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Abstract
Classical and Connectionist theories of cognitive architec-
ture “explain” systematicity, whereby the capacity for some
cognitive behaviors is intrinsically linked to the capacity for
others, as a consequence of syntactically and functionally
combinatorial representations, respectively. However, both
theories depend on ad hoc assumptions to exclude specific
architectures—grammars, or Connectionist networks—that
do not account for systematicity. By analogy with the Ptole-
maic (i.e., geocentric) theory of planetary motion, although
either theory can be made to be consistent with the data,
both nonetheless fail to explain it (Aizawa, 2003b). Category
theory provides an alternative explanation based on the for-
mal concept of adjunction, which consists of a pair of struc-
ture preserving maps, called functors. A functor generalizes
the notion of a map between representational states to in-
clude a map between state transformations (processes). In
a formal sense, systematicity is a necessary consequence of
a “higher-order” theory of cognitive architecture, in contrast
to the “first-order” theories derived from Classicism or Con-
nectionism. Category theory offers a re-conceptualization
for cognitive science, analogous to the one that Copernicus
provided for astronomy, where representational states are no
longer the center of the cognitive universe—replaced by the
relationships between the maps that transform them.

Introduction
For more than two decades since Fodor and Pylyshyn’s sem-
inal paper on the foundations of a theory of cognitive archi-
tecture (Fodor & Pylyshyn, 1988), the problem of explaining
systematicity remains unresolved (Aizawa, 2003b) despite
numerous Classicist and Connectionist claims to the contrary
(Fodor & McLaughlin, 1990; van Gelder, 1990; Smolensky,
1987).

The problem of systematicity for a theory of cognition is
to explain why the capacity for some cognitive behaviours is
intrinsically linked to some other cognitive capacities. The
systematicity problem is actually three problems:

1. Systematicity of representation—why is it the case that the
capacity to generate some representations (e.g., the repre-
sentation John loves Mary) is intrinsically linked to the

capacity to generate some other representations (e.g., the
representation Mary loves John)?

2. Systematicity of inference—why is it the case that the ca-
pacity to make some inferences (e.g., that John is the lover
in the proposition John loves Mary) is intrinsically linked
to the capacity to make some other inferences (e.g., that
Mary is the lover in the proposition Mary loves John)?

3. Compositionality of representation—why is it the case that
the capacity for some semantic content (e.g., the thought
that John loves Mary, however that thought may be repre-
sented) is intrinsically linked to the capacity for some other
semantic context (e.g., the thought that Mary loves John,
however that thought may also be represented)?

These problems are logically independent—one does not nec-
essarily follow from another (Aizawa, 2003a), and so a theory
is required it explain all three.

Classicists and Connectionists employ some form of com-
binatorial representations to explain systematicity. For Clas-
sicists, representations are combined in such a way that to-
kening of representations of complex entities entails tokening
of representations of their constituent entities, so that the syn-
tactic relationships between the constituent representations
mirror the semantics ones—systematicity is a result of a com-
binatorial syntax and semantics (Fodor & Pylyshyn, 1988).
For Connectionists, representations of complex entities are
constructed more generally so that their tokening does not
necessarily imply tokening constituent entity representations
(van Gelder, 1990; Smolensky, 1987). We refer to the for-
mer as classical compositionality, and the latter as functional
compositionality.

In general, a Classical or Connectionist architecture can
demonstrate systematicity by having the “right” collection
of grammatical rules, or functions such that one capacity
is indivisibly linked to another. Suppose, for example, a
Classical system with the following three production rules:

G1: P → Agent loves Patient
Agent → John | Mary
Patient → John | Mary.

The capacities to generate all four representations (i.e., John
loves John, John loves Mary, etc.) are indivisibly linked,
because the presence of all three, or absence of any one of
those rules means the system is only capable of generating
either all or none of those representations. In no case can the
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system generate one without being able to generate the other.
So, this Classical architecture has the systematicity of repre-
sentation property with respect to this group of four proposi-
tions. Tensor products (Smolensky, 1990), or Godel numbers
(van Gelder, 1990) are functionally compositional analogues
to this explanation. Systematicity of inference follows from
having additional processes that are sensitive to the structure
of these representations. For Classical architectures, compo-
sitionality of representation also follows, because the seman-
tic content of a complex representation is built up from the
semantic contents of the constituents and their syntactic rela-
tionships (Aizawa, 2003a). Aizawa (2003a, 2003b) disputes
whether a Connectionist architecture can also demonstrate
compositionality of representation. Regardless, though, nei-
ther Classicism, nor Connectionism can derive theories that
provide a full account of systematicity (Aizawa, 2003b).

A demonstration of systematicity is not an explanation
for it. In particular, although grammar G1 has the system-
aticity of representation property, the following grammar:

G2: P → John loves Patient |
Agent loves Mary

Agent → John | Mary
Patient → John | Mary

does not. This architecture cannot generate a representa-
tion of the proposition Mary loves John even though it can
generate representations of both John and Mary as agents
and patients, and the John loves Mary proposition. The es-
sential problem for Classical theory—likewise Connectionist
theory—is that syntactic compositionality by itself is not suf-
ficient without some additional assumptions that admit gram-
mars such as G1 that have the systematicity property, but ex-
clude grammars such as G2 that do not. An explanation for
systematicity in these cases turns on the nature of those addi-
tional, possibly ad hoc assumptions.

Ad hoc assumptions
Aizawa (2003b) presents an explanatory standard for sys-
tematicity and the problem of ad hoc assumptions by anal-
ogy with the Ptolemean (geocentric) versus Copernican (he-
liocentric) explanations for the motions of the planets (see
Phillips, 2007, for a review). The geocentric explanation for
planetary motion places the Earth at the center of the other
planets’ circular orbits. Although this theory can roughly pre-
dict planetary position, it fails to predict periods of apparent
retrograde motion for the superior planets (i.e. Mars, Jupiter,
etc.) across the night sky. To accommodate this data, the
geocentric theory was augmented with the assumption that
the other planets revolve around points that revolve around
the Earth. This additional assumption is ad hoc in that it is
unconnected with the rest of the theory and motivated only
by the need to fit the data—the assumption could not be con-
firmed independently of confirming the theory. The heliocen-
tric explanation, having all planets move around the Sun, es-
chews this ad hoc assumption. Retrograde motion falls out as
a natural consequence of the positions of the Earth and other
planets relative to the Sun. Tellingly, as more accurate data

became available, the geocentric theory had to be further aug-
mented with epicycles on epicycles to account for planetary
motion; not so for the heliocentric theory.

The problem for Classical and Connectionist theories is
that they cannot explain systematicity without recourse to
their own ad hoc assumptions (Aizawa, 2003b). For Clas-
sicism, having a combinatorial syntax and semantics does
not differentiate between grammars such as G1 and G2.
For Connectionism, a common recourse to learning also
does not work, whereby systematicity is acquired by ad-
justing network parameters (e.g., connection weights) to re-
alize some behaviours—training set—while generalizing to
others—test set. Learning also requires ad hoc assumptions,
because even widely used learning models, such as feedfor-
ward (Rumelhart, Hinton, & Williams, 1986) and simple re-
current networks (Elman, 1990), fail to achieve systematicity
(Marcus, 1998; Phillips, 2000) when construed as a degree
of generalization (Hadley, 1994; Niklasson & Gelder, 1994).
Hence, neither Classical nor Connectionist proposals satisfy
the explanatory standard laid out by Aizawa, or Fodor and
Pylyshyn for that matter.

Our category-theory based approach addresses the problem
of ad hoc assumptions because the concept of an adjunction,
which is central to our argument, ensures that the construct
we seek (a) exists, and (b) is unique. That is to say, from
this core assumption and category theory principles, the sys-
tematicity property necessarily follows for the particular cog-
nitive domains of interest, because in each case the one and
only collection of cognitive capacities derived from our the-
ory is the systematic collection, without further restriction by
additional (ad hoc) assumptions.

Basic category theory
Category theory is a theory of structure par excellence (see
Awodey, 2006; Mac Lane, 2000, for introductions). It was
developed out of a need to formalize commonalities between
various mathematical structures (Eilenberg & Mac Lane,
1945), and has been used extensively in computer science
for the analysis of computation (see, e.g., Pierce, 1991; Wal-
ters, 1991). Yet, applications to cognitive psychology have
been almost non-existent (but, see Halford & Wilson, 1980;
Phillips, Wilson, & Halford, 2009, for two examples). Our
explanation of systematicity with respect to binary relational
propositions is based on the concept of an adjunction. In this
section, we provide definitions of this and other formal con-
cepts that it depends.

Category
A category C consists of a class of objects |C|= (A,B, . . .); a
set C(A,B) of morphisms (also called arrows, or maps) from
A to B where each morphism f : A → B has A as its do-
main and B as its codomain, including the identity morphism
1A : A → A for each object A; and a composition operation,
denoted “◦”, of morphisms f : A→ B and g : B→C, written
g◦ f : A→C that satisfy the laws of:
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• unity, where f ◦1A = f = 1B ◦ f , for all f : A→ B; and

• associativity, where h◦ (g◦ f ) = (h◦g)◦ f , for all f : A→
B, g : B→C and h : C → D.

The most familiar example of a category is Set, which has
sets for objects and functions for morphisms, where the iden-
tity morphism 1A is the identity function and the composition
operation is the usual function composition operator “◦”.

A morphism f : A→ B is an isomorphism if there exists a
g : B→ A, such that g◦ f = 1A and f ◦g = 1B. In this case, A
is said to be isomorphic to B, written A∼= B.

Product
A product of two objects A and B in a category C is an object
P together with two morphisms p1 : P → A and p2 : P → B,
such that for any pair of morphisms z1 : Z→A and z2 : Z→B,
there is a unique morphism u : Z → P, such that the following
diagram commutes:

Z
z1

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

u
²²Â
Â
Â

z2

ÂÂ?
??

??
??

A Pp1
oo

p2
// B

(1)

where a broken arrow indicates that there exists exactly one
morphism making the diagram commute. That is, the com-
positions along any two paths with the same start object and
the same finish object are the same. So, in this diagram,
z1 = p1 ◦ u and z2 = p2 ◦ u, where p1 and p2 are sometimes
called projection morphisms. A product object P is unique up
to a unique isomorphism. That is, for any other product ob-
ject P′ with morphisms p′1 : P′→ A and p′2 : P′→ B there is
one and only one isomorphism between P and P′ that makes
a diagram like this one commute. Hence, P is not unique,
only unique with respect to another product object via iso-
morphism. In Set, P is (up to isomorphism) the Cartesian
product A×B, p1 : A×B→ A, p2 : A×B→ B, where p1 and
p2 are the projection maps to A and B, i.e., p1 : (a,b) 7→ a, and
p2 : (a,b) 7→ b, and u is the function 〈z1,z2〉 : Z→A×B, send-
ing x to tuple (z1(x),z2(x)), so that p1 ◦u = z1 and p2 ◦u = z2.
(The 7→ arrow, often read as “maps to”, indicates the action of
a function on a domain element. Thus f (a) = b is equivalent
to f : a 7→ b.) Since u is uniquely determined by z1 and z2, u
is often written as 〈z1,z2〉, and the diagram used in defining a
product then becomes

Z
z1

wwoooooooooooooo

〈z1,z2〉
²²Â
Â
Â

z2

''OOOOOOOOOOOOOO

A A×Bp1
oo

p2
// B

(2)

Functor
A functor F : C → D is a structure-preserving map between
categories C and D that associates each object A in C to an
object F(A) in D; and each map f : A → B in C to a map

F( f ) : F(A)→ F(B) in D, such that F(1A) = 1F(A) for each
object A in C; and F(g ◦C f ) = F(g) ◦D F( f ) for all maps
f : A → B and g : B →C for which compositions ◦C and ◦D
are defined in categories C and D, respectively. The object
and arrow components of a functor are sometimes explicitly
distinguished as F0 and F1, respectively. Otherwise, the func-
tor component is implicitly identified by its argument.

Functor composition and isomorphism are defined analo-
gously to maps (above). That is, the composition of functors
F : C→D and G : D→ E is the functor G◦F : C→ E, send-
ing all objects A in C to objects G◦F(A) in E; and maps f :
A→B in C to maps G◦F( f ) : G◦F(A)→G◦F(B), such that
identity and composition are respected. That is, G◦F(1A) =
1G◦F(A); and G ◦ F(g ◦C f ) = (G ◦ F(g)) ◦E (G ◦ F( f )). A
functor F : C → D is an isomorphic functor, if and only if
there exists a functor G : D → C such that G ◦F = 1C and
F ◦G = 1D, where 1C and 1D are the identity functors sending
objects and maps to themselves in the respective categories.

Natural transformation
A natural transformation τ : F → G is a structure-preserving
map from domain functor F : C → D to codomain functor
G : C→D that consists of D−maps τA for each object A in C,
such that G( f )◦τA = τB ◦F( f ), as indicated by the following
commutative diagram in the category D:

F(A)
τA //

F( f )
²²

G(A)

G( f )
²²

F(B)
τB // G(B)

(3)

A natural transformation is a natural isomorphism, or natu-
ral equivalence if and only if each τA is an isomorphism. That
is, for each τA : F(A) → G(A) there exists a τ−1

A : G(A) →
F(A) such that τ−1

A ◦ τA = 1F(A) and τA ◦ τ−1
A = 1G(A). Natu-

ral transformations also compose, and the composition of two
natural transformations is also a natural transformation.

Adjunction
An adjunction consists of a pair of functors F : C → D, G :
D → C and a natural transformation τ : 1C → (G ◦F), such
that for every C−object X and every C−map f : X → G(Y )
there exists a unique D−map g : F(X) → Y , such that the
following diagram commutes:

X
τX //

f
##FFFFFFFFF G(F(X))

G(g)
²²Â
Â
Â

F(X)

g

²²Â
Â
Â

G(Y ) Y

(4)

where the functors are implicitly identified by (co)domain
categories C (left subdiagram) and D (right subdiagram). The
two functors are called an adjoint pair, (F,G), where F is the
left adjoint of G, and G is the right adjoint of F ; and natural
transformation τ is called the unit of the adjunction.
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Category theory explanation: Adjoint functors
We develop our adjoint functors explanation of systematicity
in three movements. First, we show that a categorical prod-
uct provides an account of systematicity of representation and
systematicity of inference. However, a product of two objects
may afford many isomorphic product objects that do not also
account for compositionality of representation. Second, we
show that the product functor provides the principled means
for constructing only those products that also have the com-
positionality of representation property. However, there may
be more than one product that has the compositionality prop-
erty, but differs in semantic content by having different syn-
tactic relationships between identical sets of constituents. So,
a principled choice is needed to determine the product. Third,
we show that the diagonal functor, which is left adjoint to
the product functor, provides that principled choice. For con-
creteness, we refer to the category Set, but our explanation
does not depend on this category.

First, suppose objects A (say, agents) and B (patients) are
sets containing representations of John and Mary, denoted
as {J,M}. Although A and B are the same set in this ex-
ample they may not be in the general case. Since our ar-
gument does not depend on equality, we maintain distinct
names for generality, and for conceptual clarity. A categor-
ical product of these two sets is the Cartesian product of A
and B, which is the set of all pairwise combinations of ele-
ments from A and B, together with maps p1 and p2 for re-
trieving the first and second constituent in each case. That
is, A×B = {(J,J),(J,M),(M,J),(M,M)}, p1 : (a,b) 7→ a, and
p2 : (a,b) 7→ b. By definition, the Cartesian product, A×B,
generates all pairwise combinations of elements from A and
B, therefore the Cartesian product has the systematicity of
representation property. Moreover, by definition, the categor-
ical product, (A×B, p1, p2), affords the retrieval of each con-
stituent from each representation (otherwise it is not a prod-
uct), therefore the categorical product also has the systematic-
ity of inference property. In this case, Z from the categorical
product definition takes the role of input, so inferring John
as the lover from John loves Mary is just z1(JM) = p1 ◦u(JM),
where JM is the input and u is the input-to-product object map,
whose unique existence is guaranteed.

The Cartesian product, however, is not the only product
object that satisfies the definition of a categorical product
of A and B. An alternative product has P = {1,2,3,4} as
the product object, and p′1 : 1 7→ J,2 7→ J,3 7→ M,4 7→ M and
p′2 : 1 7→ J,2 7→ M,3 7→ J,4 7→ M as the projections. However,
this alternative does not have the compositionality of repre-
sentation property: the semantic contents of these representa-
tions, whatever they may be, are not systematically related to
each other, or the semantic content of John, or Mary. Hence,
categorical products, in themselves, are not sufficient for an
explanation of systematicity.

Second, for any category C that has products (i.e. ev-
ery pair of objects in C has a product), one can define a
product functor Π : C×C → C, that is from the Cartesian

product of categories, C×C, itself a category, to C, where
Π0 : (A,B) 7→ A×B, Π1 : ( f ,g) 7→ f ×g, as indicated by the
following diagram:

(A,B) Â Π0 //

( f ,g)
²²

A×B

f×g

²²
(C,D) Â

Π0

// C×D

(5)

omitting Π1 : ( f ,g) 7→ f × g for clarity. In this case, the se-
mantic contents of these elements are systematically related
to each other and their constituents John and Mary. This cate-
gorical construction is an instance of Classical compositional-
ity, whereby the constituents ai ∈ A, b j ∈ B are tokened wher-
ever the compositions (ai,b j) ∈ A×B are tokened. As such,
it has the compositionality of representation property.

Although the product functor explanation accounts for
compositionality of representation, it introduces a new prob-
lem: (B×A, p′2, p′1), where p′2 : (b,a) 7→ a and p′1 : (b,a) 7→ b
is also a valid product, but the semantic content of (a,b) is
not the same as (b,a). That is because they have different
order relationships between their constituents even though
the corresponding constituents are identical. Thus, a prin-
cipled choice is required to determine whether, for exam-
ple, John loves Mary should map to (John, Mary), or (Mary,
John). Otherwise, one can define an architecture that does
not have the systematicity of inference property by employ-
ing both products to correctly infer John as the lover in John
loves Mary via (A×B, p1, p2), yet incorrectly infer John as
the lover in Mary loves John via (B×A, p′2, p′1), where po-
sition within the product triple identifies the relevant projec-
tion. The assumption that architectures employ only the first
product is ad hoc just like the assumption that Classical ar-
chitectures employ grammars such as G1, but not G2. So, a
principled choice is needed to determine the product.

Third, and finally, the left adjoint to the product functor is
the diagonal functor ∆ : C → C×C, where ∆0 : A 7→ (A,A),
∆1 : f 7→ ( f , f ) as indicated by the following diagram:

A Â ∆0 //

f

²²

(A,A)

( f , f )
²²

B Â
∆0

// (B,B)

(6)

The (diagonal, product) adjoint pair is indicated by the fol-
lowing commutative diagram:

C
τC=〈1C ,1C〉 //

〈s,t〉 ''NNNNNNNNNNNNNN C×C

s×t

²²Â
Â
Â (C,C)

(s,t)
²²Â
Â
Â

M×N (M,N)

(7)

(see Pierce, 1991, Example 2.4.6). In this manner, the John
loves Mary family of cognitive capacities is specified by the
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commutative diagram

Pr
〈1Pr ,1Pr〉 //

〈ag,pt〉 ''OOOOOOOOOOOOOO Pr×Pr

ag×pt

²²Â
Â
Â (Pr,Pr)

(ag,pt)
²²Â
Â
Â

S×S (S,S)

(8)

where ag and pt are the agent and patient maps from the set
of proposition inputs Pr into the set S ⊇ A∪B containing all
the possible constituent representations. Given 〈ag,pt〉 as the
morphism used by the architecture to map proposition inputs
to their corresponding internal representations, then as men-
tioned (Introduction) the definition of an adjunction guaran-
tees that ag×pt is unique with respect to making Diagram 8
commute. That is, ag×pt◦〈1Pr,1Pr〉(JM) = ag×pt(JM,JM) =
(John,Mary) = 〈ag,pt〉(JM), where JM is the input for propo-
sition John loves Mary. The alternative construction pt×ag is
excluded because pt×ag◦〈1Pr,1Pr〉(JM) = pt×ag(JM,JM) =
(Mary,John) 6= (John,Mary) = 〈ag,pt〉(JM). Having ex-
cluded pt × ag by the commutativity property of the ad-
junction, the only two remaining ways to map the other in-
puts (i.e., 〈ag,pt〉 and ag× pt ◦ 〈1Pr,1Pr〉) are equal. So,
given that the architecture can represent John loves Mary as
(John,Mary) via 〈ag,pt〉 and infer John as the lover via p1
from the product (A×B, p1, p2), then necessarily it can rep-
resent Mary loves John and infer Mary as the lover using the
same maps. That is, p1 ◦ 〈ag,pt〉(MJ) = p1(Mary,John) =
Mary, or p1 ◦ag×pt◦〈1Pr,1Pr〉(MJ) = p1 ◦ag×pt(MJ,MJ) =
p1(Mary,John) = Mary.

This explanation works regardless of whether proposition
John loves Mary is represented as (John, Mary) via 〈ag,pt〉,
or (Mary, John) via 〈pt,ag〉. In the latter case, the adjunction
picks out the construction pt× ag, because it is the one and
only one that makes the following diagram commute:

Pr
〈1Pr ,1Pr〉 //

〈pt,ag〉 ''OOOOOOOOOOOOOO Pr×Pr

pt×ag

²²Â
Â
Â (Pr,Pr)

(pt,ag)
²²Â
Â
Â

S×S (S,S)

(9)

pt× ag ◦ 〈1Pr,1Pr〉(JM) = pt× ag(JM,JM) = (Mary,John) =
〈pt,ag〉(JM), but ag×pt ◦ 〈1Pr,1Pr〉(JM) = ag×pt(JM,JM) =
(John,Mary) 6= (Mary,John) = 〈pt,ag〉(JM). Given that the
architecture can represent John loves Mary as (Mary,John)
via 〈pt,ag〉 and infer John as the lover via p′2 from the prod-
uct (B× A, p′2, p′1), then necessarily it can do so for Mary
loves John using the same maps. That is, p′2 ◦ 〈pt,ag〉(MJ) =
p′2(John,Mary) = Mary, or p′2 ◦ pt × ag ◦ 〈1Pr,1Pr〉(MJ) =
p′2 ◦pt×ag(MJ,MJ) = p′2(John,Mary) = Mary.

Importantly, the unit of the adjunction, 〈1Pr,1Pr〉, is not
a free parameter of the explanation; it defines the adjunc-
tion. Also, there is no choice in representational format (i.e.
left-right, or right-left constituent order)—the given capac-
ity to represent a proposition fixes the same order for all the

other propositions. Hence, systematicity is a necessary con-
sequence of this adjoint pair without recourse to additional
(ad hoc) assumptions, and so meets the explanatory standard
set by Aizawa, and Fodor and Pylyshyn.

Explanatory levels: n-category theory
A generalization of category theory, called n-category the-
ory (see Leinster, 2003) is used to formally contrast our cat-
egory theory explanation against Classical and Connectionist
approaches. Notice that the definitions of functor and natural
transformation are very similar. In fact, they are morphisms
at different levels of analysis. For n-category theory, a cat-
egory such as Set is a 1-category, with 0-objects (i.e. sets)
for objects and 1-morphisms (i.e. functions) for arrows. A
functor is a morphism between categories. The category of
categories, Cat, has categories for objects and functors for ar-
rows. Thus, a functor is a 2-morphism between 1-objects (i.e.
1-categories) in a 2-category. A natural transformation is a
morphism between functors. The functor category, Fun, has
functors for objects and natural transformations for arrows.
Thus, a natural transformation is a 3-morphism between 2-
objects (i.e. functors) in a 3-category. (A 0-category is just a
discrete category, where the only arrows are identities, which
are 0-morphisms.) In this way, the order n of the category
provides a formal notion of explanatory level.

Classical or Connectionist compositionality is essentially a
lower levels attempt to account for systematicity. For the ex-
amples we used that level is perhaps best described in terms
of a 1-category. Indeed, a context-free grammar defined by a
graph is modeled as the free category on that graph contain-
ing sets of terminal and non-terminal symbols for objects and
productions for morphisms (Walters, 1991). By contrast, our
category theory explanation involves higher levels of analy-
sis, specifically functors and natural transformations, which
live in 2-categories and 3-categories, respectively. Of course,
one can also develop higher-order grammars that take as in-
put or return as output other grammars. Similarly, one can
develop higher-order networks that take as input or return as
output other networks. However, the problem is that neither
Classical nor Connectionist compositionality delineates those
(higher-order) grammars or networks that have the system-
aticity property from those that do not.

Discussion
In addition to explaining systematicity, our category theory
approach has further implications. According to our explana-
tion, systematicity with respect to binary relational proposi-
tions requires a category with products. Phillips et al. (2009)
also provided a category theory account of the strikingly sim-
ilar profiles of development for a suite of reasoning abilities
that included Transitive Inference and Class Inclusion, among
others—all abilities are acquired around the age of five years.
The difference between the failures of younger children and
the successes of older children (relative to age five) across
all these reasoning tasks was explained as their capacity to
compute (co)products. (A coproduct is related to a product
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by arrow reversal—see, e.g., Pierce, 1991, for a formal def-
inition.) Therefore, our explanation implies that systematic-
ity is not a property of younger children’s cognition. Some
support for this implication is found on memory tasks that
require binding the background context of memorized items
(Lloyd, Doydum, & Newcombe, 2009), though further work
is needed to test this implication directly.

Our explanation does not depend on Set, it only requires
a category with products. For example, the categories Top
of topological spaces and continuous mappings, and Vec of
vector spaces and linear mappings (see, e.g., Awodey, 2006)
could also be used. These possibilities imply that an expla-
nation of systematicity does not depend on a particular (dis-
crete symbolic, or continuous subsymbolic) representational
format. Thus, a further benefit is that our approach opens the
way for integration of other (sub/symbolic) levels of analysis.

For reasons of space, we have only sketched our cate-
gory theory approach to systematicity. More detailed ex-
planation and justification are given in Phillips and Wilson
(in prep.), where we also address other examples of system-
aticity, such as multiple relations, and relational schemas. In
our approach, we have not dealt with domains that are quasi-
systematic, which appear to be particularly prevalent in lan-
guage (see Johnson, 2004). For these cases, we would also
need category theory-derived principled restrictions to prod-
ucts. Pullbacks (see Phillips, Wilson, & Halford, 2009, for an
application to cognitive development) are one way to restrict
product objects, in the same arrow-theoretic style.

From a category theory perspective, we now see why
cognitive science lacked a satisfactory explanation for
systematicity—cognitive scientists were working with lower-
order theories in attempting to explain an essentially higher-
order property. Category theory offers a re-conceptualization
for cognitive science, analogous to the one that Copernicus
provided for astronomy, where representational states are no
longer the center of the cognitive universe—replaced by the
relationships between the maps that transform them.
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