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ABSTRACT OF THE THESIS 
 
 

Physiological Ripples on Scalp Electroencephalogram in Healthy Infants 

 

by 

Sara Anis 

Master of Science in Biomedical Engineering 

University of California, Irvine, 2020 

Professor Beth Lopour, Chair 

 
 
High-frequency oscillations (HFOs) are short bursts of power at frequencies > 80 Hz, and 

they are thought to be significant markers of both cognition and disease in humans and 

animals.  Physiological HFOs have been associated with basic vision and motor, and 

memory consolidation processes in humans. There is also a significant interest in high-

frequency oscillations as a biomarker for epileptogenicity. Pathological HFOs have been 

associated with many different types of epilepsy and seen in patients of all ages. While 

studies of epilepsy are mainly associated with pathological HFOs, these studies can also 

benefit from studying physiological HFOs.  

The initial studies of HFOs were conducted using intracranial electroencephalogram 

(EEG) recordings; however, there is recent evidence that they can also be detected in scalp 

EEG. While several studies have successfully used scalp EEG to study high-frequency 

oscillations, they have primarily focused on epilepsy and pathological HFOs. In contrast, 



 

ix 

spontaneously occurring physiological HFOs in healthy human subjects using scalp EEG 

have received little attention thus far. Therefore, the goal of our study is to measure 

physiological ripples in healthy infants using scalp EEG and obtain robust estimates of their 

spatiotemporal characteristics.  

Here, we report the detection of spontaneously occurring physiological ripples in 

the long-term scalp EEG of healthy infant subjects. Events were automatically detected in 

all sixteen subjects and confirmed via visual validation. In total, 11,771 visually validated 

HFOs were analyzed. We characterized their duration, peak frequency, root-mean-square 

(RMS) amplitude, spatial distribution, global HFO rate, and variability of global HFO rate 

across sleep stages and over time. We found that HFO rate was highest in frontal and 

temporal channels, and it was highest in the lightest stage of non-REM sleep (N1) across all 

subjects. Based on 10-minute segments of EEG, the measurements of rate varied over time, 

with the highest variance in stage N1. We found no relationship between subject age and 

global HFO rate.  

This work represents the most comprehensive analysis of scalp physiological 

ripples thus far, drawing from almost 180 hours of non-REM sleep EEG. The results 

contribute to our understanding of the visibility and characteristics of physiological ripples 

on the scalp and their relationship to the stages of sleep, as well as providing a valuable 

baseline for studies of pathological ripples associated with epilepsy. 
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1. INTRODUCTION 

 

1.1 High-Frequency Oscillations are Markers of Cognition 

High-frequency oscillations (HFOs) are short bursts of power at frequencies > 80 Hz, and 

they are thought to be significant markers of both cognition and disease in humans and 

animals (Buzsáki & Silva, 2012). They are empirically defined as events consisting of four 

or more oscillations that stand out from background activity in the electroencephalogram 

(EEG). These events are called ripples when their peak frequency lies in the 80-250 Hz 

band, and they are called fast ripples when present in the 250-500 Hz band. High-

frequency oscillations occurring due to normal physiological processes in the brain are 

termed “physiological HFOs,” as opposed to those associated with diseases such as 

epilepsy, which we will refer to as “pathological HFOs.” 

In animals, spontaneous HFOs have been associated with sleep, memory, anesthesia, 

and sensory stimuli. HFOs of 400-600 Hz of interneurons in the neocortex of rats were 

observed during sleep spindles, and they were suggested to play a role in the discharge 

process of pyramidal cell populations (Kandel & Buzsáki, 1997). Some have also been 

linked to memory. Ripples of 200 Hz observed in the hippocampal-entorhinal output 

pathway of freely behaving rats suggested their physiological contribution to synaptic 

modifications in the memory consolidation process (Chrobak & Buzsáki, 1996). Ripples of 

80-200 Hz observed in the neocortex of cats under anesthesia and chronic experimental 

conditions were suggested to play a role in plasticity processes (Grenier et al., 2001). HFOs 

have also been recorded in response to a stimulus. HFOs greater than 200 Hz were 

observed in the rat somatosensory cortex in response to a vibrissa stimulation and 
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contribute to explaining the functional roles of these oscillations in physiological processes 

(Jones et al., 2000).  

In humans, high-frequency oscillations have been associated with basic vision and 

motor processes. Nagasawa et al., 2012 observed spontaneously occurring and visually 

driven HFOs (> 80 Hz) in epileptic patients emerging from the occipital cortex. 

Spontaneous HFOs were observed to be spatially sparse and focal, while visually driven 

HFOs were found to involve larger areas of cortex. Task-based high-frequency oscillations 

have also been observed during motor imagery and motor tasks in humans. Smith et al., 

2014 observed a significant power increase in high-frequency activity (70-150 Hz) during a 

motor imagery task using non-invasive recordings in healthy subjects. Other studies have 

observed HFOs in the human primary motor cortex of epileptic patients in relation to 

upper extremity movements (Wang et al., 2017) and walking (McCrimmon et al., 2018). A 

cascade of high-frequency activity has also been observed in language processing and 

reading tasks through intracranial recordings (Lachaux et al., 2012). There is also evidence 

that physiological HFOs may occur broadly throughout the brain, with one recent study 

establishing region-specific normative values for physiological HFOs based on invasive 

recordings from non-lesional tissue in patients with epilepsy (Frauscher et al., 2018).  

Task-based high-frequency oscillations have also been associated with memory 

consolidation processes in humans. The first study to report HFOs in humans during a 

cognitive task was presented by Axmacher et al., 2008. They studied intracranial 

recordings from the rhinal cortex and hippocampus contralateral to SOZ in epileptic 

patients. Ripples were found in both the rhinal cortex and hippocampus, and a significant 

correlation was found between the number of rhinal ripples and memory consolidation. 
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Another study found intracranially recorded HFOs (50-500 Hz) in epileptic patients during 

memory encoding and recall processes in response to a presentation of images (Kucewicz 

et al., 2014). HFOs were observed in the primary visual, limbic and cortical regions 

associated with visual processing flow, and they were localized to the amygdala, 

hippocampus, and specific neocortical areas, suggesting HFO activity is linked with 

memory processing. The relationship between ripples and memory consolidation was also 

observed in Zhang et al., 2018, where they measured replay in intracranial recordings in 

human epileptic patients and found that replay is related to hippocampal ripples. 

 

1.2 High-Frequency Oscillations are Markers of Epilepsy 

There is also a significant interest in HFOs as a biomarker for epileptogenicity (Zijlmans et 

al., 2012). Epilepsy is one the most common neurological disorders, affecting 

approximately 1% of the population or 70 million people worldwide (Murin et al., 2018). It 

consists of abnormal neural activity causing recurrent, unprovoked epileptic seizures, with 

a range of symptoms. In focal epilepsy, the limited area in the brain that is necessary and 

sufficient for seizure generation is known as the epileptogenic zone (EZ). The EZ is difficult 

to map, hence in clinical practice, the EZ is approximated by the seizure onset zone (SOZ), a 

region where ictal (during seizure) changes in EEG are first seen. While antiepileptic 

medication helps control these seizures in about 60-70% of patients, it is ineffective in 

others (Murin et al., 2018). Resective surgery of areas generating these seizures is an 

alternative option. Recent trials have shown that long-term seizure freedom can be 

achieved in approximately two thirds of the patients undergoing resective surgery (Murin 

et al., 2018).   
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Pathological HFOs have been associated with many different types of epilepsy and 

seen in patients of all ages. HFOs have been intracranially recorded in the entorhinal cortex 

and hippocampus of epileptic patients (Bragin et al., 1999; Staba et al., 2002). They have 

also been shown to be specific in identifying epilepsy in young children (Wu et al., 2008). 

Moreover, it has been suggested that they are more specific and accurate than epileptic 

spikes in identifying the SOZ when comparing rates inside and outside the SOZ (Melani et 

al., 2013; Jacobs et al., 2010; Andrade-Valenca et al., 2011), and more tightly linked to 

seizures than epileptic spikes when comparing rates before and after seizures (Zijlmans et 

al., 2009). HFOs were also found to give more information on epileptogenicity than spikes 

in childhood epilepsy (Kramer et al., 2019) and idiopathic partial epilepsy (Kobayashi et al., 

2011). They have also been linked to processes in the generation of myoclonic seizures 

(Kobayashi et al., 2018). Findings of fast ripples only in epileptic patients as compared to 

controls (Bernardo et al., 2018), and only near epileptogenic lesions in epileptic patients 

(Bragin et al., 1999; Staba et al., 2004), suggest that HFOs can serve as a powerful 

biomarker for localization of epileptic regions, providing clinical significance for surgical 

treatments.  

While studies of epilepsy are mainly associated with pathological HFOs, these 

studies can also benefit from studying physiological HFOs. One study found that HFOs were 

not statistically better biomarkers than epileptic spikes, with one contributing factor being 

the presence of physiological HFOs which weakened their results (Roehri et al., 2018). 

While there have been efforts to differentiate physiological and pathological HFOs in terms 

of frequency, duration, amplitude (Matsumoto et al., 2013; Cimbalnik et al., 2018), and 

sleep stage (von Ellenrieder et al., 2017), it remains a very challenging task since 
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characteristics of the two overlap. Thus, studying HFO activity in healthy subjects will help 

us gain a better understanding about the characteristics of physiological HFOs and 

contribute to improved clinical applications.  

 

1.3 High-Frequency Oscillations can be Measured with Scalp EEG 

While the initial studies of HFOs were conducted using intracranial EEG recordings, there is 

recent evidence that they can also be detected in scalp EEG. Scalp EEG is a non-invasive 

electrophysiological recording technique which consists of electrodes placed according to 

the 10/20 international system (Jasper, 1958). The system allows for a standardized 

procedure for electrode placement, and the 10-20 rule (Figure 1) ensures comparably 

equal spacing between electrodes. Electrodes placed over the right brain hemisphere are 

even numbered, while those placed over the left hemisphere are odd numbered. The 

distribution of electrodes covers the prefrontal (Fp), frontal (F), parietal (P), central (C), 

and occipital (O) regions, with midline channels labeled as Fz, Cz, and Pz (Figure 1). 

 

 

 

 

 

 

 

 

Figure 1. Scalp EEG electrode placement with a longitudinal bipolar montage.    
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Scalp EEG is highly susceptible to artifacts, such as DC shifts, muscle artifacts, 

electrode artifacts, ocular artifacts, and cardiac artifacts (St. Louis et al., 2016). Different re-

referencing schemes can be employed in analysis of EEG (Polo et al., 2018). The 

longitudinal bipolar montage consists of referencing pairs of electrodes across the anterior-

posterior axis of electrodes, forming a “double banana” across the scalp (Figure 1). This 

montage limits the effect of artifacts by canceling all signals that are common to adjacent 

electrodes, leaving only highly localized activity. 

Scalp EEG serves as a very promising interface for HFO detection. It has been shown 

that high-frequency oscillations observed on scalp EEG can be produced by small cortical 

generators, thus indicating that scalp and intracranial recordings can reflect the same 

cortical generators  (Zelmann et al., 2013; von Ellenrieder et al., 2014). Another study also 

found that high-frequency activity from scalp EEG during a motor imagery task was 

spatially co-localized with BOLD (blood-oxygen-level-dependent) fMRI data, suggesting 

that scalp EEG can provide an accurate spatial estimation of local high-frequency activity 

(Smith et al., 2014). Specifically, in infants, the skull is thinner than in adults (Li et al., 

2015), and thus it may be easier to detect HFOs in this population through noninvasive 

methods. 

 

1.4 Physiological HFOs Measured with Scalp EEG 

While several studies have successfully used scalp EEG to study high-frequency 

oscillations, they have primarily focused on epilepsy and pathological HFOs (Wu et al., 

2008; Andrade-Valenca et al., 2011; Melani et al., 2013; Bernardo et al., 2018; Kobayashi et 

al., 2018; Kramer et al., 2019). Studies on physiological HFOs have mostly relied on 
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intracranial EEG using subjects with epilepsy (Axmacher et al., 2008; Nagasawa et al., 2012; 

Kucewicz et al., 2014; Frauscher et al., 2018; Zhang et al., 2018).  

In contrast, spontaneously occurring physiological HFOs in healthy human subjects 

using scalp EEG have received little attention thus far. There has only been one study of 

spontaneously occurring physiological ripples in scalp EEG (Mooij et al., 2017). They 

studied ripples during day-time sleep EEG that were free of epileptiform spikes. Their 

subject cohort consisted of 23 children between the ages of 11 months to 14 years, most of 

which were subjected to partial sleep deprivation. Subjects were categorized into four 

categories after a follow-up by a pediatric neurologist: 1. no epilepsy or other brain 

disorder, 2. no epilepsy, but presence of another brain disorder, 3. benign-course epilepsy, 

and 4. other types of epilepsy. Ripples were visually marked by viewing EEG in both bipolar 

and common average montage, and artifactual segments were not included in the analysis. 

For each subject, the ripple rate calculation was done over the 10-min period which 

exhibited the highest number of ripples, and spatial distribution results were calculated as 

a summation of ripple events across all subjects. Characteristic values of frequency, 

duration, and RMS amplitude of all ripple events were also reported. Subsequently, the 

relationship between the ripples and sleep phenomena were investigated (Mooij et al., 

2018). One third of the ripples co-occurred with sleep-specific transients, especially vertex 

waves. Also, they found that ripple rates during N1 sleep (light sleep) were higher than N2 

and N3 sleep. These findings were significant, as this was the first demonstration that 

spontaneously occurring physiological HFOs could be measured using scalp EEG.  

However, there are a few limitations that can be noted in these studies. The 

inclusion of both healthy and diseased subjects in their analysis does not allow for 
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delineation of results for healthy subjects. Thus, a completely healthy cohort has not 

previously been studied. Also, while the limited amount of data used may be ascribed to 

visual detection as it is a time consuming process (Spring et al., 2018), their work could 

have benefitted from including a larger amount of data in order to assess the robustness of 

the results over time. Additionally, sleep deprivation could have influenced their results as 

a notable increase in slow-wave activity in the hours post partial sleep deprivation has 

been reported (Plante et al., 2016). 

Therefore, the goal of our study is to measure physiological ripples in healthy 

infants using scalp EEG and obtain robust estimates of their spatiotemporal characteristics. 

Our study analyzes long, overnight recordings of non-rapid eye movement (REM) scalp 

EEG data from healthy infants (<1 year old). We detected HFOs and characterized their 

duration, peak frequency, root-mean-square (RMS) amplitude, spatial distribution, global 

HFO rate, and variability of global HFO rate across sleep stages and over time. The 

recruitment of a cohort consisting only of healthy subjects and our analysis of multiple 

hours of sleep EEG will provide a comprehensive picture of scalp physiological ripples. This 

work will contribute to our knowledge of high-frequency activity during cognition and 

provide baseline measurements that can aid studies of pathological ripples associated with 

epilepsy.  
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2. METHODS 

 

2.1 Subjects 

This prospective study was approved by the Institutional Review Board of the Children’s 

Hospital of Orange County (CHOC). Data were collected at CHOC as part of a larger study of 

infantile spasms (IS), or West syndrome, which is a form of epileptic encephalopathy 

(Pellock et al., 2010). Subjects were between 0-3 years of age and were undergoing 

inpatient EEG monitoring for suspicion of epileptic spasms. Because we aimed to study 

physiological HFOs, as opposed to pathological HFOs associated with epilepsy, we selected 

for analysis all subjects that did not exhibit epileptic spasms during monitoring. These 

subjects were recruited between June 2017 and January 2019. Further inclusion criteria 

included a normal vineland developmental score (Sparrow et al., 2016) and normal MRI. 

Subjects were excluded if any of the following were noted: seizures were observed, subject 

was on medication at any point in the study, subject had other medical diagnoses, technical 

error occurred during research recording, or initial results were suspicious for spasms. 

These exclusion criteria were applied to ensure the cohort consisted only of healthy 

infants. 

 

2.2 EEG Data Collection 

Continuous, overnight video EEG was recorded for each subject, with recordings starting 

after consent was obtained and stopping when it was confirmed that the subject did not 

exhibit epileptic spams. EEG data were acquired with 19 electrodes placed according to the 

international 10-20 system. The sampling rate was 5 kHz, using a Neurofax EEG-1200 
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acquisition system with JE-120A amplifier fitted with a QI-124A dual data stream recording 

unit (Nihon Kohden, Tokyo, Japan). Recordings were visually sleep staged by a registered 

polysomnographic technologist (Cristal Garner, REEGT, RPSGT) in accordance with the 

American Academy of Sleep Medicine (AASM) guidelines. We extracted the non-REM 

portions of sleep (stages N1, N2, N3) for our analysis, as it was previously reported that 

physiological HFOs occur more frequently during these stages and their occurrence may be 

related to transient sleep-specific waveforms (Grenier et al., 2001; Zhang et al., 2018; Staba 

et al., 2004). Also, many EEG artifacts are reduced or subside during sleep.  

 

2.3 HFO Detection 

The HFO detection process consisted of data preprocessing, automated HFO and artifact 

detection, and visual validation of candidate events (Figure 2). While visual detection is 

the gold standard for HFO detection, the process is very time consuming and suffers from 

low interrater reliability (Spring et al., 2018). Numerous automated HFO detection 

methods have been proposed and developed, achieving high sensitivity and specificity 

(Staba et al., 2002; von Ellenrieder et al., 2012; Jrad et al., 2017). However, expert review of 

detected events is advised to minimize false positives, especially when analyzing artifact-

prone scalp EEG. Thus, we implemented a combination of automated detection, automated 

artifact rejection, and visual validation to identify true positive HFOs. 
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Figure 2. Flowchart of HFO detection process. Segments of non-REM sleep were 
extracted and preprocessed. Automatic HFO detection was employed, followed by 

automated artifact rejection. Resulting candidate events were visually validated to identify 
HFOs.    

 

2.3.1 Data Processing  

All analysis was completed using custom written code in MATLAB (version R2018b, The 

MathWorks Inc., USA.). We extracted all non-REM sleep EEG data for subjects based on 

visual sleep staging information. For all subjects, each continuous segment of non-REM 

sleep data was placed in a separate file for HFO analysis. Median segment duration was 

29.53 minutes (IQR 13.44-50.48 minutes). All EEG was re-referenced using the longitudinal 

bipolar montage and filtered in the ripple band (80–250 Hz) using a finite impulse 

response filter (Zijlmans et al., 2012). Signals were filtered forward and backward to 

ensure zero-phase distortion.  

 

2.3.2 Automatic Detection 

Automated HFO detection was accomplished using a previously validated automated 

detector that has been applied to both intracranial EEG (Charupanit & Lopour, 2017) and 
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scalp EEG (Charupanit et al., 2018). Briefly, this detector requires optimization of a single 

parameter, ɑ, which is used to identify events in the ripple band that have three oscillations 

(six consecutive peaks in filtered, rectified data) above a threshold. The threshold is 

calculated through an iterative process that estimates the amplitude distribution of the 

background activity. In this study, the threshold was calculated for every continuous 5-

second segment of data. Windowing the data in 5-second intervals for detection improved 

rejection of muscle noise, as the detector automatically chose a higher threshold for 

periods containing high amplitude muscle activity. For each subject, a single ɑ value was 

used for all channels and all sleep data, with values ranging from 0.001 to 0.005 (see 

Section 2.3.4 for more details). 

 

2.3.3 Automated Artifact Rejection 

We applied five post-processing steps to the candidate events resulting from automatic 

detection, in order to reduce false positive detections caused by artifacts. These steps 

applied additional criteria for the maximum duration, maximum amplitude, maximum 

difference, line length, and number of zero crossings. Methods were applied either to the 

raw (bipolar re-referenced) or ripple (band-pass filtered) data. The threshold for maximum 

duration was determined based on past literature; the threshold optimization process for 

the other four methods can be found in Section 2.3.4. 

 

2.3.3.1 Maximum Duration 

HFOs typically have a duration of 40-100 ms (von Ellenrieder et al., 2012). Longer 

events tend to be detected due to higher amplitude background activity associated 
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with muscle artifact. Thus, candidate events with duration > 200 ms in the ripple 

data were excluded.  

 

2.3.3.2 Maximum Amplitude 

Median RMS amplitude values of scalp HFOs have been observed to be between 

0.95-5.24 μV (Zelmann et al., 2013; Mooij et al., 2017), with typical examples 

exhibiting amplitudes of roughly 5 μV (Andrade-Valenca et al., 2011; Zelmann et al., 

2013; Mooij et al., 2017). Also, candidate events of non-neural origin, e.g., due to 

filtering of sharp spikes (Zijlmans et al., 2012), were observed to have extremely 

high amplitude in our parameter optimization process. Thus, candidate events with 

maximum amplitude > 20 µV in the ripple data were excluded. Maximum amplitude 

was calculated based on the duration of the candidate event only. 

 

2.3.3.3 Maximum Difference  

DC shifts, sharp spikes, and electrode pop artifacts in the raw data are other 

common artifacts. When filtered in the ripple band, these waveforms may look very 

similar to a true high-frequency oscillation (Zijlmans et al., 2012). Thus, candidate 

events with maximum difference > 50 µV between successive data points in the raw 

data (indicative of a high amplitude spike or shift) were excluded. Maximum 

difference was calculated based on a larger window of data including the duration of 

the candidate event +/- 150 ms. 
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2.3.3.4 Line Length 

Muscle activity in the raw data is a common source of EEG artifacts (Zijlmans et al., 

2012). When filtered in the ripple band, these artifacts may look similar to a true 

high-frequency oscillation. However, they differ from true HFOs in that they often 

have a high amplitude in the raw data and a longer duration. Thus, candidate events 

with line length > 2000 (units: µ𝑉 + 𝑠  ) in the raw data were excluded. Line 

length was calculated as the sum of distances between successive points in time 

based on a larger window of data including the duration of the candidate event +/- 

150 ms. 

 

2.3.3.5 Number of Zero Crossings 

Segments of raw data that excessively cross the zero line are considered artifactual 

and can be a source of false positive HFO detections (Liu et al., 2016). Thus, 

candidate events with > 20 zero crossings in the raw data were excluded. Number of 

zero crossings was calculated on the duration of the candidate event only. 

 

2.3.4 Parameter Optimization  

For each subject, we randomly selected one 10-minute segment of sleep data. The α values 

for each subject and the cutoff thresholds for the four artifact rejection methods were 

empirically determined based on visual analysis of these segments. Optimal alpha values 

differed for each subject (listed in Table 1), while optimal cutoff values for the four artifact 

rejection methods were consistent across subjects.        
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2.3.5 Visual Validation 

The five post-processing steps reduced the number of false positive detections, but the 

thresholds were chosen to remove only the most egregious artifacts. Using stricter 

thresholds risked rejecting some HFOs. Therefore, in order to maximize the specificity of 

our detection, we visually validated each event remaining after automated detection and 

automated artifact rejection. Visual validation was performed using a custom MATLAB 

graphical user interface with scrolling functionality to change the time period displayed; 

both the broadband data (low cutoff, high pass filtered data) and ripple data surrounding 

each candidate event were displayed (Figure 3).   

 
Figure 3. Custom interface for visual validation process. In the left panel, 5 seconds of 
broadband data is displayed for all channels. The right panel shows 400 ms of broadband 

data (top), ripple band filtered data (middle), and rectified ripple data (bottom) 
surrounding each candidate event in its specific channel. The detection threshold for the 
event is displayed as a blue horizontal line on the rectified ripple data. In this particular 

example, a detection resulting from a DC shift artifact is shown. 
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Two criteria were used to exclude events as false positive detections: (1) if the raw 

data contained a DC shift/spike with no visible oscillations, or (2) if there was muscle 

activity in the channel containing the candidate event or its adjacent channels. 

Characteristics such as minimum event duration and amplitude (whether or not the 

oscillation stands out from background activity) were inherent to the design of the 

automated detector used in this study, and thus were not explicitly included in the visual 

criteria.  

 

2.4 Analysis 

We characterized the visually validated HFOs by measuring their duration, peak frequency, 

and root-mean-square (RMS) amplitude. We also calculated the spatial distribution and 

global HFO rate for all non-REM sleep and the individual sleep stages, as well as the 

temporal variability of global HFO rate for each sleep stage. Duration was defined as the 

end time minus start time of the event, as indicated by the automated detector. Peak 

frequency was calculated using the Fourier Transform, with zero-padding to increase the 

frequency resolution to 1 Hz. Root-mean-square amplitude was calculated for each event in 

the ripple band as the square root of the mean of the squared data. 

To measure the spatial distribution of the HFOs, we calculated the average HFO rate 

for each channel and then averaged across subjects. For all non-REM sleep, this was the 

total number of HFOs per minute for each channel (thus, normalized to each individual 

subject’s total non-REM sleep time). For individual sleep stages, this was the total number 

of HFOs per minute per sleep stage for each channel (thus, normalized to each individual 

subject’s sleep time in that specific sleep stage). For each individual subject, global HFO 
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rate for all non-REM sleep was calculated as the total number of HFOs summed across all 

channels divided by total non-REM sleep time for that subject. For each individual subject, 

global HFO rate for individual sleep stages was calculated as the total number of HFOs per 

sleep stage summed across all channels divided by total time in the respective sleep stage 

for that subject. To determine the variability of global HFO rate over time for each sleep 

stage, global HFO rate per 10-minute intervals for individual sleep stages was calculated for 

each subject. 

We also performed the same analysis on artifacts that were rejected in the visual 

validation step to determine the characteristics of the rejected events. A Wilcoxon rank-

sum test was used to compare the duration, peak frequency, and RMS amplitude between 

HFOs and artifacts within individual subjects (Mann & Whitney, 1947). We also used 

Friedman’s two-way analysis of variance by ranks test (Friedman’s ANOVA) to determine if 

there was a difference in ripple rates between sleep stages across all subjects. Wilcoxon’s 

signed-rank test was used for post hoc testing (Wilcoxon, 1945). To determine the 

difference in ripple rates between sleep stages for individual subjects, the Wilcoxon rank-

sum test was used.  
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3. RESULTS 

 

3.1 Subjects 

Based on the inclusion and exclusion criteria, sixteen normal subjects were included in our 

final cohort (4 males/12 females, median age 6.16 months, IQR 2.63-8.15 months). Median 

non-REM sleep EEG duration was 10.40 hours (IQR 9.03-12.63 hours), for a total of 179.16 

hours of non-REM sleep data. Median N1 sleep data duration was 4.14 hours (IQR 2.23-

4.70 hours), for a total of 60.83 hours of N1 sleep data. Median N2 sleep data duration was 

5.32 hours (IQR 4.32-6.76 hours), for a total of 96.49 hours of N2 sleep data. Median N3 

sleep data duration was 1.42 hours (IQR 0.75-1.97 hours), for a total of 21.85 hours of N3 

sleep data. Subject demographics and duration of EEG data are shown in Table 1. 

 

Table 1. Cohort demographics.  

Subject Sex/Age 
(months) 

Total non-REM 
Sleep Data (hrs) 

Detection
threshold 

(α) 

Global HFO 
rate per min 

1 M / 2.07 7.88 0.005 2.22 

2 M / 7.72 9.96 0.001 1.59 

3 F / 8.57 10.48 0.001 1.18 

9 F / 4.01 9.41 0.0025 1.67 

12 F / 9.33 12.42 0.005 2.20 

18 F / 7.42 9.82 0.005 1.11 

21 F / 6.96 21.48 0.0025 1.13 

22 M / 5.98 12.84 0.0025 1.29 
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24 F / 3.78 11.71 0.0025 1.14 

28 M / 6.34 10.47 0.001 1.05 

29 F / 2.56 8.41 0.0025 0.41 

30 F / 2.69 10.33 0.0025 0.63 

32 F / 11.27 7.42 0.001 0.66 

41 F / 2.2 12.89 0.001 0.27 

42 F / 11.14 8.66 0.0025 0.70 

44 F / 1.97 14.99 0.0025 0.45 

  

 

3.2 HFO Detection 

Automated HFO detection and artifact rejection resulted in 42,823 candidate events across 

all subjects and data. After visual validation, 11,771 HFO events remained (27.5%). 

Examples of candidate events that were deemed to be HFOs and false positives (artifacts) 

can be seen in Figure 4. 
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Figure 4. Examples of HFOs and artifacts recorded via scalp EEG. Examples of HFOs 

detected in (a) Subject 9, (b) Subject 9, (c) Subject 12, and (d) Subject 22. Detected artifacts 
included (e) a DC shift/ large spike with no visible oscillations from Subject 2 and (f) 

muscle activity in the channel and in surrounding channels from Subject 29. 
 

a b 

c d 

e f 
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3.3 Analysis 

 

3.3.1 HFO Characteristics: Duration, RMS Amplitude, Frequency, and Global Rate 

Across all subjects, the median HFO duration ranged from 28.5 to 36.0 ms, with a median 

duration value of 32.4 ms across all HFOs (Figure 5a). Median RMS amplitude for HFOs 

from each subject ranged from 1.73 to 3.01 µV, with a median value of 2.43 µV across all 

HFOs (Figure 5b). Median peak frequency for HFOs from each subject ranged from 93 to 

105 Hz, with a median value of 99 Hz across all HFOs (Figure 5c). Global HFO rates ranged 

from 0.27 to 2.22 events/min across subjects (Table 1).  

 

 

Figure 5. HFO characteristics. Histograms are shown for (a) Duration, (b) RMS amplitude, 
and (c) Peak frequency of all 11,771 HFO events from all 16 subjects. 

 

3.3.2 HFO Rates are Highest in Frontal and Temporal Brain Regions 

Across all subjects for all non-REM sleep, HFO rates were highest in the frontal (Fp1-F3, 

Fp1-F7, Fp2-F4, Fp2-F8), temporal (F7-T3, T3-T5, F8-T4, T4-T6), and prefrontal regions 

(F3-C3, F4-C4), followed by central regions (Fz-Cz, Cz-Pz; Figure 6a). Parietal and occipital 

regions exhibited lower HFO rates. This pattern of HFO rates was symmetric across brain 



 

22 
 

hemispheres (Figure 6a-d) and relatively consistent when broken down by sleep stage, 

although the global HFO rate decreased as sleep depth increased (Figure 6b-d).  

 

Figure 6. Spatial distribution of HFO rates across all subjects (n=16). Mean HFO rates 
(number per minute) are represented by the color of the line connecting each bipolar 

electrode pair. Results are shown for (a) all non-REM sleep, (b) N1 sleep, (c) N2 sleep, and 
(d) N3 sleep. 

 

3.3.3 HFO Rate Decreases as Sleep Depth Increases 

Looking at global HFO rates per sleep stage, global HFO rates were significantly different in 

the different stages of sleep (Friedman’s ANOVA: χ2 = 18.88, p = 7.97e-05). Post-hoc 

analysis using the Wilcoxon signed-rank test showed that across subjects, global HFO rates 

were found to be greater in N1 sleep as compared to N2 sleep and N3 sleep (N1 vs N2: p = 

2.41e-04, N1 vs N3: p = 0.0017) (Figure 7a). Looking at distributions of global HFO rates 
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per sleep stage based on rate measurements from 10-minute segments of EEG, within 

individual subjects, global HFO rates were found to be greater in N1 sleep as compared to 

N2 sleep in eight subjects, and greater in N1 sleep as compared to N3 sleep in seven 

subjects (Wilcoxon rank-sum test corrected using the Benjamini-Hochberg procedure with 

a false discovery rate of 0.05) (Figure 7b). The estimated HFO rate changed over time, and 

thus one short segment of data was not necessarily representative of all HFO activity 

(Figure 7b). The duration of time spent in each sleep stage differed within and across 

subjects.  

 
Figure 7. Global HFO rates are greater in N1 sleep than in N2 and N3 sleep. (a) Global 

HFO rates per sleep stage, (b) HFO rate variability per sleep stage (distributions are 
displayed for each sleep stage, calculated based on rate measurements from 10-minute 

segments of EEG; boxes represent the IQR, red ‘+’ symbols represent individual outliers). 
 

3.3.4 Global HFO Rate is Not Correlated with Age 

We compared global HFO rate in all non-REM sleep to the subject age, but we found no 

relationship between these two variables (Figure 8). As can be seen in Figure 8, we 

observed a wide variation in global HFO rate across the subjects.  
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Figure 8. There is no correlation between global HFO rate and subject age. 

 

3.3.5 Characteristics of False Positive (Artifact) Detections 

We calculated the characteristics of the candidate HFOs that were rejected as artifacts 

based on visual analysis. This, combined with the earlier results, presents a picture of all 

automatically detected events and the impact of the manual validation step. Median artifact 

duration for each subject ranged from 29.9 to 33.4 ms, with a median duration of 31.4 ms 

across all artifacts. Median RMS amplitude for each subject ranged from 2.34 to 3.69 µV, 

with a median value of 3.06 µV across all artifacts. Median peak frequency for each subject 

ranged from 97 to 107 Hz, with a median value of 102 Hz across all artifacts. 

Comparing artifacts to HFOs within individual subjects, duration was significantly 

different between the groups in eight subjects (with values for artifacts higher in four of 

these subjects), RMS amplitude was significantly different in all 16 subjects (with values for 

artifacts higher in all 16 subjects), and peak frequency was significantly different in nine 
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subjects (with values for artifacts higher in eight of these subjects). All Wilcoxon rank-sum 

tests were calculated using a significance threshold of p < 0.0031 based on a Bonferroni 

correction for 16 comparisons.       

Across all subjects for all non-REM sleep, artifacts occurred most frequently in the 

temporal regions (F7-T3, T3-T5, F8-T4, T4-T6), followed by prefrontal regions (F3-C3, F4-

C4; Figure 9). Parietal (C3-P3, C4-P4), parieto-occipital regions (P3-O1, P4-O2), and 

midline channels (Fz-Cz, Cz-Pz) had the lowest artifact rates. The low rates of artifacts in 

Fz-Cz (0.0219 artifacts per minute) and Cz-Pz (0.012 artifacts per minute) suggest that the 

majority of the automatically detected events in these channels were HFOs. Similar to 

HFOs, the spatial pattern of artifact rates was symmetric across brain hemispheres and was 

consistent across sleep stages.  

 

 

 

 

 

 

 

 

Figure 9. Spatial distribution of artifact rates (number per minute) across all 
subjects in all non-REM sleep. 
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4. DISCUSSION 

 

Here, we report the detection of spontaneously occurring physiological ripples in the long-

term scalp EEG of healthy infant subjects. Events were detected in all sixteen subjects and 

confirmed via visual validation. In total, 11,771 visually validated HFOs were analyzed. We 

found that HFO rate was highest in frontal and temporal channels, and it was highest in the 

lightest stage of non-REM sleep (N1). Based on 10-minute segments of EEG, the 

measurements of rate varied over time, with the highest variance in stage N1. We found no 

relationship between subject age and global HFO rate. This work represents the most 

comprehensive analysis of scalp physiological ripples thus far, drawing from almost 180 

hours of non-REM sleep EEG. The results contribute to our understanding of the visibility 

and characteristics of physiological ripples on the scalp and their relationship to the stages 

of sleep, as well as providing a valuable baseline for studies of pathological ripples 

associated with epilepsy. 

HFO amplitude values reported in this study are comparable to those reported in 

Mooij et al., 2017 and von Ellenrieder et al., 2016, while lower than those reported in 

Alkawadri et al., 2014 and Cimbalnik et al., 2018. However, the latter studies used 

intracranial recordings, thus the difference in amplitude can be expected. Peak frequency 

values reported in this study are comparable to those reported in Mooij et al., 2017, von 

Ellenrieder et al., 2016, and Alkawadri et al., 2014, while lower than those reported in 

Cimbalnik et al., 2018. Cimbalnik et al., 2018 studied a wider frequency range (65-600 Hz) 

and analyzed intracranial EEG, which likely contributed to this difference. The duration 

values reported in this study are lower than the 69-170 ms durations previously observed 
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in other studies of physiological HFOs (Mooij et al., 2017; von Ellenrieder et al., 2016; 

Alkawadri et al., 2014). This is possibly due to the method of detection. The automated 

detector we used is designed to detect the central oscillations in each event that exceed a 

threshold, and no windowing is used to calculate the amplitude. Thus, our reported event 

duration is slightly shorter than the actual event duration. In contrast, the RMS amplitude is 

calculated in a sliding window which leads to spreading of the amplitude estimate over 

time; therefore, a detector using RMS amplitude is more likely to account for smaller 

oscillations at the beginning or end that may visually appear to be part of the same event.  

Regarding the spatial distribution of the physiological ripples, HFOs were mostly 

found in the prefrontal, frontal, and temporal regions, followed by central regions, with 

occipital regions displaying the lowest HFO rates. These results differ from the 

observations made in Alkawadri et al., 2014 (in which occipital channels had highest HFO 

rates) and Mooij et al., 2017 (in which central midline channels Cz-Pz, Fz-Cz, and Pz-O2 had 

the greatest number of events). Alkawadri et al., 2014 used iEEG recordings and measured 

HFOs in adults, all of which had epilepsy. Mooij et al., 2017 reported rates for each channel 

pair as the summation of HFOs across all subjects in their study, which included subjects 

with epilepsy. However, patients with epilepsy may exhibit both physiological and 

pathological events, and the spatial distributions may differ between healthy subjects and 

those with epilepsy. Also, the authors did not account for differences in duration of sleep 

analyzed per subject, so subjects with more sleep data had a greater influence on the result. 

Thus, direct comparison to previous works is challenging.  

Artifacts must be accounted for in any analysis of scalp EEG data, and they were 

certainly a significant factor in our analysis. Because we found high rates of HFOs in 
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temporal channels (Figure 6), it is possible that some of the HFOs we reported were 

artifacts due to short bursts of muscle activity. However, we used rigorous visual validation 

to verify all events, which simultaneously accounted for the raw data, filtered data, and the 

concurrent EEG in all other channels. Any events associated with visible EEG evidence 

suggesting that they were of non-neural origin were rejected as artifacts. Moreover, the 

spatial distributions of HFO rates (Figure 6) and artifact rates (Figure 9) were different; if 

many artifacts were mislabeled as HFOs, we would expect the two distributions to be the 

same. The highest rates of HFOs were in the frontal lobe, while the highest rates of artifacts 

were in the temporal lobe. We also note that the central midline channels (Fz-Cz, Cz-Pz) 

had very low rates of artifacts (0.0219 and 0.012 HFOs/min, respectively) compared to 

HFO rates (0.0459 and 0.044 HFOs/min, respectively), and these channel pairs are the least 

impacted by muscle activity. This suggests that the majority of HFOs detected in these 

regions were real events and also implies that central HFOs can be reliably found through 

automatic detection, possibly without time-consuming visual validation.  

Global HFO rates reported in this study agree with those found in Mooij et al., 2017 

and von Ellenrieder et al., 2016. Across all subjects, HFO rates were found to be greater in 

N1 sleep as compared to N2 and N3 sleep. This result was consistent on an individual 

subject level in about half of the subjects. This result is partly consistent with findings in 

Mooij et al., 2018, as they found that ripple rates were greater in N1 and N2 sleep as 

compared to N3 sleep. We observed widespread temporal variability in ripple rates 

(Figure 7b), especially in N1 sleep, which is not surprising because this stage of sleep is 

most transient and difficult to sleep stage. We also compared global HFO rate to subject 

age, but we found no clear relationship between these quantities. This observation was in 
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accordance with the findings in Mooij et al., 2017, where no clear trend between age and 

HFO rate was observed. Also, Chu et al., 2014 has reported that power in the high-

frequency bands (> 65 Hz) increases from childhood to adolescence. Thus, the age range in 

our cohort may be too small to see any significant change with age. It is also possible that 

changes in HFO rate are masked by the corresponding increase in skull thickness that 

occurs during normal infant development. 

 

4.1 Limitations and Future Work 

Our study has several limitations, including the small number of subjects. However, to 

compensate for this, we analyzed large amounts of data for each subject, which increases 

the robustness of our results. Also, while preprocessing the data for detection, the 

characteristic 1/f power spectrum of EEG was not accounted for. Thus, our estimates of 

peak frequency may be skewed toward the lower end of the ripple band, but we note that 

they were consistent with reports from previous studies. 

Another limitation is that we only analyzed HFOs in the ripple band (80-250 Hz), 

while it was previously shown that fast ripples can be detected on scalp EEG (Bernardo et 

al., 2018). Events in this frequency band are thought to be exclusively pathological and are 

typically associated with epilepsy, but it would be interesting to see if our methods could 

be used to detect scalp fast ripples in healthy subjects. Future work could also explore low-

gamma band frequencies (40-80 Hz), as one study reported that fast oscillations occurred 

exclusively in the lower frequency (40-60 Hz) bands in normal infants (Kobayashi et al., 

2015). Lastly, the cohort we analyzed consisted of infants less than 1 year old, which is a 

very limited age range and a unique period of development. With scalp EEG serving as a 
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viable recording modality for HFO detection in infants, future work should explore if 

detection is directly impacted by anatomical features such as skull thickness; if not, 

physiological HFOs can be studied in adult subjects, as well. By exploring physiological 

HFOs over a greater range of frequency bands and ages, we can better quantify the 

characteristics of high-frequency activity in humans and their role in human cognition. This 

detailed understanding will also benefit clinical studies of HFOs as a biomarker of 

epilepsy.   
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