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Development and Application of the Bat Algorithm for
Optimizing the Operation of Reservoir Systems

Omid Bozorg-Haddad1; Iman Karimirad2; Samaneh Seifollahi-Aghmiuni3; and Hugo A. Loáiciga4

Abstract: Optimal utilization of water resources by means of water transfers and reservoirs in semiarid and arid regions is used to mitigate
natural water scarcity. In this context, metaheuristic algorithms for optimum reservoir system operation have become an attractive alternative
to traditional operations research algorithms such as linear programming (LP), nonlinear programming (NLP), and dynamic programming
(DP). This paper presents the metaheuristic bat algorithm (BA) and its application to the optimal operation of the Karoun-4 reservoir system
in Iran and to a hypothetical four-reservoir system. The merits of the performance of the BA in the optimization of reservoir operation
are demonstrated by comparison to those of LP, NLP, and genetic algorithm (GA) in terms of the convergence to global optima and
of the variance of results about global optima for reservoir optimization problems. DOI: 10.1061/(ASCE)WR.1943-5452.0000498.
© 2014 American Society of Civil Engineers.

Author keywords: Bat algorithm; Optimization; Reservoir operation; Nonlinear programming; Genetic algorithm.

Introduction

The use of reservoir systems to store and transfer water to provide
multiple services (e.g, water supply, hydropower, flood control,
flow regulation for ecologic functions, and recreation) is well es-
tablished. There are numerous studies that optimize the operation
of reservoir systems. Mujumdar and Ramesh (1997), for example,
used dynamic programming (DP) to establish that optimized res-
ervoir operation could increase agricultural yields by 40% in areas
served by the Karnataka reservoir in India. Rashid et al. (2007) used
stochastic dynamic programming (SDP) to optimize the operation
rule curve of the Dokan reservoir in Iraq. The latter authors dem-
onstrated that SDP-optimized production of hydropower is superior
to nonoptimized production. Similar conclusions regarding the
SDP-optimized production of hydropower were obtained by Liu
et al. (2012) in the Three Gorges dam in China.

Recently, many optimization techniques have been developed
and applied in all aspects of water resources systems such as res-
ervoir operation (Bozorg-Haddad et al. 2011a; Fallah-Mehdipour
et al. 2011b, 2012, 2013), hydrology (Orouji et al. 2013), water
distribution networks (Bozorg-Haddad et al. 2008; Fallah-
Mehdipour et al. 2011a; Seifollahi-Aghmiuni et al. 2011, 2013),

and algorithmic developments (Shokri et al. 2013). Only a few of
these works dealt with the application of the bat algorithm (BA) in
water resources systems and especially for optimizing the operation
of reservoir systems.

Several metaheuristic algorithms have been used to optimize
reservoir operation and genetic algorithm (GA) is a frequent choice.
As an example, Hormwichian et al. (2009) used GA to demonstrate
the possible reduction in water shortages in areas served by the
Lampao reservoir in Thailand. Chen et al. (2012) optimized the
operation rule curve of the Qingshitan reservoir in southwest China
using GA and proved that the optimized rule could reduce down-
stream water-level fluctuations substantially.

Metaheuristic algorithms such as particle swarm optimization
(PSO), harmony search (HS), and the firefly algorithm (FA) are
gaining prominence among methods used for solving many com-
plex optimization problems (Kennedy and Eberhart 1995; Mitchell
1998; Deep and Bansal 2009). Most of these algorithms are derived
from the characteristics of biological and physical systems in nature
and other realms. A case in point is simulated annealing (SA),
which is based on the annealing process of metals (Kirkpatrick et al.
1983). PSO was developed based on the swarm behavior of birds
and fish (Kennedy and Eberhart 1995, 2001). HS was inspired by
the process of composing music (Geem et al. 2001), and the FAwas
formulated based on the flashing behavior of fireflies (Yang 2008).
Each of the mentioned algorithms has its advantages and disadvan-
tages. For example, SA can almost guarantee finding the optimal
solutions if the cooling process in metals is slow enough and the
simulation runs long enough (Yang 2010).

The BA is a metaheuristic algorithm based on the echolocation
features of microbats (Yang 2010). Among the applications of the
BA, continuous optimization in the context of engineering design
optimization has been extensively studied, which demonstrated
that the BA can deal with highly nonlinear problems efficiently
and can find the optimal solutions accurately (Yang 2010, 2012;
Yang and Gandomi 2012). Case studies include pressure vessel de-
sign, automobile design, spring and beam design, truss systems,
tower and tall building design, and others. Assessments of the
BA features are found in Koffka and Ashok (2012), who compared
the BA with the GA and PSO algorithms in cancer-research prob-
lems and provided evidence that the BA performs better than the
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other two algorithms. Malakooti et al. (2012) implemented the BA
to solve two types of multiprocessor scheduling problems (MSPs)
and concluded that in the single-objective MSP the bat intelligence
outperformed the list algorithm and the genetic algorithm. Reddy
and Manoj (2012) used fuzzy logic and the BA to obtain optimum
capacitor placement for loss reduction in electricity distribution
systems.

Ramesh et al. (2013) reported a detailed study of combined
economic load and emission dispatch problems using the BA. They
compared this algorithm with the ant colony optimization (ACO)
algorithm, hybrid genetic algorithm, and other methods, and con-
cluded that the BA is easy to implement and much superior to the
comparison algorithms in terms of accuracy and efficiency. Niknam
et al. (2013) showed that the BA outperforms the GA and PSO in
solving energy generation problems. Baziar et al. (2013) compared
the BAwith the GA and PSO in the management of a microgrid for
various types of renewable power sources and concluded that BA
has the best performance.

One advantage of the metaheuristic algorithms in comparison
with the conventional optimization methods such as linear pro-
gramming (LP), nonlinear programming (NLP), and DP is their
superior capacity to find global optimal solutions of the optimiza-
tion problems in various fields of water resources engineering, and,
in particular, in the optimization of reservoir system operation. This
study introduces the BA as a new and capable algorithm and eval-
uates its capacity to obtain optimal solutions to reservoir optimiza-
tion problems. In this study, the BA’s efficiency was first confirmed
using a mathematical benchmark problem. Thereafter, its perfor-
mance was evaluated in solving the reservoir operation optimiza-
tion of a real single reservoir and a hypothetical multireservoir case
study. The obtained results were compared with optimization
results derived with GA.

Methodology

The BA algorithm is implemented in this study to optimize reser-
voir operation. Bats, the only winged mammals, can determine
their locations while flying using sound emission and reception,
which is called echolocation. Their population is approximately
20% of all mammal species. Bat sizes range from the tiny bumble-
bee bat (with mass ranging from 1.5 to 2 g) to the giant bats with
wingspan of about 2 m weighing approximately 1 kg (Altringham
1996; Colin 2000).

Most microbats are insectivores and use a type of sonar, called
echolocation, to detect prey, avoid obstacles, and locate their roost-
ing crevices in the dark. Bats emit sound pulses while flying and
listen to their echoes from surrounding objects to assess their own
location and those of the echoing objects (Yang and Gandomi
2012).

Each pulse has a constant frequency (usually in the range of
25 × 103 to 150 × 103 Hz) and lasts a few thousandths of a second
(up to approximately 8 to 10 ms). About 10 to 20 sounds are emit-
ted every second with the rate of emission up to approximately 200
pulses per second when they fly near their prey while hunting. If the
interval between two successive sound bursts is less than 300 to
400 μs, bats cannot process them for path-finding purposes (Yang
2010).

As the speed of sound in air is typically v ¼ 340 m=s, the wave-
length (λ) of the ultrasonic sound bursts with a constant frequency
(f) is given by (Yang and Gandomi 2012)

λ ¼ ν
f

ð1Þ

λ is in the range of 2 to 14 mm for the typical frequency range from
25 × 103 to 150 × 103 Hz. Such wavelengths are of the same order
of magnitude of their prey sizes.

Bats emit pulses as loud as 110 dB, which are in the ultrasonic
region (frequency range of human hearing is between 20 and
20,000 Hz). The loudness also varies from the loudest when search-
ing for prey to a quieter base when homing towards the prey. The
travelling range of such short pulses is typically a few meters
(Richardson 2008).

Microbats can avoid obstacles as small as thin human hairs.
Such echolocation behavior of microbats can be formulated in such
a way to make it possible to create the bat-inspired optimization
algorithm using the following idealized rules (Yang 2010):
1. All bats use echolocation to sense distance and they can dis-

cern the difference between food or prey and background
barriers.

2. Bats fly randomly with velocity νl at position yl with a fixed
frequency fmin, varying wavelength λ, and loudness A0 to
search prey. They can automatically adjust the wavelength
(or frequency) of their emitted pulses and adjust the pulsation
rate, depending on the proximity of their target.

3. The loudness can vary from a large (positive) A0 to a minimum
constant value Amin.

In general the frequency (f) is in the range of [fmin, fmax] and
corresponds to a range of wavelengths [λmin, λmax]. In actual
implementations, one can adjust the range by adjusting the wave-
lengths (or frequencies) and the detectable range (or the largest
wavelength) should be chosen such that it is comparable to the size
of the domain of interest, and then toning down to smaller ranges.
For simplicity, f has been assumed in the range of [0, fmax].

The pulsation rate (r) is in the range of [0, 1], where 0 means no
pulses at all and 1 means the maximum pulsation rate. Based on
these approximations and idealization, the basic steps of the BA
have been summarized in the flowchart shown in Fig. 1 for min-
imization problems.

According to Fig. 1, after determination of prey (objective func-
tion) and producing the initial situation of bats (position, velocity,
frequency, pulsation, loudness: yl, νl, fl, rl, and Al, respectively),
the objective function is used to evaluate situations. The following
are the rules to update the lth bat’s position (yl) and velocity (νl) in
a d-dimensional search space (l ¼ 1; 2; : : : ; n) (update situations).
The new positions [ylðtÞ] and velocities [νlðtÞ] at time step (t) are
given by (Yang and Gandomi 2012)

fl ¼ fmin þ ðfmax − fminÞ × β ð2Þ

νlðtÞ ¼ ½ylðt − 1Þ − Y�� × flt ¼ 1,2; : : : ; T ð3Þ

ylðtÞ ¼ ylðt − 1Þ þ νlðtÞt ¼ 1; 2; : : : ;T ð4Þ

where ylðt − 1Þ = position at time step t − 1; β = random vector in
the range of [0, 1] drawn from a uniform distribution; Y� = current
global best location (solution) determined after comparing all the
solutions among all the n bats; and T = total period of assessment.

Because the product λl × fl is the velocity increment, either fl
or λl can be used to adjust the velocity change while the other factor
(λl or fl) is assumed as a fixed value, depending on the type of
problem of interest. In this implementation, the values of fmin ¼ 0
and fmax ¼ 100 were used based on the domain size of the prob-
lem. Initially, a frequency value drawn uniformly from the range of
[fmin, fmax] was assigned to each bat. In practical implementations,
the positions of the bats are obtained from the solution of the opti-
mization problem.

© ASCE 04014097-2 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2015, 141(8): 04014097 

 D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

H
ug

o 
L

oa
ic

ig
a 

on
 0

9/
28

/2
4.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



For the local search part (random fly), once a solution has been
selected among the current best solutions, a new solution for each
bat is generated locally using random walk (Yang and Gandomi
2012)

yðtÞ ¼ yðt − 1Þ þ εAðtÞt ¼ 1; 2; : : : ;T ð5Þ
where ε = random number in the range of ½−1,1�; and AðtÞ = aver-
age loudness of all the bats at the tth time step. The value of AðtÞ is
reduced while approaching the optimum solution by using a rate
called random walk rate.

Updating the velocities and positions of bats is similar to the
procedure in the standard PSO algorithm (Kennedy and Eberhart
2001) because fl essentially controls the pace and range of the
movement of the swarming particles. So the BA can be considered
as a combination of the standard PSO and intensive local search
controlled by the loudness and pulsation rate.

The loudness (Al) and the pulsation rate (rl) are updated accord-
ing to the iteration steps. The loudness usually decreases once a bat
has found its prey, while the pulsation rate increases. Thus, the
loudness can be chosen as any value of convenience. For example,
the values of A0 ¼ 1 and Amin ¼ 0 can be used, where the zero
value means that a bat has just found the prey and temporarily stops
emitting any sound. The pulsation rate (rl) at each time step is cal-
culated as follows:

rtþ1
l ¼ r0l ½1 − expð−γtÞ�Atþ1

l ¼ αAt
lt ¼ 1; 2; : : : ;T ð6Þ

where α and γ = constant values. In fact, α is similar to the cooling
factor in the SA algorithm (Kirkpatrick et al. 1983). For any
0 < α < 1 and γ > 0, At

l → 0 and rtl → r0l when t → ∞.

Choosing the correct values for the parameters α and γ requires
experimentation. Initially, each bat should have different values of
loudness and pulsation rate, and this can be achieved by randomi-
zation. Their loudness and pulsation rates are updated only if the
solutions improve, which means that the bats are moving towards
the optimal solution.

Case Studies

Mathematical Benchmark Problems to Verify the BA
Algorithm

Three benchmark functions (spherical, Rosenbrock, and Bukin-6)
are introduced in this section (Fig. 2). They are useful to evaluate
the BA in finding the optimum solutions of optimization problems.
Eqs. (7)–(9) define the spherical, Rosenbrock, and Bukin-6 func-
tions, respectively

fðxÞ ¼
Xm
j¼1

x2j − 5.12 ≤ xj ≤ 5.12 ð7Þ

fðxÞ ¼
Xm−1

j¼1

½100 ðxjþ1 − x2jÞ2 þ ðxj þ 1Þ2� − 2.048 ≤ xj ≤ 2.048

ð8Þ

fðx1; x2Þ ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx2 − 0.01x21 j

q
þ 0.01jx1 þ 10j − 15 ≤ x1

≤ −5;−3 ≤ x2 ≤ 3 ð9Þ

where fðÞ = mathematical function; x = independent variable; j =
index of x; and m = total number of the x. The spherical and Rose-
nbrock functions have one global minimum, whereas the Bukin-6
function has several local minima, which complicates finding its
global optimal solution. The global optimal value of the spherical
function (herein defined as a 20-dimensional function) is located
at the origin of coordinates (at zero). The optimal value of the
Rosenbrock and Bukin-6 functions, herein represented as two-
dimensional functions, is equal to zero corresponding to the points
(1,1) and (–10,1), respectively.

For comparison, the GA was also applied to obtain the optimal
solutions of the previously mentioned benchmark functions.
Because evolutionary algorithms generally start from a set of ran-
dom solutions, assessing their performances needs multiple runs.
Therefore, to test the effect of the initial starting points, 10 different
runs for GA and BA were performed in this study.

Optimizing Reservoir System Operation with the BA
Algorithm

Fig. 3 shows the schematic of a reservoir with its associated fluxes.
Maximizing the total operation benefits constitutes the objective
function of the reservoir operation problems

Maximize B ¼
XN
i¼1

XT
t¼1

biðtÞReiðtÞ ð10Þ

where B = total benefit of the multireservoir system; i = index of
reservoirs, i ¼ 1; 2; : : : ;N; N = total number of reservoirs; t = op-
eration periods; T = total number of operation periods; biðtÞ = unit
benefit function of the reservoir i during period t; and ReiðtÞ = sum-
mation of release and spill of the reservoir i during period t.

Start

Determine 
prey f (y)

Produce initial 
situation of bats

(yl, vl, fl, rl, and Al)

Evaluate and 
update situations

If t  maximum 
iteration

Update situations

If rand > rl

Random fly

Evaluate 
situations

If rand  < Al

 and f (yl) < f (Y*)

Evaluate situations and determine the best 
solution

Increase rl and Decrease Al

End

Yes

No Yes No

Yes

No

t = 1

t = t +1

Report results

Fig. 1. Bat algorithm flowchart
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There are several constraints imposed on reservoir operation.
The continuity constraint over operating period t for reservoir i is

Siðtþ 1Þ ¼ SiðtÞ þ IiðtÞ þMN×N ½RiðtÞ þ SpiðtÞ�t
¼ 1; 2; : : : ; T; i ¼ 1; 2; : : : ;N ð11Þ

where SiðtÞ and Siðtþ 1Þ = storage of the reservoir i at the begin-
ning of the periods t and tþ 1, respectively; IiðtÞ = net of the river
flow, precipitation on lake, evaporation from lake, and groundwater
losses and gains for the reservoir i during the period t; RiðtÞ =
release of the reservoir i during the period t; SpiðtÞ = spill of the
reservoir i during the period t; and M ¼ N × N matrix of indexes
of reservoir connections describing the manner in which releases
and spills from upstream reservoirs accrue to the ith reservoir.

Releases from the reservoirs (through the turbines or diverted
for irrigation) are constrained as

Rmin
i ðtÞ ≤ RiðtÞ ≤ Rmax

i ðtÞt ¼ 1; 2; : : : ; T; i ¼ 1; 2; : : : ;N ð12Þ

in which Rmin
i ðtÞ and Rmax

i ðtÞ = minimum and maximum allowable
releases of the reservoir i during period t, respectively. The con-
straint on reservoir storage is defined as

SminiðtÞ ≤ SiðtÞ ≤ SmaxiðtÞt ¼ 1; 2; : : : ; T; i ¼ 1; 2; : : : ;N ð13Þ

where SminiðtÞ and SmaxiðtÞ = minimum and maximum allowable
storages of the reservoir i during period t, respectively. The spill
[SpiðtÞ] occurs when the storage exceeds its maximum value

Fig. 2. Mathematical test functions: (a) spherical; (b) Rosenbrock;
(c) Bukin-6

Ri (t)

Spi (t)

Si (t +1) or Si (t)

Smini (t)

Smaxi (t)Ii (t)

Fig. 3. Schematic of a reservoir with fluxes

Fig. 4. Schematic of the four-reservoir system
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SpiðtÞ ¼ SiðtÞ þ IiðtÞ − SmaxiðtÞt ¼ 1; 2; : : : ;T; i ¼ 1; 2; : : : ;N

ð14Þ

In some cases, the initial and final storages of each reservoir are
considered as fixed values (called carryover)

Sið1Þ ¼ Sinitiali i ¼ 1; 2; : : : ;N ð15Þ

SiðT þ 1Þ ¼ Stargeti i ¼ 1; 2; : : : ;N ð16Þ

in which Sinitiali and Stargeti = initial and target storages of the res-
ervoir i. If the reservoir storage does not meet the constraints in
Eqs. (15) and (16), the results are infeasible and a penalty function
is applied. The penalty function, giðtÞ applied to the constraint in
Eq. (16) is expressed as follows:

giðtÞ ¼ k1½SiðT þ 1Þ − Stargeti �2SiðT þ 1Þ ≠ Stargeti ð17Þ
in which k1 = penalty constant. Moreover, if the reservoir storage
violates its minimum or maximum values, the following penalty
functions [hiðtÞ and wiðtÞ] are applied:
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Fig. 5.Minimum (best) and maximum (worst) rates of convergence of the BA algorithm from 10 runs for the (a) spherical function; (c) Rosenbrock
function; (e) Bukin-6 function; average rates of convergence of the GA and BA algorithms from 10 runs for the (b) spherical function; (d) Rosenbrock
function; (f) Bukin-6 function
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hiðtÞ ¼ k2½SminiðtÞ − SiðtÞ�2SiðtÞ < SminiðtÞ ð18Þ

wiðtÞ ¼ k3½SiðtÞ − SmaxiðtÞ�2SiðtÞ > SmaxiðtÞ ð19Þ
in which k2 and k3 = penalty constants. Thus, the penalized objec-
tive function is written in the following form:

Maximize B ¼
XN
i¼1

XT
t¼1

biðtÞReiðtÞ −
XN
i¼1

XT
t¼1

giðtÞ

−XN
i¼1

XT
t¼1

hiðtÞ −
XN
i¼1

XT
t¼1

wiðtÞ ð20Þ

Single-Reservoir System Operation

The Karoun-4 reservoir in Iran is herein used as the case study for
single-reservoir operation applying the BA. This reservoir was built
on the Karoun River for hydropower generation. The Karoun-4 res-
ervoir generic location is specified by coordinates 31°35′ N and
50°24′ E. The minimum and maximum reservoir volumes are
1,141 × 106 and 2,190 × 106 m3, respectively. In addition, its
power plant capacity (PPC) is equal to 1,000 × 106 W. This reser-
voir’s operation is herein simulated for the 5-year period 1975–
1980, with a monthly time step. The objective function of this
operation problem is the maximization of generated power, which
is equivalent to the minimization of the deficit with respect to the
installed capacity [Eq. (21)], with constraints presented in the pre-
vious section [Eqs. (11)–(19)] with one reservoir (N ¼ 1)

Minimize D ¼
XT
t¼1

�
1 − PðtÞ

PPC

�
ð21Þ

in which D = total power deficit (objective function); and PðtÞ =
generated power in period t.

Table 1. Characteristics of the BA and GA Used with the Test Functions

Characteristic Spherical Rosenbrock Bukin-6

Population 10 10 10
Minimum frequency (fmin) 0 0 0
Maximum frequency (fmax) 1 1 2
Number of evaluation 9,010 9,010 9,010
Maximum loudness (A0) 0.9 0.95 0.9
Minimum loudness (Amin) 0.03 0.05 0.1
Random walks factor 0.03 0.01 0.05
Random walks rate 5 6 5
Number of dimensions (variables) 20 2 2
Number of constraints 2 2 2
Average time of calculation 6 s 11 s 27 s

Table 2. Statistical Measures from 10 Runs of the GA and BA for the Spherical, Rosenbrock, and Bukin-6 Functions

Run number

Spherical Rosenbrock Bukin-6

GlobalGA (10−3) BA (10−7) GA (10−4) BA (10−7) GA (10−2) BA (10−2)
1 5.78 4.31 26.90 482.00 8.6 2.5 0
2 6.81 4.12 4.76 0.00007 4.8 1.7
3 6.98 5.60 2.36 1.32 5.4 2.8
4 6.37 3.98 10.55 0.0139 2.3 3.3
5 9.85 4.29 0.37 0.00008 4.5 3.1
6 8.80 4.20 0.11 555.00 5.7 1.8
7 8.10 4.02 0.14 136.00 6.7 1.6
8 7.36 4.20 4.86 0.0938 6.3 4.9
9 15.14 4.97 1.38 16,000.00 4.8 3.9
10 1.38 3.36 0.55 0.00014 5.2 5.3
Best 1.38 3.36 0.11 0.00007 2.3 1.6
Average 7.66 4.31 5.20 1,720.00 5.4 3.1
Worst 15.14 5.60 26.90 16,040.00 8.6 5.3
Standard deviation 3.47 0.60 8.29 5,030.00 8.6 2.5
Coefficient of variation 0.45 0.14 1.59 0.00292 1.6 0.8
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Fig. 6.Average volume of inflow and evaporation depth in the Karoun-
4 reservoir

Table 3. Parameters of the GA and BA Used in the Reservoir System
Problems

Parameter Karoun-4
Four-reservoir

system

Population 70 50
Minimum frequency (fmin) 0 0
Maximum frequency (fmax) 5 5
Number of evaluation 70,070 500,050
Maximum loudness (A0) 0.95 0.95
Minimum loudness (Amin) 0.1 0.1
Random walks factor 0.1 0.1
Random walks rate 5 5
Number of dimensions (variables) 61 48
Number of constraints 361 196
Average time of calculation 767 s 1,582 s
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Four-Reservoir System Operation

This (maximization) problem was introduced and solved by Chow
and Cortes-Rivera (1974). This problem is a hypothetical example
of a four-reservoir system operation with the aim of maximizing the

total benefit during the operation period (equal to 1 year). A sche-
matic model of this problem is shown in Fig. 4. Eqs. (11)–(20)
constitute the simulation and optimization equations for this prob-
lem. The data required for modeling the system such as inflows,
reservoir storages, and other features are available in Murray and
Yakowitz (1979).

Results and Discussions

The results obtained for the optimization of the benchmark math-
ematical functions, single-reservoir, and multireservoir systems are
presented in the next three sections.

Results of the BA Verification Using the Mathematical
Benchmark Functions

Fig. 5 shows the maximum and minimum of the objective function
using the BA and the average rate of convergence using the BA and
GA achieved for the three benchmark functions.

Fig. 5 depicts a more rapid convergence of the BA than the GA.
Also, the former algorithm approaches the global optimum more
closely than the latter. This figure demonstrates that the BA con-
verges faster to more accurate solutions than the GA.

The characteristics of the BA and GA used in this study are
listed in Table 1. A summary of the results of the 10 different in-
tercomparison runs are shown in Table 2. The low value of the
standard deviation for the BA proves the high reliability of its

Table 4. Statistical Outputs from 10 Runs of the GA and BA for the
Reservoir System Problems

Run number

Karoun-4 Four-reservoir system

GA
(10−4)

BA
(10−10) Global GA BA Global

1 1.6726 1.2330 1.2132 280.25 308.20 308.29
2 1.5491 1.2351 280.12 307.12
3 1.8647 1.2544 273.94 307.41
4 1.7521 1.2355 281.12 307.93
5 1.9867 1.2366 272.62 308.09
6 1.7530 1.2502 279.61 307.95
7 1.9312 1.2367 282.90 308.09
8 1.5697 1.2340 275.89 308.03
9 1.8418 1.2351 277.47 307.62
10 1.5350 1.2405 279.74 308.02
Best 1.5350 1.2330 282.90 308.20
Average 1.7456 1.2391 278.37 307.84
Worst 1.9867 1.2544 272.62 307.12
Standard
deviation

0.1617 0.0073 3.30 0.35

Coefficient
of variation

0.0926 0.0059 0.0118 0.0011
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system; average rates of convergence of the GA and BA algorithms from 10 runs for the (b) Karoun-4 reservoir; (d) four-reservoir system
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results for the previously mentioned functions, which show negli-
gible differences between results obtained from various runs of
the BA.

Results for the Single-Reservoir (Karoun-4) System
Operation

Fig. 6 shows the average volume of inflow and evaporation depth in
the Karoun-4 reservoir during the 5-year study period.

The GA and NLP were applied to optimize the Karoun-4 res-
ervoir operation and compared with the results from the BA. The
MATLAB 7.6 optimization toolbox was used to implement the GA
and the BA. The NLP method was implemented with the Lingo 11.0
optimization software. The NLP method’s solution is considered
the global optimum and was used to evaluate the BA’s ability to
approach a global solution. The parameters for the GA and BA
algorithms were determined by a trial-and-error technique (Table 3).

The objective function value from the NLP method equals
1.213, herein considered as the global optimal solution for this
problem in this study. The GA and BA converged to 1.535 and
1.233 after approximately 70,000 objective-function evaluations
(FEs), respectively. Table 4 shows the results for this problem.
According to the latter results, the amount of variation of the ob-
jective function obtained from the BA in 10 different runs is insig-
nificant and close to zero. Calculating close solutions in different
runs is considered as a self-validating property (precision) of an
algorithm. In this problem, the coefficient of variation of the BA
in 10 runs is approximately 16 times smaller than that of the
GA (Table 4).

Fig. 7 shows the maximum and minimum objective function
rates of convergence of the BA for Karoun-4 hydropower reservoir
and the four-reservoir system. This figure depicts the convergence
of the GA and BA after approximately 70,000 FEs. The BA’s con-
vergence rate is superior to that of the GA in addition to yielding
a better objective function value. Fig. 8 illustrates the amount of
release from the reservoir, variation of reservoir storage, and gen-
erated power during the operation period. Based on Fig. 8, the
output variables from the BA are very close or identical to the NLP
outputs. With regards to the GA, there are differences between the
solution variables obtained with this method and the optimal var-
iables obtained with the NLP in some months.

Results for the Four-Reservoir System Operation

This problem has been studied by several researchers. Chow and
Cortes-Rivera (1974) solved the mentioned problem using the LP
method and reported the optimal value of the objective function as
being equal to 308.26. Murray and Yakowitz (1979) offered the
optimal objective function for this problem being equal to 308.23
using the differential dynamic programming (DDP) method.
Bozorg-Haddad et al. (2011a) solved this problem using the
honey-bee mating optimization (HBMO) algorithm. They used 220
and 5,000 for the population size and the number of iterations in the
HBMO algorithm, respectively (approximately 1 million FEs).
The latter authors presented an average value equal to 307.50 for
the objective function from 10 runs of the HBMO algorithm. More-
over, they solved this problem using the LP method with the
Lingo 8.0 software. LP produced 308.29 as the optimal objective
function for this problem. In the present study, the value of 308.29
achieved with the BA is considered to be the global optimal sol-
ution and the comparisons are made based on it.

The parameters of the GA and BA used in this study are written
in Table 3 (approximately 500,000 evaluations for both methods).
The values of these parameters were determined by trial and error.

The average values of the objective function from 10 runs of the
GA and BA are equal to 299.70 and 307.84, respectively. Table 4
shows the summary of results calculated with the two algorithms.

With respect to the results in Table 4, in addition to a suitable
performance of the BA in reaching a global optimal solution, the
variation of the objective function in 10 different runs of this algo-
rithm is low with a standard deviation equal to 0.35, while the GA
exhibits a standard deviation equal to 3.30. Based on the standard
deviation, the GA shows results’ variations approximately 9.5 times
larger than those of the BA results in 10 runs. The average values of
the objective function from 10 different runs of the GA and the BA
are 90.30 and 99.86% of the global optimal solution, respectively.
Fig. 7 also illustrates the BA’s convergence characteristics and the
GA’s and BA’s average convergence characteristics from 10 runs
for the four-reservoir system. Fig. 8 shows calculated monthly res-
ervoir releases, storages, and power production using the BA for the
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Fig. 8. Monthly reservoir (a) releases; (b) storages; (c) power produc-
tion from the BA for the Karoun-4 reservoir problem
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Karoun-4 reservoir problem. Graphs of release and storage varia-
tion in each reservoir of the four-reservoir system obtained using
the GA and BA are plotted in Fig. 9.

Concluding Remarks

Evolutionary and metaheuristic algorithms are powerful and
versatile optimization methods. These algorithms overcome the
shortcomings of the traditional optimization methods and help
managers and engineers deal with complex engineering optimiza-
tion problems. The BA’s accuracy as a new metaheuristic algorithm
was verified in this research with several mathematical benchmark
optimization problems, and its superior performance was proved by
comparing its results with those of other well-known optimization
methods.

In addition, the developed and verified BAwas applied to a real
case study. The BA demonstrated its applicability in achieving
optimal operation rules for the Karoun-4 reservoir in Iran. The stan-
dard deviation of results obtained from several runs was approxi-
mately equal to zero, which shows high reliability of the BA in
achieving the global optimum of this optimization problem. Also,
the average of different results (1.24) was closer to the global result
(1.21) than the GA’s (1.75). Moreover, the BA’s advantages and
superior performance were highlighted by employing a complex
engineering problem in the field of multireservoir operation. The
BA achieved closer values (with average equal to 307.84) to the
NLP solution (308.29) than the GA (with average equal to 278.37)
for the multireservoir operation problem. The BA was capable of
reaching better optimal solutions compared with the conventional

optimization methods that are commonly applied in reservoir
operation problems.

Notation

The following symbols are used in this paper:
Amin = minimum loudness (dB);
A0 = maximum loudness (dB);

AðtÞ = average loudness of all the bats during the tth time
step (dB);

B = total benefit of the multireservoir system;
biðtÞ = unit benefit function of the reservoir i during period t;

D = total power deficit;
f = wave frequency (1=s);

fmax = maximum wave frequency (1=s);
fmin = minimum wave frequency (1=s);
fðxÞ = mathematical function;
giðtÞ = penalty functions;
hiðtÞ = penalty functions;

i = index of reservoirs;
IiðtÞ = net of the river flow, precipitation on lake, evaporation

from lake, and groundwater losses or gains for the
reservoir i during period t;

j = index of the mathematical independent variables;
k1, k2, and k3 = penalty constant;
l = index of bats;

M = N × N matrix of indexes of reservoir connections;
m = total number of the mathematical independent

variables;
N = total number of reservoirs;
n = total number of bats;

PðtÞ = generated power during period t (W);
PPC = power plant capacity (W);

rl = lth bat’s pulsation rate;
RiðtÞ = release of the reservoir i during the period

tð×106 m3Þ;
Rmax
i ðtÞ = maximum allowable release of the reservoir i during

period tð×106 m3Þ;
Rmin
i ðtÞ = minimum allowable release of the reservoir i during

period tð×106 m3Þ;
ReiðtÞ = summation of release and spill of the reservoir i during

period tð×106 m3Þ;
SiðtÞ = storage of the reservoir i at the beginning of the period

tð×106 m3Þ;
Siðtþ 1Þ = storage of the reservoir i at the beginning of the period

tþ1ð×106 m3Þ;
Sinitiali = initial storage of the reservoir ið×106 m3Þ;

SmaxiðtÞ = the maximum allowable storage of the reservoir i
during period tð×106 m3Þ;

SminiðtÞ = minimum allowable storage of the reservoir i during
period tð×106 m3Þ;

Stargeti = target storage of the reservoir ið×106 m3Þ;
SpiðtÞ = spill of reservoir i during period tð×106 m3Þ;

T = total number of operation periods;
t = index for the operation periods;

wiðtÞ = penalty functions;
x = mathematical independent variable;
yl = lth bat position;
Y� = current global best position;
α = constant value;
β = random uniform vector in the range of [0, 1];
ε = random number in the range of ½−1,1�;
γ = constant value;
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Fig. 9. Monthly reservoir (a) releases; (b) storages obtained from GA,
BA, and LP for the four-reservoir problem
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λ = wavelength (m);
λmax = maximum wave length (m);
λmin = minimum wave length (m); and

ν = wave velocity (m=s).

References

Altringham, J. D. (1996). Bats: Biology and behavior, Oxford University
Press, U.K.

Baziar, A., Kavoosi-Fard, A., and Zare, J. (2013). “A novel self adaptive
modification approach based on bat algorithm for optimal management
of renewable MG.” J. Intell. Learn. Syst. Appl., 5(1), 11–18.

Bozorg-Haddad, O., Adams, B. J., and Mariño, M. A. (2008). “Optimum
rehabilitation strategy of water distribution systems using the HBMO
algorithm.” J. Water Supply Res. Technol. AQUA, 57(5), 337–350.

Bozorg-Haddad, O., Afshar, A., and Mariño, M. A. (2011). “Multireservoir
optimisation in discrete and continuous domains.” Proc. Inst. Civ. Eng.
Water Manage., 164(2), 57–72.

Chen, Q., Chen, D., Han, R., Li, R., Ma, J., and Blanckaert, K. (2012).
“Optimizing the operation of the Qingshitanreservoir in the Lijiangriver
for multiple human interests and quasi-natural flow maintenance.”
J. Environ. Sci., 24(11), 1923–1928.

Chow, V. T., and Cortes-Rivera, G. (1974). “Application of DDDP in water
resources planning.” Research Rep. No. 78, Univ. of Illinois at Urbana-
Champaign, Water Resources Center, Urbana-Champaign, IL.

Colin, T. (2000). The variety of life, Oxford University Press, U.K.
Deep, K., and Bansal, J. C. (2009). “Mean particle swarm optimization for

function optimization.” Int. J. Comput. Intell. Stud., 1(1), 72–92.
Fallah-Mehdipour, E., Bozorg-Haddad, O., Beygi, S., and Mariño, M. A.

(2011a). “Effect of utility function curvature of Young’s bargaining
method on the design of WDNs.” Water Resour. Manage., 25(9),
2197–2218.

Fallah-Mehdipour, E., Bozorg-Haddad, O., and Mariño, M. A. (2011b).
“MOPSO algorithm and its application in multipurpose multireservoir
operations.” J. Hydroinf., 13(4), 794–811.

Fallah-Mehdipour, E., Bozorg-Haddad, O., and Mariño, M. A. (2012).
“Real-time operation of reservoir system by genetic programming.”
Water Resour. Manage., 26(14), 4091–4103.

Fallah-Mehdipour, E., Bozorg-Haddad, O., and Mariño, M. A. (2013).
“Developing reservoir operational decision rule by genetic program-
ming.” J. Hydroinf., 15(1), 103–119.

Geem, Z. W., Kim, J. H., and Loganathan, G. V. (2001). “A new heuristic
optimization algorithm: Harmony search.” Simulation, 76(2), 60–68.

Hormwichian, R., Kangrang, A., and Lamom, A. (2009). “A conditional
genetic algorithm model for searching optimal reservoir rule curves.”
J. Appl. Sci., 9(19), 3575–3580.

Kennedy, J., and Eberhart, R. (1995). “Particle swarm optimization.” Proc.,
IEEE Int. Conf. of Neural Networks, IEEE, New York, 1942–1945.

Kennedy, J., and Eberhart, R. (2001). Swarm intelligence, Academic, CA.
Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). “Optimization by

simulated annealing.” Science, 220(4598), 671–680.
Koffka, K., and Ashok, S. (2012). “A comparison of BA, GA, PSO, BP, and

LM for training feed forward neural networks in e-learning context.”
Int. J. Intell. Syst. Appl., 4(7), 23–29.

Lingo 8.0 [Computer software]. Lingo Systems, Chicago.

Lingo 11.0 [Computer software]. Lingo Systems, Chicago.
Liu, P., Zhao, J., Li, L., and Shen, Y. (2012). “Optimal reservoir operation

using stochastic dynamic programming.” J. Water Resour. Prot., 4(6),
342–345.

Malakooti, B., Kim, H., and Sheikh, S. (2012). “Bat intelligence search
with application to multi-objective multiprocessor scheduling optimiza-
tion.” Int. J. Adv. Manuf. Technol., 60(9–12), 1071–1086.

MATLAB 7.6 [Computer software]. Mathworks, Natick, MA.
Mitchell, M. (1998). An introduction to genetic algorithms, MIT Press,

MA.
Mujumdar, P. P., and Ramesh, T. S. V. (1997). “Real-time reservoir

operation for irrigation.” Water Resour. Res., 33(5), 1157–1164.
Murray, D. M., and Yakowitz, S. J. (1979). “Constrained differential

dynamic programming and its application to multireservoir control.”
Water Resour. Res., 15(5), 1017–1027.

Niknam, T., Sharifinia, S., and Azizipanah-Abarghooee, R. (2013). “A new
enhanced bat-inspired algorithm for finding linear supply function
equilibrium of GENCOs in the competitive electricity market.” Energy
Convers. Manage., 76, 1015–1028.

Orouji, H., Bozorg-Haddad, O., Fallah-Mehdipour, E., and Mariño, M. A.
(2013). “Estimation of Muskingum parameter by meta-heuristic
algorithms.” Proc. Inst. Civ. Eng. Water Manage., 166(6), 315–324.

Ramesh, B., Mohan, V. C. J., and Ressy, V. C. V. (2013). “Application of
bat algorithm for combined economic load and emission dispatch.”
J. Electr. Eng. Telecommun., 2(1), 1–9.

Rashid, K. A., Al Diacon, G., and Popa, B. (2007). “Optimal operation of
large hydropower reservoirs with unregulated inflows.” U.P.B. Sci.
Bull., Ser. C, 69(2), 25–36.

Reddy, V. U., and Manoj, A. (2012). “Optimal capacitor placement for loss
reduction in distribution systems using bat algorithm.” IOSR J. Eng.,
02(10), 23–27.

Richardson, P. (2008). Bats, Natural History Museum, London.
Seifollahi-Aghmiuni, S., Bozorg-Haddad, O., Omid, M. H., and Mariño,

M. A. (2011). “Long-term efficiency of water networks with demand
uncertainty.” Proc. Inst. Civ. Eng. Water Manage., 164(3), 147–159.

Seifollahi-Aghmiuni, S., Bozorg-Haddad, O., Omid, M. H., and Mariño,
M. A. (2013). “Effects of pipe roughness uncertainty on water distri-
bution network performance during its operational period.” Water
Resour. Manage., 27(5), 1581–1599.

Shokri, A., Bozorg-Haddad, O., and Mariño, M. A. (2013). “Algorithm
for increasing the speed of evolutionary optimization and its accuracy
in multi-objective problems.” Water Resour. Manage., 27(7),
2231–2249.

Yang, X. S. (2008). Nature-inspired meta-heuristic algorithms, Luniver
Press, U.K.

Yang, X. S. (2010). “A new metaheuristic bat-inspired algorithm.” Nature
inspired cooperative strategies for optimization (NISCO 2010),
J. R. Gonzalez, et al. eds., Springer, Berlin, 284, 65–74.

Yang, X. S. (2012). “Meta-heuristic optimization with applications: dem-
onstration via bat algorithm.” Proc., 5th Bioinspired Optimization
Methods and Their Applications (BIOMA2012), Bohinj, Slovenia,
23–34.

Yang, X. S., and Gandomi, A. H. (2012). “Bat algorithm: A novel
approach for global engineering optimization.” Eng. Comput., 29(5),
464–483.

© ASCE 04014097-10 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2015, 141(8): 04014097 

 D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

H
ug

o 
L

oa
ic

ig
a 

on
 0

9/
28

/2
4.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 

http://dx.doi.org/10.4236/jilsa.2013.51002
http://dx.doi.org/10.2166/aqua.2008.151
http://dx.doi.org/10.1680/wama.900077
http://dx.doi.org/10.1680/wama.900077
http://dx.doi.org/10.1016/S1001-0742(11)61029-2
http://dx.doi.org/10.1504/IJCISTUDIES.2009.025339
http://dx.doi.org/10.1007/s11269-011-9802-5
http://dx.doi.org/10.1007/s11269-011-9802-5
http://dx.doi.org/10.2166/hydro.2010.105
http://dx.doi.org/10.1007/s11269-012-0132-z
http://dx.doi.org/10.2166/hydro.2012.140
http://dx.doi.org/10.1177/003754970107600201
http://dx.doi.org/10.3923/jas.2009.3575.3580
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.4236/jwarp.2012.46038
http://dx.doi.org/10.4236/jwarp.2012.46038
http://dx.doi.org/10.1007/s00170-011-3649-z
http://dx.doi.org/10.1029/96WR03907
http://dx.doi.org/10.1029/WR015i005p01017
http://dx.doi.org/10.1016/j.enconman.2013.08.012
http://dx.doi.org/10.1016/j.enconman.2013.08.012
http://dx.doi.org/10.1680/wama.11.00068
http://dx.doi.org/10.9790/3021
http://dx.doi.org/10.9790/3021
http://dx.doi.org/10.1680/wama.1000039
http://dx.doi.org/10.1007/s11269-013-0259-6
http://dx.doi.org/10.1007/s11269-013-0259-6
http://dx.doi.org/10.1007/s11269-013-0285-4
http://dx.doi.org/10.1007/s11269-013-0285-4
http://dx.doi.org/10.1108/02644401211235834
http://dx.doi.org/10.1108/02644401211235834



