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ABSTRACT 

The inverse Sturm-Liouville problem is solved by using 

the Gel'fand-Levitan equation. The equation is discretized 

by the trapezoidal rule and the problem reduced to solving a 

sequence of systems of linear equations. The convergence of 

the method is established. It is shown that the problem can 

be arbitrarily ill-conditioned. Finally the accuracy of the 

method is illustrated by two numerical examples. 
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Introduction 

The Gel'fand-Levitan equation is the fundamental equation in inverse 

scattering theory. We shall consider the equation in connection with the 

inverse Sturm-Liouville problem. Roughly speaking, the question is this: 

How do you determine a coefficient in a differential equation from the 

eigenvalues and the integral of the square of the eigenfunctions? This 

problem can be reduced to solving a family of integral equations -- called 

the Gel'fand-Levitan equation (see [3]). In this paper we shall present a 

numerical technique for solving this equation and prove that the computed 

solution converges. It is generally believed that solving the Gel'fand-

Levitan equation numerically is an ill-posed problem. Our numerical 

experiments do not support this belief. We shall show, however, that the 

Gel' fand-Levitan equation can be arbitrarily ill-conditioned. 

The obvious discretization of the inverse Sturm-Liouville problem 

leads to the inverse eigenvalue problem for Jacobi matrices. In [2] de 

Boor and Golub have given a stable algorithm for this problem. It is 

extremely difficult 'to prove that the solution of the inverse problem for 

the tridiagonal matrix converges to the solution of the inverse problem 

for the differential equation. RaId [4] and Yen [9] have proved the conver-

gence for a different kind of algorithm, based on the Rayleigh-Ritz method. 

The results are only local. The most powerful approach seems to be to 

analyze the differential equation and then discretize the resulting equa-

tions. Thus Rochstadt has reduced the inverse Sturm-Liouville problem to 

solving systems of ordinary differential equations (see [7,5]). In this 

paper we shall study a particular discretization of the Gel'fand-Levitan 

equation, and show how the numerical solutions can be organized. 
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1. The Gel'fand-Levitan equation 

Consider the two point boundary value problem 

-u" + q(x)u = AU (1.1) 

u'(D) - hu(O) = 0 U I (rr) + Hu(rr) o 

on the interval 0 ~ x ~ rr with hand H finite. This problem has 

an infinite number of eigenvalues AO,Al , and eigenfunctions 

uo (x) , ul (x), ... . We assume tha t 

normalizing constants Pj = J:u~. 
u. = 1 at 

] 

If q - 0 

x = 0 and let 

and h = H = 0 

P = rr and p. = rr/2 for j ~ 1. Let 
OJ. 

a(x) [
cos..r>:: x 

= '1:,00 J 
j=l P. 

J 1 
cos..f"f:.O x 

_ cos jx + ______ ~_ 
rr/2 Po 

then 

1 
rr 

be the 

1 .2 
/\.=] , 

J 

(1.2) 

If A. < 0 then cos ..r>:: x should be replaced by cosh v'f1:T x. The 
J] J . 

Gel'fand-Levitan equation is a one parameter family of integral equations 

and given by 

f(x,y) + J:f(y,t)K(X,t)dt + K(x,y) o (1. 3) 

where f(x,y) = [a(x+y) + a(x-y)]/2 (see [3]). Here y ~ x and x is 

a parameter. To find the potential q corresponding to the eigenvalues 

Aj and the normalizing constants Pj we solve the Gel'fand-Levitan 

equation for each x in the interval [O,rr] and set q(x) 
d 

2 dxK(x,x) 

The constant h in the left boundary condition is -f(O,O) -a(O). To 

find the constant H in the boundary condition at the right we solve the 
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f 

differential equation (1.1) with A = AO and initial conditions u = 1 

and u' ::; h at x. =.0 and set H = -U'(1T)/U(1T). 

2. The matrix problem 

To discretize Eq. (1.3) we approximate the integral by the trape-

zoidal r.ule. Let· h = 1T/N and let (x.,y.) = (ih,jh). 
3. J 

Then 

i 
f(x.,y.) + -hIs.kf(y.,tk)K' k + K-fj = 0 

3. J k=O 3. J 3. .... 
(2.1) 

with j ~. i, is a discrete version of the Gel'fand-Levitan equation. 

Here Sij is 1/2 for j = 0 and j = i, and 1 otherwise. To evaluate 

K .. we must solve Eq. (2.1) for i = 1,2, ... ,N. For i = 0 we set 
;1.1 

KOO = ~f(O,O). If we solve the linear system of equations by Gaussian 

elimination, then the number of operations is of order N4/12. We will 

reduce the cost to approximately Let S. 
1 

and let F. and K . be the principal submatrices 
. 3. 1 

diag(siO' ... , 
of order i+1 

s .. ) 
11 

of 

F (f (x. , y.» and K = (Kij ) . Note that the upper triangular part of 
1 J 

K is undefined. 

where k~ and 
1 

We can then rewrite Eq. (2.1) 

f~ are the last rows of K. 
3. 1 

I + hF.S. 
1 1 

from the right by 
-1 

S 
i 

we get 

A.z. 
1 1 

-f. 
1 

as (I + hF.S.)k. = -f. 
13.1 1 

By multiplying 

(2.2) 

where Z. 
1 

S.k. and A. is symmetric. We will assume that 
3. 3. 1 
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A ::;: diag(2,1, ..• , 1) + hF is positive definite. This is reasonable as 

the corresponding fact holds for the Gel'fand-Levitanequation. Thus 

A = LDLT where L is unit triangular and D is diagonal (see [8]). 

Since A. 
1 

is the principal submatrix of order i+l of 
. T 

A + e. e . we s.ee 
1 1 

that A . D T . = L .. L. 
1 111 

where L. and D. 
1 1 

are the principal submatrices of 

Land T 
D + e.e .. 

1 1 
Here (e.). = 0 ..• 

1 J 1J 
To calculate Rii it is not neces-

sary to solve Eq. (2.2) completely. Rather we solve L.w. = -f. and set 
111 

K .. = 2(w.) ./(1+ (D) .. ) 
11 1 1 11 

The approximate potential is then computed by centered differences: 

qi = (Ki+l,i+l -Ki ...;1,i_l)/(2h) for O~i~N. Here K_l,_l and ~+l,N+l 

are determined by polynomial extrapolation using four values of K .. 
11 

near the boundaries. This is equivalent to using unsymmetric differences 

in evaluating and To find the constant H in the boundary 

condition at the right we rewrite the differential equation (1.1) with 

A = AO as a first order system and solve it by the trapezoidal method 

with initial conditions (uo,ub) = (l,-a(O». Thus 

[U~+l J [ 1 + (h
2

/4)Q. 

h J [U'J 1 

(h/2)(Qj + Qj:l) (h
2
/4) Qj+l u; 2 

(2.3) 

u j +l 1 - (h /4)Qj+l 1 + 

for o ~ j <N where Qj qj - AO' and we set H -~/uN' 
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3. Convergence 

We will assume that the function a(x) is known exactly. In 

actual calculation we use only the first few eigenvalues. The remaining 

ones are equal to the squared integers. Thus the potential can be con-

sidered as a perturbation of the zero potential. The error in the com-

puted potential comes from replacing the integral in the Gel'fand-Levitan 

equation by a finite sum and from the numerical differentiation. We will 

show that our method is second order accurate. The proof is based on 

asymptotic expansions and uses the stability of the Gel'fand-Levitan equa-

tion. By using the Euler-Maclaurin summation formula, we see that 

i 
f(x.,y.) + hl: s'kf(y.,tk)K(x.,tk) + K(x.,y.) 

1 J k=O 1 J 1 1 J 

h
2 

( )' I xi = 12 f(y.,t)K(x.,t) 
J 1 t=O 

_ xi h 4 (fK) IV 
720 . 

(3.1) 

Thus K(Xi'Yj) satisfies· the discrete Gel'fand-Levitan equation except 

for terms of order O(h2). Here we assume that f and K are four 

times continuously differentiable. We will now show that there exists 

a function E(x,y) such that K + h2E satisfies the discrete Gel'fand­

Levitan equation except for terms of order O(h4). Let E be the solu-

tion of the one parameter family of integral equations 

E(x,y) + I:f(y,t)E(X,t)dt 
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Here y EO;; x and x is the parameter. This equation has the same 

structure as the Gel'fand-Levitan equ(ition, and we assume that its 

solution is twice continuously differentiable. Note that E(O,O) = O. 

By approximating the integral by the trapezoidal rule, we see that 

= 1 ( ) ( )')' 1 xi + xi h2 (fE)" - 12 f y.,t K xi' t 12 
J t=O 

By multiplying both sides of this equation by h
2 

and combining the 

result with Eq. (3.1), we conclude that K + h2E satisfies the discrete 

Gel'fand-Levitanequation, except for terms of order 

r .. 
1J 

where 

K .. 
1J 

2 
(K + hE)(x.,y.). 

1 J 

(I + hF. S . ) r . 
111 

Since Eq. (2.1) is linear, we find 

T 
r. is the last row of the principal submatrix of order i+l 

1 

of (r .. ). If the inverse of I + hF.S. is bounded by 1/6 then the 
1J 1 1 

last component of r. 
1 

satisfies 

2 
IK .. - (K+h E)(x.,x.)1 

11 1 1 
max 1 (fK)IV 1 + max 1 (fE)"I] . 

t , yQ{ t , yEO;;x 
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Thus we have found the first term in the asymptotic expansion of the 

diagonal element:s of K. Note that IIhFiS.1I .~ 1 - 0 if 
~ 00 

I a I ~ (1 - 0) /rr . 

This happens if the eigenvalues and the normalizing constants are only 

slightly perturbed. The pqtential is computed by applying the centered 

difference formula to K
ii

. By using Taylor's formula with remainder we 

get 

This estimate holds for 0 ~ i ~ N. The errors at the boundaries have 

been estimated by writing qo and qN as unsymmetric differences of K ..• 
~~ 

It follows from the last equation that the secbnd divided differences of 

qi are bcunded and converge to q" as h tends to zero. Finally we 

consider the evaluation of H. Since the trapezoidal method is second 

order accurate we conclude th,at the solution of Eq. (2.3) is second order 

accurate. The error in H is therefore of order O(h
2
). 

4. Example of ill-conditioning 

Our method works well if the Gel'fand-Levitan equation is well-

conditioned. This is the case if the eigenvalues and the normalizing 

constants are only slightly perturbed. For example, if la(x)1 ~ o/rr 

then all Ai have a condition number less than (2 + 20)/(1 - 20). We 

will now show that the Gel'fand-Levitan equation can be arbitrarily ill-



-8-

co.ndit ioned. This happens if two eigenvalues get very close or if a 

normalizing constant becomes either very large or very sinall. We will 

present the phenomenon·for the discrete problem and will only perturb 

the lowest eigenvalue 1..0 and the corresponding normalizing constant PO' 

We consider ~ with N ~ 3 as heuristic considerations indicate that 

this is the worst case. 

Throughout this section we assume that 0 < 1..0 < 1. This implies 

that the matrix F has rank 2 and that 

hF 
T T 

= uu - vv 

where the. j' th elements of u and v are Vh/PO cos (~ x
j

) and ../hTIT. 

Let U = (u,v), V = (u,-v) and D = -1 T 
SN' Then hF = UV. To find the 

condition number for ~ we must estimate the eigenvalues of D + uvT
. 

Since D diag(2,1, ••• ,1,2) we expect that some of the eigenvalues are 

close to 1 and 2. A direct calculation shows that 1 is an eigenvalue of 

( 
uOVo) 

~ with multiplicity N-3. Here we have used that is nonsingu-
~vN 

lar and that the vectors (ul""'~_l) and (vl' ... ,vN_l ) are linearly 

independent. The same technique shows that 2 cannot be an eigenvalue of 

~. To find the remaining 4 eigenvalues we observe that if (D + UVT)x = Ax 

and A I 1,2 then (I + VT(D - A)-lU)VTx = O. The determinant of 

I + VT(D - A)-iU is 
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2222· 
. . Uo + ~ ul + ••• + ~-l 

1 +- 2 - A + 1 - A 
Uo Vo + ~vN +u1 vI + ••• + ~-1 vN_1 

2 - A 1 - A 

- (1,2) element 

2 2 
vI + ••. + vN_1 

1 - A 

1 + a A c + C 
2 - A + 1 - A 2 - A 1 - A 

= (4.1) 

- (1,2) element 1 _ b B 
2 - A 1 - A 

We can now prove that zerQ cannot be an eigenvalue of ~. By using 

elementary trigonometric identities we see that 

. [() cos (hv'\;)] 
a/2 + A = -:?- 1 + E 21T~ -(. ) 

Po E h~ 

b/2 + B = 1 

c/2 + C 

where E(x) = sin(x)/x. Thus ~ is singular iff c/2 + C vanishes. 

This cannot happen for 0 ~ AO < 1, but occurs for AO = 1. By evaluat­

ing the determinant (4.1), multiplying the result by (2 A)2(l - A)2 

and reordering the terms, we see that if A ~ 1,2 then A is an eigen-

value of ~ iff it is a root of the polynomial 
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(2 _A)2. [(1- A)2 + (A-.B) (1- A) + C2 - AB J 
+ [(a - b)(2 - A)(l- A)2 + (c

2 
- ab)(l- A)2 + (2cC - aB - bA)(2 - X)(l- X) J 

Since ~ is real, the roots are real. We observe now that a, band 

c tend to zero as h tends to zero, while the limits of A, Band C 

are finite. Since the roots depend continuously on the coefficients, at 

least two roots are close to 2. The remaining roots are determined 

approximately by the equation 

o (4.2) 

where A, I and C are the limits of A, Band C as h tends to 

zero. If we had attacked the Gel'fand-Levitan equation directly, we would 

have arrived at exactly the same equation. Eq. (4.2) has two real rqots 

as I + A ~ 2C. If C is small then the first root is small,whereas the 

second root is either of moderate size or large depending on the size of 

A. To cast this into quantitative terms we set A = I 
0 

- € and find that 

2 the condition number of ~ is of order 8PO/('IT€ ) in the first case, 

while it is of order 2 
'IT/(pOE ) in the second. 

5. Calculation of f(x,y) 

The evaluation of the function f(x,y) at the meshpoints can be 

reduced considerably by observing that the values a(xi + Yj) and 

a(x. - y.) are included in the sequence a(ih) for 0 ~ i ~ 2N. We 
1 J 

will now discuss a case in which a finite number of eigenvalues and all 
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the normalizing constants are perturbed. This occurs if we insist that 

the·potential is symmetric around the middle of the interval and perturb 

AO' ... ,Am· It can be shown that if the potential is an even function 

around 7T/2· and h= H then· q(x) and h are uniquely determined by 

AO,A1,... (see [5]). If the perturbations of the eigenvalues are not 

too large, say IA. ~ j21 < 1/3 then the normalizing constants are deter­
J 

mined by 

A. - A. .J>:: m J 1 ] = 7TIT i=O 
A. .2 VI": + j i#j - 1 

J J 

E (~ - j) 7T) , 0 ~ j ~ m 

.2 A. J -7T m 1 m<j (5.1) = ZIT i=O .2 .2 
J - 1 

where E(x) =.sin(x)/x (see [5]). For small x, E(x) should be calcu-

lated using power series. This gives a stable computation of p .• 
J 

If 

large perturbations are considered then the normalizing constants should 

be derived directly from the definition Pj = IW'(Aj ) I where 

W(A) 
A - A. 

= IT ~ 0 ~ ...r>: sin(7Tv'I) 
1= A - i 

We turn now to the calculation of a(x) which we rewrite as 

a(x) = r,oo (-1... ~ _1_) cos J'x + r,m 
m+l Pj 7T/2 j=l 

cos";>::: x 
J 

c os ";-=;:;'0 x cos jx + ________ _ 
7T/2 Po 

1 
7T 

(5.2) 
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This series converges absolutely and uniformly, but slowly. To speed 

-1 .-2 
up the convergence we expand Pj as a power series in J It follows 

from (5.1) that Pjl = (2/7r)(1 + A/j2 + Rj ) where A = ~~(\ - i 2) and 

.-4 R. = O(J ). By inserting this result in Eq. (5.2), reordering the terms 
J 

and using that the Fourier series ~j-2cos jx can be summed explicitly, 

we obtain 

a(x) 
2 (2 
TI A\X - 27TX 

27T
2

) 1 [cosv'\ x 
+-3- 4+~=1 P. 

. J 

2 ",,00 

+ - ~. 1 R. cos jx + 
7TJ=m+ J 

cos...r>:: x 
J 1 

7T 

- ~ (l+~) cos 7T .2 
J 

(5.3) 

The infinite sum converges quickly and the values of _R
j 

can be computed 

from 

R. 
J 

.2 .2 
A m J - 1. 

II . 0 1 
1.= .2 A. .2 

J - J 
1. 

One might argue that if only a finite number of eigenvalues are given 

then one should use the same number of normalizing constants. Numerical 

experiments show that the potentials computed in this manner oscillate 

around the previous potentials and are unsymmetric near the boundaries (see 

Figure 1). 

6. Numerical examples 

The algorithm presented in section 2 has been tested on a number of 

potentials. We have concentrated on those which are symmetric around the 
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middle of the interval. Thus the potential and the boundary conditions 

are uniquely determined by the eigenvalues. Our first problem is the 

reconstruction of the Mathieu equation with Neumann boundary conditions. 

The theory assumes the potential is smooth. This is the case if only a 

finite number of eigenvalues are perturbed. We have also considered the 

reconstruction of discontinuous potentials. The numerical results are 

encouraging, but we have no convergence proof for this kind of potential. 

Our first test problem is q = 2 cos 2x and h = H = O. The eigen-

values have been carefully tabulated (see [10]). Fig. 1 shows the poten-

tia1 computed from the first 6 eigenvalues with 80 points in (O,n]. The 

function a(x) was evaluated by using (5.3). The exact potential 

corresponding to this a(x) will be symmetric around n/2 and have the 

tabulated eigenvalues "'0""''''5' For j > 5 the eigenvalues are It. 
J 

The potential converges toward 2 cos 2x as we increase the number of 

eigenvalues. The obvious way o~ approximating a(x) is to set "'. 
J 

and p. = n/2 for j > 5, thus truncating the series (1.2). Fig. 1 
J 

.2 
J • 

.2 
J 

shows that this technique gives an unsymmetric potential. The phenomenon 

persists even if .we increase the number of eigenvalues. To test the h
2 

behavior of the method we computed q and H using the mesh length 

h = n/N with N = 20, 40 and 80 and found H = -.179, -0.047 and -0.012. 

In our second test problem the potential is -2 if . n/4 < x < 3n/4 

and 2 otherwise. The constants in the boundary conditions are h = H = O. 

The eigenvalues are zeroes of a nonlinear equation, which only involve 

elementary functions. They were found by Newton's method. Fig. 2 shows 

the solution (called G-L) computed from "'0""''''7 with 80 points in 

(O,n]. We have compared the Ge1'fand-Levitan technique to Hochstadt's 
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1 

o 
-of-....,...-------~-----------------_I ---.---- .-- ..... 

Fig. 1. Reconstruction of the Mathieu potential from 6 eigenvalues. 
a(x) computed from A: Eq. (5.3), B: Eq. (1.2) truncated. 
C = exact solution. 

--t -') 

1T 
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Reconstruction of a discontinuous potential 
by three methods: G-L = Gel'fand-Levitan, 
Y = Yen (the latter shifted vertically by 2 
clarity) . 

y. 

from 8 eigenvalues 
H = Hochstadt, and 
for the sake of 
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method and to Yen's method. In Hochstadt's algorithm the inverse problem 

is reduced to solving two systems of ordinary differential equations, one 

linear and one nonlinear (see [7,5]). Yen [9] represents the potential by 

a Fourier series and finds the Fourier coefficients by solving a system of 

nonlinear equations. In Fig. 2 we display the solutions with a vertical 

shift of 2 for the sake of clarity. Hochstadt's solution differs from the 

solution of the Gel'fand-Levitan equation by at most 0.03. Yen's solution 

agrees with the other two in the interval (TI/4,3TI/4). Note that Gibbs' 

phenomenon is present in all three cases. This shows the connection 

between the three methods which are completely different in theory and in 

implementation. 

7. Open problems 

In this paper we have concentrated on one particular inverse eigen­

value problem, namely finding the potential and the boundary conditions 

from the eigenvalues and the normalizing constants. This problem is dis­

cussed in the classical paper by Gel'fand and Levitan [3]. Here we have 

emphasized the reconstruction of symmetric potentials. There are a number 

of related inverse eigenvalue problems. For example: (a) If the boundary 

conditions are given and h = H and the potential is symmetric, then it 

is uniquely determined by the reduced spectrum, i.e. all the eigenvalues 

except the first (see [1]). (b) The potential is uniquely determined by 

the eigenvalues and the normalizing constants if Eq. (1.1) has Dirichlet 

boundary conditions (see 13]). (c) If in addition the potential is sym­

metric then it is uniquely determined by all the eigenvalues (see [1]). 
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(d) An unsymmetric potential is uniquely determined by two interlacing 

spectra corresponding to two related sets of boundary conditions (for 

details see [7]). (e) If the boundary conditions are given, then the 

lowest eigenvalue in one of the spectra can be deleted (see [1]). 

The numerical method presented in this paper is the simplest the 

author could think of and for which it is straightforward to give a con-

vergence proof. However, many problems suggest themselves, such as 

establishing asymptotic expansions in general and studying the relative 

efficiency between Richardsonis extrapolation and deferred correction. 

One can also consider replacing the trapezoidal rule by another quadra-

ture formula or replacing the centered differences by higher order differ-

ences. Moreover, one need not solve the ordinary differential equation 

by the trapezoidal method, and different techniques can be used for 

interpolating the computed potentials. The question of stability of the 

method has not been studied sufficiently. It is straightforward to 

establish the stability of K .. , provided the eigenvalues and the normal-
1.1. 

izing constants are only slightly perturbed, i. e. a is small. It it 

more difficult to obtain the general result. In practice only a finite 

amount of data is given. The effect of using finitely many eigenvalues 

when calculating sYmmetric potentials can be estimated, but the estimates 

are very pessimistic (see [5,9]). Finally, our method is unreasonably 

expensive if only a small number of eigenvalues and normalizing constants 

is perturqed. This problem should be solved directly by using the theory 

of degenerate integral kernels and trigonometric identities. It is 

expected that some of these questions will be answered in a forthcoming 

thesis by Jerome Coonen. 
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