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Miroslav Krstić, for his guidance and tremendous support. His willingness and readiness to help,

irrespective of time of day or day of week, and in spite of his numerous other commitments was

a blessing. I am particularly grateful for his patience with me in the process of writing technical

papers. He leads by example, and his work ethic is one I will continue to attempt to emulate. I

cannot thank him enough.

I would also like to thank my Ph.D. committee members: Professor Nikolay Atanasov,

Professor Jorge Cortés, Professor Sylvia Herbert, and Professor Sorin Lerner for their time and

their helpful comments and suggestions. The knowledge I gained from their classes, and the

numerous discussions I had with them laid the foundation for my dissertation topic.

Special gratitude goes to Dr. Mrdjan Janković at Ford Research and Advanced Engi-
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ABSTRACT OF THE DISSERTATION

Safety-Critical Control of Nonlinear Systems:
Input Delay Compensation and Prescribed-Time Safety

by

Imoleayo Abel

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2022

Professor Miroslav Krstić, Chair

The ubiquity of dynamical systems in society has brought the subject matter of their

safety to the fore. From small personal drones to autonomous vehicles and jumbo jets, the

safety of dynamical systems has become critical and of utmost importance. In this dissertation,

we develop control strategies for enforcing safety — characterized by state constraints — in

nonlinear dynamical systems of two kinds.

First, systems with input delays are considered. This class of systems is particularly

relevant because delays abound in engineering applications and their effect can be catastrophic if

not systematically addressed. We develop control strategies for enforcing safety in (i) systems

xv



with a single, time-varying input delay across all input channels, and (ii) systems with distinct,

constant input delays across input channels. The control strategies developed utilize a nontrivial

combination of state-predictors with a safe feedback law designed for the corresponding delay-

free system. In the case of systems with distinct input delays, we introduce algorithms that

enforce safety using a subset of shorter-delayed input channels whenever possible, allowing

safety guarantees to be made before longer input delays have been compensated. This is a feature

that is especially beneficial when input delays are of significantly different lengths.

Next, a prescribed-time safety (PTSf) algorithm is developed for systems where safety is

required for a finite, a priori prescribed time. In contrast to existing algorithms that only permit

an asymptotic approach to (but not arrival at) the boundary of a safe set, PTSf allows a system

to reach the boundary of a safe set — at an infinitely soft rate — at the end of the prescribed

time, irrespective of initial condition. This feature is of interest in systems where the desired

nominal behavior is prescribed-time stabilization to a set point on the boundary of the safe set. In

addition to enforcing safety only for a prescribed time, PTSf is developed for safety constraints

of arbitrarily high relative degree. With the aid of time-varying backstepping, and an explicit

initial control gain selection criteria, PTSf retains the entirety of a safe set with no restriction on

a system’s initial condition.
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Chapter 1

Introduction

The safety of dynamical systems has always been considered important. For example,

systematic safeguards exists in large chemical plants to ensure the concentration of reagents

stay within safe limits. Likewise, industrial factory-floor robots have robust safety measures in

place to prevent catastrophic accidents. However, as recent technological advances continue to

place dynamical systems front and center in everyday life, the need for strong safety guarantees

has become even more crucial. From ensuring that small vacuum-like robots at homes operate

safely in close proximity to unsuspecting infants, to ensuring that a distracted teenager on a semi-

autonomous e-skateboard safely navigates bustling pedestrian traffic on a university campus, the

problem of safety has never been more important.

Present in many practical systems are input delays which arise largely due to physical

limitations. Some common sources of delays include computationally expensive control algo-

rithms requiring tangible execution times, lag in communication networks, transmission delays in

highly interconnected systems e.t.c. In essence, the impossibility of instantaneously transferring

matter or information from one point to another inherently introduces delays in physical systems.

While significantly short input delays can often be ignored in practise, it is sometimes crucial

to intentionally address their effects, especially in systems where safety is critical. In many
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scenarios, a controller which is otherwise safe in the absence of delays can lead to catastrophic

outcomes in the presence of input delays. Perhaps a familiar albeit unfortunate example is

the case of human driving, where many fatal accidents have been caused solely because of a

distracted or inebriated driver’s delayed reaction.

In this dissertation, we develop control strategies for enforcing safety in nonlinear systems

with input delays. Specifically, we consider systems with a single time-varying input delay

across all input channels, and systems with multiple, distinct input delays. For the latter class

of systems, our design prioritizes shorter-delayed input channels for enforcing safety when the

longer-delayed channels have yet to be delay-compensated. Separately, and in addition, we

introduce a prescribed-time safety design for systems with high relative degree which allows a

system to reach the boundary of a safe set but no sooner than a prescribed time of interest. The

designs presented in this dissertation will rely on some established concepts on safety-critical

control, predictor-feedback control, and prescribed-time control, all of which we briefly describe

next.

1.1 Safety-critical control

System safety is typically defined in terms of constraints on the states and/or inputs of a

system. For example, a measure of safety for an autonomous vehicle might be that it stays below

the posted speed limit on a highway and maintains a minimum following distance from a leading

vehicle. This safety measure is a constraint on the vehicle’s states, specifically its velocity and

its relative position. Similarly, a separate safety measure for the same vehicle might relate to

passenger comfort, wherein the rate of change of the vehicle’s acceleration/braking input might

be required to stay below a desired magnitude to limit the vehicle’s jerk. This constitutes an input

constraint on the system. While many practical applications involve a combination of state and

input constraints, the problems we consider in this dissertation will focus on safety characterized

by state constraints but not input constraints.
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Some popular approaches for enforcing state constraints in nonlinear systems include

the use of control barrier functions (CBFs) [4, 6, 35, 93, 98], Hamilton-Jacobi reachability

analysis [8, 16, 17], safe MPC [75], nonovershooting control [50, 52], but to mention a few. The

designs we develop in this dissertation will adopt the use of CBFs, in particular the zeroing-type

CBFs. Control barrier functions are special functions that characterize state constraints and

satisfy additional rate conditions along solutions of a system. Specifically, CBFs are functions

whose 0-superlevel sets represent the safe set of a system, and for which control input exists

to prevent a faster than desired rate of decrease along solutions of the system. Like control

Lyapunov functions for stabilization, CBFs can sometimes be difficult to find in practise but

several methods have been studied for synthesizing CBFs [18, 55, 87, 97].

With a CBF available, safe controllers can be synthesized via the so-called safety filtering

method where a baseline, safety-agnostic controller is first designed for the system, and it is

filtered (i.e. overridden) when the system is at risk of being unsafe. This allows safety to

be implemented in a supervisory manner as an add-on feature for already existing controllers.

The safety filtering process is often achieved via the formulation of a quadratic program (QP)

problem that aims to find the closest control to the baseline control (in the Euclidean norm sense)

that ensures that the CBF does not decrease faster than a pre-specified rate. This QP-based

safety-filtering will feature in many of our designs.

1.2 Predictor feedback control

A common approach for the control of systems with input delays is the use of predictor-

feedback [9–11, 46, 47]. In comparison to state-feedback control where the current state of a

system is used to determine appropriate control actions, predictor feedback control involves

using a prediction of future states of the system to determine inputs to be applied at the current

time. Particularly, because of input delays, inputs applied to a system at a particular time do not

impact the system until a later time in the future; therefore, the idea of predictor-feedback is to
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predict the state of a system at the time when new inputs will arrive, and to use those predictions

to determine inputs to be applied at the current time. As a result, the state-predictors compensate

the effect of input delays and allow the system to behave as though the input delays were not

present. Chapters 2 and 3 will cover the use of state predictors for compensating the effect of

time-varying input delays and multiple, distinct input delays respectively. Despite the use of the

word “prediction”, the determination of future states of an input-delayed system is not heuristic.

Instead, it is an exact, (sometimes explicit) expression of the future state in terms of the current

state and the history of inputs as we shall see in the aforementioned chapters.

It is important to note that a system with input delays will initially evolve uncontrolled.

For example, a system with a 2-second input delay cannot be controlled in the first two seconds

of operation as the inputs applied at the initial time must incur the 2-second delay. This initial

period of no control is called the “dead time”. Moreover, in the case that a system has multiple

input channels with delays of different lengths, the system can only be under partial control until

the dead time of the input channel with the longest delay has elapsed and all input delays have

been compensated. When the control objective is asymptotic regulation to a set point or reference

trajectory — especially for systems that are globally asymptotically stable in the absence of

delays — it is often enough to require that the system does not exhibit finite escape before all

control inputs first arrive at the plant; that is, the system states do not grow unbounded before

full delay compensation. This requirement is sufficient because system behavior exhibited before

full delay compensation will be transient and therefore not affect the asymptotic properties of

the closed-loop system. In contrast, when the control objective is safety — a property that is

required for all times and not just asymptotically, extra care must be taken to ensure that a system

does not go unsafe after some, but not all input delays have been compensated. We will discuss

designs that achieve this in Chapter 4.
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1.3 Prescribed-time control

The control of continuous time nonlinear systems traditionally involve the asymptotic

regulation of the system’s states to a desired set point or reference trajectory. That is, as time

tends toward infinity, the states of the system get increasingly closer to the desired regulation

target but never quite arrive at it — in theory. However, in time-constrained practical applications

like missile guidance, there is the need for convergence to occur within a finite amount of time.

Advances is this regard has been made generally across three fronts: finite-time stabilization

(FnTS) [13, 27, 64, 67], fixed-time stabilization (FxTS) [51, 66, 68, 104], and prescribed-time

stabilization (PTS) [30, 31, 45, 84]. All of these notions involve the design of controllers that

regulate a system’s state in a manner where convergence occurs in a finite amount of time. In the

case of FnTS, the finite settling time depends on the initial condition of the system. With FxTS,

the settling time is also finite, initial condition dependent, but is uniformly bounded by a fixed

constant that is often very conservative. Lastly and more recently developed is the strongest

notion of PTS, in which the finite settling time of the control objective can be arbitrarily specified

beforehand, independent of the system parameters and initial conditions.

Motivated by these recent advancements in the study of prescribed-time stabilization,

we introduce an analogous notion for safety, termed “Prescribed Time Safety” (PTSf), which

is the enforcement of safety in a manner where a system is allowed to reach the boundary of a

safe set at, but no sooner than, a user-specified prescribed time. A consequence of this notion

is that safety is enforced only for a finite time of interest to a designer. While PTSf amounts

to “less safety” than traditional notions of safety where safety is enforced indefinitely, PTSf is

particularly advantageous in systems where the nominal objective is to regulate the state to a set

point on the boundary of a safe set in a specified amount of time. In these cases, for the nominal

system behavior to be preserved, a supervisory safety enforcing controller must be such that it

does not prevent the system from reaching this set point at the desired terminal time. Traditional

infinite-time safety designs do not come with such guarantees as they only allow systems to
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approach the boundary of a safe set asymptotically, but not in a finite amount of time. Also, as

we shall later show in Chapter 5, our PTSf design will endow systems with an infinitely soft

landing property in the case that a nominal controller attempting to violate safety constraints is

overridden over a time interval that includes the terminal time.

1.4 Organization

This dissertation is organized as follows. In Chapter 2, we study the safety critical control

of nonlinear systems with a single, time-varying input delay across all input channels. This is an

extension of existing results in literature for system with a single, constant input delay. Chapter 3

focuses on the constrained stabilization of linear systems with distinct input input delays across

all input channels via the use of recursively defined state predictors for delay compensation. In

Chapter 4, we extend the results in Chapter 3 to nonlinear systems, and in particular, we introduce

two additional approaches for enforcing system safety before delays in all input channels have

been compensated. This is especially of practical importance in systems where the delays across

input channels are of significantly different lengths. Finally in Chapter 5, we develop the notion

of Prescribed-Time Safety for delay-free systems with high-relative degree safety constraints,

where we use a time-varying backstepping design that ensures a system can reach the boundary

of a safe set, but no sooner than an a priori prescribed time irrespective of initial condition.
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Chapter 2

Safety-Critical Control of Systems with

Time-Varying Input Delay

2.1 Introduction

Control Barrier Functions (CBFs) have become popular for synthesizing controllers

that enforce the safety of nonlinear systems via safe-set forward invariance. First defined

in [98] and later refined and popularized by [4, 6], CBFs have found use in vast application

domains ranging from mobile robotics ( [14, 32]) to infectious disease control ( [5, 57]). Like

control Lyapunov functions for stabilization, CBFs provide sufficient conditions that guarantee

the forward invariance of an admissible set and can therefore be used for synthesizing safe

controllers for nonlinear systems.

Recently, the utility of CBFs has been extended to systems with delays. Due to physical

limitations, time delays are inherent in many practical systems and just as they can degrade the

performance of stable closed-loop systems, they can also cause an otherwise safe system to

become unsafe. Therefore, the need to deliberately address the effect of delays on the safety of

systems is of high practical relevance. Existing studies in this regard have considered safety-
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critical control of nonlinear systems with state delay ( [62,72]), linear systems with input delay(s)

( [1, 34]), and nonlinear systems with input delays ( [2, 57, 82]). All of these results have been

for systems with constant state or input delays, which while beneficial, is limiting because

several real-life applications include models where the delays are time-varying. For example, the

reaction time of a human driver varies with time and can be modeled as a time-varying input

delay ( [63, 83]). In addition, time-varying input delays abound in networked control systems

( [20, 58]). In this chapter, we extend the use of CBFs to nonlinear systems with time-varying

input delays, by drawing from the wealth of results for the stabilization of systems with such

time-varying input delays. The stabilization problem for this class of systems has been studied

extensively for linear systems ( [48, 60]) and nonlinear systems ( [9, 10, 54]). In particular, we

rely on the results of [9] to design state predictors that compensate time-varying input delays,

and we use these predictors in combination with CBF-based controllers designed for a nominal

delay-free system. We show that under certain reasonable assumptions on the time-varying input

delay, a safe-feedback law designed for the nominal delay-free system achieves the same closed

loop performance under predictor-feedback after the input delay has been compensated.

The remainder of this chapter is structured as follows. Section 2.2 includes the problem

description, and an enumeration of assumptions made about the plant and the time-varying input

delay. In Section 2.3, we describe our control design methodology and prove the main result.

Section 2.4 includes two numerical examples that demonstrate the effectiveness of our control

approach, and it is followed by a brief conclusion in Section 2.5.

Notation. For differentiable function h(x) and vector field f (x), the notation L f h(x)

denotes the Lie derivative of h(x) with respect to f (x) and is defined as ∂h
∂x f (x). A function f (x)

is said to be Lipschitz continuous at x0 if there exists constants L and ε > 0 (that may depend

on x0) such that ∥ f (x)− f (y)∥ ≤ L∥x− y∥ wherever ∥x− x0∥ ≤ ε and ∥y− x0∥ ≤ ε . A function

α : (−b,a)→ (−∞,∞) for some a,b > 0 belongs to the extended class K , denoted as Ke, if it

is continuous, strictly increasing, and α(0) = 0. We shall also assume that all functions α ∈ Ke

used in control laws are Lipschitz continuous.
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2.2 Problem description

We consider the following system with time-varying input delay

ẋ(t) = f (x(t))+g(x(t))u
(
t −D(t)

)
(2.1)

where x ∈ Rn is the state, u ∈ Rm is the control input, D(t) is the time-varying input delay

satisfying conditions we shall enumerate shortly, and the vector fields f (x), g(x) : Rn → Rn

are assumed to be locally Lipschitz. We shall further assume that the system (2.1) is forward

complete with respect to the input; that is, for every initial condition x0 ∈Rn and locally bounded

input signal u(t), the corresponding solution of (2.1) is well defined for all t ≥−D(0). In essence,

this assumption guarantees that the system does not exhibit finite escape. As done in [9, 10, 60]

where the problem of stabilizing (2.1) was considered, we introduce the function

φ(t) = t −D(t). (2.2)

We call the function φ(t) the delay time, and it represents the time when the input arriving at the

plant at time t was issued. Using the function φ(t) in place of t −D(t) is notationally convenient

because the state predictor that we will utilize requires the inverse function φ−1(t), whose value

represents the time when input command issued at time t will arrive at the plant. To that effect,

we shall impose invertibility conditions on φ(t), and we will refer to φ−1(t) as the prediction

time. Notice that for the special case of constant delays D(t)≡ D, the delay horizon t −φ(t) and

prediction horizon φ−1(t)− t are one and the same. With these definitions, the system (2.1) can

be written as

ẋ(t) = f (x(t))+g(x(t))u(φ(t)). (2.3)

Now, we describe conditions that the delay time φ(t) must satisfy for solutions of (2.1)

to be well defined and meaningful.
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Assumption 1: The function φ(t) satisfies

φ(t)< t, ∀t ≥ 0, (2.4)

and

sup
θ≥φ−1(0)

(θ −φ(θ))< ∞. (2.5)

The condition in (2.4) guarantees causality of the plant, and can be written equivalently as

D(t) > 0 for all t ≥ 0; while the bound in (2.5) ensures that all inputs applied to the plant

eventually arrive at the plant. Said differently, (2.5) ensures that there exists a positive constant

D such that D(t)< D for all t ≥ 0.

Assumption 2: The function φ(t) is continuously differentiable and its time-derivative

φ ′(t) satisfies

φ
′(t)> 0, ∀t ≥ 0 (2.6)

and

sup
θ≥φ−1(0)

φ
′(θ)< ∞. (2.7)

Here, the inequality (2.6) which is equivalent to dD(t)
dt < 1 guarantees that the input signal

direction is not reversed, that is, the plant does not feel input values older than the ones it has

already felt. In addition, condition (2.6) alongside the continuous differentiability of φ(t) implies

that φ(t) is invertible and therefore the prediction time is well defined for all t ≥ 0. Lastly, the

inequality (2.7) ensures that the input delay does not vanish instantaneously but only gradually;

in other words, it guarantees that dD(t)
dt is uniformly bounded from below.

The control objective is to enforce the forward invariance of an admissible set C defined

as

C = {x ∈ Rn | h(x)≥ 0}, (2.8)

where h(x) is a continuously differentiable function. In other words, we desire a controller u(t)
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that achieves x(0) ∈ C =⇒ x(t) ∈ C for all t ≥ 0. We shall call the set C the safe set and

assume that it is nonempty and has no isolation points i.e. Int(C ) ̸= /0 and Int(C ) = C . We say

the system is safe if C is forward invariant. Now, because of the input delay, the system evolves

uncontrolled in the first φ−1(0) units of time before inputs applied at time t = 0 arrive at the

plant, and we must therefore require that the system remains safe before any designed control

effort arrives at the plant. We summarize this requirement by making the following assumption.

Assumption 3: The initial state x(0) and initial input functional u(θ) : [φ(0),0)→ Rm

are such that the state of the system (2.3) satisfies

x(t) ∈ C , ∀t ∈ [0,φ−1(0)]. (2.9)

With system and input delay assumptions specified, we now proceed to describe our

control approach in the following section.

2.3 Control design and safety analysis

2.3.1 Delay-free systems

When the system (2.3) has no input delay, that is when φ(t) = t, the problem of enforcing

forward invariance of an admissible set like (2.8) can be solved with the use of control barrier

functions (CBFs) defined as follows:

Definition 2.1 (Control Barrier Function (CBF)). A continuously differentiable function h : Rn →

R is a control barrier function for the system (2.3) with respect to the admissible set C in (2.8) if

there exists function α ∈ Ke such that for all x ∈ C ,

Lgh(x) = 0 =⇒ L f h(x)+α(h(x))> 0. (2.10)

We note here that the definition of a CBF is independent of the delay time φ(t). Now,

with a CBF h(x) and a corresponding function α ∈ Ke in hand, we define the following set for

11



every x ∈ C and u ∈ Rm

∆u(x,u) = {δu ∈ Rm | L f h(x)+Lgh(x)(u+δu)+α(h(x))≥ 0}. (2.11)

For every state x ∈ C and control u ∈ Rm, the set ∆u(x,u) is the set of permissible modifications

to u required for the “barrier constraint” L f h(x)+Lgh(x)(u+δu)+α(h(x))≥ 0 to be satisfied.

With (2.11) defined, the task of enforcing forward invariance of C when φ(t) = t boils down

to ensuring that at all time t when the state x(t) = x, a potentially unsafe reference control

uref = uref(t) is modified by an element of ∆u(x,uref) as established in the following result

adapted from Corollary 2 of [6].

Theorem 2.1. If h is a CBF with an associated class Ke function α for the system (2.3) with

φ(t) = t, and if uref = κref(t,x) : R≥0 ×C → Rm is a locally Lipschitz reference controller, then

the controller

u = uref +δu(uref,x), δu(uref,x) ∈ ∆u(x,uref) (2.12)

renders the set C in (2.8) forward invariant.

While this theorem is not by itself constructive, it provides a sufficient condition on δu

(the required modification of the reference input) for guaranteeing safety, and this condition

can be used for synthesizing safe controllers. One example approach for doing so involves

choosing the smallest element (in the Euclidean norm sense) of the permissible set of input

modifications ∆u. In particular, given a potentially unsafe, possibly time-varying, reference

controller uref = κref(t,x), we can synthesize a safe controller by overriding at all time t, the

reference control uref with u = uref+δu(uref,x(t)) where δu(ν ,χ) is the solution of the following

quadratic programming (QP) problem:

δu(ν ,χ) = argmin
δ∈Rm

∥δ∥2 subject to

L f h(χ)+Lgh(χ)(ν +δ )+α(h(χ))≥ 0.

(2.13)
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The feasibility of this QP problem follows from the definition of a CBF, and the explicit solution

is given by the Karush-Kuhn-Tucker (KKT) optimality conditions as

δu(ν ,χ) =


0 if ζ (ν ,χ)≥ 0

− ζ (ν ,χ)
∥Lgh(χ)∥2 Lgh(χ)⊤ otherwise

(2.14)

where

ζ (ν ,χ) = L f h(χ)+Lgh(χ)ν +α(h(χ)) (2.15)

The feedback modification (2.14) satisfies δu(ν ,χ) ∈ ∆u(χ,ν), and therefore the controller

u(t) = uref(t)+δu(uref(t),x(t)) (2.16)

is the smallest modification (pointwise) to the potentially-unsafe reference controller uref that

renders the set C forward invariant for the system (2.3) with no input delay. We note that even

though the reference control uref could potentially be a time-varying feedback law, the feedback

modification δu in (2.14) is time-invariant.

2.3.2 Systems with time-varying input delay

As mentioned in the introduction, the described CBF approach for safe-set invariance

has been extended to systems with constant input delay(s) ([1, 2, 34, 57, 82]) and these extensions

utilize a state predictor in conjunction with a CBF-based feedback-law designed for the delay-free

system. With a safe feedback modification δu : Rm ×C → Rm satisfying δu(ν ,χ) ∈ ∆u(χ,ν)

available, the approach for systems with constant input delay φ(t) = t −D amounts to using the

controller

u(t) = uref(t)+δu(uref(t), p(t)) (2.17)

(see Figure 2.1) where p(t) is the D time units ahead prediction of the state, which depends on

the current state x(t) and the input history ut(θ) : [−D,0)→ Rm with ut(θ) = u(t +θ). The
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Figure 2.1. System block diagram with feedback modification of a reference controller κref.
Left: Nominal delay-free system. Right: System with input delay time φ(t).

predictor feedback approach (2.17) works because the predictor state p(t) = x(t +D) satisfies

the ODE
d
dt
(p(t)) = f (p(t))+g(p(t))u(t) (2.18)

which is of the same form as the system (2.1) with no input delay. Thus, the use of predictor

feedback eliminates the effect of the input delay, and the safe feedback law designed for the

delay-free system achieves the same closed behavior under predictor-feedback.

Now, consider the original system (2.3) with time-varying input delay. Similar to the

constant delay case, we desire at all times t, a prediction of the state at time φ−1(t) when the

input applied at time t arrives at the plant. We therefore use a φ−1(t)− t time units ahead state

predictor p(t) given in [9] as

p(θ) = x(t)+
∫

θ

φ(t)

f (p(σ))+g(p(σ))u(σ)

φ ′(φ−1(σ))
dσ , φ(t)≤ θ ≤ t (2.19)

for θ = t, with initial condition

p(θ) = x(0)+
∫

θ

φ(0)

f (p(σ))+g(p(σ))u(σ)

φ ′(φ−1(σ))
dσ , ∀θ ∈ [φ(0),0]. (2.20)

Note that the condition (2.6) in Assumption 2 guarantees that the division by φ ′(φ−1(σ)) in

(2.19) and (2.20) are safe. While the predictor equation (2.19) is implicitly defined, explicit

formulas exist for some classes of systems e.g. linear systems. In particular, if f (x) = Ax and
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g(x) = B with A ∈ Rn×n and B ∈ Rn×m, then the predictor (2.19) can be written explicitly as

p(θ) = eA(φ−1(θ)−t)x(t)+
∫

θ

φ(t)

eA(φ−1(θ)−φ−1(σ))Bu(σ)

φ ′(φ−1(σ))
dσ , φ(t)≤ θ ≤ t. (2.21)

Nonetheless, even in the implicit form (2.19), the predictor state at time t is given in terms of

the current state x(t) as well as the predictor and input history over the time interval [φ(t), t),

and can therefore be implemented numerically. The design of numerical approximations of

state predictors, and its implication for theoretical results is an area of research that is beyond

the scope of the subject matter of this chapter. The reader can consult [38] for details. In this

chapter, we assume that predictor implementations are accurate. In the case that they aren’t and

a bound on the prediction error is known, one can use the robust CBF ( [35]) or ISSf CBF ( [43])

framework in place of the standard vanilla CBF used here. Now, returning focus to the predictor

equation (2.19), we note that for the special case of constant input delay D(t) ≡ D, we have

φ(t) = t −D, φ ′(t) = 1, and φ−1(t) = t +D and the predictor equation (2.19) for θ = t becomes

p(t) = x(t)+
∫ t

t−D

[
f (p(σ))+g(p(σ))u(σ)

]
dσ (2.22)

which is easily understood as the D time units ahead prediction of the state in the case of a

constant input delay. To see that p(t) from (2.19) is indeed equivalent to x(φ−1(t)), notice that

the derivative of p(θ) in (2.19) satisfies

d
dθ

p(θ) =
f (p(θ))+g(p(θ))u(θ)

φ ′(φ−1(θ))
(2.23)

which is of the same form as d
dt x(φ−1(t)) which can be found using the chain rule, (2.3), and

the fact that d
dt φ−1(t) = 1

φ ′(φ−1(t)) . Furthermore, we have from (2.19) that p(φ(t)) = x(t) =

x(φ−1(φ(t))) and it follows from the similarity of the ODEs (2.23) and d
dt x(φ−1(t)) that p(θ) =

x(φ−1(θ)) for all θ ∈ [φ(t), t], and therefore p(t) = x(φ−1(t)). We note here that instead of

viewing p(θ) as the output of a system evolving in the same time domain as x(t), p(θ) should
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be viewed as the output of a separate operator parameterized by t, and acting on p(σ) and u(σ)

on the interval φ(t)≤ σ < θ .

Now, suppose we have a CBF h and an associated class Ke function α , we desire at all

times t, control input u(t) that achieves

L f h(p(t))+Lgh(p(t))u(t)+α(h(p(t)))≥ 0. (2.24)

Since p(t) = x(φ−1(t)), the LHS of this inequality is equivalent to ḣ+α(h)≥ 0 for the system

(2.3) at time φ−1(t). In particular, (2.24) can be re-written as

∂h
∂x

(p(t))
dx
dt

(φ−1(t))+α(h(p(t)))≥ 0. (2.25)

The choice of notation dx
dt (φ

−1(t)) is to emphasize that we desire dx
dt evaluated at time φ−1(t), as

opposed to d
dt

[
x(φ−1(t))

]
. This distinction is important because we care about the rate of change

of the barrier function along trajectories of the original system as opposed to the rate of change

along the values of p(t).

Theorem 2.2. If h is a CBF with an associated class Ke function α for the system (2.3) with

initial conditions satisfying Assumption 3, and if uref = κref(t,x) with κref : R≥0 ×C → Rm is a

Lipschitz continuous reference controller, then the predictor-based feedback modified controller

u(t) = uref(t)+δu(uref(t), p(t)) (2.26)

for every δu(uref, p(t)) ∈ ∆u(p(t),uref), t ≥ 0 with p(t) defined in (2.19), (2.20) renders the set

C in (2.8) forward invariant.

Proof. Since the system (2.3) evolves uncontrolled in the first φ−1(0) units of time, we have

by Assumption 3 that x(0) ∈ C =⇒ x(t) ∈ C for all t ∈ [0,φ−1(0)]. It remains to show that

x(φ−1(0)) ∈ C =⇒ x(t) ∈ C for all t ≥ φ−1(0). Since φ(t) is continuous and monotonically
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increasing (Assumption 2), we have for every t ≥ φ−1(0), a unique τ ≥ 0 such that t = φ−1(τ).

Therefore, it suffices to show that x(φ−1(0)) ∈ C =⇒ x(φ−1(τ)) ∈ C for all τ ≥ 0. Now, since

for all τ ≥ 0, u(τ) = uref(τ) + δu(uref(τ), p(τ)) with δu(uref(τ), p(τ)) ∈ ∆u(p(τ),uref(τ)) =

∆u(x(φ−1(τ)),uref(τ)), we have

L f h(x(φ−1(τ)))+Lgh(x(φ−1(τ)))u(τ)+α(h(x(φ−1(τ))))≥ 0 (2.27)

for all τ ≥ 0, or equivalently

L f h(x(t))+Lgh(x(t))u(φ(t))+α(h(x(t)))≥ 0 (2.28)

for all t ≥ φ−1(0). Therefore, we have

d
dt

[
h(x(t))

]
≥−α(h(x(t))) (2.29)

for all t ≥ φ−1(0) along trajectories of the system (2.3). With (2.29), the rest of the proof follow

directly from [62, Theorem 2].

As established in the delay-free case, an example feedback modification δu satisfying

δu(ν ,χ) ∈ ∆u(χ,ν) for all χ ∈ C and ν ∈ Rm is given in (2.14). Therefore, for the system

(2.3) with time-varying input delay, a safeguarding controller that renders a potentially unsafe

reference controller uref(t) safe is the controller (2.26) with δu defined in (2.14) and p(t) defined

in (2.19), (2.20). We now present some numerical examples.

2.4 Numerical simulations

2.4.1 Scalar system

Consider the system

ẋ(t) = x(t)+u(φ(t)) (2.30)
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from Example 5.4 of [48], where the inverse of the delay time function is given as

φ
−1(t) = t +1+

1
2

cos(t). (2.31)

While the delay-time φ(t) is not given explicitly, it can be approximated numerically to suffi-

ciently high precision as a reflection of φ−1(t) about the line y = t in the (t,y)-plane. The initial

condition of the input is u(θ) = 0 for all θ ∈ [φ(0),0). The goal is to keep the state of the system

inside the safe interval C = [−2,2] for which we use the candidate CBF

h(x) = 4− x2 (2.32)

We have

L f h(x) =−2x2, (2.33)

Lgh(x) =−2x (2.34)

and Lgh(x) = 0 =⇒ L f h(x)+α(h(x)) = α(h(x))≥ 0 for all α ∈ Ke and x ∈ C ; therefore h

is indeed a CBF. We choose α(h) = h, and assume a reference control signal uref(t) = 0 for all

t ≥ 0 — a signal that renders the system unsafe if unmodified. We consider the system behavior

under the uncompensated controller (2.16) and the delay-compensated controller (2.26) with the

predictor state given explicitly as

p(t) = e1+ 1
2 cos(t)x(t)+

∫ t

φ(t)

(
1− 1

2
sin(σ)

)
et+ 1

2 cos(t)−σ− 1
2 cos(σ)u(σ)dσ . (2.35)

The state x(t), barrier function h(x(t)), and input signal u(t) are shown in Figure 2.2 for initial

states x(0) = 0.15 and x(0) =−0.5. In the latter case, the system exits the safe-set before the

controller kicks in at time φ−1(0) = 1.5 but the predictor-feedback controller (2.26) forces the

state back inside of the safe region. On the contrary, under the uncompensated controller (2.16),
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the system always exits the safe-set.

0 1 2 3 4 5 6 7 8 9 10
-5

-4

-3

-2

-1

0

1

2

3

4

barrier

uncompensated

delay-compensated

uncompensated

delay-compensated

-2 0 2 4 6 8 10
-5

-4

-3

-2

-1

0

1

2

3

4

uncompensated

delay-compensated

uncompensated

delay-compensated

Figure 2.2. System response for Example 2.4.1 using uncompensated controller (2.16), (2.14)
and delay-compensated controller (2.26), (2.14) for initial states x(0) = 0.15 (black) and x(0) =
−0.5 (blue). Top: state trajectory. Bottom: input signal.
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2.4.2 Nonholonomic unicycle

Consider the nonholonomic unicycle and time-varying input delay from Example 2 of [9]

ẋ(t) = v(φ(t))cos(θ(t))

ẏ(t) = v(φ(t))sin(θ(t))

θ̇(t) = ω(φ(t))

(2.36)

where the delay time function is

φ(t) = t − 1+ t
1+2t

, (2.37)

with derivative and inverse given as

φ
′(t) = 1+

1
(1+2t)2 , (2.38)

φ
−1(t) =

t +
√

1+(1+ t)2

2
. (2.39)

For the reference controller (vref(t),ωref(t))⊤, we use the stabilizing, time-varying, predictor

feedback controller from [9] given as

ωref(t) =−5A(t)2 cos(3φ
−1(t))−A(t)B(t)

(
1+25cos2(3φ

−1(t))
)
− pθ (t) (2.40)

vref(t) =−A(t)+5B(t)sin(3φ
−1(t))−5B(t)cos(3φ

−1(t))+B(t)ωref(t) (2.41)

A(t) = px(t)cos(pθ (t))+ py(t)sin(pθ (t)) (2.42)

B(t) = px(t)sin(pθ (t))− py(t)cos(pθ (t)) (2.43)

px(t) = x(t)+
∫ t

φ(t)

v(σ)cos(pθ (σ))

φ ′(φ−1(σ))
dσ (2.44)

py(t) = y(t)+
∫ t

φ(t)

v(σ)sin(pθ (σ))

φ ′(φ−1(σ))
dσ (2.45)

pθ (t) = θ(t)+
∫ t

φ(t)

ω(σ)

φ ′(φ−1(σ))
dσ (2.46)

20



Notice that all expressions on the RHS of (2.40)-(2.46) are known at every time t since they

depend on the state and input history. The initial condition on the input is given as (v(s),ω(s))⊤=

(0,0)⊤ for all s ∈ [φ(0),0). The safety objective is to keep the x-position of the unicycle to the

right of a desired boundary xbndry and for that we use the CBF

h(x) = x− xbndry (2.47)

which satisfies the CBF condition (2.10) since the system is driftless. We choose α(h) = 8h

and show in Figure 2.3 simulation results for initial state x(0) = y(0) = θ(0) = 1 and boundary

xbndry =−0.1 under uncompensated controller (2.16) and delay-compensated controller (2.26)

with state predictor p(t) = (px(t), py(t), pθ (t))⊤. Despite the reference controller using predictor

feedback, the uncompensated safeguarding controller (2.16) fails to keep the unicycle in the safe

set. However, when the predictor-based safeguarding controller (2.26) is used, the unicycle never

crosses the safe/unsafe boundary as shown in Figure 2.3.

2.5 Conclusion and acknowledgements

In this chapter, we described a predictor-based approach for designing safe controllers for

control-affine nonlinear systems with time-varying input delays. We showed that in combination

with a predictor that compensates the time-varying input delay, a safe feedback law designed for

the nominal system achieves the same closed-loop safety guarantees for the input-delayed system

after the controller kicks in. We included two numerical examples to illustrate the effectiveness

of our approach. A natural extension of this work — an extension that would lend the results of

this chapter to more practical applications — is the study of safety-critical control for systems

where the time-varying input delay D(t) is not known a priori.

Chapter 2, in part, is a reprint and adaptation of the paper: I. Abel, M. Krstić, and M.

Janković, “Safety-Critical Control of Systems with Time-Varying Input Delay”, IFAC Workshop

on Time Delay Systems (TDS), 2021. The dissertation author was the primary investigator and
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author of this paper.
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Figure 2.3. Closed loop response for nonholonomic unicycle using uncompensated controller
(2.16), (2.14) and delay-compensated controller (2.26), (2.14) for initial state x(0) = y(0) =
θ(0) = 1. Top Left: x,y state trajectory. Top Right: angle θ(t) and barrier function h(x(t)).
Bottom: input signal (v(t),ω(t))⊤.
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Chapter 3

Constrained Stabilization of

Multi-Input Linear Systems with

Distinct Input Delays

3.1 Introduction

Control Lyapunov functions (CLFs) introduced in [7] have been used in the design of

robust stabilizing control laws for nonlinear systems. It has been shown that the existence of

a CLF for a system implies the existence of a continuous stabilizing controller. Given a CLF

V , universal formulas such as the pointwise minimum norm (PMN) formula [23], and Sontag’s

formula [86] exist for explicitly computing stabilizing control laws that provide a half-space

robustness property for multi-input systems. Likewise, Control Barrier Functions (CBFs) [98]

have been used for enforcing that the states of a system remain in an admissible set. When a CBF

is available, the same universal formulas for CLF can be used to develop controllers that render

the admissible set forward invariant. Several approaches have also emerged for combining CLFs

and CBFs to achieve both stabilization and forward invariance of an admissible set ( [4,6,35,98])
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with applications in robotics ( [14]) and automotive ( [4]) systems. More recently, the CLF-CBF

based approach was extended to linear systems with similar delay in all input channels ( [34]).

This chapter serves as an incremental extension of the results in [34] to multi-input linear

systems with distinct input delays across all input channels – an extension that lends the results

of this chapter to more practical applications than its predecessor. The goal here is to compensate

for delays of different lengths across input channels while stabilizing the system – if possible –

and keeping the admissible set invariant. As with [34], we assume that all the delays are known

and remain constant, and we use predicted values of future states of the system in the baseline

CLF and CBF developed for the zero-delay system.

When input delays are of equal length across all input channels, future states of a linear

system can be computed explicitly using only the current state and past values of the inputs.

However, when the delays are of different lengths, the process of predicting future states becomes

more involved. In [95], a predictor feedback approach for multi-input linear systems with distinct

input delays was developed, but with the assumption that the baseline controller for the delay-free

system is linear. This result was later generalized in [11] to nonlinear systems with distinct input

delays. In this chapter, because the baseline Quadratic Programming (QP)-based controller we

adopt is nonlinear, we employ the predictor feedback methodology from [11]. There, a predictor

is assigned to each individual input channel and the predictor states are recursively computed

starting with the input channel with the shortest delay and progressing until the input channel

with the longest delay. The predictor states are then fed back to a stabilizing controller designed

for the delay-free system. This approach was shown to retain the properties of the nominal

controller after the longest delay has been compensated, provided the delay-free system satisfies

some additional conditions like strong forward completeness and input-to-state stability when in

closed-loop with the nominal controller – conditions that we will show our baseline QP-based

CLF-CBF controller satisfies.

We design the baseline CLF-CBF controller in this chapter using the γm-QP approach

from [35] which removes the assumption that the CBF has uniform relative degree one. Unlike
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[35], all results in this chapter are stated for “zeroing” Control Barrier Functions (zCBF) even

though a corresponding “reciprocal” Control Barrier Function can easily be recovered from the

zCBF. For the rest of this chapter, we shall refer to zCBFs simply as CBFs.

The remainder of this chapter is organized as follows: Section 2 provides an overview of

the predictor-feedback framework with which a stabilizing CLF-based control law is developed.

Section 3 discusses the development of a CBF-based controller to keep the admissible set invari-

ant in the presence of delay and a known disturbance. We combine the independently designed

controllers in section 4 and show that the closed-loop behavior of the system is similar to the

delay-free case after the longest delay has been compensated. Section 5 includes an example to

illustrate the result of this chapter.

Notation: In addition to notation from Chapter 2, a continuous function β (s, t) : (R+×R+)→

R+ is said to belong to class K L if it belongs to class K as a function of the first argument

and converges to zero as the second argument goes to infinity i.e. for all s, limt→∞ β (s, t) = 0.

3.2 Control Lyapunov functions for linear systems with
distinct input delays

We consider the following system

ẋ(t) = Ax(t)+
r

∑
i=1

biui(t − τi) (3.1)

where x ∈Rn is the state, t ≥ 0 is time, u1, . . . ,ur ∈R are control inputs, τi, . . . ,τr are potentially

distinct input delays satisfying (without loss of generality) 0 ≤ τi ≤ ·· · ≤ τr, and bi ∈ Rn for all

i = 1, . . . ,r. We adopt the approach in [11] for stabilizing general nonlinear systems with distinct

input delays. This approach involves designing a stabilizing controller κ(x) for the zero-delay

system which in this case is:

ẋ = Ax+Bu (3.2)
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where B ∈ Rn×r is the matrix whose i-th column is bi and u ∈ Rr is the column vector of inputs;

and then using predictions of the state as feedback to the nominal controller to stabilize the

original delayed system. We present the predictor design approach here as it applies to the linear

delay system in question.

The predictor feedback approach involves designing state predictors p1(t), . . . , pr(t)

corresponding to each of the r input channels with pi(t) being the τi-time units ahead prediction

of x(t) i.e. pi(t) = x(t + τi), for all i = 1, . . . ,r. Defining p0(t) = x(t), τ0 = 0, and τi j = τi − τ j,

the predictor state equations are given as:

pi(t) = pi−1(t)+
∫ t

t−τi,i−1

[
Api(s) +

i−1

∑
j=1

b jκ j(pi(s))+
r

∑
j=i

b ju j(s− τ j,i)

]
ds (3.3)

with initial conditions

pi(θ) = pi−1(0)+
∫

θ

−τi,i−1

[
Api(s) +

i−1

∑
j=1

b jκ j(pi(s))+
r

∑
j=i

b ju j(s− τ j,i)

]
ds, (3.4)

for − τi,i−1 ≤ θ ≤ 0

The predictor states are then used in the nominal control law as follows:

ui(t) = κi(pi(t)) (3.5)

where κi is the i-th component of κ .

Note that, in the absence of model uncertainties and disturbances, at a given time

t̄, the input reaching the system from each individual input channel is given as ui(t̄ − τi) =

κi(pi(t̄ − τi)) = κi(x(t̄)). Thus, the complete input vector impacting the system at time t̄ comes

from the feedback law κ(·) called on the same state vector x(t̄), even though the feedback of

x(t̄) occurs at different times (t̄ − τi) for each input channel. A consequence of this is that, after

the last (longest) delay τr has been compensated, i.e. for t > τr, the behavior of the closed loop
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system with delay would be exactly the same as the delay-free closed loop system. Secondly,

we note while analytical solutions of the predictor state equations in (3.3) and (3.4) cannot

always be written out explicitly – especially when the nominal feedback law is nonlinear – the

predictor states can be solved for numerically and there are studies focusing on implementation

and approximation issues for nonlinear predictor feedback laws ( [36, 37]).

It is shown in Theorems 1 and 2 of [11] that the predictor feedback law (3.5) is Lipschitz

continuous if κi is Lipschitz continuous, and that it stabilizes the delay system (3.1) if three

assumptions on the delay-free system and the nominal feedback law κ hold. The first assumption

is that the delay-free system is strongly forward complete i.e. the solution is well defined and does

not exhibit finite escape – an assumption that holds automatically for linear systems. Secondly,

it is assumed that the system ẋ = Ax+B(κ(x)+ω) is input-to-state stable (ISS) with respect

to ω . Lastly, because of the distinct input delays in the original system (3.1), the effect of the

controller reaches the system along input channels with the shortest delays first, therefore it is

assumed that after the i-th controller “kicks in” and the the i-th input delay has been compensated,

the resulting system ẋ = Ax+∑
i
j=1 b jκ j(x)+∑

r
j=i+1 b jω j is strongly forward complete with

respect to ω = (ωi+1, . . . ,ωr)
T . While linear systems are by nature forward complete, this third

assumption is still important because when κ is a nonlinear control law, the first i controllers

could cause the evolution of the linear system to become nonlinear and as such automatic forward

completeness can no longer be assumed.

For the second and third assumptions, we present the PMN controller that we show to

be input-to-state stabilizing for the zero-delay system, and to keep the system strongly forward

complete when only a portion of the delays has been compensated. We begin with a definition of

CLFs (for linear systems) from which a PMN controller is developed.

Definition 3.1 (CLF - Linear Systems). A positive definite function V (x) = xT Px is a CLF for

the system ẋ = Ax+Bu if there exists positive definite matrix Q > 0 such that for all x ̸= 0,

xT PB = 0 =⇒ xT (AT P+PA+Q)x < 0 (3.6)
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With a CLF V = xT Px for the system ẋ = Ax+Bu known, a stabilizing controller is given by the

PMN formula as:

κpmn(a1(x),b1(x)) =


− a1(x)

∥b1(x)∥2 bT
1 (x) if a1(x)> 0

0 if a1(x)≤ 0
(3.7)

where

a1(x) = xT (AT P+PA+Q)x, (3.8)

b1(x) = 2xT PB. (3.9)

This PMN control law achieves V̇ ≤ −xT Qx for the zero-delay system and hence guarantees

global asymptotic stability. In addition, as the name implies, the PMN formula gives the mini-

mum control effort necessary to keep V̇ ≤−xT Qx, and thus κpmn is the unique solution to the

following quadratic programming problem:

QP-L: Find control u that satisfies

u =argmin
v∈Rr

vT v subject to

a1(x)+b1(x)v ≤ 0

(3.10)

where a1(x) and b1(x) are as defined in (3.8), (3.9).

For the system with delay, the stabilizing control is computed component-wise as given

in (3.5). For each input channel i, the corresponding predictor state pi(t) is used in the κpmn

feedback law, and the i-th component of the resulting control is used as the i-th input to the

28



system as follows,

uLi(t) = κpmni(a1(pi(t)),b1(pi(t))), i = 1, . . . ,r (3.11)

While the predictor feedback law (3.11) is defined component-wise using different predicted state

values for each input channel, we re-iterate here that the full input vector uL(t̄) arriving at the

system at some time t̄ > τr, would be equivalent to κpmn(a1(x(t̄)),b1(x(t̄))) since x(t̄) = pi(t̄−τi)

for all i.

Proposition 3.1. If V is a CLF for the system (3.2), then the control law (3.11) is Lipschitz

continuous and the closed loop system (3.1), (3.11) is globally asymptotically stable in the sense

that, for a class K L function β , the closed loop trajectories satisfy

Γ(t)≤ β (Γ(0), t), ∀t ≥ 0 (3.12)

where

Γ(t) = ∥x(t)∥+
r

∑
i=1

sup
t−τi≤θ≤t

∥ui(θ)∥ (3.13)

Proof. The proofs for stabilization and Lipschitz continuity of (3.11) follow from Theorems

1 and 2 of [11] respectively, provided the aforementioned assumptions are satisfied. The first

assumption of strong forward completeness of the zero-delay system is satisfied automatically

for linear systems. For the second assumption, we establish input-to-state stability with the help

of the Lyapunov function V . In this case,

V̇ =−xT Qx+2xT PBω ≤−λmin(Q)

2
∥x∥2 +

2∥BT P∥
λmin(Q)

|ω|2 (3.14)

and the ISS property follows. For the third assumption, while the PMN feedback law κpmn j(x) is

nonlinear in x, it is continuous and smaller in magnitude than a linear feedback that achieves
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V̇ =−xT Qx; therefore, the closed-loop system is globally Lipschitz and thus forward complete

during times τ1 ≤ t ≤ τr when only a subset of the delays has been compensated. With all three

assumptions satisfied, the proof for global asymptotic stability follows from Theorem 1 of [11]

which provides the Lyapunov functional (3.12). For Lipschitz continuity of κpmni(pi(t)), we

need to show that κpmni(x(t)) is Lipschitz continuous to be able to use the result of Theorem 2

of [11]. The Lipschitz continuity of κpmni(x(t)) follows directly from Proposition 1 of [34] and

therefore concludes this proof.

3.3 Control barrier functions for linear systems with dis-
tinct input delays

Given the system (3.1) and an admissible set C = {x∈Rn : h(x)> 0} where h :Rn →R is

a continuously differentiable function, the second objective in addition to stabilization is to keep

the admissible set C forward invariant i.e. we want to ensure that if h(0)> 0 then h(t)> 0 for

all t > 0. To achieve this, we start by developing a nominal control law that keeps the delay-free

system forward invariant, and then we use predicted states in this nominal feedback law to ar-

rive at a predictor-feedback controller that keeps the original delay system (3.1) forward invariant.

Definition 3.2 (Control Barrier Function (CBF) - Linear System). A continuously differentiable

function h(x) is a CBF for the system ẋ = Ax+Bu with respect to the admissible set C = {x ∈

Rn : h(x)> 0} if there exists a class K function αh such that, for x ∈ C ,

LBh(x) = 0 =⇒ LAxh(x)+αh(h(x))> 0 (3.15)

For the delay-free system, with a CBF h(x), the goal is to find the minimal control effort that

achieves ḣ(x)>−αh(h(x)). This is equivalent to solving the following quadratic programming

problem:
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QP-B: Find control u that satisfies

u =argmin
v∈Rr

vT v subject to

a2(x)+b2(x)v ≤ 0

(3.16)

where

a2(x) =−LAxh(x)−αh(h(x)), (3.17)

b2(x) =−LBh(x). (3.18)

As with the QP-L, the optimal control law solving the QP-B problem for the delay-free

system is given by the pointwise minimum norm controller κpmn(a2(x),b2(x)). For the original

system with delays, the feedback law is defined component-wise for each input channel i by

using the predictor state pi(t) in place of x(t) and taking the i-th component of the resulting

control as the input to the system across the i-th input channel as follows:

uBi(t) = κpmni(a2(pi(t)),b2(pi(t))), i = 1, . . . ,r (3.19)

We note that with (3.19), there is no control of the system in the first τ1 time units when

none of the inputs at t = 0 has reached the system, therefore, we assume that the initial values

of the inputs ui(t) on the interval t ∈ [−τi,0] are such that the system remains in the safe set

C during the first τ1 time units. In addition, during times t ∈ [τi,τi+1) for i = 1, . . . ,r−1, only

the first i controllers have reached the system, therefore we do not have full control of the

system yet, and thus we need to impose a new condition — akin to the third assumption for

predictor-feedback stabilization — that the system ẋ(t) = Ax(t)+∑
i
j=1 b jκpmn j(x)+∑

r
j=i+1 b ju j

remains in the safe set C for all times t ∈ [τi,τi+1], or that if the system does exit the safe set in

this time period, it would return to the safe set eventually. The latter assumption holds using a
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similar argument as in [103] where the following Lyapunov function is defined:

VC (x) =


0 if x ∈ C

−h(x) if x ∈ C \D

(3.20)

(for some open set D containing C upon which h(x) is defined) and is used to show that the set

C is asymptotically stable i.e. trajectories starting outside the admissible set C asymptotically

converge to the boundary ∂C where h = 0.

Proposition 3.2. If h is a CBF for the system (3.2), then the control law (3.19) is Lipschitz

continuous in C . If x(0) and the initial conditions ui(t) for t ∈ [−τi,0] are such that h(t)> 0 for

0 ≤ t ≤ τ1, and if the systems

ẋ(t) = Ax(t)+
i

∑
j=1

b jκpmn j(x)+
r

∑
j=i+1

b ju j, i = 1, . . . ,r−1 (3.21)

are such that the system remains in the safe set at t = τr, then the control law (3.19) renders the

set C forward invariant.

Proof. The Lipschitz continuity part of the proof follows from Theorem 1 in [35]. For the

forward invariance part, notice that with the control law (3.19), for all t ≥ τr, the control input

affecting the system at the i−th input channel at time t, denoted ua
i (t) is given as

ua
i (t) = uBi(t − τi) = κpmni(a2(x(t)),b2(x(t))). (3.22)

Therefore, for all t ≥ τr, the complete input vector affecting the system is κpmni(a2(x(t)),b2(x(t)))

and we have that

ḣ(x(t)) = LAxh(x(t))+LBh(x(t))κpmn(x(t)). (3.23)
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Since κpmn(x(t)) solves (3.16), we have that ḣ(x(t))≥−αh(h(x(t))) for all t ≥ τr. Thus, follow-

ing from Theorem 1 in [6], the set C is forward invariant for t ≥ τr. With h(x(t))> 0 assumed

for 0 ≤ t ≤ τr, it follows that h(x(t))> 0 for all t > 0.

Proposition 3.2 assumes perfect state prediction i.e. pi(t) = x(t + τi) for all i = 1, . . . ,r, which

is the case when there are no disturbances or system modeling imperfections, and when the

predictor integrals are computed exactly. These assumptions make the guarantees of Proposition

3.2 less practical. To accommodate for this, we make the forward invariance of the admissible

set C robust by following the approach in [34]. First, it is assumed that an external disturbance

ω(t) : R+ → Rn with ∥ω(t)∥ ≤ ω enters the system as follows:

ẋ(t) = Ax(t)+
r

∑
i=1

biu(t − τi)+Bωω(t). (3.24)

and then a constant buffer η is added to the barrier and the new objective becomes keeping a

subset of C denoted Cη = {x : h(x)> η} forward invariant. The overarching idea is that while

ω(t) might cause the system to exit the subset Cη = {x : h(x)> η}, the constant η can be chosen

so that in the worst case, the system remains within the original admissible set C = {x : h(x)> 0}.

To compute the conditions on η , it is assumed that H(x) = h(x)−η is a CBF for the disturbance

free system, αh is linear, ∂C is compact, and that one or more of the following are true: τr is

small, ω is small, h(x) is approximately linear. With these set of assumptions, any constant η

satisfying

η ≥
∥∥∥∥∂h

∂x

∥∥∥∥(ν

∥∥∥∥(I + 1
l0

A)Bω

∥∥∥∥+ 1
l0
∥Bω∥

)
ω (3.25)

on the boundary ∂C , where

ν =
∫

τr

0
eAθ dθ , (3.26)

will guarantee the forward invariance of C in the presence of ω(t).
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3.4 QP design for constrained stabilization

The ultimate goal is to design a controller that simultaneously stabilizes (3.1) and keeps

C forward invariant. To do this, we begin by combining and solving the QP-L and QP-B prob-

lems as done in [35] to arrive at a nominal feedback law κLB(x(t)) that achieves both stabilization

and constraint adherence. We then use this feedback law in combination the state predictors to

arrive at a control law for the original system with distinct delays.

For the delay-free system, the QP-L and QP-B problems are combined as follows:

QP-LB: Find control u and relaxation variable δ that satisfy

(u,δ ) = argmin
(v,σ) ∈ Rr×Rr

(vT v+mσ
T

σ) subject to

F1 := ā1(x)+b1(x)(v+σ)≤ 0

F2 := a2(x)+b2(x)v ≤ 0

(3.27)

where ai(x), bi(x), i = 1,2 are as defined in (3.8), (3.9), (3.17), (3.18), and ā1 = γ f
(
a1(x)

)
where

γ f (·) is the Lipschitz continuous function defined as

γ f (s) =


γs if s ≥ 0

s if s < 0,
(3.28)

with m and γ being design parameters.

Depending on which constraint is active, the control u = κLB(x(t)) solving (3.27) is given

explicitly as:
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Case A (F1 < 0 or x = 0,F2 < 0,λ1 = 0,λ2 = 0):

u = 0 (3.29)

in Ω1 = {x ∈ Rn : ā1 < 0,a2 < 0}.

Case B (F1 = 0,x ̸= 0,F2 < 0,λ1 ≥ 0,λ2 = 0):

u =− m
m+1

ā1

∥b1∥2 bT
1 (3.30)

in Ω2 =
{

x ∈ Rn : ā1 ≥ 0,a2 <
m

m+1
b2bT

1
∥b1∥2 ā1

}
.

Case C (F1 < 0,F2 = 0,λ1 = 0,λ2 ≥ 0):

u =− a2

∥b2∥2 bT
2 (3.31)

in Ω3 =
{

x ∈ Rn : a2 ≥ 0, ā1 <
b1bT

2
∥b2∥2 a2

}
.

Case D (F1 = 0,F2 = 0,λ1 ≥ 0,λ2 ≥ 0):

u =
−∥b2∥2bT

1 ā1 +b1bT
2 (b

T
1 a2 +bT

2 ā1)−
(
1+ 1

m

)
∥b1∥2bT

2 a2(
1+ 1

m

)
∥b1∥2∥b2∥2 −∥b1bT

2 ∥2
(3.32)

in Ω4 =
{

x ∈ A : ā1 ≥
b1bT

2
∥b2∥2 a2,a2 ≥ m

1+m
b1bT

2
∥b1∥2 ā1

}
where A = Rn −{x ∈ Rn : ā1 < 0,a2 < 0}.

Now, for the system (3.1) with delay, we use the predictor states pi(t) in combination with the

nominal feedback law κLB in (3.29)-(3.32) as:

ui(t) = κLBi(pi(t)), ∀i = 1, . . . ,r (3.33)
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and present the following main result.

Theorem 3.3. If V (x) is a CLF and h(x) is a CBF for the delay-free system (3.2), and if

pi(t) = x(t + τi) for all t ≥ 0 and all i = 1, . . . ,r, then

1. The QP-LB problem (3.27) is feasible and the control law (3.33) is Lipschitz continuous in

C .

2. ḣ(x(t))≥−αh(x(t)) for t ≥ τr and for all x ∈ C . If h(x(θ))> 0 for all 0 ≤ θ ≤ τr, the set

C is forward invariant for all t ≥ 0.

3. If the barrier constraint is inactive (F2 < 0) and if we select γm
m+1 = 1 (γ,m ≥ 1 by

assumption) the control κLB becomes identical to the PMN formula (3.7) and achieves

V̇ (x(t))≤−xT (t)Qx(t) for t ≥ τr.

4. If 0 ∈ C then the barrier constraint F2 is inactive around the origin and the closed loop

system is locally asymptotically stable.

5. If a1+b1κLB(pi(t))≤ 0 for all pi(t)∈C and i= 1, . . . ,r, the closed loop system is globally

asymptotically stable with respect to C i.e every trajectory starting in C converges to 0.

Proof. The proof of Theorem 1 follows from Theorem 1 of [34] for linear systems with delays

of equal length.

3.5 Numerical simulation

We present the following example to illustrate the result of this chapter:

ẋ1(t) =−x1(t)+
1
2

x2(t)+u1(t − τ1)+ω1(t)

ẋ2(t) =−1
2

x1(t)− x2(t)+u2(t − τ2)+ω2(t)
(3.34)
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with 0 ≤ τ1 ≤ τ2 and ∥ω(t)∥= ∥(ω1(t),ω2(t))T∥ is such that ∥ω(t)∥ ≤ ω for a known constant

ω . We note that unlike the example in [34], this system includes a drift that can force trajectories

outside the admissible set, and the delays in both input channels are distinct. The control

objective is to steer the system to the origin while avoiding a disk of radius ρ > 0 centered at

(σ ,0) where σ > ρ . Therefore, the admissible set is

C = {x ∈ R2 | h(x)≥ 0} (3.35)

where

h(x) = (x1 −σ)2 + x2
2 −ρ

2 (3.36)

We begin by verifying that h(x) is an CBF for (3.34). Defining the center of the disc as

c =

σ

0

 , (3.37)

we have

LAxh = 2(x− c)T Ax, (3.38)

LBh = 2(x− c)T , (3.39)

and we choose

αh(h) = l0h, l0 > 0. (3.40)

Since LBh = 0 =⇒ x = c and c /∈ C , we have that h is indeed a CBF. Following the same

approach, we can show that H(x) = h(x)−η is also a CBF. Therefore, we have:

a2(x) =−2(x− c)T Ax− l0(h(x)−η) (3.41)

b2(x) =−2(x− c)T (3.42)
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Table 3.1. Table of Parameter Values for Example 3.5

Parameter Value
τ1 0.2
τ2 0.8
ρ 5
σ 6
l0 2
ω 1
p 0.4
q 0.9p2

η 8.06
m 8
γ 2.25
∆t 0.005

Next, we choose the candidate CLF V = xT Px where P > 0 and can be chosen as diag{p}

for some p > 0. Any matrix Q satisfying 0 < Q < P2 provides α(x) = xT Qx. An easy choice for

Q is diag{q} for some 0 < q < p2. Therefore we have that

LAxV = xT (AT P+PA)x, (3.43)

LBV = 2xT PB = 2pxT , (3.44)

and

a1(x) = γ f
(
xT (AT P+PA+Q)x

)
(3.45)

b1(x) = 2pxT (3.46)

The values of (3.41)-(3.46) computed with the predictor states pi(t) are used in the QP

control formulas (3.29)-(3.32). The system and constraint parameters used for simulation are

listed in Table 3.1 below
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The input signal was initialized as

u1(θ) = 0, ∀θ ∈ [−τ1,0], (3.47)

u2(θ) = 0, ∀θ ∈ [−τ2,0]. (3.48)

The predictor integrals are computed using trapezoid rule with time step ∆t that is significantly

smaller than the shortest input delay τ1. For the CBF, the choices of l0 and ω in Table 3.1, and

the inequality (3.25) lead to η ≥ 8.06. For the CLF, we choose p and q as done in [34]. The QP

design parameters m and γ for adjusting the aggressiveness and twitchiness of the controller are

chosen as prescribed in [35].

With initial condition x(0) = [16, 6]T , we attempt to drive the system to the origin in

two different scenarios: with and without an external disturbance. In the first scenario with no

disturbance – shown at the top of Figure 3.1 – we see that the system trajectory follows the drift

of the system initially before the controller kicks in to steer the system tightly around the buffer

of the admissible set and to the origin. Here, Cη and C are kept invariant. In the second scenario,

we have known disturbances

ω1(t) =

√
2

2
sin(0.4πt) (3.49)

ω2(t) =

√
2

2
sgn(ω1(t)) (3.50)

entering the system. As seen in the bottom plot, the system is successfully steered to the origin

without leaving the admissible set C even though the buffer is violated.

3.6 Conclusion and acknowledgements

We extend the QP-based CLF-CBF approach for constrained stabilization to linear

systems with distinct input delays. We show that in combination with predictor feedback, the

nominal QP controller renders the origin locally asymptotically stable and adheres to state
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Figure 3.1. System response for Example 3.5. Top: Predictor feedback with no disturbance,
Bottom: Predictor feedback with bounded disturbance. In both figures, the right and left circles
on the state trajectory indicate the moments when the first and second inputs kick in respectively.
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constraints even when a bounded external disturbance is present. A natural extension to the

results in this chapter would be to consider the effect of predictor-feedback on constrained

stabilization of nonlinear systems with distinct input delays.

Chapter 3, in part, is a reprint and adaptation of the paper: I. Abel, M. Janković, and M.

Krstić, “Constrained Stabilization of Multi-Input Linear Systems with Distinct Input Delays”,

3rd IFAC Joint Workshop on Control of Systems Governed by PDEs and Distributed Parameter

Systems (CPDE/CPDS), 2019. The dissertation author was the primary investigator and author

of this paper.
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Chapter 4

Constrained Control of

Multi-Input Nonlinear Systems with

Distinct Input Delays

4.1 Introduction

4.1.1 Background and motivation

The task of enforcing the safe operation of nonlinear systems is often framed as a

constrained control problem, where the output of a system is constrained to be within a desired

set. One increasingly popular approach for this problem is the use of Control Barrier Functions

(CBFs) [4, 6, 33, 71, 94, 98]. Like Lyapunov functions for stabilization, CBFs provide sufficient

conditions on system input for enforcing forward invariance of a safe-set, and they have been used

in various applications ranging from safe navigation [14, 44] to infectious disease control [5, 57].

As interest in CBFs has developed over time, several extensions have emerged that lend

CBFs to applications of different forms. For example, [3, 25, 56] studied the use of CBFs for

the safe operation of hybrid and discrete-time systems; [35, 43, 103] developed robust-CBF
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formulations for enforcing safety in the presence of disturbances, and [1, 2, 5, 34, 57, 62, 72, 82]

explored the usage of CBFs for systems with delays. In particular, [42, 62, 72, 76, 77] developed

Lyapunov-Krasovskii-like functionals for verifying safety in systems with state delays, and

in [5,57], the authors considered the problem of safety in the context of infectious disease control

with a single measurement delay. Similarly in [82] the safety of sampled-data systems with

a single input delay was considered and in [34], the author leverages results from [46, 47] to

develop controllers for safely stabilizing multi-input linear systems with same-length delays

across input channels. We later extended this result in [1], to linear systems with distinct input

delays using state-predictor designs from [11,95]. The result in [1] was the first to consider safety

for multi-input systems with distinct input delays. However, just like all the aforementioned

results for systems with input delays, [1] provides safety-guarantees only after the longest

input delay has been compensated; that is, after the longest input delay time has elapsed. In

essence, there is an assumption that the initial conditions of the inputs are such that the system

remains safe until the designed control inputs have “kicked in” at all input channels. While this

assumption is reasonable, it is limiting, especially in the case where the delay in some input

channels is significantly longer than the delay in other input channels. In this case, the longest

input delays would need to have been compensated before safety guarantees can be made. Ideally,

it would be beneficial to be able to guarantee safety as soon as the delays in some shorter-delayed

input channels have been compensated.

While there are several examples of real-world multi-input systems with distinct input

delays, the underlying motivation for this work is collision avoidance in autonomous vehicles with

different actuation delays in the steering and braking inputs. Inspired by human driving, where it

is often possible – sometimes necessary – to avoid unforeseen collisions using only the more-

responsive steering input, we desire a control approach that uses the shortest-delayed actuators

to avoid collision whenever possible, especially in scenarios where there isn’t enough time

to compensate the delays in longer-delayed actuators. The continued emphasis on “whenever

possible” is because it will sometimes be impossible to enforce barrier constraints without
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depending on all input channels, including longer-delayed ones. This will manifest as infeasibility

of the CBF-based QP problems designed under the assumption that some – not all – inputs are

available for safety enforcement; and we will address methods for accommodating this challenge.

4.1.2 Contributions

In this chapter, we study the safety problem for control-affine nonlinear systems with

distinct input delays. Relative to the results of [34] that studies linear systems with same-length

delays, we present results for nonlinear systems with distinct input delays. Specifically, we

introduce a predictor-based approach for systems with distinct input delays that enforces safety

before all input delays have been compensated – whenever it is possible to do so. We do this by

treating inputs from longer-delayed input channels as known disturbances when determining

inputs for shorter-delayed input channels. In particular, we consider the following two cases

1. First, we present results for the case where there exists a strict subset of shorter-delayed

input channels sufficient for enforcing safety constraint everywhere in the safe-set. When

such subset of input channels exists, they are preferentially used for enforcing safety

everywhere in the safe set, therefore allowing safety guarantees to be made as soon as the

longest input delay in that subset of input has been compensated.

2. Secondly, we present results for the general case where a strict subset of input channels

sufficient for enforcing safety constraint everywhere in the safe set may not exist. In this

case, we introduce a control approach that ensures that the subset of input channels with

already-compensated delays exert their “best” effort to enforce safety constraints whether

or not this effort is sufficient. When it isn’t, the control approach allows the already

delay-compensated inputs to minimize the violation of safety constraints until enough

input delays have been compensated and system safety can be enforced.
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4.1.3 Organization and notation

The remainder of this chapter is organized as follows. Section 4.2 contains the problem

description and an overview of some preliminaries. In Section 4.3, we discuss our control design

methodology and prove the results in this chapter with examples illustrating the effectiveness of

the proposed designs. We end with a brief conclusion in Section 4.5.

Notation: In addition to notation from previous chapters we use the following no-

tation. For the matrix-valued function G : Rn → Rn×r with columns gi ∈ Rn, we define

LGh(x) =
[

∂h
∂x g1, . . . ,

∂h
∂x gr

]
. For vector u ∈ Rr, and constants 1 ≤ j ≤ k ≤ r, we define

u j:k = [u j,u j+1, . . . ,uk−1,uk]
⊤; and for matrix G ∈ Rn×r with columns gi ∈ Rn and constants

1 ≤ j ≤ k ≤ r, we define G j:k = [g j,g j+1, . . . ,gk−1,gk].

4.2 Problem description and preliminaries

4.2.1 Problem description

We consider systems of the following form:

ẋ(t) = f (x(t))+
r

∑
i=1

gi(x(t))ui(t −Di), (4.1)

where x ∈ X ⊂ Rn is the state, and ui ∈ R, i = 1, . . . ,r are inputs with possibly distinct delays

Di satisfying (without loss of generality) 0 ≤ D1 ≤ ·· · ≤ Dr, with initial conditions ui(θ) for

θ ∈ [−Di,0). The vector fields g1(x), . . . ,gr(x), f (x) : Rn → Rn are assumed to be locally

Lipschitz continuous. We further assume that the delay-free system

ẋ(t) = f (x(t))+G(x(t))u(t) (4.2)

with G(x) := [g1(x), . . . ,gr(x)] and u := [u1, . . . ,ur]
⊤ is forward complete with respect to the

input u; that is, for every initial condition x(0) = x0 and locally bounded input signals ui(t),

i = 1, . . . ,r, the corresponding solution of (4.2) is well defined for all t ≥ 0. The importance of
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this assumption is that the plant in (4.1) does not exhibit finite escape before all feedback control

inputs arrive.

The goal of this chapter is to design controls ui(t), i = 1, . . . ,r for the system (4.1) that

enforce the forward invariance of an admissible set

C = {x ∈ X | h(x)≥ 0} (4.3)

characterized by a continuously differentiable scalar-valued function h(x). That is, we aim to

design controls ui(t), i = 1, . . . ,r that enforce h(x(t))≥ 0 for all t ≥ 0 provided that h(x(0))≥ 0.

We will refer to the set C as the “safe set”, and we shall use the phrase “enforcing safety” to

mean keeping the state x(t) inside the set C .

Remark 4.1. We emphasize that the sole objective of our design will be to render the set C

forward invariant, and as such we shall assume that any other objective e.g. stabilization is

achieved by a baseline controller that shall be modified for safety. Yet, and irrespective of input

delays, it would be sometimes impossible to enforce state constraints without the system state

growing unbounded. For example, in linear systems with a non-minimum phase function h(x)

as output, there are initial states from which enforcing h ≥ 0 will lead to the state growing

unbounded (see [78] for details).

Due to the presence of input delays, the system (4.1) evolves uncontrolled in the first D1

time units and we therefore make the following assumptions.

A1. The initial state x(0) and initial input histories ui(θ), θ ∈ [−Di,0) for i = 1, . . . ,r are such

that x(t) ∈ C for all t ∈ [0,D1].

This assumption ensures that the system does not exit the safe set before any feedback

controller has arrived at the plant. Now, because the input signals ui(t) “kick in” at different

times due to the distinct input delays, we desire a control approach that keeps the state inside of
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the set C using as few input channels as possible, whenever it is possible to do so. This is of

particular interest in the case that the input delays are of significantly different lengths.

4.2.2 Control barrier functions

For systems with no input delays, the constrained control problem is often solved with

the use of Control Barrier Functions (CBFs) defined as follows.

Definition 4.1 (Control Barrier Function (CBF)). A continuously differentiable function h(x) is

a Control Barrier Function (CBF) for the delay-free system (4.2) with respect to the admissible

set C = {x ∈ X | h(x)≥ 0} if there exists a Lipschitz continuous, extended class K function α

such that, for all x ∈ X ,

LGh(x) = 0 =⇒ L f h(x)+α(h(x))> 0. (4.4)

It was shown in Corollary 2 of [6] that if h(x) is a CBF for (4.2), then the controller

u(x(t)) where u : X → Rr is any locally Lipschitz feedback law satisfying

L f h(x)+LGh(x)u(x)+α(h(x))≥ 0 (4.5)

for every x ∈ X , renders the set C forward invariant. Moreover, it was shown in Proposition 4

of [103] that the set C is also rendered asymptotically stable in the case that the system starts

outside of the admissible set C . The inequality (4.5) is called the barrier constraint, and is

equivalent to ḣ(x)+α(h(x))≥ 0 along the solution of (4.2) with u(t) = u(x(t)).

When safe set invariance is to be combined with other control objectives like stabilization

or trajectory tracking, a common approach is to first design a baseline controller u0 : X → Rr

achieving the desired control objective, and then treat safe-set invariance as an add-on objective

enforced by a supervisory controller. In essence, the baseline controller is modified by the

‘smallest’ (in the Euclidean norm sense) additional control u that allows the barrier constraint
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(4.5) to be satisfied. More concretely, to render a baseline control u0 safe, it is overridden with

u = u0 +u where u is the solution of the following quadratic programming (QP) problem:

u = argmin
v∈Rr

∥v∥2 subject to

a(x)+b1(x)(u0 + v)≥ 0

(4.6)

where

a(x) = L f h(x)+α(h(x)), (4.7)

b1(x) = LGh(x). (4.8)

The feasibility of the QP problem (4.6) follows from the definition of a CBF. Using the Karush-

Kuhn-Tucker (KKT) optimality conditions for the solution of (4.6), we get the following explicit

solution for u:

u(x,u0) =


0 if µ(x,u0)≥ 0

− µ(x,u0)
b1(x)b1(x)⊤

b1(x)⊤ otherwise
(4.9)

where

µ(x,u0) = a(x)+b1(x)u0. (4.10)

The controller

u(x) = u0(x)+u(x,u0(x)) (4.11)

for any baseline controller u0(x) and u given in (4.9) enforces the forward invariance of the set

C in (4.3) for the delay-free system (4.2) as established in Corollary 2 of [6].

4.2.3 Robust control barrier functions (RCBF)

Here, we briefly describe the robust CBF formulation in [35] as it applies to the zeroing-

type CBF utilized in this chapter. Consider the delay-free system (4.2), but with an external
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bounded disturbance ω(t)

ẋ(t) = f (x)+G(x)u+Z(x)ω, (4.12)

where the disturbance ω(t) ∈ Rν satisfies 0 ≤ ∥ω(t)∥ ≤ ωmax for all t, and Z : Rn → Rn×ν is

locally Lipschitz.

Definition 4.2 (Robust-CBF). A continuously differentiable function h(x) is a robust-CBF

(RCBF) for the system (4.12) with respect to the admissible set C = {x ∈ X | h(x)≥ 0} if there

exists a Lipschitz continuous, extended class K function α such that, for all x ∈ X ,

LGh(x) = 0 =⇒ L f h(x)−∥LZh(x)∥ωmax +α(h(x))> 0. (4.13)

The −∥LZh(x)∥ωmax term in (4.13) represents the worst case impact of the disturbance

ω on ḣ = L f h+LGhu+LZhω , therefore the condition in (4.13) necessitates that an RCBF

satisfies ḣ(x)+α(h(x))≥ 0 in the presence of the worst-case disturbance even when the input

has no effect on ḣ(x).

As shown in [35], with an RCBF available, the task of enforcing forward invariance of

C in the presence of disturbance signal ω(t) boils down to choosing for every x ∈ X , control

input u from the set of controls satisfying

L f h(x)+LGh(x)u−∥LZh(x)∥ωmax +α(h(x))≥ 0. (4.14)

Here, the input u will achieve ḣ+α(h)≥ 0 in the presence of the worst case disturbance, thereby

guaranteeing safe-set invariance. In the case that an accurate measurement or estimate of the

disturbance ω̂(t) is known a priori, the robust barrier constraint (4.14) can be relaxed to

L f h(x)+LGh(x)u+LZh(x)ω̂ +α(h(x))≥ 0 (4.15)

in which case the input u counteracts the actual impact of ω on ḣ when LGh(x) ̸= 0 as opposed
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to accounting for the worst case impact at all times. For the rest of this chapter, we shall utilize

the RCBF formulation that assumes an accurate estimate or measurement of the disturbance is

available. As in the disturbance-free case, rendering a baseline control u0 robustly safe translates

to overriding u0 with the closest control u = u0+u that allows the robust barrier constraint (4.15)

to be satisfied, where u is the solution of the QP problem

u(x,u0, ω̂) =argmin
v∈Rr

∥v∥2 subject to

a(x)+b1(x)(u0 + v)+b2(x)ω̂ ≥ 0,

(4.16)

with a(x), b1(x) as defined in (4.7), (4.8), and

b2(x) = LZh(x). (4.17)

The feasibility of this QP problem follows from the definition of an RCBF. and has the explicit

solution

u(x,u0, ω̂) =


0 if µ(x,u0, ω̂)≥ 0

− µ(x,u0,ω̂)
b1(x)b1(x)⊤

b1(x)⊤ otherwise
(4.18)

where

µ(x,u0, ω̂) = a(x)+b1(x)u0 +b2(x)ω̂. (4.19)

The controller

u(x,u0, ω̂) = u0(x)+u(x,u0, ω̂) (4.20)

for any baseline controller u0(x) and with u given in (4.18) enforces the forward invariance of

the set C in (4.3) for the delay-free system (4.2) with a bounded external disturbance as shown

in Theorem 2 of [35]. We note that while the results of [35] were stated for the CLF-RCBF QP

problem of simultaneous stabilization and safety, its adaptation in this chapter replaces the use of

a Lyapunov function with the baseline control u0 which the designer is allowed to design using
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any desired approach.

4.2.4 Predictor feedback for nonlinear systems with distinct input delays

Now we return to the original disturbance-free system (4.1) with distinct input delays.

A predictor-feedback approach for stabilization was developed in [11] which combines state

predictors with a globally asymptotically stabilizing feedback law u = κ(x) designed for the

delay-free system (4.2). Specifically, the approach involves designing individual state predictors

p1(t), . . . , pr(t) corresponding to each of the r input channels with pi(t) being the Di-time units

ahead prediction of x(t) i.e. pi(t) = x(t +Di) for all i = 1, . . . ,r. These predictor states are then

used as feedback to get the following control law

ui(t) = κi(pi(t)) (4.21)

where κi is the i-th component of κ . Defining p0(t) = x(t), D0 = 0, and

D j,i = D j −Di, (4.22)

the predictor state equations are given recursively as:

pi(t) = pi−1(t)+
t∫

t−Di,i−1

[
f (pi(s))+

i−1

∑
j=1

g j(pi(s))κ j(pi(s))

+
m

∑
j=i

g j(pi(s))u(s−D j,i)

]
ds, i = 1, . . . ,r

(4.23)

with initial conditions

pi(θ) = pi−1(0)+
θ∫

−Di,i−1

[
f (pi(s))+

i−1

∑
j=1

g j(pi(s))κ j(pi(s))

+
m

∑
j=i

g j(pi(s))u j(s−D j,i)

]
ds, for −Di,i−1 ≤ θ ≤ 0

(4.24)
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It was shown in [11] that the predictor (4.23) satisfies

pi(t) = x(t +Di) ∀ i = 1, . . . ,r. (4.25)

The main idea of the predictor-feedback approach is that the controllers (4.21) satisfy

ui(t −Di) = κi(x(t)) (4.26)

leading to the closed-loop dynamics of (4.1), (4.21) being

ẋ(t) = f (x)+
r

∑
i=1

gi(x)κi(x(t)) (4.27)

which is delay-free. Therefore, a feedback controller designed for the delay free system (4.2)

achieves the same closed loop behavior for the system (4.1) under predictor feedback. Impor-

tantly, since the feedback control signals κi(pi(t)), i = 1, . . . ,r kick in at different times, we need

to make the additional assumption that the system does not exhibit finite escape during time

D1 ≤ t < Dr when only some, not all of the feedback controllers have kicked in. Specifically, we

make the following additional assumption

A2. The systems

ẋ = f (x)+
i

∑
j=1

g j(x)κ j(x)+
r

∑
j=i+1

g j(x)ϑ j, ∀i = 1, . . . ,r−1 (4.28)

are forward complete with respect to [ϑi+1, . . . ,ϑr]
⊤.

Remark 4.2. While the predictor equations (4.23), (4.24) are implicitly defined and may not have

explicit solutions, they can be implemented numerically and the implications of such numerical

implementation are an area of research that is beyond the scope of this work; see [38] for details.

We shall assume here that numerical predictor implementations are accurate.
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4.3 Control design and safety analysis

4.3.1 Safety after longest input delay compensation

Guided by the predictor-feedback approach in [11], a first-attempt at designing safe con-

trollers for the system (4.1) with distinct input delays is to design a safe CBF-based controller for

the delay-free system (4.2), and then use the predictor (4.23) for each i = 1, . . . ,r to compensate

the input delays. Specifically, using the CBF-based approach in 4.2.2, we have the following

safe-guarding controller for the delay-free (DF) system (4.2)

u = κ
DF(x) = u0(x)+u(x,u0(x)) (4.29)

where u0(x) is any safety-agnostic baseline controller for the delay-free system (4.2), and u is the

CBF-based modification defined in (4.9). It follows from Corollary 2 of [6] that the controller

(4.29) enforces the forward invariance of the safe set C for the delay-free system (4.2) and any

baseline controller u0. Now, with a safe controller for the delay-free system available, we can

enforce safety for the original system (4.1) with input delays using the control law

ui(t) = κ
DF
i (pi(t)), t ≥ 0, i = 1, . . . ,r (4.30)

where pi(t) is as defined in (4.23) with κ j replaced with κDF
j .

Theorem 4.1. Let h(x) be a CBF for the delay free system (4.2), and consider the closed loop

system of (4.1) and controller (4.30), where κDF is the feedback law in (4.29) and pi(t) are state

predictors given in (4.23), (4.24). If pi(t) = x(t +Di) for all t ≥ 0 and i = 1, . . . ,r, then for all

t ≥ Dr,

ḣ(x(t))+α(h(x(t)))≥ 0. (4.31)

Moreover, if x(Dr) ∈ C , then the set C is forward invariant.
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Proof. If pi(t) = x(t +Di), then the controller (4.30) satisfies

ui(t −Di) = κ
DF
i (x(t)), t ≥ Di, i = 1, . . . ,r. (4.32)

Thus, for all t ≥ Dr, the closed loop system of (4.1), (4.30) becomes

ẋ(t) = f (x(t))+G(x(t))κDF(x(t)) (4.33)

which has no input delays, and since κDF is the CBF QP based controller in (4.11), it follows

by definition that for all t ≥ Dr, ḣ(x(t))+α(h(x(t)))≥ 0, and therefore h(x(Dr))≥ 0 implies

h(x(t))≥ 0 for all t ≥ Dr.

Remark 4.3. The result of Theorem 4.1 was stated for times t ≥Dr because only after time t =Dr

does the input vector [u1(t −D1), . . . ,ur(t −Dr)]
⊤ become equivalent to κDF(x(t)). Therefore,

the enforcement of the barrier constraint ḣ+α(h)≥ 0 for the system (4.1) under control law

(4.30) can only be guaranteed for times t ≥ Dr when all the input delays have been compensated

and the closed loop system exhibits nominal delay-free behavior. In fact, it is possible that the

system exits the safe-set between time t = D1 and t = Dr even though some of the input delays

have been compensated. This is because the controller (4.30) is not guaranteed to achieve

ḣ+α(h)≥ 0 until time t = Dr, even though the delays in some shorter-delayed input channels

would have been compensated, and these input channels may be sufficient for enforcing the

barrier constraint.

To allow comparison with subsequent control approaches we shall present, the controller

(4.30) can be written as

ui(t) = u0i(pi(t))+ui(pi(t),u0(pi(t))) (4.34)

where u0 : Rn → Rr is any baseline controller and u(pi(t),u0(pi(t))) is the solution of the QP
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problem

argmin
v∈Rr

∥v∥2 subject to (4.35)

L f h(pi(t))+α(h(pi(t)))+LGh(pi(t))(u0(pi(t))+ v)≥ 0

which is given as

ui(pi(t),u0(pi(t))) =


0, µi ≥ 0

−µi
Lgih(pi)

LGh(pi)(LGh(pi))
⊤ , otherwise

(4.36)

where

µi = L f h(pi(t))+α(h(pi(t)))+LGh(pi(t))u0(pi(t)) (4.37)

In the controller (4.34), (4.36), there is an implicit assumption that at every time t ≥ Dr,

the predicted states pi(t −Di) for all input channels i = 1, . . . ,r are equal and consistent with the

actual state x(t). The same assumption is made about the predicted values of the barrier function

and its Lie derivatives. An implication of this assumption is that the controller (4.34) can only

respond to perturbations in h(x(t)) whose effects do not render the system unsafe in under Dr

units of time. One practical example of this limitation is the following: consider an autonomous

robot with distinct longitudinal and lateral input delays Dlat, Dlon with Dlat < Dlon navigating

an obstacle-free path under controller (4.34), (4.36). If an obstacle is introduced sufficiently

close to the robot so that a collision occurs in Dlat < t < Dlon units of time, the predictions made

by longer delayed input channels about the current status of the system will become outdated,

and the controller may not enforce safety because it assumes that the predictions made for all

control channels match the current reality. To formalize this notion of prediction consistency, we

introduce the following definition

Definition 4.3. For the system (4.1) and state predictors (4.23), a function s(x) is said to be
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i-consistent at time t ≥ Di if, for all j = 1, . . . , i

s(x(t)) = s(p j(t −D j)). (4.38)

A function being i-consistent at time t means that the actual value of the function at

time t is equivalent to the values predicted for the first i input channels. When a function is

r-consistent at time t, we say it is fully consistent; if not, we say it is partially consistent.

Using this definition, the assumption made for the controller (4.34), (4.36) is that the

functions I(x(t)) = x(t), h(x(t)), L f h(x(t)) and LGh(x(t)) are fully consistent at all times t ≥ 0.

Notice however that by definition these functions cannot become r-consistent until time t = Dr,

and when the r-consistency assumption does not hold at a particular time t, barrier constraint

satisfaction is not guaranteed at that time t. We note here that a function s(x(t)) can also

become i < r consistent due to several factors including but not limited to prediction error, or an

unforeseen perturbation of the function s(x(t)). Ideally, it would be preferred to have a controller

that guarantees barrier constraint enforcement when predictions are i-consistent for some i < r.

One approach for doing this is presented next.

4.3.2 Safety before longest input delay compensation using fixed number
of input channels

To enable barrier constraint satisfaction when predictions are i < r consistent, we utilize

the robust RCBF-based QP formulation in 4.2.3 in the following way. When solving for the i-th

input ui(t), we compute the state prediction pi(t) and compute the baseline control u0(pi(t))∈Rr

as before, but for safety, we assume only the first i input channels are available for enforcing

the barrier constraint. The idea here is that when determining input ui(t) that would reach the

plant at time t +Di, all other inputs from channels j = i+1, . . . ,r that would reach the plant at

the same time t +Di have already been determined, and can no longer be modified. In addition

to assuming only the first i inputs are available for barrier constraint enforcement, we will treat
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these already determined inputs u j(t − (D j −Di)) for j = i+ 1, . . . ,r as known disturbances

entering the system at time t +Di and include them in the barrier constraint inequality as is the

case with the robust QP problem (4.16). In essence, when determining input ui(t), for each

i = 1, . . . ,r the modification of the baseline control u0i(pi(t)) is chosen as the i-th component of

the solution of the following “robust” QP problem

u = argmin
v∈Ri

∥v∥2 subject to

L f h(pi(t))+α(h(pi(t)))+
i

∑
j=1

Lg jh(pi(t))
(
u0 j(pi(t))+ v j

)
+

r

∑
j=i+1

Lg jh(pi(t))u j(t −D j,i)︸ ︷︷ ︸
≜ω j

≥ 0

(4.39)

where D j,i = D j −Di, and ω j for j > i are already-determined inputs from longer-delayed

channels arriving at the same time t+Di as ui(t). While it may appear computationally expensive

to solve r different QP problems at every time t, the availability of explicit solutions via (4.18)

mitigates this challenge. Now, the idea behind QP problem (4.39) is to mimic the robust QP

problem (4.16) and treat the already determined inputs as known disturbances. This way, the

first i input channels alone can be used for enforcing safety at time t +Di; especially in the case

where delays in longer input channels have not been compensated.

Observe that for i = r, the QP problem (4.39) is equivalent to (4.35) and it is feasible

by virtue of h being a CBF for the system when all r input channels are used for barrier

constraint enforcement. However, for i < r, the feasibility of (4.39) is not guaranteed because

Lg1h, . . . ,Lgih could potentially all be 0 and h is not an RCBF for the system with only the

first i inputs available for safety enforcement. In other words, when LG1:ih(pi) = 0, (4.39) can

be infeasible since the additional control v has no impact on the inequality constraint. This

infeasibility is a reflection of the inability of the first i inputs alone to impact ḣ(pi(t)). To mitigate

this challenge, we introduce the set
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Φ =
{

i ∈ {1, . . . ,r−1}
∣∣LG1:ih(x) ̸= 0 ∀x ∈ X

}
∪
{

r
}

(4.40)

and define

ϕ = minΦ. (4.41)

Here, ϕ is the minimum number of input channels sufficient for enforcing the barrier constraint

everywhere in the state space X . Notice that for all i ≥ ϕ , the QP problem (4.39) will be

feasible because LG1:ϕ h ̸= 0 =⇒ LG1:ih ̸= 0. However for i < ϕ , (4.39) may be infeasible. To

prevent infeasibility for i < ϕ , we will assume when solving for ui(t), i < ϕ that the first ϕ input

channels are available for barrier constraint enforcement, and use the i-th component of the

resulting control modification. Thus, the QP (4.39) becomes

u = argmin
v∈Rs

∥v∥2 subject to

L f h(pi(t))+α(h(pi(t)))+
s

∑
j=1

Lg jh(pi(t))
(
u0 j(pi(t))+ v j

)
+

r

∑
j=s+1

Lg jh(pi(t))u j(t −D j,i)︸ ︷︷ ︸
≜ω j

≥ 0

(4.42)

where

s = max{ϕ, i}. (4.43)

This leads to the controller

ui(t) = u0i(pi(t))+ui (pi(t),u01:s(pi(t)),ωs+1:r) (4.44)

for all t ≥ 0, where
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ωs+1:r =


us+1(t − (Ds+1 −Ds))

...

ur(t − (Dr −Ds))

 ∈ Rr−s, (4.45)

and

ui =


0, µs ≥ 0

−µs
Lgih(pi)

LG1:sh(pi)(LG1:sh(pi))
⊤ , otherwise

(4.46)

with

µs = L f h(pi(t))+α(h(pi(t)))+
s

∑
j=1

Lg jh(pi(t))u0 j(pi(t))+
r

∑
j=s+1

Lg jh(pi(t))ω j (4.47)

Notice the similarity of (4.44)-(4.47) to the RCBF controller in (4.20), (4.19), (4.18). If

ϕ < r, then the predictions of the state and barrier function (and its Lie derivatives) only need

be ϕ-consistent since the shorter-delayed inputs u1, . . . ,uϕ are sufficient for barrier constraint

enforcement.

Theorem 4.2. Let I : Rn → Rn be the identity function I(x) = x, and let h(x) be a CBF for the

delay-free system (4.2) with ϕ as defined in (4.40) and (4.41). Consider the closed-loop system

of (4.1) and the controller (4.44)-(4.46). If I(x), h(x), L f h(x) and LGh(x) are ϕ-consistent at

time t > Dϕ , then

ḣ(x(t))+α(h(x(t)))≥ 0. (4.48)

Proof. If ϕ = r, the result follow directly from Theorem 4.1. Now, consider the case where

ϕ < r. By the ϕ-consistency of I(x(t)), h(x), L f h(x) and LGh(x), we have that x(t) = pi(t−Di),

h(x(t)) = h(pi(t −Di)), L f h(x(t)) = L f h(pi(t −Di)) and LGh(x(t)) = LGh(pi(t −Di)) for

all i = 1, . . . ,ϕ , and therefore the controller (4.44) for i = 1, . . . ,ϕ satisfies

59



ui(t −Di) = u0i(x(t))+ui

(
x(t),u01:ϕ (x(t)),ωϕ+1:r

)
(4.49)

which can be re-written in vector form as
u1(t −D1)

...

uϕ(t −Dϕ)

= u01:ϕ (x(t))+u1:ϕ

(
x(t),u01:ϕ (x(t)),ωϕ+1:r

)
︸ ︷︷ ︸

u1:ϕ

. (4.50)

Thus, the system evolution at time t satisfies

ẋ(t) = f (x(t))+G1:ϕ(x(t))u1:ϕ +Gϕ+1:r(x(t))ωϕ+1:r. (4.51)

By the definition of ϕ , we have that the CBF h(x) is an RCBF for the system (4.51) with respect

to the “disturbance” ωϕ+1:r, and since u1:ϕ solves the robust QP problem (4.42), it follows that

ḣ(x(t))+α(h(x(t))≥ 0.

Remark 4.4. The result of Theorem 4.2, i.e. the satisfaction of the barrier constraint ḣ(x(t))+

α(h(x(t)))≥ 0 holds for all t ≥ Dϕ where predictions are ϕ-consistent. If the state starts inside

of the admissible set C at some time t∗ ≥ Dϕ and ϕ-consistency holds for all t ≥ t∗, then the

forward invariance of the set C from time t∗ follows.

Example 1: Consider the following nonlinear system motivated by the example in [35]

ẋ1(t) =−x1(t)− x2(t)+u1(t −D1)

ẋ2(t) = x3
1(t)+ x2(t)u2(t −D2)

(4.52)

with D1 = 0.2, D2 = 1, u1(θ) = 0 for θ ∈ [−0.2,0), and u2(θ) = 0 for θ ∈ [−1,0). The control

objective is to stabilize the system to the origin while keeping the set

C = {x : h(x) = x2
2 − x1 +1 ≥ 0} (4.53)
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forward invariant.

First, we verify that when D1 = D2 = 0, the candidate barrier function h(x) in (4.53)

is indeed a CBF for (4.52). Specifically, we verify that for some class K function α(h),

Lgh(x) = 0 =⇒ L f h(x)+α(h(x))≥ 0. From (4.52) and (4.53) we have

L f h(x) = x1 + x2 +2x3
1x2, (4.54)

Lgh(x) =
[
−1, 2x2

2

]
, (4.55)

and it follows that Lgh(x) ̸= 0 for all x ∈ X which implies that h(x) is indeed a CBF for (4.52)

with no delays. For control design, we choose α(h) = h. Next, we determine the set Φ and its

minimum ϕ as defined in (4.40) and (4.41). For the system (4.52) and control barrier function

(4.53), we have

Φ = {1}∪{2}, =⇒ ϕ = 1. (4.56)

Thus, we only need 1-consistent predictions to enforce safe set invariance and safety can be

enforced earlier at time t = D1 before both input delays have been fully compensated at time

t = D2.

For the baseline controller u0(x), we use a standard control Lyapunov function (CLF)

based controller to stabilize the system to origin. Specifically, we use the Lyapunov function

V (x) =
1
4

x4
1 +

1
2

x2
2 (4.57)

and baseline control

u0(x) =


0, LgV = 0

−(L f V+∥x∥2)LgV⊤

LgV (LgV⊤)
, LgV ̸= 0

(4.58)

which achieves

V̇ ≤−∥x∥2 ∀x ∈ R2 \{0} (4.59)

61



when the barrier constraint is inactive.

We run numerical simulations for two separate cases: the first using control law (4.34),

(4.36) where 2-consistency is assumed, and the second using the updated control law (4.44)-

(4.46) where 1-consistency is assumed. To capture the significance of the new approach, we

choose initial conditions close enough to the boundary of the admissible set so that the drift of

the system causes a constraint violation in D1 ≤ t ≤ D2 units of time. This way, only the delay

in the first input channel would have been compensated by the time the state trajectory exits the

admissible set. This is reflected in Figure 4.1 where the system evolves uncontrolled for 0.2 time

units due to the input delays, and arrives very close to the boundary of the admissible set.

At time t = 0.2, the delay in the first input channel has been compensated and the de-

signed control u1 begins to impact the system. As shown in Figure 4.2, under control law (4.34),

(4.36), the system violates the barrier constraint because the control inputs were designed under

the assumption that both inputs are always available for enforcing safety and have consistent

-1 0 1 2 3

-6

-4

-2

0

2

time: 0.2

x(0)

barrier

state trajectory with 2-consistency assumed

state trajectory with 1-consistency assumed

drift

Figure 4.1. System response for 0 ≤ t ≤ 0.2 when none of the designed control inputs have
arrived at the system. The system evolution is driven by the drift and the initial conditions of the
inputs, therefore the state trajectory in this time interval is as shown irrespective of the control
law used.
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predictions of state, which is not the case in the time interval 0.2 ≤ t < 1. However, under

the new control law (4.44), (4.46) where at all times t ≥ 0, we incorporate the impact of the

already-determined input signal u2(t −0.8) when determining u1(t), the system remains in the

-1 0 1 2 3

-6

-4

-2

0

2

time: 1

x(0)

barrier

state trajectory with 2-consistency assumed

state trajectory with 1-consistency assumed

drift

-1 0 1 2 3

-6

-4

-2

0

2

time: 50

x(0)

barrier

state trajectory with 2-consistency assumed

state trajectory with 1-consistency assumed

drift

Figure 4.2. Top: System response for 0 ≤ t ≤ 1 when only the shorter-delayed designed input
u1 has been delay-compensated. Under controller (4.44), (4.46) (solid blue) the system remains
in the admissible set using only u1, while for controller (4.34), (4.36) (dashed blue), the system
exits the admissible set. Bottom: With both controllers, the system eventually gets stabilized to
the origin once the constraint has been cleared.
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admissible set even though only the delay in first input channel has been compensated. The

control signals under both control approaches are shown in Figure 4.3

0 0.5 1 1.5 2 2.5 3
-10

-5

0

Control signal with 2-consistency assumed

0 0.5 1 1.5 2 2.5 3

-1

-0.5

0

Control signal with 2-consistency assumed

0 0.5 1 1.5 2 2.5 3
-60

-40

-20

0

Control signal with 1-consistency assumed

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06
Control signal with 1-consistency assumed

Figure 4.3. Control signals u1(t) and u2(t) under controllers (4.44), (4.46) (solid blue) and
(4.34), (4.36) (dashed blue).

4.3.3 Safety before longest input delay compensation using variable
number of input channels

While the previous approach alleviates the need for r-consistent predictions for safety to

only needing ϕ-consistent predictions, it is only beneficial when the constant ϕ is less than r i.e.

when there exists a strict subset of input channels sufficient to impact ḣ everywhere in the set X .

When there isn’t a strict subset of input channels, i.e. when ϕ = r, the controller (4.44)-(4.46)

would be equivalent to controller (4.34)-(4.36) and fully consistent predictions would be required

to guarantee safety. Ideally, we want the smallest subset of input channels to be utilized whenever

they can enforce constraint adherence, even if they cannot be used everywhere in the safe set. To

this effect, we introduce a control approach that uses the following modified QP problem.

Consider the following QP problem denoted QPt
i for input channel i ∈ {1, . . . ,r} at time

t ≥ 0:
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QPt
i : (u,σ∗) = argmin

v∈Ri

σ∈Rr

∥v∥2 +m∥σ∥2 subject to

γ f

(
L f h+α(h)+

i

∑
j=1

Lg jhu0 j

)
+

i

∑
j=1

Lg jh
(
v j +σ j

)
+

r

∑
j=i+1

Lg jh(ω j +σ j)≥ 0

(4.60)

where σ j are slack variables and all functions of state h,L f h, Lg jh, and u0i with suppressed

arguments are evaluated at pi(t) defined in (4.23), ω j = u j(t−D j,i), m ≥ 1 is a design parameter,

and

γ f (s) =


γs if s ≤ 0

s if s > 0
(4.61)

for some γ ≥ 1 (another design parameter).

The notation QPt
i indicates that this QP problem is “solved” for each i ∈ {1, . . . ,r} at all

times t ≥ 0, and will be useful for clarity in the analysis that follow. As previously mentioned, an

explicit solution for (4.60) exists and no online optimization is required. The QP problem (4.60)

attempts to find the control modifications u j, j = 1, . . . , i for the first i input channels, that allows

the barrier function to satisfy the inequality in (4.60) at time t +Di. Notice that the inequality

in (4.60) is not exactly the barrier constraint ḣ(pi(t))+α(h(pi(t))) ≥ 0 since it includes the

additional term LGh(pi(t))σ and the function γ f . The terms σi+1, . . . ,σr in (4.60) are fictitious

control inputs included to make QPt
i always feasible, while the terms σ1, . . . ,σi, also fictitious,

are included to ensure that when all predictions are consistent, the resulting u ∈ R j from QPt
j, is

equivalent to the first j components of u ∈ Ri from QPt−Di, j
i . This equivalence will be shown

later in Lemma 4.7. Since the terms σ1, . . . ,σr are fictitious, we include the penalty m ≥ 1 in the

cost function of the QP problem. Lastly, the function γ f is used to overcome the impact of the

fictitious control inputs by exaggerating the negative effect of the baseline control on ḣ(pi(t)).

Thus, for a fixed penalty m, a larger value of γ leads to the baseline control being considered

more unsafe than it actually is. This “γm” approach is similar to and motivated by the γm
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CLF-CBF QP problem in [35]. While it allows the benefit of using any subset of input channels

for enforcing safety before full delay compensation, it does lead to a “safer than necessary”

controller relative to the design (4.42), (4.43) where a priori knowledge of the minimum number

of input channels sufficient for safety is available. Subsequent analysis will reveal that a suitable

choice of γ is m+1
m .

The QP problem (4.60) has solution

uQPt
i

j =


0, if ζi(t)≥ 0

−ζi(t)
ξi(t)

Lg jh(pi(t)), otherwise
(4.62)

for j = 1, . . . , i and

σ
∗QPt

i
j =


0, if ζi(t)≥ 0

− 1
m

ζi(t)
ξi(t)

Lg jh(pi(t)), otherwise
(4.63)

for j = 1, . . . ,r where

ζi(t) = γ f (zi(t))+
r

∑
k=i+1

Lgkh(pi(t))ωk(t −Dk,i) (4.64)

ξi(t) = ∥LG1:ih(pi(t))∥2 +
1
m
∥LGh(pi(t))∥2 (4.65)

and

zi(t) := L f h(pi(t))+α(h(pi(t)))+
i

∑
j=1

Lg jh(pi(t))u0 j(pi(t)) (4.66)

The proposed control law is given as

ui(t) = u0i(pi(t))+uQPt
k

i , t ≥ 0, i = 1, . . . ,r (4.67)

where

k = max{ j ∈ {i, i+1, . . . ,r} | D j = Di} (4.68)
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For the rest of this chapter, we will assume for the sake of clarity and without loss of generality

that the input delays are all distinct i.e. 0 ≤ D1 < D2 < · · ·< Dr. With this assumption, we have

k = i in (4.68). The results and proofs that follow apply with minor modifications when this

assumption does not hold.

Proposition 4.3. If the baseline controller u0(x) is continuous over a compact set Y ⊂ X

with Y ∩C ̸= /0, then the QP solution uQPt
i

j in (4.62) is bounded if pi(t) ∈ Y . Furthermore, the

controller (4.67) maps Y to a compact set U ⊂ Rr.

Proof. Since uQPt
i

j is the solution of a γm QP problem, its Lipschitz continuity follows from

Theorem 1, Part 1 of [35]. The continuity of u0(x) and uQPt
i

j implies that the control law (4.67) is

continuous and therefore maps a compact set Y ⊂ X to some compact subset U of Rr.

Theorem 4.4 (Main Result). For the closed loop system of (4.1) and controller (4.67), (4.62)

we have the following result. Suppose trajectories of the system stay inside of a compact subset

Y ⊂ X where the parameter m ≥ 1 satisfies

m ≥ 1
εδ 2 max

y∈Y ⊂X ,
ν∈U (Y )

{
−∥LGh(y)∥2

(
L f h(y)+α(h(y))+LGh(y)ν + ε

)}
, (4.69)

for some δ > 0, ε > 0, then the i-consistency of the identity function I(x) = x, CBF h(x), and

Lie derivatives L f h(x) and LGh(x) at time t > Di for some i ∈ {1, . . . ,r} implies that

∥LG1:ih(x(t))∥> δ =⇒ ḣ(x(t))+α(h(x(t)))>−ε. (4.70)

for all x(t) ∈ Y . Moreover, if I(x), h(x), L f h(x) and LGh(x) are r-consistent at t > Dr and if

γ ≥ m+1
m , then

ḣ(x(t))+α(h(x(t)))≥ 0 (4.71)

for all x(t) ∈ Y .
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Remark 4.5. The second part of Theorem 4.4 states that after time t > Dr, whenever all input

delays are fully compensated as reflected by the r-consistency of I(x) and h(x) (and its Lie

derivatives), the controller (4.67) achieves the standard barrier constraint inequality (4.71) as

long as γ is chosen to satisfy γ ≥ m+1
m . In fact, since m+1

m ≤ 2, choosing γ ≥ 2 guarantees the

satisfaction of (4.71) everywhere in the set X . The first part of the theorem however states that

at any given time t > Di, if predictions are only i-consistent, then the first i input channels would

enforce the barrier constraint as best as possible, with a possible violation dependent on the

magnitude of ∥LG1:ih(x(t))∥, provided that trajectories remain inside of some compact set Y

where the inequality (4.70) holds. Notice that the inverse relationship of the parameter m and

εδ 2 in (4.69) suggests the choice of a sufficiently large penalty m to keep ε small for a fixed δ .

In addition, for a fixed choice of parameter m, the magnitude ε of the violation of the barrier

constraint in (4.70) decreases as δ – the lower bound on ∥LG1:ih(x(t))∥ increases.

Remark 4.6. The maximum on the RHS of (4.69) exists because it is taken over continuous

functions over compact sets Y ⊂X ⊂Rn and U ⊂Rr. In addition, if one chooses a sufficiently

large m, then there exists a non-empty compact set Y inside of which the inequality holds.

Proposition 4.5. For all t∗ ≥D1, if h(x(t∗))≥ 0 and if the conditions of Theorem 4.4 are satisfied

for all t ∈ [t∗, t∗+T ], T > 0, then

h(x(t))>−α
−1(−ε), ∀t ∈ [t∗, t∗+T ] (4.72)

We prove Theorem 4.4 by using the following lemmas whose proofs are included at the end of

this chapter. The proof of Proposition 4.5 is also included at the end of the chapter.

Lemma 4.6. Let u ∈ Rb be the unique solution of

u = argmin
w∈Rb

∥w∥2 subject to

β
⊤w ≥ c

(4.73)
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for some β ∈ Rb, β ̸= 0 and c ∈ R, then the vector v ∈ Ra, a < b that uniquely solves

v = argmin
w∈Ra

∥w∥2 subject to

β
⊤
1:aw+β

⊤
a+1:bua+1:b ≥ c

(4.74)

satisfies

v = u1:a (4.75)

Lemma 4.7. If the identity function I(x) = x, CBF h(x), and the Lie derivatives L f h(x) and

LGh(x) are i-consistent at time t, then for all j = 1, . . . , i,

u
QP

t−D j
j

j = uQPt−Di
i

j (4.76)

Remark 4.7. Lemma 4.7 states that the i-consistency of I(x), h(x), L f h(x) and LGh(x) at time

t implies that the j-th component of the solution of QPt−D j
j is equivalent to the j-th component

of the solution of QPt−Di
i for j < i. This is intuitive since i-consistency implies that the predicted

states, barrier function values, and Lie derivatives used in QPt−Di
i and QPt−D j

j are equivalent.

Lemma 4.8. For all t > Dr and γ ≥ m+1
m , if I(x), h(x), L f h(x) and LGh(x) are r-consistent at

time t, then the controller (4.67), (4.62) achieves

ḣ(x(t))+α(h(x(t)))≥ 0. (4.77)

Lemma 4.9. If m satisfies (4.69) for some δ > 0, ε > 0, then the i-consistency of I(x), h(x),

L f h(x) and LGh(x) at t > Di for some i ∈ {1, . . . ,r} implies (4.70).

Proof of Theorem 4.4. The proof follows from Lemmas 4.8 and 4.9. The proofs for these

Lemmas are included at the end of this chapter.
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Example 2: Consider the following kinematic bicycle model of a vehicle for a circular

robot (the host)

ẋ1(t) = x4(t)cos(x3(t))

ẋ2(t) = x4(t)sin(x3(t))

ẋ3(t) =
x4

L
u1(t −D1), δ (t) = arctan(u1(t))

ẋ4(t) = u2(t −D2),

(4.78)

where (x1,x2) ∈ R2 is the position of the host, x3 ∈ [0,2π) is its orientation, x4 ∈ R is the

longitudinal velocity, and L is the distance between its front and rear axles. The input u1 is the

tangent of the steering wheel angle δ , and u2 is the acceleration/deceleration input. The input

channels have delays D1 and D2 respectively with 0 < D1 < D2 and have initial values

u1(θ) = 0, for θ ∈ [−D1,0), (4.79)

u2(θ) = 0, for θ ∈ [−D2,0). (4.80)

The control objective is to keep the host traveling at a reference velocity x̄4 along a prescribed

path in the (x1,x2)-plane while avoiding obstacles introduced in its path. For collision avoidance,

we use the following candidate barrier function

h(x) =
(

x1 − xobs
1

)2
+
(

x2 − xobs
2

)2
− r2 (4.81)

where (xobs
1 ,xobs

2 ) is the position of the obstacle and r is the sum of the radii of the host and the

obstacle. Keeping h(x)≥ 0 therefore ensures that a collision does not occur.

We note here that the candidate barrier function (4.81) has a relative degree of 2 from the

inputs and as such the inputs do not appear in the barrier constraint ḣ+α(h)≥ 0. To circumvent

this, we use the barrier constraint formulation from [59, 101] for CBFs with relative degree
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greater than one, which in the relative degree 2 case is given as:

ḧ+ l1ḣ+ l0h ≥ 0, (4.82)

L 2
f h(x)+LGL f h(x)u+ l1L f h(x)+ l0h(x)≥ 0 (4.83)

where l0 and l1 are constants chosen so that the roots of the polynomial s2 + l1s+ l0 = 0 are

negative real. The idea being that this allows h(x) to decrease towards zero but not oscillate

around zero as the case would be for a polynomial with complex roots. The consequences of

using this higher relative degree barrier constraint are the following

• In addition to ensuring forward invariance of the set C = {x | h(x) ≥ 0}, satisfying the

barrier constraint (4.83) also ensures h(x)≥ 1
|λ |max

ḣ(x) where |λ |max is the magnitude of

the more negative root of the characteristic equation s2+ l1s+ l0 = 0. Therefore, satisfying

(4.83) guarantees the forward invariance of

C2 =

{
x
∣∣∣ h(x)≥ 0, h(x)+

1
|λ |max

ḣ(x)≥ 0
}
, (4.84)

and since C2 ⊆ C , the original set C is also kept forward invariant.

With the barrier constraint (4.83), the results in this chapter apply with the following substitutions

made in the constraint of all QP problems utilized:

L 2
f h+ l1L f h+ l0h → L f h+α(h), and (4.85)

LGL f h → LGh. (4.86)

Next, we verify that the candidate barrier function (4.81) is indeed a CBF for the system

(4.78) i.e. we want to show that

LGL f h = 0 =⇒ L 2
f h+ l1L f h+ l0h ≥ 0. (4.87)
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We have

L f h(x) = 2(x1 − xobs
1 )x4 cos(x3)+2(x2 − xobs

2 )x4 sin(x3) (4.88)

L 2
f h(x) = 2x2

4 (4.89)

LGL f h(x) =

− 2
L(x1 − xobs

1 )x2
4 sin(x3)+

2
L(x2 − xobs

2 )x2
4 cos(x3)

2(x1 − xobs
1 )cos(x3)+2(x2 − xobs

2 )sin(x3)


⊤

(4.90)

It follows from (4.88) and (4.90) that

L f h(x) = x4Lg2L f h(x), (4.91)

and therefore,

LGL f h = 0 =⇒ Lg2L f h = 0 (4.92)

=⇒ L f h = 0 (4.93)

=⇒ L 2
f h+ l1L f h+ l0h = 2x2

4 + l0h (4.94)

≥ 0 (4.95)

for any l0 > 0, and thus (4.81) is indeed a control barrier function for (4.78) with no delays.

For the baseline controller u0, we linearize the dynamics about a desired nominal trajec-

tory and use an LQR controller for trajectory tracking. Once a baseline control is computed, it

is applied unmodified if no obstacle is present in the host’s path. If an obstacle is present, we

modify the baseline control using two predictor-based safety approaches for comparison. In the

first case, we use the controller (4.67), (4.62) where the longer delayed acceleration input u2 is

considered unavailable for safety-enforcement when determining the shorter delayed steering

input u1. In the second case, we use controller (4.34), (4.36) where 2-consistency is implicitly

assumed and both inputs are always considered available for safety enforcement. Notice that
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Table 4.1. Table of Parameter Values for Example 4.3.3

Parameter Value
D1 0.2
D2 1.5
L 6
r 6
l0 4
l1 4
m 50
γ

m+1
m

x̄4 3
(xobs

1 ,xobs
2 ) (−3,0.5)

for this example, ϕ = 2 (as defined in (4.41)) since Lg1L f h(x) = 0 if x4 = 0. This is supported

by intuition because the steering input alone cannot affect the distance of a circular agent to a

circular obstacle if the velocity x4 is zero. Thus, the controller (4.44), (4.46) is equivalent to

(4.34), (4.36) and is therefore not considered separately. The simulation parameter values are

given in table 4.1.

Figure 4.4 shows the initial configuration of the host and the reference path to be

followed. The host travels at a constant velocity for the first 2.75 time units before an obstacle

gets introduced in its path (Figure 4.5). For the purpose of safety enforcement, the time t = 2.75

is the “initial time”, and any steering input u1 applied at this time with knowledge of the obstacle

will not arrive at the plant until time t = 2.75+D1 = 2.95. Similarly for the acceleration/breaking

input u2, any new control signal issued will not arrive at the plant until t = 2.75+D2 = 4.25.

Thus, for the purpose of safety, the delay is not fully compensated until time t = 4.25 and only

becomes partially compensated at time t = 2.95. As shown in the Figure 4.6, under controller

(4.67), (4.62), the host clears the obstacle without collision using the shorter-delayed control

input preferentially. Under controller (4.34), (4.36) however, a collision occurs as shown in

Figure 4.7. For both controllers, we include a plot of the input signals in Figure 4.8, and a plot of

barrier function h, and the function h+ 1
|λ |max

ḣ (c.f. (4.84)) in Figure 4.9.
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Figure 4.4. Left: Host (solid blue) initial condition with heading (green) along prescribed
path (dotted blue). Right: Host (solid) blue accelerates to reference velocity. Since path is
obstacle-free, the control effort under controllers (4.67), (4.62) and controller (4.34), (4.36) are
equivalent.
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Figure 4.5. Obstacle (solid red) introduced in path of the host (solid blue)
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Figure 4.6. Obstacle avoidance under controller (4.67), (4.62). Here, the host does not collide
with the obstacle (see barrier function plot in Figure 4.9).
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Figure 4.7. Obstacle avoidance under controller (4.34), (4.36) where collision occurs.
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Figure 4.8. Input signal under controller (4.67), (4.62) (blue) and controller (4.34), (4.36) (red).
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Figure 4.9. CBF value under controller (4.67), (4.62) (blue) and controller (4.34), (4.36) (red).

75



4.4 Proofs of Lemmas 4.6 – 4.9 and Proposition 4.5

Proof of Lemma 4.6 (by contradiction). Assume v ̸= u1:a. Since v solves (4.74), we have

β
⊤
1:av+β

⊤
a+1:bua+1:b ≥ c (4.96)

β
⊤

 v

ua+1:b


︸ ︷︷ ︸

≜v†

≥ c, (4.97)

therefore v† is in the feasible set of (4.73). Since u solves (4.73), we have

β
⊤u ≥ c (4.98)

β
⊤
1:au1:a +β

⊤
a+1:bua+1:b ≥ c, (4.99)

therefore u1:a is in the feasible set of (4.74). Since v uniquely solves (4.74) and v ̸= u1:a, we have

∥v∥2 < ∥u1:a∥2. (4.100)

Now consider ∥v†∥2

∥v†∥2 = ∥v∥2 +∥ua+1:b∥2 (4.101)

< ∥u1:a∥2 +∥ua+1:b∥2 (4.102)

= ∥u∥2 (4.103)

Since v† ̸= u is in the feasible set of (4.73) and ∥v†∥2 < ∥u∥2, it implies that u does not solve the

QP problem (4.73), which is a contradiction.
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Proof of Lemma 4.7. Define

φ :=



σ∗
1√
m
...

σ∗
r√
m

u1

...

ui


, ν :=



σ∗
1√
m
...

σ∗
r√
m

u1

...

u j


, (4.104)

and let

c =−γ f

(
L f h+α(h)+

i

∑
k=1

Lgkhu0k

)
−

r

∑
k=i+1

Lgkhωk, (4.105)

β =



√
mLg1h

...
√

mLgrh

Lg1h
...

Lgih


, (4.106)

where functions h,L f h,Lgkh,u0k have suppressed argument x(t), and ωk = ωk(t −Dk,i); then

QPt−Di
i in (4.60) can be written as

argmin
φ

∥φ∥2 subject to

β
⊤

φ ≥ c.

(4.107)
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Also, QPt−D j
j can be written as

argmin
ν

∥ν∥2 subject to

β
⊤
1:r+ jν +β

⊤
r+ j+1:r+iφ

∗
r+ j+1:r+i ≥ c

(4.108)

where φ∗ is the solution of (4.107). With the representations (4.107), (4.108), the rest of the

proof follow from Lemma 4.6.

Proof of Lemma 4.8. In what follows, we suppress the argument of h(x(t)) for brevity. When h

appears without an argument, it refers to h(x(t)). Now, for all t > Dr, it follows from Lemma 4.7

that

ḣ(x(t))+α(h(x(t))) = zr(t −Dr)+
r

∑
j=1

Lg jhuQPt−Dr
r

j (4.109)

where zr(·) is as defined in (4.66). Now we consider the two cases for uQPt−Dr
r

j in (4.62).

Case 1: ζr(t −Dr) = γ f (zr(t −Dr))≥ 0.

Here, uQPt−Dr
r

j = 0 for all j = 1, . . . ,r. In addition,

γ f (zr(t −Dr))≥ 0 =⇒ zr(t −Dr)≥ 0. (4.110)

Therefore, (4.109) becomes

ḣ(x(t))+α(h(x(t))) = zr(t −Dr) (4.111)

≥ 0 (4.112)

Case 2: ζr(t −Dr) = γ f (zr(t −Dr))< 0.

Here,

γ f (zr(t −Dr))< 0 =⇒ zr(t −Dr)< 0, (4.113)
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and

γ f (zr(t −Dr)) = γzr(t −Dr). (4.114)

Also, by r-consistency of I(x), h(x), L f h(x) and LGh(x) (4.109) becomes

ḣ(x(t))+α(h(x(t))) = zr(t −Dr)−
r

∑
j=1

Lg jh

(
γzr(t −Dr)

m+1
m ∥LGh∥2

)
Lg jh (4.115)

= zr(t −Dr)−
γzr(t −Dr)

m+1
m ∥LGh∥2

r

∑
j=1

(
Lg jh

)2 (4.116)

= zr(t −Dr)

(
1− γ

m+1
m

)
(4.117)

≥ 0, ∀γ ≥ m+1
m

(4.118)

Proof of Lemma 4.9. For all t > Di

ḣ(x(t))+α(h(x(t))) = L f h+α(h)+
r

∑
j=1

Lg jhu j(t −D j) (4.119)

= L f h+α(h)+
i

∑
j=1

Lg jh

(
u0 j(p j(t −D j))+u

QP
t−D j
j

j

)

+
r

∑
j=i+1

Lg jhu j(t −D j) (4.120)

= L f h+α(h)+
i

∑
j=1

Lg jh
(

u0 j(pi(t −Di))+uQPt−Di
i

j

)
+

r

∑
j=i+1

Lg jhω j(t −D j) (4.121)

= zi(t −Di)+
i

∑
j=1

Lg jhuQPt−Di
i

j +
r

∑
j=i+1

Lg jhω j(t −Di −D j,i) (4.122)

The equality in (4.121) uses Lemma 4.7, and the equality in (4.122) uses the definition of zi(·) in

(4.66). Now, consider the two cases for uQPt−Di
i

j in (4.62).
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Case 1: ζi(t −Di) = γ f (zi(t −Di))+
r
∑

k=i+1
Lgkh(pi(t −Di))ωk(t −Di −Dk,i)≥ 0.

Here, uQPt−Di
i

j = 0 for all j and (4.122) becomes

ḣ(x(t))+α(h(x(t))) = zi(t −Di)+
r

∑
j=i+1

Lg jhω j(t −Di −D j,i) (4.123)

≥ γ f (zi(t −Di))+
r

∑
j=i+1

Lg jhω j(t −Di −D j,i) (4.124)

= ζi(t −Di) (4.125)

≥ 0 (4.126)

where the equality in (4.125) uses the the i-consistency of I(x(t)), h(x(t)), L f h(x(t)) and

LGh(x(t)).

Case 2: ζi(t −Di) = γ f (zi(t −Di))+
r
∑

k=i+1
Lgkh(pi(t −Di))ωk(t −Di −Dk,i)< 0.

Here, (4.122) becomes

ḣ(x(t))+α(h(x(t))) = zi(t −Di)−
ζi(t −Di)

ξi(t −Di)

i

∑
j=1

(
Lg jh

)2

+
r

∑
j=i+1

Lg jh(x(t))ω j(t −Di −D j,i) (4.127)

= zi(t −Di)−
∥LG1:ih(pi(t −Di))∥2

ξi(t −Di)︸ ︷︷ ︸
≜ρi(t−Di)

ζi(t −Di)

+
r

∑
j=i+1

Lg jh(pi(t −Di))ω j(t −Di −D j,i)︸ ︷︷ ︸
≜ηi(t−Di)

(4.128)

= zi(t −Di)+ηi(t −Di)−ρi(t −Di)ζi(t −Di) (4.129)
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Now, consider the inequality in (4.69). It follows that

m ≥−∥LGh(pi(t −Di))∥2

εδ 2 (zi(t −Di)+ηi(t −Di)+ ε) (4.130)

≥−∥LGh(pi(t −Di))∥2

δ 2
(zi(t −Di)+ηi(t −Di)+ ε)

ε + zi(t −Di)− γ f (zi(t −Di))
, (4.131)

since m > 0 and s− γ f (s)≥ 0 for all s. For brevity, we suppress the arguments of LGh, zi, and

ηi. We have

mδ 2

∥LGh∥2 (ε + zi − γ f (zi))≥−(zi +ηi + ε) (4.132)

=⇒ mδ 2

∥LGh∥2
(γ f (zi)− zi − ε)

γ(zi)+ηi
≥ zi +ηi + ε

γ f (zi)+ηi
, (4.133)

since γ f (zi(t −Di))+ηi(t −Di) = ζi(t −Di)< 0. Simplifying further, we get

δ
2
(

1− zi +ηi + ε

γ f (zi)+ηi

)
≥ ∥LGh∥2

m
zi +ηi + ε

γ f (zi)+ηi
(4.134)

δ 2

δ 2 + ∥LGh∥2

m

≥ zi +ηi + ε

γ f (zi)+ηi
(4.135)

Note from (4.128) that ρi =
∥LG1:ih∥

2

∥LG1:i h∥
2+ 1

m∥LGh∥2 >
δ 2

δ 2+
∥LGh∥2

m

if ∥LG1:ih∥> δ > 0. Therefore, we

have from (4.135) that

ρi(t −Di)>
zi(t −Di)+ηi(t −Di)+ ε

γ f (zi(t −Di))+ηi(t −Di)
(4.136)

=
zi(t −Di)+ηi(t −Di)+ ε

ζi(t −Di)
(4.137)

Substituting (4.137) into (4.129) gives

ḣ(x(t))+α(h(x(t)))> zi(t −Di)+ηi(t −Di)−
zi +ηi + ε

ζi(t −Di)

(
ζi(t −Di)

)
(4.138)

>−ε (4.139)
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Proof of Proposition 4.5. From Theorem 4.4, we have for all t ∈ [t∗, t∗+T ]

ḣ(x(t))+α(h(x(t)))>−ε. (4.140)

We apply the comparison lemma [39] to the initial value problem

ẏ(t) =−α(y(t))− ε, t ∈ [t∗, t∗+T ], (4.141)

y(t∗) = h(x(t∗)). (4.142)

Since y(t∗) > 0 and ε > 0, we have that y decreases monotonically until ẏ = 0. Therefore, it

follows that

y(t)≥ α
−1(−ε), ∀t ∈ [t∗, t∗+T ]. (4.143)

By the comparison lemma, we have

h(x(t))> α
−1(−ε), ∀t ∈ [t∗, t∗+T ]. (4.144)

4.5 Conclusion and acknowledgements

In this chapter, we studied the problem of enforcing the safety in multi-input nonlinear

systems with distinct input delays using predictor feedback. In particular, we presented two

approaches that preferentially use shorter-delayed inputs for enforcing safety before all input

delays have been compensated. Compared to a naive combination of state-predictors and a

nominal safe-guarding controller for the delay free system where safety-guarantees cannot be
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made until after the longest input delay has been compensated, we showed that the two introduced

methods enforce safety before the longest input delay has been compensated whenever it is

possible to do so. We included illustrative examples to demonstrate the performance of the two

introduced control methods. A possible direction for future work is the study of safety in the

presence of distinct input delays that are non-constant and/or unknown a priori, a problem that is

relevant in many practical systems.

Chapter 4, in part, is a reprint and adaptation of the following papers: (1) I. Abel,

M. Krstić, and M. Janković, “Constrained Control of Input Delayed Systems with Partially

Compensated Input Delays”, ASME Dynamic Systems and Controls Conference (DSCC), 2020.

(2) I. Abel, M. Krstić, and M. Janković, “Constrained Control of Multi-Input Systems with

Distinct Input Delays”, under review for publication in the IEEE Transactions on Automatic

Control. The dissertation author was the primary investigator and author of both papers.
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Chapter 5

Prescribed-Time Safety for

High Relative Degree Systems

5.1 Introduction

5.1.1 High relative degree control barrier functions

Control barrier functions (CBFs) have become a popular tool for synthesizing safe

controllers for dynamical systems and have been used in a wide range of problem domains:

multi-agent robotics [26, 79, 96], robust safety [35, 43, 103], automotive systems [4, 74, 102],

delay systems [2, 34, 57, 72], and stochastic systems [19, 73, 80] to mention a few. First defined

in [98] and later refined and popularized by the seminal papers [4, 6], CBFs are often employed

in a “safety filter” framework where they are used for generating safe control overrides for a

potentially unsafe nominal controller. In essence, a nominal controller is designed to achieve a

desired performance objective, and a CBF-based control override is used whenever the nominal

controller is at risk of making the system unsafe.

In its initial conception [4, 98], CBFs were specified for safety constraints of relative

degree one i.e. constraints whose time derivative depend explicitly on the input. The extension
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of CBFs to constraints with high-relative degree was first studied independently in [32, 99] with

much progress following in [15, 59, 100, 101]. In [99], the extension was limited to the relative

degree two case, and in [32] where CBFs of arbitrarily high relative degree was introduced, its

usage for a relative degree r case involves choosing r−1 bounded, positive definite functions

that satisfy additional derivative conditions [32, Eq. (26)] – a requirement that limits the utility

of [32] for significantly high relative degree constraints. A similar limitation applies to more

recent treatment [100] which requires choosing and tuning r class-K functions, whose choice

determines the subset of the original safe set that is kept forward invariant. Building off [99],

exponential CBFs were reported in [59] and allowed the use of simple linear control tools to

design CBFs for high relative degree constraints.

5.1.2 The “non-overshooting control” roots of high relative degree CBFs

A year before [98], eight years before [4], and ten years before [59], a design for stabi-

lization to an equilibrium point at the barrier was introduced, under the name “non-overshooting

control,” in the 2006 paper [50] (following its conference version in 2005). This design possesses

all the attributes of a safety design with a CBF of a uniform and high relative degree1 (sans

the CBF terminology) with only the QP step absent since, for stabilization at the barrier, QP is

subsumed in the stabilization design (the nominal feedback and the safety filtered feedback are

the same).

The interest in non-overshooting control in the 1990s came from applications—spacecraft

docking, aerial refueling, machining, etc., with no margin for error in downward setpoint

regulation. The non-overshooting control problem for linear systems, albeit mostly for zero

initial conditions and nonzero setpoints, was solved in [12, 65, 81].

The paper [50] introduced the following two ideas (translated to the current CBF termi-

nology). First, for a system with a high relative degree CBF, a transformation, by backstepping,

1Uniformity of the CBF’s relative degree gives the equivalence of a general control-affine system with the
strict-feedback class and the convertibility of the safe set, given by the CBF positivity constraint, into a semi-infinite
interval constraint for the first state of the strict-feedback system.
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into a particular target system in the form of a chain of first-order CBF subsystems (resulting

in all real poles in the linear case) is performed. Second, in order to ensure that all the CBF

“states” of this chain begin and remain positive, the positivity of their initial values is ensured

by choosing the backstepping gains in accordance with the initial conditions so the entire CBF

chain is initialized positively.

This chain structure and the gain selection of [50, Eq. (12), (13)], regarded through the

lens of pole placement, were independently discovered in the 2016 paper [59, Cor. 2]. Likewise,

the nonlinear damping choices in the CBF chain in [50, Eq. (53), (54)] was independently

proposed in the 2019 paper [100]. Additionally pursued in [50], but not in [59, 100], was a form

of input-to-state safety (ISSf) in the presence of disturbances. This notion, though not explored

for high relative degree CBFs, is rigorously conceived in [43].

Inspired by non-overshooting control under disturbances in [50], i.e., by stabilization to

an equilibrium at the barrier along with ISSf, mean-square stabilization of stochastic nonlinear

systems to an equilibrium at the barrier, along with a guarantee of non-violation of the barrier in

the mean sense, is solved in [52].

With a nearly negligible QP modification, the stabilizing feedbacks in [50] can be used

in safety filters. Hence, backstepping generates a safety filter with explicit tuning variables that

dictate the exponential approach to the barrier.

5.1.3 Prescribed-time safety (PTSf)

Recent advances in prescribed-time stabilization (PTS) [85] have resulted in time-varying

backstepping controllers that guarantee settling times independent of initial conditions. Exten-

sions have been developed to stochastic nonlinear systems [53], infinite-dimensional systems [21,

90, 91], and even coupled systems with finite/infinite-dimensional subsystems [22, 88, 89]. PTS

is a subset of both the finite-time [28] and fixed-time [69] notions (i.e., stronger than both).

The success in achieving stabilization in prescribed time, independent of initial conditions,

inevitably raises the question of pursuing the safety counterpart of the same notion. The
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“translation” from stability to safety may be a bit counterintuitive: while PTS guarantees that the

state reaches the equilibrium no later than a prescribed time T , PTSf guarantees that the state

cannot reach the barrier sooner than a prescribed time T .

In what context is such a PTSf property useful? First, it should be noted that PTSf

is “less safe” than exponential safety (ESf). Less safe is useful by not being restrictive for

longer than necessary. If the desired operation is in the barrier’s proximity, and especially if the

desired operation is beyond the barrier, where it is safe to be after time T , PTSf offers obvious

performance (or liveliness) advantages over ESf. It is even known in the automotive area that

“too safe” may mean possibly unsafe: a follower vehicle that keeps a large distance ‘invites’

vehicles from other lanes to cut in [29].

We distinguish our notion of PTSf from recently defined notions of fixed- and finite-time

safety (FxTSf/FnTSf) in [70]. In PTSf, safety is enforced only for a fixed time duration T , after

which the system is allowed to enter the unsafe set as dictated by the nominal system behavior. In

contrast, FxTSf enforces safety indefinitely and acts in a manner where, whenever the safety filter

kicks in and the nominal system behavior is overridden for a duration of T time units, the system

is necessary brought to the boundary of the safe-set at the end of that time duration. FnTSf acts

similarly as FxTSf, but the time duration T is dependent on the state and nominal control input

at the time the safety override kicks in. Furthermore, PTSf is also different from the notions of

limited duration safety [61] and periodic safety using fixed-time CBFs [24]. Specifically, [24]

introduced the notion of periodic safety where the objective is to keep a system safe for all

times while enforcing that it periodically (with time period T ) visits a goal set inside the safe set.

In [61] the notion of limited duration safety was studied, and like PTSf it implies that a system is

kept safe only for a limited duration T . While [61] restricts the set of initial conditions—a set

that shrinks as T increases [61, Rk. 2]—to be a strict subset of the safe set [61, Eq. (3)], our

notion of PTSf places no restriction on the initial conditions of the system.

Finally, two distinct features of the time-varying backstepping technique make it quite

attractive for use in safety filter design. The first is that, compared to ESf designs, the PTSf
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filters designed with time-varying backstepping do not exhibit large transients when the safety

filter overrides the nominal controller. This is not the case for ESf filters with rapid decay rates:

the so-called “peaking” phenomenon [40,41,92] is exhibited, which can cause some of the states

to become very large near the initialization time, before rapidly converging to the equilibrium.

This behavior can cause large state-derivatives, which, e.g., is undesirable in vehicle systems

where maneuvers causing large acceleration and “jerk” can be dangerous. PTSf safety filter

designs avoid peaking by using small gains near initialization time that only grow large as the

state grows “small”. In essence, PTSf behaves like a smooth, automatic transition from slow ESf

at the initialization time to fast ESf as time approaches the terminal time. The second feature

making time-varying backstepping attractive is the behavior of the convergence it achieves near

the terminal time. PTSf achieves convergence with “infinitely-soft” landing, that is, the state and

all of its derivatives converge to the equilibrium by the terminal time. This feature occurring

in finite time is unique to PTSf, and is desirable because it can ensure, e.g., “jerk-free” safety

maneuvers by the terminal time.

5.2 Problem description

We study linear systems in the following chain-of-integrator form

ẋi(t) = xi+1(t), i = 1, . . . ,n−1,

ẋn(t) = u(t),

y(t) = x1(t), t ≥ t0,

(5.1)

with relative degree n, where t0 ≥ 0 is the initialization time, x = [x1, . . . ,xn]
⊤ ∈ Rn is the state

with initial condition x(t0), and u ∈ R is the control input. Our objective is to enforce non-

positivity of the output y(t) over the finite time horizon [t0, t0 +T ), where T is a terminal time

that can be a priori prescribed. As is the case in many safety-critical systems, the control input

will be filtered through a so-called safety-filter which overrides a nominal control input unom
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whenever it violates conditions that lead to y(t)> 0. Distinct to our safety-filter design is that

it only enforces safety for times t ∈ [t0, t0 + T ), and our methodology generates an explicit

safety-filter expression which depends on x(t0) and parameters that can be readily tuned for

system performance objectives.

5.2.1 Preliminaries

Our PTSf designs will be generated by the following “blow-up” function:

µm(t − t0,T ) =
1

νm(t − t0,T )
, t ∈ [t0, t0 +T ) (5.2)

for m ∈ N≥2 and the terminal time T > 0, where

ν(t − t0,T ) :=
T + t0 − t

T
(5.3)

decays linearly from one to zero by the terminal time. We denote by mk the rising factorial for

m,k ∈ N, that is,

mk := m(m+1) · · ·(m+ k−1); (5.4)

the derivatives of µm are

µ
(i)
m (t − t0,T ) =

mi

T i µm+i(t − t0,T ). (5.5)

For the rest of this chapter, we shall use µm and µm(t) to denote µm(t − t0,T ) for brevity when

there is no confusion. We denote my Pn(x) an nth-order polynomial in x.
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5.3 A second-order design demonstration

We motivate our design with the double integrator

ẋ1(t) = x2(t),

ẋ2(t) = u(t),

y(t) = x1(t), t ≥ t0.

(5.6)

which can be used to model the longitudinal dynamics of a vehicle, where the states x1, x2

represent the position and velocity of the vehicle respectively, and the input u represents the

longitudinal acceleration/deceleration command. The safety objective is to enforce that the

position x1 remains negative for a prescribed time duration T during which the system is driven

by a nominal control unom that can be overridden as needed to enforce safety. One application

of this is the problem of ensuring that an ego vehicle does not violate a red traffic light that is

on for a fixed duration T , irrespective of driver input. We begin our design by performing a

time-varying backstepping transformation defined as follows

h1(t) :=−x1(t) (5.7)

h2(t) :=−x2(t)+ c1µ2(t − t0,T )h1(t) (5.8)

where c1 is a design parameter to be determined. We call the transformed states hi’s barrier

functions to connote the desire to keep their values positive, provided that the initial values

hi(t0) are positive as is typical with CBFs. The positivity of h1(t0) follows from requiring

that the system is initially safe i.e. x1(t0) < 0. For h2(t0), we achieve positivity by choosing

c1 > max
{

0,−x2(t0)
x1(t0)

}
where we have used µ2(t0 − t0,T ) = 1. The importance of the restriction

of c1 to positive values will become apparent from the dynamics of the target h-system. Under
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the transformation (5.7), (5.8) and the choice of control

usafe = c2µ2h2 +
d
dt
(c1µ2h1) (5.9)

=−(c1 + c2)µ2x2 − c1

(
c2µ2 +

2µ1

T

)
µ2x1 (5.10)

where c2 > 0, the h-dynamics satisfy

d
dt

h1 =−c1µ2h1 +h2

d
dt

h2 =−c2µ2h2

(5.11)

which we will later show converges to the origin in T time units for positive constants c1,c2

chosen to satisfy the aforementioned conditions. Thus, to enforce that the nominal controller

unom does not make the state x1 positive before time t0 +T , we apply the safety filter

u =


min{unom,usafe} , if t0 ≤ t < t0 +T,

unom, if t ≥ t0 +T.
(5.12)

We shall address the continuity of the controller at t0 + T when we consider the general n-

dimensional problem in Section 5.5. Now, consider the case where the nominal controller unom

is unsafe in the interval [t0, t0 +T ) so that we apply the overriding controller usafe in (5.10), the

solution of the system (5.11) is given as

h1(t) = e−c1T [µ1(t)−1]

[
h1(t0)+h2(t0)

t∫
t0

e(c1−c2)T [µ1(τ)−1] dτ

]
, (5.13)

h2(t) = e−c1T [µ1(t)−1]h2(t0) (5.14)

which satisfies h1(t) > 0, h2(t) > 0 for t ∈ [t0, t0 + T ) and in particular limt→(t0+T )− h1(t) =

limt→(t0+T )− h2(t) = 0. Thus, in the case of a potentially unsafe nominal control unom, we have
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x1(t)< 0, t ∈ [t0, t0 +T ) and limt→(t0+T )− x1(t) = 0.

In the next section, we present a simulation and interpret the results of our second-order

safety-filter design.

5.4 Simulation and interpretations of design

5.4.1 PTSf versus ESf: The peaking phenomenon

We return to the double integrator (5.6). Suppose that the nominal control input unom is

at risk of making our system unsafe, and we wish to design a time-invariant safety filter that

overrides the nominal controller and takes the system to the origin. This problem was studied

in [59, Sec. 3.B] for input-output linearized systems via pole-placement (which inherently relies

on the backstepping method—see [59, Rk. 5]), which achieves exponential convergence to the

origin with arbitrary decay rate. We define the barrier functions

h1 :=−y, (5.15)

h2 :=−x2 +ρh1, ρ > 0, (5.16)

with the goal of keeping h1 ≥ 0 uniformly. Consider the following time-invariant safety filter

designed as in [59]:

u = min
{

unom,−
(
2ρ

2 3ρ
)

x
}
, t0 ≤ t < ∞, (5.17)

with

ρ ≥ max
{

0,−x2(t0)
x1(t0)

}
. (5.18)

Suppose the safety-filter overrides the nominal controller at t = t0 + t̄ < ∞ and continues to

enforce safety thereafter (i.e., u(t) =−
(
2ρ2 3ρ

)
x(t) for all t ≥ t0 + t̄, placing the closed-loop
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poles for the x-system at {−ρ,−2ρ}). Then the closed-loop system (5.6)–(5.17) is given by

x(t) = e−ρ(t−t0−t̄)×

 2− e−ρ(t−t0) 1
ρ
− e−ρ(t−t0−t̄)

ρ

2ρ

(
e−ρ(t−t0−t̄)−1

)
2e−ρ(t−t0−t̄)−1

x(t0 + t̄). (5.19)

If we wish to achieve large exponential decay when the system is unsafe, we can select

ρ ≫ max
{

0,−x2(t0)
x1(t0)

}
as large as desired. However, for small t − t0 − t̄, the righthand side

of (5.19) can be very large depending on the size of ρ (in particular, x2 grows with ρ). This

illustrates the “peaking” phenomenon, which was studied for ODE control systems in [40,41,92].

The celebrated work of Sussmann and Kokotovic [92] has exposed the possibility of disastrous

outcomes in input-output feedback linearization, where rapid regulation of the output can

have catastrophic consequences on the zero dynamics. Moreover, due to the structure of the

feedback (5.17), even for systems with a full relative degree (systems without zero dynamics, as

above), the control input becomes extremely large near time t0 + t̄.

In the context of safety, if (x1,x2) represent position and velocity, seeking time-invariant

safety filters with large exponential decay (ρ ≫ max
{

0,−x2(t0)
x1(t0)

}
) results in a very large and

rapid transient response in the velocity, which is undesirable as it causes a large “jerk” to the

system.

For our time-varying safety-filter (5.17), the control gains are chosen to initially start

quite small and depending on the initial conditions (see (5.10)), and only grow very large

simultaneously as the states grow very small and as time approaches the prescribed terminal

time. This eliminates the possibility of peaking.

We now compare these results graphically to demonstrate the advantages of time-varying

backstepping. We perform numerical simulations for the double-integrator system under the
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nominal controller

unom =−k1z1 − k2z2, (5.20)

z1 = x1 +asin(ωt)+b, (5.21)

z2 = x2 +aω cos(ωt), (5.22)

with k1 = k2 = 4, a = 1, b = 0.8 and ω = 2π/T where T = 4 is the prescribed time. The initial

condition is chosen as x(0) = (−4,2)⊤. For safety, we use our time-varying PTSf safety-filter

(5.12), (5.10) with choice of gains c2 = c1 = max
{

0,−x2(0)
x1(0)

}
+0.1 = 0.6 and use ramp function

(5.28) with m = 2 and T̄ = 0.5 for controller continuity at t0 +T (see Section 5.5, Eq. (5.28)

for details). For comparison, we use the time-invariant ESf safety-filter (5.17) with ρ = 0.6 and

ρ = 3.2. The choice ρ = 0.6 was made to allow a gain equivalent to the initial gains c1µ2(0),

c1µ2(0) of PTSf, and the choice ρ = 3.2 was tuned to make ESf less conservative and to react at

around the same instant as PTSf. For numerical stability near the origin, we clip the blow-up

function µ2 at a maximum value µ2,max = 1000 — which still allows the PTSf gains grow to

several orders of magnitudes larger than ρ = 3.2. The system trajectories under PTSf and ESf

are shown in Figure 5.1 where we observe the ESf filter with ρ = 0.6 being overly conservative,

overriding the nominal trajectory much sooner, despite being significantly far from the barrier.

With ρ increased to 3.2, the ESf filter becomes less conservative like PTSf but at the cost of a

significantly higher jerk as evident in Figure 5.2. In essence, while ESf can be tuned to be less

conservative like PTSf by choosing larger gains, it comes at the expense of a significant jerk.

Lastly, as evident in both figures, the PTSf filter eventually allows the system evolve freely after

the prescribed time T = 4 has elapsed.

We now present our prescribed-time safety-filter design for the nth order chain-of-

integrator systems. While the time-varying backstepping technique is applicable to a wider

class of systems (nonlinear strict feedback ones), we opt for increased clarity by limiting our

exposition to linear systems.
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Figure 5.1. System trajectories (left) and outputs (right) for double integrator under nominal
controller (5.20) with terminal time T = 4, and initial condition (x1(0),x2(0)) = (−4,2). The
PTSf safety-filter uses (5.12), (5.10) with c2 = c1 = 0.6 while the ESf safety-filter uses (5.17)
with ρ = 0.6 and ρ = 3.2 – the latter value tuned to make ESf react at the same instant as PTSf.
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Figure 5.2. Left: Control signal. Right: Jerk during intervals when nominal command is
overridden. When ESf is tuned (ρ = 3.2 case) to be less conservative like PTSf, the magnitude
of the jerk increases significantly.
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5.5 Nth-order chain-of-integrators design

We recall the system of interest:

ẋi(t) = xi+1(t), i = 1, . . . ,n−1,

ẋn(t) = u(t),

y(t) = x1(t), t ≥ t0.

(5.23)

We aim to design a safety-filter such that y(t) ≤ 0 uniformly over the finite time horizon

[t0, t0 +T ); that is, we wish to only enforce safety while it may be needed. We reproduce the

barrier function treatment in Section 5.3 by defining the one-dimensional barrier functions, for

t ∈ [t0, t0 +T ):

hi :=−xi +αi−1(xi−1, t), i = 1, . . . ,n, (5.24)

α0(x0, t) ≡ 0, (5.25)

αi(xi, t) := ciµ2hi +
d
dt

αi−1(xi−1, t), i = 1, . . . ,n, (5.26)

with the safety-filter

u =


min{unom, αn(xn, t)} , if t0 ≤ t < t0 +T,

unomg(t,x1(t0 +T )), if t ≥ t0 +T,
(5.27)

for the “ramp” function

g(t,x1(t0 +T )) :=


1−νm(t − t0 −T, T̄ ), if x1(t0 +T ) = 0,

t0 +T ≤ t ≤ t0 +T + T̄

1, otherwise.

(5.28)
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where m ∈ N and T̄ > 0 are design parameters. The role of g in the product unomg(t,x1(t0 +T ))

in (5.27) is to ensure that the control law is continuous at t = t0 +T , since we will show that

the feedback law αn(xn, t0 + T ) = 0 (cf. Section 5.6). Hence, (5.27) overrides a potentially

“dangerous” nominal controller only for T time units.

Strictly speaking, the safety-filter min{unom, αn(xn, t)} from (5.27) during times t0 ≤

t < t0 +T is the solution of the QP problem

u = argmin
v∈R

|v−unom|2 subject to

v ≤ αn

(5.29)

where constraint v ≤ αn is equivalent to d
dt hn + cnµ2hn ≥ 0 under input v. Therefore, we refer to

our design as a QP-backstepping PT-CBF design.

With the safety-filter (5.27), the CBFs satisfy

d
dt

hi =−ciµ2hi +hi+1, i = 1, . . . ,n−1, (5.30)

d
dt

hn ≥−cnµ2hn, (5.31)

for t ∈ [t0, t0 +T ). We can now state our main result.

Theorem 5.1. If the system (5.23) is initially safe and away from the barrier, that is y(t0)<−ε ,

ε > 0, then the controller (5.24)–(5.27) ensures that y(t)< 0 for all t ∈ [t0, t0 +T ) for the initial

control gains

ci > max{ci−1,ci} , i = 1, . . . ,n−1, (5.32)

cn > 0 (5.33)

where

ci =
xi+1(t0)− d

dt αi−1(xi−1(t0), t0)
αi−1(xi−1(t0), t0)− xi(t0)

. (5.34)
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Moreover, the control law (5.27) is uniformly bounded provided that unom is continuous2 in the

interval [t0, t0 +T ].

Remark 5.1. While not characterized in Theorem 5.1, if the safety filter overrides the nominal

controller over the time interval [t0 + t̄, t0 + T ) for some t̄ < T , then the convergence of the

CBFs to zero with be “infinitely-soft”: in other words, all of the derivatives dkhi(t)
dtk , k ∈ N,

will also converge to zero by the terminal time t0 +T . This also holds true for the x-system

states. This is advantageous in many applications, e.g., when performing overriding safety

maneuvers for vehicles, this feature ensures the maneuver to be “jerk-free” at the terminal

time. See Section 5.6, and in particular, (5.76) and (5.78) for the mathematical treatment of this

“infinitely-soft” convergence.

We now pursue a proof of Theorem 5.1.

5.6 Proof of theorem 5.1

The structure of our proof comes in two parts: one to establish non-positivity of y(t) for

t ∈ [t0, t0 +T ); and another to establish uniform boundedness of the control law which filters

the nominal controller to enforce safety. While these two parts are intimately connected, each

part requires different treatments. To ensure positivity of h1(t) for t ∈ [t0, t0 +T ), it is enough to

invoke the control barrier constraint (5.31) and our choice of control gains (5.32). On the other

hand, due to the possible switches in control input between unom and αn in (5.27), one must take

care to ensure uniform boundedness of the control input u = αn, whose gains increase with time

according to (5.26) even when u= unom. To this end, we first present the following commutativity

property of the “blow-up” function (5.2) which we will leverage to show controller boundedness.

To simplify our presentation, we take t0 = 0 henceforth.

2The result of Theorem 5.1 hold if unom is only bounded so long as the nominal system is well defined.
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Lemma 5.2. For m ∈ N and 0 ≤ t̄ ≤ t < T , the “blow-up” function (5.2) satisfies

µm(t,T ) = µm(t̄,T )µm(t − t̄,T − t̄). (5.35)

Proof. It follows directly from the definition (5.2):

µm(t,T ) :=
1(

1− t
T

)m (5.36)

=
1(

1− t̄
T

)m
1(T−t

T−t̄

)m (5.37)

= µm(t̄,T )µm(t − t̄,T − t̄). (5.38)

To demonstrate controller uniform boundedness, we must leverage the fact that our

feedback law invokes PTSf whose convergence dominates the rate of divergence of the time-

varying control gains in (5.26). To accomplish this, we characterize the following property of

our closed-loop system.

Lemma 5.3. For c > 0, the ith derivative of the function

ξ (t) := e−cT (µ1(t,T )−1) (5.39)

satisfies

lim
t→T−

diξ (t)
dt i = lim

t→T−
P2i (µ1(t,T ))ξ (t) = 0, i ∈ N. (5.40)

Proof. We compute the first derivative according to (5.5):

dξ (t)
dt

=−2cµ2(t,T )e−cT (µ1(t,T )−1) (5.41)
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An application of l’Hôpital’s rule to (5.41) twice verifies (5.40) for i = 1, since

lim
t→T−

dξ (t)
dt

=−2cecT lim
t→T−

µ2(t,T )e−cT µ1(t,T ) (5.42)

=−2cecT lim
τ→+∞

τ2

ecT τ
= 0. (5.43)

For successive derivatives, we rely on the general Leibniz rule to study the time-varying structure

of the expression:

diξ (t)
dt i =−2c

di−1

dt i−1

(
µ2(t,T )e−cT (µ2(t,T )−1)

)
(5.44)

=−2c
i−1

∑
k=0

(
i−1

k

)
µ
(k)
2 (t,T )

di−k−1ξ (t)
dt i−k−1 (5.45)

=−2c
i−1

∑
k=0

2k

T k

(
i−1

k

)
µ2+k(t,T )

di−k−1ξ (t)
dt i−k−1 . (5.46)

We assume by induction that (5.40) holds for the (i−1)th derivative such that

di−1ξ (t)
dt i−1 = P2(i−1) (µ1(t,T ))ξ (t); (5.47)

it follows from applying l’Hôpital’s rule to (5.44) with (5.47) i+2 times that (5.40) holds for all

i ∈ N.

We can now proceed with the proof of Theorem 5.1, where we select t0 = 0 for clarity.

Proof. We first pursue non-positivity of y(t) under (5.27), (5.32), (5.34). The system beginning

from safety, that is, y(t0) = x1(t0)< 0, implies that h1(t0)> 0. We proceed by induction: suppose

hi(t0)> 0 for some i = 1, . . . ,n−1; it follows from (5.30) and differentiating (5.24) along (5.23)
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that

hi+1(t0) = cihi(t0)+
d
dt

hi(t0) (5.48)

= cihi(t0)− xi+1(t0)+
d
dt

αi−1(xi−1(t0), t0). (5.49)

Our initial control gains (5.32), (5.34) are designed so that

cihi(t0)− xi+1(t0)+
d
dt

αi−1(xi−1(t0), t0)> 0, (5.50)

where we’ve used (5.24). We now show that hi(t0)> 0 for all i = 1, . . . ,n is a sufficient condition

for non-negativity of hi(t) for t ∈ [t0, t0 +T ). Applying the Comparison lemma and variation of

constants formula to (5.30), (5.31) gives

hi(t) = hi(t0)e
−ci

∫ t
t0

µ2(s)ds
+
∫ t

t0
e−ci

∫ t
τ

µ2(s)dshi+1(τ)dτ, (5.51)

hn(t)≥ hn(t0)e
−cn

∫ t
t0

µ2(s)ds (5.52)

> 0, (5.53)

for t ∈ [t0, t0 +T ). Substituting (5.53) into (5.51) for i = n−1 yields

hn−1(t)≥ hn−1(t0)e
−cn−1

∫ t
t0

µ2(s)ds
+hn(t0)

∫ t

t0

[
e−cn−1

∫ t
τ

µ2(s)dse−cn
∫

τ

t0
µ2(s)ds

]
dτ (5.54)

≥ hn−1(t0)e
−cn−1

∫ t
t0

µ2(s)ds (5.55)

> 0. (5.56)

By using (5.53), (5.56) and by proceeding by backwards strong induction, it follows that

h1(t)≥ h1(t0)e
−c1

∫ t
t0

µ2(s)ds (5.57)
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which is equivalent to

y(t) = x1(t)≤ x1(t0)e
−c1

∫ t
t0

µ2(s)ds (5.58)

< 0. (5.59)

for all t ∈ [t0, t0 +T ).

We now pursue uniform boundedness of the the control law (5.27). We partition the time

horizon [0,T ) into intervals for which the system is either deemed safe or unsafe according to

our safety filter by defining

tk :=


min{tk−1 < t ≤ T : unom(t) = αn(xn, t)}, if it exists,

T, otherwise,
(5.60)

for k ∈ N with t0 = 0, where

[0,T ) =
⋃

k∈N∪{0}
tk+1≤T

[tk, tk+1). (5.61)

We have constructed this partition such that the control law (5.27) remains continuous at tk,

precluding Zeno behavior of the closed-loop system. Since the system is initially safe, t1 ̸= T

represents the first time that safety is enforced by (5.27). For t ∈ [t2k, t2k+1), k ∈ N∪{0} and

t2k+1 ≤ T , we define the CBFs

h2k
i :=−xi +α

2k
i−1(xi−1, t − t2k), (5.62)

α
2k
i (xi, t − t2k) := c2k

i µ2(t − t2k,T − t2k)h2k
i +

d
dt

α
2k
i−1(xi−1, t − t2k) (5.63)

for i = 1, . . . ,n, with

α
2k
0 (x0, t − t2k)≡ 0. (5.64)
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It follows from (5.27) that during these intervals, the CBFs satisfy

d
dt

h2k
i =−c2k

i µ2(t − t2k,T − t2k)h2k
i +h2k

i+1, (5.65)

d
dt

h2k
n =−unom +

d
dt

α
2k
n−1(xn−1, t − t2k), (5.66)

for i = 1, . . . ,n−1. Similarly, for t ∈ [t2k−1, t2k), k ∈ N and t2k ≤ T , we define the CBFs

h2k−1
i :=−xi +α

2k−1
i−1 (xi−1, t − t2k−1), (5.67)

α
2k−1
i (xi, t − t2k−1) :=

d
dt

α
2k−1
i−1 (xi−1, t − t2k−1)+ c2k−1

i µ2(t − t2k−1,T − t2k−1)h2k−1
i (5.68)

for i = 1, . . . ,n, with

α
2k−1
0 (x0, t − t2k−1)≡ 0. (5.69)

It follows from (5.27) adapted as u = α2k−1
n (xn, t − t2k−1) that during these intervals, the CBFs

satisfy

d
dt

h2k−1
i =−c2k−1

i µ2(t − t2k−1,T − t2k−1)h2k−1
i +h2k−1

i+1 , (5.70)

d
dt

h2k−1
n =−c2k−1

n µ2(t − t2k−1,T − t2k−1)h2k−1
n . (5.71)

for i = 1, . . . ,n−1. We select c0
i = ci according to (5.32), (5.34), and we select

ck
i = ck−1

i µ2(tk − tk−1,T − tk−1), k ∈ N. (5.72)

Since α2k
0 (x0, t − t2k) = α

2k−1
0 (x0, t − t2k−1) ≡ 0, it follows that h2k

1 (t2k−1) = h2k−1
1 (t2k−1) for

k ∈N. Furthermore, by applying our initial gain selection (5.72) to (5.67), (5.68) and comparing

them to (5.62), (5.63) at t = t2k−1, we deduce that h2k
i (t2k−1) = h2k−1

i (t2k−1) for i = 2, . . . ,n. The

same treatment leads to the equalities h2k
i (t2k) = h2k−1

i (t2k) for i = 1, . . . ,n. Hence, our initial

gain selection (5.72) for each time partition in (5.61) ensures that the system dynamics remain
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continuous at every time. In fact, it simply tracks the growth of the “blow-up” function µ2 over

the time intervals.

Furthermore, we can leverage Lemma 5.2 and our initial gain selection (5.72) to show

that

∏
k∈N

ck
i µ2(t − tk,T − tk) = µ2(t,T ); (5.73)

in other words, the CBF design over the partitioned set (5.61) is consistent with the design (5.24)–

(5.34).

For t ∈ [t2k, t2k+1), k ∈N∪{0} and t2k+1 ≤ T , the system is safe and the nominal control—

which we assume to be uniformly bounded (continuous over a compact time interval)—is being

applied. For t ∈ [t2k−1, t2k), k ∈ N and t2k ≤ T , we must estimate the size of the time-varying

input to verify that it is bounded.

To this end, we first study the stability of (5.70), (5.71). We can solve (5.71) explicitly to

obtain

h2k−1
n (t) = e−c2k−1

n (T−t2k−1)(µ1(t−t2k−1,T−t2k−1)−1)h2k−1
n (t2k−1), (5.74)

whereas for i = 1, . . . ,n−1, we have the relationship

h2k−1
i (t) = e−c2k−1

i (T−t2k−1)(µ1(t−t2k−1,T−t2k−1)−1)h2k−1
i (t2k−1)

+
∫ t

t2k−1

e−c2k−1
i

∫ t
τ

µ2(z−t2k−1,T−t2k−1)dzhi+1(τ)dτ.
(5.75)

We apply Lemma 5.3 to (5.74) to establish that successive derivatives of (5.74) will converge to

zero by the terminal time:

lim
t→T−

drh2k−1
n (t)
dtr = 0, t ∈ [t2k−1,T−], (5.76)
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for r ∈ N∪{0}. For i = 1, . . . ,n−1, we compute

dh2k−1
i (t)
dt

= hi+1(t)+h2k−1
i (t2k−1)

d
dt

(
e−c2k−1

i (T−t2k−1)(µ1(t−t2k−1,T−t2k−1)−1)
)
. (5.77)

By applying Lemma 5.3 to the second term within (5.77), and by backward strong induction

on (5.76), we get for r ∈ N∪{0}

lim
t→T−

drh2k−1
i (t)
dtr = 0, i = 1, . . . ,n−1. (5.78)

Hence, we have shown that when the nominal controller is overridden by our safety filter to

enforce safety during t ∈ [t2k−1, t2k), k ∈ N and t2k ≤ T , our time-varying backstepping design

ensures that the CBF converge very smoothly to zero by the terminal time—indeed, all of their

derivatives also converge to zero by the terminal time.

By using (5.70) within the derivative term of (5.68) in an iterative fashion, we can verify

by induction that (5.68) for i = n is equivalent to

α
2k−1
n (xn, t − t2k−1) =

n−1

∑
r=1

dr

dtr

(
h2k−1

n−r − d
dt

h2k−1
n−r−1

)
+ c2k−1

n µ2(t − t2k−1,T − t2k−1)h2k−1
n .

(5.79)

We conclude from (5.76), (5.78) and applying l’Hôpital’s rule to (5.79) as before that

∣∣∣α2k−1
n (xn, t − t2k−1)

∣∣∣<+∞, ∀ t ∈ [t2k−1, t2k), (5.80)

for k ∈ N and t2k ≤ T . This concludes our proof of controller uniform boundedness.

Corollary 5.3.1 (Rescue to Safety in Prescribed Time). If the system (5.23) is initially unsafe,

that is, if y(t0)> ε , ε > 0, then the controller (5.24)–(5.27) ensures that y(t0 +T ) = 0 for the

initial control gains selected as in (5.32), (5.33). Moreover the control law (5.27) is uniformly

bounded provided that unom is continuous in the interval [t0, t0 +T ].
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Proof. The proof follows by noticing that the barrier function definitions (5.24), choice of initial

gains (5.32)–(5.33), and control law (5.27) lead to the same target system (5.30)–(5.31), but

with initial condition h1(t0) < 0, hi(t0) > 0, for i = 2, . . . ,n. Using a similar argument as in

Theorem 5.1, we arrive at the same lower bound on h1(t) in (5.57) which leads to

y(t0 +T ) = h1(t0 +T ) = 0. (5.81)

5.7 Preservation of nominal prescribed-time stabilization
performance

One advantage of PTSf safety filters over infinite-time ESf filters is the ability to enforce

safety without destroying finite-time performance of the underlying nominal system. In particular,

for systems where the nominal control objective is to be achieved in finite time as is the case in

prescribed-time stabilization (PTS), the ephemeral nature of PTSf makes it possible to enforce

safety, and retain the finite properties of the nominal controller. To illustrate this advantage, we

consider the following example. Consider the following nonlinear strict-feedback system

ẋ1(t) = x2
1(t)+ x2(t)

ẋ2(t) = u(t)

y(t) = x1(t), t ≥ t0,

(5.82)

where the safety-objective is to keep the system output y(t) negative for all times t ∈ [0,T ) with

T = 1. The nominal controller is designed to stabilize the system to the origin in the same

prescribed time T = 1 time units. We first transform the system into double integrator form using

state transformation
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z1(t) = x1(t), (5.83)

z2(t) = x2
1(t)+ x2(t), (5.84)

leading to

ż1(t) = z2(t)

ż2(t) = v(t)

y(t) = z1(t), t ≥ t0.

(5.85)

with

v(t) = 2z1(t)z2(t)+u(t). (5.86)

For the nominal controller, we use a prescribed-time stabilizing (PTS) controller as in [45] for

the transformed system. Specifically, we use

vnom(t) =−Kµ2(t)z(t) (5.87)

K =
[
ω

2 2ζ ω
]

(5.88)

with ω = 4 and ζ = 0.1. Starting from initial state (x1(0),x2(0)) = (−1,−1) which corresponds

to (z1(0),z2(0)) = (−1,0), we apply the ESf filter

v(t) = min
{

vnom(t), −3ρz2 −2ρ
2z1
}

(5.89)

with ρ = 1.2 (low-gain ESf) and ρ = 10 (high-gain ESf); and the PTSf filter

v(t) = min
{

vnom(t), −(c1 + c2)µ2z2 − c1

(
c2µ2 +

2µ1

T

)
µ2z1

}
(5.90)
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with initial gains c1 = c2 = 1. In all three cases, the resulting control v for the transformed

z-system is used for the original x-system via

u(t) = v(t)−2x1(x2
1 + x2). (5.91)

The low-gain ESf filter (ρ = 1.2) is tuned to be initially as restrictive as the PTSf controller,

overriding the nominal control by the same amount, while the high-gain ESf filter (ρ = 10)

is tuned so that the output arrives sufficiently close to the boundary of the safe-region by the

terminal time, thereby retaining the PTS property as much as possible. The resulting plots are

shown in Figure 5.3 and Figure 5.4. While the PTSf filter initially limits the rate of approach

to the y(t) = 0 boundary to enforce safety, it still preserves the prescribed-time stabilization

property of the nominal PTS controller. For the high-gain ESf filter, the system gets sufficiently

close to the boundary of the safe-set at the terminal time; however, choosing the appropriate ESf
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Figure 5.3. Output for strict-feedback system (5.82) under nominal PTS controller (5.87) with
terminal time T = 1, a PTSf filter with terminal time T = 1, an ESf filter with ρ = 1.2, and an
ESf filter with ρ = 10.
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Figure 5.4. Input signal for strict-feedback system (5.82) under nominal PTS controller (5.87)
with terminal time T = 1, a PTSf filter with terminal time T = 1, an ESf filter with ρ = 1.2, and
an ESf filter with ρ = 10.

gain ρ requires more effort from the designer, unlike in PTSf where the designer only chooses

the terminal time to match the terminal time of the nominal PTS controller, and gains c1, c2

according to the explicit prescription in (5.32). Also evident in the figures is the infinitely soft

convergence of the output, internal state x2 (Figure 5.5), and input under the PTSf filter — a

property that is of importance in practical applications.

5.8 Conclusion and acknowledgements

In this chapter, we present a safety filter design for strict-feedback systems that enforces

state constraints for an a priori prescribed time. Our design uses a time-varying backstepping

transformation with gains that grow as time approaches the terminal time. Despite the use of

gains that grow towards infinity, we show that our safegaurding controller remains uniformly

bounded provided that the nominal controller is uniformly bounded.

Compelling future research directions include: studying predictor-based safety filter
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Figure 5.5. Internal state x2 for strict-feedback system (5.82) under nominal PTS controller (5.87)
with terminal time T = 1, a PTSf filter with terminal time T = 1, an ESf filter with ρ = 1.2, and
an ESf filter with ρ = 10.

designs to compensate for input delays which are omnipresent in applications, characterizing

and compensating for the effect of persistent disturbances appearing on the right-hand side of

the dynamics, and developing a discretization algorithm that preserves the properties of our

prescribed-time safety filter. Lastly, QP-based safety filters are only pointwise optimal and do not

minimize a meaningful cost function over the duration of safety enforcement. However, recent

results on the design of inverse optimal (infinite-time) safety filters [49], and inverse optimal

prescribed-time stabilizing controllers [53] have made promising the prospect of studying the

design of inverse-optimal prescribed-time safety filters.

Chapter 5, in part, is a reprint and adaptation of the following papers: (1) I. Abel, D.

Steeves, M. Krstić, and M. Janković, “Prescribed-Time Safety Design for a Chain of Integrators”,

IEEE American Control Conference (ACC), 2022. (2) I. Abel, D. Steeves, M. Krstić, and

M. Janković, “Prescribed-Time Safety Design for Strict-Feedback Nonlinear Systems”, in

preparation for publication in the IEEE Transactions on Automatic Control. The dissertation
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author was the primary investigator and author of both papers.
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[2] I. Abel, M. Janković, and M. Krstić. Constrained control of input delayed systems with
partially compensated input delays. ASME Dynamic Systems and Controls Conference
(DSCC), 2020.

[3] M. Ahmadi, A. Singletary, J. W. Burdick, and A. D. Ames. Safe policy syn-
thesis in multi-agent POMDPs via discrete-time barrier functions. In arXiv,
https://arxiv.org/abs/1903.07823, 2019.

[4] A. D. Ames, J. W. Grizzle, and P. Tabuada. Control barrier function based quadratic
programs with application to adaptive cruise control. In 53rd IEEE Conference on
Decision and Control, pages 6271–6278, 2014.

[5] A. D. Ames, T. G. Molnár, A. W. Singletary, and G. Orosz. Safety-critical control of
active interventions for covid-19 mitigation. medRxiv, 2020.

[6] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada. Control barrier function based
quadratic programs for safety critical systems. IEEE Transactions on Automatic Control,
62(8):3861–3876, 2017.

[7] Z. Artstein. Stabilization with relaxed controls. Nonlinear Analysis, 7(11):1163 – 1173,
1983.

[8] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin. Hamilton-jacobi reachability: A brief
overview and recent advances. In 2017 IEEE 56th Annual Conference on Decision and
Control (CDC), pages 2242–2253, 2017.
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[91] D. Steeves, M. Krstić, and R. Vazquez. Prescribed–time estimation and output regulation
of the linearized schrödinger equation by backstepping. European Journal of Control,
2020.

[92] H. J. Sussmann and P. V. Kokotovic. The peaking phenomenon and the global stabilization
of nonlinear systems. IEEE Transactions on Automatic Control, 36(4):424–440, 1991.

[93] A. J. Taylor, P. Ong, J. Cortés, and A. D. Ames. Safety-critical event triggered control via
input-to-state safe barrier functions. IEEE Control Systems Letters, 5(3):749–754, 2021.

[94] K. P. Tee, S. S. Ge, and E. H. Tay. Barrier Lyapunov functions for the control of output-
constrained nonlinear systems. Automatica, 45:918–927, 2009.
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