m
7 e2 − (kcat

zm7 :e2 + k−zm7 :e2)[Zm7 : E2]

−[Zm7 : E2] d
dt

[PLsa]
1

pavail
PLAS

d

dt
[Z10 : Em7 ] = k+

z10:em7
z10e

m
7 − (kcat

z10:em7 + k−z10:em7
)[Z10 : Em7 ]

−[Z10 : Em7 ] d
dt

[PLsa]
1

pavail
PLAS
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d

dt
[Zm10 : TEN ] = k+

zm10:TENz
m
10[TEN ]− (kcat

zm10:TEN + k−z10:TEN )[Zm10 : TEN ]

d

dt
[Z5 : E2] = kflow

(
[Z5 : E2]up − [Z5 : E2]

)
+ k+

z5:e2z5e2

−(kcat
z5:e2 + k−z5:e2)[Z5 : E2]

d

dt
[Zm5 : Em10] = k+

zm5 :em10
zm5 e

m
10 − (kcat

zm5 :em10
+ k−zm5 :em10

)[Zm5 : Em10]

d

dt
[Zm5 : Em2 ] = k+

zm5 :em2
zm5 e

m
2 − (kcat

zm5 :em2 + k−zm5 :em2
)[Zm5 : Em2 ]

d

dt
[Zm8 : Em10] = k+

zm8 :em10
zm8 e

m
10 − (kcat

zm8 :em10
+ k−zm8 :em10

)[Zm8 : Em10]

d

dt
[Zm8 : Em2 ] = k+

zm8 :em2
zm8 e

m
2 − (kcat

zm8 :em2 + k−zm8 :em2
)[Zm8 : Em2 ]

d

dt
[Z8 : E2] = kflow

(
[Z8 : E2]up − [Z8 : E2]

)
+ k+

z8:e2z8e2

−(kcat
z8:e2 + k−z8:e2)[Z8 : E2]

d

dt
[Z9 : Em7 ] = k+

z9:em7
z9e

m
7 − (kcat

z9:em7 + k−z9:em7
)[Z9 : Em7 ]

−[Z9 : Em7 ] d
dt

[PLsa]
1

pavail
PLAS

d

dt
[Zm2 : PRO] = k+

zm2 :PROz
m
2 [PRO]− (kcat

zm2 :PRO + k−zm2 :PRO)[Zm2 : PRO]

d

dt
[TF ] = −[TF ] d

dt
[PLsa]

1
pavail
PLAS

d

dt
em∗9 = kon

9 p∗,avail
9 e9 − koff

9 em∗9 + k−em8 :em9
[TEN∗]− k+

em8 :em9
em8 e

m∗
9

d

dt
[TEN∗] = −k−em8 :em9

[TEN∗] + k+
em8 :em9

em8 e
m∗
9

+(kcat
zm10:TEN + k−z10:TEN )[Zm10 : TEN∗]− k+

zm10:TENz
m
10[TEN∗]

d

dt
[Zm10 : TEN∗] = k+

zm10:TENz
m
10[TEN∗]− (kcat

zm10:TEN + k−z10:TEN )[Zm10 : TEN∗]
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d

dt
eec2 = kflow(eup

2 − e
ec
2 ) + kdiff(e2 − eec2 )−−kin

AT :e2e
ec
2

−kon
TMe

ec
2 [TM ]avail + koff

TM [TM : Eec2 ]

d

dt
[APCec] = kflow

(
[APC]up − [APCec]

)
+ kdiff([APC]− [APCec])

+kcat
PC:TM :eec2 [TM : Eec2 : APC]

d

dt
[TM : Eec2 ] = kon

TMe
ec
2 [TM ]avail − koff

TM [TM : Eec2 ]− k+
PC:TM :eec2

[TM : Eec2 ]

+(k−PC:TM :eec2
+ kcat

PC:TM :eec2 )[TM : Eec2 : APC]

d

dt
[TM : Eec2 : APC] = k+

PC:TM :eec2
[TM : Eec2 ]

−(k−PC:TM :eec2
+ kcat

PC:TM :eec2 )[TM : Eec2 : APC]

d

dt
eec9 = kflow(eup

9 − e
ec
9 ) + kdiff(e9 − eec9 )− kin

AT :e9e
ec
9

d

dt
eec10 = kflow(eup

10 − e
ec
10) + kdiff(e10 − eec10)− kin

AT :e10e
ec
10

d

dt
z11 = kflow(zup

11 − z11)− kon
z11z11 p

avail
11 + koff

z11z
m
11 − k+

z11:e2z11e2

+k−z11:e2 [Z11 : E2]

d

dt
eh11 = kflow(eh,up

11 − eh11)− kon∗
eh11
eh11 p

∗,avail
11 + koff∗

eh11
eh,m∗11

−kon
eh11
eh11 p

avail
11 + koff

eh11
eh,m11 − k

+
z9:eh11

z9e
h
11

+(k−
z9:eh11

+ kcat
z9:eh11

)[Z9 : Eh11] + kcat
z11:e2 [Z11 : E2]

−k+
eh11:e2

eh11e2 + k−
eh11:e2

[Eh11 : E2]− kin
AT :e11e

h
11

d

dt
e11 = kflow(eup

11 − e11)− kon∗
e11 e11 p

∗,avail
11 + koff∗

e11 e
m∗
11

−k+
z9:e11z9e11 + (k−z9:e11 + kcat

z9:e11)[Z9 : E11]
+kcat

eh11:e2 [Eh11 : E2]− kin
AT :e11e11
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d

dt
zm11 = kon

z11z11 p
avail
11 − koff

z11z
m
11 − k+

zm11:em2
zm11e

m
2 + k−zm11:em2

[Zm11 : Em2 ]

d

dt
eh,m11 = kon

eh11
eh11 p

avail
11 − koff

eh11
eh,m11 + kcat

zm11:em2 [Zm11 : Em2 ]

−k+
zm9 :eh,m11

zm9 e
h,m
11 + (k−

zm9 :eh,m11
+ kcat

zm9 :eh,m11
)[Zm9 : Eh,m]

11 ]

d

dt
eh,m∗11 = kon∗

eh11
eh11 p

∗,avail
11 − koff∗

eh11
eh,m∗11

−k+
eh,m∗
11 :em2

eh,m∗11 em2 + k−
eh,m∗
11 :em2

[Eh,m∗11 : Em2 ]

d

dt
em∗11 = kon∗

e11 e11 p
∗,avail
11 − koff∗

e11 e
m∗
11 + kcat

eh,m∗
11 :em2

[Eh,m∗11 : Em2 ]

−k+
zm9 :em∗

11
zm9 e

m∗
11 + (k−zm9 :em∗

11
+ kcat

zm9 :em∗
11

)[Zm9 : Em∗11 ]

d

dt
[Z9 : Eh11] = kflow

(
[Z9 : Eh11]up − [Z9 : Eh11]

)
+ k+

z9:eh11
z9e

h
11

−(k−
z9:eh11

+ kcat
z9:eh11

)[Z9 : Eh11]

d

dt
[Z9 : E11] = k

flow
(

[Z9:E11]up−[Z9:E11]
) + k+

z9:e11z9e11

−(k−z9:e11 + kcat
z9:e11)[Z9 : E11]

d

dt
[Zm9 : Eh,m11 ] = k+

zm9 :eh,m11
zm9 e

h,m
11 − (k−

zm9 :eh,m11
+ kcat

zm9 :eh,m11
)[Zm9 : Eh,m11 ]

d

dt
[Zm9 : Em∗11 ] = k+

zm9 :em∗
11
zm9 e

m∗
11 − (k−zm9 :em∗

11
+ kcat

zm9 :em∗
11

)[Zm9 : Em∗11 ]

d

dt
[Z11 : E2] = kflow

(
[Z11 : E2]up − [Z11 : E2]

)
+k+

z11:e2z11e2 − (k−z11:e2 + kcat
z11:e2)[Z11 : E2]

d

dt
[Eh11 : E2] = kflow

(
[Eh11 : E2]up − [Eh11 : E2]

)
+k+

eh11:e2
eh11e2 − (k−

eh11:e2
+ kcat

eh11:e2)[Eh11 : E2]

d

dt
[Zm11 : Em2 ] = k+

zm11:em2
zm11e

m
2 − (k−zm11:em2

+ kcat
zm11:em2 )[Zm11 : Em2 ]

d

dt
[Eh,m∗11 : Em2 ] = k+

eh,m∗
11 :em2

eh,m∗11 em2 − (k−
eh,m∗
11 :em2

+ kcat
eh,m∗
11 :em2

)[Eh,m∗11 : Em2 ]
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S1 Table. INITIAL PLASMA LEVELS. Descriptions, notation and labels for each
parameter associated with initial plasma levels are listed. The value of each parameter is
found in the corresponding table listed above.

Description Notation Label Table
Prothrombin z2 Z2 S5
Factor V z5 Z5 S5
Factor VII z7 Z7 S5
Factor VIII z8 Z8 S5
Factor IX z9 Z9 S5
Factor X z10 Z10 S5
Factor XI z11 Z11 S5
TFPI [TFPI] TFPI S5
AT kin

AT :e2
, kin

AT :e9
, kin

AT :e10
, kin

AT :e11
AT S11

S2 Table. PLATELET CHARACTERISTICS. Descriptions, notation and labels
for each parameter associated with platelet characteristics are listed. The value of each
parameter is found in the corresponding table listed above.

Description Notation Label Table
Platelet count PLup PLup S5
Binding site number for II N2 N2 S5
Binding site number for IIa N∗

2 N2* S5
Binding site number for V/Va N5 N5 S5
Binding site number for VIII/VIIIa N8 N8 S5
Binding site number for IX N9 N9 S5
Binding site number for IXa N∗

9 N9* S5
Binding site number for X/Xa N10 N10 S5
Binding site number for XI N11 N11 S5
Binding site number for XIa N∗

11 N11* S5
Rate of unactivated platelets adhering to SE k+

adh kadh S12
Rate of activated platelets adhering to SE k+,∗

adh kadh1 S12
Rate of platelet activation by platelet in solution kactplt kactplt S12
Rate of platelet activation on SE kact,∗plt kact*plt S12
Rate of platelet activation by thrombin kacte2 kacte2 S7
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S3 Table. KINETIC RATE CONSTANTS. Descriptions, notation and labels for
each parameter associated with kinetic rate constants are listed. The value of each param-
eter is found in the corresponding table listed above.

Description Notation Label Table
Rates of activation of TF:VII by fX KM KZ7mE10M S7

kcatzm
7 :e10 KZ7mE10CAT S7

k−
zm

7 :e10
KZ7mE10MI S7

Rates of activation of fX by TF:VIIa KM KZ10E7mM S7
kcatz10:em

7
KZ10E7mCAT S7

k−
z10:em

7
KZ10E7mMI S7

Rates of activation of fIX by TF:VIIa KM KZ9E7mM S7
kcatz9:em

7
KZ9E7mCAT S7

k−
z9:em

7
KZ9E7mMI S7

Rates of binding of fVII/fVIIa to TF kon7 K7ON S7
koff7 K7OFF S8

Rates of activation of TF:VII by fXa KM KZ7E10M S8
kcatz7:em

10
KZ7E10CAT S8

k−
z7:em

10
KZ7E10MI S8

Rates of activation of TF:VII by fIIa KM KZ7E2M S8
kcatz7:e2 KZ7E2CAT S8
k−
z7:e2 KZ7E2MI S8

Rates of activation of TF:VII by fIXa KM KZ7E9M S8
kcatz7:e9 KZ7E9CAT S8
k−
z7:e9 KZ7E9MI S8

Rates of activation of fV by fIIa KM KZ5E2M S8
kcatz5:e2 KZ5E2CAT S8
k−
z5:e2 KZ5E2MI S8

Rates of activation of fVIII by fIIa KM KZ8E2M S8
kcatz8:e2 KZ8E2CAT S8
k−
z8:e2 KZ8E2MI S8

Rates of activation of fIX by fXIa-fXIa k+
z9:e11 KZ9E11P S8
kcatz9:e11 KZ9E11CAT S8
k−
z9:e11 KZ9E11MI S8

Rates of activation of fIX by fXIa-fXI k+
z9:eh

11
KZ9E11P S8

kcat
z9:eh

11
KZ9E11CAT S8

k−
z9:eh

11
KZ9E11MI S8

Rates of activation of fXI by fIIa k+
z11:e2 KZ11E2P S8
kcatz11:e2 KZ11E2CAT S8
k−
z11:e2 KZ11E2MI S9

Rates of binding of fX/fXa to plt. surface kon10 K10ON S9
koff10 K10OFF S9

Rates of binding of fV/fVa to plt. surface kon5 K5ON S9
koff5 K5OFF S9

Rates of binding of fVIII/fVIIIa to plt. surface kon8 K8ON S9
koff8 K8OFF S9

Rates of binding of fIX/fIXa to plt. surface kon9 K9ON S9
koff9 K9OFF S9

Rates of binding of fII/fIIa to plt. surface kon2 , kon,∗2 K2ON, K2SON S9
koff2 , koff,∗2 K2OFF, K2SOFF S9

Rates of binding of fXI/fXIa to plt. surface kon11 , kon,∗11 K11ON, K11SON S9
koff11 , koff,∗11 K11OFF, K11SOFF S10
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S4 Table. KINETIC RATE CONSTANTS. Descriptions, notation and labels for
each parameter associated with kinetic rate constants are listed. The value of each param-
eter is found in the corresponding table listed above.

Description Notation Label Table
Rates of activation of fV by fXa on plt. surface KM KZ5mE10mM S10

kcatzm
5 :em

10
KZ5mE10mCAT S10

k−
zm

5 :em
10

KZ5mE10mMI S10
Rates of activation of fV by fIIa on plt. surface KM KZ5mE2mM S10

kcatz5:em
2

KZ5mE2mCAT S10
k−
z5:em

2
KZ5mE2mMI S10

Rates of activation of fVIII by fXa on plt. surface KM KZ8ME10MM S10
kcatz8:em

10
KZ8ME10MCAT S10

k−
z8:em

10
KZ8ME10MMI S10

Rates of activation of fVIII by fIIa on plt. surface KM KZ8ME2MM S10
kcatz8:em

2
KZ8mE2mCAT S10

k−
z8:em

2
KZ8mE2mMI S10

Rates of activation of fX by TEN on plt. surface KM KZ10mTENM S10
kcatzm

10:TEN KZ10mTENCAT S10
Rates of activation of fII by PRO on plt. surface KM KZ2mPROM S10

kcatzm
2 :PRO KZ2mPROCAT S10

Rates of activation of fXI by fIIa on plt. surfaces k+
zm

11:em
2

KZ11mE2mP S10
kcatzm

11:em
2

KZ11mE2mCAT S10
k−
zm

11:em
2

KZ11mE2mMI S10
Rates of activation of fIX by fXIa-fXIa on plt. surface KM KZ9mE11mP S10

kcatzm
9 :em

11
KZ9mE11mCAT S10

k−
zm

9 :em
2

KZ9mE11mMI S10
Rates of formation of TEN on plt. surface k+

em
8 :em

9
KE8mE9mP S10

k−
em

8 :em
9

KE8mE9mMI S10
Rates of formation of PRO on plt. surface k+

em
5 :em

10
KE5mE10mP S10

k−
em

5 :em
10

KE5mE10mMI S10
Rates of inhibition of fXa by TFPI k+

tfpia:e10
KTFPI_E10_P S11

k−
tfpia:e10

KTFPI_E10_M S11
Rates of inhibition of TF:VIIa by TFPIa k+

tfpia:em
7

KTFPIa_E7m_P S11
k−
tfpia:em

7
KTFPIa_E7m_M S11

Rates of inhibition of fVa by APC on plt. surface KM KE5mAPCM S11
kcatem

5 :APC KE5mAPCCAT S11
k−
em

5 :APC KE5mAPCMI S11
Rates of inhibition of fVIIIa by APC on plt. surface KM KE8mAPCM S11

kcatem
8 :APC KE8mAPCCAT S11

k−
em

8 :APC KE8mAPCMI S11
Rates of inhibition of fIIa by TM on plt. surface konTM KTMP S11

koffTM KTMM S12
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Kinetic and Physical Parameter Values:

S5 Table. DIFFUSION COEFFICIENTS FOR PLATELETS AND FLUID-
PHASE CHEMICAL SPECIES (a) From [3]. (b) From [4].

Platelets 2.5×10−7 cm2/s a
Proteins 5×10−7 cm2/s b

S6 Table. NORMAL CONCENTRATIONS AND SURFACE BINDING SITE
NUMBERS (a) From [5]. (b) From [6]. (c) [7] suggests that normal plasma concentration
of fVIIa is about 1% of the normal fVII concentration. (d) From [8]. (e) (f) From [9]. (g)
Estimated as described in the text of the Supplementary Information. (h) From [10]. (i)
From [11]. (j) From [12]. (k) From [13]. (l) From [14, 15]. (m) Number of fV molecules
released per activated platelet [16]. (n) Maximum concentration of platelets in a 2 µm high
reaction zone assuming that 20 platelets can cover a 10µm-by-10µm injured surface [17].

Prothrombin 1.4 µM a
Factor V 0.01 µM b
Factor VII 0.01 µM a
Factor VIIa 0.1 nM c
Factor VIII 1.0 nM a
Factor IX 0.09 µM a
Factor X 0.17 µM a
Factor XI 30.0 nM a
TFPI 2.5 nM d
Protein C 65 nM e
Platelet count 2.5(10)5/µl f
N2 1000/plt g
N∗

2 1000/plt g
N5 3000/plt h
N8 450/plt i
N9 250/plt j
N∗

9 250/plt j
N10 2700/plt k
N11 1500/plt l
N∗

11 250/plt l
n5 3000/plt m
pPLAS 0.167 nM n
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S7 Table. REACTIONS ON SUBENDOTHELIUM (a) kcat
zm7 :e10 = 5.0 sec−1 andKM = 1.2·10−6 M [18]. (b) kcat

zm7 :e2 = 6.1·10−2

sec−1 and KM = 2.7 ·10−6 M [18]. (d) kcat
z10:em7

= 1.15 sec−1 and KM = 4.5 ·10−7 M [5]. (d) kcat
z9:em7

= 1.15 sec−1 and KM = 2.4 ·10−7 M
[19]. (e) Kd = 1.0 · 10−10 M [20].

Activation
(of -, by -)

(TF:VII,fXa) E10, Zm7 Zm7 : E10 Em7 k+
zm

7 :e10
=5.0 · 106 k−

zm
7 :e10

=1.0 kcat
zm

7 :e10 =5.0 a
(TF:VII, fIIa) E2, Zm7 Zm7 : E2 Em7 k+

zm
7 :e2

=3.92 · 105 k−
zm

7 :e2
=1.0 kcat

zm
7 :e2 =6.1 · 10−2 b

(fX, TF:VIIa) Em7 , Z10 Z10 : Em7 E10 k+
z10:em

7
=5.0 · 106 k−

z10:em
7

=1.0 kcat
z10:em

7
=1.15 c

(fIX, TF:VIIa) Em7 , Z9 Z9 : Em7 E9 k+
z9:em

7
=9.4 · 106 k−

z9:em
7

=1.0 kcat
z9:em

7
=1.15 d

Binding
(of -, with -)

(fVII, TF) Z7, TF Zm7 kon
7 =5.0 · 107 koff

7 =5.0 · 10−3 e
(fVIIa, TF) E7, TF Em7 kon

7 =5.0 · 107 koff
7 =5.0 · 10−3 e
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S8 Table. REACTIONS IN THE PLASMA (a) kcat
z7:e10 = 5.0 sec−1 andKM = 1.2·10−6 M [18]. (b) kcat

z7:e2 = 6.1·10−2 sec−1 and
KM = 2.7 · 10−6 M [18] (c) kcat

z5:e2 = 0.23 sec−1 and KM = 7.17 · 10−8 M [21]. (d) kcat
z8:e2 = 0.9 sec−1 [22] and KM = 2 · 10−7 M [23]. (e)

kcat
z11:e2 = 1.3 · 10−4, KM = 50nM [24]. Rate constants apply also for thrombin-activation of XIa-XI. (f) kcat

z9:eh11
= 0.21, KM = 0.2µM

[25, 26]. Rate constants apply also for activation of IX by XIa-XIa.

Reaction Reactants Complex Product M−1sec−1 sec−1 sec−1 Note

Activation
(of -, by -)

(fVII, fXa) Z7, E10 Z7 : E10 E7 k+
z7:e10 =5 · 106 k−

z7:e10 =1.0 kcat
z7:e10 =5.0 a

(fVII, fIIa) Z7, E2 Z7 : E2 E7 k+
z7:e2 =3.92 · 105 k−

z7:e2 =1.0 kcat
z7:e2 =6.1 · 10−2 b

(fV, fIIa) Z5, E2 Z5 : E2 E5 k+
z5:e2 = 1.73 · 107 k−

z5:e2 =1.0 kcat
z5:e2 =0.23 c

(fVIII, fIIa) Z8, E2 Z8 : E2 E8 k+
z8:e2 =2.64 · 107 k−

z8:e2 =1.0 kcat
z8:e2 =0.9 d

(fXI-fXI, fIIa) Z11, E2 Z11 : E2 Eh11 k+
z11:e2 = 2.0 · 107 k−

z11:e2 = 1.0 kcat
z11:e2 = 1.3 · 10−4 e

(fIX, fXIa) Z9, Eh11 Z9 : Eh11 E9 k+
z9:eh

11
= 0.6 · (10)7 k−

z9:eh
11

= 1.0 kcat
z9:eh

11
= 0.21 f108



S9 Table. BINDING TO PLATELET SURFACES (a) For fIX binding to platelets, Kd = 2.5·10−9 M [12], and for fX binding
to platelets, Kd has approximately the same value [10]. For fX binding to PCPS vesicles, the on-rate is about 107 M−1sec−1 and the
off-rate is about 1.0 sec−1 [27] giving a dissociation constant of about 10−7 M. To estimate on- and off-rates for the higher-affinity
binding of fX to platelets, we keep the on-rate the same as for vesicles and adjust the off-rate to give the correct dissociation constant.
The rates for fIX binding with platelets are taken to be the same as for fX binding. (b) We assume binding constants for fIXa binding
to the specific fIXa binding sites are the same as for shared sites. (c) fV binds with high-affinity to phospholipids (PCPS) [27] and we
use the same rate constants reported there to describe fV binding to platelets. (d) The Kd for fVIII binding with platelets is taken
from [11]. We set the off-rate koff

8 for fVIII binding to platelets equal to that for fV binding to platelets, and calculate the on-rate
kon

8 . (e) For prothrombin interactions with platelets, Kd is reported to be 5.9 · 10−7 M [28]. We choose koff
2 and set kon

2 = koff
2 /Kd.

(f) Estimated as described in the text of the Supplementary Information. (g) Kd = 10 nM [29]. (h) Kd = 1.7 nM [15].

Reaction Reactants Products M−1sec−1 sec−1 Note

Factor IX Z9, P9 Zm9 kon
9 =1.0 · 107 koff

9 =2.5 · 10−2 a
Factor IXa E9, P9 Em9 kon

9 =1.0 · 107 koff
9 =2.5 · 10−2 a

Factor IXa E9, P ∗
9 Em,∗9 kon

9 =1.0 · 107 koff
9 =2.5 · 10−2 b

Factor X Z10, P10 Zm10 kon
10=1.0 · 107 koff

10 =2.5 · 10−2 a
Factor Xa E10, P10 Em10 kon

10=1.0 · 107 koff
10 =2.5 · 10−2 a

Factor V Z5, P5 Zm5 kon
5 =5.7 · 107 koff

5 =0.17 c
Factor Va E5, P5 Em5 kon

5 = 5.7 · 107 koff
5 =0.17 c

Factor VIII Z8, P8 Zm8 kon
8 = 5.0 · 107 koff

8 =0.17 d
Factor VIIIa E8, P8 Em8 kon

8 = 5.0 · 107 koff
8 =0.17 d

Factor II Z2, P2 Zm2 kon
2 = 1.0 · 107 koff

2 =5.9 e
Factor IIa E2, P2 Em2 k∗,on

2 = 1.0 · 107 k∗,off
2 = 0.2 f

Factor XI Z11, P11 Zm11 kon
z11 = 1.0 · 107 koff

z11 =0.1 g
Factor XIa E11, P ∗

11 Em11 kon
e11 = 1.0 · 107 koff

e11 =0.017 h
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S10 Table. REACTIONS ON PLATELET SURFACES (a) kcat
zm5 :em10

= 0.046 sec−1 and KM = 10.4 · 10−9 M [30]. (b) The
rate constants for thrombin activation of fV on platelets are assumed to be the same as in plasma. (c) kcat

zm8 :em10
= 0.023 sec−1 and

KM = 2.0 · 10−8 M [23]. (d) The rate constants for thrombin activation of fVIII on platelets are assumed to be the same as in
plasma. (e) The formation of the tenase and prothrombinase complexes is assumed to be very fast with Kd = 1.0 · 10−10 M [31]. (f)
kcat
zm10:ten = 20 sec−1 and KM = 1.6 ·10−7 M [32]. (g) kcat

zm2 :pro = 30 sec−1 and KM = 3.0 ·10−7 M [33]. (h) kcat
zm11:em2

= 1.3 ·10−4, KM = 50
nM [24]. Rate constants apply also for thrombin-activation of Plt-XIa-XI. (i) kcat

zm9 :eh,m11
= 0.21, KM = 0.2µM [25, 26]. Rate constants

apply also for activation of platelet-bound IX by Plt-XIa-XIa.

Reaction Reactants Complex Product M−1sec−1 sec−1 sec−1 Note

Activation
(of -, by -)

(V, Xa) Zm5 , Em10 Zm5 : Em10 Em5 k+
zm

5 :em
10
=1.0 · 108 k−

zm
5 :em

10
=1.0 kcat

zm
5 :em

10
=4.6 · 10−2 a

(V, IIa) Zm5 , Em2 Zm5 : Em2 Em5 k+
zm

5 :em
2
=1.73 · 107 k−

zm
5 :em

2
=1.0 kcat

zm
5 :em

2
= 0.23 b

(VIII, Xa) Zm8 , Em10 Zm8 : Em10 Em8 k+
zm

8 :em
10
=5.1 · 107 k−

zm
8 :em

10
=1.0 kcat

zm
8 :em

10
=2.3 · 10−2 c

(VIII, IIa) Zm8 , Em2 Zm8 : Em2 Em8 k+
zm

8 :em
2
=2.64 · 107 k−

zm
8 :em

2
=1.0 kcat

zm
8 :em

2
= 0.9 d

(X, VIIIa:IXa) Zm10, TEN Zm10 : TEN Em10 k+
zm

10:ten=1.31 · 108 k−
zm

10:ten=1.0 kcat
zm

10:ten=20.0 f
(X, VIIIa:IXa∗) Zm10, TEN∗ Zm10 : TEN∗ Em10 k+

zm
10:ten=1.31 · 108 k−

zm
10:ten=1.0 kcat

zm
10:ten=20.0 f

(II, Va:Xa) Zm2 , PRO Zm2 : PRO Em2 k+
zm

2 :pro= 1.03 · 108 k−
zm

2 :pro=1.0 kcat
zm

2 :pro=30.0 g
(XI-XI, IIa) Zm11, Em2 Zm11 : Em2 Ehm11 k+

zm
11:em

2
= 2.0 · 107 k−

zm
11:em

2
= 1.0 kcat

zm
11:em

2
= 1.3 · 10−4 h

(IX, XIa) Zm9 , Ehm11 Zm9 : Ehm11 E9 k+
zm

9 :em
11

= 0.6 · 107 k−
zm

9 :em
11

= 1.0 kcat
zm

9 :em
11

= 0.21 i

Binding
(of -, with -)

(VIIIa, IXa) Em8 , Em9 TEN k+
ten=1.0 · 108 k−

ten=0.01 e
(VIIIa, IXa∗) Em8 , Em,∗9 TEN∗ k+

ten=1.0 · 108 k−
ten=0.01 e

(Va, Xa) Em5 , Em10 PRO k+
pro=1.0 · 108 k−

pro=0.01 e
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S11 Table. INHIBITION REACTIONS (a) We estimate these parameters based on the half-lives of Factors IXa, Xa, IIa in
plasma [34] and assume that the rate of fXIa inactivation is the same as that of fXa and thrombin. (b) For inhibition of fVa by APC,
kcat
em5 :APC = 0.5 sec−1 and KM = 12.5 · 10−9 [35]. We assume the same reaction rates for the inhibition of fVIIIa by APC. (c) From

[36]. (d) Kd = 0.5 nM and [PC] = 65 nM [37]. (e) kPC:TM :eec2 = 0.167 sec−1 , KM = 0.7 · 10−6 M [38].

Reaction Reactants Product M−1sec−1 sec−1 sec−1 Note

Inactivation
(of -, by -)

(IXa, AT-III) E9 none kinAT :e9
=0.1 a

(Xa, AT-III) E10 none kinAT :e10
=0.1 a

(IIa, AT-III) E2 none kinAT :e2
=0.2 a

(XIa, AT-III) E11 none kinAT :e11
=0.2 a

(APC, Va) APC, Em5 none k+
em

5 :APC = 1.2 · 108 k−
em

5 :APC = 1.0 kcat
em

5 :APC = 0.5 b
(APC, VIIIa) APC, Em8 none k+

em
8 :APC = 1.2 · 108 k−

em
8 :APC = 1.0 kcat

em
8 :APC = 0.5 b

Binding
(of -, with -)

(TFPI, Xa) TFPI,E10 TFPIa k+
tfpia:e10

=1.6 · 107 k−
tfpia:e10

=3.3 · 10−4 c
(TFPIa, TF:VIIa) TFPIa,Em7 TFPIa : Em7 k+

tfpia:em
7
=1.0 · 107 k−

tfpia:em
7
=1.1 · 10−3 c

(TM, Thrombin) TM, Eec2 TM : Eec2 kon
TM = 1.0 · 108 koff

TM = 5.0 · 10−2 d

Activation
(of -, by -)

(PC, TM:Eec2 ) TM : Eec2 APC k+
PC:TM :eec

2
= 1.7 · 106 k−

PC:TM :eec
2

= 1.0 kcat
PC:TM :eec

2
= 0.16 e
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S12 Table. PLATELET TRANSITIONS (a) Estimated from data in [39, 40] as described in [1]. (b) Estimated from data in
[41] as described in [1]. SE=subendothelium.

Reactants Reactants Products M−1sec−1 sec−1 Note

Unactivated platelet adhering to SE PL, SE PLsa k+
adh=2 · 1010 k−

adh=0 a
Activated platelet adhering to SE PLva, SE PLva k+

adh=2 · 1010 k−
adh=0 a

Platelet activation by platelet in solution PL, PLva 2PLva kact
plt = 3 · 108 b

Platelet activation on SE PL, PLsa PLva, PLsa kact
plt = 3 · 108 b

Platelet activation by thrombin PL, E2 PLva kact
e2 =0.50 b
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Chapter 4

A mathematical model of
coagulation under flow identifies
factor V as a modifier of thrombin
generation in hemophilia A

This chapter originally submitted on the BioArXiv as “Link, K.G., Stobb, M.T., Sor-
rells, M.G., Bortot, M., Ruegg, K., Manco-Johnson, M.J., Di Paola, J.A., Sindi, S.S., Fogel-
son, A.L., Leiderman, K., Neeves, K.B. (2019). A mathematical model of flow-mediated
coagulation identifies factor V as a modifier of thrombin generation in hemophilia A.”
Reprinted inaccordance with the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/) with some changes for continuity. The co-
authors listed in this publication directed and supervised research which formed the basis
for the dissertation. KGL and MTS contributed equally to this work.

4.1 Abstract
Hemophilia A is a bleeding disorder categorized as severe, mild, and moderate defi-

ciencies in factor VIII (FVIII). Within these categories the variance in bleeding severity is
significant and the origins unknown. The number of parameters that could modify bleeding
are so numerous that experimental approaches are not feasible for considering all possible
combinations. Consequently, we turn to a mathematical model of coagulation under flow
to act as a screening tool to identify parameters that are most likely to enhance thrombin
generation. We performed global sensitivity analysis on 110,000 simulations that varied
coagulation factor levels by 50-150% of their normal values in humans while holding FVIII
levels at 1%. These simulations identified low factor V (FV) levels as the strongest can-
didate, with additional enhancement when combined with high prothrombin levels. This
prediction was confirmed in two experimental models: Partial FV inhibition boosted fib-
rin deposition in flow assays performed at 100 s−1 on collagen-tissue factor surfaces using
whole blood from individuals with mild and moderate FVIII deficiencies. Low FV (∼50%)
or partial FV inhibition also augmented thrombin generation in FVIII-inhibited or FVIII-
deficient plasma in calibrated automated thrombography. These effects were amplified by
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high prothrombin levels in both experimental models. Our mathematical model suggests
a mechanism in which FV and FVIII compete to bind to factor Xa to initiate thrombin
generation in low FV, FVIII-deficient blood. This unexpected result was made possible by
a mechanistic mathematical model, providing an example of the potential of such models
in making predictions in complex biological networks.

4.2 Introduction
Hemophilia A is a genetic bleeding disorder caused by a deficiency in coagulation factor VIII
(FVIII), a protein in blood plasma necessary to generate stable blood clots. FVIII deficiency
prevents sufficient generation of thrombin, the major enzyme of coagulation that plays a
pivotal role in clot formation. The plasma concentration of FVIII defines clinical categories
of hemophilia A as mild (> 5%), moderate (1-5%), or severe (<1%) but within these
categories, individuals with similar plasma levels can have different bleeding phenotypes
[1]. Some variations in bleeding phenotype can be assigned to the different mutations in the
F8 gene, or thrombophilic mutations, but a large portion remains unexplained[2, 3]. Plasma
protein levels are potential modifiers of bleeding; in particular, the variability in coagulation
factor levels is quite large, with the normal range generall regarded as 50-150% of the mean
of the healthy population. We hypothesize that certain combinations of coagulation factor
levels within this normal range could enhance thrombin generation in the context of FVIII
deficiencies and thus reduce bleeding. Identifying such combinations using a reductionist
approach alone is unlikely to succeed since clot formation is a complex, nonlinear process.
In this study, we use a mechanistic mathematical model of flow-mediated coagulation as a
screening tool to predict modifiers of thrombin generation in FVIII deficiency and verify
these predictions with experimental models.

The coagulation reaction network shares many features with gene, metabolic, and pro-
tein networks, for which mathematical and computational approaches are essential to de-
cipher behavior and predict system responses [4–6]. First, complex networks often display
nonlinear responses due to the presence of positive and negative feedback loops. In the
coagulation network, thrombin both enhances and inhibits its own production through dif-
ferent pathways. Second, the interactions between components of complex networks must
be fully described to mechanistically explain emergent properties of the network itself. For
example, our previous mathematical models of coagulation under flow showed that throm-
bin generation had a threshold dependence on the amount of exposed tissue factor (TF)
[7–9], a prediction later validated in experiments [10]. Finally, complex networks are robust
in that they maintain phenotypic stability in the face of perturbations. Even with the nor-
mal variability in coagulation factors levels, the healthy hemostatic response is quite robust,
leading to clots that prevent bleeding while maintaining vessel patency. The robustness of
the coagulation network response to perturbations under disease states such as hemophilia
is unknown.

A powerful tool for analyzing the variability of a model network’s output is sensitivity
analysis (SA); here, model inputs are altered, either one-at-a-time (local SA, LSA) or in
combination (global SA, GSA), and the resulting influence on model outputs is studied
[11]. In variance-based GSA methods, the variance in model output is decomposed and
attributed to individual parameters and interactions between groups of parameters. One
SA approach is to vary model parameters to identify those to which the model output
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is the most sensitive. There are LSA studies that use this approach on mathematical
models of coagulation in the absence of flow [12, 13]. Another approach is to use the
model to make predictions about potential outcomes given variations in the input. For
example, the inputs could represent variability in a disease state or to predict therapeutic
outcomes or targets [14, 15]. We previously conducted a LSA and GSA to determine how
variation (±50%) in plasma levels of coagulation factors affected thrombin generation in a
model of flow-mediated coagulation under healthy conditions [16]. Our analysis revealed
low overall variance of thrombin output, which is in line with results from Danforth et al.
[15]. Collectively, these results underscore the robustness of thrombin generation under
healthy conditions.

In this study, we are interested in FVIII deficiencies and thus, we have fixed the FVIII
level to be low in our mathematical model and performed a GSA by varying the remaining
plasma protein levels. We used the GSA as an initial screening tool to search for combi-
nations of plasma protein levels that either enhance or reduce thrombin generation in the
context of FVIII deficiency. Combinations identified with the GSA to have the greatest
effect were verified in whole blood flow assays and calibrated automated thrombography
(CAT). This systems biology approach identified a potential mechanism where variations
in FV levels within the normal range dramatically alter thrombin generation and fibrin
formation in FVIII deficiencies.

4.2.1 Brief overview of clotting

Blood clot formation involves the coupled processes of platelet aggregation and coag-
ulation, which are triggered when blood is exposed to the subendothelium (SE). Platelet
aggregation begins when platelets adhere to SE matrix proteins, become activated and form
a platelet plug to arrest blood loss. Coagulation consists of a biochemical network that is
initiated by TF, progresses by means of enzymatic reactions on activated platelet surfaces
(APS) [17, 18], and culminates in thrombin generation. Thrombin activates platelets and
converts the soluble fibrinogen into insoluble fibrin, which polymerizes to form a stabilizing
mesh surrounding the platelet mass.

Coagulation proteins include inactive enzyme precursors (zymogens) factors VII, IX,
X, XI and II (prothrombin) and the corresponding active enzymes factors VIIa, IXa, Xa,
XIa, and IIa (thrombin), as well as the inactive/active cofactor pairs factors V/Va and
VIII/VIIIa. Enzyme inhibitors include antithrombin (AT), tissue factor pathway inhibitor
(TFPI), and activated protein C (APC). Thrombin generation occurs through the activity of
three major cofactor/enzyme complexes, TF:FVIIa, FVIIIa:FIXa (tenase), and FVa:FXa
(prothrombinase); each requires a suitable cellular surface on which to form, the SE for
TF:FVIIa and APS for FVIIIa:FIXa and FVa:FXa. Coagulation proteins bind to specific
binding sites on APS prior to forming platelet-bound complexes. We denote platelet-bound
species with a prefix "plt", e.g., plt-FV. Below we use "plasma proteins" to refer collectively
to zymogens, inactive cofactors, and inhibitors.

The backbone of the coagulation reaction network involves the following steps (see Fig.
S1A) that can greatly amplify the initiating signal of TF exposure: TF:FVIIa activates FIX
and FX on the SE; FIXa and FXa bind to APS; plt-FXa activates small amounts of plt-FV
and plt-FVIII; plt-FVIIIa and plt-FIXa form tenase complexes on APS; plt-FVa and plt-
FXa form prothrombinase complexes on APS; prothrombinase converts prothrombin into
thrombin. The backbone is augmented with numerous feedback loops which are critical
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to robust thrombin generation. For example, plt-Xa produced by tenase activates plt-VIII
allowing more tenase to form; thrombin activates plt-FVIII and plt-FV allowing more tenase
and prothrombinase to form. FVIII deficiencies reduce thrombin generation because less
tenase forms on APS. Factor XII and blood-bourne sources of TF are not considered in our
mathematical model.

Figure 4.1: Global sensitivity analysis for mathematical model of flow-mediated
coagulation. A) Critical TF distributions for normal and FVIII deficient plasma. Dashed
black line at 5 fmol/cm2is the fixed TF for all further simulations. B) Thrombin con-
centration time series generated by uniformly and independently varying plasma protein
levels ±50% from normal (110,000 total simulations); mean (solid black line), boundaries
that encompass 50% (pink), and 90% of the data (orange), and the maximum/minimum
of the computed solutions (gray-dashed); blue line drawn at 1nM. C) First (blue) and to-
tal (orange) order Sobol indices are plotted as mean ± standard deviation computed with
5,000 bootstrap samples of the original 110,000 simulations. D) Plasma zymogen and in-
hibitor levels distributions shown as box-and-whisker plots (mean in red, whiskers 3IQR),
conditioned on achieving more than 1nM of total thrombin.

Results
The mathematical model we use is presented in [9, 16] and is an extension of our earlier

models [7, 8, 19]. The model includes all of the reactions depicted in Fig. SI1, with the
equations and parameter choices fully described in [9]. The inputs to this model are the
TF level, plasma protein levels, platelet count, binding sites on APS, and flow rate; the
available outputs are all model species’ concentrations as a function of time.
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4.2.2 Tissue factor density distributions for normal and FVIII-deficient
plasma

Our previous studies revealed a critical TF level, where thrombin sharply transitioned
between an attenuated and amplified response [7–9]. Under FVIII-deficient conditions and
high TF, our model produces more than 1 nM of thrombin by 10 min, albeit at a decreased
rate compared to normal FVIII levels [7]. Furthermore, it is known that individuals with
FVIII deficiencies bleed mostly in regions of the body with low TF levels [20–22]. Taken
together, these studies show that the TF level has an important influence on whether
substantial thrombin is produced for any given values of plasma protein levels. Thus, to
identify modifiers of hemophilia A, we first determine a range of critical TF levels so that
minor decreases in that level result in little or no thrombin generation and minor increases
result in substantial thrombin generation. As an initial screen, we varied the plasma protein
levels between 50 and 150% of their physiologic levels for both normal and FVIII-deficient
plasma (FVIII fixed to 1% or normal), using 2,500 Latin Hypercube samples [23]. For each
of these parameter set samples, a bisection procedure was used to determine the minimum
TF level required to achieve an amplified thrombin response, i.e., 1 nM thrombin by 40
min. The distribution of these values determines a critical range of TF levels over which
the thrombin response is most sensitive to variations in plasma protein levels. In our model,
thrombin that reaches 1 nM (indicated by a blue line in Fig. 4.1B) activates platelets and
is then likely to continue to increase [7–9, 16].

Fig. 4.1A shows the TF distributions for the normal (blue) and FVIII-deficient (orange)
plasma where the protein levels were varied between 50-150%. No overlap between the two
distributions is observed, with normal and FVIII-deficient plasma having a TF range of
[1.07, 2.62] fmol/cm2and [4.63, 7.78] fmol/cm2, respectively. These distributions suggest
that a TF level of 5 fmol/cm2, near the left edge of the distribution for FVIII-deficient
plasma, is a good choice for conducting further probes of plasma protein levels in a GSA,
because for the majority, but not all, of the plasma protein combinations that we tested,
little thrombin is produced. All further simulations in this study are performed with TF at
5 fmol/cm2.

4.2.3 GSA identifies FV as a modifier of thrombin generation in hemophilia
A

We performed a GSA of thrombin generation by varying plasma protein levels using
110,000 samples in which each plasma protein level (except FVIII, which was fixed to 1%)
was sampled uniformly and independently between 50-150% of normal. Quantiles of the
thrombin concentration time-course are shown in Fig. 4.1B. While no simulation achieved
more than 100 nM by 40 min, about 5% of the simulations eventually led to thrombin
greater than 100 nM (not shown). We further distinguish simulations by those that led to
1 nM thrombin within 40 min and those that did not.

To assign fractions of the thrombin output variance observed in the quantiles of Fig.
4.1B, we performed a Sobol analysis [24]. Fig. 4.1C shows the first order (blue) and total
order (orange) Sobol sensitivity indices for the thrombin concentration at 30 min. The first
order indices represent the fraction of the variance attributable to that one parameter alone
while the total order index indicates the fraction due to that parameter plus its interactions
with other parameters. We see that the parameters, i.e., the plasma protein levels, that
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had the most influence on the variance in thrombin at 30 min are FV and prothrombin
(FII), which account for approximately 50% and 24% of the variance, respectively. In
addition, approximately 19% of the model variance is explained by the interaction between
prothrombin and FV, as indicated by the total order Sobol indices exceeding the first order
indices.

Next, we characterized the ≈ 5000 simulations that led to 1 nM thrombin within 40 min
(blue shaded region in Fig. 4.1B). Fig. 4.1D shows the distribution of all plasma proteins that
correspond to those simulations. The majority of the plasma protein levels have medians
close to their average and distributions that appear roughly uniform. This indicates that
1 nM thrombin is possible with any value of these plasma levels. The plasma FV and
prothrombin levels were striking exceptions. Both have medians close to their extreme values
and are distributed over a narrower range than the other plasma protein levels. Although
the prothrombin distribution is skewed towards higher levels, it does extend below 100%,
indicating that higher than normal prothrombin is not strictly necessary to achieve 1 nM
thrombin. Conversely, every sample that achieved 1nM thrombin had plasma levels of FV
that were strictly less than 75% of normal. Indeed, over 75% of the samples had a FV level
less than 60% of normal. This indicates that FV levels on the low end of normal (close to
50%) are necessary to enhance thrombin generation in FVIII-deficient plasma stimulated
with a low level of TF in this model.

4.2.4 Exploration of Mechanism: The competition for FXa

We used our mathematical model to explore how lower FV can enhance thrombin pro-
duction in FVIII-deficient plasma. Table S1 lists the variations in plasma levels of pro-
thrombin and FV that we considered. Fig. 4.2A shows the time-course of thrombin for
these four cases. In the two cases with low FV, substantial thrombin is produced and
thrombin generation occurs earlier with a higher prothrombin level. Very little thrombin is
produced with normal levels of FV. These results indicate that low FV is key to enhancing
thrombin production and increasing prothrombin level alone does not. Fig. 4.2B-C show
that the tenase concentration associated with low FV diverges from normal FV as early as
5 min, before the prothrombinase and thrombin curves diverge. Given that there is little
thrombin at these early times, the differences in the tenase behavior suggest that early
competition between plt-FVIII and plt-FV to bind to plt-FXa plays a significant role.

To see this competition, Fig. 4.2D-E shows the concentrations of plt-FVIII:FXa and
plt-FV:FXa. The concentration of plt-FVIII:FXa is substantially higher for the low FV
cases than for the normal FV cases, and for each FV level, there is very little difference (for
at least 20 min) between the high and low prothrombin levels. To further demonstrate the
importance of FV and FVIII competition for FXa, we adjust the kinetic rate constants for
these reactions while setting the FV and FII concentrations to their baseline levels (see Fig.
S2A-B). We found that: increasing only the rate of binding of plt-FVIII to plt-FXa leads
to very low thrombin production; decreasing the rate of binding of plt-FV to plt-FXa by
50% and increasing the rate of binding of plt-FVIII to plt-FXa by 50% from their normal
values, however, results in a 30-fold higher thrombin concentration at 40 min and thrombin
generation reaches 1 nM at about 37 min. These results confirm that competition between
plt-FV and plt-FVIII for plt-FXa influences the rescue of thrombin under FVIII-deficient
conditions.

Thrombin activation of FV and FVIII, and APC binding to FVa and FVIIIa, may
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Figure 4.2: Effects of variations in plasma FII and FV levels on thrombin gener-
ation and the evolution of enzyme complexes in the mathematical model. “N" de-
notes 100%,“L" denotes 50%, and “H" denotes 150% of the respective baseline plasma level;
“NFII" = 1400 nM, “NFV" = 10 nM. A) Total thrombin; B) prothrombinase (FVa:FXa);
C) platelet tenase (FVIIIa:FIXa); D) FVIII:FXa complex on plt; E) FV:FXa complex on
plt; F) FV:FIIa complex on plt; during a time course of 40 min. Description of labels found
in Table S1.
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also influence thrombin production in the low FV cases. To explore this, we performed
simulations in which the binding rates for FV and FVIII to thrombin and for FVa and FVIIIa
to APC were set to zero (Fig. S3A-F), and compared the results to those in Fig. 4.2A-F. We
see that thrombin generation is initially increased in the low FV cases but is not sustained
after 40 min (Fig. S3A). Tenase and prothrombinase follow a similar trend, where low FV
produces higher concentrations initially but amplification of tenase and prothrombinase
complex formation does not occur (Fig. S3B-C). Thus, thrombin-mediated activation of
FV and FVIII is necessary to produce a significant thrombin response despite the lack of
APC-mediated inhibition.

It is not intuitive how lowering FV plasma levels results in near-normal prothrombinase
(see Fig. 4.2B) since FV is a precursor of a component of prothrombinase. In the low FV
cases, despite decreased FXa-mediated activation of FV (Fig. 4.2D), the concentration of
plt-FV bound to thrombin at 20 min is approximately 10-fold larger than that associated
with normal FV cases (Fig. 4.2F). This is a direct result of the increased thrombin con-
centration shown in Fig. 4.2A. Thrombin feeds back by activating plt-FVIII and indirectly,
plt-FIX via FXIa, to form more tenase (Fig. S4A-B). Increased tenase results in more plt-
FXa, which binds to the thrombin-activated plt-FVa, leading to more prothrombinase and
thus more thrombin, even with FVIII deficiency.

In summary, we used our mathematical model to identify where in the coagulation re-
action network FV and FVIII most strongly interact. The coagulation network involves no
direct reaction between FV and FVIII, but they compete for binding to FXa and thrombin.
We confirmed that thrombin-mediated activation of FV and FVIII is essential to a sub-
stantial thrombin response. More importantly, the early divergence of thrombin and key
complexes in low versus normal FV cases, even when thrombin-mediated activation of FV
and FVIII is turned off, identifies the competition of FV and FVIII for FXa as the initiator
of thrombin generation rescue in low FV, FVIII-deficient blood. Additional support for
this hypothesis comes from simulations in which we isolated the reactions amongst plt-FV,
plt-FVIII, and plt-FXa by varying their binding rates.

4.2.5 Partial inhibition of FV enhances fibrin deposition in FVIII-deficient
blood under flow

Whole blood microfluidic assays were performed at 100 s−1 on type I collagen-TF (1.09
± 0.2 fmol/cm2). Blood from individuals with moderate and mild FVIII deficiencies was
treated with exogenous prothrombin (50 µg/mL), an anti-FV antibody at a concentration
that reduced FV activity to ∼ 60% in normal pooled plasma (Fig. S5), both exogenous
prothrombin and anti-FV, or a vehicle control (Figs. 4.3, S6). In the vehicle and exogenous
prothrombin cases, little to no fibrin was observed. Platelet adhered and nearly coated
the surface over the 25 min experiment, but there were were no large, multilayer platelet
aggregates. Anti-FV alone supports fibrin formation in and around multilayer platelet
aggregates, and when combined with prothrombin, the effect is even more pronounced with
larger, platelet-fibrin thrombi forming. There was a significant increase in both the rate of
and maximum accumulation of fibrin(ogen) with partial inhibition of FV. There were no
significant differences in total platelet accumulation despite the morphological differences
described above (Fig. S8). The FVIII levels in these samples were higher (3.0-8.5%) the day
of the experiments than those considered in our mathematical model (1% FVIII) because
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Figure 4.3: Flow assays with whole blood from FVIII deficient individuals.
A) Representative images of DiOC6 labeled platelets and leukocytes and Alexa Fluor 555
labeled fibrin(ogen) on collagen-TF surfaces at 100 s−1 after 25 min for vehicle control,
50 µg/mL exogeneous prothrombin, 100 µg/mL anti-FV, and exogenous prothrombin and
anti-FV. Scale bar = 50 µm. Individual fluorescent channels are found in Fig. S6. B) Repre-
sentative fibrin(ogen) and platelet/leukocyte accumulation dynamics in terms of normalized
fluorescent intensity (FI). C) Fibrin(ogen) normalized maximum fluorescence intensity and
rate of deposition (normalized velocity) for FVIII levels of© = 3.0%, � = 7.5%, ♦ = 8.5%.
See SI and Fig. S7 for calculation of metrics. P-values represented as *, **, and **** for
10−2,10−4, and 10−7, respectively.

these individuals have mild to moderate FVIII deficiencies (SI Appendix). Nevertheless,
the inhibition of FV clearly shows an increase in fibrin deposition in these experiments, and
indirectly, thrombin generation.
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Figure 4.4: Calibrated automated thrombography. A) FII and FV levels were varied
using immunodepleted plasmas and purified FII and FV in the presence of an anti-FVIII
function blocking antibody. ’N’, ’H’, and ’L’ corresponds to normal, high, and low levels
of respective zymogen. B) FVIII deficient (<1%) plasma treated with vehicle control, 50
µg/mL exogenous prothrombin, 100 µg/mL anti-FV, and exogenous prothrombin and anti-
FV. All assays conducted with 5 pM TF and phospholipids. Tables S3 and S4 contain the
measured prothrombin, FV, and FVIII levels corresponding to each curve.

4.2.6 Low FV and partial inhibition of FV enhances thrombin generation
in FVIII-inhibited or FVIII-deficient plasma

We used calibrated automated thrombography (CAT) [25] to measure the effects of
reducing FV levels or activity on thrombin generation dynamics in a clinical clotting assay.
We altered zymogen concentrations to approximate the four conditions in Table S1 using
mixtures of FV and prothrombin depleted plasmas, purified FV and prothrombin, and an
anti-FVIII function blocking antibody used at a concentration that yields FVIII activity
of <1% to simulate severe hemophilia A. Consistent with mathematical model predictions,
Fig. 4.4A and Table S3 show that low FV (43%) increases the peak thrombin concentration,
which is further enhanced when prothrombin (136%) is added. Similar trends, albeit with
lower peak thrombin concentrations, were measured with FVIII deficient plasma using the
same treatments as the flow assay experiments described in the previous section (Table S4).
Fig. 4.4B shows results from an individual with severe FVIII-deficiency (<1%) and partial
inhibition of FV (65% activity) increases thrombin peak concentration, with an even larger
peak concentration when combined with high prothrombin (135%). Notably, there is an
increased lag time for treatments including the anti-FV antibody in FVIII-deficient plasma.
This observation could be due to the difference between inhibiting FVIII with an antibody
compared to plasma deficient in FVIII.

4.3 Discussion
In this study, we showed that a mechanistic mathematical model of flow-mediated co-

agulation can identify important modifiers of network dynamics. We were motivated by
observations of the variability in bleeding among individuals with hemophilia A with simi-
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lar FVIII levels. We hypothesized that variations in coagulation plasma protein levels within
the normal range could modify thrombin generation when FVIII is outside the normal range.
We determined critical TF levels necessary for the model to produce 1 nM thrombin by 40
min; this was meant to represent a TF level where bleeding would be common in hemophilia
A but where significant thrombin generation is still possible. Using GSA on the model at
the specified TF level, we identified that FV levels at the low end of the normal range could
push the coagulation system to generate a significant thrombin response. When this level
of FV was combined with prothrombin levels at the high end of the normal range, thrombin
generation was enhanced even further. This prediction was verified in a microfluidic model
of thrombus formation on collagen-TF where fibrin accumulation was used as a proxy for
thrombin generation, and in thrombin generation assays using immunodepleted plasma to
match the plasma composition of the mathematical model and in plasma with a severe
FVIII deficiency. Exploration with the model revealed a potential mechanism to explain
these observations; a reduction in FV frees plt-FXa to activate plt-FVIII, leading to more
tenase and more prothrombinase on APS, which ultimately boosts thrombin generation.

The modeling results in this paper depend on the assumption that plt-FXa can activate
plt-FV and plt-FVIII. In our simulations, plt-FXa is the dominant activator of FV and FVIII
before significant amounts of thrombin have been produced. The assumption that FXa can
activate FV on an activated platelet’s surface is based on data of Monkovic and Tracy [26]
and studies using tick saliva protein [27]. In regards to activation of FVIII by FXa, there is
in vitro evidence that FVIII bound to an APS can be activated by both thrombin and FXa
[28, 29]. Because FVIII circulates in the plasma bound with von Willebrand factor (VWF)
and while bound may be protected from activation by FXa [30, 31], some have suggested
that FXa-mediated activation of FVIII occurs to a minimal extent in vivo. This protection
may be mitigated because during clot formation vWF binds to APS and the FVIII attached
to this vWF may redistribute to the APS, given that FVIII has similar affinities for VWF
and phopholipid surfaces [32, 33]. Our results suggest that further biochemical studies of
FXaâĂŹs role in activating FVIII are needed.

An alternative view of the early stages of coagulation is that a trace amount of thrombin,
produced on TF-bearing cells, is responsible for initial FV and FVIII activation [17, 34].
This view comes, in part, from experiments in a static cell-based model of coagulation
[17] in which initial platelet activation itself seems to rely on this thrombin as there is
no collagen exposure in that system. If translated to a situation of vascular injury under
continued flow (a situation that our mathematical model and flow assay simulate), the trace
thrombin would be produced on the vascular wall and could activate FVIII and FV in the
plasma or on APS. Under flow conditions, even at the low shear rate of 100 s−1 used in our
model simulations, this view is problematic. Our model predicts that ≈ 99% of the FXa
and FIXa produced by TF:FVIIa on the vascular wall is quickly washed away by the flow
and does not reach the surfaces of activated platelets [8]. The same would be true of any
thrombin produced on the vascular wall and so, no more than 1% of any trace amounts
of this thrombin would make it to activated platelets in order to carry out its putative
activation of FV and FVIII there.

FV is contained in and secreted from platelet α-granules, a mechanism that is incor-
porated into our model [7, 9]. Approximately 20% of the FV in blood is contained in the
platelets [35]. Platelet FV comes from plasma FV that is endocytosed by megakaryocytes
[36–38], thus we assume in the model that a percent change in FV plasma levels correlates
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with an equal percent change in the platelet FV levels. However, it is unknown what the
true correlation is between the two FV pools. Platelet FV is distinct from plasma FV due
to modifications in megakaryocytes [39] and is more procoagulant than plasma FV [36, 40].
In our model both FV pools have the same biochemical characteristics. Future work is
needed to tease out the relative roles of plasma and platelet FV in thrombin generation in
the context of hemophilia A.

We are unaware of previous reports demonstrating a relationship between FVIII defi-
ciencies, FV levels within the normal range, and thrombin generation. A mutation in a
molecular chaperone that transports proteins from the endoplasmic reticulum to the Golgi
results in a combined FV and FVIII deficiency [41]. This mutation causes low levels (5-30%)
of both FV and FVIII. That situation is different than our findings where thrombin gener-
ation is modulated by FV levels within the normal range (50-150%) for FVIII deficiencies.
There are reports of individuals with both a FVIII deficiency and a common variant of
FV called FV Leiden (rs6025) [42]. FVa’s endogenous inhibitor, APC, cannot bind to this
variant, leading to a hypercoagulable state. Individuals with combined FVIII deficiency
and FV Leiden have a milder bleeding phenotype [43], but this is distinct from the effect
we show here where reduced FV levels allow for more FVIII binding to FXa on APS.

There are several potential implications for our findings. FV levels could be an inherent
modifier of bleeding risk in combination with FVIII deficiency in hemophilia A. Studies of
clinical bleeding in individuals with hemophilia A are needed to support this hypothesis.
Our results also suggest that temporal changes in FV expression, such as those related to
circadian rhythms or menstrual cycle, could influence bleeding risk. Finally, our study shows
that a systems biology approach to coagulation may facilitate the discovery of previously
unrecognized interactions between the several components of the system and may serve as
a platform to study other highly complex clinical problems.

This work was supported in part by National Institutes of Health (R01 HL120728) and
National Science Foundation (CBET-1351672)
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4.4 Supplement

4.4.1 Mathematical Model Description

The mathematical model used in this work is the same as that in [1, 2], which was an
extension of our previous models [3–5]. A complete description of the model equations and
parameter choices is presented in the supplement to [2]. Here, we give a brief overview of
the model but refer the reader to these papers for more details.

The model includes the coagulation reactions shown in Fig. 4.5A. The reactions involve
many coagulation proteins: inactive enzyme precursors (zymogens), active enzymes, and
inactive and active cofactors. Active cofactors are not enzymes themselves but act to make
the enzymes to which they are bound more effective than they would be alone. In Fig.
4.5A, the zymogens are FVII, FIX, FX, and FII (prothrombin) which have respective active
enzymes FVIIa, FIXa, FXa, and FIIa (thrombin). The inactive/active cofactor pairs are
FV/FVa, and FVIII/FVIIIa. Fig. 4.5A shows that many of the coagulation reactions occur
only on a cellular surface, some on the subendothelium (SE) and others on an activated
platelet’s surface (APS). There are three critical surface-bound enzyme-cofactor complexes:
TF:FVIIa on the SE (“extrinsic tenase") and FVIIIa:FIXa (“intrinsic tenase" which we refer
to simply as tenase) and FVa:FXa (“prothrombinase”) on an APS. Their substrates (i.e.,
the proteins that the enzyme complexes activate) must also be bound to the cellular surface
to become activated [6].

The mathematical model simulates the clotting response due to a small injury to a
vessel wall. The response is monitored in a reaction zone (RZ) above a region where tissue
factor (TF) in the SE is exposed to flowing blood (Fig. 4.5B). Within the RZ, coagulation
protein concentrations are assumed to change due to transport into and out of the RZ
and due to their involvement in the coagulation reactions depicted in Fig. 4.5A. Similarly,
platelet concentrations change as platelets adhere to the injured wall, become activated,
and as platelets are transported into and out of the RZ. The height of the RZ zone as
well as the rate of platelet and protein transport into and out of the zone depend on the
flow’s shear rate and on the species’ diffusivities. Each species in the RZ is assumed to be
uniformly distributed (‘well-mixed’) and is described by its concentration, whose dynamics
are tracked through an ordinary differential equation. Adjacent to the RZ, in the direction
perpendicular to the flow, is an endothelial zone (Fig. 4.5C) with height equal to that of the
reaction zone and width dependent on the flow shear rate and protein diffusion coefficients
[4]. Each species in the endothelial zone is also assumed to be well-mixed.

Platelets are either (i) unactivated, unattached, and so free to move with the fluid, or (ii)
activated, bound to the SE or to other activated platelets (APs), and therefore stationary.
Platelet activation occurs by contact with the SE, by exposure to thrombin, or by contact
with other APs. The last of these is used as a surrogate for activation by platelet-released
ADP which we do not explicitly track in this model. We characterize coagulation proteins
not only by their chemical identity but also by whether they are in the fluid, bound to the
SE, or bound to an APS. Proteins bound to a surface are stationary whereas proteins in the
plasma move with the fluid. During a transition from SE to APS, or vice versa, a protein
is subjected to flow and thus might be carried downstream.

Our assumptions about protein interactions follow; for further discussion including cita-
tions to the literature see [1–5]. The reactions are all described using mass-action kinetics.
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1. FVII and FVIIa can bind to TF on the SE. FXa can activate FVII in plasma and
when FVII is bound to TF. FXa can bind to the TF:FVII complex directly from
plasma without having to first bind the SE.

2. FIX and FX can be activated by the TF:VIIa complex on the SE; they bind to TF:VIIa
directly from plasma. FX can also be activated by the FVIIIa:FIXa (‘tenase’) complex
on an APS.

3. Prothrombin can be activated to thrombin on an APS by the FVa:FXa (’prothrom-
binase’) complex.

4. FV and FVIII can be activated by FXa on an APS and by thrombin in plasma and
on an APS.

5. FIX can be activated by FXIa in plasma and on an APS. FXI can be activated by
thrombin in plasma and on an APS.

6. The model includes the chemical inhibitors antithrombin (AT), activated protein C
(APC), and tissue factor pathway inhibitor (TFPI). Since the concentration of AT is
high in plasma, we assume it acts in a first order manner to inactivate plasma FIXa,
FXa, FXIa, and thrombin. APC can bind to fluid-phase and platelet-bound FVa and
FVIIIa to permanently inactivate them with second-order kinetics, but cannot bind
to FVIIIa in a tenase complex or to FVa in a prothrombinase complex. We assume
that thrombin can diffuse from the reaction zone into the endothelial zone, bind to
thrombomodulin (TM) there, and produce activated protein C (APC), which may
then diffuse into the reaction zone.TFPI present in the plasma must first bind to FXa
and then the complex TFPI:Xa must bind to the TF:VIIa complex to inhibit it.

7. The activity of the TF:VIIa complex decreases as platelet deposition on the injured
tissue increases, i.e., we assume that a platelet that adheres to the SE physically blocks
the activity of the TF:VIIa complexes on the patch of SE to which the platelet has
adhered.

An in-house FORTRAN program is used to set up the system of differential equations,
to set parameter values, and to run the simulation. It uses the software package DLSODE
[7] to solve the differential equations. Simulation sampling was carried out via a Python
wrapper of the FORTRAN program. Unless stated otherwise, simulations were run on
the MERCED cluster (NSF Grant No. ACI-1429783). Sensitivity analysis was conducted
using MATLAB with in-house implementations from [8]. Graphical processing of simulation
results was performed with MATLAB.

For each simulation, we specify the initial plasma concentrations of platelet and protein
species, the rate constants for all reactions, the numbers of specific binding sites for coagu-
lation factors on each APS, the dimensions of the injury, the flow velocity near the injured
wall, the diffusion coefficients for all fluid-phase species, and the density of exposed TF. The
outputs of the simulation are the concentration of every protein species in the reaction zone
at each instant of time from initiation of the injury until the completion of the simulation,
and the concentrations of platelets attached either directly to the SE or to other platelets.
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4.4.2 Global Sensitivity Analysis

Zymogen plasma levels were varied between 50 and 150% of normal using 2500 Latin
Hypercube samples [9]. For each sample, a critical tissue factor level for bursting behavior,
defined as achieving at least 1 nM of total thrombin by 40 minutes, was found with the
bisection method. The resulting distribution of critical TF values gives the range and
frequency of TF needed for the system to burst. Using a TF value below the minimum of
the distribution will result in no burst, regardless of the input zymogens, whereas using a
TF value above the maximum of the distribution will always generate a burst.

Global sensitivity analysis considers the impact of varying parameters simultaneously
and uniformly over their full range of possible values, here values between 50% and 150% of
baseline. As such, we consider the underlying system output to be a random variable over a
probability space of parameter inputs, and quantify the sensitivity of a model output by its
variance. We estimate the effects of parameter variations by using Monte Carlo sampling
to explore the parameter space.

4.4.3 Variations in Kinetic Rate Constants

We isolate the reactions amongst platelet-bound FV, FVIII, and FXa via variations in
the association constants k+

FV:FXa, k
+
FVIII:FXa that dictate the concentrations of FV:FXa and

FVIII:FXa complexes. Fig. S2A shows that increasing only the rate of binding of plt-FVIII
to plt-FXa leads to increased but sub-nanomolar thrombin production. Decreasing the rate
of binding of plt-FV to plt-FXa by 50% from its normal value alone, however, results in
a five-fold higher thrombin concentration at 40 min and does not reach 1 nM thrombin
concentration at 40 min. It is clear that lowering the association constant of plt-FV and
plt-FXa results in high thrombin concentrations. Fig. S2B shows that when thrombin
feedback (FV activation by thrombin) is turned off, there is significantly lower thrombin
production in all cases. When the normal value of k+

FV :FXa is lowered by 50%, there is high
thrombin production for the first 12 minutes. Without thrombin feedback, the benefit of
the increased platelet tenase formation is not amplified.

4.4.4 Affect of APC & Thrombin-mediate FV/FVIII Activation

We further investigated the affects of turning off thrombin feedback (FV activation by
thrombin) in our system in Fig. S3A-F. In Fig. S3A-C, production of thrombin, prothrom-
binase, and tenase is significantly lower than that in Fig. 2A-C. These results suggest that
to achieve 1 nM thrombin concentration, thrombin must activate FV to amplify the system.
Propagation of amplified tenase formation is not seen in Fig. S3C and therefore results in
little prothrombinase and thrombin production. Fig. 2D-E reveal that the competition
of plt-FV and plt-FVIII for plt-FXa is not entirely dependent on the thrombin feedback
discussed above. In Fig. S3D-E, there are slight decreases in FV:FXa and FVIII:FXa con-
centrations in comparison to those in Fig. 2D-E and the result of low FV increasing the
concentration of FVIII:FXa holds. Therefore, this mechanistic competition is robust to
thrombin feedback on FV activation.
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4.4.5 Race to Tenase Formation

We have identified that increased tenase formation in the first 12 minutes as a result
of lowering FV plasma levels is due to decreased competition for plt-FXa. It is not clear
how after 12 minutes, tenase formation amplifies in the low FV cases. To explore this
mechanism, Fig. S4A-B show the concentrations of total plt-FIXa and plt-FVIIIa, rate
of FIX activation on the subendothelium and rate of FIX activation on the platelet. We
note that FIX activation on the subendothelium is facilitated by enzyme TF:VIIa. FXIa
species on the platelet activate FIX after sufficient thrombin is present. We can see that
in both the HFII-LFV and NFII-NFV cases, total plt-FIXa concentrations are very similar
during the first 10 minutes of the simulation (see Fig. S4A). At approximately 13 minutes,
total plt-FIXa concentration switches from decreasing to increasing in the HFII-LFV cases,
in time with significant total plt-FVIIIa concentration. The increase in FIXa and FVIIIa
concentrations results in increased tenase formation in comparison to that in the NFII-NFV
case. We further investigate which mechanism contributes to the FIXa burst. By examining
the evolution of the rates of FIX activation on the subendothelium and platelet in Fig. 4B,
we can see that activation on the subendothlium largerly contributes to FIX activation
for the first 12 minutes and then activation on the platelet takes over, becoming the main
location and source of FIXa.

4.4.6 Materials

Recombinant human tissue factor (TF) purified from SF9 cells (# RTF-0300), anti-
human factor V (AHV-5101, mouse, monoclonal, IgG1), human prothrombin (# HCP-
0010), human factor V (HCV-0100) and plasma immunodepleted of factor V (FV-ID) or
prothrombin (FII-ID) were from Haematologic Technologies Inc (Essex Junction, VT). L-
α-Phosphatidylserine (PS, brain, porcine) and L-α-phosphatidylchoine (PC, egg, chicken)
were from Avanti Polar Lipids (Alabaster, AL). Bio-Beads SM-2 (# 152-3920) were from
Bio-Rad Laboratories (Hercules, CA). TF ELISA (# ab220653) was from Abcam, Inc (Cam-
bridge, MA). Sodium deoxychoate was from Calbiochem (La Jolla, CA). HEPES-NaOH,
NaCl, NaN3, and methanol were from Sigma Aldridge (St. Louis, MO). Type I collagen from
equine tendon was from Chrono-log (Chrono-Par Collagen, Havertown, PA). Anti-mouse
factor VIII (mouse monoclonal, IgG2ak) was from Green Mountain Antibodies (GMA-
8015, Burlington, VT). Human fibrinogen was from Enzyme Research Laboratory (South
Bend, IN). Pooled normal plasma was from George King Bio-medical (Overland Park, KS).
Alexa Fluor 555 protein labeling kit was from Thermo-Fisher (A20174, Waltham, MA).
DiOC6 was from Sigma Aldridge (318426, St. Louis, MO). HEPES buffered saline (HBS)
contained 20 mM HEPES, 150 mM NaCl, and was titrated to a pH of 7.4. Recalcification
buffer was HBS with 75 mM CaCl2 and 37.5 mM MgCl2. Factor VIII deficient (<1%)
plasma was from George King Bio-Medical (Overland Park, KS). Anti-human factor VIII
(ab 61370) was obtained from Abcam Inc (Cambridge, MA). Round-bottom polystyrene 96-
well plate (Immulon 2HB) were obtained from Thermo Scientific. All Calibrated Automated
Thrombogram Assay (CAT Assay) reagents were obtained from Diagnostica Stago.
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4.4.7 Tissue factor vesicles

TF was reconstituted in 20:80 PS:PC vesicles using the protocol of Smith and Morrissey
[10]. Briefly, PS:PC phospholipids were dissolved in methanol, combined at 20:80 molar
ratio, lyophilized, and then resuspended in HBS and 15 mM sodium deoxycholate and
10 µg of recombinant TF. The sodium deoxycholate was removed using Bio-Beads SM-2.
The resultant phospholipid vesicles containing TF were sized by dynamic light scattering
(Brookhaven Instruments, ZetaPALS) and determined to be 64.29 ± 0.44 nm. The concen-
tration of TF was determined by ELISA (Abcam, ab220653) to be 280 nM, giving a molar
ratio of phospholipid:TF was 9285:1.

4.4.8 Subject recruitment and blood collection

Subjects were recruited at the Hemophilia and Thrombosis Center of the University of
Colorado Anschutz Medical Campus. The study and consent process received Institutional
Review Board (IRB) approval from the University of Colorado Anschutz Medical Campus.
Additionally, written and informed consent was obtained for all participants. Phlebotomy
was conducted in accordance with the Declaration of Helsinki and under the Colorado
Multiple IRB. Human whole blood was collected by venipuncture into 3.2% sodium citrate.
Blood used for flow assays was treated with 1 µMDiOC6 and 60 µg/mL Alexa 555-fibrinogen
(1:50 labeled:plasma fibrinogen). For specified assays, blood was incubated individually or
with a combination of a anti-human FV function blocking antibody at a final concentration
100 µg /mL and prothrombin at a final concentration of 50 µg/mL. The anti-human FV
antibody at 100 µg /mL concentration yields the same activity as 60% of normal levels of
FV in normal pooled plasma (Diagnostica Stago Compact Max) (Fig. 4.9). All incubation
times were 15 min at 37◦C.

4.4.9 Subject clinical categorization

Blood from three individuals with FVIII deficiency were used in this study and are
referred to as Sample 1, 2, and 3 in Table S4. FVIII levels were determined the day of
sample collection using a one stage clotting assay as described in below in the Calibrated
automated thrombograph section. At the time of diagnosis, these individuals had baseline
FVIII levels of 12%, 14%, and 3% and bleeding scores [11] of 12, 7, and 12, respectively.

4.4.10 Whole blood flow assays

Type I collagen and TF vesicles were co-patterned on glass slides (25 mm x 75 mm) in 4
mm spots using PDMS microwells (4 mm in diameter, 3 mm in height). The microwells were
filled with 10 µL of collagen (1 mg/mL) and incubated overnight at 4◦C. Wells were then
rinsed in triplicate with HBS and then 10 µL of TF vesicle suspension was incubated for 1
h at room temperature followed by a triplicate rinse of HBS. Stock TF vesicles were diluted
100X with an HBS solution containing 1 mM PS:PC phospholipids to maintain the same
concentration of phospholipids adsorbed to the surface. Microfluidic devices consisting of
four channels (h x w x l; 50 µm x 500 µm x 10 mm) were fabricated using standard
photolithography techniques with KMPR 1050 photoresist (MicroChem) on 3 inch silicon
wafers. Channel dimensions were measured using a profilometer (Dektak 3030). The four
channels were aligned over the collagen-TF spots and placed on the glass slide. Each channel
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contains a 6 mm well that holds 100 µL of fluid and an outlet connected to tubing (0.01
in. ID, 0.03 in. OD) which is connected to a 21 gauge needle attached to a 50 µL glass
syringe (Hamilton) on a programmable syringe pump (Harvard Apparatus, PhD Ultra).
The microfluidic channels and tubing were blocked with 2% wt BSA in HBS for 1 hour.
The HBS was removed from the inlet well and replaced with 90 µL of whole blood, which
was then recalcified with 10 µL of recalcification buffer to yield final concentrations of 7.5
mM CaCl2 and 3.75 mM MgCl2. Blood was perfused at a flow rate of 1.25 µL/min, which
corresponds to a wall shear rate on the bottom of the channel of 100 s−1.

4.4.11 Determination of TF surface concentration

Stock TF vesicle suspensions were diluted 100X in HBS and patterned as described
above on glass slides previously patterned with type I collagen. The TF suspension was
patterned for 1 hr at room temperature and rinsed in triplicate with HBS. Pacific Blue
labeled annexin V (BioLegend-640917) was incubated in the patterning wells for 15 min
to label the patterned vesicles. The vesicles were enumerated using confocal microscopy
(Olympus FV10i, 60X objective). These images were used to determine the phospholipid
surface coverage, which was in turn used to calculate the TF surface concentration using
the method described by Zhu et. al [12]. For this calculation, it was assumed that there
were 14 active and accessible TF molecules per liposome. This number was estimated using
the measured size of the liposomes (64 nm), the measured molar ratio of phospholipid:TF
(9285:1), the estimated surface density of phospholipids on a liposome (5× 106/µm2) [13],
and the assumption that one quarter of the TF molecules in the phospholipid would be
exposed to whole blood and in the correct orientation (half of the TF molecules will be
oriented with their extracellular domain facing into the interior of the liposome, and of
those with their extracellular domain facing outward, half will be inaccessible to blood
because they will be buried between the adsorbed liposome and the glass). From this
method it was estimated that the TF surface concentration for the whole blood flow assays
was approximately 1.09 ± 0.2 fmol/cm2.

4.4.12 Image Acquisition and Analysis

The kinetics of platelet and fibrin(ogen) accumulation were measured in each channel
by epifluorescence microscopy (IX83 Olympus, 40X, NA=0.6) equipped with a motorized
stage (Applied Scientific Instrumentation, Eugene, OR). Platelets labeled with DiOC6 and
Alexa Fluor 555 labeled fibrin(ogen) were imaged at an excitation/emission wavelength of
470/535 nm and 560/607 nm respectively. The images were then analyzed using a custom
routine developed in Python. Images of a given assay were read in using a Scipy module.
The mean fluorescence intensity of a given image was calculated by taking the mean value
of the pixels in each image. The mean of the first image where blood was perfused through
the assay channel was used to determine the background noise of the fluorescence intensity
values. This value was subtracted from all of the images of that given assay to account for
background noise in the time series. The time of each image was also recorded using the
known time interval between images of a given assay. Once obtaining mean fluorescence
and time data from each assay, the maximum fluorescence intensity was calculated using
the max function in Numpy, and the velocity was determined by fitting a line to the linear
growth region of these fluorescence intensity versus time curves (Fig. 4.11). The mean time
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series fluorescence, maximum, and velocity were then normalized by dividing each value by
the maximum of that value for each donor.

4.4.13 Calibrated automated thrombography

Pooled normal plasma was obtained from consenting normal healthy individuals ages
18-65. Donors had no personal history of significant bleeding or hormonal, anticoagulant,
or anti-platelet medications. Factor levels were measured and confirmed to be within nor-
mal ranges. Plasma samples with varying FV and prothrombin levels were prepared using
plasma immunodepleted for FV or prothrombin. To achieve FV or prothrombin concen-
trations above 100% of normal purified zymogens of interest were added. An anti-human
FVIII antibody was used to model hemophilia A conditions. Thrombin generation was mea-
sured with the Calibrated Automated Thrombogram Assay (CAT Assay, Thrombinoscope
BV, Maastricht, The Netherlands), which consisted of the Fluoroskan Ascent instrument
(Thermo, Vantaa, Finland) coupled with the Thrombinoscope software (Diagnostica Stago
Inc., Parsippany, NJ, USA). First, low standard PPP-Reagent containing 5 pM TF and
phospholipid (20 µL per well) was added to 96-well microtiter plates. For each well con-
taining an experimental plasma sample, a calibrator assay well was included. The latter
contained a known concentration of thrombin-α2-macroglobulin complex in place of the
PPP-Reagent. The calibrator is used to correct for inner filter effects and variation among
individual plasmas. Each calibrator and sample were prepared in triplicate. Each sample
(80 µL) was added to the wells and placed in a plate reader at 37◦C for 10 min. Thrombin
generation was initiated by dispensing (20 µL) of a buffer containing calcium ions (Fluo-
substrate, Stago, US), previously prepared following manufacturer’s instructions. Thrombin
generation curves were registered with a Fluoroskan FL instrument (Thermo Labsystems,
Helsinki, Finland). Fluorescence was detected at an excitation wavelength of 390 nm and
emission at 460 nm every 20 seconds for 90 minutes. Data was recorded using Thromboscope
software (Thromboscope BV, Maastricht, The Netherlands). Prothrombin and FV activities
were measured with a modified prothrombin time assays and FVIII activity was measure
using a modified activated partial thromboplastin time assay using calibration curves based
on dilutions of normal pooled plasma and prothrombin, FV, and FVIII deficient plasma
using the Compact Max (Diagnostica Stago) following manufacturer instructions. These
activity assays have standard deviation of 10%.

4.4.14 Statistical analysis

P-values between treatment groups in whole blood flow assays was calculated using
Kruskal-Wallis analysis of the variance, followed by Dunn post hoc test to determine differ-
ences between pairs. Values outside of 150% of the interquartile range were deemed outliers
and removed before performing the analysis of variance and post hoc tests.
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Figure 4.5: Schematic of (A) coagulation reactions included in our model.
Dashed magenta arrows show cellular or chemical activation processes. Blue arrows show
chemical transport in the fluid or on a surface. Green segments with two arrowheads depict
binding and unbinding from a surface. Rectangular boxes denote surface-bound species.
Solid black lines with open arrows show enzyme action in a forward direction, while dashed
black lines with open arrows show feedback action of enzymes. Red disks show chemical
inhibitors. Schematic of (B) reaction zone and (C) endothelial zone.
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Figure 4.6: Kinetic rate constant experiments where the rates of association of
plt-FV with plt-FXa and plt-FVIII with plt-FXa increase or decrease by 50%.
Thrombin generation in FVIII-deficient plasma A) with thrombin activation of FV; and B)
without thrombin activation of FV. We denote thrombin activation of FV on the platelet
as “thrombin feedback".
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Figure 4.7: Effects of variations in plasma FII and FV levels on intravascular
thrombin generation and coagulation enzymes and complexes when thrombin
activation of FV and FVIII as well as APC binding to FVa and FVIIIa are
turned off. “N" denotes 100%,“L" denotes 50%, and “H" denotes 150% of their respective
baseline plasma level. A) Total thrombin; B) prothrombinase (FVa:FXa); C) plt. tenase
(FVIIa:FIXa); D) FVIII:FXa complex; E) FV:FXa complex; F) FV:FIIa complex; during
a time course of 40 minutes. Concentrations are in units of nM. Description of labels found
in Table 1.
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Figure 4.8: Exploration of the race to platelet tenase production. Evolution of
A) concentration of total FIXa and FVIIIa on the platelet; B) rate of FIX activation on
the subendothelium (SE); and C) rate of FIX activation on the platelet; in the HFII-LFV
and NFII-NFV cases over 40 minutes.
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Figure 4.9: FV activity in pooled normal plasma as a function of anti-FV anti-
body concentration as measured in a modified prothrombin time assay.
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Figure 4.10: Representative images of DiOC6 labeled platelets and leukocytes
and Alexa-555 labeled fibrin(ogen) formed in whole blood flow assays. Scale bar
= 50 µm
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Figure 4.11: Example of metrics fitted from fluorescence time series curves.
Maximum is determined using the max function in Numpy, and velocity is determined by
fitting a line to the experimental data in the linear growth region of the fluorescence curve.
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Figure 4.12: DiOC6 normalized maximum fluorescence intensity and rate of
deposition (normalized velocity) for FVIII levels of© = 3.0%, � = 7.5%, ♦ = 8.5%.
No significant difference was found between groups.
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Table 4.1: Description of variations in FII and FV plasma levels.
Label Variation
NFII-NFV 100% FII (1400 nM), 100% FV (1 nM)
NFII-LFV 100% FII (1400 nM), 50% FV (0.5 nM)
HFII-NFV 150% FII (2100 nM), 100% FV (1 nM)
HFII-LFV 150% FII (2100 nM), 50% FV (0.5 nM)

Table 4.2: Description of variations in FII and FV plasma levels and variations
in association constants describing FV:FXa and FVIII:FXa complex formation.

Label Value (s−1M−1)
Nk+

FV:FXa, Nk+
FVIII:FXa k+

FV:FXa - 1× 108 , k+
FVIII:FXa - 5.1× 107

Nk+
FV:FXa, Hk+

FVIII:FXa k+
FV:FXa - 1× 108 , k+

FVIII:FXa - 7.65× 107

Lk+
FV:FXa, Nk+

FVIII:FXa k+
FV:FXa - 0.5× 108, k+

FVIII:FXa - 5.1× 107

Lk+
FV:FXa, Hk+

FVIII:FXa k+
FV:FXa - 0.5× 108, k+

FVIII:FXa - 7.65× 107
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Table 4.3: Thrombin generation metrics for plasmas with normal prothrombin and FV levels (NFII-NFV), normal
prothrombin and low FV (NFII-LFV), high prothrombin and normal FV (HFII-NFV), or high prothrombin and
low FV (HFII-LFV) in the presence of a function blocking anti-FVIII antibody (12 nM). Prothrombin and FV levels
were altered using a combination of prothrombin and FV immunodepleted plasmas in combination with purified zymogens. Lag time,
endogenous thrombin potential (ETP, analogous to area-under-curve), peak thrombin, and time to peak were measured by calibrated
automated thrombogram (CAT) using 5 pM tissue factor and phospholipids. Data presented as mean ± standard deviation of n=3

Label
Prothrombin
(% normal)

FV
(% normal)

FVIII
(% normal)

Lag time
(min)

ETP
(nM min)

Peak thrombin
(nM)

Time to peak
(min)

NFII-
NFV

93 111 <1 2.6 ± 0.1 1757 ± 110 120 ± 2 11.3 ± 0.5

NFII-
LFV

117 43 <1 4.0 ± 0.1 2174 ± 19 298 ± 3 7.3 ± 0.1

HFII-
NFV

147 115 <1 3.0 ± 0.1 2876 ± 77 160 ± 3 13.7 ± 0.2

HFII-
LFV

136 43 <1 4.3 ± 0.2 3417 ± 76 408 ± 2 7.6 ± 0.1148



Table 4.4: Thrombin generation metrics for commercial (George King) and patient derived FVIII deficient plasma
(Samples 1, 2, and 3) in the presence of a vehicle control, FV partial inhibitor (anti-FV, 100 µg/mL), ex-
ogeneous prothrombin (+prothrombin, 50 µg/mL), or both the anti-FV antibody and exogenous prothrombin
(+prothrombin/anti-FV). Lag time, endogenous thrombin potential (ETP, analogous to area-under-curve), peak thrombin, and
time to peak were measured by calibrated automated thrombogram (CAT) using 5 pM tissue factor and phospholipids.

Sample Label
Prothrombin
(% normal)

FV
(% normal)

FVIII
(% normal)

Lag time
(min)

ETP
(nM min)

Peak
thrombin
(nM)

Time
to peak
(min)

George King vehicle 103 90 <1 2.6 1200 96 8.6
anti-FV 99 65 <1 8.9 1571 202 12.9
+prothrombin 130 95 <1 2.9 1498 121 8.6
+prothrombin/anti-FV 135 66 <1 8.9 2115 263 12.9

Sample 1 vehicle 119 98 8.5 2.6 882 65 9.2
anti-FV 112 66 4.7 8.6 805 102 13.6
+prothrombin 134 105 - 2.6 2320 201 7.6
+prothrombin/anti-FV 136 68 5.6 11.9 1662 155 17.9

Sample 2 vehicle 120 138 7.5 2.2 863 68 9.6
anti-FV 96 90 5.2 4.5 811 129 7.9
+prothrombin 141 141 7.5 1.9 2053 185 7.2
+prothrombin/anti-FV 124 93 5.0 8.9 1530 95 15.9

Sample 3 vehicle 122 120 3.0 3.2 498 32 15.2
anti-FV 137 84 1.9 8.6 784 39 15.6
+prothrombin 162 129 3.1 2.9 809 48 12.2
+prothrombin/anti-FV 138 83 2.1 9.9 1633 74 17.2
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Chapter 5

Conclusions & Future Work

5.1 Conclusions
Mathematical modeling of biological phenomena has been an important tool for under-

standing biological systems as evidenced by the numerous textbooks on the subject [1–3].
Understanding how uncertainty affects these models, both when estimating parameters and
recording model output, leads to increased insights and more accurate predictions. With
advanced computing power, we are able to efficiently handle model uncertainty and use our
models more effectively.

This dissertation details my contributions to the field of mathematical biology, with a
particular focus on models of blood coagulation. This work has been guided by two general
questions:

1. Does the parametric uncertainty of a model explain the mismatch between a model
and data?

2. Can we determine which uncertain parameters are most important in a complex and
highly non-linear model?

My work in Chapter 2 addressed the first question, where we examined the model for a
single chromogenic substrate cleaved by its target enzyme. The prototypical mathematical
model for the kinetic reaction, incorporating parameter uncertainty, was a poor fit to the
experimental data. This led me to propose a new model for the interaction, one which
explicitly included inhibition with the reaction products. The improvement of fit for this
new model was statistically significant, and moreover, correctly predicted the outcome of a
validation experiment.

My work in Chapters 3 and 4 addressed the second question, where a known mathe-
matical model for blood coagulation was deeply investigated for important parameters. In
Chapter 3, both local and global approaches for uncertainty quantification were employed.
They revealed that for certain classes of parameters, the two types of methods gave similar
(and typically identical) results, however, other parameter classes required global sensitiv-
ity methods to reveal important interactions between parameters. In Chapter 4, the con-
sequences of two previously determined parameters was examined closer under hemophilic
conditions. The global sensitivity results directly lead to the hypothesis that higher FII
levels and lower FV levels, but each still within the normal range, rescued the bleeding
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response for hemophilia A. This hypothesis was then validated by two sets of independent
lab experiments.

While progress has been made in each class of project, there remains several unanswered
questions. My approaches detailed in Chapter 2-4 are highly generalizable and are able to
be extended to further probe the systems. I next describe two ongoing applications in each
project class and present preliminary results for each.

5.2 Full Progress Curves of Chromogenic Substrates Provide
Evidence for Two Step Inactivation of FXa by AT

In examining the chromogenic substrate experiments for Chapter 2, it was noted that
the standard model for FXa inactivation by antithrombin (AT) provided a poor match to
the experimental data (see Figure 5.1). This model discrepancy appeared to be robust
and present in all experiments involving AT. The process for parameter fitting detailed in
Chapter 2 will be extended to include these more complex experiments that include AT.
It was hypothesized that the standard one-step model for FXa inactivation by AT was
incorrect and that a two-step model could more accurately fit the data.

I intend to determine if a two-step model actually has more support, in a process similar
to Chapter 2, where the Null model uses one-step inactivation and the Alternative uses
two-step. Both models would be fit using MCMC, directly allowing for the incorporation
of parametric uncertainty, and the resulting fits compared.

5.2.1 Kinetic Schemes

As in Chapter 2, we assume potential kinetic schemes to describe the reactions between
factor Xa, its chromogenic substrate, and AT. The first is the One-Step Inactivation scheme,
which incorporates the previously demonstrated product inhibition between factor Xa and
the chromogenic substrate, and assumes no reversible binding between factor Xa and AT:

E + P :F k1−⇀↽−
k2
E:P :F kcat−−−→ E:P + F, (5.1)

E + P
k1−−⇀↽−−
αk2

E:P, (5.2)

E +AT
KI−−→ E:AT. (5.3)

Here, the enzyme E represents the activated coagulation protein, factor Xa, the substrate
P :F is the intact chromogenic substrate Pefachrome-FXa, the products P and F are the
peptide and the cleaved para-nitroanaline (pNA), respectively, and AT is antithrombin.
Equation (5.2) is the inhibition from previously cleaved product, while Equation (5.3) is
the one step-step enzyme inactivation. The parameter, α, is the constant of proportionality
that controls the ‘strength’ of the product inhibition. As demonstrated in Chapter 2, α was
estimated to be approximately 2.54.

An alternative description of the inactivation of factor Xa by AT allows for reversible
binding before full inactivation occurs. Here the enzyme, E, is explicitly able to bind with
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Figure 5.1: Standard model for FXa inactivation by AT is a poor match to data.
The fitted model from Chapter 2, with product inhibition incorporated, and literature values
for the inactivation rate, do not qualitatively match the data. The model predicts nearly
complete inactivation by 30 minutes, while the experimental data continues to show active
enzyme throughout.

AT but not become inactivated by it. This Alternative scheme is described as follows:

E + P :F k1−⇀↽−
k2
E:P :F kcat−−−→ E:P + F, (5.4)

E + P
k1−−⇀↽−−
αk2

E:P, (5.5)

E +AT
kI1−⇀↽−
kI2

E:AT KI−−→ E:ATI . (5.6)

One-Step Inactivation

Using the kinetic scheme given in Equation (5.1) and assuming Mass Action kinetics,
a mathematical model for the cleavage of substrate in the presence of AT was developed,
which directly incorporates uncertainty from pipetting error. We assume the same kinetic
rates for the cleavage of substrate and fraction of hydrolyzed substrate estimated in Chapter
2 since the estimates were made using the same experimental setup and reagents; however,
pipetting error would be unique for each replicate and must be individually determined. Un-
certainty from pipetting error would be implemented by allowing the initial concentrations
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of the CS, enzyme, and AT to vary as distributions. The ODE system from the One-Step
Inactivation Model (Equations (5.1)-(5.3)) with these uncertainties incorporated becomes
our Null Model:

d[E]
dt

=− k1[E][P :F ] + k2[E:P :F ]− k1[E][P ] + αk2[E:P ]−KI [E][AT ], (5.7)

d[P :F ]
dt

=− k1[E][P :F ] + k2[E:P :F ], (5.8)

d[E:P :F ]
dt

=k1[E][P :F ]− k2[E:P :F ]− kcat[E:P :F ], (5.9)

d[E:P ]
dt

=kcat[E:P :F ] + k1[E][P ]− αk2[E:P ], (5.10)

d[F ]
dt

=kcat[E:P :F ], (5.11)

d[P ]
dt

=− k1[E][P ] + αk2[E:P ], (5.12)

d[AT ]
dt

=−KI[E][AT ], (5.13)

d[E:AT ]
dt

=KI[E][AT ]. (5.14)

with initial conditions

[E]0 = Up(E0), (5.15)
[P :F ]0 = (1− Uh)Up(P :F0), (5.16)

[E:P :F ]0 = 0, (5.17)
[E:P ]0 = 0, (5.18)

[P ]0 = UhUp(P :F0), (5.19)
[F ]0 = UhUp(P :F0), (5.20)

[AT ]0 = Up(AT0), (5.21)
[E:AT ]0 = 0, (5.22)

where bolded symbols represent distributions rather than single values. Specifically, k1
is the rate of enzyme binding to substrate, KI is the kinetic parameter governing the
inactivation of the enzyme, and Up(·) are distributions for the initial enzyme, CS, and AT
concentration due to pipetting error. Uh is the fraction of substrate hydrolyzed at the start
of the experiment.

Two-Step Inactivation

The Two-Step Inactivation Model consists of the ODEs that result from applying the law
of mass action to the Two-Step scheme (Equations (5.4-5.6)), and incorporating uncertainty
in the same way as above. The resulting model is similar to the above (Equations (5.7-5.14),
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with 3 equations changed (Equations (5.7), (5.13), and (5.14)) and one added:

d[E]
dt

=− k1[E][P :F ] + k2[E:P :F ]− k1[E][P ] + αk2[E:P ]− kI
1[E][AT ] + kI

2[E:AT ],
(5.23)

d[AT ]
dt

=− kI
1[E][AT ] + kI

2[E:AT ], (5.24)

d[E:AT ]
dt

=kI
1[E][AT ]− kI

2[E:AT ]−KI[E:AT ], (5.25)

d[E:ATI ]
dt

=KI[E:AT ], (5.26)

with the corresponding initial conditions

[E]0 = Up(E0), (5.27)
[P :F ]0 = (1− Uh)Up(P :F0), (5.28)

[E:P :F ]0 = 0, (5.29)
[E:P ]0 = 0, (5.30)

[P ]0 = UhUp(P :F0), (5.31)
[F ]0 = UhUp(P :F0), (5.32)

[AT ]0 = Up(AT0), (5.33)
[E:AT ]0 = 0, (5.34)

[E:ATI ]0 = 0, (5.35)

where again bolded symbols represent distributions. This alternative model has all the
same parameter distributions with the addition of kI

1 and kI
2, which together controls the

respective binding and unbinding of enzyme with AT.

Preliminary Results

A Markov-Chain Monte Carlo process was used to estimate the parameters in the above
models from experimental data (see Chapter 2 for details on the general methodology).
Because reported values for the kinetic parameters we want to estimate vary widely in
the literature, non-informative priors were used extensively (see Table 5.1). The posterior
distributions for both the Null and Alternative model showed strong convergence using
the Geweke test as previously described. The fit for the two trained models is shown in
Figure 5.2, with samples taken from the full joint posterior distributions. The Null model is
unable to accurately capture the qualitative shape of the data, even after extended model
fitting. This is believed to be due to the fast rate of Xa inactivation, which is not evidenced
in the data. However, the Alternative model, which allows for more free Xa to be available
at later times, does obtain a strong match to data. The model selection tests presented in
Chapter 2, Akaike’s Information Criterion (AIC) and the Bayesian Information Criterion
(BIC), show strong statistical support for the Alternative model, with AICNull−AICAlt =
432.9 and BICNull −BICAlt = 422.5.
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Table 5.1: Model parameters and their distributions. Prior and Posterior estimates of unknown
parameters for both the One and Two-Step Inactivation models. ∗Because there were several individual
initial concentrations measured, we only report here the overall average pipetting error for all cases.
†Estimated previously in Chapter 2.

Parameter Prior Null
(mean±std)

Alternative
(mean±std)

kcat
† Fixed at 78.7s−1 N/A N/A

k1 N(0.01, 0.005)nM−1s−1 1.30e−3± 1.77e−5 6.92e−3± 0.15
k2 Fixed at (110.4e3 · k1 - 78.7) s−1 N/A N/A
KI N(2.0, 1.0)s−1 N/A 1.06e−3± 1.17e−4
KI
M N(1.35e6, 6.75e5)nM N/A 5.67e2± 57.58

kI1 N(1.0e−5, 5.0e−6)nM−1s−1 2.13e−6± 2.55e−8 3.72e−6± 2.92e−7
kI2 Fixed at (KI

M · kI1 −KI)s−1 N/A N/A
Uh
† Fixed at 5.1% N/A N/A

α † Fixed at 2.54 N/A N/A
Up(P :F0)∗ N(0%, 1%) 2.0%±0.9% 3.2e−3%± 0.9%
Up(E0)∗ N(0.0%, 1%) 0.2%±1.0% −6.1e−2±1.0%
Up(AT0)∗ N(0.0%, 1%) 1.2e−2±1.0% −1.3e−3±1.0%

Ongoing Work

Although we have compelling preliminary support for the two-step model, an indepen-
dent, validating experiment needs to be designed and performed, where both models can
be used to predict the results without additional parameter tuning. The outcome of this
experiment would hopefully give strong evidence to the importance of the two-step inacti-
vation.

5.3 Global Sensitivity of Coagulopathies
Chapters 3 and 4 demonstrated how GSA methods aid in identifying modifiers to

hemophilia A. One natural extension of this work is to apply the same methods to other
coagulopathies, such as hemophilia B and C. Each of these conditions is diagnosed by large
deficiency in a specific clotting protein (see the Introduction 1.2.1 for more information)
with hemophilia A being deficient in FVIII, hemophilia B in FIX, and hemophilia C in FXI.
As shown in Chapter 4, the output of GSA allows for increased exploration of a model and
the potential discovery of novel parameter combinations capable of rescuing the bleeding
response.

In order to extend that analysis to other hemophilia cases with additional coagulation
parameters being varied, such as the platelet characteristics from Chapter 3, the normal
ranges of these parameters must first be determined. While the plasma levels of zymogens
are known to vary by approximately 50%, no such information is available for platelet
binding site numbers. To find these normal ranges, we first define a normal thrombotic
response as one that obtains 1 nM of total thrombin between 3 and 10 minutes [4]. Next,
the plasma levels (PL), platelet characteristics (PC), and fixed concentration of Tissue
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Figure 5.2: Preliminary MCMC fits to data for the Null and Alternative AT
inactivation models. The Null (orange) and Alternative (Blue) models were fit to the
data (Circles) using an MCMC procedure. The posterior distributions were sampled 1,000
times and used to construct 95% credibility intervals for the concentration of product at a
fixed time (shaded regions).

Factor (TF) were simultaneously varied in the KFHL model under normal coagulation
settings, with the plasma levels uniformly varying by ±50%, the platelet characteristics
between varying between ±1% - ±65%, and TF fixed between 1-30 fmol/cm2. For each
combination of PC percentage and TF level, 5000 simultaneous samples were drawn and
the number of normal thrombotic responses recorded. The sample sets were bootstrapped
to obtain replicate data sets to construct confidence intervals. Figure 5.3 shows for each
PC variation percentage the largest (blue) and smallest (red) TF level that obtained 99.5%
normal responses (multiple dots show results from bootstrapping). By selecting a TF range
of [5, 20]fmol/cm2and a PC variation percentage of ±20%, we observe at least 99.5% normal
responses from the simulations.

Preliminary work has already examined the effect of varying the PLs and PCs for models
of normal and the three hemophilic blood cases, which only differ from normal by a single
initial protein level. The variance in the time to 1 nM of total thrombin, a standard metric
used in clotting assays (see Chapter 3 and 4 for more information), was analyzed using
Sobol indices (see Figure 5.4), which apportions fractions of variance to individually varied
parameters. The results show that the hemophilic cases obtain 1 nM of thrombin in vastly
different ways. More investigation into these differences needs to be carried out, as well as
looking at other clotting metrics, such as the thrombin concentration at a particular time.
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Figure 5.3: Preliminary study varying Plasma Levels, Platelet Characteristics, and TF simultaneously. Plasma levels
(PL) of zymogens were varied ±50%, platelet characteristics (PC) were varied at different percentage levels (x-axis), and TF varied
between 1 and 30fmol/cm2(N=5,000 for each PC var % and fixed TF value). The minimum (red) and maximum (blue) TF levels
that allowed 99.5% of samples to have a time to 1 nM of total thrombin between 3 and 10 minutes, i.e., the metric for a normal
response.
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Figure 5.4: Preliminary Sobol index results for the time to 1 nM of thrombin for hemophilic models. The variance
for the time to 1 nM of total thrombin was decomposed using Sobol indices where plasma protein levels and platelet characteristics
were allowed to vary within a hypothetical normal range for normal (A), hemophilia A (B), hemophilia B (C), and hemophilia C
(D) type blood.
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