
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Microservice Pattern Identification from Recovered Architectures of Orchestrated Systems

Permalink
https://escholarship.org/uc/item/0ch0m8wd

Author
Matthews, Aaron Preston

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0ch0m8wd
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Microservice Pattern Identification from Recovered Architectures of Orchestrated Systems

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Software Engineering

by

Aaron P. Matthews

Thesis Committee:
Assistant Professor Joshua Garcia, Chair

Professor André van der Hoek
Professor Sam Malek

2021

c© 2021 Aaron P. Matthews

TABLE OF CONTENTS

Page

LIST OF FIGURES iv

LIST OF TABLES v

ACKNOWLEDGMENTS vi

ABSTRACT OF THE THESIS vii

1 Introduction 1

2 Microservice Architectural Style 3

3 Architecture Recovery 6
3.1 Containerization . 7
3.2 Container Orchestration . 8
3.3 Methodology . 9

3.3.1 Query K8s for services along with their network & container details . 10
3.3.2 Start capturing network traffic within the system 10
3.3.3 Execute domain use cases . 11
3.3.4 Analyze captured traffic to find dependencies between services 11

4 Microservice Patterns and Identification 13
4.1 Methodology . 14
4.2 The Patterns . 14

4.2.1 Shared Database Pattern . 14
4.2.2 Database-per-Service Pattern . 15
4.2.3 Asynchronous Messaging Pattern . 16
4.2.4 API Gateway Pattern . 17
4.2.5 Backends-for-Frontends Pattern . 17

5 Evaluation 20
5.1 Benchmark Systems . 20

5.1.1 TrainTicket . 20
5.1.2 Socks Shop . 22
5.1.3 eShopOnContainers . 22

5.2 Recovery Results . 24

ii

5.2.1 TrainTicket . 24
5.2.2 Socks Shop . 27
5.2.3 eShopOnContainers . 29

5.3 Microservice Pattern Identification Results 31
5.4 Discussion . 31
5.5 Threats to Validity . 32

6 Related Work 34
6.1 Architectural Styles . 34
6.2 Architecture Recovery . 34
6.3 Microservice Architecture Recovery . 35
6.4 Design Pattern Identification . 35
6.5 Microservice Pattern Identification . 36

7 Conclusion 37
7.1 Future Work . 37

Bibliography 38

iii

LIST OF FIGURES

Page

2.1 Monolithic vs. Microservice Architecture . 5

3.1 Example Dockerfile . 8
3.2 . 8
3.3 Example Traffic between Client Pod and K8s Service 12

4.1 Shared Database Component Relationship 15
4.2 Shared Database Query . 15
4.3 Database-per-Service Component Relationship 16
4.4 Database-per-Service Query . 16
4.5 Asynchronous Messaging Component Relationship 17
4.6 Asynchronous Messaging Query . 17
4.7 API Gateway Pattern Relationship The X indicates the absence of a parent. 18
4.8 API Gateway Query . 18
4.9 Backends-for-Frontends Pattern Relationship 19

5.1 Prescriptive Architecture of TrainTicket . 21
5.2 Prescriptive Architecture of Socks Shop . 23
5.3 Prescriptive Architecture of eShopOnContainers 24
5.4 Recovered Architecture of TrainTicket . 25
5.5 TrainTicket Adjacency Matrix Differences. Red: Missing, Green: Same, Blue:

Added. 26
5.6 Recovered Architecture of Socks Shop . 27
5.7 Socks Shop Adjacency Matrix Differences. Red: Missing, Green: Same, Blue:

Added. 28
5.8 Recovered Architecture of eShopOnContainers 29
5.9 eShopOnContainers Adjacency Matrix Differences. Red: Missing, Green:

Same, Blue: Added. 30

iv

LIST OF TABLES

Page

3.1 Image names associated with service types 10

5.1 Benchmark Systems . 20
5.2 TrainTicket Scripted Use Cases . 22
5.3 eShopOnContainers Scripted Use Cases . 23
5.4 TrainTicket Components & Connectors . 25
5.5 Socks Shop Components & Connectors . 28
5.6 eShopOnContainers Components & Connectors 29
5.7 True Positives, False Positives, and False Negatives for each Pattern & System 31
5.8 Overall Precision & Recall Results . 31

v

ACKNOWLEDGMENTS

My thanks to Dr. Garcia for the guidance on my thesis,
My thanks to Dr. George for the computer engineering research opportunities at CSUF,
My thanks to Dr. Clahane for the mathematics research opportunities at Fullerton College,
My thanks to my family for the enduring support.

vi

ABSTRACT OF THE THESIS

Microservice Pattern Identification from Recovered Architectures of Orchestrated Systems

By

Aaron P. Matthews

Master of Science in Software Engineering

University of California, Irvine, 2021

Assistant Professor Joshua Garcia, Chair

Microservice architecture has become widely-used in industry, with tech giants like Ama-

zon, Twitter, and LinkedIn leveraging microservices to evolve their web-scale applications.

Microservice architecture brings benefits such as scalability and technological heterogeneity,

although at a cost of complexity. A number of microservice patterns have been proposed

to address this cost. This thesis explores the use of microservice patterns in recovered mi-

croservice architectures; however, there have been few attempts at recoveries of microservice

systems. The contributions of this thesis are: 1. A definition of microservices as an archi-

tectural style, 2. A recovery technique for orchestrated systems which has been applied to

three benchmark systems, and 3. A microservice pattern identification technique for five

patterns, and applying it to the three recovered systems. In our results, 4 of the 5 patterns

in all three benchmark systems were successfully identified.

vii

Chapter 1

Introduction

The microservice architecture style has become widely-used in industry, particularly among

web-scale products like those developed at Amazon, Netflix, Twitter, and LinkedIn [1]. The

style has also found applications in emerging technologies such as IoT and Fog computing

[2]. According to Allied Research, microservice architecture was valued at $2,037 million in

2018, and is projected to reach $8,073 million by 2026 [3].

While there have been many proposed techniques on the architecture recovery of object-

oriented systems [4], there have been few attempts at the recovery of microservice systems

[5] [6]. This paper proposes a recovery technique which can be applied to Kubernetes-

orchestrated microservice systems and applies it to three microservice benchmark systems.

To address the complexities of microservice architecture, both the research community and

industry have proposed microservice patterns to ameliorate common problems for such sys-

tems. There are documented patterns to ease issues of Communication, Design, Orchestra-

tion, Migration, et cetera [7]. While there have been some attempts to identify anti-patterns,

i.e., smells [8], in microservice systems, there have been almost no attempts to identify pat-

terns. In this paper, we analyze recovered architectures to identify microservice patterns

1

which can emerge at an architectural level.

The motivation for microservice pattern identification is threefold: One, techniques for iden-

tification can aid researchers in mining usage of microservice patterns. Two, pattern identi-

fication tools can be used for auto-documentation to provide information to developers who

are learning a system. Three, pattern identification can be used to enforce architectural

constraints, e.g., in a CI pipline to report on pattern usage.

The thesis structure is as follows: in Chapter 2, microservice architecture is presented as

an architectural style. In Chapter 3 the architectural recovery technique is described. In

Chapter 4, the microservice pattern identification technique is described. In Chapter 5,

results of the recovery and pattern identification are presented and discussed. Related work

is discussed in Chapter 6, and the thesis is concluded in Chapter 7.

2

Chapter 2

Microservice Architectural Style

Taylor et al. offer a rubric to define architectural styles [9]. This rubric is applied to the

microservice style below:

• Summary – An application is divided into loosely-coupled, highly-cohesive, technologi-

cally heterogeneous services with a limited range of features, which communicate using

light-weight mechanisms.

• Components – Small services built around business capabilities. May include utility

components for web servers, message brokerage, service discovery, centralized logging

and/or monitoring.

• Connectors – Light-weight communication mechanisms such as RESTful APIs, RPC

frameworks and/or message brokers.

• Data Elements – Documents typically using JSON interchange or a serialized RPC

format.

• Topology – Dependencies between microservices using REST or RPC will form a di-

rected graph topology. If an event bus is used for all communication, this will elicit

3

a hub-and-spoke topology. Microservice systems may use a combination of both com-

munication styles.

• Additional Constraints – Microservices should have strong service boundaries, they

should be independently deployable, and the services should be small.

• Variants – FaaS (Function as a Service), e.g., AWS Lambda are similar to microser-

vices, but with very narrow boundaries like that of a function.

• Qualities Yielded

– Design: Microservice designs will have greater modularity, lowering technical debt

[10].

– Technology : The most appropriate technology, i.e., language / stack, can be se-

lected for each microservice.

– DevOps : Individually deployable microservices can result in more frequent de-

ployments and reduce downtime due to fewer single points of failure [11].

– Teamwork : Independent teams can develop faster and grow more easily [12].

– Infrastructure: Microservice systems can scale more efficiently, reducing infras-

tructure costs [13].

• Typical Uses – Complex web-scale applications.

• Cautions

– Design: How small a microservice should be presents a design challenge, as there

“is no definition of how small a microservice should be” [12].

– Technology : Greater complexity due to being a distributed system and trade-offs

for data consistency [11].

– Teamwork : More difficulties in transferring team members due to technological

heterogeneity [12].

4

– Infrastructure: There is a need for sophisticated levels of automation and moni-

toring strategies [12].

An illustration of a monolithic versus microservice system from Liu et. al [1] can be seen

in Figures 2.1a and 2.1b. In Figure 2.1a, we see a large server-side application which han-

dles many domain concerns, whereas in Figure 2.1b we see this large application has been

decomposed into smaller components (i.e., microservices), each of which handle a subset of

the concerns for the domain. The connectors between the components (light blue) represent

light-weight communication mechanisms, such as REST APIs.

from traditional monolithic architecture, SOA to
microservices architectures. Section 3 describes the container
technology. Section 4 outlines the three challenges
microservices faced: performance, debugging and data
consistency. Section 5 summarizes this paper.

II. ARCHITECTURE
With increasing complexity and the need for highly

scalable and robust applications, the traditional monolithic
architecture is no longer the best choice. After a certain
threshold, the monolithic architecture often hinders the
performance and scalability of the application. Besides, due to
the huge codebase, changes to closely coupled related
processes in a monolithic architecture will greatly increase the
impact of a single process failure.

To cope with these limitations of a single architecture,
developers adopted the principle of single responsibility
proposed by Robert C. Martin (co-author of the Agile
Manifesto). The principle says: bring together those that
change for the same reason, and separate those that change for
different reasons.

Eventually, Service Oriented Architecture (SOA) and
microservice architectures were recognized and enabled
developers to build applications as a set of small, decoupled
services that run in their environment and can be deployed
independently.

Let us look at the evolution of application architecture
patterns from traditional monolithic architecture, SOA to
microservices architecture.

A. Monolithic Architecture
The monolithic architecture is a traditional method of

software development, which has been used by large
companies such as Amazon and eBay in the past. In a
monolithic architecture, functions are encapsulated in an
application. When a whole is small and has only a few
functions, it can have its advantages, such as ease of
development, testing, deployment, and expansion [10]. For
the monolithic architecture, if we need to expand, we only
need to copy the whole. However, as applications tend to
become more complex, weaknesses appears [10]. For
example, high complexity, poor reliability, limited scalability,
and hindering technological innovation. As shown in figure1,
when a traditional monolithic architecture is used to develop
an application, the user interacts with the front-end
application. The front-end application redirects the user
request to the software instance hosted in the container and
interacts with the database to complete all applications.
Procedural responsibilities [11].

)URQW�HQG�
DSSOLFDWLRQ

8VHUV

�

6HUYHU�VLGH�
DSSOLFDWLRQ

'DWDEDVH

Fig. 1. Monolithic Architecture.

B. Service-oriented architecture(SOA)
In the 1990s, SOA was proposed as a revolutionary

innovation to decouple service-side applications and improve
the reuse of components [12]. As shown in figure2, the SOA
architecture could be divided into multiple server application
oriented function of loosely coupled services, each service can
be managed in different containers, between services through
an enterprise service bus to communicate, and share the same
database [13].

(QWHUSULVH�
6HUYLFH�%XV

�

�

)URQW�HQG�
DSSOLFDWLRQ

8VHUV 'DWDEDVH&RQWDLQHU

Fig. 2. Service-Oriented Architecture.

C. Microservices Architecture
Microservices inherited the principles and concepts of the

service-oriented architecture (SOA) style, and structure a
service-based application into a very small set of loosely
coupled software services [10]. In order to further decouple
the service side applications, the microservices architecture
proposes to divide the service side applications into several
loosely coupled services oriented to business responsibilities
[14]. In figure3, the server application is further divided into
multiple fine-grained microservices, each service to achieve a
given business responsibilities, and managed to run in
different containers [15]. Each container has its own private
database that cannot be accessed directly by other containers
[16].

�

�

�

)URQW�HQG�
DSSOLFDWLRQ

8VHUV

&RQWDLQHU 'DWDEDVH

Fig. 3. Microservices Architecture.

D. Summary
As shown in table 1, we compare traditional monolithic architecture, Service-oriented architecture, and microservices

architectures in terms of componentization, component size, elasticity, deployment, storage mechanisms, technology and
scalability.

���

(a) Monolithic Web Application

from traditional monolithic architecture, SOA to
microservices architectures. Section 3 describes the container
technology. Section 4 outlines the three challenges
microservices faced: performance, debugging and data
consistency. Section 5 summarizes this paper.

II. ARCHITECTURE
With increasing complexity and the need for highly

scalable and robust applications, the traditional monolithic
architecture is no longer the best choice. After a certain
threshold, the monolithic architecture often hinders the
performance and scalability of the application. Besides, due to
the huge codebase, changes to closely coupled related
processes in a monolithic architecture will greatly increase the
impact of a single process failure.

To cope with these limitations of a single architecture,
developers adopted the principle of single responsibility
proposed by Robert C. Martin (co-author of the Agile
Manifesto). The principle says: bring together those that
change for the same reason, and separate those that change for
different reasons.

Eventually, Service Oriented Architecture (SOA) and
microservice architectures were recognized and enabled
developers to build applications as a set of small, decoupled
services that run in their environment and can be deployed
independently.

Let us look at the evolution of application architecture
patterns from traditional monolithic architecture, SOA to
microservices architecture.

A. Monolithic Architecture
The monolithic architecture is a traditional method of

software development, which has been used by large
companies such as Amazon and eBay in the past. In a
monolithic architecture, functions are encapsulated in an
application. When a whole is small and has only a few
functions, it can have its advantages, such as ease of
development, testing, deployment, and expansion [10]. For
the monolithic architecture, if we need to expand, we only
need to copy the whole. However, as applications tend to
become more complex, weaknesses appears [10]. For
example, high complexity, poor reliability, limited scalability,
and hindering technological innovation. As shown in figure1,
when a traditional monolithic architecture is used to develop
an application, the user interacts with the front-end
application. The front-end application redirects the user
request to the software instance hosted in the container and
interacts with the database to complete all applications.
Procedural responsibilities [11].

)URQW�HQG�
DSSOLFDWLRQ

8VHUV

�

6HUYHU�VLGH�
DSSOLFDWLRQ

'DWDEDVH

Fig. 1. Monolithic Architecture.

B. Service-oriented architecture(SOA)
In the 1990s, SOA was proposed as a revolutionary

innovation to decouple service-side applications and improve
the reuse of components [12]. As shown in figure2, the SOA
architecture could be divided into multiple server application
oriented function of loosely coupled services, each service can
be managed in different containers, between services through
an enterprise service bus to communicate, and share the same
database [13].

(QWHUSULVH�
6HUYLFH�%XV

�

�

)URQW�HQG�
DSSOLFDWLRQ

8VHUV 'DWDEDVH&RQWDLQHU

Fig. 2. Service-Oriented Architecture.

C. Microservices Architecture
Microservices inherited the principles and concepts of the

service-oriented architecture (SOA) style, and structure a
service-based application into a very small set of loosely
coupled software services [10]. In order to further decouple
the service side applications, the microservices architecture
proposes to divide the service side applications into several
loosely coupled services oriented to business responsibilities
[14]. In figure3, the server application is further divided into
multiple fine-grained microservices, each service to achieve a
given business responsibilities, and managed to run in
different containers [15]. Each container has its own private
database that cannot be accessed directly by other containers
[16].

�

�

�

)URQW�HQG�
DSSOLFDWLRQ

8VHUV

&RQWDLQHU 'DWDEDVH

Fig. 3. Microservices Architecture.

D. Summary
As shown in table 1, we compare traditional monolithic architecture, Service-oriented architecture, and microservices

architectures in terms of componentization, component size, elasticity, deployment, storage mechanisms, technology and
scalability.

���

(b) Microservice Web Application

Figure 2.1: Monolithic vs. Microservice Architecture

5

Chapter 3

Architecture Recovery

Existing architecture recovery techniques are typically language-dependent, often only sup-

porting recovery of Java programs. Microservice architecture recovery presents a challenge

due to:

• Microservice systems are often polyglot (i.e., written with multiple programming lan-

guages), making static analysis of the entire system difficult.

• Microservice components communicate over ambiguous interfaces, wherein there are

general entry points into a component [14]. Ambiguous interfaces are an architectural

smell as they undermine static analysis. Microservices, which communicate with each

other via message brokers or RESTful interfaces will, yield few opportunities for static

analysis.

Since technological heterogeneity creates a challenge, what is technologically homogeneous

about microservice systems that can be leveraged for architectural recovery? Two possibili-

ties are containerization, and orchestration.

6

3.1 Containerization

Containerization allows encapsulation of software applications and their dependencies. It

provides the same advantages of virtualisation, but with more efficient resource utilization

[15]. This is due to the fact that containers share operating system resources, e.g., the kernel,

whilst virtual machines host a complete operating system. This efficient encapsulation makes

containers ideal for the deployment of a microservice.

The most widely-used containerization tool is Docker. A docker container is built from

a simple key-value configuration file known as a Dockerfile. Once built, the resulting

container is known as an image. Docker containers are hierarchical, in the Dockerfile the

key FROM indicates which image the container is based on. The images are pulled from an

image repository, the most popular being Dockerhub at hub.docker.com. This repository is

host to millions of images, with the most popular images having 10s of millions of downloads.

Given the popularity of Docker and Dockerhub, the image name in the FROM key provides

insight into what software the container holds. Images names, e.g., nginx or httpd (Apache)

would indicate a container for web servers. Image names, e.g., redis or memcached would

indicate a container for caching. Image names, e.g., mysql or postgres would indicate a

relational database for peristence. And image names, e.g., node, python, or openjdk would

indicate some domain-specific software in its respective language.

Figure 3.1 shows an example Dockerfile which creates a Java 8 runtime environment, copies

a .jar file into the container, launches the JAR and exposes an application port to the

container engine.

7

FROM java:8-jre

ADD ./target/ts-auth-service-1.0.jar /app/

CMD ["java", "-Xmx200m", "-jar", "/app/ts-auth-service-1.0.jar"]

EXPOSE 12349

Figure 3.1: Example Dockerfile

3.2 Container Orchestration

Microservice systems are deployed with 10s, 100s, or 1000s of containers. At large scale, it is

not feasible to manage the deployed containers via manual means. Orchestration automates

many aspects of the deployment and management of containers. Container Orchestration can

provide automated deployment strategies such as canary releases, where new deployments are

released to a gradually-increasing subset of users. Orchestration can also manage container

replicas based on policy, and handle fault-tolerance tasks when containers fail.

Kubernetes, also referred to as K8s, is a widely-used container orchestration tool developed

by Google and released in 2014. Kubernetes has been shown to outperform other orchestra-

tion tools [16] and is frequently used in microservice benchmark systems. The atomic unit

in Kubernetes is a pod, which is a set of Docker containers intended to function together.

For example, we may have a pod with a python container hosting python code for a web

service, and an nginx container to serve the python endpoints over HTTP, see Figure 3.2a.

(a) Illustration of a Kubernetes Pod, con-
taining a nginx webserver image and a
python runtime environment image.

(b) Illustration of Kubernetes Service, expos-
ing an nginx webserver.

Figure 3.2

8

In order to expose pods to the outside, a service is defined in Kubernetes. This service

exposes an external network port which forwards to an internal network port on a pod. In

our aforementioned example, an external port would forward to the internal HTTP port 80

handled by the nginx container in the pod. The other function provided by a service is

the management of replicas, in each service a number of replicas is defined. Kubernetes will

attempt to keep the number of replicas at the defined limit by spawning new replicas as pods

fail. The service also acts as a load balancer, choosing pods to handle incoming connections

as they arrive at the service’s exposed port. An example is seen in Figure 3.2b.

One last functionality provided by services is service discovery. Service discovery is provided

via DNS. When a service is defined, a name is configured for the service. Kubernetes exposes

the service names to the cluster in response to DNS requests for the service name. A

Kubernetes service is the ideal way to manage a microservice – exposing its needed ports, load

balancing its replicas, and leveraging service discovery to be found by other microservices.

3.3 Methodology

To recover the architecture, a dynamic analysis technique will be used, i.e., architectural

information will be extract during the execution of the microservice system. The implemen-

tation of this technique uses Python as its language. At a high level, there are four steps:

A. Query K8s for services along with their network & container details, B. Start capturing

network traffic within the system, C. Execute domain use cases, and D. Analyze captured

traffic to find dependencies between microservices. The steps are detailed below.

9

3.3.1 Query K8s for services along with their network & container

details

The Python library kubernetes is used to communicate with the K8s cluster. When query-

ing the cluster for running services, the library returns for each service its DNS name, IP

address, exposed port and forwarded internal port. When querying the cluster for running

pods, the library returns for each pod its IP address and container image name, e.g., mongo.

Using this image name, a mapping takes place to categorize the pod as either a database,

a message broker, or a service. The mapping table is in Table 3.1. This mapping is easily

extendable however this set was sufficient for the chosen benchmark systems.

Database Images Broker Images
mongo rabbitmq

mysql */activemq

redis */kafka

*/mssql

postgres

Table 3.1: Image names associated with service types

If the service type cannot be inferred from the image name, as a fallback, it is determined

from the internal port of the pod. Common ports such as 27017 and 3306 indicate a database

service for mongodb and mysql, respectively.

3.3.2 Start capturing network traffic within the system

Kubernetes creates virtual network devices for the services to communicate with one another.

The network provider in our cluster was Calico, and all the vnet devices start with “cali”.

The Python library scapy is used to query the operating system for available network devices

and the devices with the aforementioned prefix are passed to scapy’s packet sniffer.

The packet sniffer works similarly to network analysis tools like Wireshark or Tcpdump.

10

As packets are captured on the network devices, the source & destination IP and source &

destination port are recorded.

3.3.3 Execute domain use cases

In this step, use cases which elicit network communication between the components are

executed. These use cases may come from the system’s integration tests or load tests.

If no tests are available, manually scripted use cases are used. If manually scripted use

cases are necessary, they are typically derived from the documentation and exploratory

testing. Use cases are found and scripted until the recovered architecture does not yield any

new components or connectors. We’ll discuss the use cases for indivudal test subjects in

Chapter 5.

3.3.4 Analyze captured traffic to find dependencies between ser-

vices

Recall that a service may have multiple replicas of a pod. Each service is assigned an IP

address and each of its pods is assigned an IP address. Using the information we queried in

Section 3.3.1, we can map each captured packet’s source and destination IP address to its

corresponding service. Packets which do not originate from or arrive to a service are ignored;

these are typically packets for DNS lookups.

The services (such as microservices with REST APIs) communicate as a client-server rela-

tionship. In this scenario a client has a dependency on a server. To identify dependenceies,

the packets we are interested in are those in which a client initiates a request to a server.

The server (e.g., a microservice or a database) will respond to the request and return data

back to the client, but these packets can be ignored. To determine that a client is initiating

11

a request to a server, the destination port is examined, and if the destination port of the

packet is equal to the K8s service’s external port, then a dependency is noted between the

client’s service and the server’s service.

For example, consider a client pod which depends on a database, as seen in Figure 3.3. When

the pod initiates a connection to the Database Service, it connects to the service’s external

port, in this case port 9000. The service, acting as a load balancer, forwards the request to

one of its replicated database pods. The chosen database pod will respond to the client on

the random port opened by the client to receive the response, in this case port 12345. This

response traffic is ignored in the analysis, as well as the traffic between the service and the

chosen pod. Only the initial connection from the client pod to the database service on its

external port is used to identify the dependency.

Figure 3.3: Example Traffic between Client Pod and K8s Service

The output of this step is a directed graph, with the services as the vertices and the depen-

dencies as the edges. The graph is exported as a GraphViz .gv file for rendering and a .csv

file for importing into Neo4j.

12

Chapter 4

Microservice Patterns and

Identification

Osses et. al catalogued and categorized over 100 microservices patterns, from both academic

and industry sources [7]. Each pattern’s source documentation was reviewed to determine if

it was likely to:

1. Be present at an architectural level, and

2. Be identifiable via automated means.

Some patterns are inherently present in an orchestrated microservice system, for example the

Containerize the Services pattern and Introduce Service Discovery deployment patterns are

necessarily present when using Kubernetes. These trivially identified patterns were omitted.

The remaining patterns are described in Section 4.2.

13

4.1 Methodology

The output of the recovery technique in Chapter 3 is a directed graph, where each vertex is

a K8s service and each edge represents a dependency between two services. Each vertex has

a type, which can be one of a Database, a Broker, or a Service. The analysis tool outputs all

this information in a .csv file.

The .csv file is imported into Neo4j, a popular graph database system [17] for analysis.

Neo4j uses a query language similar to SQL but for graph structures. The query language,

Cypher, is the basis for an open graph query standard in development by ISO [18].

Cypher queries are devised to identify sub-graphs or relationships that potentially identify

a microservice pattern. The query results from Neo4j will report the presence of a pattern

and also the number of instances of said pattern. The queries for the patterns are described

in the following section.

4.2 The Patterns

4.2.1 Shared Database Pattern

The shared database pattern allows multiple microservices to use the same database [19].

This can be necessary for microservices that require a high degree of data consistency, i.e.,

there is little tolerance for eventual-consistency schemes. The disadvantage to this pattern

is that it creates coupling between microservices which share the same database.

This pattern can be identified when there is more than one service component which depends

on the same database component, see Figure 4.1 for an entity-relationship. The Cypher query

can be seen in Figure 4.2.

14

Figure 4.1: Shared Database Component Relationship

MATCH (d:Database)<-[:DEPENDS_ON]-(s:Service)

WITH d,count(distinct s) AS c

WHERE c > 1 RETURN d.name,c

Figure 4.2: Shared Database Query

4.2.2 Database-per-Service Pattern

Opposite of the Shared Database pattern is the Database-per-Service pattern, which dic-

tates that no two microservices may share a database [19]. The advantage of this approach

is the decoupling achieved between microservices. A drawback is less consistency between

microservices which use the same data, and the complexity of implementing data transac-

tions.

This pattern can be identified when there is only a single service dependency on each database

component, see Figure 4.3 for an entity-relationship. The Cypher query can be seen in

Figure 4.4.

15

Figure 4.3: Database-per-Service Component Relationship

MATCH (d:Database)<-[:DEPENDS_ON]-(s:Service)

WITH d,count(distinct s) AS c

WHERE c = 1 RETURN d.name,c

Figure 4.4: Database-per-Service Query

4.2.3 Asynchronous Messaging Pattern

Microservices typically need to communicate with one another, and they can communi-

cate directly by calling each other’s REST APIs. However this simple approach leads to

a coupling between the microservices. The Asynchronous Messaging pattern decouples the

communication between microservices by using a message broker [19]. The disadvantage of

this approach is the architectural smell of ambiguous interfaces [4].

This pattern can be identified when there is a message broker which has multiple microser-

vices that depend on it, see Figure 4.5 for an entity-relationship. The Cypher query can be

seen in Figure 4.6.

16

Figure 4.5: Asynchronous Messaging Component Relationship

MATCH (b:Broker)<-[:DEPENDS_ON]-(s:Service)

WITH b,count(distinct s) AS c

WHERE c > 1 RETURN b.name,c

Figure 4.6: Asynchronous Messaging Query

4.2.4 API Gateway Pattern

The API Gateway [19] or Gateway Routing [20] pattern creates a single entry point for all

microservices. This decouples clients from individual microservices, allowing for differences

in a public API (the gateway) and a private API (the individual microservice APIs). This is

especially useful for versioning. The disadvantage is the complexity of an additional layer.

This pattern can be identified by a single root-level service which depends on more than one

other service as in Figure 4.7. The Cypher query can be seen in Figure 4.8.

4.2.5 Backends-for-Frontends Pattern

The Backends-for-Frontends patten is similar to the aforementioned API Gateway, it is a

gateway layer providing access to microservices. The difference is there are multiple gate-

ways, which are channel-specific [21]. For example there may be a backend for web clients

17

Figure 4.7: API Gateway Pattern Relationship
The X indicates the absence of a parent.

MATCH (p:Service)-[:DEPENDS_ON]->(c:Service)

WITH p,COUNT(DISTINCT c) AS count

WHERE NOT (:Service)-[:DEPENDS_ON]->(p) AND count > 1

RETURN p.name,count

Figure 4.8: API Gateway Query

and a separate backend for mobile clients. The mobile backend may offer a subset of the

data compared to the web client to conserve bandwidth. The advantage is to offer more

appropriate APIs for different clients, at the cost of additional complexity.

The pattern can be identified by multiple root-level services which depend on more than one

other service as in Figure 4.9. The Cypher query is the same as in Figure 4.8 however we

expect to see multiple gateways returned as opposed to only one.

18

Figure 4.9: Backends-for-Frontends Pattern Relationship

19

Chapter 5

Evaluation

5.1 Benchmark Systems

To evaluate an architecture recovery technique it is desirable to use a benchmark system

for replicability. Nine different microservice benchmark systems were investigated for this

purpose and their properties are listed in Table 5.1.

System Services Languages Container Orchestration
Acme Air 5 Java, Node.JS None None

Train Ticket 36 Java, Python, Node.JS, Go Docker Kubernetes
Music Store 6 C# Docker None

Spring Cloud Demo Apps 6 Java Docker None
Bifrost Microservices 5 Node.JS Docker None

Socks Shop 8 Java, Go, Node.JS Docker Kubernetes
Staffjoy 9 Go Docker Kubernetes

eShopOnContainers 8 C# Docker Kubernetes
Teacher Management 4 Java, React Docker None

Table 5.1: Benchmark Systems

5.1.1 TrainTicket

The TrainTicket system is a railway ticket application presented in 2018 developed at Fudan

University [22] and was last updated in May of 2020. TrainTicket aims to address the need

for more complex microservice benchmark systems. It has over 60 KLOC of polyglot code

20

and is decomposed into over 30 microservices. It is also well documented, providing a Wiki

describing each microservice, a Swagger UI documenting each microservice’s endpoints, and

a prescriptive architectural diagram as shown in Figure 5.1. At this time, it is the most

complex microservice benchmark system available.

Figure 5.1: Prescriptive Architecture of TrainTicket

TrainTicket Use Cases

Use cases were deduced from TrainTicket’s documentation. The project user guide offers a

basic workflow of use cases which includes: logging in, searching for train tickets, booking a

ticket, paying for the ticket, checking in at the station, and ticket collection. These use cases

were scripted as Python code using the requests library. To find additional use cases, the

project Wiki documentation [23] for each microservice API endpoints was reviewed. First,

use cases were scripted for any microservice that was not already hit by existing use cases.

Second, use cases were scripted for API endpoints that were not already hit by existing use

cases. In the time available, 25 use cases were scripted and they are listed in Table 5.2:

21

Table 5.2: TrainTicket Scripted Use Cases

Generate CAPTCHA verification code User login
Get assurance types Get Food choices

Simple Search Advanced search
Get contacts for customer Get Region List

Get News Rebook ticket
Get Order List Get High-Speed Order List

Book Ticket Book High-Speed Ticket
Get Voucher Pay for ticket

Check in at Station Collect Ticket
Cancel Ticket Consign

Admin Get Orders Admin Get Routes
Admin Get Travel Admin Get Users

Admin Get Contacts

5.1.2 Socks Shop

Socks Shop [24] is a microservice demo application created by WeaveWorks. It was last

updated on July 17th, 2018. It is unique from the other benchmark systems in that each

microservice has its own repository. The prescriptive architecture can be seen in Figure 5.2.

Socks Shop Use Cases

Socks Shop provides a suite of comprehensive load tests which were executed to stimulate

network traffic amongst the services.

5.1.3 eShopOnContainers

eShopOnContainers is the reference microservice application from a Microsoft book on ar-

chitecting containerized .NET microservices [25]. It relies on several Microsoft technologies

such as C# and SQLServer but also leverages open-source tools like Redis and RabbitMQ.

eShopContainers has over 25KLOC across 8 microservices. It is well-documented, with rea-

22

Figure 5.2: Prescriptive Architecture of Socks Shop

soning behind some design choices in the book, and Swagger UI documentation of APIs.

Updates on the repository are frequent, the last of which was on May 5th 2021.

eShopOnContainers Use Cases

Use cases were derived from the documentation wiki [26] and thru exploratory testing. Some

remaining use cases were found using the Swagger UI documentation for service APIs. The

ultimate set of use cases are in Table 5.3.

Table 5.3: eShopOnContainers Scripted Use Cases

Get WebMVC landing page Get Mobile Landing page
Get Configuration Get Mobile Catalog

Get Brands Get Catalog Types
Get Items Get User Info

Add Item to Basket Get Basket
Get Order Detail Get Orders

Wait for Order Completion

23

Figure 5.3: Prescriptive Architecture of eShopOnContainers

5.2 Recovery Results

5.2.1 TrainTicket

The resulting GraphViz graph used the K8s service names such as ts-user-service. These

were renamed to use the same service names in the prescriptive architecture (Figure 5.4).

As well, the admin microservices were consolidated to match the prescriptive architecture,

this is discussed in the Conformance section below. The resulting recovered architecture can

be seen in Figure 5.4.

Since the prescriptive architecture omits utility components, e.g., databases, these were

filtered from the recovered architecture also. TrainTicket uses two types of databases, Mon-

goDB and MySQL, so services which contain only mongo or mysql containers are removed

from the analysis.

24

Advanced Travel

Route Plan

Seat

Station

Ticket Info

Travel Explore

High-Speed Travel Explore

High-Speed Order

Order Config

Basic

Authorization

Verify Code

Price Route Train

Cancel Order

Inside Pay

Pay

Consign

Consign Price

Food Service

Food Map

Gateway

Assurance Contact

High-Speed Ticket ReserveNews

Ticket Execute

Ticket Office

Ticket Rebook

Ticket Reserve Travel admin

Voucher

Notify

Security

User

Figure 5.4: Recovered Architecture of TrainTicket

A comparison of the number of components (microservices) and connectors (client-server

dependencies) between the prescriptive architecture and the recovered architecture can be

seen in Figure 5.4.

Prescriptive Recovered Difference Same Missing Added
Components 37 41 4 (+11%) 37 0 4
Connectors 65 92 27 (+42%) 33 32 61

Table 5.4: TrainTicket Components & Connectors

Figure 5.5 superimposes the adjacency matrix of the prescriptive and recovered architectures.

The green elements represent dependencies which are the same in both architectures. The

blue elements represent dependencies which were added to the recovered architecture but

not in the prescriptive architecture. The red elements represent dependencies which exist in

the prescriptive but are missing from the recovered architecture.

There were 33 dependencies which were the same in both architectures (green), 32 depen-

dencies missing (red), and 61 dependencies which were added (blue).

Conformance

Table 5.4 shows that four additional components were recovered that were not represented

in Figure 5.1. The reason for this is the Travel admin microservice is in fact a collection of

25

Figure 5.5: TrainTicket Adjacency Matrix Differences.
Red: Missing, Green: Same, Blue: Added.

five microservices: ts-admin-order-service, ts-admin-basic-info-service, ts-admin-

travel-service, ts-admin-user-service, and ts-admin-route-service. The TrainTicket

authors may have omitted these services from their architecture graph for simplicity. As men-

tioned in earlier, these components were consolidated in the recovered architecture to match.

This allows for a 1:1 comparison of the connectors.

Table 5.4 shows that there were 27 more dependencies in the recovered architecture. Fi-

grue 5.5 further shows there are a number of connectors both missing from and added to the

recovered architecture. These differences are not as concise to explain than the component

differences, however some examples are investigated below.

Observe the News microservice as seen in Figure 5.1 and as seen in Figure 5.4. Both com-

ponents are dependencies of the Gateway ; however, in the prescriptive architecture, News

has several dependencies, whereas the recovered component has none. When reviewing the

API documentation for this microservice, the TrainTicket authors indicate that the service

26

“only have [sic] test content” [23]. Indeed, when the endpoint of this microservice is re-

quested, it only returns a static test response. This microservice appears to be incomplete

and, therefore, is missing dependencies due to only being a stub.

It is observed that the prescriptive architecture generally follows a tree topology i.e. there

are no cycles in the architecture graph. However, in the recovered architecture, two cycles

were found: between the Travel Explore and Seat components, and between the High-Speed

Travel Explore and Seat components. This represents an interdependency between the afore-

mentioned microservices. Considering the topology of the prescriptive architecture, and that

these are the only two cycles among 92 connectors, it is possible that these interdependencies

represent an architectural erosion.

5.2.2 Socks Shop

The comparison of components and connectors between the prescriptive and recovered ar-

chitecture can be seen in Figure 5.5. The recovered architecture can be seen in Figure 5.6.

The adjacency matrix can be seen in Figure 5.7. There were 11 depedencies which where

the same, 1 missing, and 4 added.

orders

payment shipping carts userorders-db

rabbitmq

front-end

catalogue session-db

carts-db

catalogue-db

user-db

queue-master

Figure 5.6: Recovered Architecture of Socks Shop

27

Prescriptive Recovered Difference Same Missing Added
Components 13 14 1 (+8%) 13 0 1
Connectors 12 15 3 (+25%) 11 1 4

Table 5.5: Socks Shop Components & Connectors

Figure 5.7: Socks Shop Adjacency Matrix Differences.
Red: Missing, Green: Same, Blue: Added.

Conformance

In Table 5.5 there is one additional component compared to the prescriptive architecture in

Figure 5.2. This additional component is the session-db seen in Figure 5.6. This missing

component is likely an oversight in the prescriptive architecture; all the other databases are

represented.

The differences in connectors seen in Table 5.5 appear due to the simplified nature of the

prescriptive architecture. As seen in Figure 5.6, a dependency hierarchy exists between the

orders microservice and the payment, cart, and user microservices. These are omitted

from the prescriptive architecture. The one missing connector, between the front-end and

the payment microservice seen in Figure 5.2, again may be an oversimplification of the

architecture.

28

5.2.3 eShopOnContainers

The prescriptive architecture for eShopOnContainers (Figure 5.3) includes the utility com-

ponents such as databases and message brokers, so these are left in the recovered architecture

in Figure 5.8. The comparison of components and connectors between the prescriptive ar-

chitecture and the recovered architecture can be seen in Figure 5.6.

An adjacency matrix of the prescriptive and recovered connectors is in Figure 5.9. There

were 25 dependencies which were the same in both architectures, 3 dependencies missing,

and 14 dependencies which were added.

Prescriptive Recovered Difference Same Missing Added
Components 18 19 (+6%) 17 1 2
Connectors 27 39 (+44%) 25 3 14

Table 5.6: eShopOnContainers Components & Connectors

webshoppingagg

basket-api catalog-apipayment-api ordering-api identity-api

basket-data rabbitmq

webstatus

webmvc

mobileshoppingagg webspaordering-signalrhub

ordering-backgroundtasks

webshoppingapigw

keystore-datasql-data

mobileshoppingapigw

webhooks-api

Figure 5.8: Recovered Architecture of eShopOnContainers

Conformance

There were two additional components and one missing in the recovered architecture. The

two additional components are the payment-api and the keystore-data. The payment-api

is mentioned in the book [25], however, it is omitted from the prescriptive architecture in

29

Figure 5.9: eShopOnContainers Adjacency Matrix Differences.
Red: Missing, Green: Same, Blue: Added.

Figure 5.3, this is likely an oversight. keystore-data is a Redis cache used by the MVC

Web App and SPA Web App, and was perhaps omitted from the prescriptive architecture

for simplicity. The missing component is the Seq Logging admin service, which is a logging

utility that did not appear to be a part of the eShopOnContainers Kubernetes deployment.

As seen in Figure 5.6, there were more connectors recovered than in the prescriptive ar-

chitecture. For instance, in the recovered architecture, there is a dependency on Identity

API (identity-api) from the SPA Web App (webspa) and the MVC Web App (webmvc).

The prescriptive architecture in Figure 5.3 shows there are connectors to the Identity API,

however, it does not indicate to which components it is connected to. This appears to be an

oversimplification in the prescriptive architecture.

A connector missing from the recovered architecture is between the SPA Web App (webspa)

and the Web-Shopping gateway (webshoppingapigw). The Web SPA serves Javascript code

that ultimately runs on the user’s browser. The user’s browser does call the Web-Shopping

gateway API but the webspa component itself does not communicate with the gateway.

Thus, in the prescriptive architecture, this connector represents a data-flow at the client-side

30

moreso than a server-side dependency, and is why it was not recovered.

5.3 Microservice Pattern Identification Results

The pattern identification queries in Chapter 4 were executed for each benchmark system in

Neo4j. Expected instances of patterns were determined from ground truth sources such as

documentation, prescriptive architecture, and as well from the recovered architectures. The

expected instances versus the actual instances were compared in terms of true positives, false

positives, and false negatives. The results can be seen in Table 5.7. The overall precision

and recall were computed and can be seen in Table 5.8.

TrainTicket Socks Shop eShopOnContainers
Pattern tp fp fn tp fp fn tp fp fn
Shared Database 0 0 0 0 0 0 2 0 0
Database-per 21 0 0 5 0 0 1 0 0
Async. Messaging 0 0 0 1 0 0 1 0 0
API Gateway 1 0 0 1 0 0 0 0 0
Backend4Frontend 0 0 0 0 0 0 1 1 1

Table 5.7: True Positives, False Positives, and False Negatives for each Pattern & System

Pattern Precision Recall
Shared Database 100% 100%
Database-per-Service 100% 100%
Asynchronous Messaging 100% 100%
API Gateway 100% 100%
Backends-for-Frontends 50% 50%

Table 5.8: Overall Precision & Recall Results

5.4 Discussion

Additional components and connectors found in the recovered architectures which were not

present in the prescriptive architectures were reviewed and investigated in the respective

31

source code to look for signs of false positives. No false positives were identified, so the

additional recovered components and connectors appear to be accurate. The remaining

differences between the prescriptive and recovered architectures observed in Section 5.1 are

largely explained by omissions in the prescriptive architecture either for simplicity or possibly

oversight. The recovery technique does appear accurate overall, with the caveats given in

Section 5.5.

For the pattern identification technique, the results were accurate for 4 of the 5 patterns.

The Backends-for-Frontends (BFF) pattern showed only 50% precision. The only bench-

mark system using this pattern is eShopOnContainers, which has two instances of the BFF

pattern: there is a BFF for web clients (webshoppingapigw) and a BFF for mobile clients

(mobileshoppingapigw). The pattern detection correctly identified the mobile BFF, how-

ever it missed the web BFF and falsely identified a monitoring service (webstatus) as a

BFF. webstatus was identified since it is a root-level component which depends on multiple

services for monitoring their health. If this were a common monitoring tool such as Nagios

or Prometheus, the service could have been designated as a utility component, but in the

case eShopOnContainers, it was a custom .NET microservice. In the case of the missing web

BFF, this is due to the webmvc service having a dependency on it, so it was not a root-level

service. The webmvc component is a legacy-style web UI opposed to a more modern SPA

(single-page application) web UI. eShopOnContainers offers both web UI styles for demon-

stration purposes, but this is uncommon in microservice systems, the other two benchmark

systems only use the SPA style UI.

5.5 Threats to Validity

In the cases where manual scripting of use cases was necessary, i.e. in TrainTicket and

eShopOn Containers, an internal threat to validity is present: Not all use cases may be

32

represented. Each microservice is treated as a black box so it is uncertain how much actual

code coverage was achieved by the chosen use cases. There may be use cases that would

have introduced additional dependencies between the microservices and, if these were not

elicited by the chosen use cases, then the recovered architecture may be incomplete.

Additionally, a reliability thread is present. Other researchers attempting to duplicate results

for these systems may choose different use cases which elicit different dependencies. While it

is reasonable to expect a large overlap, the architectures from this recovery is likely to have

some different connectors recovered and thus the architectures will differ.

Lastly, an internal threat exists if the mapping in Table 3.1 is not populated comprehensively.

33

Chapter 6

Related Work

6.1 Architectural Styles

Taylor et. al in their text define an architectural style, and use a rubric to definite a variety of

common architectural styles in the categories of Language-Influenced styles, Layered styles,

Dataflow styles, Shared Memory styles, Interpreter syltes, Implicit Invocation styles, and

Peer-to-Peer styles [9]. These styles as defined with the authors’ rubric were studied to

produce the microservices architectural style presented.

6.2 Architecture Recovery

Garcia et al. proposed an architecture recovery framework to obtain ground-truth archi-

tectures [27]. Ground-truth architectures are those which have been verified as accurate by

the system designers, which is necessary to evaluate the accuracy of recovery techniques.

They obtinaed ground-truth architectures for 4 software systems. Garcia et. al used these

ground-truth architectures to compare 6 different architecture recovery tools to determine

34

the strenghs and weakness of different recovery techniques.

6.3 Microservice Architecture Recovery

The recovery technique proposed was in part derived from Granchelli et al. whom performed

a dynamic microservice architecture recovery by monitoring network traffic within the system

during the execution of manually scripted use cases [5]. Similarly, their technique relied upon

the containerization (Dockerization) of the microservices. The technique proposed in this

thesis differs in that it relies not only on containerization, but the container orchestration

of microservices thru Kubernetes. The advantage of the Granchelli et al. approach is it can

be used on systems which do not have a Kubernetes deployment. The disadvantage is that

identifying dependencies between microservices requires some manual intervention (other

than use case scripting) due to the myriad of possible service discovery mechanisms. Since

Kubernetes provides a global service discovery via DNS, we can assume the microservice

system to use only DNS and recover the dependencies in a more automated fashion.

Alshuqayra et al. devise a microservice meta-model to aid recovery efforts [6]. In their work,

they used both static and dynamic analysis, as well as extracting information from container-

ization artifacts i.e. Dockerfiles. The static analysis performed was language-dependent,

extracting architectural information from Java code. The dynamic analysis was performed

using distributed tracing, requiring the code to be instrumented.

6.4 Design Pattern Identification

There is a breadth of research on identifying design patterns in object-oriented systems.

Kaczor et. al devised algorithms for identifying design patterns and applied them to three

35

Java codebases [28]. Guehenuec et al. proposed an improved technique and applied it to

nine Java codebases [29].

6.5 Microservice Pattern Identification

Walker et. al devised a technique for identifying architectural smells in microservice systems

[8]. For instance, one of the smells they look for is the lack of an API Gateway in larger

systems. However, they had no reliable way to detect the API Gateway, instead they give

the user a warning if the system maintained over a certain number of services. Ntentos et

al. provide foundation for a tool to provide developers feedback during CI of architectural

violations in microservice systems, for example identifying cyclic dependencies between com-

ponents and offering solutions [30]. They evaluated their work not on actual systems but on

models. Tighilt et al. proposed a generalized technique for microservice pattern identifica-

tion relying on containerization and configuration artifacts, but no evaluation is performed

[31].

36

Chapter 7

Conclusion

In this thesis we have presented Microservices as an architectural style. We have proposed a

microservice architectural recovery technique which requires fewer manual steps than existing

techniques, and applied it to three benchmark systems including the largest benchmark

system available, with few innacuracies observed. We have proposed a microservice pattern

identification technique and applied it for 5 patterns which occur at an architectural level,

four of which were successfully identified.

7.1 Future Work

Improving the detection of the Backends-for-frontends pattern would involve other criteria,

such as using not only a dependency subgraph but also the image names as well as the

exposed port number, i.e., ports 80 and 443 for HTTP and HTTPS, respectively. There

are potentially more microservice patterns which can be detected from an architectural level

than the five discussed in this thesis. Exploring these patterns and devising detection criteria

for them would be a future research direction.

37

Bibliography

[1] Liu G., Huang B., Liang Z., Qin M., Zhou H., Li Z., “Microservice: Architecture,

Container, and Challenges,” IEEE International Conference on Software Quality, Re-

aliability and Security Companion, 2020.

[2] de Santana C.J.L., de Mello Alenar B., Serafirm Prazers C.V., “Reactive Microservices

for the Internet of Things A case study in Fog Computing,” ACM/SIGAPP Symposium

on Applied Computing, April 2019.

[3] Allied Market Research, “Microservices Architecture Market,” Feb 2020. [Online]. Avail-

able: https://www.alliedmarketresearch.com/microservices-architecture-market

[4] Garcia J., Ivkovic I., Medvidovic N., “A Comparative Analysis of Software Architecture

Recovery Techniques,” IEEE/ACM International Conference on Automated Software

Engineering, 2013.

[5] Granchelli. G, Cardarelli M., Di Francesco P., Malavolta I., Iovini L., Di Salle A.,

“Towards Recovering the Software Architecture of Microservice-based Systems,” IEEE

International Conference on Software Architecture Workshops, 2017.

[6] Alshuqayran N., Ali N., Evans R., “Towards Micro Service Architecture Recovery: An

Empirical Study,” IEEE International Conference on Software Architecture, 2018.

[7] Osses, F., Marquez G., Astudillo, .H, “Exploration of Academic and Industrial Evi-

38

dence about Architectural Tactics and Patterns in Microservices,” 40th International

Conference on Software Engineering. 2018.

[8] Walker A., Das D., Cerny T., “Automated Code-Smell Detection in Microservies

Through Static Analysis: A Case Study,” Applied Sciences, Vol. 10 Iss. 21, 2020.

[9] Taylor R., Medvidovic N., Dashofy E., “Software Architecture: Foundations, Theory

and Practice,” Wiley, 2009.

[10] Lenarduzzi V, Lomio F., Saarimaki N., Taibi D., “Does migrating a monolithic system

to microservices decrease the technical debt?”, Journal of Systems & Software, 2020.

[11] Villamizar M., Garces O., Castro H., Verano M., Salamanca L., Casallas R., “Evaluating

the Monolithic and the Microservice Arhicture Patterns to Deploy Web Applications in

the Cloud,” Computing Columbian Conference, 2015.

[12] Koschel A., Astrova I., Dotterl J., “Making the Move to Microservice Architecture,”

International Conference on Information Society, 2017.

[13] Villamizar M., Garces O., Ochoa L., Salamanca L., Verano M., Casallas R., et al.,

“Infrastructure Cost Comparison of Running Web Applications in the Cloud using AWS

Lambda and Monolithic and Microservice Architectures,” IEEE/ACM International

Symposium on Cluster, Cloud, and Grid Computing, 2016.

[14] Garcia J., Popescu D., Edwards G., Medvidovic N., “Toward a Catalogue of Architec-

tural Bad Smells”, International Conference on the Quality of Software Architectures,

2009.

[15] Boettiger C., “An Introduction to Docker for reproducible research,” ACM SIGOPS

Operating Systems Review, January 2015.

[16] Al Jawarneh I., “Container Orchestration Engines: A Thorough Functional and Perfor-

mance Comparison,” IEEE International Conference on Communications, 2019.

39

[17] Kronmueller M., Chang D., Hu H., Desoky A., “A Graph Database of Yelp Dataset

Challenge,” IEEE International Symposium on Signal Processing and Information Tech-

nology. 2018.

[18] Neo4j Inc., “What is openCypher?” 2018. [Online]. Available:

https://www.opencypher.org. Accessed: 05-May-2021.

[19] Richardson, C., “Microservice Architecture,” 2020. [Online]. Available:

https://microservices.io. Accessed: 05-May-2021.

[20] Wasson M., “Design patterns for microservices,” 2017. [Online]. Available:

https://azure.microsoft.com/en-us/blog/design-patterns-for-microservices/.

Accessed: 05-May-2021.

[21] Brown K., Woolf B., “Implementation Patterns for Microservice Architectures,” Con-

ference on Pattern Languages of Programs. 2016.

[22] Zhou X., Peng X., Xie T., Sun J., Xu C., Ji C., et al., “Benchmarking Microservice

Systems for Software Engineering Research,” International Conference on Software En-

gineering Compantion, June 2018.

[23] Fudan Software Engineering Lab, “Train Ticket Wiki,” 2020. [Online]. Available:

https://github.com/FudanSELab/train-ticket/wiki. Accessed: 03-Mar-2021.

[24] WeaveWorks, “Sock Shop: A Microservice Demo Application,” 2018. [Online]. Avail-

able: https://github.com/microservices-demo/microservices-demo. Accessed:

05-May-2021.

[25] de la Torre C., Wagner B., Rousos M., “.NET Microservices: Architecture for Con-

tainerized .NET Applications,” Microsoft Developer Division, 2020.

[26] .NET Foundation, “Explore the application,” 2019. [Online]. Available:

40

https://github.com/dotnet-architecture/eShopOnContainers/wiki/Explore-the-application.

Accessed: 05-May-2021.

[27] Garcia J., Krka I., Mattmann C., Medvidovic N., “Obtaining Ground-Truth Software

Architectures,” International Conference on Software Engineering. 2013.

[28] Kaczor O., Guehenuec Y., Hamel S., “Identification of design motifs with pattern match-

ing algorithms,” Journal of Information and Software Technology. 2009.

[29] Gueheneuc Y., Guyomare’h J., Sahraoui H., “Improving design-pattern identification:

a new approach and an exploratory study,” Software Quality Journal. 2009.

[30] Ntentos E., Zdun U., Plakidas K., Geiger S., “Semi-automatic Feedback for Improving

Architecture Conformance to Microservice Patterns and Practices,” 18th IEEE Inter-

national Conference on Software Architecture. 2021.

[31] Tighilt R., Abdellatif M., Abu Saad N., Moha N., Gueheneuc Y., “Collection and

Identification of Microservices Patterns And Antipatterns,” Proceedings of the 12th

Conference Francophone sur les Architectures Logicielles (CAL). 2019.

41

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	ABSTRACT OF THE Thesis
	Introduction
	Microservice Architectural Style
	Architecture Recovery
	Containerization
	Container Orchestration
	Methodology
	Query K8s for services along with their network & container details
	Start capturing network traffic within the system
	Execute domain use cases
	Analyze captured traffic to find dependencies between services

	Microservice Patterns and Identification
	Methodology
	The Patterns
	Shared Database Pattern
	Database-per-Service Pattern
	Asynchronous Messaging Pattern
	API Gateway Pattern
	Backends-for-Frontends Pattern

	Evaluation
	Benchmark Systems
	TrainTicket
	Socks Shop
	eShopOnContainers

	Recovery Results
	TrainTicket
	Socks Shop
	eShopOnContainers

	Microservice Pattern Identification Results
	Discussion
	Threats to Validity

	Related Work
	Architectural Styles
	Architecture Recovery
	Microservice Architecture Recovery
	Design Pattern Identification
	Microservice Pattern Identification

	Conclusion
	Future Work

	Bibliography

