
UC Irvine
UC Irvine Previously Published Works

Title
Orbital-free bond breaking via machine learning

Permalink
https://escholarship.org/uc/item/0ch480mj

Journal
The Journal of Chemical Physics, 139(22)

ISSN
0021-9606

Authors
Snyder, John C
Rupp, Matthias
Hansen, Katja
et al.

Publication Date
2013-12-14

DOI
10.1063/1.4834075
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0ch480mj
https://escholarship.org/uc/item/0ch480mj#author
https://escholarship.org
http://www.cdlib.org/


Orbital-free Bond Breaking via Machine Learning

John C. Snyder,1 Matthias Rupp,2 Katja Hansen,3 Leo Blooston,4 Klaus-Robert Müller,5, 6 and Kieron Burke1

1Departments of Chemistry and of Physics, University of California, Irvine, CA 92697, USA
2Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zürich, Switzerland
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Machine learning is used to approximate the kinetic energy of one dimensional diatomics as a
functional of the electron density. The functional can accurately dissociate a diatomic, and can
be systematically improved with training. Highly accurate self-consistent densities and molecular
forces are found, indicating the possibility for ab-initio molecular dynamics simulations.

Kohn-Sham density functional theory (KS-DFT) [1, 2]
is a widely used electronic structure method, striking a
balance between accuracy and computational efficiency
[3]. KS-DFT is not a pure DFT, as it requires solving
a self-consistent set of orbital equations [4]. In return,
only a small fraction of the total energy, the exchange-
correlation (XC) energy, need be approximated as a func-
tional of the electronic spin densities. This produces far
greater accuracy relative to a pure DFT such as Thomas-
Fermi theory [5].

The computational bottleneck in KS-DFT calculations
is the need to solve the KS equations, which formally
scale as N3, where N is the number of electrons. Thus
there is strong interest in constructing an orbital-free
DFT, avoiding this step [6]. A sufficiently accurate ap-
proximation to TS[n], the kinetic energy (KE) of KS elec-
trons, would produce an orbital-free scheme, greatly re-
ducing the computational cost of DFT without sacrificing
accuracy.

Many research efforts have recently focused in this di-
rection [7]. Unfortunately, the relative accuracy require-
ments of a KE functional are much stricter than those of
an XC functional, because the KE is typically compara-
ble to the total energy of the system [5]. Worse, we also
need accurate functional derivatives, since ultimately the
density must be determined self-consistently via an Euler
equation. The standard approximations using local and
semi-local forms do not yield accurate derivatives [8].

Approximating TS[n] has proven to be a difficult task
for both extended and finite systems [6]. Some build
on Thomas-Fermi theory with gradient expansions and
various mixing coefficients [7] or on generalized gradient
approximations (GGAs) with enhancement factors based
on “conjointness” [9]. Others approximate Tθ = TS −
TW ≥ 0, where TW is the von Weizsäcker KE [10], or
attempt to produce the correct linear response [6]. For
multiple bonds, no present KE functional can accurately
describe molecules far from equilibrium structures nor
properly dissociate a diatomic. Moreover, solving the
orbital-free Euler equation for GGA-like functionals can
be difficult due to poor functional derivatives near nuclei
[6].

A particularly difficult problem is to correctly disso-
ciate a chemical bond. Any locally-based approximation
has difficulties when the bond length is stretched to large
distances. The fragments often contain fractional elec-
tron numbers, for which local approximations yield very
wrong answers [11]. The worst case is the KE of a sin-
gle bond in one dimension, where a local approximation
yields fragments energies that are incorrect by a factor
of 4 in the stretched limit.

To tackle these difficulties, we turn to machine learn-
ing (ML), a powerful tool for learning high-dimensional
patterns via induction that has been very successful in
many applications [12] including quantum chemistry [13–
16]. Some of us recently suggested a new paradigm in
density functional approximation using ML to approxi-
mate density functionals [17]. In that work, all particles
were confined to a box so no densities looked like those
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FIG. 1. The molecular binding curve for a 1d single bond (in
atomic units). The machine learning approximation (MLA)
curve is found found self-consistently, using 10 KS-LDA den-
sities and kinetic energies (spaced evenly from R = 0 to 10)
for training. Note that the incorrect large R limit is due to
deficiencies in the LDA XC, not our MLA for the KE.
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of well-separated atoms. In Fig. 1, we show what hap-
pens when we apply ML algorithms self-consistently to
fermions in two wells as they are separated: ML has no
particular difficulty in treating a situation that is vir-
tually impossible with traditional DFT approximations.
In this work, we construct an orbital-free KE functional
based on ML that is capable of accurately describing 1d
diatomics from the united atom limit to complete nuclear
separation. Moreover, we obtain accurate self-consistent
densities and molecular forces.

We use standard methods from ML [18], and atomic
units throughout. Using kernel ridge regression (KRR),
which is non-linear regression with regularization to pre-
vent overfitting [18], our machine learning approximation
(MLA) for the KE is

TML(n) =

M∑
j=1

αjk(nj ,n), (1)

where αj are weights to be determined, nj are training
densities, M is the number of training densities, and k is
the kernel, which measures similarity between densities.
We choose the Gaussian kernel

k(n,n′) = exp(−‖n− n′‖2/(2σ2)), (2)

where σ is called the length scale. The weights are found
by minimizing the cost function

C(α) =

M∑
j=1

∆T 2
j + λαTKα, (3)

where ∆Tj = TML
j − Tj , α = (α1, . . . , αM ) and K is

the kernel matrix, Kij = k(ni,nj). The second term
is a regularizer that penalizes large weights to prevent
overfitting. Minimizing C(α) gives

α = (K + λI)−1T , (4)

where I is the identity matrix and T = (T1, . . . , TM ).
The global parameters σ and λ are determined through
leave-one-out cross-validation: For each density n′ in the
training set, the functional is trained on all densities ex-
cept for n′ and σ and λ are optimized by minimizing the
absolute error on the n′. Final values are chosen as the
median over all optimum values. To test performance,
the functional is always evaluated on new densities not
in the training set.

Here, we consider a one-dimensional model of diatomic
molecules, where the electron repulsion has the soft-
Coulombic form [19]

vee(u) =
1√

1 + u2
, (5)

as this has been used in a variety of contexts. The one-
body potential attraction of the two “nuclei” of nuclear
charge Z at separation R is

v(x) = −Z(vee(x−R/2) + vee(x+R/2)), (6)
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FIG. 2. The soft-Coulomb model of a diatomic for Z = 1,
N = 2, which we test our ML method on. External potentials
and corresponding KS densities are shown for R = 0 (dashed),
equilibrium bond length at R=1.62 (solid), and stretched at
R = 10 (dot-dashed), in atomic units.

and the internuclear repulsion is VNN(R) = Z2vee(R).
We solve this model within KS-DFT [2] with the local
density approximation (LDA) for XC [19, 20]. The spin-
unpolarized form of LDA exchange for this system is
given in Ref. [19], and an accurate parametrization of
the LDA correlation energy is given in Ref. [20].

Our goal is to “learn” the non-interacting kinetic en-
ergy TS[n] of the KS system. In previous work [17], where
we demonstrated for the first time the ability of ML to
approximate density functionals, the fermions were non-
interacting and confined to live in a box, restraining the
variety of possible densities. In particular, there was no
analog of a binding energy curve where a density is cen-
tered on two sites whose separation varies continuously
from small to infinite.

Fig. 2 shows the densities and potentials for the united
atom, equilibrium bond length, and stretched diatomic.
To generate a dissociation curve like that of Fig 1, we
consider bond lengths up to R = 10, and place the entire
system on a 500-point grid from x = −20 to 20. This
is necessary to converge our KS-DFT calculations. We
doubly-occupy the lowest Z orbitals, so that N = 2Z,
where N is the number of electrons. We extract various
energies and the density as a function of R for different
values of N .

A curious point is that the ML method only needs 50
points to achieve the level of accuracy given in this paper
once the training energies are sufficiently accurate. Thus,
a 500-point calculation may be needed to find essentially
exact energies, but a far smaller grid (50 points) then
yields a sufficiently accurate representation of the densi-
ties for the ML to achieve arbitrarily accurate energies.
ML automatically corrects for the coarseness of the grid.

To construct the model, we choose M training den-
sities at evenly spaced R between 0 and 10 (inclu-
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N M λ σ |∆T | |∆T |std |∆T |max

|∆T |

2 4 1.4e-3 105. 20 15 2.2

2 6 4.8e-3 5.2 2.9 3.6 4.1

2 8 4.1e-5 39.3 2.6 2.8 3.7

2 10 3.0e-7 32.5 0.13[0.93] 0.19[2.6] 6.1[14]

2 12 5.6e-7 15.9 0.092 0.14 6.1

2 15 2.4e-8 17.8 0.045 0.047 3.9

2 20 2.4e-8 15.2 0.038 0.037 3.5

2 25 1.9e-10 6.1 0.002 0.002 3.9

4 10 3.3e-7 87.7 0.25[1.3] 0.31[3.7] 4.9[15]

4 20 1.1e-10 46.1 0.02 0.018 3.9

6 10 8.1e-6 74.5 3.1[13] 4.0[33] 4.7[11]

6 20 1.8e-9 55.1 0.016 0.018 4.8

8 10 2.0e-6 56.2 1.4[7.7] 1.7[22] 5.0[14]

8 20 2.9e-9 16.1 0.016 0.012 3.3

TABLE I. Parameters and errors (in kcal/mol) as a function
of fermion number N and number of training densities M .
Mean, standard deviation and max values taken over 199 test
densities evenly spaced from R = 0 to 10 (inclusive). Brackets
represent errors on self-consistent densities.

sive). Table I shows the performance of the MLA, eval-
uated on a test set with M = 199. To compare, we
tested the LDA in 1d, T loc[n] = π2

∫
dxn3(x)/6, and a

modified gradient expansion approximation (GEA) [21],
TMGEA[n] = T loc[n] + c TW[n], where c = 0.559 has
been chosen to minimize the error. LDA has a MAE
of 45 kcal/mol, while the GEA only improves that to 33
kcal/mol. For N = 2, we have already achieved a MAE
below 1 kcal/mol for M = 10. No other existing ap-
proximations achieve this level of accuracy, which can be
systematically improved.

Thus far, our results have been reported evaluating the
ML functional on exact densities. In real applications of
orbital-free DFT, these are not available. The density
that minimizes the approximate energy satisfies:

δTS[n]

δn(x)
= µ− vS(x), (7)

where µ is a constant. But just as in Ref. [17], ML does
not yield an accurate functional derivative. Fig. 3 shows
that the derivative of our MLA evaluated at the ground-
state density is very different from the exact one. The ex-
act functional derivative shows how the KE changes along
any direction, but the model only knows about directions
along which the training densities lie. Since these densi-
ties are generated from a set of potentials parametrized
by R, the data is effectively 1d (locally), embedded in a
high-dimensional space. The same effect occurs in [17],
except there we had 9 parameters in the potential.

The bare gradient of the MLA makes solving Eq. 7
unstable. If we project the gradient onto the space of
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FIG. 3. The functional derivative of our MLA (green) can-
not reproduce the exact derivative (blue dot dashed, given
by −vS[n] if evaluated at the ground-state density) because
this information is not contained in the data. However, both
agree when projected onto the space of the data (black and
red dashed). Shown for Z = 1 and M = 10 at equilibrium
bond length (R=1.62), in atomic units.

the data, we can extract the projected functional deriva-
tive of the MLA (see Fig. 3). In [17], we used principal
component analysis (PCA) to locally approximate the
neighborhood of training densities as linear, but here the
local neighborhood is nonlinear, and the PCA method
leads to inaccurate self-consistent densities. Instead, we
use the nonlinear gradient de-noising (NLGD) projection
method developed in Ref. [23].

Applying the NLGD projected gradient descent tech-
nique [23] to minimize Eq. 7 with TML yields the re-
sults in Fig. 4, where we plot the error in total energy,
∆E = EML[ñ]−E[n], where n is the exact density and ñ
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FIG. 4. The total error of the model and the functional- and
density-driven errors [22]. The dots mark the location of the
training densities. R given in atomic units, for Z = 1 and
M = 10.
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FIG. 5. Molecular forces as a function of R, for Z = 1 and
10 training densities. Derivatives are calculated via finite-
difference.

is the self-consistent density. This is split into the error
due to the approximate functional (i.e. functional-driven
error), ∆EF = EML[n] − ELDA[n], and the error due to
the deviation of the self-consistent density from the ex-
act (i.e. density-driven error), ∆ED = EML[ñ]−EML[n]
[22]. Near R = 0, ∆EF is larger because the TS is rapidly
changing. ∆ED is zero at the training densities and is

largest farthest from them. At large R, the ∆ED dom-
inates over ∆EF. Table I gives the MAE of the ML
functional evaluated on the self-consistent densities for
different N and M .

Fig. 5 shows the forces calculated with model densities.
The forces are very accurate and should be suitable for,
e.g., an ab-initio molecular dynamics calculation. Com-
bined with the reduced computational cost of orbital-free
DFT, this method has the potential to simulate very large
systems at the same level of accuracy KS-DFT currently
provides.

Our work shows that, for a one-dimensional system,
machine learning can be used to find a density func-
tional that produces accurate energies and forces on self-
consistent densities, even when bonds break. No exist-
ing orbital-free scheme comes close to this level of accu-
racy. Although this example is limited to one dimension,
there is no reason in principle to doubt the efficacy of the
method for real bonds.
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(M. R.), and NRF Korea Grant No. R31-10008 (K. R.
M.).

[1] P. Hohenberg and W. Kohn, “Inhomogeneous electron
gas,” Phys. Rev. B 136, 864–871 (1964).

[2] W. Kohn and L. J. Sham, “Self-consistent equations in-
cluding exchange and correlation effects,” Phys. Rev. A
140, 1133–1138 (1965).

[3] Kieron Burke, “Perspective on density functional the-
ory,” J. Chem. Phys. 136, 150901 (2012).

[4] Kieron Burke and Lucas O. Wagner, “Dft in a nutshell,”
Int. J. Quant. Chem 113, 96–101 (2013).

[5] R. M. Dreizler and E. K. U. Gross, Density Functional
Theory: An Approach to the Quantum Many-Body Prob-
lem (Springer, 1990).

[6] V.V. Karasiev and S.B. Trickey, “Issues and challenges
in orbital-free density functional calculations,” Comput.
Phys. Commun. 183, 2519 – 2527 (2012).

[7] Valentin V. Karasiev, Randy S. Jones, Samuel B. Trickey,
and Frank E. Harris, “Recent advances in developing
orbital-free kinetic energy functionals,” in New Develop-
ments in Quantum Chemistry, edited by José Luis Paz
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