
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Interrogating the Tensor Network Regression Model

Permalink
https://escholarship.org/uc/item/0cf9s4n6

Author
Convy, Ian Patrick

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0cf9s4n6
https://escholarship.org
http://www.cdlib.org/

Interrogating the Tensor Network Regression Model

By

Ian P. Convy

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Chemistry

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor K. Birgitta Whaley, Chair
Professor Teresa Head-Gordon
Professor Michael Zaletel

Spring 2023

Interrogating the Tensor Network Regression Model

Copyright 2023
by

Ian P. Convy

Abstract

Interrogating the Tensor Network Regression Model

by

Ian P. Convy

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor K. Birgitta Whaley, Chair

There has been growing interest in using tensor networks as machine learning models, in-
spired by their successes in quantum many-body physics and tensor analysis. These models
operate by first mapping input data into an exponentially-large vector space, and then per-
forming linear regression on the resulting feature set. It is well-known that the expressive
power of a tensor network regression algorithm originates from its tensor-product featur-
ization, but it is unclear how the tensors in the network are able to convert such a high-
dimensional and unstructured intermediate into a useful output. We explore this question
by probing the properties of tensor network models on three fronts. First, we assess how the
performance of a tensor network classifier degrades when the the size and complexity of the
expanded feature space is reduced, and find that most of the space is not effectively utilized
by the model. Next, we characterize how the rank of a tensor network impacts the class of
regression functions that it can represent, demonstrating that even quadratic polynomials
can be impossible to fully realize in most cases. Finally, we use a novel neural network algo-
rithm to determine whether classical images possess correlation structures that mirror those
found in quantum wavefunctions, and find evidence of area law scaling in the MNIST and
Tiny Images datasets. Taken together, these results demonstrate how mathematical tools
from tensor analysis and quantum physics can be leveraged to gain deep insight into the
inner workings of tensor network machine learning models.

1

Contents

1 Introduction 1

2 Tensor Network Regression 4
2.1 Tensors . 4

2.1.1 Perspectives and notation . 4
2.1.2 Tensor operations . 5
2.1.3 Tensor Rank . 7

2.2 Tensor Networks . 7
2.2.1 The “curse of dimensionality” . 7
2.2.2 Tensor network notation . 9
2.2.3 Tensor network contractions . 9
2.2.4 Bond dimension and multiplex rank 11
2.2.5 Approximate representations . 13

2.3 Tensor Regression . 14
2.3.1 Image classification and supervised machine learning 14
2.3.2 Tensor models . 15
2.3.3 The tensor network ansatz . 17

3 Building a Tensor Network Regression Model 19
3.1 Network Architecture . 19

3.1.1 General considerations . 19
3.1.2 Matrix product states and tensor rings 20
3.1.3 Tree tensor networks . 24
3.1.4 Projected entangled pair states . 25
3.1.5 Spanning trees . 27

3.2 Optimization . 28
3.2.1 General considerations . 28
3.2.2 Riemannian optimization . 29
3.2.3 DMRG-style sweeps . 32
3.2.4 Stochastic gradient descent . 33

3.3 Initialization . 35
3.3.1 General considerations . 35
3.3.2 MPS/tensor ring initialization . 36
3.3.3 TTN and STN initialization . 37

i

4 Interaction Decomposition of Tensor Network Models 39
4.1 Introduction . 39
4.2 The Interaction Decomposition . 40

4.2.1 Interaction Subspaces . 41
4.3 Interaction Decompositions of TR and TTN Models 42
4.4 Interaction Decompositions as Regression Models 46
4.5 Discussion . 49
4.6 Appendix . 51

4.6.1 Procedure for the Interaction Decomposition 51
4.6.2 Tabulation of D-degree Model Performance 53
4.6.3 Regression Model Comparisons . 53

5 Rank Analysis of Tensor Network Models 56
5.1 Introduction . 56
5.2 General Approach . 57

5.2.1 Braket notation and excitations . 57
5.2.2 Partitioning the weight tensor . 58

5.3 Rank Upper Bounds . 60
5.3.1 Single-Feature Partition . 60
5.3.2 Linear Regression . 61
5.3.3 Bilinear Regression . 62
5.3.4 Multilinear Regression . 63

5.4 Applications to Tensor Network Regression 66
5.4.1 Bond dimension of low-degree regression models 66
5.4.2 Significance of inter-partition regressors 69
5.4.3 Short-range and long-range interactions 70
5.4.4 Rank reduction through embedding 72

5.5 Discussion . 74
5.6 Appendix . 75

5.6.1 Multiplex rank as a function of partition size 75
5.6.2 Rank of embedded weight tensors . 78

6 Mutual Information Scaling in Image Datasets 82
6.1 Introduction . 82
6.2 Correlation Scaling . 83

6.2.1 Entanglement Scaling in Quantum Systems 83
6.2.2 Correlations in Classical Data . 85
6.2.3 Entanglement as a Bound on Mutual Information for Orthogonal Data 86

6.3 Estimating Mutual Information . 89
6.3.1 Setup and Prior Work . 89
6.3.2 Logistic Regression for MI Estimation 89

6.4 Numerical Tests with Gaussian Fields . 91
6.4.1 Gaussian Markov Random Fields . 91
6.4.2 Test Setup . 92

ii

6.4.3 Nearest-Neighbor Boundary-Law GMRF 93
6.4.4 Uniform Volume Law GMRF . 93
6.4.5 Random Sparse GMRF . 95

6.5 Application to Image Data . 98
6.5.1 Setup . 98
6.5.2 Results . 98

6.6 Discussion . 102
6.7 Appendix . 104

6.7.1 GMRF Covariances and Sample Images 104

7 Conclusions and Future Directions 108

References 111

iii

Chapter 1

Introduction

Over the last decade, machine learning has seen an explosion in popularity and applica-
tion, driven largely by the increased availability of massive datasets and the development
of powerful graphics processing units (GPUs). The algorithm of choice for modern ML
has been the neural network, which is a biology-inspired architecture that can be easily
composed end-to-end to create various types of multilayered deep learning models [1][2].
Popular examples include the dense feed-forward neural network [3], the convolutional neu-
ral network [4][5], and the recurrent neural network [6]. While these techniques have shown
remarkable success, solving previously intractable problems in areas such as image classifi-
cation [7][8], speech recognition [9], and generative modeling [10] among many others, they
are hampered by poor interpretability and opaque operation [11]. We know that these mod-
els work, but how and why remains elusive. There is demand, therefore, for an alternative
machine learning framework that can solve sophisticated problems while also being more
amenable to mathematical analysis.

Far away from the field of machine learning1, research in quantum many-body physics
has also seen a boon from the increasing availability of powerful computers [15][16]. While
analytical solutions are often a physicist’s highest aspiration, there are a large number of
problems for which numerical experiments are the main avenue of study. This is especially
true in quantum physics due to the intractability of the many-body Schrödinger equation, and
the field has therefore amassed an impressive toolbox of computational techniques [17][18].
Many methods revolve around the selection of a so-called ansatz, which is effectively just a
guess for the mathematical form of the wavefunction that is chosen based on knowledge of the
underlying system. An effective ansatz must be flexible enough to capture the phenomena
of interest while also being restrictive enough to be simulated efficiently. As with machine
learning models, there is a desire for ansatze which are both powerful and interpretable, so
that scientific insights can be extracted from the numerical experiments.

An ansatz that fulfills both of these requirements, and that will serve as the object
of interest in this thesis, is the tensor network [19]. Tensors, which can be understood
as higher-dimensional generalizations of vectors and matrices, occur naturally in quantum
physics due to the tensor-product structure of the multi-body Hilbert space [20]. The key

1Or not-so-far-away in recent times, as methods from deep learning are increasingly being applied to
quantum physics problems [12][13] and vice versa [14].

1

feature of tensor networks, however, is that they can represent extremely large tensors as
the contraction of a set of much smaller component tensors. This substitution is critical,
as the number of elements in a wavefunction tensor grows exponentially with the number
of components in the system, while the number of elements in a tensor network ansatz for
that same system grows only linearly. This improvement in scaling necessarily comes at a
representational cost, as the ansatz can only reproduce a small portion of the total Hilbert
space. That said, a major advantage of tensor networks is that their limitations and modes
of operation can be understood rigorously using techniques from tensor analysis, which opens
the door for mathematical insights that are much deeper than might be possible for, say, a
neural network.

Indeed, the potential benefits of using tensor networks for machine learning in place
of neural networks has become an active area of research in recent years. Early efforts
starting in 2016 concentrated on the matrix product state [21][22][23], which is one of the
most commonly-used tensor networks in quantum physics, but focus has since expanded to
a variety of other network types [24][25][26]. Underlying all of these algorithms is the same
basic objective: efficiently model the properties of an exponentially-large feature space.
Rather than representing multi-body wavefunctions, the tensor network ansatz is instead
used to represent a tensor of parameters which are optimized with respect to a specific
dataset and machine learning task. The number of elements in this higher-order tensor will
in general scale exponentially with the number of features. However, as in quantum physics,
we can use the tensor network ansatz to reduce this down to linear scaling.

Although tensor network machine learning is still in its early stages, there have already
been impressive results shown on many benchmark machine learning tasks, from image
classification [22] to generative modeling [27]. With the increasing interest in tensor network
methods, there is little doubt that many more domains will be explored. The purpose of
this thesis, however, is not to push on the frontiers of application, but instead to take a
step back and ask what is going on “under-the-hood” of these models, so to speak. One
of the most attractive aspects of tensor networks is their grounding in well-studied areas
of tensor mathematics, as well as the existing knowledge base that has been built around
them in the field of quantum physics. We seek to leverage this information in order to probe
the operation of tensor networks in a regression setting, with a specific interest in how the
models utilize their exponential feature space, and how the right kind of network can be
chosen for a given machine learning task.

The body of this thesis is separated into five chapters. In Chapter 2, we introduce the
background information on tensors, tensor networks, and regression that will be necessary to
understand the rest of the work. Our presentation here will only provide an overview of these
three areas, each of which are entire fields of study unto themselves. In Chapter 3, we dive
into the practical aspects of constructing an effective tensor network machine learning model,
with emphasis on different network architectures, optimization methods, and initialization
schemes. This chapter synthesizes knowledge drawn from the existing literature as well from
years of experience working with these models.

Chapters 4-6 represent our novel contributions to the field. In Chapter 4, we propose
a new method for contracting tensor networks called the interaction decomposition. This
decomposition breaks up the exponential feature space into subspaces based on the degree

2

of the corresponding feature-product regressors, which allows us to quantify how extensively
the model is utilizing the feature space. We also use the interaction decomposition as the
basis for a new kind of tensor network model that only performs regression on a portion
of the feature subspaces, and demonstrate that these constrained models achieve similar
performance to the full models.

In Chapter 5, we establish upper-bounds on the bond dimension necessary to represent
multilinear regression up to a given degree, and explore the implications of these bounds on
tensor network design. We find that even low-degree regression requires a bond dimension
that is impractically large when the coefficients are set arbitrarily, and that the size of a given
virtual index is driven almost entirely by feature-products that span the index. We also show
that embedding a lower-degree regression function inside a higher-degree function, as can be
done using the interaction decomposition, provides a modest decrease in the corresponding
bond dimension.

In Chapter 6, we review the entanglement scaling analysis that is used to design tensor
network ansatzes in quantum physics, and then adapt it for use on classical machine learning
data. In order to quantify the correlations in classical data, we develop a novel machine
learning algorithm that uses neural networks to estimate the mutual information between
sets of features. We show through numerical experiments that the MNIST and Tiny Images
datasets manifest an area-law pattern in their correlations, and discuss the significance of this
for tensor network machine learning models. Finally, in Chapter 7, we offer some concluding
remarks on our work and consider promising directions for future studies.

The content of this thesis focuses on my work with tensor network machine learning
models, and is drawn from the following published papers

• “Interaction decompositions for tensor network regression” [28] (Chapter 4)

• “Mutual information scaling for tensor network machine learning” [29] (Chapter 6)

as well as unpublished material on the tensor rank of multilinear regression models (Chap-
ter 5). In the interest of maintaining a focused and cohesive presentation, I have omitted
my work on Bayesian algorithms for quantum error correction, which is published in

• “Machine learning for continuous quantum error correction on superconducting
qubits” [30]

• “A logarithmic Bayesian approach to quantum error detection” [31].

3

Chapter 2

Tensor Network Regression

In this chapter, we provide background information on tensor network regression, which will
be key to understanding subsequent chapters. Sec. 2.1 provides an overview of tensors as
mathematical objects, with particular focus on tensor operations and tensor rank. Sec. 2.2
introduces the tensor network and its properties, along with a diagrammatic notation that
we will use to represent tensor operations throughout this work. Sec. 2.3 describes how
tensors can be used for supervised machine learning, and how the tensor network ansatz is
crucial to building an effective model.

2.1 Tensors

2.1.1 Perspectives and notation

Throughout this work, we will consider machine learning models that are constructed using
tensors [32]. We will generally view a tensor as simply a multidimensional array of real
numbers, which are referred to as the elements, such that each number is indexed by a non-
negative integer along every dimension. The order of a tensor is equal to the number of
dimensions that it has, or equivalently the number of integers needed to specify the position
of one of its elements. Under this construction, vectors and matrices are first-order and
second-order tensors respectively. We favor this array-based view of tensors because of the
emphasis that it places on the tensor elements, which will ultimately serve as the parameters
of our regression models.

From a more abstract perspective, a tensor can also be understood as an element of a
tensor product space [33], which is a composite space formed from the product of multiple
vector spaces. Operationally, the product structure of the underlying tensor space manifests
in the number and size of the indices, with each vector space being assigned its own index
of a size equal to the dimension of the space. This product-space view of tensors lends itself
to clearer interpretations of many tensor operations, and we will occasionally make use of it
when more theoretical properties are of interest.

One aspect of tensors which we do not consider here, but which is of great significance
in other fields such as physics, is their behavior under basis transformations. In physics,
tensors are often used to model mathematical relationships between vectors which have been

4

assigned physical meaning outside of a particular coordinate representation. In this context,
an elementwise representation of a tensor is meaningful only in conjunction with a specified
basis set, which means that two tensors with the same elements can have different meanings
if their implied bases differ. From our perspective, however, two tensors with the same
elements are always viewed identically, with the understanding that the same orthonormal
basis is being used in all cases.

Throughout this work, we will denote tensors with order greater than one using uppercase
letters (A,B,C, ...), while vectors will be denoted using a lower case letter under an arrow

(⃗a, b⃗, c⃗, ...). Elements of a tensor are specified using subscripts, so that an element of the
third-order tensor A is given by Aijk, where i, j, k are non-negative integers. When referring
to elements of a vector, the arrow symbol is dropped. We will index starting from one by
default, but some dimensions may be indexed from zero for convenience. When indexing
using numbers rather than letters, we will place commas between the subscripts for clarity,
e.g., A1,13,7. Vector spaces will be denoted using double struck letters (generically as V), and
sets will be written using calligraphic letters (A, B, C, ...). To specify the ith member of a
set (be it a tensor, vector space, etc), we use a superscript with parentheses, e.g., A(i).

2.1.2 Tensor operations

There are a wide variety of operations that can be defined between tensors, with most simply
being generalizations of the familiar matrix and vector operations found in linear algebra.
Arithmetic manipulations such as addition and scalar multiplications on tensors can be
performed elementwise in the same manner as is done with vectors. For the mth-order
tensor A, B, and C, we have

C = A+B → Ci1...im = Ai1...im +Bi1...im (2.1)

C = aA → Ci1...im = aAi1...im , (2.2)

where a is any scalar (we consider only the field of real numbers in this work). These
operations do not alter the number or size of the indices, just as the sum two vectors always
yields another vector of the same dimension. Note that the addition of two tensors is only
meaningfully defined between tensors of the same shape, which means that they must have
the same order and have indices of matching size.

Two other important operations, which we will make use of repeatedly throughout this
work, are the tensor product and the tensor contraction. The tensor product C = A ⊗ B
constructs a new tensor C from every pairwise product between elements of tensor A and
elements of tensor B. Each element of the resulting tensor C is given by

Ci1...imj1...jn = Ai1...imBj1...jn , (2.3)

where the m+n order of C is the sum of the orders of A and B. The tensor product can be
understood as a higher-order generalization of the outer product from linear algebra, where
two vectors (order-1 tensors) are multiplied to generate a matrix (order-2 tensor). Note that
if A and B are elements of vector spaces VA and VB respectively, then C will be an element
of the tensor-product space VA ⊗ VB.

5

The tensor contraction between A and B is similar to the corresponding tensor product,
except that it generates a new tensor C by taking elements of A ⊗ B and summing them
along a set of specified dimensions. As an example, if A and B are both third order, then a
contraction between the second dimension of A and the third dimension of B is written as

Ci1i3j1j2 =
∑
k

Ai1ki3Bj1j2k. (2.4)

Note that C is fourth order rather than sixth order, since two of the dimensions of A ⊗ B
were summed together. The dot product, matrix product, and matrix-vector product can
all be understood as contractions between tensors of specific orders.

The final class of operation that we will consider are reshaping operations, the most
notable of which are vectorization and matricization. Generically, a reshaping operation
takes a tensor and rearranges its elements without changing their values, such that the order
of the tensor is altered. This is done by merging multiple indices from the tensor into a
single index or, conversely, splitting a single index into multiple indices. In vectorization, all
indices of a tensor are merged into a single index, and thus the elements are reshaped into a
vector (hence the name). In terms of vector spaces, the vectorization of tensor A ∈

⊗m
i=1V(i)

can be understood as

Vec[A] = a⃗, where a⃗ ∈ Ṽ, |Ṽ| =
m∏
i=1

|V(i)|. (2.5)

The dimension |Ṽ| of the new, compound vector space is equal to the product of the di-
mensions of the merged indices, thus preserving the element number. The mapping between
values of the new index and values of the original indices is arbitrary, with a common
convention being lexicographic ordering based on the arrangement of the original indices.
Matricization is similar to vectorization, except that the tensor indices are first gathered into
two disjoint sets, with one group being merged into the row index and the other into the
column index. If we let R and C denote the sets of vector spaces corresponding to the row
indices and column indices respectively, then the matricization of tensor A ∈

⊗m
i=1V(i) is

Mat[A] = Ã, where Ã ∈ VR ⊗ VC, |VR| =
∏

V(i)∈R

|V(i)|, |VC| =
∏

V(i)∈C

|V(i)|. (2.6)

Similar to vectorization, the dimensions of the row and column spaces are equal to the
product of the dimensions of the spaces in R and C respectively.

The utility of vectorization and matricization operations is that they repackage the ele-
ments of a tensor in a form that is amenable to analysis and manipulation using tools from
linear algebra. Procedures such as the singular-value decomposition can be easily applied
to matricized tensors using existing linear algebra software libraries, and interpreted using
standard principles from matrix analysis. Properties of the row and column spaces from a
matricized tensor can then be mapped back to the tensor product spaces that were associated
with the tensor prior to reshaping. When used together, vectorization and matriciziation
can be particularly effective at analyzing the contraction of two tensors, as one tensor can
be cast as a vector while the other is cast as the matrix which maps it to a new (vectorized)
tensor.

6

2.1.3 Tensor Rank

A key concept in tensor analysis is tensor rank, which can be understood as a generalization
of the matrix rank (although many properties are not preserved). A rank-one tensor, also
referred to as an elementary tensor, is a tensor that can be written as the tensor product
of order-one tensors (vectors). For example, a third-order elementary tensor D must be
writable as

D = a⃗⊗ b⃗⊗ c⃗ → Dijk = aibjck, (2.7)

for some vectors a⃗, b⃗, and c⃗. All non-zero vectors have a rank of one trivially, while rank-one
matrices and higher-order tensors form sets of measure zero in their respective tensor spaces.
From this definition of an elementary tensor, a rank-r tensor is a tensor that can written
exactly as the sum of r elementary tensors. For example, if the tensor D is an mth-order
tensor of rank r, then it must be writable as

D =
r∑

i=1

v⃗ (i,1) ⊗ v⃗ (i,2) ⊗ ...⊗ v⃗ (i,m), (2.8)

where v⃗ (i,j) is the jth vector component of the ith elementary tensor. This summation is
known as the rank decomposition of the tensor D. We can see that the definition of rank-one
tensors from Eq. (2.7) is consistent with Eq. (2.8), since r = 1 sets D equal to a single
elementary tensor.

The rank of a tensor provides a measure of its computational and representational com-
plexity. Among third-order tensors, for example, the rank sets the minimum number of
vector product operations needed to compute the non-commutative bilinear forms param-
eterized by a given tensor [34], which in turn sets limits on the asymptotic computational
costs associated with matrix multiplication [35]. In the context of numerical representation
and storage, the tensor rank places limits on how accurately the elements of a tensor can be
compressed into a smaller number of parameters.

While the tensor rank has the appealing attribute of being a direct generalization of the
matrix rank, it has number of practical drawbacks. The most significant issue is that there
does not exist any systematic algorithm that can solve for the rank of an arbitrary tensor.
Similarly, there does not exist any general method to find the best rank-k approximation for
a tensor of rank r > k, and for some tensors a best approximation may not even exist [36].
Furthermore, numerical methods for computing low-rank approximations can often be fail to
converge to the optimal solution, since the optimization problem is inherently non-convex.

2.2 Tensor Networks

2.2.1 The “curse of dimensionality”

The most significant obstacle to working with higher-order tensors is the so-called “curse of
dimmensionality” [37], where the size and complexity of a tensor-based task scales exponen-
tially with the order of the tensor. This scaling occurs because the number of elements in

7

a tensor is given by the product of each index dimension, so a tensor of order m and fixed
index dimension t will have tm elements. Any task which involves modeling interactions or
relationships among a large number of component spaces, such as the multibody systems in
quantum physics or high-dimensional partial differential equations [38], will suffer from this
curse.

In practice, we are afflicted with the curse of dimensionality whenever we attempt to
construct or manipulate an explicit representation of the elements in a higher-order tensor. If,
however, the elements are instead represented as functions of some smaller set of parameters,
then the curse can be avoided at the cost of working with a more constrained class of
tensors [39]. We have already seen an example of this in the rank decomposition from
Eq. (2.8), where a tensor of order m, rank r, and index dimension t is represented using
r ·m · t vector parameters. As long as the rank of the tensor does not scale exponentially
with the order, then r · m · t ≪ tm for large m and the curse of dimmensionality is lifted.
Note that the rank of a typical (i.e. randomly sampled) tensor does scale exponentially with
the order [40], so we avoid exponential scaling at the cost of working with a set of tensors
that is usually measure zero in the tensor space. This is often a worthwhile trade off, as
many systems of practical interest can be accurately represented using low-rank tensors.

The construction of low-rank tensor representations is the primary purpose of tensor
networks, which have been leveraged in a variety of different fields as a solution to the curse
of dimensionality [41][42][43]. At its most fundamental level, a tensor network is simply a
collection of tensors, which we call component tensors, along with a set of instructions that
describes how to contract those tensors into a new output tensor. The output tensor can in
principle be of any size, but the utility of tensor networks comes from their ability to build
higher-order tensors out of lower-order components. If the number of components in the
network is proportional to the order of the output tensor1, which is typical, the component
tensors will collectively contain exponentially fewer elements than the output tensor.

As an introductory example, we can consider a very simple tensor network, consisting of
only two component tensors A and B, which is contracted together to generate the output
tensor C:

Ci1i1i3j1j3j4 =
t∑

k=1

Ai1i2i3kBj1kj3j4 . (2.9)

An expression this simple would almost never be referred to as a “tensor network” in prac-
tice, but we can see that it does fullfill both of the previously stated requirements: it has
a collection of (lower-order) component tensors {A,B}, and it instructs us to contract the
fourth index of A with the third index of B to construct a sixth-order tensor C. Assuming
that each index in Eq. (2.9) is of size t > 2, it is clear that tensor C has significantly more
elements (t6) than are contained in A and B combined (2t4). As the number of compo-
nent tensors and the order of the output tensor increases, the disparity between component
elements and output elements becomes far more dramatic.

1Strictly speaking we would only need the scaling to be sub-exponential, but virtually all tensor networks
used in practice have a number of components that is directly proportional to the order of the output

8

2.2.2 Tensor network notation

Before considering more complicated networks, it is helpful to introduce a type of index-free
tensor notation that can be used to easily represent contractions involving many tensors.
In this new notation, which is often called Penrose notation or simply referred to as tensor
diagrams, each tensor is denoted using a geometric shape, while each index is represented by
a line or leg protruding outward from the shape. A tensor product is implied by placing two
tensors next to one another, and a contraction is indicated by having those tensors share
one or more legs. A significant advantage of this approach is that there is no need to keep
track of so-called “dummy” or virtual indices, such as k in Eq. (2.9), which serve only to
coordinate the different contractions. We typically do not label the uncontracted or physical
indices of the output tensor either, since whatever meaning they have is usually clear from
the surrounding context.

To practice using this new notation, we can see how familiar tensors and tensor operations
from linear algebra are written using both explicit summations and tensor diagrams:

Vector: v⃗ → v

Dot product:
∑
i

viwi → v w

Matrix: A → A

Matrix product:
∑
j

AijBjk → A B

Notice that the order of the output tensor can be determined by simply looking at the
number of unpaired legs in the diagram: zero for the scalar-valued dot product and two for
the matrix-valued matrix product.

The utility of tensor diagram notation for depicting tensor networks can seen clearly in
Figure 2.1, which shows a network with five component tensors. Even with a relatively simple
contraction pattern, the explicit index notation is highly obtuse, requiring that we laboriously
trace through and remember all nine index labels, including those of the four virtual indices.
The diagram, by contrast, reveals the contraction pattern immediately by tapping into our
natural ability to parse spatial arrangements. We will utilize tensor diagrams, along with
some explicit index expressions, throughout the remainder of this work to help illustrate the
relevant tensor operations.

2.2.3 Tensor network contractions

Our discussion of tensor networks so far has centered on their ability to represent the elements
of a higher-order tensor using a much smaller number of component tensor elements. But it
is worth considering further what it means to “represent” the elements of a tensor. If nothing
else, accurate representation should necessarily mean that we can contract the component
tensors of the network and retrieve precisely the elements that we would expect in the output
tensor. For small output tensors we could indeed carry out this operation in practice, but for
large, higher-order tensors—fully afflicted with the curse of dimensionality—a full contraction
of the network can only ever be imagined theoretically.

9

Hijkop =
t∑

l,m,n,r=1

DlimEjmrkFlrnGnop

H =
D

E

F G

Figure 2.1: Tensor network representing fifth-order tensor H, depicted using an explicit
summation (top) and a tensor diagram (bottom). The network is generated by four different
contractions, each of which is indicated in the diagram by a shared leg. While it is possible
to discern the contraction pattern of the component tensors by studying the index notation,
the diagram makes it obvious at a glance.

So what then is the computational utility of a tensor network? The answer lies in con-
sidering contraction operations between the higher-order tensor and one or more low-order
tensors. To give a concrete example that will come up repeatedly throughout this work,
consider the contraction between an mth-order tensor W and a set of m vectors {x⃗ (i)}m−1

i=0

each of dimension t:

t∑
i1,...,im=1

Wi1...imx
(1)
i1
x
(2)
i2

· · ·x(m)
im

→
...

W
. (2.10)

For small m and modest t this calculation is manageable, but as the order of W increases
the curse of dimensionality sets in and we will rapidly exhaust our computational resources.
Even if we had some algorithm for generating each element Wi1...im on the fly, there would
still be tm terms in the sum that would need to be evaluated. Without further information
about the structure of W , we cannot make any progress in evaluating Eq. (2.10).

However, let us now say that W can be represented exactly by a tensor network with a
reasonable number of component tensor elements. To be more concrete, we will suppose that
W can be represented by the contraction of a sequence of matrices and third-order tensors
according to the following tensor diagram:

...
W → ...

. (2.11)

The total number of elements across all component tensors scales as O(mtr2), where r is the
size of the virtual indices. These kind of linear tensor networks are called matrix product
states (MPS) or tensor train decompositions, and we discuss them further in Sec. 3.1.2. For
now, the important thing to notice is that each of the physical indices on W is has been
localized to a single low-rank tensor. If we were to first attempt a complete contraction
of the network components to recover W , we would run into precisely the same curse of

10

dimensionality that stopped us before. Alternatively, we could first contract each x⃗ (i) with
its corresponding component tensor, which would generate a new network consisting of
matrices and vectors that could be easily contracted. We can illustrate this procedure using
tensor diagrams:

... → ... → , (2.12)

where the red legs are contracted in each step, the darker shapes indicate tensors generated
from the contractions in the previous step (which we refer to as intermediate tensors), and
the circle at the end with no legs represents the scalar output.

The key takeaway from Eq. (2.12) is that we were able to preform a previously intractable
calculation involving a higher-order tensor by utilizing its tensor network representation. The
reason for this success is that the component tensors of the MPS were localized to individual
indices, which allowed us to contract all of the vectors individually with their corresponding
component tensors before contracting the remainder of the network. This prevented the
order of the intermediate tensors from growing too large, which is recurring theme when
finding effective contraction strategies for tensor network operations.

2.2.4 Bond dimension and multiplex rank

When representing a higher-order tensor using a tensor network, there are certain constraints
that need to be considered. The most obvious of these is that the number and size of the
physical indices in a tensor network must match the number and size of the indices in the
represented tensor. Beyond this, there is also a set of more subtle constraints that are
imposed on the size of the virtual indices, which is often referred to as the bond dimension
from the use of tensor networks in quantum physics. In Sec. 2.2.3 we made passing reference
to the bond dimension r of the MPS when describing the number of elements in the network,
and it plays a similar role in other networks by determining the number of elements in the
component tensors.

Since a larger bond dimension implies a larger and thus more computationally-intensive
tensor network, it is natural to look for the smallest possible bond dimension that still allows
for an exact representation of a given tensor. This bound is given by the mulitplex rank of
the tensor [44], which is related to but distinct from the tensor rank discussed in Sec. 2.1.3.
The multiplex rank is based on the matricization operation introduced in Sec. 2.1.2, and is
defined to be the rank of the matrix generated by matricizing a tensor with respect to a
specified bipartition of the indices. The number of distinct multiplex ranks for an mth order
tensor is given by

∑⌊m/2⌋
i=1

(
m
i

)
, which is the number of possible bipartition schemes for the

m indices.
The multiplex rank establishes a lower bound on the size of the virtual indices in a tensor

network via its relationship with the singular value decomposition (SVD) [45]. In an SVD,
an ℓ × w matrix M is decomposed into the product of an ℓ × ℓ unitary matrix U , a w × w
unitary matrix V , and an ℓ× w diagonal matrix Σ with non-negative elements:

Mij =
∑
q,l

UiqΣqlVlj, diag(Σ) = [σ1, σ2, ..., σmin(ℓ,w)], (2.13)

11

where σi is the ith singular value of M . A key property of the SVD is that the number of
non-zero singular values is equal to the rank r of the matrix, which can be seen by rewriting
Eq. (2.13) as

Mij =
∑
q,l

UiqΣqlVlj → Mij =
r∑

n=1

σnUinVnj → M =
r∑

n=1

σnu⃗
(n) ⊗ v⃗ (n), (2.14)

where the final expression matches the form of the rank decomposition from Eq. (2.8) with
u⃗ (n) as the nth column of U and v⃗ (n) as the nth row of V .

To make the connection between tensor networks and SVDs, we can consider as an
example the fourth-order tensor A being represented by an MPS of bond dimension k:

1 2 3 4

A →
1 2 3 4

, (2.15)

where the physical indices have been labeled for clarity. If we partition the indices into
two disjoint sets {1, 2} and {3, 4} and then contract together components within the two
partitions, we will have

1 2 3 4

A →
1 2 3 4

→
1

L

2 3 4

R , (2.16)

where there is now a pair of tensors L and R corresponding to the two partitions, and a
virtual index connecting them together. If we then matricize A by merging indices 1, 2 into
the row index and indices 2, 3 into the column index, and similarly matricize L and R, we
get

1 + 2 Ã 3 + 4 → 1 + 2 L̃ R̃ 3 + 4 , (2.17)

where Ã, L̃, and R̃ are the matricized versions of A, L, and R respectively. The matrix
product in Eq. (2.17) can be written out using explicit index summations in a form very
similar to the SVD expression from Eq. (2.14):

Ãij =
k∑

n=1

L̃inR̃nj → Ã =
k∑

n=1

l⃗ (n) ⊗ r⃗ (n), (2.18)

where l⃗ (n) is the nth column of L̃ and r⃗ (n) is the nth row of R̃. Since the matrix rank r of Ã
is the smallest number of elementary tensors that can be added together to generate Ã, we
know that k ≥ r must hold for the MPS from Eq. (2.15) to exactly represent Ã. The matrix
rank of Ã is just the multiplex rank of A with respect to the {1, 2} and {3, 4} partition of
the physical indices, so therefore the multiplex rank lower bounds the bond dimension of the
virtual index.

While the steps that we worked through in Eqs. (2.15 - 2.18) were built around a specific
example, the broader concept is the same across all tensor networks. For a given partitioning
of the physical indices, we can always identify component tensors that either themselves

12

contain physical indices from a single partition or are connected to such components2. By
contracting these tensors together, we can generate the L and R tensors from Eq. (2.16), and
then matricize them with respect to the physical and virtual indices as we did in Eq. (2.17).
For a generic network and index partitioning, we can expect to merge multiple virtual indices
into the column index of L and row index of R, in which case the multiplex rank bound
applies collectively to the product of their bond dimensions. Bounds for different sets of
virtual indices can be generated by simply varying the choice of physical index partitions.

2.2.5 Approximate representations

The discussion of multiplex rank and bond dimension bounds in Sec. 2.2.4 is of significant
theoretical value, and we will make use of it extensively in Chapter 5, but in practice we are
generally not interested in exact tensor network representations. For a typical tensor, the
multiplex rank grows exponentially with the order, so exact representations are computa-
tionally intractable and largely defeat the purpose of using tensor networks in the first place.
Instead, our approach will be to approximate some tensor of interest using a reasonably-sized
network, with the goal of capturing its relevant properties. This is usually done by fixing the
form of the network in advance, and then choosing its components based on some measure
of similarity with the target tensor.

A common method for constructing tensor network approximations is the truncated SVD,
which involves computing the SVD for a matricizied tensor as in Eq. (2.13), but then setting
some of the singular values to zero. This leads to a truncation in the rank decomposition of
the matrix, and therefore to a decrease in the multiplex rank of the resulting tensor. The
number of discarded singular values is often chosen such that only the k largest are preserved,
where k is the desired bond dimension of the tensor network. The tensor generated via this
truncation procedure is the best approximation (with respect to the ℓ2 norm) of the original
tensor among all tensors with a multiplex rank of k. The truncated SVD has been used to
generate tensor networks used in compression [46][47] and quantum physics [48], and has the
advantage of provable error bounds for many network types [49][50].

Another approach, which we will utilize in this thesis, is to optimize the elements of
the network via gradient descent to minimize a chosen cost function. This cost function
could simply be the norm of the difference between the output tensor of the network and a
target tensor, but more often it is tied directly to the solution of some task. In this latter
case, the tensor we are trying to represent is defined only implicitly as the minimizer of the
cost function, with our objective being to find the best low-rank approximation that can be
generated by our network. There are many different gradient-based methods that can be
used for optimization, and we survey three of them in Sec. 3.2.

2It is possible that a single component may have physical indices from both partitions. In that case, the
partitions should be modified so that all of those indices are in the same set, as otherwise a bound cannot
be determined using this method.

13

2.3 Tensor Regression

2.3.1 Image classification and supervised machine learning

The machine learning task that will be considered throughout this thesis is image classifi-
cation, in which we seek a model that can correctly categorize the content of pixel-valued
images. We focus specifically on the classification of black and white images, which means
that each image is taken to be a matrix of positive numbers in the range [0, 1], with each
element representing a grayscale pixel that lies somewhere between pure black (value 0) and
pure white (value 1).

From a mathematical perspective, the image classification task can be distilled down
into a regression problem. In regression, the goal is to learn (or estimate) the relationship
between a set of m independent variables {xi}mi=1 called features and a set of n dependent
variables {yi}ni=1 called labels. For image classification, the features are the pixel values
and the labels are the conditional probabilities of each category. We denote a joint sample
of these m + n variables as (x⃗, y⃗), where x⃗ ∈ Rm is a vector containing the values of the
features and y⃗ ∈ Rn is a vector containing the values of the labels. In the case of parametric
regression, the relationship between x⃗ and y⃗ is modeled by a function f⃗ such that

y⃗ ≈ f⃗(x⃗;W), (2.19)

where W is a set of parameters which determines the behavior of the function. We do not
expect the relationship in Eq. (2.19) to be exact for any intuitive function f⃗ , except when the
data is generated artificially. Indeed, an exact reconstruction will generally be undesirable
for real-world data, since the labels often contain noise that should not be directly copied
into the model.

To find an effective set of parameters W , we perform optimization under the supervised
learning paradigm [51]. In supervised learning, the model is presented with a set of training
data that consists of η samples {(x⃗ (i), y⃗ (i))}ηi=1, where the labels y⃗ (i) have been associated
with the features x⃗ (i) through an accurate but often resource-intensive process. During opti-
mization, each feature vector is fed into the model, generating a prediction ŷ(i) ≡ f⃗(x⃗ (i);W)
for the associated label vector. The similarity of the prediction ŷ(i) to ground-truth y⃗ (i) is
evaluated using a loss function, and then the parameters W are altered via an optimiza-
tion algorithm so that the value of ŷ(i) more closely matches that of y⃗ (i). Generally this
optimization procedure is performed multiple times across the entire training set, in steps
known as epochs. We discuss a specific loss function and set of optimization algorithms for
tensor-based machine learning models in Sec. 3.2.

Once a regression model has been trained, the performance of the optimized parameters
can be evaluated using a set of test data, which consists of labeled samples that were not
used during the training of the model. It is common for the average loss value of the test
data to be significantly worse than the loss value for the training data, a phenomenon known
as overfitting. The degree of overfitting is tied to both the size η of the training set and
the number of parameters W in the model, with smaller η and larger W leading to worse
overfitting. Overfitting can be mitigated to some extent by placing regularization conditions

14

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

Figure 2.2: Left: The handwritten digit “5” taken from MNIST. Center: An ankle boot
image taken from Fashion MNIST. Right: Low-resolution image taken from the Tiny Images
dataset, after having been cropped and converted to grayscale. The axes give the height and
width of each image in pixels.

on the parameters—which reduce the effective degrees of freedom of the model—but it is
difficult to eliminate without an incredibly large training set or a very simple model.

Throughout this thesis we train and evaluate our models on the MNIST [52], Fashion
MNIST [53], and Tiny Images datasets [54], which are well-known benchmarks in the field
of computer vision. MNIST contains seventy-thousand 28× 28 images of handwritten digits
0 - 9, and is one of the most well-studied image datasets. Fashion MNIST was designed
to be a more challenging replacement for MNIST, and therefore also has seventy-thousand
28× 28 images but with ten different articles of clothing instead of digits. The Tiny Images
dataset3 contains 80 million 32× 32 images scraped from a wide variety of web sources, and
has the most complex images of the three datasets. Example images from the three datasets
are given in Figure 2.2.

2.3.2 Tensor models

Tensor network regression, which is our ultimate aim, can be understood as a specific form
of tensor regression [55]. In tensor regression, the function f⃗ of Eq. (2.19) is expressed as
the contraction of a data tensor X(x⃗), which is a function of the features in a given sample,
and a weight tensor W whose elements make up the set of parameters W . The data tensor
can, in principle, take on any form, but it is usually constructed from the tensor product of

3This dataset was withdrawn by its creators in June of 2020 due to concerns about prejudicial biases in
the images. We have no reason to believe that those issues are relevant to our specific use of it here.

15

a set of m vector-valued functions {h⃗(i)}mi=1 that each take as input a single feature:

X(x⃗) =
m⊗
i=1

h⃗(i)(xi) → ... , (2.20)

where xi is the ith element of x⃗ and thus the ith feature out of m. Note that the sequence of
tensor products in Eq. (2.20) is similar to a tensor network, insofar as it expresses a higher-
order tensor X using a set of order-one components which collectively contain exponentially
fewer elements. The regression output f⃗(x⃗;W) is computed by contracting the weight tensor
W with X:

fk(x⃗;W) =
∑

i1,...,im

Wki1...imXi1...im(x⃗) →
...

W
, (2.21)

where W contains an additional dimension k that indexes the output vector of the model.
This form of regression is quite distinct from the standard deep learning paradigm, in that the
transformation of the data is effectively set in advance here via the data tensor featurization
X(x⃗). All that is then left to optimize are the coefficients Wki1...im that should be assigned
to each of the new regressors. The same delineation cannot in general be made for deep
learning models, since they are formed from a composition of non-linear functions that has
no clear relation to any series expansion.

The precise role that the original features {xi}mi=1 play in Eq. (2.21) depends on the form

of X and therefore on the set of functions {h⃗(i)}mi=1 that were chosen. Conventional wisdom
regarding this choice can be traced back to the parallel works of Stoudenmire and Schwab [22]
and Novikov et al. [21], who each proposed a different transformation scheme. The method
from [22] was inspired by techniques in quantum many-body physics, and mapped each
feature x ∈ [0, 1] into the L2-normalized vector [cos(π

2
x), sin(π

2
x)]. The approach in [21], by

contrast, was motivated by a desire to characterize interactions within categorical (discrete)
data, and therefore had each feature mapped to the vector [1, x]. The advantage of this latter
mapping is that every element of the transformed feature space is a product of some subset
of the original features, which makes the resulting regression output easier to interpret.

For our work here, we follow Novikov et al. and use functions of the form

h⃗(i)(xi) =

[
1
xi

]
, (2.22)

which have been used in other implementations of tensor network regression [56][57][58].

When Eq. (2.22) is used to construct X, the regression function f⃗(x⃗;W) from Eq. (2.21)
becomes

fk(x⃗;W) =
1∑

i1,...,im=0

Wki1...imx
i1
1 x

i2
2 · · ·ximm , (2.23)

where indices i1, ..., im are zero-indexed and 00 = 1 is assumed. Eq. (2.23) shows that

tensor regression, when using the definition of h⃗(i)(xi) from Eq. (2.22), is equivalent to linear
regression on all possible products formed between the original features, plus a bias term

16

when all of the indices are zero. These feature products are referred to as interactions, with
the degree of an interaction defined to be the number of features that are multiplied together
(e.g. interactions of degree three take the form xixjxk, with i ̸= j ̸= k). Regression on the

elements of X can generate functions f⃗ which have non-zero mixed derivatives with respect
to the original features. For example,

∂2

∂x1∂x2
fk(x⃗;W) =

1∑
i3,...,im=0

Wk,1,1,i3,...,imx
i3
3 x

i4
4 · · ·ximm . (2.24)

These non-zero derivatives make f⃗ significantly more expressive than functions generated by
linear regression directly on the original features in x⃗, for which all mixed derivatives must
vanish.

2.3.3 The tensor network ansatz

The most immediate challenge to implementing a tensor-based regression model is, as always,
the curse of dimensionality. Inspection of Eq. (2.23) reveals that there are 2m parameters in
W , which is exponential in the number of features. Given that our benchmark image datasets
contain 784 features, this method of parameterization is simply a non-starter. However, as
discussed in Sec. 2.2, we can avoid the exponential scaling of W by representing its elements
implicity via a tensor network. We refer to this as the tensor network ansatz, and it will allow
us to construct machine learning models that follow the same tensor regression formalism
introduced in Sec. 2.3.2 while using a more realistic amount of computational resources.

Under a tensor network ansatz, the parameters W of the regression function f⃗ shift
from being elements of the weight tensor W to instead being elements of the component
tensors in the network. This does indeed have the benefit of dramatically reducing the cost
of contraction, but it comes with a significant loss of element-wise interpretability. As an
example, if an MPS is used to represent W for data with four features, then the output
vector f⃗ has the form

fk(x⃗;W) =
1∑

i1,...,i4=0

r∑
j1,...,j4=1

Ai1j1Aj1i2j2Aj2kj3Aj3i3j4Aj4i4x
i1
1 x

i2
2 x

i3
3 x

i4
4 → ,

(2.25)
where we have simply taken Eq. (2.23) for m = 4 and replaced W with an explicit index
expression for the MPS. Note that each feature-product coefficient is now a function of
multiple parameters from the tensor network model, as opposed to just a single element of
W . This parameterization structure has a significant impact on model optimization, which
we discuss in Sec. 3.2, and also serves as a motivation for the interaction decomposition that
we explore in Chapter 4.

Thus far, we have argued that the tensor network ansatz is necessary for tensor regression
due to the fact that we cannot explicitly represent or manipulate the exponentially large
weight tensor W . While this is certainly true, such an argument can leave the mistaken
impression that we would voluntarily choose to work with W if only we had a computer

17

big enough to hold its elements. Under this view, the tensor network ansatz is a kind of
necessary evil that we are forced to make do with given our computational constraints, and
we could hope that perhaps some future advancement in technology will allow us to do away
with it as a representional crutch.

In reality, however, the tensor network ansatz also plays a critical role in the general-
izeability of the tensor regression model. Generalization in machine learning describes the
ability of a model to make accurate predictions for data that it was not trained on. This is
precisely what the test dataset is designed to evaluate, and it is of critical importance for any
task where one expects to see novel data samples. To illustrate how a model built directly on
W can be very poor at generalization, we will consider the task of classifying images which
have pixels that take on binary values, i.e., xi ∈ {0, 1}. For grayscale images, this translates
into each pixel being either pure white or pure black, which is fairly close to how images
appear in the MNIST dataset (see Figure 2.2). If we were to use the [cos(π

2
x), sin(π

2
x)]

featurization from Stoudenmire and Schwab [22], then Eq. (2.20) would become

X(x⃗) =
m−1⊗
i=0

[
1− xi
xi

]
, e.g., X (⃗0) =

[
1
0

]
⊗
[
1
0

]
⊗ ...⊗

[
1
0

]
, (2.26)

where 0⃗ would represent a completely black image. Note that X(x⃗) always maps the binary
feature vector x⃗ to a standard basis vector, which means that the contraction of W with
X(x⃗) simply pulls out the element of W corresponding to the binary string encoded in x⃗.
The regression function is therefore given by

fk(x⃗;W) =
1∑

i1,...,im=0

Wki1...imXi1...im(x⃗) = Wkx1...xm . (2.27)

From Eq. (2.27), we can begin to see the problem: the output for each image is determined
by only a single parameter, and that parameter is different for each distinct image. During
training, parameters will only be optimized if they play a role in determining the output for
samples in the training data, so any parameter associated with images outside of the training
set will not be optimized at all. This eliminates any capacity for generalization, and thus
renders the model ineffective at anything other than memorization.

By contrast, Eq. (2.25) shows that each element of W is associated with a large number
of parameters in the MPS model, and, conversely, that each model parameter appears in the
representation of many different elements of W . This means that optimizing the model with
respect to one binary image will update a significant fraction (exactly half in this case) of the
network parameters, and implies that the prediction for a test-set image will be generated
using parameters that also played a role in generating predictions for the training-set images.
Through this sharing of parameters, tensor network models are able to easily learn on binary
images or on any other near-orthogonal dataset.

18

Chapter 3

Building a Tensor Network
Regression Model

In this chapter, we discuss different practical considerations that go into constructing a
tensor network regression model. Sec. 3.1 surveys the properties of four different tensor
network architectures, starting with the popular MPS model and then moving on to tree
tensor networks, projected entangled pair states, and the newly-proposed spanning tree
networks. Sec. 3.2 describes the how tensor network models can be trained using Riemannian
optimization, DMRG-style sweeps, and stochastic gradient descent, all of which have been
employed in the existing literature. In Sec. 3.3, we provide some novel discussion about the
challenges of initializing component elements in a tensor network, and outline methods for
initialization that we have used successfully.

3.1 Network Architecture

3.1.1 General considerations

When constructing a tensor network regression model, the most immediate question is what
type of network design to use for the representation of W . Our discussion of the tensor
network ansatz in Sec. 2.3.3 was deliberately vague on this point, but here we seek to pro-
vide more practical guidance on the advantages and disadvantages of different architectures.
There exist many axes upon which we can compare different tensor networks, but we will
focus primarily on the number of model parameters, the ease of contraction, and the pattern
of connectivity between component tensors.

An analysis of model parameters is the most straightforward method of comparing differ-
ent tensor network models, as we can simply count the number of elements in the component
tensors. As a general rule, machine learning models with more parameters can learn more
sophisticated mappings between features and labels, but are also more susceptible to over-
fitting on smaller datasets. Note that this is more of a useful heuristic than a mathematical
law, as the precise relationship between parameter number and model degrees of freedom
can be complicated [59]. In a tensor network regression model, the number of parameters

19

scales linearly with number of component tensors and polynomially with the bond dimen-
sion. Since the number of components is intimately tied to the overall architecture of the
network, this leaves the bond dimension as the main hyperparameter1 that can be used to
tune the representational capacity of the model.

The next comparison point that we will consider is how easily the tensor network can
be contracted to generate a prediction. Unlike the number of parameters, this property
of a tensor network model is less about the model’s representational capabilities and more
about the feasibility and efficiency of actually running it on a computer. The two largest
factors in determining the computational burden of a tensor network are the size of the
intermediate tensors generated during a contraction and the degree to which the contractions
can be parallelized. With respect to the intermediate tensors, the key requirement is that
their orders must not scale with the order of W (i.e. with the number of features). This
can be most easily enforced by ensuring that the network is acyclic, which allows us to
start at the lowest-order tensor components and then contract up through the network tree.
The contractions in a model can be easily parallelized if the underlying network is highly
symmetric, since this allows for straightforward batched calculations using standard linear
algebra software libraries.

Our final axis of comparison is the pattern of connectivity between component tensors
in the network, and it is the most challenging to draw conclusions from. By “pattern of
connectivity”, we mean the number of connections that exist between sets of component
tensors. This is closely connected to our discussion of multiplex rank in Sec. 2.2.4, where the
rank of the output tensor placed constraints on the bond dimension of the tensor network.
In the field of quantum many-body physics, where tensor networks are used extensively,
patterns of connectivity are frequently understood in terms of entanglement scaling [60],
which relates properties of the network to known properties of the physical system that it
is trying to represent. A challenge that we face when using tensor networks for regression
is that the desired rank properties of W are highly task-dependent and generally not known
to us. In Chapters 5 and 6 we describe different methods of probing the rank structure of
W , using feature interactions and correlation scaling respectively.

In the following subsections we introduce several well-known tensor network models, and
evaluate their use for tensor regression based on three factors that we have outlined above.
A diagram showing all of the models and a summary of their properties is given in Table 3.1.

3.1.2 Matrix product states and tensor rings

One of the most popular and well-studied tensor networks is the matrix product state (MPS),
which we have already introduced obliquely for illustrative purposes in Chapter 2. This
network type is characterized by its linear arrangement of component tensors, with third-
order tensors occupying the inner positions of the line and second-order tensors placed at
each end. The component tensors are connected together by virtual indices that contract
neighboring components. The number of components in an MPS is equal to the order of the

1A hyperparameter is a parameter that is not directly optimized during training but instead set before-
hand.

20

Matrix product
state

(MPS)

Tree tensor
network

(TTN)

Projected
entangled pair

state
(PEPS)

Spanning tree
network

(STN)

Architecture Parameters

2dr + nr 2
+ (m − 2)dr 2

(− 2)r 3 + rd 2
+ nr 2

m
2—

Contraction

Efficient

Efficient

Inefficient

Efficient

(p − 2)(q − 2)dr
4

+ 2(p + q − 2)dr 3
+ 3dr 2 + ndr 2

Varies with
tree pattern

Name

m
2—

Table 3.1: This table shows the four different network types that we consider in this section,
along with a summary of their relevant properties. In the parameter column, r is the bond
dimension, m is the number of features (which is eight for each of the diagrams), p and q are
the height and width of the feature grid, d is the dimension of the featurization functions,
and n is the dimension of the output.

21

tensor that it is representing, so the MPS representing a weight tensor W with m features
is given by

Wki1...im =
r∑

j1,...,jm=1

A
(1)
i1j1
A

(2)
j1i2j2

· · ·A(o)
jo−1kjo

· · ·A(m)
jm−1jmim−1

A
(m+1)
jmim

→
,

(3.1)

where {A(i)}m+1
i=1 are the component tensors of the MPS, {ij}mj=1 are the physical indices

from W which contract with the featurization vectors, k is the index for the output vector,
and {jl}ml=1 are the virtual indices of the network with bond dimension r. Note that A(1)

and A(m+1) are second-order, while the other component tensors are all third-order. The
tensor A(o) holds the physical index for the prediction, and we refer to such components as
the output component of the network. The position of the output component in the MPS is
arbitrary, with o = m

2
being a common choice.

The name “matrix product state” was originally given to this network architecture by
the quantum physics community, who use it extensively as an ansatz for many-body wave-
functions [61][62][63]. Indeed, the usage of MPS by physicists goes back farther than even
they were originally aware of, as the highly successful density matrix renormalization group
(DMRG) variational algorithm was eventually found to possess an MPS structure [64]. We
will have more to say about DMRG in Sec. 3.2.3, as it has been used as inspiration for
an optimization method in tensor network regression. The MPS network was also inde-
pendently developed in the field of tensor analysis, where it is called the tensor train de-
composition [49]. There it is most commonly used for tensor compression [65][66] and data
reconstruction [67][68].

When used for regression, an MPS has a number of component tensors equal to the
number of features m plus one, with the extra component used to hold the index for the
prediction vector f⃗(x⃗;W). The other component tensors are each paired off with one of the

featurization vectors h⃗(i)(xi) from the data tensor X(x⃗) (see Eq. (2.25) for an example with
four features). Given that two of the component tensors are second-orer and the rest are
third-order, the total number of parameters in an MPS regression model with bond dimension
r is 2dr+nr2+(m−2)dr2, where d is the dimension of the featurization vectors and n is the

dimension of f⃗ . For a fixed n value2, the number of parameters scales as O(mdr2), which is
far below the dm scaling of W . The quadratic dependence of the parameter number on r is
among the lowest of all tensor networks, which means that a fairly high bond dimension of
10 - 100 can be used on MPS models while remaining computationally tractable.

One of the most appealing properties of MPS models is that they are very simple and
efficient to contract. As discussed previously in Sec. 2.2.3, the intermediate tensors of an
MPS can be kept at a low order by first contracting each h⃗(i)(xi) with its corresponding
component tensor A(i), which generates a set of first- and second-order intermediate tensors.
These tensors can then be contracted together, along with the component tensor associated

2The value of n is task-dependent and usually small. For the image classification tasks considered in this
thesis, n = 10.

22

with output vector, to generate f⃗(x⃗;W). For m = 4, this process can be represented using
tensor diagrams as

→ → = f⃗(x⃗;W) (3.2)

where the legs colored in red are those that are contracted from one step to the next.
Since the intermediate tensors in the second step of Eq. (3.2) are all either matrices or

vectors, we can contract the virtual indices in any order without worrying about generat-
ing higher-order tensors. Indeed, by starting with the first-order tensors at each end and
contracting down the line, we could carry out the remaining contractions as a sequence of
inexpensive matrix-vector products. However, in order to maximize the speed with which we
contract the network, it is desirable to parallelize the operations as much as possible. This
can be done by taking non-overlapping pairs of intermediate matrices and contracting them
together simultaneously [57], ignoring the two end vectors at first. For m = 10, this looks
like

→ , (3.3)

where the number of number of matrices has been halved. This process repeats O(log2m)
times, after which the end vectors and third-order tensor can be contracted with the two
remaining matrices to generate the output.

The presence of the two end vectors can be a nuisance when creating a contraction
algorithm, since they are differently shaped than the other intermediate tensors. To create
a more symmetric network, we can tweak the MPS architecture by adding an extra virtual
index that connects the second-order tensors at the ends of the network, thereby turning
them into third-order tensors:

Wki1...im =
r∑

j1,...,jm+1=1

A
(1)
jm+1i1j1

A
(2)
j1i2j2

· · ·A(o)
jo−1kjo

· · ·A(m)
jm−1jmim−1

A
(m+1)
jmimjm+1

→ ,

(3.4)

This is known as a tensor ring (TR) [69] or a periodic MPS [70], and it shares many (though
not all) of the same properties as the standard MPS, such as the O(mdr2) parameter scaling.
When using a TR, the end tensors can be paired off with other intermediate matrices in the
parallelized contraction scheme showin in Eq. (3.3), which makes for a simpler algorithm.

Finally, we consider the pattern of connectivity imposed by the MPS/TR structure. It
is well known in quantum many-body physics that wavefunctions generated though an MPS
ansatz must obey an area law with respect to the entanglement entropy between components
of the system [71], and that correlation functions between components must decay exponen-
tially with distance [60]. This is an advantageous property in many applications, but it does
limit the set of states which the MPS is capable of representing. These observations have
lead to much speculation that machine learning models built using MPS/TR architectures
must also exhibit some form of decaying correlation or “entanglement” with respect to the

23

data features [22][72][73], but no rigorous mathematical argument has been put forward.
We can see from the linear arrangement of the component tensors that the multiplex rank
of W can be at most r for an MPS and r2 for a TR with respect to any two contiguous
bpartitions of the physical indices, but it is unclear what operational significance this has
for the regression model. We explore these questions further in Chapter 5.

3.1.3 Tree tensor networks

A common alternative to MPS/TR networks is the tree tensor network (TTN), which has
seen a wide variety of uses across different fields, from quantum simulation [74][75] to efficient
tensor representation [50] (where it is known as the hierarchical Tucker decomposition). In a
TTN, the component tensors are arranged, as the name suggests, in a tree pattern, which in
this work we will assume is binary. When used to represent a weight tensor with m features,
the TNN will consist of m−1 component tensors, organized into ℓ = ⌈log2(m)⌉ layers. Each
component is a third-order tensor, composed of two physical indices and one virtual index
if it is in the bottom layer, two virtual indices and one physical index if it is the output
component at the top, and three virtual indices otherwise. An explicit expression for the
contractions in a TTN representing a weight tensor W with m features is given (obtusely)
by

Wki1...im =
r∑

j11 ,...,j
1
m
2
=1

L
(1)

i1...imj11 ...j
1
m
2

r∑
j21 ,...,j

2
m
4
=1

L
(2)

j11 ...j
1
m
2
j21 ...j

2
m
4

r∑
j31 ,...,j

3
m
8
=1

· · ·L(ℓ)

jℓ1j
ℓ
2k

(3.5)

L(k) =

A

(1,1)

i1i2j11
A

(1,2)

i3i4j12
· · ·A(1,m

2
)

im−1imj1m
2

k = 1

A
(k,1)

jk−1
1 jk−1

2 jk1
A

(k,2)

jk−1
3 jk−1

4 jk2
· · ·A

(k, m
2k

)

jk−1
m

2k−1
−1

jk−1
m

2k−1
jkm
2k

1 < k < ℓ

A
(ℓ,1)

jℓ1j
ℓ
2k

k = ℓ,

(3.6)

where A(k,p) is the pth component tensor of the kth layer tensor L(k), and jki is the virtual
index with bond dimension r that connects the ith tensor of the kth row to the

⌊
i
2

⌋
th tensor

of the k + 1th row. While it is awkward to give a generic, mth-order tensor diagram for a
TTN, an example for m = 4 can easily show the basic binary tree pattern:

Wki1...i4 =
r∑

j11 ,j
1
2=1

A
(1,1)

i1i2j11
A

(1,2)

i1i2j12
A

(2,1)

j11j
1
2k

→ , (3.7)

where the top tensor is the output component. It is clear from their structure that (binary)
TTN regression models are intended for situations where the number of features is given
by m = 2ℓ for non-negative integer ℓ. Although the architecture can be modified to handle
other values of m, we will not consider those networks here and will always work with values
of m that are powers of two.

24

When used for tensor regression, the m
2

components in the bottom layer of the TTN

are each matched up with a pair of featurization vectors {h⃗(i)(xi), h⃗(i+1)(xi+1)}, and then
matched up to m

4
components in the next layer and so one. The total number of parameters

in a TTN regression model with m features and bond dimension r is (m
2
−2)r3+ m

2
rd2+nr2,

where d is the dimension of the featurization vectors and n is the dimension of f⃗ . For a fixed
n, this scales as O(mr(r2+d2)), which is cubic in the bond dimension r and quadratic in the
featurization dimension d. Note the the scaling orders of the TTN are larger than those of
MPS/TR for both r (cubic vs quadratic) and d (quadatic vs linear). The cubic dependence
on r means that TTN models are generally used with bond dimensions in the range of 10 -
20, while the quadratic dependence on d is usually not that significant since d is taken to be
a small value (d = 2 for the polynomial featurization from Sec. 2.3.2).

As was the case for MPS/TR networks, a TNN can be efficiently contracted using a very
straightforward procedure. First, the bottom component tensors are contracted with their
corresponding featurization vectors, which generates a layer of m

2
first-order intermediate

tensors. Those intermediate tensors are then contracted with the next layer of component
tensors, generating a layer of m

4
first-order tensors. These layer-to-layer contractions occur

log2(m) times, and end with the the last pair of intermediate tensors being contracted with
the output component to generate a prediction. For m = 4, these steps can be represented
using tensor diagrams as

→ → = f⃗(x⃗;W), (3.8)

where the legs shown in red are contracted between each step. Note that this contraction
scheme lends itself naturally to parallelization, as the contractions for each component in a
given layer can be done simultaneously.

The pattern of connectivity in a TTN is similar to that of an MPS/TR, despite their
apparent differences in structure. For any two contiguous bipartitions, there can be at most
two virtual indices which span the partitions, regardless of the size of either partitions. This
places an upper bound of r2 on the multiplex rank of W with respect to any contiguous
bipartitioning. In quantum physics, this bound gives rise to a boundary law scaling for the
entanglement entropy, and as with the MPS this may suggest that similar correlation scaling
could play a role in the behavior of a TTN regression model. In Chapter 5, we explore how
the multiplex rank could be used to more rigorously tie the connectivity patterns of a tensor
network to its regression characteristics.

3.1.4 Projected entangled pair states

Another important tensor network model used in quantum physics is the projected entangled
pair state (PEPS) [76], which consists of third-order, fourth-order and fifth-order component
tensors arranged in a two-dimensional rectangular grid. When used for regression, there can
also be a sixth-order tensor serving as the output component. Similar to an MPS, a PEPS
network representing a weight tensor with m features will contain m component tensors,

25

with virtual indices connecting each tensor to its neighbors on the grid. This means that
tensors in the corners of the grid will be third-order, tensors on other parts of the edge
will be fourth-order, and tensors internal to the grid will be fifth-order. The explicit index
expression for a PEPS model is both messy and unenlightening, but it can be expressed
clearly in a tensor diagram as

· · ·
· · ·
· · ·

...
...

...
. . .

...

· · ·

, (3.9)

where the orders and connectivity of the component tensors are easily visible. Note that we
have placed the output component in the third row and third column simply for illustrative
purposes, and its location can be chosen arbitrarily.

When PEPS is used for tensor regression (which is rare, for reasons that we will discuss

shortly), each component of the network is paired with a featurization vector h⃗(i)(xi) associ-
ated with one of the m features. Unlike for an MPS, it is not easy to simply insert an extra
tensor into the network to serve as the output component, so usually this extra physical index
is attached to one of the existing component tensors (thus increasing its order by one). The
number of parameters in a PEPS regression model with p rows, q columns (where m = p× q
features), and a bond dimension r is (p− 2)(q− 2)dr4+2(p+ q− 2)dr3+3dr2+ndr2, where
d is the dimension of the featurization and n is the dimension of the output index which has
been placed on one of the corner tensors. For a fixed n, this scales as O(mdr4), which is
quartic in the bond-dimension. This steeper dependence on r means that a bond dimension
of only 5 can easily produce a model with millions of parameters.

The biggest problem with PEPS networks, and something that sets them apart from
MPS/TR and TTN, is that they cannot be exactly contracted in an efficient manner. This
limitation is a result of the network’s cyclic structure, which causes the order of the inter-
mediate tensor to grow when each component is contracted. As an example, consider an
p× q PEPS models. We can begin by contracting each component tensor with its associated
featurization vector, as we did for the MPS/TR and TTN models, but difficulties arise in
the next step. If we start at the top of the network and begin contracting across the row,
we find that the order of the intermediate tensor scales with q:

· · ·
· · ·
· · ·

...
...

...
. . .

...

· · ·

→

· · ·
· · ·
· · ·

...
...

...
. . .

...

· · ·

. (3.10)

Other contraction schemes, such as starting from a corner and expanding outward in a sqaure,
will face similar scaling issues. Methods have been developed to contract PEPS models in

26

an approximate manner [26], but these are computationally expensive and not conducive to
the large number of contractions needed to train and deploy a regression model.

The pattern of connectivity in a PEPS model differs significantly from that of the
MPS/TR and TTN models, in that the multiplex rank associated with a contiguous bi-
partition scales with the size of the partitions. In quantum physics, a PEPS-based wave-
function will manifest an area law scaling in its entanglement entropy [77], which allows it to
represent states of two-dimensional spin systems better than an MPS [78]. This specificity
toward grid-like configurations has fueled interest in using PEPS for regression tasks on data
which is inherently two-dimensional, such as grayscale images. Unfortunately, the difficulties
inherent in contracting PEPS have made it difficult to realize this potential advantage.

3.1.5 Spanning trees

The final type of network that we that we will consider here is what we refer to as the
spanning tree network (STN), which does not appear to have been explored in any prior
work. STNs can be understood as PEPS models which have had virtual indices removed such
that all cycles within the network are broken, subject to the constraint that all component
tensors must be joined together in the same continous tree. This is the motivation behind
the “spanning tree” nomenclature, which refers to a tree that connects all vertices in a
graph [79]. An example STN on a 4× 4 grid is given in the following diagram:

. (3.11)

Note that there are no cycles present in the graph, and that all components are part of
a single tree. As in PEPS, each component tensor has one physical index (except for the
output component, which has two), but the number of virtual indices can range anywhere
from one to four. The special case where every component tensor is either second or third
order is equivalent to an MPS that has been threaded through the grid.

When used for regression, an STN has a number of components equal to the number
of features m in the dataset. Although the placement of virtual indices can vary widely
between different STNs, the underlying spanning tree always contains m− 1 edges and thus
the network will always possess m − 1 virtual indices. The number of parameters in an
STN depends on the orders of the component tensors, and therefore cannot be enumerated
without first specifying the structure of the tree.

The primary advantage of an STN over a PEPS is that it an be exactly contracted in
a (relatively) efficient manner. To contract an STN, the featurization vectors h⃗(i)(xi) can
first be contracted in parallel with their associated component tensors, leaving a set of first,
second, third, and fourth-order tensors (and perhaps a single fifth-order tensor holding the
output index). Then, all of the first-order tensors can be contracted with their neighbors on

27

the graph, generating a set of intermediate tensors that are at most fifth-order. Some of these
intermediate tensor will themselves be first-order, and all of them can then be contracted
with their neighbors to generate a new set of intermediate tensors, some which will again be
first-order. This process repeats until every tensor has been contracted. Using the example
tensor from Eq. (3.11), this procedure (skipping the contraction of the featurization vectors)
can be diagrammed as

→ → → → .

(3.12)
One drawback of STN models is that the first-order tensor contractions can be difficult to
parallelize using standard linear algebra libraries, since they are contracted with tensors of
many different shapes.

When considering the connectivity patterns inherent to a STN model, we will focus on
the average or typical behavior of networks drawn randomly from the set of spanning trees,
rather than on a specific configuration. With respect to multiplex rank, a typical STN model
shows the same area law behavior present in PEPS models for contiguous bipartitions, due
to the fact that virtual indices can connect neighboring tensors in all four directions of the
grid (even if they do not do so for every component). This may make them well adapted to
two-dimensional data in the same manner as PEPS, while still being efficient to contract.

3.2 Optimization

3.2.1 General considerations

Optimizations algorithms lie at the heart of machine learning, as they are what allow the
algorithm to “learn” the solution for a given task. Most optimization algorithms, and all
of the specific algorithms that we will consider here, utilize the gradients of the model
parameters W with respect to a chosen loss function L. During each optimization step, all
or some subset of the parameters are updated so as to minimize the average value of L across
the training dataset. In this work we use the mean square error as our loss function [51],
which has the form

L[{(x⃗ (i), y⃗ (i))}ηi=1; W] =
1

η

η∑
i=1

|y⃗ (i) − f⃗(x⃗ (i);W)|2, (3.13)

where {(x⃗ (i), y⃗ (i))}ηi=1 is the training set. The mean square error loss function is used widely
in machine learning and statistics due to its smoothness and convexity with respect to the
model prediction f⃗(x⃗ (i);W).

28

To tailor Eq. (3.13) for the specific case of tensor regression, we substitute in the con-
traction between the weight tensor W and data tensor X from Eq. (2.21) and then evaluate
the derivative of L with respect to elements of W :

L =
1

η

η∑
j=1

n∑
k=1

y(j)k −
∑

i0...im−1

Wki0...im−1Xi0...im−1(x⃗
(j))

2

(3.14)

∂L
∂W

=
2

η

η∑
j=1

n∑
k=1

(y
(j)
k − ŷ

(j)
k)X(x⃗ (j)), (3.15)

where ŷ
(j)

k is the the kth element of the model prediction for x⃗ (j). From Eq. (3.15), we can
see that parameterizing the regression model using elements of the weight tensor directly
gives a very simple expression for the gradient, since each model parameter acts on only a
single element of X.

Of course, for reasons discussed in Sec. 2.3.3, our model parameters are not elements of
W but rather elements of the tensor network components used to represent W , which we
take to be elements of a generic parameter vector θ⃗. From the chain rule, we can compute
the derivative of the loss function with respect to θ⃗ as

∂L
∂θ⃗

=
∑

i0,...,im−1

∂L
∂Wi0...im−1

∂Wi0...im−1

∂θ⃗

=
2

η

η−1∑
j=0

∑
k

(y
(j)
k − ŷ

(j)
k)

∑
i0,...,im−1

∂Wi0...im−1

∂θ⃗
Xi0...im−1(x⃗

(j)),

(3.16)

which is a less pleasant function than Eq. (3.15). While the precise form of
∂Wi0...im−1

∂θ⃗
depends

on the specific architecture chosen for the tensor network, it will virtually always involve sums
and products of multiple parameters and thus be a highly non-convex function of θ⃗.

In the following subsections, we review three different optimization algorithms that have
been used in the literature to train tensor network regression models. Each of them can
be understood as taking a different approach to handling the unpleasantness of Eq. (3.16).
Riemannian optimization, which we cover first, seeks to bypass Eq. (3.16) entirely by taking
the gradient of W from Eq. (3.15) directly and then projecting it into a direction tangent to
the manifold of tensor networks. The DMRG sweep algorithm, by contrast, draws inspiration
from methods in quantum physics and preforms convex optimization on the parameters
of each component tensor sequentially. Lasty, the stochastic gradient descent algorithm
from traditional machine learning uses back-propagation to simply compute and then follow
Eq. (3.16) until the loss value converges, with the hope that it ends up close enough to the
global minimum to yield an effective model.

3.2.2 Riemannian optimization

One of the first algorithms proposed for the optimization of tensor network regression models
was Riemannian optimization [80], where the gradient of the weight tensor (not the com-
ponent tensors) is computed and then projected into the tangent space associated with the

29

network. This approach views the network-represented weight tensor as lying on a Rieman-
nian manifold in tensor space, defined by the architecture of the underlying tensor network.
The algorithm can be broken up into three steps:

1. Compute ∂L
∂W

, the gradient of the loss function with respect to the weight tensor W .

2. Project ∂L
∂W

into the the tensor space M tangent to W .

3. Subtract the projected gradient from W and retract back to the tensor network man-
ifold.

These three steps can be done efficiently when the weight tensor is represented by a low-rank
tensor network.

Riemannian optimization was first used for the training of tensor network regression
models by Novikov et al. [21] for their MPS-based Exponential Machine. Note that the
network architecture does not enter into the first step listed above, as the gradient with
respect to elements of W is independent of any particular component representation. It is,
however, relevant when defining the tangent space for the projection, and in determining the
retraction algorithm that needs to be used to return to the network manifold.

To provide an example of how Riemannian optimization algorithms are constructed, we
will outline the algorithm used to train MPS models, following the work of Novikov et al.
and Lunbich et al. [81]. Given that we already have an expression for ∂L

∂W
in Eq. (3.15), the

next step is to construct an operator that will project the gradient into the space tangent
to W . As shown by Holtz et al. [82], the tangent space for an mth-order MPS can be
represented as the direct sum of m orthogonal subspaces {V(i)}mi=1, where V(i) is the set of
all MPS which are identical to the MPS representing W except in the ith component. For
i = m this component can be set arbitrarily, but for i < m it must be orthogonal to the ith
component of model network. Using tensor diagram notation, the subspaces can be written
as

V(i) =

 1 2 ... i ... m

∣∣∣∣∣∣∣
i

i

= 0

 for i < m (3.17)

V(m) =

{
1 2 ... i ... m

}
, (3.18)

where the tensors in gray are component of the MPS model and the tensors in red are free
to vary in the set. For simplicity we will omit the output component from our diagrams, as
its presence does not fundamentally change the algorithm.

To project ∂L
∂W

into the tangent space M, we need the components of the gradient along
each of the V(i). The form of the ith projector P (i) is given in [81], and its action on the

30

data tensor X tensor can be written out using tensor diagrams as

P (i)(X) → X

1 2 i-1…

1 2 i-1…

i+2…

i+2…m m-1

i+1

i+1

m m-1

X

1 2 i-1…

1 2 i-1…

i+2…

i+2…m m-1

i+1

i+1

m m-1

–
i

i

(3.19)
where the the gray circle tensors are components of the MPS (numbered with respect to
their corresponding features) in canonical form [83], and the blue circular tensors are their
adjoints. In words, Eq. (3.19) states that P (i)(X) is given by the projection of X into the r-
dimensional subspace spanned by the MPS without the ith component, minus the projection
which includes the ith component (this second term is not included for P (m)(X)). Note that
the result of each projection is an MPS of the same size and bond dimension as the original
network. The overall projection PM of the gradient into the tangent space M is given the
sum of the projections into each of the V(i):

PM

(
∂L
∂W

)
=

m∑
i=1

P (i)

(
∂L
∂W

)

=
2

η

η−1∑
j=0

∑
k

(y
(j)
k − ŷ

(j)
k)P (i)(X(x⃗ (j))),

(3.20)

which is just a linear combination of the projections of X.
With the gradient projection from Eq. (3.20) in hand, we can then scale it by an appro-

priate step-size α and subtract it from W to generate the new weight tensor W̃ :

W̃ = W − αPM

(
∂L
∂W

)
. (3.21)

Since W̃ is equal to the sum of tensors with low-rank MPS representations, we can efficiently
perform the sum in Eq. (3.21) to yield an MPS representation that has a bond-dimension at
most 3r, where r is the bond dimension of the MPS model [49]. The final step in Riemannian
optimization is known as retraction, and it involves truncating the bond dimension of W̃ so
that it is equal to r and thus rejoins the original manifold occupied by W . This can be
carried out in an optimal fashion using the sequential-SVD rounding algorithm developed
by Oseledets [49]. Retraction marks the end of one round of optimization, after which the
process is repeated with a new batch of data.

31

Despite being one of the pioneering tensor network optimization methods, Riemannian
optimization is rarely used in practice, most likely due to its complexity and the lack of
implementation in most existing machine learning libraries. The method does have other
applications, however, such matrix completion [84] and the optimization of quantum circuit
networks [85].

3.2.3 DMRG-style sweeps

The second algorithm that we consider was proposed by Stoudenmire and Schwab [22] in
parallel with the work of Novikov et al., and is based on the popular DMRG algorithm em-
ployed in quantum physics. The main thrust of the algorithm is that each component tensor
in the tensor network regression model is optimized individually, while the parameters in
the other components are held fixed. This transforms the non-convex optimization problem
described by Eq. (3.16) into a a simple quadratic form, which can be easily minimized.

The DMRG sweep algorithm starts at a specified component tensor, which we will call the
system tensor S, that can be chosen arbitrarily. All other component tensors and associated
featurization vectors are then contracted together, using one of the standard contraction
scheme associated with the network (see Sec. 3.1 for examples). The intermediate tensors
resulting from these contractions jointly form what we will call the environment tensor
E. The environment tensor may be a single intermediate tensor or the tensor product of
multiple such tensors, depending on the structure of the network and the position of the
system tensor. With the network reduced to only the system and environment tensors, the
loss function from Eq. (3.14) becomes

L =
1

η

η∑
j=1

n∑
k=1

(
y
(j)
k − Sk · E(j)

)2
, (3.22)

where Sk · E is a generic expression denoting the element from the contraction of S and E
at the kth value of the output index. Note that the environment tensor is formed by the
contraction of the data tensor, and therefore varies as a function of the sample.

The form of Eq. (3.22) is highly reminiscent of multi-output ordinary least squares re-
gression [51], and it can be put in precisely that form by matricizing S and vectorizing E,
such that the virtual indices connecting S and E are grouped into the column index of S.
With the reshaped versions of S and E denoted as S̃ and e⃗ respectively, we have

L =
1

η

η−1∑
j=0

|y⃗ (j) − S̃e⃗ (j) |2, (3.23)

with S̃ holding the regression parameters and e⃗ (j) serving as the data vector. This loss
function can be minimized using any of the techniques developed for least-squares regression
of linear models, such as the QR decomposition, normal equations, or gradient descent. After
optimization, the parameters are reshaped back into a tensor, a new component tensor is
selected to be the system tensor, and the process is repeated.

32

To provide a concrete example, we can consider DMRG-style sweeps on an MPS regres-
sion model. For simplicity, let us assume that m = 4 and that we have chosen the second
component tensor (i.e. the component associated with feature x2) to be the system tensor
S. The environment tensor E is constructed by contracting the third, fourth, and fifth com-
ponents together, and then taking the tensor product of that result with the first component
tensor and the second featurization vector h⃗ (2)(x2):

f⃗(x⃗;W) = → → → , (3.24)

where the environmment tensor is colored in blue and the system tensor is colored in orange.
In the last step we show the reshaping of S and E into a matrix S̃ and vector e⃗ respectively,
where e⃗ has r3 elements and S̃ has nr3 elements (with n being the dimension of y⃗).

Unlike the Riemannian optimization from Sec. 3.2.2, the DMRG-sweep optimization
algorithm has continued to see use since its introduction in [22]. This likely because it
utilizes more familiar concepts from standard machine learning, such as the final least-
squares regression step. That said, it is still less popular than stochastic gradient descent,
which we cover next.

3.2.4 Stochastic gradient descent

Stochastic gradient descent (SGD) is by far the most popular class of optimization algorithm
for machine learning [86], having been used in various forms since the 1950s [87]. When paired
with backpropogation, which we describe in more detail below, SGD serves as the workhorse
of deep learning, where models with millions and even billions of parameters are trained to
solve a myriad of different tasks via highly non-convex loss functions. Given its entrenched
positin in machine learning, it is not surprise that SGD has also been applied to the training
of tensor network regression models.

Unlike the Riemannian and DMRG-style optimization methods that we discussed previ-
ously, SGD does not attempt to bypass or simplify the gradient expression from Eq. (3.16).
Instead, it directly evaluates the gradient of each element using automatic differentiation [88],
which computes the derivative of a complicated composite function using the known deriva-
tives of its simpler components. More formally, automatic differentiation divides the function
f⃗(x⃗; θ⃗) into a set of intermediate components {g⃗ (i)}li=1, where g⃗

(i) is a function of g⃗ (i−1)

(which may include elements of both x⃗ and θ⃗), g⃗ (1) consists of all elements of x⃗ and θ⃗ not

included in any of the other components, and f⃗(x⃗; θ⃗) ≡ g⃗ (l)(g⃗ (l−1)(... g⃗ (1))). The Jacobian

of f⃗(x⃗; θ⃗) with respect to the model parameter θ⃗ is then computed via the chain rule as the
matrix product of Jacobians for each g⃗ (i):

∂fk
∂θj

=
∑
il

∂glk
∂gl−1

il

∑
il−1

∂gl−1
il

∂gl−2
il−1

∑
il−2

· · ·
∑
i2

∂g2i3
∂g1i2

∂g1i2
∂θj

. (3.25)

This sequence of matrix multiplications can be performed from the left (referred to as back-
propogation or reverse accumulation) or from the right (referred to as forward accumulation),

33

with backpropogation typically being more efficient since the number of parameters is usually
much larger than the number of labels.

The term “stochastic” in SGD references the fact that optimization is not usually per-
formed on the entire training dataset at each step, but instead on a small subset called a
mini-batch. Mini-batch sizes typically range from 32 - 1024 in powers of two, with an op-
timization cycle over all mini-batches referred to as an epoch. In a given mini-batch, the
gradient in Eq. (3.25) is computed for each of the samples and then averaged together. Since

each element of f⃗ has its own set of gradients, a single, combined gradient is generated by
adding together the different element-wise averages. Finally, this value is subtracted from
the parameters θ⃗ using a chosen step size α to give the new parameters θ⃗′. This procedure
can be written out succinctly as

θ⃗′ = θ⃗ − α · 1
b

b∑
i=1

n∑
k=1

∂fk(x⃗
(i); θ)

∂θ⃗
, (3.26)

where b is the minibatch size. There exist a number of sophisticated algorithms for deter-
mining the ideal value(s) for α, such as the popular Adam [89] and RMSprop3 optimizers.

For tensor network regression, we use SGD to evaluate the complicated gradient of the
loss function in Eq. (3.16), or more specifically the gradient of the contracted network with

respect to the elements θ⃗ of the component tensors. In this context, the component tensors
of the network provide a natural delineation for the {g⃗ (i)}li=1 in Eq. (3.25), since each
tensor behaves like a multilinear function during the contraction. Taking an MPS model
as an example, g⃗ (l) would be given by the contraction of the output component with the
two intermediate tensors generated by contracting all of the other component tensors and
featurization vectors. These two intermediate tensors would then jointly become the elements
of g⃗ (l−1), and take as input the intermediate tensors generated by all components to the left
and right of them in the network. This process can be repeated from the inside out until all
tensors have been included in one of the g⃗ (i).

From a practitioner’s perspective, the most attractive aspect of SGD is that automatic
differentiation is robustly supported in virtually all machine learning software packages,
which cannot be said for Riemannian optimization or DMRG-style sweeps. SGD is also a
very inexpensive algorithm, requiring roughly the same amount of computational resources
as simply contracting the network. It is these properties that explain the popularity of SGD-
based training for tensor network models in the literature, a popularity that is likely to grow
as more machine learning practitioners experiment with tensor-based models.

3This widely-used algorithm was never published, having originated in the sixth lecture of Geoffrey
Hinton’s Coursera course on machine learning. As of May 2023, the slides can be found at the following
URL: https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

34

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

3.3 Initialization

3.3.1 General considerations

The final aspect of model design that we consider here is parameter initialization. Our
focus will specifically be on initialization that is done prior to any optimization, and we
will therefore not consider topics such as pre-training [90] or transfer learning [91]. In the
neural network models used for deep learning, parameter initialization of an a × b weight
matrix is most frequently done by sampling values from a uniform distribution on the range
[−

√
6(a + b)−

1
2 ,

√
6(a + b)−

1
2] (referred to as Glorot initialization [92]). This scheme seeks

to stabilize the gradient of the model such that its variance is constant between layers, thus
improving the flow of information back through the model during optimization.

Compared to neural networks, the need for precise initialization is much more acute in
tensor network models, as a poor choice of values can prevent the model output from even
being evaluated, let alone optimized. This precariousness stems from the fact that network
contraction occurs via the composition of multilinear maps, and each of these maps can
increase or decrease the norm of their input. While this is fairly innocuous for a single
tensor contraction, tensor network models tend to have a number of components roughly
equal to the number of features m, which can be in the hundreds or thousands. Even if
each tensor contraction only scaled the norm by (1 + ϵ), |ϵ| < 1, the composition of m such
scalings is

(1 + ϵ)m =
m∑
i=0

(
m

i

)
ϵi (3.27)

by the binomial theorem. For m in the range 100 - 1000, this series can easily explode toward
infinity or vanish to zero, depending on the sign of ϵ.

In order to initialize a tensor network model with a numerically stable contraction, the
scaling of Eq. (3.27) needs to be tamed for all plausible inputs x⃗ to the model. The most
straightforward way to achieve this is to choose component tensors that preserve some ex-
tensive property of their inputs, such that the amount of magnitude scaling is necessarily
bounded at a reasonable value. An ideal candidate for this (although other possibilities exist)
is a “stochastic tensor”, which is simply the reshaping of a stochastic matrix [93] into a form
that matches the desired shape of the component tensor. A stochastic matrix is a matrix
with non-negative elements constrained such that the columns or rows (or both) must sum
to one. These matrices are most commonly used to represent conditional probabilities for
e.g., a Markov process, though we will not employ any particular probabilistic interpretation
here.

To give a simple example of how stochastic matrices can solve our initialization problem,
consider a third order tensor A that maps vectors b⃗ and c⃗ to a new vector d⃗:

dk =
∑
i,j

Aijkbicj. (3.28)

Now let us initialize A as a stochastic tensor, such that the summation over index k (the

35

“columns”) gives a value of 1 for all i, j pairs. Then the sum of all elements in d⃗ must be

∑
k

dk =
∑
i,j,k

Aijkbicj =

(∑
i

bi

)(∑
j

cj

)
(3.29)

since
∑

k Aijk = 1 by construction. Note that the sum of elements in d⃗ is given by the

products of the sums for b⃗ and c⃗. If we were to constrain each of these sums to be 1, and
have each of the elements in b⃗ and c⃗ be non-negative, then the sum over d⃗ would also be 1
and its elements would also be non-negative. This would necessarily constrain the ℓ1 norms
of the output d⃗ and the inputs b⃗ and c⃗ to all be 1, which means that ϵ in Eq. (3.27) would
vanish with respect to the ℓ1 norm.

For a more complicated tensor network model, the significance of Eq. (3.29) is that
we can, in principle, compose an infinite number of tensor contractions together without
increasing the ℓ1 norm of the output. For a tensor regression model, this would requre that
the featurization vectors h⃗ (i)(xi) be constrained to have non-negative elements that sum to
1. The [1, xi] polynomial featurization from Eq. (2.22) does not fulfill this requirement in
general, but we can approximately obey the rule by shrinking the elements of the component
tensors associated with each xi, thereby reducing their initial effect on the contraction. This
trick is discussed in more detail in Sec. 3.3.2.

In the following subsections, we consider initialization strategies for the MPS/TR, TTN
and STN regression models. Each of these network architectures are amenable to initializa-
tion with stochastic matrices, although the forms of these matrices will vary based on the
shapes and contractions patterns of the component tensors.

3.3.2 MPS/tensor ring initialization

In an MPS model operating on data with m features, the component tensors {A(i)}m+1
i=1

consist of two second-order tensors A(1), A(m+1) and m − 1 third-order tensors connected
together along a line of virtual indices. If we consider a contraction of the network starting
from the matrix A(1) and then proceeding through the other components in sequence, then
the first contraction is simply a matrix-vector product between A(1) and the first featurization
vector h⃗ (1)(x1) = [1, x1]:

a11 a12
a21 a22
...

...
ar1 ar2

[
1
x1

]
=

a11 + a12x1
a21 + a22x1

...
ar1 + ar2x1

 , (3.30)

where r is the bond dimension of the MPS. When A(1) is initialized as a stochastic matrix
with columns that sum to 1, the sum of the elements of the resulting vector is (a11 + ... +
a1r) + (a11 + ... + a1r)x1 = 1 + x1, which is not the desired value of 1 discussed in Sec. 3.3.
While this difference is not fatal at first, each of the featurization tensors will contribute
their own factor of (1 + xi) to the sum, which will quickly lead to numerical overflow or
underflow akin to what would result from Eq. (3.27).

36

One way to solve this problem is to reduce the magnitude of x1. It is important to note
that we do not wish to eliminate the presence of x1 completely, as it contains information
that the model may use to make its prediction, but we must minimize its effect on the
contraction. To this end, we can shrink the elements of A(1) in the second column by a
factor γ, thereby generating the modified matrix-value product

a11 γa12
a21 γa22
...

...
ar1 γar2

[
1
x1

]
=

a11 + γa12x1
a21 + γa22x1

...
ar1 + γar2x1

 =

a11
a21
...
ar1

+ γ

a12x1
a22x1
...

ar2x1

 , (3.31)

where we have split the final vector into the sum of a stochastic column and a non-stochastic
portion which carries the data information. If γ ≪ 1, then the first vector will dominate in the
contraction and we will get a well-behaved contraction. The value of γ is a hyperparameter
that may have to be tuned based on the number of features, though we found that values of
10−2 to 10−3 worked well for m on the order of 100 to 1000.

With the first component tensor contracted, the next step is to contract the resulting
intermediate vector—the right side of Eq. (3.31)—and h⃗ (2)(x2) together with the second
component tensor A(2) in a manner analagous to Eq. (3.28). Though this tensor is third-
order rather than second-order, the initialization principles from A(1) still apply. To initialize
A(2) as a stochastic tensor, we choose elements such that

∑
j2
Aj1i2j2 = 1 for all j1, i2 pairs.

This is equivalent to creating a stochastic matrix of size r×2r and then splitting the column
index into an index of size 2 and and index of size r. To address the fact that the featurization
vector [1 x2] does not sum to 1, we can again shrink the elements of the component tensor to
reduce the contribution from x2. Since the element x2 corresponds the index value of i2 = 2,
we can multiple all of the elements of A(2) with i2 = 2 by γ to achieve the same effect as
Eq. (3.31). To fully contract the network, we repeat this process for all tensors to the left
of the output component, and then carry out the same procedure starting from A(m+1) and
working right to left.

When working with models built using a TR rather than an MPS, the initialization
method described above needs to be tweaked only slightly. In a TR there are no second-
order component tensors, so there is no place to (conceptually) begin the contraction as a
matrix-vector product akin to Eq. (3.30). Therefore, a starting point is chosen arbitrarily on
the ring and then the tensors are initialized in the same manner as the third-order tensors in
the MPS. Rather than mapping a stochastic vector and data vector to a new (approximately)
stochastic vector, the tensors in a TR map a stochastic matrix and a data vector to a new
(approximately) stochastic matrix.

3.3.3 TTN and STN initialization

The initialization of TTN and STN models is similar to the procedure that we described in
the previous subsection for MPS/TR models, with the only significant difference being the
order of the tensors and the connectivity of the network.

In a TTN model, for which all component tensors are third-order, the lowest layer of
tensors are each contracted with two neighboring featurization vectors. These vectors have

37

the same issue faced in Sec. 3.3.2, in that their elements sum to 1 + xi rather than 1.
This can once again be solved by shrinking the elements of the stochastic component tensors
associated with xi and xi+1, which constitutes all but r of the elements in the tensor, using an
appropriately chosen value of γ. The component tensors in the second layer and above do not
contract directly with any featurization vectors, but instead take as input the intermediate
vector generated by contraction of the previous layer. As a result, the component tensors in
these layers can be initialized directly to a stochastic tensor without any further modification
of the elements.

For an STN, the orders of the component tensors vary between second-order and sixth-
order, with each tensor being contracted with a featurization vector. In order to properly
generate the stochastic tensor elements for each component, we must trace through the
contraction pattern of the spanning tree (see Eq. (3.11) for an example) to determine which
index should sum to 1. The second-order components are straightforward, as they act on their
featurization vector via the same matrix-vector product described in Eq. (3.28). Their tensor
elements are therefore constrained to sum to 1 along the virtual index, and are shrunk in the
same manner shown in Eq. (3.29). The initialization procedure then moves along the same
path as the network contraction’s scheme, focusing next on the component tensors which
contract with the outputs of the second-order components, and so on. Each component
is initialized to a stochastic tensor that is constrained to sum to 1 along the virtual index
not associated with outputs from the previous contraction step, and then has the elements
associated with xi shrunken with an appropriate choice of γ.

38

Chapter 4

Interaction Decomposition of Tensor
Network Models

This chapter is derived from previously published work by Convy and Whaley [28], which
proposes a new algorithm for tensor network contraction that can separate out regressors of
different degree in regression model.

4.1 Introduction

As discussed in Sec. 2.3.2, tensor network regression models generate predictions by contract-
ing with the data tensor X, which is formed from the tensor product of featurization vectors
shown in Eq. (2.20). These vectors each act on a single feature, and collectively generate a
mapping from the original m-dimensional feature space into a 2m tensor space. The purpose
of the work in this chapter is to quantitatively assess how well tensor network models are
able to utilize the exponential feature space induced by this tensor-product transformation.
We shall focus specifically on models which are built upon the [1, x] featurization from
Novikov et al. [21] given in Eq. (2.22), since this will allow us to easily interpret different
regions of the transformed space in terms of interactions between the original features. To
this end, we introduce the interaction decomposition of a tensor network model, which casts
the regression output as the sum of terms which each contain all feature products of a fixed
degree. By applying this decomposition to tensor network models that were trained on a
given machine learning task, we can determine the importance of each interaction degree to
the final output of the model. Furthermore, by implementing new models that regress on
only a subset of degrees, we can assess whether the tensor network models are under-utilizing
those interactions.

The remainder of this chapter has the following structure. In Sec. 4.2, we describe the
motivation and mechanics of the interaction decomposition, and in Sec. 4.3 we apply it
to tensor network classifiers trained on the MNIST and Fashion MNIST datasets. From
these tests, we find that some models utilize up to three-quarters of all interaction degrees
generated by the tensor-product transformation, which collectively contain roughly 1019

different regressors. However, in Sec. 4.4 we determine that the tensor network classifiers

39

are vastly under-utilizing the lower-degree interactions, since separate models trained using
only interactions less than, e.g., sixth degree are able to achieve classifications accuracies
very near those of the full regression models. We discuss the implications of these results
and directions for future work in Sec. 4.5. The Appendix contains technical details about
the procedure used to carry out the interaction decompositions, as a well as a tabulation of
important numerical results.

4.2 The Interaction Decomposition

Throughout our discussion of tensor network regression in Sec. 2.3.3, the weight tensorW and
data tensor X were treated principally as abstract objects, in that they were only operated
on numerically via their component tensors. This was necessary on practical grounds, since
the exponential scaling of bothW and X makes it virtually impossible to perform operations
on either tensor when the data has even a modest number of features m. That said, there
is an obvious mathematical clarity that comes from working directly with W and X via the
decomposition of Eq. (2.23), since the elements of X are simply products of the original
features while the elements of W are the corresponding linear regression coefficients. If,
for example, we wished to perform regression using only a specific portion of the feature
products, then we could just set the elements of W for all other feature products to zero and
learn the remaining parameters as usual. Such a straightforward modification is generally
not possible when representing the weight tensor as a tensor network, since each element of
W is a complicated function of all of the parameters in the model (see Sec. 2.3.3).

In this section we introduce the interaction decomposition of a tensor network, with the
aim of recovering some of the fine-tuned control and interpretability that comes from an
element-wise representation of W . In an interaction decomposition, the terms of the sum in
Eq. (2.23) are grouped together by the number of features included in their product, for a
total of m+ 1 groupings. The number of features in a given product is called its interaction
degree, such that x1 has degree 1, x1x2 has degree 2, and so on, with the bias having degree
0. Under an interaction decomposition, the regression output f⃗(x⃗;W) is written as

f⃗(x⃗;W) =
m∑
j=0

d⃗ (j)(x⃗;W), (4.1)

where d⃗ (j)(x⃗;W) is the contribution to the regression output from all terms of degree j. As

with f⃗(x⃗;W), these contributions are functions of both the original features x⃗ and the pa-
rameters W of the decomposed network. We discuss ways of interpreting this decomposition
in terms of vector subspaces in Sec. 4.2.1.

Using Eq. (4.1), the relative importance of the jth interaction degree can be assessed by

analyzing the average magnitude of d⃗ (j)(x⃗;W), as well as its effect on the regression output.
We carry out this analysis on TR and TTN models in Sec. 4.3. Furthermore, by choosing
to keep only a specific subset D of the decomposition terms in Eq. (4.1), it is possible to
construct a new type of regression model which we call a D-degree tensor network. These
networks utilize the same parameterization scheme for W as normal tensor network models

40

of the same architecture, but are restricted to generating only the feature products of degrees
contained in D. By comparing the performance of a full tensor network with that of a D-
degree version of the network, we can quantify how effectively the standard network is able
to utilize interaction degrees within D. We introduce these models and perform numerical
tests on them in Sec. 4.4.

4.2.1 Interaction Subspaces

In the context of vector spaces, the weight tensor W acts as a parameterized multilinear
map between the data tensor space X, which we take to be R2m , and the label space Y.
Under this construction, the data tensor X is simply a vector within X whose elements are
generated from the features in x⃗ via the tensor-product operations of Eq. (2.20). The nature

of the d⃗ (j)(x⃗;W) terms from Eq. (4.1) can be understood by considering the action of W on

a particular subspace decomposition of X. Using the definition of h⃗(i)(xi) from Eq. (2.22),
we can expand X on a standard basis of X as

X =
m⊗
i=1

(e⃗
(i)
0 + xie⃗

(i)
1) =

1∑
i1,...,im=0

xi11 · · ·ximm e⃗
(1)
i1

⊗ ...⊗ e⃗
(m)
im

, (4.2)

where {e⃗ (i)
0 , e⃗

(i)
1 } spans the two-dimensional space inhabited by h⃗(i)(xi). In words, Eq. (4.2)

shows that the tensor products e⃗
(1)
i1

⊗ ...⊗ e⃗ (m)
im

form a basis for X upon which the coefficients
of X take the form of feature products.

Looking at the structure of the tensor-product basis used in Eq. (4.2), it is possible to
divide X into the direct sum of subspaces {D(0), ...,D(m)}, where D(j) is a subspace spanned

by the basis tensors e⃗
(1)
i1

⊗ ... ⊗ e⃗
(m)
im

such that j of the component basis vectors are of the

form e
(i)
1 and m− j are of the form e⃗

(i)
0 . The coefficients of X on the bases in D(j) consist

of feature products of degree j, so we therefore refer to D(j) as the degree-j subspace of X.
The dimension of D(j) is given by

dim(D(j)) =

(
m

j

)
, (4.3)

which is the number of ways to draw j features from the total set of m features. The
dimension of the combined feature space for a set D of degrees, denoted dim(D), is then

dim(D) =
∑
j∈D

(
m

j

)
, (4.4)

which is simply the sum of the subspace dimension for each degree in D. If we denote the
projection into the degree-j subspace as P (j), then the interaction decomposition becomes

fk(x⃗;W) =
m∑
j=0

1∑
i1,...,im=0

Wki1...im(P
(j)X)i1...im →

m∑
j=0

...

P (j)

W

, (4.5)

41

where the regression output is a sum of contractions between W and the projection of X
into each of the m + 1 degree subspaces. Due to the linearity of tensor contractions, this
equality can be easily verified by performing the sum over j first, since

∑
j P

(j) gives the
identity.

The form of Eq. (4.5) provides two interpretations of the degree contributions d⃗ (j)(x⃗;W).

If we consider the projector P (j) acting on X, as originally envisioned, then d⃗ (j)(x⃗;W) is
the contraction of W with the portion of X that inhabits D(j). This could be viewed as a
form of data tensor preprocessing, where elements of X corresponding to interaction degrees
other than j are removed. Alternatively, the tensor diagrams in Eq. (4.5) show that it is
equally valid to consider P (j) acting on the weight tensor W . Under this interpretation, the
set {d⃗ (j)(x⃗;W)}mj=0 consists of regressions on X performed by different models, each derived
from a common tensor W by keeping only those elements corresponding to interactions of
degree j. We will shift between these two interpretations freely throughout the remainder
of this section, describing the interaction decomposition as a procedure which picks out
different pieces of a tensor network model and which restricts the set of feature products
that can be used for regression.

4.3 Interaction Decompositions of TR and TTN Mod-

els

The interaction decomposition of a TR (see Sec. 3.1.2) or TTN (see Sec. 3.1.3) regression
model allows us to quantify the relative importance of the jth interaction degree to the
overall value of the output. This information is not available when performing the standard
contraction operations laid out in Eqs. (3.2, 3.8), since the elements of the intermediate
tensors are sums of contributions from a wide range of interaction degrees, making it im-
possible to separate out the impact of any one degree. Given the unfavorable scaling of
Eq. (4.3), a brute force evaluation of each feature product in d⃗ (j)(x⃗;W) is also impractical
for even modest values of j. In Appendix 4.6.1, we describe an alternative procedure that
efficiently contracts the TR and TTN component tensors in a manner that ultimately yields
the same output as the standard contraction, but also separates out the various d⃗ (j)(x⃗;W)
contributions.

In this section, we carry out these interaction decompositions on TR and TTN models
that were trained to classify digits from the MNIST and Fashion MNIST datasets introduced
in Sec. 2.3.1. These datasets have been widely used to evaluate tensor network models in
the literature, and thus serve as reasonable benchmarks for our analysis. Given that the
number of operations needed for a full interaction decomposition can scale quadratically
with the number of features (see Appendix 4.6.1), we resized each image from 28× 28 pixels
to 8 × 8 pixels in order to reduce the computational burden of the tests. The grayscale
pixels were also normalized to floating-point values on the range [−0.5, 0.5] to improve the
numerical stability of the networks. The bond dimension of the TR and TTN models was set
to 20, providing them with sufficient representational power without excessive overfitting.
The regression output f⃗(x⃗;W) was fit against one-hot encodings of the digit labels and

42

0 10 20 30 40 50 60

10 23

10 19

10 15

10 11

10 7

10 3

101

Av
er

ag
e

M
ag

ni
tu

de

TR, MNIST

0 10 20 30 40 50 60

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

TTN, MNIST

0 10 20 30 40 50 60
Degree (j)

10 18

10 15

10 12

10 9

10 6

10 3

100

103

Av
er

ag
e

M
ag

ni
tu

de

TR, Fashion MNIST

0 10 20 30 40 50 60
Degree (j)

10 13

10 10

10 7

10 4

10 1

102

105
TTN, Fashion MNIST

0 10 20
0.0

0.2

0.4

0.6

0 10 20
0.0

0.2

0.4

0.6

0.8

10 20 30
0.0

0.5

1.0

1.5

2.0
1e3

10 20 30
0

2

4

6

8
1e3

Figure 4.1: Plots of the L1 norm of d⃗ (j)(x⃗;W), averaged across the MNIST and Fashion
MNIST test datasets, for ten TR models and ten TTN models trained using all interaction
degrees. Each dashed line represents the average magnitudes from one of the models, which
is plotted against the interaction degree j of the contribution. The trend for all models is
broadly the same, with magnitudes starting near 10−1 for the bias term and then gradually
rising to a peak before dropping off significantly by degree 45. Large variations in magnitude
can be seen when comparing individual TR models and TTN models.

43

optimized using gradient descent (see Sec. 3.2.4) with a mean squared error loss function.
During training the networks were contracted normally, with the interaction decomposition
being performed at the end using the test dataset.

To begin our analysis, we focus first on the magnitudes of the different d⃗ (j)(x⃗;W) con-
tributions. To produce a single magnitude for each degree, we computed the ℓ1 norm of
d⃗ (j)(x⃗;W) for each image in the test dataset, and then averaged over the set. Figure 4.1
shows the resulting magnitudes for ten TR models and ten TTN models, all trained using
the same hyperparameters but with different initial values for the tensor elements. Across
both datasets the TR and TTN plots show a similar pattern, with the degree magnitudes
starting at approximately 10−1 for j = 0 and then growing steadily to some maximum value
before declining again at larger j. The size and location of the peak varies significantly
between the MNIST and Fashion MNIST models, with the MNIST models peaking from 0.1
to 1 at around degrees 10 to 15 while the Fashion MNIST models peak from 102 to 104 at
around degrees 17 to 23. After the peak, the magnitudes begin to drop off precipitously,
with interaction degrees greater then 45 typically having contributions orders of magnitude
smaller than those from degrees before the peak. The inset plots of Figure 4.1 show that
there is a significant amount of variation between individual models of a given network type
and dataset, with some models having magnitudes 10 or even 100 times larger than others.

A significant limitation of the magnitude analysis from Figure 4.1 is that it can be diffi-
cult to assess the true importance of a degree contribution using only its average magnitude.
Indeed, even if a set of degrees all have small individual magnitudes, their cumulative ef-
fect on the output may still be important. To better assess the “usefulness” of the degree
contributions, we computed the accuracy of the TR and TTN classifiers as a function of in-
teraction degree, both individually and cumulatively. Figure 4.2 shows these accuracies after
averaging over the models of each network type. The cumulative accuracy (shown using a
solid line) of degree j denotes the accuracy of the output generated by the sum of all degree
contributions less than or equal to j, while the individual accuracy of degree j (shown as a

point on the scatter plot) gives the performance of d⃗ (j)(x⃗;W) alone. The dimension of the
expanded feature space corresponding to each data point is determined by Eq. (4.4).

From the plots of cumulative accuracy, we can see that the average performance of both
the TR and TTN networks plateaus at slightly over 98% on MNIST (98.31% for the TRs
and 98.47% for the TTNs when all degrees are included), which is consistent with prior
work [22][56][57]. On Fashion MNIST the accuracies are signficantly lower, at 82.73% for
the TR and 83.43% for the TTN.1 These final accuracy values are of less significance to
us than the interaction degree at which the curve flattens. On MNIST (Fashion MNIST)
this occurs at approximately j = 31 (44) for the TRs, and at j = 38 (54) for the TTNs.
Looking back at the magnitudes from Figure 4.1, this indicates that even contributions on
the order of 10−3 can still improve the performance of the classifier. Interestingly, all four
of the accuracy curves show a temporary flattening before degree 10, followed by a second
upward rise. This effect is least visible on the TR MNIST curve and most visible on the two

1Tensor networks can achieve significantly higher accuracies on 28 x 28 Fashion MNIST [24][56][94], but
the decrease in performance at 8 x 8 is much more severe than for standard MNIST, due to the greater image
complexity. For comparison to more state-of-the-art methods, an Inception convolutional network [95] can
achieve accuracies of 99.09% on 8× 8 MNIST and 86.5% on 8× 8 Fashion MNIST (see Appendix 4.6.3)

44

0 10 20 30 40 50 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

TR, MNIST

10 20 30
0.90

0.92

0.94

0.96

0.98

1.00

0 10 20 30 40 50 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
TTN, MNIST

20 30 40
0.90

0.92

0.94

0.96

0.98

1.00

0 10 20 30 40 50 60
Degree (j)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

TR, Fashion MNIST

30 40 50

0.76

0.78

0.80

0.82

0.84

0 10 20 30 40 50 60
Degree (j)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

TTN, Fashion MNIST

40 50 60

0.76

0.78

0.80

0.82

0.84

Figure 4.2: Plots of the average classification accuracy for the TR models and TTN models,
trained using all interaction degrees, as a function of interaction degree j, using the MNIST
and Fashion MNIST test datasets. The scatter plots show the accuracy of each d⃗ (j)(x⃗;W)
term individually, while the solid line shows the accuracy of the sum of contributions from
all degrees less than or equal to its position on the x-axis. On MNIST (Fashion MNIST),
the cumulative accuracies of the TR and TTN models are equal to 98.31% (82.73%) and
98.49% (83.43%) respectively when all degrees are included, with the performance plateauing
at degree 31 (44) for the TRs and 38 (54) for the TTNs. The accuracies of the individual
contributions are all very low, with the vast majority of interaction degrees having almost
no independent classification ability.

45

Fashion MNIST curves, with the latter pair of curves seeing most of their accuracy gains
after degree 10.

Based on the accuracies of the individual contributions d⃗ (j)(x⃗;W), which are shown in
Figure 4.2 using scatter plots, it is clear that only the first few interaction degrees are having
their coefficients optimized such that they can classify images independently. The remaining
contributions, which constitute the vast majority of regressors, have accuracies close to 10%
and therefore do not separate the different digit classes to any appreciable extent when used
in isolation. This suggests that the higher-degree d⃗ (j)(x⃗;W) have been trained essentially
to correct or finesse the cumulative output from the lower degrees, since the cumulative
accuracy continues to increase as their outputs are incorporated. This trend is particularly
marked for the Fashion MNIST models, where only degrees 1 and 2 have accuracies above
12%. Indeed, plots C and D from Figure 4.1 show that many of the regressors in these
models are being used to cancel out the large magnitudes of the intermediate degrees, since
the final regression output needs to be roughly in the range [0, 1] to achieve a reasonable
loss value.

4.4 Interaction Decompositions as Regression Models

In Sec. 4.3, we used the interaction decomposition as a tool to analyze tensor network models
that had been trained using standard methods. As a result, the parameters of each model
were optimized under the assumption that every interaction degree would contribute to the
final output, without any truncation or isolation. This offers the greatest flexibility to the
model in principle, but it can also obscure the potential success that a single degree or subset
of degrees might have had if the parameters of the network had been optimized to improve
their performance specifically.

In light of this fact, we propose a new type of tensor network model called the D-degree
tensor network. In these models, only interaction degrees in the set D are used to construct
the regression output, such that

f⃗(x⃗;W) =
∑
j∈D

d⃗ (j)(x⃗;W). (4.6)

Comparing this expression to the full interaction decomposition given in Eq. (4.1), it is clear
that if D is the set of all interaction degrees (i.e. if D = {0, 1, ...,m}), then the correspond-
ing D-degree network is equivalent to a standard tensor network with the same structure.
However, we will focus our attention on models where D contains only a fraction of the m+1
possible interaction degrees. By restricting the regression in this manner, we are effectively
inducing sparsity in the weight tensorW by zeroing the coefficients for all interaction degrees
not included in D. Unlike in the case of sparse neural networks [96][97], this sparsity does
not necessarily lead to a reduction in the number of trainable parameters or to an improve-
ment in the computational overhead. Instead, the sparsity leads to a simplification in the
structure of the regression function, which can yield a model that is more easily interpretable
while still achieving the same level of performance.

46

Using the decomposition procedure described in Appendix 4.6.1, it is possible to efficiently
train D-degree models on the same regression tasks used in Sec. 4.3, and thus compare their
classification accuracies with those shown in Figure 4.2. For our tests, we selected D-degree
models that fell into two categories: the cumulative-j models, in which all degrees less than
or equal to j are included in the output, and the degree-j models, in which the output is
simply the contribution from the jth degree:

Cumulative-j : f⃗(x⃗;W) =

j∑
j′=0

d⃗ (j′)(x⃗;W), Degree-j : f⃗(x⃗;W) = d⃗ (j)(x⃗;W). (4.7)

These two groups describe only a small portion of the 2m+1−1 possible D-degree models, but
they will allow us to easily compare our results with the plots in Figure 4.2. For our numerical
tests, we trained the models on 8× 8 images from the MNIST and Fashion MNIST datasets
prepared in the same manner described in Sec. 4.3. The D-degree models take somewhat
longer to train than standard tensor network models due to the added complexity of the
interaction decomposition, but their times are still on par with those of neural network
models (see Appendix 4.6.3).

Figure 4.3 shows average accuracies of the cumulative-j (blue plots) and degree-j (orange
plots) models as a function of j, with each data point representing an average across ten
models. These averages are plotted alongside the cumulative data from Figure 4.2, which
shows the performance of the full tensor network models as a reference. We emphasize
that the cumulative-j and degree-j curves in Figure 4.3 are computed in precisely the same
manner as the line and scatter plots from Figure 4.2, except that the models which generated
Figure 4.2 were trained using all of the interaction degrees rather than just the specific subset
being plotted. The plots for the D-degree models omit results for j = 0, since those models
contain only the bias term and thus predict the same digit for every image. The data used
to generate these plots is given in Appendix 4.6.2.

The first trend to observe from Figure 4.3 is that both the cumulative-j and degree-
j models have accuracies that are significantly greater than the corresponding cumulative
accuracy at degree j from the full tensor network models. This performance gap is notable,
because it implies that the standard models are utilizing the feature-product regressors in a
highly inefficient manner. For MNIST in particular, the degree-j classifiers with j > 3 were
able to perform within 0.5% of the full model. As a comparison, the cumulative MNIST
accuracy of the regular TR and TTN models using degrees 0 – 4 is only 71% and 61%
respectively. The disparity is even larger when looking at the single-degree accuracies from
Figure 4.2, which show that most individual d⃗ (j)(x⃗;W) were unable to classify images at all
when trained as part of a full tensor network model. When those degree contributions were
optimized directly, however, they were able to perform classification with more than 98%
accuracy. The degree-j models did not perform as well on Fashion MNIST, though they still
achieved accuracies that were vastly higher than the corresponding cumulative accuracies
from Figure 4.2. The cumulative-j models, on the other hand, were able to closely match
the performance of the standard models, with the cumulative-10 TR and cumulative-8 TTN
models coming within 0.1% of their full-degree counterparts.

The dashed horizontal lines in Figure 4.3 mark the accuracy of the full tensor network

47

0 10 20 30 40 50 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

TR, MNIST

0 2 4 6 8 10
0.90

0.92

0.94

0.96

0.98

1.00

0 10 20 30 40 50 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
TTN, MNIST

0 2 4 6 8 10
0.90

0.92

0.94

0.96

0.98

1.00

0 10 20 30 40 50 60
Degree (j)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

TR, Fashion MNIST

0 2 4 6 8 10

0.750

0.775

0.800

0.825

0 10 20 30 40 50 60
Degree (j)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

TTN, Fashion MNIST

0 2 4 6 8 10

0.750

0.775

0.800

0.825

Full Model Cumulative-j Model Degree-j Model

Figure 4.3: Plots of average accuracy on the MNIST and Fashion MNIST test datasets for
D-degree models parameterized by TRs and TTNs, with ten models being averaged for each
degree. The solid black line indicates the cumulative accuracy of the standard tensor net-
work models analyzed in Sec. 4.3, as plotted in Figure 4.2, with the dashed line showing the
accuracy when all interaction degrees are included. The degree-j models generally demon-
strate worse performance than the cumulative-j models, though the difference is very small
on MNIST. The cumulative-j models were able to closely match the accuracies of the full
models on both datasets, and even slightly exceed their performance on MNIST.

48

models when every degree contribution is included. Using these values as a benchmark, we
can see that several of the cumulative-j TTN models (6 ≤ j ≤ 10) and degree-j TTN models
(7 ≤ j ≤ 10) actually outperformed the corresponding full model on the MNIST dataset.
This is a counter-intuitive result, as it suggests that regressing on all of the interaction degrees
can actually yield slightly worse results than regressing on only a small subset of them.
A cumulative-8 TTN model, for example, uses only one-billionth of the feature products
contained within the data tensor X, yet achieves an average accuracy roughly 0.1% higher
than a TTN model which has access to all of X.

Finally, we note that a comparison can be made between the performance of these D-
degree network models, which constrain the feature product coefficients to all be generated
by the same low-rank tensor network, and a more general multilinear regression model in
which every coefficient can be determined arbitrarily. In Appendix 4.6.3, we give results
for this type of unconstrained regression on features products up to degree 4, which shows
that the cumulative-j models achieve accuracies very near the arbitrary models of degree
j, and can outperform them for larger values of j even when the tensor network models
contain fewer trainable parameters. This demonstrates the utility of incorporating more
interactions (up to a point), since constrained regression on higher-degree feature products
is more effective than unconstrained regression on lower-degree feature products.

4.5 Discussion

The exponential feature space induced by the transformation in Eq. (2.20) lies at the heart
of tensor network regression, and there is no doubt that these models utilize it to achieve a
level of performance that far exceeds standard linear regression. That said, it is easy to feel
incredulous toward the idea that tensor network models, or indeed any regression model,
could truly make use of the 264 different regressors that are generated from an 8× 8 image.
The goal of our work here has been to develop the interaction decomposition as a tool to
test this claim, and then apply it to tensor network models under a pair of standard machine
learning tasks. By evaluating the magnitudes and accuracies of the different interaction
degrees, we can begin to draw conclusions about how effectively the exponential space is
being utilized.

To this end, our results from Sec. 4.3 show that more than half of the interaction degrees
contributed meaningfully to the output of the classifiers, with the Fashion MNIST TTN
models in particular using up to degree 50. In the language of Sec. 4.2.1, this indicates that
the tensor network models are utilizing a portion of the expanded feature space X that has
a dimension on the order of 1019, which can be computed by summing Eq. (4.3) across all
significant degrees. It is important to note, however, that Figure 4.2 only shows the change
in accuracy for the jth interaction degree when the entirety of subspace D(j) is incorporated
into the regression. It may very well be that the models in Sec. 4.3 are utilizing only a small
portion of this space, and thus the number of relevant feature products could be far smaller
than the upper-bound of 1019. The interaction decomposition cannot separate out different
parts of a given degree-j subspace, so future work might look into alternate algorithms that
are able to divide up these spaces into meaningful components.

49

For a given interaction degree, one can ask not only if the set of feature products is
being utilized by a tensor network model, but also how well the model is using them relative
to some standard. In Sec. 4.4 we introduced the D-degree tensor network to serve as this
standard, since its parameters could be trained to maximize performance using only a specific
subset of interaction degrees. In our tests, the networks were limited to interaction degrees
of at most 10, which corresponds to an expanded features space of dimension at most 1011 as
given by Eq. (4.4). The results shown in Figure 4.3 demonstrate that the full tensor network
models are significantly under-utilizing the lower-degree interactions, since the D-degree
models are able to achieve accuracies up to 60 percentage points higher when constrained to
those same degrees. This under-utilization was especially acute for Fashion MNIST, where
the full models only reached cumulative accuracies of 25% for the first ten degrees, despite
the fact that the cumulative-10 models had accuracies near 83%.

More significantly, some D-degree models trained using only the first six interaction de-
grees were able to achieve accuracies on MNIST that were greater than those of models
trained using all degrees. While this could simply be due to more overfitting in the full
models, it might also point to inherent limitation in the tensor network representation of
W . We know, for example, that the regression coefficients in a tensor network model are
necessarily coupled together by the elements of the component tensors, which may force the
model to use suboptimal coefficients for the lower interaction degrees in order to avoid harm-
ful contributions from the higher degrees. Given that detailed, “under-the-hood” analyses of
these models are possible using methods such as the interaction decomposition introduced
here, the existence and nature of this compromise seems like a promising area for further
study.

Taken together, the results discussed here support the following two conclusions:

1. Common tensor network models are capable of utilizing regressors from a large portion
of the expanded feature space generated by the featurization from [21].

2. However, a comparable level of performance may also be achieved by regression on a
minuscule fraction of that same space.

For those looking to use tensor network models for machine learning, there is cause here for
both optimism and caution. While the first conclusion makes it clear that tensor network
regression models can incorporate useful information from a wide range of interaction degrees,
the second conclusion implies that it is difficult for these models to extract any unique
information from the higher-degree regressors. In light of this, we believe that the D-degree
tensor network models, which have been absent in the literature up to this point, represent
a promising approach for tensor network regression. Using these models, it is possible to
exploit the representational efficiency of tensor networks while constraining the regression
to a reasonable and interpretable set of feature products based on the inherent complexity
of the dataset.

50

4.6 Appendix

4.6.1 Procedure for the Interaction Decomposition

In this subsection, we describe a procedure that can be used to carry out the interaction
decomposition of any tensor network. At its core is a tensor operation that we call the
degree-preserving tensor product, denoted ⊗̃, which is defined between m+ 1th order tensor
A and n+ 1th order tensor B as

(A ⊗̃ B)ji0...im−1k0...kn−1 =
∑

ja+jb=j

Ajai0...im−1Bjbk0...kn−1 , (4.8)

where the resulting tensor is of order m+ n+ 1 and 0 ≤ j ≤ max(ja) + max(jb). Note that
this operation attaches special significance to the first dimension, which we will hereafter
refer to as the degree index. As shown in Eq. (4.8), the jth slice of A ⊗̃ B along the degree
index is given by the sum of tensor products taken between slices of A and of B, such that
the sum of the degree indices for those slices is equal to j. Like the normal tensor product,
the degree-preserving tensor product is associative and commutative up to a permutation of
the (non-degree) indices, and multilinear in its two arguments. Using this new variation of
the tensor product, we can also define a degree-preserving contraction in the same manner
as Eq. (2.4), such that the contraction of fourth-order tensors A and B is given by

Cjklqr =
∑

ja+jb=j

∑
i

AjakilBjbqri. (4.9)

The utility of these degree-preserving operations becomes apparent if we alter the fea-
turization in Eq. (2.22) to be

H(i)(xi) =

[
1 0
0 xi,

]
, (4.10)

which simply embeds h⃗(i)(xi) along the diagonal of a 2 × 2 matrix. Note that the degree
index of this tensor matches up with the interaction degree of its non-zero elements, since the
first row (index 0) is a constant while the second row (index 1) is xi. This correspondence
is maintained by the degree-preserving tensor product of H(i) and H(k):

H(i) ⊗̃ H(k) =

[1 0
0 0

]
,

[
0 xi
xk 0

]
,

[
0 0
0 xixk

] , (4.11)

where the non-zero elements all have an interaction degree equal to their position along the
degree index. Since the zero elements do not contribute anything during a tensor contraction,
Eq. (4.11) also indicates that any degree-preserving contraction between H(i) and H(k) would
likewise maintain the correspondence between degree index and interaction degree.

Using the degree-preserving tensor product and contraction operations, along with the
new featurization mapsH(i)(xi), the interaction decomposition of a tensor network regression
model can be carried out using the following procedure:

51

1. Add a degree index of size one (i.e., an index that can only take a value of 0) to each
component tensor of the network representing W . This increases the order of each
tensor by one, but leaves the actual number of elements unchanged.

2. Construct (implicitly) a modified data tensor X̃ using the mappings from Eq. (4.10),
such that X̃(x⃗) = H(1)(x1) ⊗̃ H(2)(x2) ⊗̃ ... ⊗̃ H(m)(xm).

3. Use degree-preserving contraction operations to contract X̃ with the tensor network,
following whichever efficient contraction scheme is appropriate for the network archi-
tecture of the model.

4. If the decomposition is being used to contract a D-degree network, then the degree
index of all intermediate tensors can be be truncated to the largest degree in D.

Since the contraction of the network is done using degree-preserving contractions, the con-
tributions from each interaction degree are kept separate throughout the entire process. The
final output of the interaction decomposition (without truncation) is a second-order tensor
of the form

F (x⃗;W) =
[
d⃗ (0)(x⃗;W), d⃗ (1)(x⃗;W), ..., d⃗ (m)(x⃗;W)

]
, (4.12)

where d⃗ (j)(x⃗;W) is the degree-j contribution to the combined regression output f⃗(x⃗;W).
The computational cost of the procedure described above is best understood in terms of how
much additional complexity it adds on top of a standard contraction of the network. This
complexity comes from two sources: larger intermediate tensors due to the addition of the
degree index, and an extra sum over the degree index that is present in the degree-preserving
tensor product from Eq. (4.8). The first contribution is easy to characterize, since adding a
degree index simply increases the size of the original tensors by a factor that is on the order
of the maximum interaction degree jmax in the decomposition. The second contribution is
more subtle, since the number of terms in the tensor-product sum depends on the relative
sizes of the degree indices of the two inputs. Consider again the tensor product between A
and B from Eq. (4.8), and let j̄a and j̄b be the largest value of the degree index for A and B
respectively, with j̄ = j̄a+ j̄b and j̄a ≤ j̄b. Then it it can be shown that the number of terms
s needed to generate all j̄ + 1 slices of A ⊗̃ B is given by

s = (j̄a + 1)(j̄b + 1), (4.13)

which scales as O(j̄aj̄b). This means that, for a fixed j̄, the value of s can range from a
minimum of j̄+1 if j̄a = 0 to a maximum of 1

4
(j̄)2 + j̄+1 for the fully symmetric case when

j̄a = j̄b =
1
2
j̄. Given that the last contractions in the interaction decomposition will have j̄ on

the order of jmax, this means that the most complex degree-preserving tensor products can
either scale as O(j2max) or O(jmax), depending on the amount of symmetry between the two
input tensors. The fact that more symmetric contraction schemes can lead to worse scaling
(quadratic rather than linear in jmax) is an interesting property of this method, although
the use of such schemes may still be desirable due to other computational advantages.

52

4.6.2 Tabulation of D-degree Model Performance

Table 4.1 and Table 4.2 show the results of the numerical tests described in Sec. 4.4 and
plotted in Figure 4.3 for MNIST and Fashion MNIST respectively, along with the relevant
cumulative accuracy values for the full models from Figure 4.2. Each value represents the
average percent test accuracy across ten different initializations of the given model type, with
the standard error of the last digit shown in parentheses. For the cumulative-j and degree-j
models the column label denotes the value of j, while for the full models they denote the
cumulative accuracy of the output up to the jth interaction degree.

4.6.3 Regression Model Comparisons

In Table 4.3, we compare our TR and TTN models with several low-order multilinear models
and a deep learning model, in terms of their number of trainable parameters, computation
time per epoch, and average accuracies on the 8 × 8 image datasets. The linear, bilin-
ear, trilinear, and tetralinear regression models perform unconstrained regression on feature
products of degree less than or equal to 1, 2, 3, and 4 respectively, which are the same re-
gressors used by the cumulative-j models for 1 ≤ j ≤ 4. By “unconstrained”, we mean that
the coefficients for each feature product can be set arbitrarily rather than being generated
by a low-rank tensor network. To offer a comparison with state-of-the-art neural network
algorithms, we also provide the corresponding numbers for a convolutional neural network
(CNN) model based on the Inception [95] architecture, which contains the most parameters
and achieves the best performance on both datasets.

53

1
2

3
4

5
6

7
8

9
10

64
F
u
ll
T
R

27
.5
(5
)

46
(1
)

62
(1
)

70
.8
(8
)

76
(1
)

79
(2
)

83
(3
)

86
(3
)

87
(3
)

88
(3
)

98
.3
1(
2)

C
u
m
u
la
ti
ve

T
R

84
.6
(1
)

96
.2
3(
3)

97
.7
9(
3)

98
.0
3(
3)

98
.2
1(
2)

98
.2
1(
3)

98
.3
0(
4)

98
.2
8(
3)

98
.3
1(
4)

98
.3
1(
2)

-
D
eg
re
e
T
R

84
.6
7(
6)

96
.2
2(
2)

97
.7
4(
3)

98
.0
6(
3)

98
.1
1(
2)

98
.1
9(
3)

98
.2
3(
2)

98
.2
2(
3)

98
.3
1(
3)

98
.2
2(
3)

-
F
u
ll
T
T
N

21
.7
(6
)

42
(1
)

53
(1
)

61
(1
)

68
(1
)

71
(2
)

73
(2
)

72
(2
)

73
(2
)

74
(3
)

98
.4
9(
3)

C
u
m
u
la
ti
ve

T
T
N

84
.7
6(
7)

96
.3
9(
2)

98
.0
3(
2)

98
.3
6(
2)

98
.4
6(
1)

98
.5
1(
2)

98
.5
4(
3)

98
.5
7(
1)

98
.5
4(
1)

98
.5
4(
1)

-
D
eg
re
e
T
T
N

84
.7
6(
8)

96
.4
4(
2)

97
.9
3(
2)

98
.3
9(
2)

98
.4
4(
3)

98
.4
7(
2)

98
.5
2(
3)

98
.5
3(
2)

98
.4
9(
2)

98
.5
1(
1)

-

T
ab

le
4.
1:

T
ab

le
of

av
er
ag
e
ac
cu
ra
cy

v
s
d
eg
re
e
fo
r
th
e
si
x
d
iff
er
en
t
m
o
d
el

ty
p
es

on
M
N
IS
T
,
fo
r
F
ig
u
re

4.
3.

1
2

3
4

5
6

7
8

9
10

64
F
u
ll
T
R

20
.2
(4
)

25
.3
(5
)

26
(1
)

25
(1
)

25
.5
(9
)

25
(1
)

25
(1
)

25
(1
)

27
(1
)

28
(1
)

82
.7
3(
9)

C
u
m
u
la
ti
ve

T
R

71
.7
3(
6)

79
.6
4(
7)

81
.4
7(
5)

82
.0
5(
8)

82
.4
2(
7)

82
.3
(1
)

82
.4
7(
6)

82
.5
1(
7)

82
.5
4(
9)

82
.6
0(
7)

-
D
eg
re
e
T
R

70
.2
7(
8)

78
.5
7(
5)

80
.3
3(
8)

80
.7
7(
7)

80
.6
0(
6)

80
.3
(1
)

79
.8
2(
7)

79
.0
7(
6)

78
.7
(1
)

78
.1
8(
9)

-
F
u
ll
T
T
N

17
.8
(3
)

21
.0
(3
)

23
.2
(8
)

21
(1
)

22
(1
)

22
(1
)

22
(1
)

22
(1
)

24
(2
)

24
(2
)

83
.4
3(
6)

C
u
m
u
la
ti
ve

T
T
N

71
.6
3(
7)

80
.0
9(
6)

82
.2
6(
7)

82
.7
8(
6)

83
.1
4(
6)

83
.1
8(
7)

83
.2
9(
7)

83
.3
7(
6)

83
.1
7(
9)

83
.3
1(
4)

-
D
eg
re
e
T
T
N

70
.3
0(
4)

78
.6
9(
6)

80
.8
0(
5)

81
.3
5(
6)

81
.5
1(
5)

81
.2
6(
8)

80
.7
6(
8)

80
.3
3(
9)

80
.0
(1
)

79
.4
(1
)

-

T
ab

le
4.
2:

T
ab

le
of

av
er
ag
e
ac
cu
ra
cy

v
s
d
eg
re
e
fo
r
th
e
si
x
d
iff
er
en
t
m
o
d
el

ty
p
es

on
F
as
h
io
n
M
N
IS
T
,
fo
r
F
ig
u
re

4.
3.

54

Parameters
Seconds
per epoch

MNIST
accuracy

Fashion MNIST
accuracy

Linear 65 2 84.7(1) 71.35(8)
Bilinear 2,081 2 96.47(1) 80.20(6)
Trilinear 43,745 3 98.13(2) 82.32(7)

Tetralinear 679,121 11 98.46(1) 82.33(3)
Full TR 51,200 2 98.31(2) 82.73(9)
Full TTN 250,560 3 98.49(3) 83.43(6)

Cumulative-10 TR 51,200 29 98.31(2) 82.60(7)
Cumulative-8 TTN 250,560 18 98.57(1) 83.37(6)
Inception CNN 1,196,530 23 99.27(3) 86.64(9)

Table 4.3: Table of parameter number, seconds of computation per epoch (with batch size
of 64), and average classification accuracies on MNIST and Fashion MNIST for various
regression models. The averages were computed across ten different initializations, with the
standard error of the last digit given in parentheses.

55

Chapter 5

Rank Analysis of Tensor Network
Models

This chapter is derived from unpublished work which focuses on the degree-limited multi-
linear models considered in [28]. We analyze how the rank of the tensor network ansatz is
impacted by regressors with different interaction degrees, and the implications this has for
tensor network regression models.

5.1 Introduction

One of the biggest open questions in tensor network machine learning is how to choose the
best network architecture for a given task. As discussed in Sec. 3.1, architectures differ
not only in their contraction scheme and parameter count, but also in the arrangement of
the virtual indices which connect component tensors together. The degree of connectivity
between portions of the network can be quantified using the multiplex rank, which was
introduced in Sec. 2.2.4 as the rank of the matricization of a given tensor. In the context of
regression, we are interested in the multiplex rank of the weight tensor for different bipartions
of the data features, as this will determine the bond dimension that is needed across that
partition for an exact representation of the model by a tensor network.

In this chapter, we derive upper bounds for the multiplex rank of the weight tensor as
a function of its maximum interaction degree and the size of the feature partitions. These
upper bounds precisely quantify the minimum virtual bond dimension necessary to represent
an arbitrary multilinear regression model up to the specified degree, and reveal how this bond
dimension changes at different locations in the network. We provide a general description
of our approach in Sec. 5.2, which makes use of braket notation from quantum physics. In
Sec. 5.3, we explicitly work through some simple examples, including the linear and bilinear
models, before developing a recursive algortihm that can solve for the multiplex rank for any
feature number, partition size, and interaction degree.

With this general-purpose algorithm in hand, we then consider specific applications and
interpretations of it in the context of tensor network regression. In Sec. 5.4.1, we quantify
how the bond dimension of an MPS model must vary with both the interaction degree and

56

location of the virtual index. Interestingly, we find that the patterns of growth are not
simple, and that the bond dimension can go actually shrink as the partition size grows. In
Sec. 5.4.2, we show how the size of the bond dimension is driven almost entirely by feature
products which span the bipartition, and in Sec. 5.4.3 we show that the distance between
features in an interaction can significantly impact its effect on the bond dimension. Sec. 5.4.4
demonstrates that using the interaction decomposition from Chapter 4 allows for a modest
reduction in the bond dimension needed to represent a low-degree tensor regression model.
In Sec. 5.5 we discuss our results and offer potential directions for future work. An Appendix
is also provided which contains the more technical aspects of the work.

5.2 General Approach

5.2.1 Braket notation and excitations

For convenience and clarity, we introduce a new notation borrowed from quantum mechanics
called braket notation, with which we will use to describe tensors and tensor operations. In
this notation, any element of a vector space (e.g. a tensor from an mth-order tensor space)
can be represented using a ket, which looks like |W ⟩ for the weight tensor W . The inner
product between the weight tensor and the data tensor |X⟩ from Eq. (2.20) is written as

y = ⟨W |X⟩ , (5.1)

where the notation ⟨A|B⟩ denotes the inner-product between tensors |A⟩ and |B⟩, with ⟨A|
representing the dual tensor or bra of |A⟩. Note that, like tensor diagrams, braket notation
conveys the contraction of tensors without explicit reference to any indices, although it is
generally taken to only represent full contractions between two tensors of the same shape.

Using braket notation, we can expand the weight and data tensors on a shared standard
basis as

|X⟩ =
1∑

i1,i2,...,im=0

xi11 x
i2
2 · · ·ximm |i1⟩ |i2⟩ · · · |im⟩ (5.2)

|W ⟩ =
1∑

i1,i2,...,im=0

Wi1i2...im |i1⟩ |i2⟩ · · · |im⟩ , (5.3)

where the expansion coefficients in each expression are precisely those found in Eq. (2.23)
which describe the form of the regression function. To simplify our notation, we have
employed a common braket shorthand and written the tensor product |a⟩ ⊗ |b⟩ as |a⟩ |b⟩.
The composite basis vectors |i1⟩ |i2⟩ · · · |im⟩ are elements of the same tensor product space
H =

⊗m
i=1V(i) inhabited by W and X, with |ij⟩ being a standard basis vector for the

component space V(j).
As shown in Eq. (5.2), each standard basis vector can be uniquely associated with a

different product of features, with the jth feature being present in the product if |ij⟩ = |1⟩.
Taking inspiration once again from quantum physics, we refer to |ij⟩ = |1⟩ as an excitation

57

in V(j), with the number of |1⟩ states in a composite basis vector referred to as its excitation
number. Different interaction degrees correspond to different excitation numbers across the
composite basis of H, such that all linear terms are associated with basis vectors that have
one excitation, all bilinear terms are associated with basis vectors that have two excitations,
and so on.

To better emphasize the different interaction degrees which contribute to y, we can adopt
an alternative notation for the basis vectors of H which includes only the positions of the
excitations. Using this notation, the basis state |i1⟩ |i2⟩ · · · |im⟩ with k excitations in sub-
spaces {V(j1),V(j2), ...,V(jk)} is written as |j1, j2, ...jk⟩, where j1 < j2 < ... < jk. We denote
the state |0⟩ |0⟩ · · · |0⟩, which lacks any excitations, as |0⟩. With this labeling, the data and
weight tensors can be written out as

|X⟩ = |0⟩+
m∑

j1=1

xj1 |j1⟩+
m−1∑
j1=1

m∑
j2=j1+1

xj1xj2 |j1, j2⟩+ ...+ x1x2 · · · xm |1, 2, ...,m⟩ (5.4)

|W ⟩ = W0 |0⟩+
m∑

j1=1

Wj1 |j1⟩+
m−1∑
j1=1

m∑
j2=j1+1

Wj1j2 |j1, j2⟩+ ...+W1,2,...,m |1, 2, ...,m⟩ , (5.5)

where Wj1...jk ≡ ⟨j1, ..., jk|W ⟩ gives the regression coefficient for the feature product
xj1 · · ·xjk , and W0 is the bias term. Note that Eqs. (5.4, 5.5) are equivalent to Eqs. (5.2,
5.3), except that the summations have been seperated out and relabeled to emphasize the
different interaction degrees. The inner product expression in Eq. (2.23) can be similarly
written out as

y = W0 +
m∑
j1

Wj1xj1 +
m−1∑
j1=1

m∑
j2=j1+1

Wj1j2xj1xj2 + ...+W1,2,...,mx1x2 · · ·xm, (5.6)

where the contributions from the different interactions degrees are separated out into distinct
summations.

5.2.2 Partitioning the weight tensor

Our analysis of the weight tensor focuses on its multiplex rank, as that is the property
which most directly determines the bond dimension and connectivity needed for a tensor
network representation (see Sec. 2.2.4). When computing a multiplex rank, we partition the
components of the tensor product space H into two disjoint sets, forming new spaces A and
B such that H = A⊗ B. A tensor |T ⟩ in H can then be decomposed into the sum of tensor
products between tensors in A and B,

|T ⟩ =
r∑

i=1

|A(i)⟩ |B(i)⟩ , |A(i)⟩ ∈ A, |B(i)⟩ ∈ B, (5.7)

where the elements of |A(i)⟩ and |B(i)⟩ are entirely unconstrained. The minimum value of r
needed to represent |T ⟩ (using an appropriately chosen {|A(i)⟩}ri=1 and {|B(i)⟩}ri=1) in this

58

form is the multiplex rank of the tensor with respect to partitions A and B. The maximum
value of this rank is given by min(|A|, |B|), where |A| and |B| are the dimensions of A and B
respectively, while the minimum value for a non-zero tensor is 1.

An element-wise interpretation of Eq. (5.7) can be easily obtained by borrowing tech-
niques from matrix analysis. We consider an expansion of |T ⟩ on a standard basis of H
constructed from the tensor product of bases in A and B:

|T ⟩ =
|A|∑

iA=1

|B|∑
iB=1

T̃iAiB |iA⟩ |iB⟩ (5.8)

where {|iA⟩}|A|
iA=1 and {|iB⟩}|B|

iB=1 are orthogonal tensors (which need not be rank one) that

span A and B respectively, and T̃ is the matrix of expansion coefficients. We can then write
|T ⟩ in terms of its “rows” by summing over the column index iB of T̃ :

|T ⟩ =
|A|∑

iA=1

|iA⟩ |TiA⟩ , |TiA⟩ ≡
|B|∑

iB=1

T̃iAiB |iB⟩ , (5.9)

where |TiA⟩ is the iAth “row” of |T ⟩ and TA ≡ span({|TiA⟩}
|A|
iA=1) is its corresponding “row

space”. The multiplex rank of |T ⟩ for this partition is thus given by |TA|, which is simply
the number of linearly independent rows in the matrix TiAiB . Note that since A and B will
usually be tensor product spaces themselves, TiAiB represents a matriciziation of the tensor
T , with iA and iB serving as compound indices that jointly address every combination of
positions (in an arbitrary ordering) along the axes of the multidimensional tensor element
array.

To analyze the multiplex rank of a given weight tensor |W ⟩, we will partition the m
features of its implied dataset into two disjoint sets A and B, such that the set of all features
X is given by A∪B. Without loss of generality, we will take A to be the smaller of the two
sets, so that |A| ≤ |B| and |B| = m−|A|. In order to more easily refer to features in different

partitions, we introduce vectors a⃗ and b⃗ to hold the elements of A and B respectively in an
arbitrary order. This allows us to hereafter consider the ith feature in A to be ai and the
jth feature in B to be bj.

The partitioning of the features into A and B leads directly to a partitioning of the tensor
product space H into vector spaces A and B

H = A⊗ B, A =
⊗
i∈IA

V(i), B =
⊗
i∈IB

V(i), (5.10)

where IA = {i | xi ∈ A} and IB = {i | xi ∈ B} are sets of indices corresponding to the
features in A and B respectively. In words, Eq. (5.10) states that H can be decomposed into
the tensor product of two vector spaces which are themselves formed from the component
spaces V(i) associated with features in A and B respectively. Using the excitation-based
notation introduced in Sec. 2.3, we can write basis vectors of H as the tensor product of
basis vectors in A and basis vectors in B. As an example, if X = {x1, x2, x3, x4}, and we

59

partition these four features into A and B such that a⃗ = [x1, x2] and b⃗ = [x3, x4], then the
basis vector |1⟩ |1⟩ |0⟩ |1⟩ associated with product x1x2x4 is written as |1, 2⟩ |2⟩, since a1 = x1,
a2 = x2 and b2 = x4. When indexing elements of |W ⟩, which can in general be associated
with features in both A and B, we use subscripts to denote indexing with respect to a⃗ and
superscripts to denote indexing with respect to b⃗. Using this convention, the regression
coefficient for x1x2x4 in our example would be written as W 2

1,2.
Once the features have been partitioned into A and B, we can expand |W ⟩ on the

excitation bases of A and B and then sum together the components of B, as was done in
Eq. (5.9). This gives

|W ⟩ = |0⟩ |W0⟩+
|A|∑
i1=1

|i1⟩ |Wi1⟩+
|A|−1∑
i1=1

|A|∑
i2=i1+1

|i1, i2⟩ |Wi1i2⟩+ ...+ |1, 2, ..., |A|⟩ |W1,2,...,|A|⟩ ,

(5.11)
where the vector |Wi1...ik⟩ represents the vector in B associated with basis vector |i1, ..., ik⟩
in A. We refer to these as the “row vectors” of |W ⟩ with respect to the given partitioning,
and they have the form

|Wi1...ik⟩ = Wi1...ik |0⟩+
|B|∑
j1=1

W j1
i1...ik

|j1⟩+
|B|−1∑
j1=1

|B|∑
j2=j1+1

W j1j2
i1...ik

|j1, j2⟩+ ...+W
1,...,|B|
1,...,|A| |1, ..., |B|⟩ .

(5.12)
Focusing on the expansion terms in Eq. (5.12), we can see that basis vector |j1, ..., jℓ⟩
in B is weighted by the regression coefficient corresponding to the feature product
ai1ai2 · · · aikbj1bj2 · · · bjℓ . Note that the features from A in the product are determined by
the basis vector |i1, ..., ik⟩ from A that |Wi1...ik⟩ is associated with in Eq. (5.11), while the
features from B are determined by |j1, ..., jℓ⟩ from B. As discussed earlier, the multiplex
rank of the weight tensor across the partition is equal to the number of linearly independent
row vectors, which is ultimately dictated by the values of the regression coefficients. Our
analysis will therefore focus on how different forms of the regression function impact the
rank structure of |W ⟩.

5.3 Rank Upper Bounds

5.3.1 Single-Feature Partition

To begin our analysis, we consider the simple case where a set of m features have been
partitioned such that A contains only a single feature, which we chosen arbitrarily to be x1.
Therefore, we have a⃗ = [x1] and b⃗ = [x2, ..., xm]. Since A = V(1), the basis vectors of A are
simply {|0⟩ , |1⟩}, which denotes either the presence of absence of x1 in the feature product.
Expanding the weight tensor |W ⟩ as in Eq. (5.11) gives

|W ⟩ = |0⟩ |W0⟩+ |1⟩ |W1⟩ , (5.13)

where |W0⟩ contains the regression coefficients for products which do not include x1 and
|W1⟩ contains the coefficients for products which do include x1. It is readily apparent that

60

the rank of |W ⟩ across this single-feature partition is at most two, which is equal to the
min(|A|, |B|) upper-bound mentioned in Sec. 5.2.2.

Let us assume that we are performing regression on all possible feature products. If
the coefficients of the weight tensor are chosen at random, then its rank will be two with
probability one. That said, it is worthwhile to consider the form of regression that would be
necessary for |W ⟩ to have a rank of one across the partition, which is equivalent to having
|W0⟩ ∝ |W1⟩. Full expressions for the two column vectors are given by

|W0⟩ = W0 |0⟩+
|B|∑
i1=1

W i1 |i1⟩+
|B|−1∑
i1=1

|B|∑
i2=i1+1

W i1i2 |i1, i2⟩+ ...+W 1,...,|B| |1, ..., |B|⟩ (5.14)

|W1⟩ = W1 |0⟩+
|B|∑
i1=1

W i1
1 |i1⟩+

|B|−1∑
i1=1

|B|∑
i2=i1+1

W i1i2
1 |i1, i2⟩+ ...+W

1,...,|B|
1 |1, ..., |B|⟩ , (5.15)

from which it is clear that |W0⟩ ∝ |W1⟩ holds if and only ifW i1...ik = cW i1...ik
1 for all excitation

numbers k and indices {i1, ..., ik}. Note that the proportionality constant c must be the same
for every coefficient.

5.3.2 Linear Regression

In linear regression, we consider a model of the form f⃗(x⃗) = w⃗ (i) + w⃗ (1)x1 + ... + w⃗ (m)xm
for some set of coefficient vectors {w⃗i}mi=0. This means that the only non-zero elements of
the weight tensor in a linear model are those associated with one or zero excitations. These
elements can be grouped into those where the excitation is in A and those where it is in B
(i.e. corresponding to a feature in A or a feature in B). Under these conditions, Eqs. (5.11,
5.12) become

|W ⟩ = |0⟩ |W0⟩+
|A|∑
i=1

|i⟩ |Wi⟩ (5.16)

|W0⟩ = W0 |0⟩+
|B|∑
i=1

W i |i⟩ , |Wi⟩ = Wi |0⟩ , (5.17)

where the forms of the row vectors |Wi⟩ are constrained by the fact that B cannot have any
excitations if there is already an excitation in A. Eq. (5.17) shows that every |Wi⟩ is directly
proportional to |0⟩, so the second term in Eq. (5.16) becomes (

∑|A|
i=1Wi |i⟩) |0⟩ and thus the

row space of |W ⟩ is spanned by {|W0⟩ , |0⟩}. This immediately implies that the multiplex
rank of the linear regression weight tensor can be at most two for any partitions A and B.

Since the row space is only two-dimensional in this simple case, we can compute the
singular values of the matricized weight tensor W analytically as a function of the regression

61

coefficients. This gives

σ2
1 =

||W ||2 −
√

(||W ||2)2 − 4
∑|A|

i=1(Wi)2 ·
∑|B|

i=1(W
i)2

2
(5.18)

σ2
2 =

||W ||2 +
√
(||W ||2)2 − 4

∑|A|
i=1(Wi)2 ·

∑|B|
i=1(W

i)2

2
, (5.19)

where σ1 and σ2 are the singular values of W with respect to an arbitrary bipartitioning.
Note that σ2 will always be non-zero so long as ||W ||2 > 0 (i.e. at least one coefficient
is non-zero), but σ1 will vanish if the regression coefficients are all zero in just one of the
partitions. The complexity of W is maximized, in a sense, when σ1 = σ2, which occurs when
the bias b is zero and when the squared magnitudes of regression coefficients for features in
A and B are equal.

5.3.3 Bilinear Regression

When we include bilinear terms in our regression model, the maximum number of excitations
increases from one to two. As before, the non-zero elements of W can be grouped based on
the number of excitations in A and B, with a total of three different groups based on whether
there is zero, one, or two excitations in A. Using these groupings, |W ⟩ is given by

|W ⟩ = |0⟩ |W0⟩+
|A|∑
i=1

|i⟩ |Wi⟩+
|A|−1∑
i=1

|A|∑
j=i+1

|i, j⟩ |Wij⟩ , (5.20)

where terms of the form |i, j⟩ |Wij⟩ have two excitations in A, terms of the form |i⟩ |Wi⟩ have
one excitation in A, and the term |0⟩ |W0⟩ has no excitations in A. The row vectors in these
different groups are given by the following truncations of Eq. (5.12):

|W0⟩ = W0 |0⟩+
|B|∑
i=1

W i |i⟩+
|B−1|∑
i=1

|B|∑
j=i+1

W ij |i, j⟩ (5.21)

|Wi⟩ = Wi |0⟩+
|B|∑
i=1

W j
i |j⟩ (5.22)

|Wij⟩ = Wij |0⟩ . (5.23)

While Eqs. (5.21 - 5.23) can potentially describe |A|2+|A|+2
2

unique vectors, it is important
to note that this is not a tight upper bound on the dimension of the row space, since the
|Wij⟩ are all proportional to one another regardless of the second-order coefficient values
Wij. Indeed, it is apparent by inspection that at most |A| + 2 of the row vectors can be
linearly independent, so we have that the multiplex rank is less than or equal to |A| + 2.
This bound is tight for all |A| > 1, since with |A| = 1 there cannot be two excitations in A
and therefore the |Wij⟩ must all vanish. In contrast with the r ≤ 2 bound found for linear
regression in Sec. 5.3.2, the bound we have derived here for bilinear regression is not the
same for all partitions, but rather scales linearly with the size of the smaller partition.

62

5.3.4 Multilinear Regression

Having worked through some simpler examples, we will now consider a generic upper bound
on the multiplex rank of a weight tensor when used for multilinear regression of degree d.
First, we note that the row vectors described in Eq. (5.12) inhabit subspaces which are the

direct sum of excitation subspaces {E(dB)}|B|dB=1 of B:

|Wi1...idA
⟩ ∈

d̄B⊕
dB=0

E(dB), E(dB) = span({|i1, ..., idB⟩}), d̄B = min(d− dA, |B|), (5.24)

where dA and dB are the number of excitations in A and B respectively. In words, Eq. (5.24)
states that the row vector |Wi1...idA

⟩ has support on basis vectors with up to d̄B excitations,

where d̄B is the maximum possible number of excitations in B given that there are dA exci-
tations in A. The dimension of E(dB) has the simple combinatorial form

dim(E(dB)) =

(
|B|
dB

)
, (5.25)

which is the number of ways to distribute dB excitations among |B| features. Note that the
excitation subspaces are very similar to the degree-j subspaces D(j) from Sec. 4.2.1, except
that those subspaces were spanned by basis vectors of the full tensor space H rather than
the partitioned space B.

The subspace decomposition given in Eq. (5.24) can be combined with a grid-based
visualization of the row vectors from Eq. (5.12) to help guide our analysis. This grid has
a height of h = 1 + min(d, |A|) and a length of ℓ = 1 + min(d, |B|), where min(d, |A|)
and min(d, |B|) are the maximum number of excitations that can be placed in A and B
respectively. The position (dA, dB) on the grid, indexed from zero, is mapped to the generic
expression given by Eq. (5.12) for the projection P of |Wi1...idA

⟩ onto E(dB):

PE(dB) |Wi1...idA
⟩ =

|B|−dB+1∑
j1=1

|B|−dB+2∑
j2=j1+1

· · ·
|B|∑

jdB=jdB−1+1

W j1...jB
i1...idA

|j1, ..., jdB⟩ , (5.26)

such that each row is uniquely identified by the number of excitations in A and each column
is uniquely identified by the number of excitations in B.

To give an example of how these grids are constructed, we can revisit bilinear regression
from Sec. 5.3.3 and grid the row vectors in Eqs. (5.21 - 5.23) as

W0 |0⟩ +
∑
j1

W j1 |j1⟩ +
∑
j1,j2

W j1j2 |j1, j2⟩ (5.27)

Wi1 |0⟩ +
∑
j1

W j1
i1
|j1⟩ + 0 (5.28)

Wi1i2 |0⟩ + 0 + 0, (5.29)

where each row and column has a consistent number of excitation in A and B respectively.
We have assumed here that |A| ≥ 2, so the dimensions h = ℓ = 3 of the grid are determined

63

by the maximum degree d (i.e. the maximum allowed number of excitations), which is two.
The utility of this grid comes from its clean separation of the different excitation subspaces,
with the ith column containing all projections into E(i). This makes it easier to determine
any linear dependence relationships that might exist between the row vectors, since linear
dependence must hold within each subspace. Note that to reduce clutter we will generally
omit the summation limits when writing out grid expressions.

It is worth considering how the grid pattern changes for different values of |A|, |B|, and
d, since this will make it easier to understand the corresponding changes in the multiplex
rank bound. When d ≤ |A|, the grid will be square and have a triangular structure like that
seen in Eqs. (5.27 - 5.29), where all grid cells with dB + dA > d (the sum of excitations in
each partition greater than the total number of excitations) are zero. When |A| < d ≤ |B|,
we have that h = |A| and ℓ = d, so the height of the grid will be smaller than its length.
The grid will still have a triangle structure, with dB + dA > d cells being zero, but the
row vectors |Wi1...iA⟩ at the bottom of the grid will have non-zero projections beyond the
E(0) = span({|0⟩}) subspace. As an example, if we consider trilinear regression (i.e. d = 3)
with |A| = 2 and |B| ≥ d, then the grid of row vectors is

W0 |0⟩ +
∑
j1

W j1 |j1⟩ +
∑
j1,j2

W j1j2 |j1, j2⟩ +
∑

j1,j2,j3

W j1j2j3 |j1, j2, j3⟩ (5.30)

Wi1 |0⟩ +
∑
j1

W j1
i1
|j1⟩ +

∑
j1,j2

W j1j2
i1

|j1, j2⟩ + 0 (5.31)

Wi1i2 |0⟩ +
∑
j1

W j1
i1i2

|j1⟩ + 0 + 0, (5.32)

where it is apparent from Eq. 5.32 that the row vectors with dA = 2 can have non-zero
projections in E(1). Similarly, if d > |B| then the grid dimensions will be |A| × |B|, with the
value of d determining how large the triangle of zeros will be in the bottom-right corner. For
the most extreme case of d = |A| + |B| = m, there are no zeros in the grid and thus every
row vector can have support in each excitation subspace.

With this groundwork laid, we now construct an algorithm which gives a tight upper
bound for the multiplex rank of a given weight tensor. This bound will necessarily be a
function of the partition sizes |A|, |B| and the maximum interaction degree d. Our approach
will be to sequentially populate the excitation subspaces, starting from the highest excitation,
with linearly independent vectors drawn from the set of row vectors. There are two important
quantities for us to consider here: the number αdB of row vectors with support on the dBth
excitation space, and the size βdB ≡ dim(E(dB)) of the dBth excitation subspace. While βdB
is just given by Eq. (5.25), the expression for αdB is

αdB =

min(|A|,d−dB)∑
dA=0

(
|A|
dA

)
. (5.33)

The terms in the sum are the number of row vectors associated with dA excitations in A (i.e.
|{|Wi1...idA

⟩}|), which is simply the number of ways to distribute dA excitations among the
features in A. The upper summation limit is the maximum number of excitations that can

64

be placed in A, given that dB of the d total excitations have already been placed in B. In
the context of the grid visualization, this limit plus one indicates which row the triangle of
zeros pattern starts for the dBth column.

With definitions for αdA and βdA in hand, our algorithm for determining the multiplex
rank r for the weight tensor is given by

r =

min(d,|B|)∑
dB=0

vdB , vdB = min

αdB −
min(d,|B|)∑
d′B=dB+1

vd′B , βdB

 , (5.34)

where vdB is the number of linearly independent vectors placed in the dBth excitation subspace
E(dB). The motivation for this recursive series is that we start by placing as many vectors as
possible into the highest excitation subspace E(d̄B), with the number of such vectors equal to
either the size βd̄B of the subspace or the number ad̄B of row vectors that have support on that
subspace (whichever is smallest). We then repeat this same process for the second-highest
excitation subspace, except that the number of available row vectors is equal to αd̄B−1 minus
the number of row vectors that we already used to fill the highest excitation subspace. This
subtraction is critical, because every vector with support in E(i) also has support in E(j) for
j < i (which is why the pattern of zeros in the grid is lower triangular), therefore αd̄B−1 on

its own counts vectors that we already used to span E(d̄B). Repeating this analysis across the
entire sequence of excitation subspaces yields the recursion relation in Eq. (5.34).

As a sanity check, we can confirm that Eq. (5.34) yields the ranks we found for the
simpler cases considered in Secs. 5.3.1 - 5.3.3. For a single-feature partition where |A| = 1,
|B| > 1, and d = m, Eq. (5.33) gives αdB = 2 for all dB. Then we have d̄B = |B| and therefore

v|B| = min(α|B|,
(|B|
|B|

)
) = 1. By the recursion relation, v|B|−1 = min(α|B|−1 − v|B|,

(|B|
|B|−1

)
) = 1,

since α|B|−1 = 2. For E(|B|−1), we have that α|B|−1 = 2 and v|B| + v|B|−1 = 2, so therefore

v|B|−2 = min(0,
(|B|
|B|−1

)
) = 0. Note that once the number of available vectors for a given

excitation subspace is zero the recursion can be halted, since this implies that all row vectors
have already been utilized. Putting everything together, the multiplex rank is given by
Eq. (5.34) as r = v|B| + v|B|−1 = 2, matching what we found in Sec. 5.3.1.

For linear regression, d = 1 and thus we need only consider v0 and v1 corresponding
to E(0) and E(1) respectively. By Eq. (5.33) we have the α1 = 1 and α0 = |A| + 1, while
by Eq. (5.25) we have that β1 = |B| and β0 = 1. This means that v1 = min(1, |B|) = 1
and v0 = min(|A| + 1 − 1, 1) = 1, so r = 2 as found in Sec. 5.3.2. For bilinear regression,
β2 =

1
2
|B|(|B|−1), α2 = 1, α1 = |A|+1, and α0 =

1
2
(|A|2+ |A|+2), so v2 = min(1, 1

2
|B|(|B|−

1)) = 1, v1 = min(|A| + 1 − 1, |B|) = |A|, and v0 = min(1
2
(|A|2 + |A| + 2) − |A| − 1, 1) =

min(1
2
(|A|2 − |A|), 1). The value of v0 is 0 if |A| = 1 and 1 otherwise, so r = |A| + 2 if

|A| > 1 and r = 2 if A = 1, precisely as we found in Sec. 5.3.3.

65

5.4 Applications to Tensor Network Regression

5.4.1 Bond dimension of low-degree regression models

As discussed in Sec. 2.2.4, the multiple rank of a tensor sets a lower bound on the bond
dimension needed to exactly represent it using a tensor network. When considering the
weight tensor represented in a tensor network regression model, the rank upper bounds
derived in Sec. 5.3 translate into tight lower bounds on the bond dimension needed to carry
out unrestricted multilinear regression up to degree d. By analyzing the multiplex rank
bounds for each degree as a function of partition size |A| and feature number m, we can
understand how the bond dimension grows and shrinks for different virtual bonds in the
network.

As a specific example, we can consider the MPS regression model from Sec. 3.1.2, in which
the featurization vectors are arranged in a line and joined together by a chain of third-order
component tensors. The virtual bond between components A(i) and A(i+1) is constrained by
the multiplex rank across partitions {x1, .., xi} and {xi+1, ..., xm}, which can be computed
using the recursive algorithm from Eq. (5.34) with A defined to be the smaller of the two
partitions. In Figure 5.1, we show plots of the bond dimension needed for unconstrained
multilinear regression using an MPS model as a function of virtual index position, with the
ith position corresponding to the index between A(i) and A(i+1). We have taken m = 784,
which is the number of pixels in the MNIST and Fashion MNIST images.

The plots in Figure 5.1 reveal some interesting behavior. The first row of plots, cor-
responding to linear and bilinear regression, conforms to the constant and linear scaling
expressions from Secs. 5.3.2 and 5.3.3 respectively. In the bilinear curve we can see mirror
symmetry at index position m

2
= 392 which is shared across all plots, since this marks the

point where an increase in the index position corresponds to a reduction in the size of A.
More interesting is the behavior observed for trilinear (degree 3) regression, in which the
bond dimension increases rapidly at first but then suddenly plateaus at index position 40.
The degree 5 plot shows an even more extreme discontinuity, as its rank actually starts to
decrease at position 112, despite the fact that |A| continues to grow. In the bottom row of
plots, corresponding to very high interaction degrees, we see complicated spiked curves with
multiple minima and maxima, although the bond dimension still grows on average with the
index position until the halfway point.

The precise relationship between multiplex rank, interaction degree, and partition size is
complicated (see Appendix 5.6.1), but we can motivate some of the broader trends observed
in Figure 5.1 by considering the impact of increasing |A|. Since there are only a finite number
of features, the growth of |A| must be offset by the shrinking of |B|, and these two changes
have opposing effects on the multiplex rank. An increase in |A| leads to a larger value of αi in
Eq. (5.33), which means that there are more row vectors available to populate the excitation
subspaces and thereby increase the multiplex rank. On the other hand, a decrease in |B|
leads to a decrease in the size of all excitation subspaces E(i) (except E(0)), which will tend
to reduce the multiplex rank. For any given increment |A| → |A|+ 1 the sizes of these two
competing effects will vary, and therefore the multiplex rank may grow, shrink, or remain
the same.

66

0 100 200 300 400 500 600 700 800
1.90
1.95
2.00
2.05
2.10

Bo
nd

 d
im

en
sio

n

Degree 1

0 100 200 300 400 500 600 700 800
0

100
200
300
400

Degree 2

0 100 200 300 400 500 600 700 800
0

200
400
600
800

Bo
nd

 d
im

en
sio

n

Degree 3

0 100 200 300 400 500 600 700 800
0
2
4
6
8 1e4 Degree 4

0 100 200 300 400 500 600 700 800
0.0
0.5
1.0
1.5
2.0

Bo
nd

 d
im

en
sio

n

1e5 Degree 5

0 100 200 300 400 500 600 700 800
0.0
0.2
0.4
0.6
0.8
1.0

1e7 Degree 6

0 100 200 300 400 500 600 700 800
Index position

0
1
2
3
4

Bo
nd

 d
im

en
sio

n

1e32 Degree 39

0 100 200 300 400 500 600 700 800
Index position

0.0
0.5
1.0
1.5
2.0

1e33 Degree 40

Figure 5.1: Plots of bond dimension versus virtual index position for an MPS model rep-
resenting unconstrained multilinear regression up to the given degree. The bond dimension
corresponds to the multiplex rank of the weight tensor with respect to partitions formed to
the left and right of the virtual index. Since the multiplex rank is a function only of the two
partition sizes rather than their specific contents, the plots are symmetric around the index
position corresponding to m

2
= 392, where |A| = |B|. At larger degrees, the bond dimension

curves are complicated functions of |A|, m, d, which we discuss in Appendix 5.6.1.

67

2 4 6 8 10
Interaction degree

104

107

1010

1013

1016

1019

1022

1025

Co
un

t

MPS parameters
Multilinear regressors

Figure 5.2: Plot of MPS parameters (blue) and regressor number (black) versus interaction
degree for m = 784 features. The parameter curve gives the number of MPS component
tensor elements needed to perform arbitrary multilinear regression up to the specified degree,
while the regressor curve gives the number of non-zero elements in the weight tensor W .

68

Aside from the shapes of the curves in Figure 5.1, it is also worth considering the actual
magnitudes of the bond dimension across different index positions and interaction degrees.
These magnitudes dictate the number of parameters needed for an MPS model to perform
unconstrained regression up to the specified degree, which can allow us to assess the efficiency
of the tensor network representation as well as its limitations. Given that the multiplex rank
provides a tight lower bound on the MPS bond dimension [49], the minimum number of
model parameters |θ| is

|θ| = 8 +
m−2∏
i=1

2riri+1, (5.35)

where ri is the multiplex rank of W for partition A = {x1, ..., xi}, and the eight additional
parameters come from the 2× 2 matrices at each end of the MPS1. In Figure 5.2, we give a
plot of these parameter numbers as a function of maximum interaction degree (i.e. regression
on all feature products less than or equal to the specified degree), alongside a curve showing
the actual number of feature-product regressors. The most obvious thing to note is that the
number of parameters needed for arbitrary multilinear regression is very large, with even
bilinear regression already requiring over 107 parameters when m = 784 features. This is far
in excess of the actual number of bilinear regressors, which is only about 300,000.

A similar inflation of parameter number is seen across all interaction degrees, and demon-
strates that their is an inherent inefficiency in using a tensor network to exactly represent
the weight tensor. This is unsurprising, however, as the purpose of networks such as MPS is
to create low-rank approximations rather than identical recreations. Nonetheless, the bond
dimension curves from Figure 5.1 paint a stark picture of just how significant the low-rank
restriction is. Assuming that we set the bond dimension of our MPS regression model to 20,
which is a reasonable value, the model is already placing massive constraints on the bilinear
coefficients, let alone those of the higher-degree regressors. Indeed, a bond dimension of 20 is
sufficient for unconstrained bilinear regression only when m ≤ 39, at which point the curse of
dimmensionality is minimal anyway for small interaction degrees. That being said, the util-
ity of a tensor network regression model comes not from its ability to perform unconstrained
regression at a low interaction degree, but rather in doing constrained regression across a
wide range of degrees. From this perspective, the large magnitudes found in Figures 5.1 and
5.2 are neither surprising nor concerning, as we always intend to place severe restrictions on
the multiplex rank of the weight tensor.

5.4.2 Significance of inter-partition regressors

In the previous subsection, we found that the multiplex rank of a high-degree weight tensor
grows rapidly with the number of features in the smaller partition A, but it turns out that
not all of the regression coefficients contribute equally to this growth. Given the feature
partitions A = {x1, ..., x|A|} and B = {x|A+1|, ..., xm}, we can classify each feature-product
regressor xi1xi2 · · ·xid based which partitions the individual features are drawn from. We refer
to a regressor as intra-partition if all of the features in the feature product are drawn from

1For simplicity we are neglecting the parameters in the output component, which is equivalent to assuming
that the prediction vector y⃗ contains only a single element.

69

a single partition, while a regressor with at least one feature from each partition is classified
as inter-partition. Using the notation introduced in Sec. 5.2.1, the regression coefficients
corresponding to intra-partition regressors are written as eitherWi1...id orW

j1...jd for d-degree
feature products, depending on whether the features all come from A or B respectively. On

the other hand, coefficients for inter-partition regressors always have the formW
j1...jdB
i1...idA

, where

dA of the features are from A and dB of them are from B.
With this inter-partition versus intra-partition distinction in mind, we can look back

at the row vector expressions in Eq. (5.12) and see that each row vector has only a single
component that does not involve inter-partition coefficients. Unsurprisingly, this component
corresponds to the basis vector |0⟩, which spans the zero-excitation subspace E(0). The one
exception is |W0⟩, where every coefficient is intra-partition. If we require that all features
be from either A or B, then we are restricted to a single row vector that has support across
all excitation subspaces (all columns of the matrix), and a large number of row vectors that
that have support only on E(0) (the first column of the matrix).

The practical significance of all this is that the multiplex rank of the weight tensor is
determined almost entirely by the inter-partition coefficients. To give a concrete example,
we can consider a weight tensor where all inter-partition coefficients are set to zero. This
would result in a regression model for which the interaction degree is at most |B| among
feature-products from B and at most |A| among feature-products from A. The row vector
grid for the weight tensor would be

W0 |0⟩ +
∑
j1

W j1 |j1⟩ +
∑
j1,j2

W j1j2 |j1, j2⟩ + . . . +
∑

j1,...,j|B|

W j1...j|B| |j1, ..., j|B|⟩ (5.36)

Wi1 |0⟩ + 0 + 0 + . . . + 0 (5.37)

Wi1i2 |0⟩ + 0 + 0 + . . . + 0 (5.38)

...
...

...
...

... (5.39)

Wi1...i|A| |0⟩ + 0 + 0 + . . . + 0, (5.40)

which shows that there can be a maximum of two linearly independent row vectors for any
values of |A| and |B|. Note that in order for the multiplex rank to be one, all of the intra-
partition regressors in either |A| or |B| would need to also be set to zero. This implies that,
contrary to what might be expected, factorization of the weight tensor across the partition
is not in general possible even if all inter-partition coefficients are removed.

5.4.3 Short-range and long-range interactions

Given a specific network architecture, it is natural to ask whether certain kinds of feature
interactions are more costly to represent than others. It it is well-known in quantum physics,
for example, that an MPS-based quantum state favors short-range correlations between sites
on a 1-D lattice [60]. While it is possible to represent states with long-range correlations using
an MPS, it generally requires a significantly larger bond dimension. In this subsection we
carry out a similar analysis for short-range and long-range interactions in an MPS regression
model, and quantify the impact of interaction distance on the bond dimension.

70

To begin, we induce a distance measure between the features by mapping them onto a
1-D grid. The initial ordering of the features is unimportant for our purposes, so we will
simply take xi to be the element on the ith grid point. With this spatial arrangement, the
distance between xi and xj is given by |i − j|, which is one plus the number of features
separating xi and xj on the grid. For m features, the maximum possible distance is m− 1,
while the shortest distance is 1. Since our analysis will be focused on bipartitions of the
features that are contiguous on the grid, we define the split point to be the the value of i
such that x1, ..., xi are in the left partition and xi+1, ..., xm are in the right partition.

Let us now consider a generic split point s < m
2
− 1 which divides the features into

a smaller partition A = {x1, ..., xs} and a larger partition B = {xs+1, ..., xm}. When all
inter-partition regressors are set to zero, the row vectors of the matricized weight tensor
are identical to those in Eqs. (5.36 - 5.40) with |A| = s and |B| = m − s. If we introduce
an interaction between x1 and xm, which is to say that we assign a non-zero coefficient
to regressor x1xm, then row vector |W1⟩ becomes W1 |0⟩ + |Wm

1 ⟩ |m⟩. This increases the
multiplex rank of the weight tensor by one, since the row vector now has support on E(1) in
addition to E(0). If we introduce another interaction, this time between xs and xs+1, then
|Ws⟩ = Ws |0⟩+W s+1

s |s+ 1⟩ and we again increase the multiplex rank by one. It is important
to note that the distances of the x1xm and xsxs+1 interactions are 1 and m− 1 respectively,
yet they both increase the multiplex rank by the same amount. This reflects the fact that
excitation subspaces have no notion of distance, with a change of Wi |0⟩ → Wi |0⟩ +W j

i |j⟩
in a row vector having the same implications for linear dependence regardless of the value of
j. Indeed, for fixed partitions A and B the relevant quantity is the number of inter-partition
interactions2, rather than their distance.

The significance of the interaction distance become apparent when we consider the impact
of a given interaction acrossmultiple partition schemes. Continuing with the x1xm and xsxs+1

interactions, let us shift the bipartition split point from s to s+1, such thatA = {x1, ..., xs+1}
and B = {xs+2, ..., xm}. With respect to these new partitions, the xsxs+1 interaction now
lies entirely in A, and therefore no longer contributes to the corresponding multiplex rank
of the weight tensor. The x1xm interaction, by contrast, still spans the two partitions and
will therefore continue to increase the multiplex rank. We can repeat this analysis for all
possible split points 1 ≤ s′ ≤ m − 1, and find that the x1xm interaction always spans the
two partitions, while the xsxs+1 interaction only spans the partitions when s′ = s.

For an MPS regression model, the significance of our analysis here is that a long-range
interaction will increase the bond dimensions of more virtual indices than a short-range
interaction will. The x1xm interaction, for example, could increase the bond dimension for
every virtual index in the network, while the xsxs+1 interaction would only increase the
bond dimension of the virtual index between xs and xs+1. In this sense, we can say that
the MPS regression ansatz shows the same limitations as the MPS ansatz from quantum
physics, in that long-range interactions require larger bond dimensions and are thus more
costly to represent than short-range interactions.

To provide a concrete example, we will consider two different bilinear MPS regression

2We should note that the number of interactions is still not the only factor to consider, since the multiplex
rank is reduced if the same feature participates in multiple interactions.

71

models: one has exclusively nearest-neighbor interactions, while the other has an equal
number of interactions that are randomly distributed. In this context, a nearest-neighbor
interactions encompasses any regressor of the form xixi+1, or equivalently any interaction
with a distance of 1. Given m features, there are m−1 such interactions, so both models will
have a total of m−1 regressors of degree 2 (as well as m degree-1 regressors and a bias term).
If we again consider an arbitrary split point s < m

2
−1, then the only inter-partition regressor

in the nearest-neighbor model will be xsxs+1. This means that the bond dimension for each
virtual index will be at most three regardless of the value of m, which is much smaller in
general than the maximum value of m

2
from Figure 5.1. By contrast, the bilinear model with

m − 1 randomly-distributed interactions will have an average bond dimension that scales
linearly with m (maximum of about 300 for m = 784), and therefore be impractical for data
with a large number of features.

5.4.4 Rank reduction through embedding

In Chapter 4, we utilized the interaction decomposition to selectively retain only a subset of
regressors in a tensor network regression model, thereby generating a degree-limited model
similar to those that we have been considering here. However, a key difference is that the
interaction decomposition can generate low-degree regression functions without requiring
that the high-degree elements of the weight tensor be set to zero. It is reasonable then to
ask how the multiplex rank of a cumulative-d interaction decomposition model from Sec. 4.4
may differ from that of a standard tensor regression model, which we will refer to here as
the “zeroed” model.

To see more clearly the difference between an interaction decomposed model and a zeroed
model, we can look at the row vector grid corresponding to a cumulative-2 (i.e. bilinear)
model:

W0 |0⟩ +
∑
j1

W j1 |j1⟩ +
∑
j1,j2

W j1j2 |j1, j2⟩ (5.41)

Wi1 |0⟩ +
∑
j1

W j1
i1
|j1⟩ +

∑
j1,j2

ϕj1j2
i1

|j1, j2⟩ (5.42)

Wi1i2 |0⟩ +
∑
j1

ϕj1
i1i2

|j1⟩ +
∑
j1,j2

ϕj1j2
i1i2

|j1, j2⟩ , (5.43)

where ϕj1...jℓ
i1...ik

is a parameter whose value can be set arbitrarily, since it will not actually be
included in the regression. Comparing Eqs. (5.41 - 5.43) to the bilinear grid from Eqs. (5.27
- 5.29), the most significant difference is that every row vector in the cumulative-2 weight
tensor can span the entire set of excitation subspaces, since the values of the free parameters
ϕj1...jℓ
i1...ik

are not constrained to be zero. Given that the output of the model is determined

exclusively by the W j1...jℓ
i1...ik

coefficients , we can view Eqs. (5.41 - 5.43) as the embedding of a
low-degree weight tensor within a tensor with maximal degree.

As shown in Appendix 5.6.2, the multiplex rank of an embedded weight tensor will in
general be less than the corresponding weight tensor which has its higher-degree coefficients
explicitly set to zero. As a simple example, we can easily show that almost all linear regression

72

0 10 20 30 40 50
Interaction degree

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pa
ra

m
et

er
 ra

tio

Figure 5.3: Plot of the parameter ratio for an MPS representing the embedded weight tensor
over an MPS representing the zeroed weight tensor, with m = 784. In all cases the number
of parameter is on the same order of magnitude, although the embedded network is always
smaller. There is a clear oscillation in the ratio at lower degrees, which eventually smooths
out into a roughly linear downward trend at higher degrees.

functions can be represented using rank-one weight tensors if the higher-degree contributions
are ignored. Given row vectors |W0⟩ = W0 |0⟩+

∑
j W

j |j⟩ and |Wi⟩ = Wi |0⟩+
∑

j ϕ
j
i |j⟩, we

will have |Wi⟩ ∝ |W0⟩ for all i if

|Wi⟩ =
m∑
j=1

Wi |0⟩+
W jWi

W0

|j⟩ = Wi

W0

|W0⟩ , (5.44)

where we have set ϕj
i = W jWi

W0
. In a full contraction of the weight tensor, the second-

degree term present in Eq. (5.44) would interefere with the regression function, but using
the interaction decomposition we can efficiently remove it. Note that ϕj

i will be undefined
if W0 = 0, so regression functions with no bias term are not factorizable. Interestingly, this
means that shifting the data features can in principle lead to models of differing complexity,
although in practice W0 = 0 can be approximated to high precision.

Given a reduction in the multiplex rank, we can expect a reduction in the number of
parameters needed to represent the weight tensor using a tensor network. In Figure 5.3, we
plot the ratio of MPS parameter number for the embedded and zeroed weight tensors at
different interaction degrees, with the raw parameter number for the zeroed model having

73

been given in Figure 5.2. The plot clearly shows that the embedded and zeroed weight
tensors have parameter numbers on the same order of magnitude, with the embedded MPS
always requiring somewhat fewer elements. The most significant reductions are seen in the
linear model and at higher interaction degrees, with odd degrees showing a greater effect
than even degrees. The patterns seen in Figure 5.3 are driven by broader trends in the bond
dimension, which can be seen in Figure 5.4 from Appendix 5.6.2.

5.5 Discussion

The objective of our work in this chapter was to find a precise quantitative relationship
between the interaction degree of a regression model and the bond dimension needed to
represent it via a tensor network. The key quantity underlying this relationship is the
multiplex rank, and we therefore derived a general algorithm to compute its upper bound
given a feature number, partition size, and interaction degree. With this algorithm, we then
probed various properties of the bond dimension in the context of tensor network regression,
with an eye toward understanding how the form of the weight tensor can place greater or
lesser demands on the network.

The benefit of this kind of analysis is that it offers a clear mathematical framing for
many questions that can be asked about tensor network models. We expect intuitively that
a larger bond dimension should be associated with more sophisticated regression models, and
in Sec. 5.4.1 we were able to demonstrate that this is true if a model’s maximum interaction
degree is taken as a measure of its sophistication. For MPS models, it is commonly assumed
that the tensor network ansatz must favor short-range correlation between features, though
precise descriptions of these “correlations” have been lacking. In Secs. 5.4.2 and 5.4.3, we
showed that interactions between features far apart on the MPS chain have a larger impact
on the bond dimension of the network than interactions with a shorter range. This reasoning
could be generalized to other tensor network architectures, such as PEPS (see Sec. 3.1.4), to
see whether they possess the same properties that have been observed in quantum physics.

Beyond answering existing question, the multiplex rank analysis in this chapter also
provides a straightforward method of investigating new tensor regression algorithms. For
the interaction decomposition models proposed in Sec. 4.4, we showed in Sec. 5.4.4 that the
degree-limited regression function can be embedded into weight tensor of maximal degree,
and that this tensor can have a multiplex rank smaller than a weight tensor whose higher-
degree coefficients were explicitly set to zero. However, we also showed that this leads to only
a modest reduction in the number of parameters in a model, and therefore does not itself
represent an especially compelling reason to employ these kinds of models. Any algorithm
which seeks to reduce the required bond dimension of a tensor network model can be similarly
evaluated by probing the characteristics of its multiplex rank.

It is important to note that all of our work in this chapter was done without making
reference to any specific properties of the underlying dataset. While the number of features
was significant, the structure and identity of the those features was entirely irrelevant to
our analysis. This was a deliberate choice, as the dataset determines the composition of the
tensor network only indirectly via its impact on the weight tensor. In this light, our analysis is

74

predicated on assuming a set of reasonable weight tensors from the outset, without worrying
about why that type of weight tensor might be desirable for a given regression task. This
is not uncommon in machine learning, as models are often employed without any clear
indication that the properties of the data would demand that model type. Still, we would
ideally want to tailor the tensor network based on the properties of the target dataset, and
we explore a possible method for achieving this in Chapter 6.

5.6 Appendix

5.6.1 Multiplex rank as a function of partition size

In Sec. 5.4.1, we considered the minimum bond dimension needed for an MPS model to carry
out unconstrained multilinear regression up to a given degree, and how it varied for different
virtual indices in the chain. The plots in Figure 5.1 revealed a complex relationship between
the bond dimension, which is equivalent to the multiplex rank, and the index position,
which is a proxy for the partition size |A|. In the present subsection we demonstrate how
this relationship emerges out of Eq. (5.34), and assess its properties.

The curves in Figure 5.1 are largely in the regime where d < |A| < |B|, so this is where
we will focus our analysis. Under such constraints, we have from Eqs. (5.33) and (5.34) that

αdB =

d−dB∑
dA=0

(
|A|
dA

)
= adB+1 +

(
|A|

d− dB

)
(5.45)

vdB = min

adB − d∑
d′B=dB+1

vd′B+1, βdB

 (5.46)

r =
d∑

dB=0

vdB , (5.47)

where each of the summation upper limits now depend only on d. Note that with these
new limits, αdB can be written recursively in terms of αdB+1. If we now consider vd, the
number of linearly-independent vectors in the highest excitation subspace E(d), it is clear
that Eq. (5.46) becomes

vd = min(αd, βd) = min

((
|A|
0

)
,

(
|B|
d

))
= αd, (5.48)

since
(|A|

0

)
= 1 will always be less than or equal to

(|B|
d

)
for any value of d. If we now move

from higher to lower excitations and evaluate vd−1, we find

vd−1 = min(αd−1 − αd, βd−1) = min

((
|A|
1

)
,

(
|B|
d− 1

))
, (5.49)

where ad−1 − ad is easily evaluated using the recursive relationship in Eq. (5.33).

75

The form of Eq. (5.49) places us at a cross-roads: if d > 1, then
(|A|

1

)
<
(|B|
d−1

)
since

|A| < |B| and we have that vd−1 =
(|A|

1

)
. If d ≤ 1, however, then

(|A|
1

)
>
(|B|
d−1

)
and we have

vd−1 = βd−1. Even if d > 1, there will eventually be a value 0 ≤ c < d such that
(|A|
d−c

)
>
(|B|

c

)
,

and we refer to this value c as the cross-over point. This point is significant because it marks
where vdB stops being determined by the value of |A|, and starts being determined by the
value of |B|. For all dB > c we have

vdB = min

αdB −
d∑

d′B=dB+1

vd′B , βdB

 = min(αdB − αdB+1, βdB) = min

((
|A|

d− dB

)
,

(
|B|
dB

))

=

(
|A|

d− dB

)
,

(5.50)

which can be confirmed by simply following the recursion back to vd. For dB = c, the
minimum changes and we instead have

vc = min

αc −
d∑

d′B=c+1

vd′B , βc

 = min(αc − αc+1, βc) = min

((
|A|
d− c

)
,

(
|B|
c

))
=

(
|B|
c

)
,

(5.51)
and thus vc = βc. The equality of vdB and βdB continues for all dB < c, since with more
excitations shifting from B to A the number of row vectors only continues to increase relative
to the size of the excitation subspace.

Putting the dB > c and dB ≤ c regimes together, we have that the multiplex rank r is
given by

r(|A|, |B|) =
c∑

dB=0

(
|B|
dB

)
+

d∑
d′B=c+1

(
|A|

d− d′B

)
, c = max dB s.t.

(
|A|

d− dB

)
>

(
|B|
dB

)
, (5.52)

which holds whenever the maximum interaction degree d is less than or equal to |A|. In
words, Eq. (5.52) states that contributions to the multiplex rank from higher excitation
subspaces are limited by the small number of vectors that have support on them, thus giving
a dependence on |A|. However, at some cross-over point c the number of supported row
vectors starts to exceed the size of the subspace, and thus the rank contributions begin to
be limited by the dimension of the excitation subspaces as dictated by |B|.

To understand the shapes of the bond dimension curves in Figure 5.1, we can use
Eq. (5.52) to compute the finite difference ∆[r](|A|, |B|) = r(|A| + 1, |B| − 1) − r(|A|, |B|),

76

which takes the form

∆[r](|A|, |B|) =
c′∑

dB=0

(
|B| − 1

dB

)
+

d∑
d′B=c′+1

(
|A|+ 1

d− d′B

)
−

c∑
dB=0

(
|B|
dB

)
−

d∑
d′B=c+1

(
|A|

d− d′B

)

=
c∑

dB=0

(
|B| − 1

dB

)
−
(
|B|
dB

)
+

d∑
d′B=c′+1

(
|A|+ 1

d− d′B

)
−
(

|A|
d− d′B

)

+
c′∑

d′′B=c+1

(
|B| − 1

d′′B

)
−
(

|A|
d− d′′B

)

= −
c−1∑
dB=0

(
|B| − 1

dB

)
+

d∑
d′B=c′+2

(
|A|

d− d′B

)
+

c′∑
d′′B=c+1

(
|B| − 1

d′′B

)
−
(

|A|
d− d′′B

)
,

(5.53)

where c and c′ are the cutoff points for |A|, |B| and |A|+ 1, |B| − 1 respectively (note that
c′ ≥ c). While Eq. (5.53) does not immediately lend itself to interpretation, we can gain
further insight by analyzing ∆[r] for fixed values of c. These expressions are easily derived
from the last line of Eq. (5.53) by setting c′ = c:

∆[r](|A|, |B|) =

d−2∑
dA=0

(
|A|
dA

)
c = 0

d−3∑
dA=0

(
|A|
dA

)
− 1 c = 1

d−4∑
dA=0

(
|A|
dA

)
−
(
|B| − 1

1

)
− 1 c = 2

...

⌈ d
2⌉−2∑
dA=0

(
|A|
dA

)
−
⌊ d

2⌋−1∑
dB=0

(
|B| − 1

dB

)
c =

⌊
d

2

⌋
,

(5.54)

where the lower limit c =
⌊
d
2

⌋
marks the largest value of c for which

(|A|
d−c

)
could ever be

greater than
(|B|

c

)
. Note that we have introduced the index dA = d − dB to simplify the

expressions. The implication of Eq. (5.54) is that not only will the rate of change of the
multiplex rank vary with |A| and |B|, but the functional form of this dependence will also
change when |A| passes through certain critical points that mark a change in the cutoff value
c. As |A| increases the cutoff grows, and thus the finite difference moves through Eq. (5.54)
from top to bottom.

77

To see how Eq. (5.54) operates in practice, we can use it to generate some of the curves
observed in Figure 5.1. For linear regression (d = 1), the only valid cutoff point is c = 0,
which by the given summation limit yields ∆[r] = 0 as expected. For bilinear regression
(d = 2), the cutoff point could be either c = 0 or c = 1 based solely off the range of c values
given in Eq. (5.54), but we can easily verify that the

(|A|
d−c

)
>
(|B|

c

)
inequality is not satisfied

when c = 1. The finite difference is therefore given by ∆[r] =
(|A|

0

)
= 1, which again agrees

with the plot in Figure 5.1. A more interesting example is cubic regression, (d = 3), where
c = 0 and c = 1 are both valid cutoffs. This results in the piecewise function

∆[r](|A|, |B|) =

|A|+ 1 c = 0

0 c = 1
(5.55)

which explains the parabolic rise and then sudden plateau in the cubic curve that was
observed in Figure 5.1. Note that the values of |A| for which the cutoff changes can be
solved for by expanding out the binomial coefficients on both sides of

(|A|
d−c

)
>
(|B|

c

)
. In the

cubic case, it can be easily shown that c = 1 whenever

|A| >
√
1 + 8m− 1

2
, (5.56)

whereas c = 0 for smaller values of |A|.
Finally, we can use Eq. (5.53) to show how it is possible for the multiplex rank to actually

shrink as |A| increases. Taking d = 5, we have cutoff values of c ∈ {0, 1, 2}, which leads to
the piecewise function

∆[r](|A|, |B|) =

(
|A|
3

)
+

(
|A|
2

)
+ |A|+ 1 c = 0

(
|A|
2

)
+ |A| c = 1

|A| − |B|+ 1 c = 2.

(5.57)

Since |A| ≤ |B| by construction, the slope of the multiplex rank will be negative for every
value of |A| once c = 2, which explains the sudden drop-off of the degree-5 curve in Figure 5.1.
The more complicated curves corresponding to degrees 39 and 40 in that figure could also be
laboriously explained using Eq. (5.54), but we will just note here that each of the observed
cusps can be mapped back to a change in the cutoff value as |A| increases.

5.6.2 Rank of embedded weight tensors

In Sec. 5.4.4, we considered the multiplex rank of a low-degree weight tensor whose higher-
degree coefficients are simply ignored rather than being set to zero. Given an appropriate
choice of these freely-varying parameters, denoted ϕj1...jℓ

i1...ik
, we show here that it is possible to

reduce the multiplex rank of this embedded weight tensor below that of the zeroed version.

78

Although the general problem of constrained rank minimization is NP-hard [98], it is
relatively straightforward to derive a lower-bound for the multiplex rank of the cumulative-d
weight tensors. To motivate our approach, it is helpful to first consider the simpler problem
of embedding a d×d triangular matrix T into a generic d×d matrixM . Using Tij to denote
the fixed elements taken from T , and ϕij to denote elements of M which are free to vary, we
have

T =

T1,1 T1,2 . . . T1,d−1 T1,d
T2,1 T2,2 . . . T2,d−1 0
T3,1 T3,2 . . . 0 0
...

...
. . .

...
...

Td,0 0 . . . 0 0

 , M =

T1,1 T1,2 . . . T1,d−1 T1,d
T2,1 T2,2 . . . T2,d−1 ϕ2,d

T3,1 T3,2 . . . ϕ2,d−1 ϕ2,d
...

...
. . .

...
...

Td,1 ϕd,2 . . . ϕd,d−1 ϕd,d

 . (5.58)

Note that T is a rotated version of the usual triangular matrix format, intended to better
align with the form of the weight tensor matricizations.

The maximum rank of T is easily seen to be d, since it is always possible to choose
elements such that every row is linearly independent of the others. The question then is
whether the free parameters ϕij in M can be chosen such that some of the row vectors
become linearly dependent. The limiting factor in this dependence will necessarily be the
fixed elements Tij, and thus a lower-bound on the rank of M can be found by considering
submatrices of M which contain only Tij elements. The submatrix of this form with the
highest possible rank is the contiguous square submatrix R whose upper-left element is T1,1
and whose lower-left element is T⌈ d

2⌉,⌈ d
2⌉, which has a maximum rank of

⌈
d
2

⌉
. Regardless of

the values chosen for {ϕij}, the rank of M can never be made lower than the rank of R.
On the other hand, for non-singular R there will always exist anM that has a rank equal

to this lower bound3. Consider the d×
⌈
d
2

⌉
submatrix generated by removing all columns of

M not present in R. This submatrix has an additional d−
⌈
d
2

⌉
rows vectors not present in R,

but these can always be written as linear combinations of the rows of R. If we now add back
in the removed columns and consider the entire matrix M , these same linear combinations
can be used to the generate the complete row vectors by simply choosing values for the ϕij

that match the corresponding combinations of the Tij in the added columns.
We can apply this same logic to the matricized weight tensor by considering the smallest

submatrix whose row space spans all of the non-zero regression coefficients W j1...jℓ
i1...ik

. We
therefore seek the smallest set of row vectors which each contain at least as many non-zero
coefficients as any row vector outside the set, and which contains a number of row vectors
greater than or equal to this coefficient count. The elements W j1...jℓ

i1...ik
are non-zero wherever

the total excitation number is less than or equal to the maximum interaction degree d of the
model, which means that the width of row vector |Wi1...ik⟩ (i.e. the number of columns on
which it has support) is given by the sum of the dimensions of the excitation subspaces less
than or equal to d − k. The number of row vectors with k or fewer excitation is given by
αk from Eq. (5.33), where we assume |A| > d. Putting these together, we want to find the

3The bound is not tight when R is singular, but we can always approximate the elements of a singular
matrix to arbitrary precision using a full-rank matrix.

79

number of excitations n such that

n∑
dA=0

(
|A|
dA

)
≥

d−n−1∑
dB=0

(
|B|
dB

)
, (5.59)

where the left side of the expression denotes the number of row vectors with at most n
excitations and the right side denotes the maximum number of non-zero coefficients of row
vectors with n+ 1 or more excitations.

The submatrix formed by all row vectors with up to n excitations has the shape∑n
dA=0

(|A|
dA

)
×
∑d−n

dB=0

(|B|
dB

)
, and thus its rank r will generically be given by

r = min

(
n∑

dA=0

(
|A|
dA

)
,
d−n∑
dB=0

(
|B|
dB

))
, (5.60)

where we use the smallest value of n that satisfies Eq. (5.59). By the same reasoning used for
T and M , this rank sets a lower bound that can in general be made tight by an appropriate
choice of the free parameters ϕj1...jℓ

i1...ik
. In Figure 5.4, we show the result of applying Eq. (5.60)

to the same MPS representation problem considered in Sec. 5.4.1 and plotted in Figure 5.1.
For every interaction degree and index position, we find that the embedded weight tensor
can be represented using a smaller bond dimension than the zeroed weight tensor, although
the difference is not especially significant.

80

0 100 200 300 400 500 600 700 800
1.0
1.2
1.4
1.6
1.8
2.0

Bo
nd

 d
im

en
sio

n

Degree 1

0 100 200 300 400 500 600 700 800
0

100
200
300
400

Degree 2

0 100 200 300 400 500 600 700 800
0

200
400
600
800

Bo
nd

 d
im

en
sio

n

Degree 3

0 100 200 300 400 500 600 700 800
0
2
4
6
8 1e4 Degree 4

0 100 200 300 400 500 600 700 800
0.0
0.5
1.0
1.5
2.0

Bo
nd

 d
im

en
sio

n

1e5 Degree 5

0 100 200 300 400 500 600 700 800
0.0
0.2
0.4
0.6
0.8
1.0

1e7 Degree 6

0 100 200 300 400 500 600 700 800
Index position

0
1
2
3
4

Bo
nd

 d
im

en
sio

n

1e32 Degree 39

0 100 200 300 400 500 600 700 800
Index position

0.0
0.5
1.0
1.5
2.0

1e33 Degree 40

Figure 5.4: Plots of the MPS bond dimension for the embedded weight tensor (orange dashed
line) and the zeroed weight tensor (blue solid line) as a function of virtual index position
and interaction degree. The curves for the zeroed weight tensor are identical to those from
Figure 5.1. The bond dimension of the embedded weight tensor representation is smaller for
every index position and interaction degree, although the difference is never especially large
in proportion.

81

Chapter 6

Mutual Information Scaling in Image
Datasets

This chapter is derived from previously published work by Convy, Huggins, Liao, and Wha-
ley [29], which carries out correlation scaling analysis on image datasets in a manner analo-
gous to the entanglement scaling analysis from quantum physics.

6.1 Introduction

In Chapter 5, we explored how the bond dimension of a tensor network ansatz is impacted
by the maximum interaction degree of the underlying regression model. A limitation of our
approach there, however, was that we assumed a particular form for the weight tensor at the
outset. This is fine for a theoretical analysis of tensor network models in general, but it fails
to offer much guidance on designing a model for a specific machine learning task. Ideally,
we would want tailor the properties of the weight tensor based on the available training set,
along with prior knowledge we may have about the nature of the data, and then identify the
optimal tensor network model for that particular weight tensor.

The challenge of designing a specialized tensor network ansatz is also faced in the field of
quantum physics, where researchers seek to explore specific portions of Hilbert space using
various network architectures. One of the most fruitful methods developed for this purpose
has been the characterization of entanglement scaling, which describes how the bipartite
entanglement in a quantum system grows with the partition size. As an example, it was
discovered that the success of DMRG in 1-D systems was made possible by the short-range
interactions present in many physical Hamiltonians, which lead to ground states that possess
localized entanglement that obeys an “area law” or more properly a boundary law [71]. These
discoveries have helped motivate the development of other network structures such as PEPS
(see Sec. 3.1.4) and the multiscale entanglement renormalization ansatz (MERA) [99] to deal
with multidimensional lattices and quantum critical points respectively.

The purpose of the work in this chapter is to take the entanglement scaling analysis that
has been so illuminating in quantum many-body physics, and adapt it for use on the classical
data commonly found in machine learning. Through this analysis, we seek to understand

82

which tensor networks would be most appropriate for specific learning tasks. The chapter is
organized into four sections, with Sec. 6.2 first reviewing how entanglement scaling relates to
tensor network methods in quantum many-body physics. This analysis is then extended to
classical data by using the mutual information (MI), which provides a generalized measure
of correlation. We show that when using tensor networks for probabilistic classification of
orthogonal inputs, the MI of the data provides a lower-bound on the entanglement and thus
the connectivity of the tensors.

In Sec. 6.3, we introduce a numerical method for estimating the MI of a dataset given
access to only a finite number of samples. We then test the accuracy of this method in
Sec. 6.4 on a set of Gaussian distributions engineered to have different MI scaling patterns
with respect to spatial partitioning of the variables. In Sec. 6.5 we estimate the MI scaling of
MNIST and the Tiny Images, two well-known image datasets introduced in Sec. 2.3.1, and
find evidence that the MI between a centered, square patch of pixels and the surrounding
pixels scales with the boundary of the inner patch (a boundary law), rather than with the
number of pixels (a volume law). This boundary-law scaling suggests that networks with an
underlying 2-D grid structure such as PEPS or STNs (see Sec. 3.1.5) would be especially
well-suited for machine learning on images.

6.2 Correlation Scaling

6.2.1 Entanglement Scaling in Quantum Systems

Entanglement is a defining property of quantum mechanics [100], and is the source of all
correlations between components of a pure-state composite system [101]. Although there
are multiple methods of quantifying entanglement, the entropy of entanglement is a widely
used measure for entanglement between bipartitions of a composite system. For a pure
state defined by the joint density matrix ρAB with reduced density matrices ρA and ρB
corresponding to the bipartitions A and B, the entanglement entropy is defined as the von
Neumann entropy of ρA (or equivalently ρB)

E(A,B) = −Tr(ρA log ρA). (6.1)

A connection between the entanglement entropy of a quantum state and its structure can be
made using the Schmidt decomposition [102], which is defined for state |ψ⟩ on the combined
Hilbert space HA ⊗HB as

|ψ⟩ =
r∑

α=1

λα |sAα ⟩ |sBα⟩ , (6.2)

where r is the Schmidt rank, the λα are the Schmidt coefficients, and |sAα ⟩ , |sBα⟩ are the
orthonormal Schmidt basis states in HA and HB respectively. Substituting Eq. (6.2) into
Eq. (6.1) gives an expression for the entanglement in terms of the Schmidt coefficients

E(A,B) = −
r∑

α=1

|λα|2 log(|λα|2). (6.3)

83

Formally, the Schmidt decomposition may be regarded as an SVD of the matrix C of coeffi-
cients that form |ψ⟩:

|ψ⟩ =
∑
i,j

Cij |iA⟩ |jB⟩

=
∑

i,j,α1,α2

Viα1Λα1,α2U
†
α2,j

|iA⟩ |jB⟩

=
∑
i,j,α

λαViα |iA⟩Uj,α |jB⟩

=
∑
α

λα |sAα ⟩ |sBα⟩ ,

(6.4)

where the rows of C correspond to the computational basis states |iA⟩ in HA and the columns
correspond to the computational basis states |jB⟩ in HB. The diagonal matrix Λ can be
truncated so that it contains only the non-zero singular values of C, which are then equal
to the Schmidt coefficients λα. Whenever there is more than one non-zero λα, the state
possesses some degree of entanglement. Since the Schmidt decomposition is an SVD, the
set of λα is guaranteed to be unique, and the Schmidt rank will be minimized with respect
to all possible basis sets. Using the SVD matrices explicitly, we can write the Schmidt
decomposition as a small tensor network

|ψ⟩ =
∑

i,j,α1,α2

Viα1Λα1,α2U
†
α2,j

|iA⟩ |jB⟩ → , (6.5)

where V , U are unitary matrices that map the basis states |iA⟩, |jB⟩ to the Schmidt bases
of HA and HB respectively. It is important to note that this mathematical description of
entanglement, which is based on the singular values, can be used to characterize a tensor
regardless of whether it represents a truly quantum object.

The fact that Eq. (6.3) arises from a Schmidt decomposition is key to understanding the
entanglement scaling properties of tensor networks. As discussed in Sec. 2.2.4, the collective
size of the virtual indices which separate iA and jB in the network is lower-bounded by the
multiplex rank of the tensor that it is representing. If we fix this collective index size to
be some value q, then we can equivalently state that a tensor network will only be able to
represent quantum states with Schmidt rank r ≤ q. Through Eq. (6.3), this implies that the
entanglement entropy represented by this tensor network bounded by

E(A,B) ≤ log(q), (6.6)

where the inequality is saturated if r = q and if the singular values are all 1
q
.

The expression in Eq. (6.6) can be refined by considering the geometry of the virtual
indices in the network [103]. Assuming a maximum bond dimension given by t and a number
of virtual indices n connecting the partitions, we will have q = tn and therefore Eq. (6.6)
will become

E(A,B) ≤ n log(t). (6.7)

84

For a fixed bond dimension t, differences in entanglement scaling between tensor networks
will arise from differences in the value of n, which depends on the geometry of the network.
For tensor networks which conform to the physical geometry of the composite system, such
as MPS for 1-D systems and PEPS for 2-D systems, the number of indices connecting two
partitions is determined by the size of the interface between the partitions. Given a simple
partitioning of the system into a contiguous, hypercubic patch of length ℓ and the surrounding
outer patch, the interface scales with the boundary of the inner patch. If the physical lattice
dimension is d, then the entanglement follows a boundary-law scaling expression

E(A,B) ≤ 2dℓd−1 log(t) = O(ℓd−1), (6.8)

with ℓ being raised to a power one less than the dimension of the physical space.
The scaling behavior in Eq.(6.8) stands in sharp contrast to that of a random quantum

state, whose entanglement will scale with the total size ℓd of the inner patch [104] rather
than its boundary in what is referred to as a “volume law”. The success of methods like
DMRG is only possible because the ground states of common Hamiltonians do not resemble
states that have been randomly sampled from the Hilbert space, but instead tend to possess
localized, boundary law entanglement that can be readily captured with the MPS ansatz.
The existence of such scaling patterns has been proven for the ground states of 1-D gapped
quantum systems [105], and for harmonic lattice systems of arbitrary dimension [106]. They
have also been conjectured to exist in the ground states of most local, gapped quantum
systems regardless of dimension [71]. Different tensor networks need to be employed when
the ground state is suspected to violate the strict boundary law, with networks such as MERA
being used to handle the log(ℓ) corrections found in many critical-phase Hamiltonians [107].
In any case, the ultimate goal of these tensor network ansatzes is to match the known or
predicted entanglement scaling of the quantum state with the entanglement scaling of the
network.

6.2.2 Correlations in Classical Data

The preceding analysis used entanglement to quantify correlations in a system that was
explicitly quantum mechanical. To carry out a similar analysis on classical data, we desire a
more general quantity. A reasonable candidate is the mutual information (MI) [108], defined
as

I(a : b) = S(a) + S(b)− S(a, b), (6.9)

where S(a), S(b), and S(a, b) are the entropies of the probability distributions associated
with marginal variables a, b and the joint outcome of a and b respectively. Qualitatively, the
MI describes the amount of information we gain about one variable when we learn the state
of the other, offering the most general measure of correlation. The MI can be calculated
for either quantum or classical data, depending on whether the von Neumann or Shannon
entropies are used. For a pure quantum state S(a, b) = 0, and therefore the MI is equal to
twice the entanglement.

An alternative but equivalent representation of the MI, which we make use of in Sec. 6.3,
comes from the Kullback-Liebler divergence (KL-divergence), which is defined for two discrete

85

probability distributions p and q on space X as

DKL(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
, (6.10)

with an analogous definition for continuous variables that replaces the sum with an integral
over probability densities. For a joint probability distribution p over variables a and b in
spaces A and B, the MI is equal to the KL-divergence between the joint distribution p(a, b)
and the uncorrelated product-of-marginals distribution p(a)P (b), i.e.

I(a : b) =
∑
a∈A

∑
b∈B

p(a, b) log
p(a, b)

p(a)p(b)
. (6.11)

While not formally a metric, the KL-divergence can be viewed as measuring the distance
between two distributions, so Eq. (6.11) represents the MI as the distance between p(a, b)
and the uncorrelated distribution p(a)p(b).

In the context of machine learning, the MI between features in a dataset can be mea-
sured by partitioning the features into two groups, assigning the collective state of each
group to variables a and b respectively, and then measuring the amount of correlation that
exists between the partitions. This parallels the bipartitioning of the quantum many-body
system discussed in Sec. 6.2.1, and allows us to explore MI scaling in a similar manner to
entanglement scaling.

6.2.3 Entanglement as a Bound on Mutual Information for Or-
thogonal Data

Given the connection between entanglement and tensor networks discussed in Sec. 6.2.1, and
having introduced the MI as a classical measure of correlation in Sec. 6.2.2, we now show how
the correlations in a classical dataset can guide the choice of network for machine learning.
We focus on probabilistic classification, where the tensor network is used to approximate a
probability distribution p(x) of feature tensors generated from a classical data distribution
p(x⃗) via Eq. (2.20). We show that for orthonormal inputs the entanglement of the tensor
network between feature partitions A and B provides an upper bound on the MI of p(x)
between those same partitions. When designing a tensor network for a machine learning
task, this relationship can be inverted so that the known MI of a given p(x) sets a lower
bound on the entanglement needed for the network to represent it. For non-orthogonal inputs
these bounds do not hold rigorously, but may still serve as a useful heuristic for samples with
negligible overlap.

To begin, let p(x⃗) be the probability distribution associated with feature vectors x⃗ of
length d corresponding to some set F of d features. Using a tensor-product map of the form
in Eq. (2.20), we can map the set of feature vectors {x⃗} to a set X of orthogonal rank-one
tensors X ∈ X , generating a new distribution p(X) from p(x⃗). The overlap of two tensors
X(j) and X(k) is determined by the scalar products of the local feature maps

⟨X(j), X(k)⟩ =
d∏

i=1

h⃗(i)(x
(j)
i) · h⃗(i)(x(k)i) = ... , (6.12)

86

where each feature map is a function of only a single feature. For this analysis we require
that the vectors in the image of each local feature map must form an orthonormal set, so that
a pair of feature vectors x⃗ (i) and x⃗ (j) will always be mapped to either the same tensor or
to a pair of orthogonal tensors. For continuous features, such a mapping can be achieved by
discretizing the real numbers into b bins, and then assigning values in each bin to a different
b-dimensional basis vector. The h⃗(i) for this mapping will never be one-to-one, although as
the dimensionality of their outputs grows the functions will come closer to being injective in
practice.

Assuming that the images of the local feature maps are finite-dimensional, X will be
finite and therefore p(X) will be a discrete distribution that can be represented as a tensor
W of the form

W =
∑
X∈X

√
p(X)X, (6.13)

where we have taken the square-root to ensure that W is normalized (i.e. ⟨W,W ⟩ = 1).
With this representation, the probability of a given tensor X can be extracted by taking the
square of its scalar product with W

p(X) = | ⟨X,W ⟩ |2. (6.14)

In the context of machine learning, W can be described as an idealized weight tensor which
we seek to model using a tensor network. For a given network, we want to know which W ,
and therefore which p(X), can be accurately represented.

To probe the correlations within p(X), we partition the features into disjoint sets A
and B such that A ∩ B = ∅ and A ∪ B = F . Using this grouping, the underlying feature
distribution p(x⃗) can be represented as the joint distribution p(x⃗A, x⃗B), where x⃗A and x⃗B are
vectors containing values for the features in partitions A and B respectively. Similarly, p(X)
can be represented as the joint distribution p(XA, XB), where XA ∋ XA and XB ∋ XB are
sets of orthogonal tensors created from the local maps of features in A and B respectively.
For any tensor X ∈ X , we have X = XA ⊗XB for some XA and XB. We can also define the
marginal distributions p(XA) and p(XB) that describe the statistics within each partition
separately. The MI I(XA : XB) across the bipartition is given as in Eq. (6.9) using the
entropies of these distributions.

To introduce the entanglement measure described in Sec. 6.2.1 as a bound on I(XA : XB),
we represent the normalized tensor W as the quantum state |ψW ⟩ and the tensors in X as
orthonormal basis states |XA, XB⟩, such that Eq. (6.13) becomes

|ψW ⟩ =
∑

XA,XB

√
p(XA, XB) |XA, XB⟩ , (6.15)

where we have shifted to braket notation (see Sec. 5.2.1). This encoding of a probability
distribution into a quantum state has been utilized previously in the study of quantum
Bayesian algorithms [109]. The process of extracting p(XA, XB) described in Eq. (6.14)
can be reimagined as projective measurements of |ψW ⟩ on an orthonormal basis, where the
probabilities are used to reconstruct p(XA, XB). Since the MI between outcomes of local
measurements on a quantum state is upper bounded by the entanglement of that state [110],

87

|ψW ⟩ must have a bipartite entanglement with respect to partitions A,B that is at least as
large as I(XA : XB). The MI of p(X) across a bipartition therefore provides a lower bound
on the amount of entanglement needed in |ψW ⟩ with respect to that same partition

I(XA : XB) ≤ E(A,B), (6.16)

which through Eq. (6.7) sets a lower bound on the degree of connectivity n and/or bond
dimension t needed in the tensor network representing |ψW ⟩.

In a typical machine learning setting, we will have access to samples from p(x⃗), which can
then be encoded into tensors which form samples from p(X). If we aim to estimate the MI
numerically, as we will in Secs. 6.3 - 6.5, then it is generally easier to work with the original
feature vectors sampled from p(x⃗) than with the feature tensors from p(X). From the data
processing inequality [111], I(XA, XB) is upper-bounded by I(x⃗A, x⃗B), so using the MI of the
original features will yield a bound on the entanglement that may be larger than necessary
to model p(X), but will always be sufficient. Indeed, as the dimension of the feature maps
increases, the gap between I(XA, XB) and I(x⃗A, x⃗B) will shrink—since the finer discretization
preserves more information—and thus the estimates from both featurizations will converge.

The methodology described above may appear somewhat circuitous, in that we start
from the tensorized entanglement formalism that is most natural for tensor networks, but
then move back to a classical MI description of the original data features. At first glance
it seems like a more direct approach would be to simply estimate the entanglement of |ψW ⟩
between partitions A and B directly, using some approximation |ψ̃W ⟩ constructed from the
available data

|ψ̃W ⟩ ∝
N∑
i=1

|X(i)
A , X

(i)
B ⟩ , (6.17)

where {|X(i)
A , X

(i)
B ⟩} is a set of η samples from p(XA, XB). Such a construction was recently

used for entanglement analysis by Martyn et al. [112] in the context of MPS image classi-
fication. Unfortunately, as evident in [112], the entanglement of |ψ̃W ⟩ is artificially upper-
bounded by log(η), irrespective of the actual properties of p(XA, XB). This saturation occurs
because, for generic sample tensors |X(j)⟩ and |X(k)⟩ with d features, we have

⟨X(j)|X(k)⟩ =
d∏

i=1

h⃗(i)(x
(j)
i) · h⃗(i)(x(k)i) ≈ cd (6.18)

for some typical local overlap c < 1. As the number of features grows, the overlap between
data tensors is exponentially suppressed. When calculating the entanglement, the near-
orthogonality of tensors within XA and XB (when partitions A and B are both moderately
sized) causes the partial trace to generate an almost maximally mixed state with a von
Neumann entropy of approximately log(η). In contrast, by moving back to the original
vector space of the data and using MI rather than entanglement, we can generally avoid the
log(η) upper bound (in Sec. 6.6 we discuss specific circumstances where this limit can also
appear in MI estimation).

88

6.3 Estimating Mutual Information

6.3.1 Setup and Prior Work

For our analysis in Sec. 6.2 to be of practical use, we need a method of estimating the MI of
a probability distribution using only a finite number of samples. More formally, let {x⃗(i)}ηi=1

be a set of samples drawn from a distribution p(x⃗) whose functional form we do not, in
general, have access to. For a bipartition A,B of the dataset features, our goal is to estimate
the MI of p(x⃗A, x⃗B) between the features in A and the features in B using these samples.

Several approaches to MI estimation [113] have been proposed and explored in the liter-
ature. For continuous variables, some methods discretize the variable space into bins, and
then compute a discrete entropy value based on the fraction of samples in each bin [114][115].
Alternatively, kernel density estimators [116] can be used to directly approximate the contin-
uous probability density function using a normalized sum of window functions centered on
each sample, which is then used to calculate the MI [117]. A method developed by Kraskov
et al. [118], which utilizes a k -nearest neighbor algorithm to calculate the MI, has become
popular due to its improved error cancellation when calculating the MI from approximated
entropies.

For this paper, we base our estimation method on more recent work by Koeman and Hes-
kes [119] and Belghazi et al. [120]. In [119], the MI estimation problem is recast as a binary
classification task between samples from p(x⃗A, x⃗B) and p(x⃗A)p(x⃗B), which the authors mod-
eled using a random forest algorithm. In [120], Belghazi et al. use a neural network to perform
unconstrained optimization on the Donsker-Varadhan representation (DV-representation) of
the KL-divergence between p(x⃗A, x⃗B) and p(x⃗A)P (x⃗B), which provides a lower-bound on
the MI. In our work, we found that a mixture of these two approaches was most effective.
Specifically, we have used the binary classification framing proposed in [119], but approached
the problem as a logistic regression task optimized using maximum log-likelihood on a neu-
ral network. To evaluate the MI, we used the DV-representation as in [120] to generate a
lower-bound when possible. In practice this also gave us smoother MI curves and smaller
errors. To our knowledge this overall approach has not be reported in the literature, though
it appears similar in concept to a method proposed by Pool et al. [121] in the context of
generative adversarial networks. In the next subsection we describe our algorithm in more
detail.

6.3.2 Logistic Regression for MI Estimation

The logistic regression approach to MI estimation is built around the KL-divergence defini-
tion of the MI introduced in Eq. (6.11). In the context of our dataset, the variable spaces
A and B describe the collective values of the features in partitions A and B respectively,
with the sums taken over all allowed value combinations. For convenience, we simplify our
notation such that a ≡ x⃗A and b ≡ x⃗B represent the feature values of each partition. To esti-
mate the MI using the KL-divergence, we require an approximation for f(a, b) = log p(a,b)

p(a)p(b)
.

This can be found via logistic regression by first recasting the joint and marginal probability

89

distributions as conditional probabilities

p(a, b|joint) ≡ p(a, b), p(a, b|marg) ≡ p(a)P (b), (6.19)

where p(a, b|joint) is the probability that the feature values a, b will be sampled from the
joint distribution p(a, b), and p(a, b|marg) is the probability that the values will be sampled
from the product-of-marginals distribution p(a)p(b). Using Bayes’ theorem, the conditional
probabilities can be reversed

p(a, b|joint) ∝ p(joint|a, b)
p(joint)

, p(a, b|marg) ∝ p(marg|a, b)
p(marg)

. (6.20)

Substituting Eq. (6.19) and Eq. (6.20) back into log p(a,b)
p(a)p(b)

gives

log
p(a, b)

p(a)p(b)
= log

p(joint|a, b)
p(marg|a, b)

+ log
p(marg)

p(joint)
, (6.21)

where the first term is the log-odds of a binary classification problem where samples are
taken from either p(a, b) or p(a)p(b) and the classifier must decide the most likely source
for a given set of feature values a and b. The second term will equal zero if each source is
equally likely to be sampled.

To get a numerical estimate of Eq. (6.21), we can train a parameterized function f(a, b; θ)
to estimate the log-odds via standard logistic regression methods

f(a, b; θ) ≈ log
p(joint|a, b)
p(marg|a, b)

, (6.22)

using a training set that consists of an equal number of joint samples and marginal samples.
In particular, we parameterized f using a dense feed-forward neural network to avoid intro-
ducing spatial bias, and optimized the network by minimizing the binary cross-entropy (i.e.
maximizing the log-likelihood) across the samples.

Since the joint distribution is the actual source of our dataset, we already have η samples
from it. To approximate a sample from the product-of-marginals distribution, we take a set
of values for the features in A from a joint sample chosen at random, and then take values
for the features in B from another randomly-chosen joint sample (the two sources could be
the same sample, although this is unlikely for a large dataset). After selection, the features
are combined together into a single mixed sample which, by construction, has no correlations
across the partition. After training the network, the MI could be estimated by taking the
average of f across the joint samples as a direct approximation1 of the KL-divergence from
Eq. (6.11)

I(a : b) ≈ 1

κ

κ∑
i=1

f(ai, bi; θ), (6.23)

1For κ samples of p(a, b), we have lim
κ→∞

1
κ

κ∑
i=1

f(ai, bi; θ) =
∑

a∈A,b∈B
p(a, b)f(a, b; θ).

90

where ai and bi are the feature values of the ith joint sample taken from a validation set of
size κ. However, a superior approach is to insert f into the DV-representation [122] of the
MI

I(a : b) ≥ 1

κ

κ∑
i=1

f(ai, bi; θ)− log
1

κ2

κ∑
i=1

κ∑
j=1

ef(ai,bj ;θ), (6.24)

which yields a lower-bound on the MI as κ→ ∞ and allows errors to cancel2. The inequality
is saturated when f(a, b; θ) = log p(a,b)

p(a)p(b)
, since as κ → ∞ the second term vanishes and the

first term gives the KL-divergence. Belghazi et al. carried out their MI estimation by
maximizing Eq. (6.24) itself, but we have found in practice that the second term often
overflows on datasets with large MI. Furthermore, the optimization algorithm would often
attempt to maximize the second term, even though it must vanish in the optimal solution. We
were able to mitigate these problems by instead training with the binary cross-entropy [123]
as a loss function and only using Eq. (6.24) at the end to get the MI value of the optimized
distribution. As a caveat, we found in practice that for certain distributions with larger
MI values Eq. (6.23) generally yielded more stable and accurate estimates than Eq. (6.24),
though the reason for this is not clear.

6.4 Numerical Tests with Gaussian Fields

6.4.1 Gaussian Markov Random Fields

To test the accuracy of the logistic regression algorithm, we need a distribution to sample
from that has an analytic expression for the MI and that can model different MI scaling
patterns. Both of these requirements are satisfied by Gaussian Markov random fields (GM-
RFs) [124], which are multivariate Gaussian distributions parameterized by the precision
matrix Q ≡ Σ−1, where Σ is the more familiar covariance matrix. With respect to Q, the
Gaussian distribution with mean µ⃗ is

p(x⃗) =

√
det(

1

2π
Q) exp[−1

2
(x⃗− µ⃗)TQ(x⃗− µ⃗)], (6.25)

where p(x⃗) is the probability density of the variables x⃗. The element Qij of the precision
matrix determines the conditional correlation between variables xi and xj, which describes
the statistical dependence of the pair when all other variables are held fixed at known val-
ues. This is in contrast with the more familiar marginal correlation, governed by Σ, which
describes the dependence between a pair of variables when the state of all other variables is
unknown. If Qij = 0, the variables xi and xj are conditionally uncorrelated:

p(xi, xj|xk/∈{i,j}) = p(xi|xk/∈{i,j})p(xj|xk/∈{i,j}) ⇐⇒ Qij = 0. (6.26)

By setting specific elements of the precision matrix to zero, the correlation structure and
therefore the MI of the Gaussian can be tuned to a desired pattern. This flexibility allows

2For example, errors of the form f(a, b; θ) + ϵ can be brought outside of the sums in Eq. (6.23) to give
ϵ− log eϵ, which cancels.

91

us to encode different MI scaling patterns into the distribution, which can then be extracted
analytically using Eq. (6.9) and the expression for Gaussian entropy

S =
1

2
log[det(2πeΣ)], (6.27)

which combine together to give an expression for the Gaussian MI:

I(a : b) = S(a) + S(b)− S(a, b) =
1

2
log

det(ΣA) det(ΣB)

det(Σ)
, (6.28)

where ΣA and ΣB are the covariance matrices corresponding to variables in partitions A and
B respectively.

6.4.2 Test Setup

In the following subsections, we present test results of the logistic regression estimator on
GMRFs representing three different correlation patterns: a boundary law with nearest-
neighbor correlations, a volume law with weak correlations across all variables, and a distri-
bution with sparse, randomized correlations. In the language of quantum many-body physics,
the first two patterns reflect correlation structures that would be expected in ground states
and random states respectively, while the GMRF with random sparse correlations shows the
scaling for a heterogeneous distribution that lacks any spatial structure. These Gaussian
distributions serve as both a means of testing the algorithm and as a clear illustration of
the numerical MI plots that would be expected from different types of correlations within a
dataset.

In the tests, each GMRF consisted of 784 variables, which mirrored the number of pixels
in the 28× 28 images taken from the MNIST and Tiny Images datasets that were analyzed
in Sec. 6.5. To measure the scaling behavior of the MI in these GMRFs, we used a range of
different bipartition sizes, with the partitions being selected such that they always formed
a pair of contiguous patches when the variables were arranged in a 28 × 28 array. One
member of each bipartition was formed from an inner square patch of variables centered
on the array, whose side length we denote as ℓ. The other partition was an outer patch
consisting of all other variables. The size of the inner partition ranged from a single variable
(ℓ = 1) to a 26 × 26 block (ℓ = 26). For each bipartition, the MI was estimated using our
logistic regression algorithm and the DV-representation, with the estimates plotted alongside
the analytic MI curve of the GMRF to evaluate their quantitative and qualitative accuracy.
Since our model used a stochastic gradient descent method for optimization, we averaged
over multiple training runs to generate a representative curve. To explore the effect of sample
size on the algorithm, we generated datasets from the GMRFs with 70,000, 700,000, and
7,000,000 joint training samples and created MI curves for each size using averages over 20,
10, and 5 trials respectively. Samples and covariance plots from the GMRF test distributions
are given in Sec. 6.7.1.

92

6.4.3 Nearest-Neighbor Boundary-Law GMRF

As shown in Eq. (6.8), for the MI of a bipartition to obey a boundary law its magnitude
must scale with the length of the boundary or interface between the partitions. Given a
set of variables on a d-dimensional lattice, the simplest way to construct a boundary law
is to have each variable be conditionally-correlated with only its 2d nearest neighbors. For
variable xij on a two-dimensional grid at row i and column j, the conditional probability
function would depend on the values of only four other variables

p(xij|{xk ̸=i,l ̸=j}) = p(xij|xi+1,j, xi−1,j, xi,j+1, xi,j−1), (6.29)

although the number of neighbors can be fewer if the variable is at an edge or corner since
the grid is finite. After partitioning, the inner patch of variables will be conditionally cor-
related with only a single layer of variables surrounding its perimeter, so the MI between
the inner and outer partitions will be proportional to ℓ. To encode the correlation struc-
ture of Eq. (6.29) into a precision matrix, all of the off-diagonal elements in each row of Q
must be set to zero except those that correspond to the nearest neighbors, with the non-
zero off-diagonal elements all assigned the same value q that determines the strength of the
correlation. To guarantee that Q is positive definite, q should not exceed the magnitude of
the diagonal elements divided by the number of nearest neighbors (see Sec. 6.4.4 for more
details on these constraints).

The performance of the logistic regression algorithm on the nearest-neighbor GMRF is
summarized in Figure 6.1, which plots the MI in nats against the side length ℓ of the square
inner partition3. Since the x-axis is proportional to the perimeter of the inner patch rather
than its area, we expect a boundary-law MI curve to be linear in ℓ. This is clearly evident
in the analytic curve, which is linear up to a length of roughly 25 variables before leveling
off. The linear pattern is broken near the boundaries because the marginal correlations
between variables around the edges of the grid are smaller than those between variables
closer to the center. Aside from the the 70,000 sample trial with weak correlations, the
regression estimates were able to successfully reproduce the boundary-law scaling pattern,
with the error shrinking as the number of samples increased. It is also interesting to note that
the fractional errors of the different sample sizes are similar between the strong and weak
correlations, suggesting that the source of the error is independent of the MI magnitude.

6.4.4 Uniform Volume Law GMRF

In contrast with the local correlations that give rise to a boundary law, we can imagine
an alternative pattern in which each variable is equally correlated with every other variable.
These correlations produce a volume law for the MI, since every variable in the inner partition
must contribute equally to the correlations with the outer partition. To encode such a pattern
into a GMRF, we set every off-diagonal element of the precision matrix Q to the same value
q. To ensure that the precision matrix remains positive definite, the value q should be small

3When calculating quantities such as the entropy or MI using natural logarithms, the unit of information
is a nat instead of a bit.

93

0 5 10 15 20 25
Partition Length (L)

0.0

0.2

0.4

0.6

0.8

M
ut

ua
l I

nf
or

m
at

io
n

(n
at

s)

7 × 104 samples
7 × 105 samples
7 × 106 samples
Exact

0 5 10 15 20 25
Partition Length (L)

0

1

2

3

4

5

Figure 6.1: MI curves for a GMRF with nearest-neighbor correlations at different sample
sizes, plotted relative to the side length ℓ of the inner partition. The plot on the left had
a weaker correlation strength with q = −0.12, while the plot on the right had a stronger
correlation strength with q = −0.227. The solid lines represent the averages over the trials,
while the shaded regions show one standard deviation. The linear boundary-law scaling
pattern of the GMRF is evident from the exact curve (red). With the exception of the
weakly-correlated, 70,000 sample trial, this linear scaling is successfully reconstructed by the
algorithm. The magnitude of the MI is underestimated in all trials, with the fractional error
being similar for the strong and weak correlations.

94

enough to preserve diagonal dominance, a sufficient but not strictly necessary condition for
a positive definite matrix in which the sum of the magnitudes of the off-diagonal elements
of a row or column do not exceed the diagonal element

Qii >
∑
i ̸=j

|Qij| and Qii >
∑
j ̸=i

|Qij|. (6.30)

To create a uniform scaling pattern it suffices to set Qii = 1, which means we must have
q < 1

r−1
for an r-dimensional Gaussian. This provides an upper limit on the amount of

correlation one Gaussian variable and can have with any other when the correlations are
homogeneous, a limit that decreases as the number of variables grows larger.

The performance of our algorithm on a GMRF with these uniform correlations is sum-
marized in Figure 6.2. We were able to accurately reproduce the shape and approximate
magnitude of the analytic curves for both correlation strengths and for all sample sizes,
although as expected the 70,000 sample trials had the largest error. Interestingly, the al-
gorithm performed significantly better on the uniform GMRF than on the nearest-neighbor
GMRF, even though the pairwise dependence between correlated variables in the former was
much weaker than in the latter. This suggests that, for a given amount of MI, it is easier for
the algorithm to find correlations that are spread out across many variables than to identify
those that are concentrated in some sparse set.

It is worth noting that the shape of a volume-law curve should be quadratic on the axes
used in Figure 6.2, yet from our plots it is clear that the quadratic form breaks down quickly
for the weak correlations and never exists at all for the strong correlations. This distortion
occurs because the MI is purely a function of the number of variables in each partition when
the correlations are homogeneous, and due to the finite size of our grid any increase in the
size of the inner patch necessarily comes at the cost of the outer patch. Correspondingly,
any increase in the MI that comes from growing the inner patch is partially offset by the
correlations that are lost when shrinking the outer patch. On the 28×28 grid used in Figure
6.2, the MI begins to decline at partition length ℓ = 20, which marks the point where both
partitions contain roughly the same number of variables (400 vs 384) and where the amount
of correlation is therefore maximized.

6.4.5 Random Sparse GMRF

A third class of GMRF to explore is one where the correlations have no inherent spatial
pattern yet are also non-uniform. Such a distribution could, for example, represent a dataset
of features that are correlated but lack the in-built sense of position or ordering necessary to
unambiguously map them onto a lattice (e.g., demographic data). If we nevertheless insist
on embedding these features into a grid, we can expect that for most arrangements the MI
will scale either as a volume law or in some irregular pattern, depending on whether the
features all have similar correlation strengths.

For our tests, we engineered a spatially-disordered GMRF by taking the nearest-neighbor
precision matrix used in Sec. 6.4.3 and randomly permuting the variables around the grid.
Under this scheme, each row and column of the precision matrix Q has four non-zero off-
diagonal elements in random positions. While the conditional correlations of this new distri-

95

0 5 10 15 20 25
Partition Length (L)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ut

ua
l I

nf
or

m
at

io
n

(n
at

s)

7 × 104 samples
7 × 105 samples
7 × 106 samples
Exact

0 5 10 15 20 25
Partition Length (L)

2.0

2.5

3.0

3.5

4.0

4.5

Figure 6.2: MI curves for a GMRF with uniform correlations at different sample sizes, plotted
relative to the side length of the inner partition. The plot on the left had a weaker correlation
strength with q = −1.2×10−3, while the plot on the right had a stronger correlation strength
with q = −1.27712× 10−3 ≈ 1

783
. The solid lines represent the averages over the trials, while

the shaded regions show one standard deviation. The algorithm successfully reproduced the
shape of the exact MI curve, with the larger sample sizes almost matching the analytic MI
values. The finite size of the grid causes the curve to gradually bend over as the partition
length increases.

96

7 × 104 samples
7 × 105 samples
7 × 106 samples
Exact

0 5 10 15 20 25
Partition Length (L)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
M

ut
ua

l I
nf

or
m

at
io

n
(n

at
s)

0 5 10 15 20 25
Partition Length (L)

0

1

2

3

4

5

Figure 6.3: MI curves for a GMRF with spatially-randomized correlations at different sample
sizes, plotted relative to the side length of the inner partition. The plot on the left had a
weaker correlation strength with q = −0.045, while the plot on the right had a stronger
correlation strength with q = −0.11. The solid lines represent the averages over the trials,
while the shaded regions show one standard deviation. The quadratic, volume-law scaling is
clear from the analytic MI curve at small ℓ, which for the strong correlations was reproduced
across all sample sizes (though the 70,000 sample curve is greatly diminished). For the weak
correlations the model was unable to find any correlations using the smallest sample size of
70,000, as was the case for the nearest-neighbor correlations (Figure 6.1, left panel).

bution are still sparse, they are no longer exclusively short-range but can instead span the
entire grid. Since all of the non-zero off-diagonal elements of Q have the same magnitude q,
the amount of correlation across any bipartition increases evenly with the number of corre-
lated variable pairs shared between the partitions. Without any underlying spatial structure,
the odds of a given pair being separated into two different partitions is roughly proportional
to the volume of the smaller partition, assuming that the other partition is much larger.
Under the inner-outer partitioning scheme used in our tests, we expect a volume law for
small partition lengths, followed by the same bending-over observed in Sec. 6.4.4 for the
uniform correlations.

The performance of our logistic regression algorithm on a GMRF with these spatially-
randomized correlations is shown in Figure 6.3. As predicted, the analytic curves show
similar scaling patterns to those of the uniform GMRF in Figure 6.2. The quality of the
MI estimates, however, is more similar to the nearest-neighbor MI curves of Figure 6.1,
where the model succeeded at replicating the analytic MI curve for all sample sizes when
the correlation strength was large, but failed for the smallest sample size (70,000) when the
correlations were weak. The estimation error is larger overall for the randomized variables

97

than for the nearest-neighbor variables, and increasing the sample sizes appears to yield
diminishing returns. This may partially stem from the reduction in pairwise correlation
strength (quantified by q) that was required to keep the magnitude of the peak MI value
consistent between the different GMRFs. However, a more likely explanation is that the
nearest-neighbor correlations are able to reinforce one another due to their shared proximity,
which results in the next-nearest-neighbor marginal correlations also being quite strong. This
may make the correlations easier for a machine learning algorithm to detect, since they will
impact a larger number of variables. In contrast, for the randomized GMRF the correlated
variables are scattered far away from each other on average, which severely diminishes any
reinforcement effect.

6.5 Application to Image Data

6.5.1 Setup

To explore the types of MI scaling patterns that might be seen in real data, we analyzed two
sets of images: the 70,000 image MNIST handwritten-digits dataset [52], and 700,000 images
taken from the Tiny Images dataset [54] converted to grayscale using a weighted luminance
coding4. Sample images from these datasets and further details can be found in Sec. 2.3.1.
These two datasets were chosen due to their differing levels of complexity: MNIST consists
of simple, high-contrast shapes while the Tiny Images are low-resolution depictions of the
real world with much more subtle color gradients. In our experiments, each image contained
784 pixels arranged in a 28 × 28 array, with the Tiny Images dataset being cropped from
32× 32 by removing two pixels from each side. The pixel values, originally integers from 0
to 255, were rescaled to the range [0, 1].

To generate the MI estimates for these two datasets, we used the same partitioning
method described in Sec. 6.4 for the GMRFs, with each image being split into a centered,
square inner patch of increasing size and a surrounding outer patch. These partitions were
then fed into the algorithm laid out in Sec. 6.3, with one key difference; the DV-representation
of Eq. (6.24) proved to be unusable for both MNIST and the Tiny Images due to instability
in the exponential term. While we were able to use the DV-representation to significantly
reduce error on the GMRF tests, on the real datasets we had to instead make a direct
estimate of the KL-divergence from Eq. (6.23). It is not clear why the DV-representation
worked for the GMRFs but not for the image datasets, although this could be due to the
larger MI and stronger correlations that are present in the real-world data.

6.5.2 Results

Figure 6.4 shows the MI of the MNIST and Tiny Images datasets as estimated by logistic
regression, plotted relative to the side length ℓ of the inner pixel partition. The MI curves
were generated from averages taken over twenty different trials, and plotted within a shaded

4For normalized RGB color values, each grayscale pixel was assigned the value 0.3R + 0.59G + 0.11B.
See [125] for more information on grayscale conversions.

98

region containing one standard deviation. As with the GMRFs, this averaging helped smooth
the curves and make their shapes easier to assess, especially for patch sizes with larger
variance.

Looking first at the Tiny Images curve, we can see a moderately linear segment from
1 pixel length to roughly 18 pixels length, which then flattens out and begins to decrease
at the 26 × 26 patch. Of the three scaling curves tested in Sec. 6.4, this overall shape
is most consistent with the boundary-law scaling pattern of Sec. 6.4.3 (Figure 6.1, right
panel). Unfortunately the variance of the algorithm increased significantly at larger MI
values, making it more difficult to assess the pattern. For MNIST, the MI curve most closely
resembles that of the strongly-correlated uniform GMRF (Figure 6.2), rising at a decreasing
rate until it crests and gradually declines. However, this shape is not as distinct as that of
a linear or quadratic curve, so it is difficult to use as evidence for a volume law.

Interestingly, the MNIST curve shows far less variance than the Tiny Images curve,
despite the fact that it contains only a tenth of the images. For the GRMF tests done in
Sec. 6.4, there was a clear reduction in the variance of each curve as the sample size increased,
but this not observed in Figure 6.4. Indeed, the MNIST curve has a smaller variance at each
patch size than the Tiny Images curve has at almost any patch size, even when the MI of
the MNIST curve is larger. This suggests that there is some data-specific effect causing the
discrepancy, perhaps attributable to the relative simplicity of the MNIST images relative to
the more realistic Tiny Images.

Unlike in our GMRF tests, we do not have access to the underlying probability distri-
butions that MNIST and the Tiny Images datasets were sampled from, so it is much more
difficult to assess the accuracy of the curves in Figure 6.4. One approximate way of eval-
uating the estimates is to fit a GMRF to the empirical covariance matrix of the data, and
then calculate the Gaussian MI analytically in the same manner as in Sec. 6.4. This new
distribution is constrained to model only pairwise interactions between the variables, and
all marginal and conditional distributions among the variables are forced to be Gaussian, so
it is not representative of the true distribution. Nevertheless, due to its high entropy and
simple correlation structure, a fitted GMRF is likely (but not guaranteed [126]) to provide
a lower bound on the MI of the true distribution.

Figure 6.5 shows the Gaussian MI curves generated by fitting GMRFS to the covariance
matrices of both the MNIST and Tiny Images datasets. It is important to note the scale of
the y-axis: the MI values obtained from the fitted GMRFs are roughly five times larger than
the predictions of the logistic regression algorithm that are shown in Figure 6.4, indicating
a severe underestimation in the latter. The curve for the Tiny Images in Figure 6.5 is
remarkably linear, only declining at the end because of the finite size of the image. This agrees
with the shape of the logistic regression curve in Figure 6.4 and almost exactly resembles the
boundary-law GMRF curve from Sec. 6.4.3 (Figure 6.1). The MNIST GMRF curve is also
approximately linear up to an inner patch length of roughly ℓ = 15 pixels, at which point
the curve bends over and begins to decrease due to finite size effects; these are exacerbated
by the fixed black border placed around each digit5. While the MNIST curves in Figures

5The MNIST digits themselves are only 20× 20 pixels in size; since the digits are roughly centered in the
28× 28 image, most of the outer pixels on the edges will be uniformly black and thus contribute nothing to

99

0 5 10 15 20 25
Partition Length (pixels)

0

2

4

6

8

10

M
ut

ua
l I

nf
or

m
at

io
n

(n
at

s)

70,000 MNIST Images
700,000 Tiny Images

Figure 6.4: MI estimates for the MNIST and Tiny Images datasets using logistic regression,
plotted relative to the side length ℓ of the inner partition. The solid lines are averages from
twenty separate trials, while the shaded regions show one standard deviation. The MNIST
curve most closely resembles the strongly-correlated uniform GMRF from Sec. 6.4.4, and
exhibits minimal variance. The Tiny Images curve is most similar to the nearest-neighbor,
boundary-law GMRF from Sec. 6.4.3 (Figure 6.1, right panel), but the shape is harder to
pin down due to its high variance.

100

0 5 10 15 20 25
Partition Length (pixels)

0

10

20

30

40

50

M
ut

ua
l I

nf
or

m
at

io
n

(n
at

s)

Gaussian fit to Tiny Images
Gaussian fit to MNIST

Figure 6.5: Analytic MI curves from the GMRFs fitted to MNIST and the Tiny Images,
plotted relative to the side length ℓ of the inner partition. The Tiny Images curve shows
a clear boundary law, while the MNIST curve also starts linear but gradually bends over.
Since the GMRFs only model simple pairwise correlations, these MI values are very likely
underestimates.

101

6.4 and 6.5 have somewhat similar shapes at larger patch sizes, the linearity of the Gaussian
MNIST curve in Figure 6.5 at small ℓ is not present in the corresponding regression curve
of Figure 6.4. Taken together, these results show that if the GMRF estimates are viewed as
approximations of the simple, pairwise correlations in the images, then it is evident that the
scaling behavior of those correlations obeys a clear boundary law in both datasets. Samples
and covariance plots from the two fitted GMRFs are given in Figure 6.8.

Although the primary focus of this chapter is the use of logistic regression as a means
of quantifying MI scaling, it is clear from Figure 6.5 that GMRF techniques offer a viable
alternative. We provide here a brief discussion of the relative merits of each method. Com-
pared to a stochastically-optimized neural network, a multivariate Gaussian is very simple
to fit and provides a single, deterministic MI estimate via Eq. (6.28). The logistic regression
algorithm, by contrast, shows significant variation across trials even when the dataset is
fixed, a problem which becomes more severe at larger MI values (see, e.g., the Tiny Images
plot in Figure 6.4). The simplicity of the GMRF comes at a cost, however, since Gaussians
are inherently quadratic and thus incapable of modeling interactions between more than two
variables. We would expect complex datasets to posses these higher-order dependencies,
which favors the use of more expressive neural network models. At the same time, we can
see from comparing Figure 6.4 with Figure 6.5 that the logistic regression method captures
only a fraction of the total magnitude of the MI. Collectively, these observations suggest that
the GMRF approach should be favored when the correlation patterns are simple or when
only a rough lower-bound on the MI of a dataset is desired. By contrast, regression with a
neural network is better suited to estimate the MI of data with more complex correlations.

6.6 Discussion

Recent work in quantum many-body physics has shown that the success of a tensor network
ansatz is closely tied to the correlation structure of the underlying system. It stands to
reason that similar logic should hold in machine learning. If true, this presents us with two
main challenges. First, on a theoretical level, we must gain insight into the mathematical
relationships that exist between dataset correlations and network architecture. At the same
time, on a more practical level, we need to be able to quantify and characterize the kinds
of correlation structures present in real-world data. Our work here addresses both of these
problems, using the classical MI to establish an entanglement lower-bound for probabilistic
classification tasks and finding clear evidence for boundary-law scaling in the Tiny Images
dataset.

On the theoretical side, we established in Sec. 6.2.3 that the MI of the data features
provides a lower bound on the entanglement needed for probabilistic classification of orthog-
onal samples by a tensor network. We showed that direct entanglement estimates, taken
from the state representing the sample distribution, are artificially upper-bounded by the
logarithm of the number of samples, regardless of the nature of the distribution. When the
true entanglement is expected to exceed this bound, such as for data with a large number of
features, a different measure of correlation such as the MI is therefore necessary. Given that

the MI.

102

the entanglement of a network with fixed bond dimension is n log t (Eq. (6.7)), an MI esti-
mate can help determine both the connectivity of the network (n) and the size of the indices
(t). While the lower bound should still hold approximately on samples with small overlaps,
it will be useful to explore in future work whether and to what extent it is possible to gen-
eralize this bound to non-orthogonal featurizations. Additionally, there are many machine
learning tasks where the ground truth cannot be expressed as a probability or modulus—
e.g., regression over the real numbers R—and which therefore fall outside of our analysis.
It seems likely that the correlation structures in these tasks would still be important when
choosing the right tensor network, but the mathematical relationship is not as clear as in
the probabilistic cases studied here.

Assuming that the images analyzed in Sec. 6.5 can be mapped to tensors with minimal
overlap and that therefore the bound in Sec. 6.2.3 applies, then our numerical results suggest
that the MI of the Tiny Images obeys a boundary law. The evidence is less definitive for
MNIST, although the analytic curve obtained by fitting a GRMF shows a clear boundary
law for smaller patch sizes. This would indicate that the most appropriate tensor network to
use for probabilistic classification of these datasets from a correlation standpoint is PEPS,
whose connectivity follows a 2-D grid. However, given that exact contraction of a large
PEPS network is impossible even with small bond dimension, it would be useful to look at
alternative structures that still possess a 2-D geometry. Some possibilities include a TTN
with four child nodes, or networks with a Cayley tree structure [127] possessing four nearest
neighbors.

From a numerical perspective, our present work on MI estimation appears to be one
of the few in the literature that seeks to quantify the spatial structure of the MI, or even
just approximate the magnitude of the MI itself. Instead, most of the existing research
focuses on MI as a minimization or maximization target, as seen in various independent
component analysis algorithms [128] or in the training of generative models [129]. To our
knowledge, the only other work that explores MI scaling is that of Cheng et al. [130], which
characterized the MI of MNIST in the context of training sparse Boltzmann machines. The
authors utilized side-to-side and checkerboard partitioning schemes, focusing their analysis
on the degree to which the estimated MI value (using Kraskov’s nearest-neighbor method)
differed from the maximum MI value that could exist between the partitions. While their
results showed that the estimate was significantly smaller than the maximum, it is unclear
how much of this was actually an intrinsic property of the data or just a numerical limitation
of the nearest-neighbor method used for estimation.

Indeed, recent work by McAllester and Stratos [131] has shown that lower-bound MI
estimates based on sampling, such as our logistic regression algorithm using the DV repre-
sentation, can never produce an estimate greater than O(log η), where η is the number of
samples. If we make the reasonable assumption that the Gaussian curves from Figure 6.5
underestimate the true MI, then we would need on the order of 1021 images to get a good
estimate of the Tiny Images MI. This is of course impossible. For MNIST, the number of
samples needed is on the order of 108, which is within the realm of possibility but would
require a massive data collection and training scheme. On a practical level, this means
that the DV representation cannot be used for MI estimation on datasets that have strong
correlations, although it is unclear whether the log(η) bound tells us anything about direct

103

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

a) b) c)

Figure 6.6: Covariance plots for the a) nearest-neighbor, b) uniform, and c) randomized
GMRF distributions used in Sec. 6.4. The covariance values are taken with respect to the
center variable highlighted in red, with brighter colors indicating stronger correlations and
darker pixels indicating weaker correlations.

approximations of the KL divergence in the spirit of Eq. (6.23) (which was used to produce
Figure 6.4). McAllester and Stratos recommend instead to minimize the cross-entropy as an
upper bound on the entropy, then use Eq. (6.9) to get an estimate of the MI that is not a
lower bound. This could be a useful direction for future work.

Tensor network machine learning is still in its infancy, and there is much work to be
done in understanding the strengths and weaknesses of different network designs. It is likely
that dataset correlations present in a given task will dictate the tensor structure that is
best suited for the job, but determining which correlations are most important, and knowing
how to assess that importance, is challenging. We have shown here that the scaling of
the MI within a dataset can be systematically characterized in a manner that parallels the
entanglement scaling analysis performed on quantum states, which may provide insight into
these questions.

6.7 Appendix

6.7.1 GMRF Covariances and Sample Images

Figure 6.6 shows covariance plots of the three GMRFs tested in Sec. 6.4 with respect to
a single variable highlighted in red. The magnitudes are expressed as colors to emphasize
the importance of the correlation pattern rather than the specific covariance values. The
variables that have the strongest covariance with the center variable are bright yellow, and
correspond to the variables which have a non-zero conditional correlation with the center
variable. In Figure 6.6a the four nearest-neighbor variables are clearly visible, while in Fig-
ure 6.6c those four variables are randomly distributed throughout the image. In Figure 6.6b
the covariance matrix is uniformly yellow, as every variable is conditionally correlated with
every other variable. Samples from these GRMFs are shown in Figure 6.7, where the subtly
of the correlation effects is evident.

104

0 10 20

0

10

20

W
ea

k

Nearest-Neighbor

0 10 20

0

10

20

Uniform

0 10 20

0

10

20

Randomized

0 10 20

0

10

20

St
ro

ng

0 10 20

0

10

20

0 10 20

0

10

20

Figure 6.7: Sample “images” taken from the GRMF distributions of Sec. 6.4 at both strong
and weak correlation strengths.

105

The covariance plots and sample images shown in Figure 6.8 are taken from the GRMFs
fit to the Tiny Images and MNIST. The samples posses considerably more structure than
those in Figure 6.7, which is consistent with the large MI values found in Figure 6.5. That
said, the GRMFs are clearly not able to capture the full structure of the underlying dataset
distributions, since the Tiny Images GMRF does not resemble any identifiable object and
the MNIST GMRF sample does not resemble any digit. The covariance plots of Figure 6.8
both show strong nearest-neighbor correlations, which is consistent with the boundary-law
scaling observed in Figure 6.5.

106

0 10 20

0

5

10

15

20

25

Tiny Images

0 10 20

0

5

10

15

20

25

MNIST

0 10 20

0

5

10

15

20

25

0 10 20

0

5

10

15

20

25

Figure 6.8: The covariances (top row) and sample images (bottom row) from GRMFs fit to
the Tiny Images and MNIST datatsets. The covariance values are calculated with respect to
the central pixel highlighted in red, with brighter colors indicating larger values. The Tiny
Images covariance plot shows a strong nearest-neighbor pattern, while the MNIST plot has
a more complicated and long-range structure. The sample images show some structure, but
are not identifiable as a digit or object.

107

Chapter 7

Conclusions and Future Directions

The goal of this thesis was to probe the underlying properties of tensor network regression
models, making use of tools from tensor analysis and quantum physics. Each work in Chap-
ters 4-6 can be viewed as the first step in understanding a different facet of these machine
learning algorithms, with much more yet to be understood. In this final chapter, we briefly
summarize our findings and suggest potential directions for future work.

In Chapter 4, we asked whether the tensor-product feature space was truly “exponential”
in practice, or if instead only small portions of it were being utilized by the tensor network
models. To this end, we developed a novel form of tensor contraction called the interaction
decomposition, and used it to split up the regression output from a classification model
into separate contributions from each interaction degree. By analyzing the magnitudes
and cumulative accuracies across the different degrees, we concluded that a large portion
of the exponential space (roughly 75%) was indeed being utilized in a non-trivial manner
by the model. However, this revelation was tempered by the fact that we were able to
construct constrained models of degree ten or less that equaled and even outperformed the
full models on MNIST and Fashion MNIST. This suggests that the tensor network models
are not extracting anything useful from the higher interaction degrees that couldn’t have
been found in the lower degrees.

The burning question raised by these results is why the full tensor network models seem
to do no better than their heavily-constrained counterparts. Is it simply because the higher-
degree feature products contain little to no information useful for solving the classification
task? We believe this to be unlikely, although it is difficult to provide any hard evidence
to justify such skepticism. A more compelling explanation would be that the higher-degree
and lower-degree regression coefficients are inherently coupled together via the elements of
the component tensors, and therefore cannot be tuned independently of one another. It
may be that the coefficient values necessary to fully utilize the low-degree regressors would
lead to higher-degree coefficients that are deleterious to the output of the model, and thus a
compromise has to be struck. An interesting next step would be to characterize the higher-
degree coefficients that are generated from the constrained tensor network models, and see if
the regression output is fatally corrupted by the inclusion of the higher-degree contributions.

Turning next to Chapter 5, we sought to understand the rank constraints placed upon a
tensor network when it is used to represents arbitrary multilinear regression up to a given

108

interaction degree. The specific quantity of interest was the multiplex rank, as this sets
a lower bound on the combined bond dimension that the network must support between
different feature partitions. After deriving a general algorithm for finding the multiplex rank
as a function of feature number and partition size, we used it to compute the necessary
bond dimensions for the virtual indices in an MPS model. Plots of these bond dimensions
revealed some interesting patterns, while also driving home the massive number of network
parameters that would be needed to represent the weight tensor for even modest interaction
degrees. When looking for the primary force behind the large multiplex rank, we found that
it was caused almost entirely by regressors which contained at least one feature from each
partition. We also assessed how much the rank could be reduced if a low-degree weight
tensors is embedded in a full-degree tensor, as is the case for the interaction decomposition
models from Chapter 4, and found only a modest decrease.

For the work in this chapter, the most pertinent question is whether the rank upper-
bounds or other properties can be translated into practical guidance for network design.
Given a particular machine learning task, we would want to tailor the bond dimension and
connectivity of the tensor network to match with the expected (or imposed) form of the
weight tensor. To this end, our most significant finding is likely to be the large impact of
inter-partition regressors, whose removal could massively shrink the size of the network. A
useful direction for future work would then be to derive the necessary conditions for these
regressors to vanish across some feature partition. With this knowledge, it would then be
possible to optimize the position of the features in the network so as to minimize the bond
dimension needed to represent the desired regression function.

Finally, we consider our work on correlation scaling from Chapter 6. Here, our focus
shifted from analyzing properties of the weight tensor to analyzing properties of the under-
lying dataset. Inspired by the entanglement analysis used in quantum many-body physics,
we looked for an analogous measure of correlation for classical features, and settled on the
mutual information. To determine the size of the correlations, we developed a novel machine
learning algorithm based on a dense feed-forward neural network that was capable of esti-
mating mutual information using a finite number of samples. After testing the algorithm on
Gaussian data with known correlations to verify its accuracy, we performed experiments on
the MNIST and Tiny Images datasets. Our results indicated that both image sets seemed
to obey an area law rather than a volume law in their correlation scaling, which mirrors the
type of state that tensor networks are used to model in quantum physics.

As with our work in Chapter 5, the key question that we want answered is how to
translate the correlation data into a set of guidelines for building tensor network models.
We can be certain that some connection must exist here, given that the properties of the
data ultimately determine the form of the weight tensor, which in turn constrains the form
of the tensor network. A promising next step would be to derive analytic expressions for
the elements of the weight tensor needed to minimize the mean-squared error, and then
assess how the correlations are reflected in the resulting expressions. Alternatively, one
could reverse our process here and instead generate data using a tensor network of some
fixed design. The correlations in this synthetic dataset would then be estimated using our
algorithm, with the resulting values being compared across different network designs and
bond dimensions. While falling short of a mathematical proof, these comparisons could

109

motivate useful heuristics for network design by matching the correlation scaling of the
network with that of the dataset.

110

References

[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. en. In: Nature
521.75537553 (May 2015), pp. 436–444. issn: 1476-4687. doi: 10.1038/nature14539.

[2] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. English. Ed.
by Francis Bach. Cambridge, Massachusetts: The MIT Press, Nov. 2016. isbn: 978-
0-262-03561-3.

[3] Daniel Svozil, Vladimı́r Kvasnicka, and Jiri Pospichal. “Introduction to multi-layer
feed-forward neural networks”. en. In: Chemometrics and Intelligent Laboratory Sys-
tems 39.1 (Nov. 1997), pp. 43–62. issn: 0169-7439. doi: 10.1016/S0169-7439(97)
00061-0.

[4] Yann LeCun and Yoshua Bengio. “Convolutional networks for images, speech, and
time series”. In: The handbook of brain theory and neural networks 3361.10 (1995),
p. 1995.

[5] Zewen Li et al. “A Survey of Convolutional Neural Networks: Analysis, Applications,
and Prospects”. In: IEEE Transactions on Neural Networks and Learning Systems
33.12 (Dec. 2022), pp. 6999–7019. issn: 2162-2388. doi: 10.1109/TNNLS.2021.
3084827.

[6] Hojjat Salehinejad et al. “Recent Advances in Recurrent Neural Networks”. In:
arXiv:1801.01078 (Feb. 2018). arXiv:1801.01078 [cs]. doi: 10.48550/arXiv.1801.
01078. url: http://arxiv.org/abs/1801.01078.

[7] Kavi B. Obaid, Subhi Zeebaree, and Omar M. Ahmed. “Deep learning models based
on image classification: a review”. In: International Journal of Science and Business
4.11 (2020), pp. 75–81.

[8] Shagun Sharma and Kalpna Guleria. “Deep Learning Models for Image Classifica-
tion: Comparison and Applications”. In: 2022 2nd International Conference on Ad-
vance Computing and Innovative Technologies in Engineering (ICACITE). Apr. 2022,
pp. 1733–1738. doi: 10.1109/ICACITE53722.2022.9823516.

[9] Ali Bou Nassif et al. “Speech Recognition Using Deep Neural Networks: A Systematic
Review”. In: IEEE Access 7 (2019), pp. 19143–19165. issn: 2169-3536. doi: 10.1109/
ACCESS.2019.2896880.

[10] Ceren Güzel Turhan and Hasan Sakir Bilge. “Recent Trends in Deep Generative
Models: a Review”. In: 2018 3rd International Conference on Computer Science and
Engineering (UBMK). Sept. 2018, pp. 574–579. doi: 10.1109/UBMK.2018.8566353.

111

https://doi.org/10.1038/nature14539
https://doi.org/10.1016/S0169-7439(97)00061-0
https://doi.org/10.1016/S0169-7439(97)00061-0
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.48550/arXiv.1801.01078
https://doi.org/10.48550/arXiv.1801.01078
http://arxiv.org/abs/1801.01078
https://doi.org/10.1109/ICACITE53722.2022.9823516
https://doi.org/10.1109/ACCESS.2019.2896880
https://doi.org/10.1109/ACCESS.2019.2896880
https://doi.org/10.1109/UBMK.2018.8566353

[11] Yu Zhang et al. “A Survey on Neural Network Interpretability”. In: IEEE Transac-
tions on Emerging Topics in Computational Intelligence 5.5 (Oct. 2021), pp. 726–742.
issn: 2471-285X. doi: 10.1109/TETCI.2021.3100641.

[12] Giuseppe Carleo et al. “Machine learning and the physical sciences”. In:
arXiv:1903.10563 [astro-ph, physics:cond-mat, physics:hep-th, physics:physics,
physics:quant-ph] (Mar. 2019). arXiv: 1903.10563. url: http://arxiv.org/abs/
1903.10563.

[13] Giacomo Torlai and Roger G. Melko. “Machine learning quantum states in the
NISQ era”. In: arXiv:1905.04312 [cond-mat, physics:quant-ph] (May 2019). arXiv:
1905.04312. url: http://arxiv.org/abs/1905.04312.

[14] Yoav Levine et al. “Bridging Many-Body Quantum Physics and Deep Learning
via Tensor Networks”. en. In: arXiv:1803.09780 [quant-ph] (Mar. 2018). arXiv:
1803.09780. url: http://arxiv.org/abs/1803.09780.

[15] C.R. Jesshope. “Computational physics and the need for parallelism”. en. In: Com-
puter Physics Communications 41.2–3 (Aug. 1986), pp. 363–375. issn: 00104655. doi:
10.1016/0010-4655(86)90075-5.

[16] Ari Harju et al. “Computational Physics on Graphics Processing Units”. en. In: Ap-
plied Parallel and Scientific Computing. Ed. by Pekka Manninen and Per Öster. Lec-
ture Notes in Computer Science. Berlin, Heidelberg: Springer, 2013, pp. 3–26. isbn:
978-3-642-36803-5. doi: 10.1007/978-3-642-36803-5_1.

[17] Eric Cancès et al. “Computational quantum chemistry: A primer”. en. In: Handbook
of Numerical Analysis. Vol. 10. Special Volume, Computational Chemistry. Elsevier,
Jan. 2003, pp. 3–270. doi: 10.1016/S1570-8659(03)10003-8. url: https://www.
sciencedirect.com/science/article/pii/S1570865903100038.

[18] Anders W. Sandvik. “Computational Studies of Quantum Spin Systems”. In: AIP
Conference Proceedings 1297.1 (Nov. 2010), pp. 135–338. issn: 0094-243X. doi: 10.
1063/1.3518900.

[19] Kouichi Okunishi, Tomotoshi Nishino, and Hiroshi Ueda. “Developments in the Ten-
sor Network — from Statistical Mechanics to Quantum Entanglement”. In: Journal
of the Physical Society of Japan 91.6 (June 2022), p. 062001. issn: 0031-9015. doi:
10.7566/JPSJ.91.062001.

[20] David W. Cohen. An Introduction to Hilbert Space and Quantum Logic. Problem
Books in Mathematics. New York, NY: Springer, 1989. isbn: 978-1-4613-8843-2. doi:
10.1007/978-1-4613-8841-8. url: http://link.springer.com/10.1007/978-1-
4613-8841-8.

[21] Alexander Novikov, Mikhail Trofimov, and Ivan Oseledets. “Exponential Machines”.
In: arXiv:1605.03795 [cs, stat] (May 2016). arXiv: 1605.03795. url: http://arxiv.
org/abs/1605.03795.

112

https://doi.org/10.1109/TETCI.2021.3100641
http://arxiv.org/abs/1903.10563
http://arxiv.org/abs/1903.10563
http://arxiv.org/abs/1905.04312
http://arxiv.org/abs/1803.09780
https://doi.org/10.1016/0010-4655(86)90075-5
https://doi.org/10.1007/978-3-642-36803-5_1
https://doi.org/10.1016/S1570-8659(03)10003-8
https://www.sciencedirect.com/science/article/pii/S1570865903100038
https://www.sciencedirect.com/science/article/pii/S1570865903100038
https://doi.org/10.1063/1.3518900
https://doi.org/10.1063/1.3518900
https://doi.org/10.7566/JPSJ.91.062001
https://doi.org/10.1007/978-1-4613-8841-8
http://link.springer.com/10.1007/978-1-4613-8841-8
http://link.springer.com/10.1007/978-1-4613-8841-8
http://arxiv.org/abs/1605.03795
http://arxiv.org/abs/1605.03795

[22] Edwin Stoudenmire and David J Schwab. “Supervised Learning with Tensor Net-
works”. In: Advances in Neural Information Processing Systems. Vol. 29. Curran As-
sociates, Inc., 2016.

[23] Zhongming Chen et al. “Parallelized Tensor Train Learning of Polynomial Classifiers”.
In: IEEE Transactions on Neural Networks and Learning Systems 29.10 (Oct. 2018),
pp. 4621–4632. issn: 2162-2388. doi: 10.1109/TNNLS.2017.2771264.

[24] Ivan Glasser, Nicola Pancotti, and J. Ignacio Cirac. “Supervised learning with general-
ized tensor networks”. In: arXiv:1806.05964 [cond-mat, physics:quant-ph, stat] (June
2018). arXiv: 1806.05964. url: http://arxiv.org/abs/1806.05964.

[25] Edward Grant et al. “Hierarchical quantum classifiers”. en. In: npj Quantum Informa-
tion 4.1 (Dec. 2018), pp. 1–8. issn: 2056-6387. doi: 10.1038/s41534-018-0116-9.

[26] Song Cheng, Lei Wang, and Pan Zhang. “Supervised Learning with Projected En-
tangled Pair States”. In: arXiv:2009.09932 [cond-mat, physics:quant-ph, stat] (Sept.
2020). arXiv: 2009.09932. url: http://arxiv.org/abs/2009.09932.

[27] Jing Liu et al. “Tensor networks for unsupervised machine learning”. In: Physical
Review E 107.1 (Jan. 2023), p. L012103. doi: 10.1103/PhysRevE.107.L012103.

[28] Ian Convy and K. Birgitta Whaley. “Interaction decompositions for tensor net-
work regression”. en. In: Machine Learning: Science and Technology 3.4 (Dec. 2022),
p. 045027. issn: 2632-2153. doi: 10.1088/2632-2153/aca271.

[29] Ian Convy et al. “Mutual information scaling for tensor network machine learning”.
en. In: Machine Learning: Science and Technology 3.1 (Jan. 2022), p. 015017. issn:
2632-2153. doi: 10.1088/2632-2153/ac44a9.

[30] Ian Convy et al. “Machine learning for continuous quantum error correction on su-
perconducting qubits”. en. In: New Journal of Physics 24.6 (June 2022), p. 063019.
issn: 1367-2630. doi: 10.1088/1367-2630/ac66f9.

[31] Ian Convy and K. Birgitta Whaley. “A Logarithmic Bayesian Approach to Quantum
Error Detection”. en-GB. In: Quantum 6 (Apr. 2022), p. 680. doi: 10.22331/q-
2022-04-04-680.

[32] T. Kolda and B. Bader. “Tensor Decompositions and Applications”. In: SIAM Review
51.3 (Aug. 2009), pp. 455–500. issn: 0036-1445. doi: 10.1137/07070111X.

[33] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus. en. Springer series
in computational mathematics. Heidelberg: Springer Verlag, 2012. isbn: 978-3-642-
28026-9.

[34] Thomas D. Howell. “Global properties of tensor rank”. en. In: Linear Algebra and
its Applications 22 (Dec. 1978), pp. 9–23. issn: 00243795. doi: 10.1016/0024-
3795(78)90052-6.

[35] Giorgio Ottaviani and Philipp Reichenbach. “Tensor Rank and Complexity”. en. In:
arXiv:2004.01492 (July 2022). arXiv:2004.01492 [cs, math]. url: http://arxiv.org/
abs/2004.01492.

113

https://doi.org/10.1109/TNNLS.2017.2771264
http://arxiv.org/abs/1806.05964
https://doi.org/10.1038/s41534-018-0116-9
http://arxiv.org/abs/2009.09932
https://doi.org/10.1103/PhysRevE.107.L012103
https://doi.org/10.1088/2632-2153/aca271
https://doi.org/10.1088/2632-2153/ac44a9
https://doi.org/10.1088/1367-2630/ac66f9
https://doi.org/10.22331/q-2022-04-04-680
https://doi.org/10.22331/q-2022-04-04-680
https://doi.org/10.1137/07070111X
https://doi.org/10.1016/0024-3795(78)90052-6
https://doi.org/10.1016/0024-3795(78)90052-6
http://arxiv.org/abs/2004.01492
http://arxiv.org/abs/2004.01492

[36] Vin de Silva and Lek-Heng Lim. “Tensor Rank and the Ill-Posedness of the Best
Low-Rank Approximation Problem”. en. In: SIAM Journal on Matrix Analysis and
Applications 30.3 (Jan. 2008), pp. 1084–1127. issn: 0895-4798, 1095-7162. doi: 10.
1137/06066518X.

[37] Richard Bellman. Dynamic programming. en. Princeton, NJ: Princeton Univ. Pr,
1984. isbn: 978-0-691-07951-6.

[38] Amine Ammar and Francisco Chinesta. “Circumventing Curse of Dimensionality
in the Solution of Highly Multidimensional Models Encountered in Quantum Me-
chanics Using Meshfree Finite Sums Decomposition”. en. In: Meshfree Methods for
Partial Differential Equations IV. Ed. by Michael Griebel and Marc Alexander
Schweitzer. Lecture Notes in Computational Science and Engineering. Berlin, Hei-
delberg: Springer, 2008, pp. 1–17. isbn: 978-3-540-79994-8. doi: 10.1007/978-3-
540-79994-8_1.

[39] Nico Vervliet et al. “Breaking the Curse of Dimensionality Using Decompositions
of Incomplete Tensors: Tensor-based scientific computing in big data analysis”. In:
IEEE Signal Processing Magazine 31.5 (Sept. 2014), pp. 71–79. issn: 1558-0792. doi:
10.1109/MSP.2014.2329429.

[40] M. V. Catalisano, A. V. Geramita, and A. Gimigliano. “Ranks of tensors, secant
varieties of Segre varieties and fat points”. en. In: Linear Algebra and its Applications
355.1 (Nov. 2002), pp. 263–285. issn: 0024-3795. doi: 10.1016/S0024-3795(02)
00352-X.

[41] Mari Carmen Bañuls. “Tensor Network Algorithms: A Route Map”. en. In: Annual
Review of Condensed Matter Physics 14.1 (Mar. 2023), annurev-conmatphys-040721–
022705. issn: 1947-5454, 1947-5462. doi: 10.1146/annurev-conmatphys-040721-
022705.

[42] A. Cichocki et al. “Tensor Networks for Dimensionality Reduction and Large-Scale
Optimizations. Part 2 Applications and Future Perspectives”. en. In: Foundations
and Trends® in Machine Learning 9.6 (2017). arXiv: 1708.09165, pp. 249–429. issn:
1935-8237, 1935-8245. doi: 10.1561/2200000067.

[43] Daniele Venturi. “The numerical approximation of nonlinear functionals and func-
tional differential equations”. en. In: Physics Reports 732 (Feb. 2018), pp. 1–102.
issn: 03701573. doi: 10.1016/j.physrep.2017.12.003.

[44] Steven P. Diaz and Adam Lutoborski. “Polynomial foldings and rank of tensors”. In:
Journal of Commutative Algebra 8.2 (Apr. 2016), pp. 173–206. issn: 1939-2346. doi:
10.1216/JCA-2016-8-2-173.

[45] Peter D. Lax and Peter D. Lax. Linear algebra and its applications. en. 2nd ed. Pure
and applied mathematics. Hoboken, N.J: Wiley-Interscience, 2007. isbn: 978-0-471-
75156-4.

114

https://doi.org/10.1137/06066518X
https://doi.org/10.1137/06066518X
https://doi.org/10.1007/978-3-540-79994-8_1
https://doi.org/10.1007/978-3-540-79994-8_1
https://doi.org/10.1109/MSP.2014.2329429
https://doi.org/10.1016/S0024-3795(02)00352-X
https://doi.org/10.1016/S0024-3795(02)00352-X
https://doi.org/10.1146/annurev-conmatphys-040721-022705
https://doi.org/10.1146/annurev-conmatphys-040721-022705
https://doi.org/10.1561/2200000067
https://doi.org/10.1016/j.physrep.2017.12.003
https://doi.org/10.1216/JCA-2016-8-2-173

[46] I. V. Oseledets and E. E. Tyrtyshnikov. “Breaking the Curse of Dimensionality, Or
How to Use SVD in Many Dimensions”. en. In: SIAM Journal on Scientific Com-
puting 31.5 (Jan. 2009), pp. 3744–3759. issn: 1064-8275, 1095-7197. doi: 10.1137/
090748330.

[47] W. Hackbusch and S. Kühn. “A New Scheme for the Tensor Representation”. en. In:
Journal of Fourier Analysis and Applications 15.5 (Oct. 2009), pp. 706–722. issn:
1531-5851. doi: 10.1007/s00041-009-9094-9.

[48] C. Hubig et al. “Strictly single-site DMRG algorithm with subspace expansion”. en.
In: Physical Review B 91.15 (Apr. 2015), p. 155115. issn: 1098-0121, 1550-235X. doi:
10.1103/PhysRevB.91.155115.

[49] I. V. Oseledets. “Tensor-Train Decomposition”. en. In: SIAM Journal on Scientific
Computing 33.5 (Jan. 2011), pp. 2295–2317. issn: 1064-8275, 1095-7197. doi: 10.
1137/090752286.

[50] Lars Grasedyck. “Hierarchical singular value decomposition of tensors”. In: SIAM
Journal on Matrix Analysis and Applications 31.4 (2010), pp. 2029–2054.

[51] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statis-
tical Learning: Data Mining, Inference, and Prediction, Second Edition. en. 2nd ed.
Springer Series in Statistics. New York: Springer-Verlag, 2009. isbn: 978-0-387-84857-
0.

[52] Yann LeCun, Corinna Cortes, and Chris Burges.MNIST Handwritten Digit Database.
1998. url: http://yann.lecun.com/exdb/mnist/.

[53] Han Xiao, Kashif Rasul, and Roland Vollgraf. “Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms”. In: arXiv:1708.07747
(Sept. 2017). arXiv:1708.07747 [cs, stat]. doi: 10.48550/arXiv.1708.07747.

[54] A. Torralba, R. Fergus, and W.T. Freeman. “80 Million Tiny Images: A Large Data
Set for Nonparametric Object and Scene Recognition”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 30.11 (Nov. 2008), pp. 1958–1970. issn:
0162-8828. doi: 10.1109/TPAMI.2008.128.

[55] Yipeng Liu et al. Tensor Computation for Data Analysis. en. Cham: Springer Interna-
tional Publishing, 2022. isbn: 978-3-030-74385-7. doi: 10.1007/978-3-030-74386-
4.

[56] E. Miles Stoudenmire. “Learning relevant features of data with multi-scale tensor
networks”. en. In: Quantum Science and Technology 3.3 (Apr. 2018), p. 034003. issn:
2058-9565. doi: 10.1088/2058-9565/aaba1a.

[57] Stavros Efthymiou, Jack Hidary, and Stefan Leichenauer. “TensorNetwork for Ma-
chine Learning”. In: arXiv:1906.06329 [cond-mat, physics:physics, stat] (June 2019).
arXiv: 1906.06329. url: http://arxiv.org/abs/1906.06329.

[58] Ye-Ming Meng et al. “Residual Matrix Product State for Machine Learning”. In:
arXiv:2012.11841 [cond-mat, physics:quant-ph] (Dec. 2021). arXiv: 2012.11841. url:
http://arxiv.org/abs/2012.11841.

115

https://doi.org/10.1137/090748330
https://doi.org/10.1137/090748330
https://doi.org/10.1007/s00041-009-9094-9
https://doi.org/10.1103/PhysRevB.91.155115
https://doi.org/10.1137/090752286
https://doi.org/10.1137/090752286
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.48550/arXiv.1708.07747
https://doi.org/10.1109/TPAMI.2008.128
https://doi.org/10.1007/978-3-030-74386-4
https://doi.org/10.1007/978-3-030-74386-4
https://doi.org/10.1088/2058-9565/aaba1a
http://arxiv.org/abs/1906.06329
http://arxiv.org/abs/2012.11841

[59] Tianxiang Gao and Vladimir Jojic. “Degrees of Freedom in Deep Neural Networks”.
In: arXiv:1603.09260 (June 2016). arXiv:1603.09260 [cs, stat]. doi: 10.48550/arXiv.
1603.09260. url: http://arxiv.org/abs/1603.09260.

[60] J. Eisert. “Entanglement and tensor network states”. In: arXiv:1308.3318 [cond-mat,
physics:quant-ph] (Sept. 2013). arXiv: 1308.3318. url: http://arxiv.org/abs/
1308.3318.

[61] Michele Dolfi et al. “Matrix product state applications for the ALPS project”. en. In:
Computer Physics Communications 185.12 (Dec. 2014), pp. 3430–3440. issn: 0010-
4655. doi: 10.1016/j.cpc.2014.08.019.

[62] A. Weichselbaum et al. “Variational matrix-product-state approach to quantum im-
purity models”. In: Physical Review B 80.16 (Oct. 2009), p. 165117. doi: 10.1103/
PhysRevB.80.165117.

[63] Wen Wei Ho et al. “Periodic Orbits, Entanglement, and Quantum Many-Body Scars
in Constrained Models: Matrix Product State Approach”. In: Physical Review Letters
122.4 (Jan. 2019), p. 040603. doi: 10.1103/PhysRevLett.122.040603.

[64] Ulrich Schollwöck. “The density-matrix renormalization group in the age of matrix
product states”. In: Annals of Physics. January 2011 Special Issue 326.1 (Jan. 2011),
pp. 96–192. issn: 0003-4916. doi: 10.1016/j.aop.2010.09.012.

[65] Dingheng Wang et al. “Compressing 3DCNNs based on tensor train decomposition”.
en. In: Neural Networks 131 (Nov. 2020), pp. 215–230. issn: 0893-6080. doi: 10.
1016/j.neunet.2020.07.028.

[66] Xiaokang Wang et al. “ADTT: A Highly Efficient Distributed Tensor-Train Decom-
position Method for IIoT Big Data”. In: IEEE Transactions on Industrial Informatics
17.3 (Mar. 2021), pp. 1573–1582. issn: 1941-0050. doi: 10.1109/TII.2020.2967768.

[67] Longhao Yuan, Qibin Zhao, and Jianting Cao. “Completion of High Order Tensor
Data with Missing Entries via Tensor-Train Decomposition”. en. In: Neural Informa-
tion Processing. Ed. by Derong Liu et al. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2017, pp. 222–229. isbn: 978-3-319-70087-8. doi:
10.1007/978-3-319-70087-8_24.

[68] Wenqi Wang, Vaneet Aggarwal, and Shuchin Aeron. “Tensor Completion by Alternat-
ing Minimization under the Tensor Train (TT) Model”. In: arXiv:1609.05587 (Sept.
2016). arXiv:1609.05587 [cs, math]. doi: 10.48550/arXiv.1609.05587. url: http:
//arxiv.org/abs/1609.05587.

[69] Qibin Zhao et al. “Tensor Ring Decomposition”. en. In: arXiv:1606.05535 [cs] (June
2016). arXiv: 1606.05535. url: http://arxiv.org/abs/1606.05535.

[70] Peter Pippan, Steven R. White, and Hans Gerd Evertz. “Efficient matrix-product
state method for periodic boundary conditions”. en. In: Physical Review B 81.8 (Feb.
2010), p. 081103. issn: 1098-0121, 1550-235X. doi: 10.1103/PhysRevB.81.081103.

116

https://doi.org/10.48550/arXiv.1603.09260
https://doi.org/10.48550/arXiv.1603.09260
http://arxiv.org/abs/1603.09260
http://arxiv.org/abs/1308.3318
http://arxiv.org/abs/1308.3318
https://doi.org/10.1016/j.cpc.2014.08.019
https://doi.org/10.1103/PhysRevB.80.165117
https://doi.org/10.1103/PhysRevB.80.165117
https://doi.org/10.1103/PhysRevLett.122.040603
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.neunet.2020.07.028
https://doi.org/10.1016/j.neunet.2020.07.028
https://doi.org/10.1109/TII.2020.2967768
https://doi.org/10.1007/978-3-319-70087-8_24
https://doi.org/10.48550/arXiv.1609.05587
http://arxiv.org/abs/1609.05587
http://arxiv.org/abs/1609.05587
http://arxiv.org/abs/1606.05535
https://doi.org/10.1103/PhysRevB.81.081103

[71] J. Eisert, M. Cramer, and M. B. Plenio. “Area laws for the entanglement entropy - a
review”. In: Reviews of Modern Physics 82.1 (Feb. 2010). arXiv: 0808.3773, pp. 277–
306. issn: 0034-6861, 1539-0756. doi: 10.1103/RevModPhys.82.277.

[72] Vasily Pestun, John Terilla, and Yiannis Vlassopoulos. “Language as a matrix product
state”. In: arXiv:1711.01416 [cond-mat, stat] (Nov. 2017). arXiv: 1711.01416. url:
http://arxiv.org/abs/1711.01416.

[73] Yuhan Liu et al. “Entanglement-guided architectures of machine learning by quantum
tensor network”. In: arXiv:1803.09111 [cond-mat, physics:quant-ph, stat] (Mar. 2018).
arXiv: 1803.09111. url: http://arxiv.org/abs/1803.09111.

[74] Yaoyun Shi, Luming Duan, and Guifre Vidal. “Classical simulation of quantum many-
body systems with a tree tensor network”. In: Physical Review A 74.2 (Aug. 2006).
arXiv: quant-ph/0511070, p. 022320. issn: 1050-2947, 1094-1622. doi: 10 . 1103 /
PhysRevA.74.022320.

[75] V. Murg et al. “Simulating strongly correlated quantum systems with tree tensor
networks”. en. In: Physical Review B 82.20 (Nov. 2010), p. 205105. issn: 1098-0121,
1550-235X. doi: 10.1103/PhysRevB.82.205105.

[76] Frank Verstraete and J. Ignacio Cirac. “Renormalization algorithms for quantum-
many body systems in two and higher dimensions”. In: arXiv preprint cond-
mat/0407066 (2004).

[77] F. Verstraete et al. “Criticality, the Area Law, and the Computational Power of
Projected Entangled Pair States”. en. In: Physical Review Letters 96.22 (June 2006),
p. 220601. issn: 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.96.220601.

[78] Michael Lubasch, J. Ignacio Cirac, and Mari-Carmen Bañuls. “Algorithms for fi-
nite projected entangled pair states”. en. In: Physical Review B 90.6 (Aug. 2014),
p. 064425. issn: 1098-0121, 1550-235X. doi: 10.1103/PhysRevB.90.064425.

[79] Kenta Ozeki and Tomoki Yamashita. “Spanning Trees: A Survey”. en. In: Graphs and
Combinatorics 27.1 (Jan. 2011), pp. 1–26. issn: 1435-5914. doi: 10.1007/s00373-
010-0973-2.

[80] Silvère Bonnabel. “Stochastic Gradient Descent on Riemannian Manifolds”. In: IEEE
Transactions on Automatic Control 58.9 (Sept. 2013), pp. 2217–2229. issn: 1558-2523.
doi: 10.1109/TAC.2013.2254619.

[81] Christian Lubich, Ivan V. Oseledets, and Bart Vandereycken. “Time Integration of
Tensor Trains”. In: SIAM Journal on Numerical Analysis 53.2 (2015), pp. 917–941.
issn: 0036-1429.

[82] Sebastian Holtz, Thorsten Rohwedder, and Reinhold Schneider. “On manifolds of
tensors of fixed TT-rank”. en. In: Numerische Mathematik 120.4 (Apr. 2012), pp. 701–
731. issn: 0945-3245. doi: 10.1007/s00211-011-0419-7.

[83] Roman Orus. “A Practical Introduction to Tensor Networks: Matrix Product States
and Projected Entangled Pair States”. In: Annals of Physics 349 (Oct. 2014). arXiv:
1306.2164, pp. 117–158. issn: 00034916. doi: 10.1016/j.aop.2014.06.013.

117

https://doi.org/10.1103/RevModPhys.82.277
http://arxiv.org/abs/1711.01416
http://arxiv.org/abs/1803.09111
https://doi.org/10.1103/PhysRevA.74.022320
https://doi.org/10.1103/PhysRevA.74.022320
https://doi.org/10.1103/PhysRevB.82.205105
https://doi.org/10.1103/PhysRevLett.96.220601
https://doi.org/10.1103/PhysRevB.90.064425
https://doi.org/10.1007/s00373-010-0973-2
https://doi.org/10.1007/s00373-010-0973-2
https://doi.org/10.1109/TAC.2013.2254619
https://doi.org/10.1007/s00211-011-0419-7
https://doi.org/10.1016/j.aop.2014.06.013

[84] Bart Vandereycken. “Low-Rank Matrix Completion by Riemannian Optimization”.
In: SIAM Journal on Optimization 23.2 (Jan. 2013), pp. 1214–1236. issn: 1052-6234.
doi: 10.1137/110845768.

[85] Roeland Wiersema and Nathan Killoran. “Optimizing quantum circuits with Rieman-
nian gradient flow”. In: arXiv:2202.06976 (May 2022). arXiv:2202.06976 [quant-ph].
doi: 10.48550/arXiv.2202.06976. url: http://arxiv.org/abs/2202.06976.

[86] Léon Bottou. “Large-Scale Machine Learning with Stochastic Gradient Descent”. en.
In: Proceedings of COMPSTAT’2010. Ed. by Yves Lechevallier and Gilbert Saporta.
Heidelberg: Physica-Verlag HD, 2010, pp. 177–186. isbn: 978-3-7908-2604-3. doi: 10.
1007/978-3-7908-2604-3_16.

[87] Herbert Robbins and Sutton Monro. “A Stochastic Approximation Method”. In: The
Annals of Mathematical Statistics 22.3 (Sept. 1951), pp. 400–407. issn: 0003-4851,
2168-8990. doi: 10.1214/aoms/1177729586.

[88] Atilim Gunes Baydin et al. “Automatic differentiation in machine learning: a survey”.
In: Journal of Marchine Learning Research 18 (2018), pp. 1–43.

[89] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.
en. In: arXiv:1412.6980 [cs] (Jan. 2017). arXiv: 1412.6980. url: http://arxiv.org/
abs/1412.6980.

[90] Dumitru Erhan et al. “Why Does Unsupervised Pre-training Help Deep Learning?”
en. In: Proceedings of the Thirteenth International Conference on Artificial Intel-
ligence and Statistics. JMLR Workshop and Conference Proceedings, Mar. 2010,
pp. 201–208. url: https://proceedings.mlr.press/v9/erhan10a.html.

[91] Karl Weiss, Taghi M. Khoshgoftaar, and DingDing Wang. “A survey of transfer learn-
ing”. In: Journal of Big Data 3.1 (May 2016), p. 9. issn: 2196-1115. doi: 10.1186/
s40537-016-0043-6.

[92] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep
feedforward neural networks”. en. In: Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics. JMLR Workshop and Confer-
ence Proceedings, Mar. 2010, pp. 249–256. url: https://proceedings.mlr.press/
v9/glorot10a.html.

[93] J. R. Norris. Markov Chains. 1st ed. Cambridge University Press, Feb. 1997. isbn:
978-0-521-48181-6. doi: 10.1017/CBO9780511810633.

[94] Yiwei Chen, Yu Pan, and Daoyi Dong. “Residual Tensor Train: a Flexible and Efficient
Approach for Learning Multiple Multilinear Correlations”. In: arXiv:2108.08659 [cs]
(Aug. 2021). arXiv: 2108.08659. url: http://arxiv.org/abs/2108.08659.

[95] Christian Szegedy et al. “Going deeper with convolutions”. In: 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE,
June 2015, pp. 1–9. isbn: 978-1-4673-6964-0. doi: 10.1109/CVPR.2015.7298594.
url: http://ieeexplore.ieee.org/document/7298594/.

118

https://doi.org/10.1137/110845768
https://doi.org/10.48550/arXiv.2202.06976
http://arxiv.org/abs/2202.06976
https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.1214/aoms/1177729586
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://proceedings.mlr.press/v9/erhan10a.html
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1186/s40537-016-0043-6
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.1017/CBO9780511810633
http://arxiv.org/abs/2108.08659
https://doi.org/10.1109/CVPR.2015.7298594
http://ieeexplore.ieee.org/document/7298594/

[96] Suraj Srinivas, Akshayvarun Subramanya, and R. Venkatesh Babu. “Training Sparse
Neural Networks”. In: 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPRW). July 2017, pp. 455–462. doi: 10.1109/CVPRW.2017.61.

[97] Baoyuan Liu et al. “Sparse Convolutional Neural Networks”. In: 2015 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR). June 2015, pp. 806–814.
doi: 10.1109/CVPR.2015.7298681.

[98] Christopher J. Hillar and Lek-Heng Lim. “Most Tensor Problems Are NP-Hard”. In:
Journal of the ACM 60.6 (Nov. 2013), 45:1–45:39. issn: 0004-5411. doi: 10.1145/
2512329.

[99] G. Vidal. “A class of quantum many-body states that can be efficiently simulated”.
In: Physical Review Letters 101.11 (Sept. 2008). arXiv: quant-ph/0610099, p. 110501.
issn: 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.101.110501. url: http:
//arxiv.org/abs/quant-ph/0610099.

[100] E. Schrödinger. “Discussion of Probability Relations between Separated Systems”. In:
Mathematical Proceedings of the Cambridge Philosophical Society 31.4 (Oct. 1935),
pp. 555–563. issn: 0305-0041, 1469-8064. doi: 10.1017/S0305004100013554.

[101] Martin B. Plenio and S. Virmani. “An introduction to entanglement measures”. In:
(Apr. 2005). url: https://arxiv.org/abs/quant-ph/0504163v3.

[102] Artur Ekert and Peter L. Knight. “Entangled quantum systems and the Schmidt
decomposition”. In: American Journal of Physics 63.5 (May 1995), pp. 415–423. issn:
0002-9505, 1943-2909. doi: 10.1119/1.17904.

[103] G. Evenbly and G. Vidal. “Tensor Network States and Geometry”. en. In: Journal of
Statistical Physics 145.4 (Nov. 2011), pp. 891–918. issn: 0022-4715, 1572-9613. doi:
10.1007/s10955-011-0237-4.

[104] Don N. Page. “Average entropy of a subsystem”. In: Physical Review Letters 71.9
(Aug. 1993), pp. 1291–1294. issn: 0031-9007. doi: 10.1103/PhysRevLett.71.1291.

[105] M. B. Hastings. “An area law for one-dimensional quantum systems”. In: Journal of
Statistical Mechanics: Theory and Experiment 2007.08 (Aug. 2007), P08024–P08024.
issn: 1742-5468. doi: 10.1088/1742-5468/2007/08/P08024.

[106] M. Cramer et al. “Entanglement-area law for general bosonic harmonic lattice sys-
tems”. In: Physical Review A 73.1 (Jan. 2006), p. 012309. issn: 1050-2947, 1094-1622.
doi: 10.1103/PhysRevA.73.012309.

[107] G. Vidal et al. “Entanglement in quantum critical phenomena”. In: Physical Review
Letters 90.22 (June 2003). arXiv: quant-ph/0211074, p. 227902. issn: 0031-9007, 1079-
7114. doi: 10.1103/PhysRevLett.90.227902.

[108] Nader Ebrahimi, Ehsan S. Soofi, and Refik Soyer. “Information Measures in Perspec-
tive: Information Measures in Perspective”. In: International Statistical Review 78.3
(Dec. 2010), pp. 383–412. issn: 03067734. doi: 10.1111/j.1751-5823.2010.00105.
x.

119

https://doi.org/10.1109/CVPRW.2017.61
https://doi.org/10.1109/CVPR.2015.7298681
https://doi.org/10.1145/2512329
https://doi.org/10.1145/2512329
https://doi.org/10.1103/PhysRevLett.101.110501
http://arxiv.org/abs/quant-ph/0610099
http://arxiv.org/abs/quant-ph/0610099
https://doi.org/10.1017/S0305004100013554
https://arxiv.org/abs/quant-ph/0504163v3
https://doi.org/10.1119/1.17904
https://doi.org/10.1007/s10955-011-0237-4
https://doi.org/10.1103/PhysRevLett.71.1291
https://doi.org/10.1088/1742-5468/2007/08/P08024
https://doi.org/10.1103/PhysRevA.73.012309
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1111/j.1751-5823.2010.00105.x
https://doi.org/10.1111/j.1751-5823.2010.00105.x

[109] Guang Hao Low, Theodore J. Yoder, and Isaac L. Chuang. “Quantum inference on
Bayesian networks”. In: Physical Review A 89.6 (June 2014), p. 062315. issn: 1050-
2947, 1094-1622. doi: 10.1103/PhysRevA.89.062315.

[110] Shengjun Wu, Uffe V. Poulsen, and Klaus Mølmer. “Correlations in local measure-
ments on a quantum state, and complementarity as an explanation of nonclassicality”.
In: Physical Review A 80.3 (Sept. 2009), p. 032319. issn: 1050-2947, 1094-1622. doi:
10.1103/PhysRevA.80.032319.

[111] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. 6. print.
Wiley series in telecommunications. Wiley, 1991. isbn: 978-0-471-06259-2.

[112] John Martyn et al. “Entanglement and Tensor Networks for Supervised Image Classi-
fication”. In: arXiv:2007.06082 [quant-ph, stat] (July 2020). arXiv: 2007.06082. url:
http://arxiv.org/abs/2007.06082.

[113] Liam Paninski. “Estimation of Entropy and Mutual Information”. In: Neural Compu-
tation 15.6 (June 2003), pp. 1191–1253. issn: 0899-7667, 1530-888X. doi: 10.1162/
089976603321780272.

[114] R. Moddemeijer. “On estimation of entropy and mutual information of continuous
distributions”. In: Signal Processing 16.3 (Mar. 1989), pp. 233–248. issn: 0165-1684.
doi: 10.1016/0165-1684(89)90132-1.

[115] R. Steuer et al. “The mutual information: Detecting and evaluating dependencies
between variables”. In: Bioinformatics 18.Suppl 2 (Oct. 2002), S231–S240. issn: 1367-
4803, 1460-2059. doi: 10.1093/bioinformatics/18.suppl_2.S231.

[116] V. A. Epanechnikov. “Non-Parametric Estimation of a Multivariate Probability Den-
sity”. In: Theory of Probability & Its Applications 14.1 (Jan. 1969), pp. 153–158. issn:
0040-585X. doi: 10.1137/1114019.

[117] Young-Il Moon, Balaji Rajagopalan, and Upmanu Lall. “Estimation of mutual in-
formation using kernel density estimators”. In: Physical Review E 52.3 (Sept. 1995),
pp. 2318–2321. issn: 1063-651X, 1095-3787. doi: 10.1103/PhysRevE.52.2318.

[118] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. “Estimating mutual
information”. In: Physical Review E 69.6 (June 2004), p. 066138. issn: 1539-3755,
1550-2376. doi: 10.1103/PhysRevE.69.066138.

[119] Mike Koeman and Tom Heskes. “Mutual Information Estimation with Random
Forests”. In: Neural Information Processing. Ed. by Chu Kiong Loo et al. Lecture
Notes in Computer Science. Springer International Publishing, 2014, pp. 524–531.
isbn: 978-3-319-12640-1. doi: 10.1007/978-3-319-12640-1_63.

[120] Mohamed Ishmael Belghazi et al. “MINE: Mutual Information Neural Estimation”.
In: arXiv:1801.04062 [cs, stat] (Jan. 2018). arXiv: 1801.04062. url: http://arxiv.
org/abs/1801.04062.

[121] Ben Poole et al. “On Variational Bounds of Mutual Information”. In: International
Conference on Machine Learning. PMLR, May 2019, pp. 5171–5180. url: http:
//proceedings.mlr.press/v97/poole19a.html.

120

https://doi.org/10.1103/PhysRevA.89.062315
https://doi.org/10.1103/PhysRevA.80.032319
http://arxiv.org/abs/2007.06082
https://doi.org/10.1162/089976603321780272
https://doi.org/10.1162/089976603321780272
https://doi.org/10.1016/0165-1684(89)90132-1
https://doi.org/10.1093/bioinformatics/18.suppl_2.S231
https://doi.org/10.1137/1114019
https://doi.org/10.1103/PhysRevE.52.2318
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1007/978-3-319-12640-1_63
http://arxiv.org/abs/1801.04062
http://arxiv.org/abs/1801.04062
http://proceedings.mlr.press/v97/poole19a.html
http://proceedings.mlr.press/v97/poole19a.html

[122] Avraham Ruderman et al. “Tighter variational representations of f-divergences via re-
striction to probability measures”. In: Proceedings of the 29th International Coference
on International Conference on Machine Learning. 2012, pp. 1155–1162.

[123] Daniel Ramos et al. “Deconstructing Cross-Entropy for Probabilistic Binary Classi-
fiers”. In: Entropy 20.33 (Mar. 2018), p. 208. doi: 10.3390/e20030208.

[124] Havard Rue, Leonhard Held, and Leonhard Held. Gaussian Markov Random Fields:
Theory and Applications. Chapman and Hall/CRC, Feb. 2005. isbn: 978-0-429-20882-
9. doi: 10.1201/9780203492024. url: https://www.taylorfrancis.com/books/
9780429208829.

[125] Christopher Kanan and Garrison W. Cottrell. “Color-to-Grayscale: Does the Method
Matter in Image Recognition?” In: PLoS ONE 7.1 (Jan. 2012). Ed. by Eshel Ben-
Jacob, e29740. issn: 1932-6203. doi: 10.1371/journal.pone.0029740.

[126] Carlos A. L. Pires and Rui A. P. Perdigão. “Minimum Mutual Information and Non-
Gaussianity Through the Maximum Entropy Method: Theory and Properties”. In:
Entropy 14.6 (June 2012), pp. 1103–1126. issn: 1099-4300. doi: 10.3390/e14061103.

[127] Wei Li, Jan von Delft, and Tao Xiang. “Efficient simulation of infinite tree tensor net-
work states on the Bethe lattice”. In: Physical Review B 86.19 (Nov. 2012), p. 195137.
issn: 1098-0121, 1550-235X. doi: 10.1103/PhysRevB.86.195137.

[128] Wei Kong et al. “A review of independent component analysis application to mi-
croarray gene expression data”. In: BioTechniques 45.5 (Nov. 2008), pp. 501–520.
issn: 0736-6205, 1940-9818. doi: 10.2144/000112950.

[129] Xi Chen et al. “InfoGAN: interpretable representation learning by information max-
imizing generative adversarial nets”. In: Proceedings of the 30th International Con-
ference on Neural Information Processing Systems. NIPS’16. Curran Associates Inc.,
Dec. 2016, pp. 2180–2188. isbn: 978-1-5108-3881-9.

[130] Song Cheng, Jing Chen, and Lei Wang. “Information Perspective to Probabilistic
Modeling: Boltzmann Machines versus Born Machines”. In: Entropy 20.8 (Aug. 2018),
p. 583. issn: 1099-4300. doi: 10.3390/e20080583.

[131] David McAllester and Karl Stratos. “Formal limitations on the measurement of mu-
tual information”. In: International Conference on Artificial Intelligence and Statis-
tics. PMLR, 2020, pp. 875–884.

121

https://doi.org/10.3390/e20030208
https://doi.org/10.1201/9780203492024
https://www.taylorfrancis.com/books/9780429208829
https://www.taylorfrancis.com/books/9780429208829
https://doi.org/10.1371/journal.pone.0029740
https://doi.org/10.3390/e14061103
https://doi.org/10.1103/PhysRevB.86.195137
https://doi.org/10.2144/000112950
https://doi.org/10.3390/e20080583

	Introduction
	Tensor Network Regression
	Tensors
	Perspectives and notation
	Tensor operations
	Tensor Rank

	Tensor Networks
	The "curse of dimensionality"
	Tensor network notation
	Tensor network contractions
	Bond dimension and multiplex rank
	Approximate representations

	Tensor Regression
	Image classification and supervised machine learning
	Tensor models
	The tensor network ansatz

	Building a Tensor Network Regression Model
	Network Architecture
	General considerations
	Matrix product states and tensor rings
	Tree tensor networks
	Projected entangled pair states
	Spanning trees

	Optimization
	General considerations
	Riemannian optimization
	DMRG-style sweeps
	Stochastic gradient descent

	Initialization
	General considerations
	MPS/tensor ring initialization
	TTN and STN initialization

	Interaction Decomposition of Tensor Network Models
	Introduction
	The Interaction Decomposition
	Interaction Subspaces

	Interaction Decompositions of TR and TTN Models
	Interaction Decompositions as Regression Models
	Discussion
	Appendix
	Procedure for the Interaction Decomposition
	Tabulation of D-degree Model Performance
	Regression Model Comparisons

	Rank Analysis of Tensor Network Models
	Introduction
	General Approach
	Braket notation and excitations
	Partitioning the weight tensor

	Rank Upper Bounds
	Single-Feature Partition
	Linear Regression
	Bilinear Regression
	Multilinear Regression

	Applications to Tensor Network Regression
	Bond dimension of low-degree regression models
	Significance of inter-partition regressors
	Short-range and long-range interactions
	Rank reduction through embedding

	Discussion
	Appendix
	Multiplex rank as a function of partition size
	Rank of embedded weight tensors

	Mutual Information Scaling in Image Datasets
	Introduction
	Correlation Scaling
	Entanglement Scaling in Quantum Systems
	Correlations in Classical Data
	Entanglement as a Bound on Mutual Information for Orthogonal Data

	Estimating Mutual Information
	Setup and Prior Work
	Logistic Regression for MI Estimation

	Numerical Tests with Gaussian Fields
	Gaussian Markov Random Fields
	Test Setup
	Nearest-Neighbor Boundary-Law GMRF
	Uniform Volume Law GMRF
	Random Sparse GMRF

	Application to Image Data
	Setup
	Results

	Discussion
	Appendix
	GMRF Covariances and Sample Images

	Conclusions and Future Directions
	References

