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ABSTRACT

._The inverse Sturm—tiouville problem is solved by using
the Gel'fand-Levitan equation. The equation is discretized
.by the trapezoidal rﬁle and thé problem reduced to solving a
seqqénce of systems of iinear equatidns. The convergence of
the method is established. It is shown that the problem can
be arbitrarilyvill—conditioned. Finally the accuracy of the

method is illustrated by two numerical examples.



Introduction

The Gel'fand—Levitan equation'is the fﬁhdamental equation in inverse
ééattering.thebry., We shall éonsiaer thé’equatioh in connéction with the
inverse Sturﬁ—Lioﬁville problem: _Roﬁghly‘spegking, the question is this:
| How.do youkdetefmine aic0efficient in.a differential equation from the
.eigenvalﬁes'ana the integral of thé square of the eigenfunctions? This
problem cgn-be reduced to sbiving a family of integral. equations --called

the Gel'fand—Levitan'equatidn (sée [3])...In this paper we shéll present a
numerical téchnique for solving this equation ‘and prove tha£ the computed
soiution converges. It is generally believéd that solving the Gel'fand-
Levitan equétioh.numerically is an ill-posed préblem. Our numerical
experiments do not.support this belief. We shall show, however, thét the
Gel'fand-Levitan equatién can be arbitrafily ill-conditioned.

The obvious discretization of the inverse Sturm-Liouville proBlem
leads to the inverse eigenvalue problem for Jacobi matrices. In [2] de
Boor.énd Golub have given a stable algorithm for this problem. It is
exfremely'difficult‘to prove that the solution of the inverse problem for
.the tridiagonal matrixbconverges to the solution of the inverse problem
for the différential equation. Hald [4] and Yen [9] have proved the conver-
gencg for a different kind of aigorithm, based on the Rayleigh-Ritz method.
The fésults are only iocal. The most powerful approach seems to be to
anélyze the differential eqqation and then discretize the resulting equa-
tions. Thus Hochstédt-hasureduced the inverse Sturm-Liouville problem to
solving systems of ordinary differential equations (see [7,5]). 1In this
paper we sﬁall study a particular discretization of the Gel'fand—Levitan

equation, and show how the numerical solutions can be organized.



1. The Gel'fand-Levitan equation

Consider the two point boundary value proBlem
-u" + q(x)u = Au ‘ ' (1.1)
u'(0) - hu(0) = 0 , u'(m + Hu(m) =0

on the interval 0 < x <7 with h and H finite. This problem has

an infinite number of eigenvalues X,,A and eigenfunctions

(00 R

uo(x), ul(x), .+ « We assume that u.=1 at x=0 and let pj be the
T2 .
normalizing constants pj = f uj. If g=0 and h=H=0 then A.=j2,
: 0

Pg =T and pj =7/2 for j=1. Let

a = | SVA T eos x| (SN X 1
\ j=11 pj m/2 T Tt

If }j ; 0 théé éoswﬁ:;x‘should bé replaced by COSthX;ij Thé
Gel'fand—Levitan eduation is a one parameter family of ihtegral equations
and given by -

o x :

f(x,y) + fof(y,t)K(x,t)dt + K(x,y) = 0 (1.3)
where f(x,y) = [a(x+y) + a(x-y)]/2 (see [3]). Here y < x and x is
a parameter. To find the potential q corresponding to ﬁﬁé eigenvalues
Aj and the normalizing constants pj we solve the Gel'fand-Levitan
equation for each x in the interval [0,7] and set q(x) = 2;£EK(X,X).
The constant h in the left boundary condition is -£(0,0) = -a(0) . To

find the constant H in the boundary condition at the right we solve the
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differential equation (1.1) with X = XO and initial conditions u = 1

and u' = h at_ xf=TO and'set H = -u'(ﬂ)/u(ﬂ).f'

2. The matrix problem

To discretize Eq. (1.3) we approximate the integral by the trape-

: zoidal'rule. Let ‘h = m/N and let (xi,yj) = (ih,jh). Then

£(x5yy) f\hzk=o s f )Ry + Ky = 0 (2.1)

with j <'i, is a discrete version of the Gel'fand-Levitan equation.

Here sij is 1/2 for j =0 and j = i, and 1 otherwise. To evaluate
Kii we mustvsolve Eq. (2.1) for i=1,2,...,N. For i =0 we set
Kyo = -£(0,0).  If we solve the linear system of equations by Gaussian

elimination, then the number of.operations is of order N4/12. We will
'feduce the cost to approkimatelyb N3/3.' Let Si = diag(sio,..., éii)
and let #i and Ki bé the principai submatrices of order i+l of

F = (f(xi;yj)) and K f (Kij)' Note that the uPper triangular parf of
K is undefined. We‘éan”then rewri;e Eq. (2.1) as (I +‘hFisi)ki = -fi
vwhere 'ki and fz are the laét rows of. Ki ~and Fi' By multiplying

: -1
I+ hF'iSi from the right by S, we get
: , i
Aiz = -f, (2.2)

where z, = siki and Ai is symmetric. We will assume that



A = diag(2,1,...,1) + hF is positive definite. This is reasonable as
the cbrresponding fact holds for the Gel'fand—Levitan'equation. Thus
A= LDLT where L is unit triangular and D is diagonal (see [8]).

. . c s ' . Liq : T
Since Ai is the principal submatrix of order i+l of A + e,e; we see

that A, = LiDiLz where L, and D, are the principal submatrices of
LL and D + e.e?; Here (e.)., = 6... To calculate K,, it is not neces-
i7i i’j ij ii
sary to solve Eq. (2.2) completely. Rather we solve Liwi = —fi and set
K,., = 2(wi)i/(14-(D)ii)

11

The approximate potential is then computed by centered differences:

q. = (K

_ ' <i<N. '
1= Ripg a4 "Kjoq, 312/ (2h) for OSiSN. Here K, , and Kgg 9

are determined by polynomial extrapolation using four values of Kii
near the boundaries. This is equivalent to using unsymmetric differences
in evaluatipg ‘qo> and qN; To find the constant H 'in the boundary
condition af the righf Qe rewrite the differential equation (1.1) with

A= AO as a first order system and solve it by the trapezoidal method

with initial conditions .(uo,ué) = (1,~a(0)). Thus

j+1 1 1+ /4)Qj -~ h U
(2.3)

,' = 2 ‘ 2 ,
Tyl -1~ (h /4)Qj+l (h/z)(ijQjﬂ) 1+ (h /_4)Qj+l u)

<j< = q. - AN
for 0 < j S N where Qj 9 AO’ and we set H uN/uN



3. Cohvefgencé |

| We will>assume that the fuhcﬁion é(x)' is known exactly. 1In

actual calcﬁlation we usevoﬁly the first few eiéénvalues. The remaining
bnes are equal to the squared integers. Thus the potential can be con-

- sidered as a perturba;ion of the_zéro potential., The error in the com-
puted potential comes'from'replacing the integfalvinithe Gel'fand-Levitan
équation by a finite sﬁm and ffom:the numerical differentiation. We will
show that our metﬁod.is sgcond order accurate. 'The proof is based on
‘lasymptotic expaﬁsions and uses the staBility 6f the Gel'fand-Levitan equa-

tion. By using the Euler-Maclaurin summation formula, we see that

i
f(xi,yj) + hzk=0 sikf(yj,tk)K(xi,tk) + K(xi,yj)
(3.1)
2 ' xi X '
- h- ' ' i 4 v
=13 (f(yj,t)K(xi,t)> tiO -3 1 (£fK)

ThusS K(xi,yj) satisfies the discrete Gel'fand-Levitan equation except.
for terms of order O(hz). Here we assume that vf and K are four
times coﬁtinuousiy.differentiable. We will now show that there exists
a-funétion E(x,y) such that K + hZE satisfiés the discrete Gel'fand-
Levitan equation éxcept for terﬁs of order O(ha). Let E be the solu-

tion of the one parameter family of integral equations

X X

E(x,y) + j E(r,OEG, Dt = - 25 (£(7,DKx,0)) |
' 0 t=0



Here @y <x and x 1s the parameter. This equation has the same’

structure as the Gel'fand-Levitan equation, and we assume that-its

~

solution is twice continuously differentiable. Note that E(O 0) = 0.

. By approx1mat1ng the 1ntegral by the trape201dal rule we see that

E(x ,y ) + hZ

k=0 Skt Ty BBt

_L(f(y £)K (x t)')' lxi +x_ih2(fE)"
12 "9y ) T

1t

By multiplying both sides of this equation by h2 and combining the

result with Eq. (3.1),‘we conclude that Ki—th satisfies'the discrete

Gel'fand-Levitan equation, except for terms of order O(hé). Let
L 2 . e e
rij = Kij (K + h.E)(xi,yj). Since Eq. (2.1) is lineat, we find
: 4
'x.h
X 1, IV "
(1 + hF, S )r, = 17 [ 0 (fK) " + (fE) :’

where rg is the last row of the principal submatrix of order i+l
of (rij). If the inverse of I + hFiSi is bounded by 1/8 then the

last component of r, satisfies

X, h4
K.,. - (Krkh E)(x S X, )I 126 [ga max'](fK)IV[ + max l(fE)"q
i t,y<x t,y<x
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Thus we have found thé first térm in the asymptotic éxpansion of the
diagénal elemtlantls of K. Note that IhFsll, <1 -6 if la] < (1-8) /7.
This happens if.the eigéﬁva1Ues and the normalizing éonstants are‘only
slightiy'pertufbéd. The potential is computed by applying the centered

i By using Taylor's formula with remainder we

difference formula to K
. get

Jag - atep) - nHExm 4 2) | |

< h3[—2-l4— ma_xIKvIVI + % max |E"| + %(% mak|(fK)IY[ + max | (fE)" I):] .

‘This estimaté holds for 0 < i < N.. The errors at the Boundaries have
been estimated by writing'qo and qy as unsymmetric differences of Kii'
It follows from the laéf equation that the second divided differences of
q; are bcunded and converge to q" as' h tends to zero. Finally we
consider the evaluation of H. Since the trapezoidal ﬁethod is second

order accurate we conclude that the solution of Eq. (2.3) is second order

accurate. The error in H is therefore of order O(hz).

4, Example of ill-conditioning

Our method works well'if the Gel'fand-Levitan equation is well-
conditioned. This is the case if the eigenvalues and the normalizing
constants are only slightly perturbed. For ekample, if Ia(x)[ < §/7
then all Ai have a‘condition number less than;_(2 + 26)/(1.— 28). We

will now show that the Gel'fand-Levitan equation can be arbitrarily ill-



'

condifioned. This happens if two eigenvalues get.very ciqse or if a
norma;iziné constant Becomes either_very large of‘very small. We will .
presentvthelphenomenon'for thé discreteuproblem and will only perturb
thevlpwest eigénvalue_ AO vand.the cofrequn&ing normalizing constant Py

.We consider AN with N = 3 as heuristic considerations indicate_that'

this is the‘ worst case.
Throughout this section we assume that 0 < A0'< 1. This implies

that the matfix F has rank 2 and that

.hF = uuT—-VvT

where the j'th elements of u and v are \/ﬁ?Ba.cos(vCE;ij) and \fﬁfﬁ.
" Let U =v(u,v), V =‘(u;—v) and D = Sgl. Then hF = UVT. To find the
condition number.for AN Qe must estimate the eigenvalues of D + UVT.
Since D = diag(Z,l,...,l,Z) we expect that some of the eigenvalues are

close to 1 and 2. A direct calculation shows that 1 is an eigenvalue of

| “0v0
AN with multiplicity N-3., Here we have used that

| | NN
lar and that the vectors (ul""’uN—l) .and (vl,...,vN_l) are linearly

> is nonsingu-

independent. The same technique shows that 2 cannot be an eigenvalue of
AN' To find the remaining 4 eigenvalues we observe that if (D-+UVT)x==Ax
and X # 1,2 then (I + VT(D - X)_lU)VTx = 0. The determinant of

I+ -0t is



e

-9-
u? 4+ 2 ul2 + e +. | UV, +u v, uv, +...+ .v
140 “N+ Uyop 0% " "w'w  %1¥1 7o T Yne1'Ne1
272 A 1 -2 2 - A 1 - A
- : ‘ g + vé v1 + . + V;—l
- (1,2) element 1 - 2 - X T -
: a A _ : c C
-1+2_)\+1_)\ 2—)\+l->\
.= ’ ' (4.1)
b B
- (1,2) e;ement | 1 - I W R

We can now prove that zero cannot be an eigenvalue of AN. By using

elementary trigonometric identities we see that

R

a/2 + A

b/2+B = 1
/2 +¢ = X E(ﬂﬁ)M
\/;; | 0 E<h/2\/)\—0>

wﬁere E(x) = sin(x)/x. Tﬁus AN is singular‘iff. ¢/2 + C vanishes.
This cannot happenvfor 0 < AO < 1, but occurs for AO = 1. By evaluat-
.ing the determinant (4.1), multiplying the result by (2 - A)z(l —_A)
and reordering the terms, we see that if A # 1,2 then A is an eigen-

vaiue of AN iff it is a root of the polynomial
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2 %ZA)'Z_[(l 02+ a-Bya-n+c?- AB]
+ [(a—b)(z -0+ (2= ab) (1= )2+ (2cC - aB - bA) (2~ \) (L - x)] :

Since AN is real, the rbo;s_are real. We obsérvé,now that a, b and
c tend to zero as h ﬁehds to zero, while the limits of A, B and .C
lrare'finite; Since the roéts depend continuously on the coefficients, at
least two roots are close to 2.  The remainiﬁg réots are determined

approximately by the equation

M- @a+an+ct = o (4.2)

where A, 1 and C -are the limits of A, B and C as h tends to
zero. If we had attacked the Gel'fand—Levitanbequation diréctly, we would
have arrived at exactly the same equation. Eq. (4.2) has two real roots
as 1+ A = 2C. If C is small then the first root is small, whereas the
second root is either of moderate size or large depeﬁding on the size;of
A. To cast this into quantitétive terms we set AO =1 - ¢ and find that
the condition number of AN is of order SpO/(ﬂez) in the first case,

while it is of order. ﬂ/(poez) in the second.

5. Calculation of f(x,y)

The evaluation of the function f(x,y) at the meshpoints can be
reduced considerably by observing that the values a(xi + yj) and
a(xi - yj) are included in the sequence a(ih) for 0 < i < 2N, We

- will now discuss a case in which a finite number of eigenvalues and all



the normalizing constants are perturbed. This occurs if we insist that
the potential is symmetric around the middle of the interval and perturb

It can be shown that iflthe potential is an even function

Anseaesh .

0’ m _ _
. around T/2 -and h = H then- q(x)' énd h are'ﬁniquely determined'by
ko,ll,..; (see [5]). If the perturbations of thg eigenvalues are not

too large, say ]Aj - j2| < 1/3 _then'the'normalizing constants are deter-

mined by '
LA —"Ai X, '
p, = 1ﬂ11= N > u! E (b/k. - j)n) » 0SS j<m
J A, - i P i
i3 73 h|
T.m jz - Xi ' < s
“2leo7o 2 0 e (51

where E(x) = sin(x)/x (see [5]). For small x, E(x) should be calcu-
lated using power series. This gives a stable computation of pj. If

large perturbations are considered then the normalizing constants should

be derived directly from the definition pj = Iw'(kj)| where
W) = 17 ———= VX sin(mV}X)
i=0 3\ - i2

We turn now to the calculation of a(x) which we rewrite as-

, cosVA, x . cos .A X
a(x) = E°° _l_ - __L_ cos jx + Em ] _ cos jx + 0 _

E o

(5.2)
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This series’cdnverges absoluteiy and uniformly, but slbwly. fo speed

up thg cohyergence we expand p}l. as a power series in j_z. It follows
from (5.1) that p; = (2/m (1 + &/3° +R)) where A =, - 1%) and
Rj = O(j'4),v By inserting this result in Eq. (5.2), rgo?dering the terms
and using that the Fourier series Zj_zcos jx can be summed explicitly,

we obtain

2 cosV, x
a(x) = Z-A x2 - 2Tx +'3E—- 1 ZT_ — i .2 1+ 2)cos ix
m 3 /4 3 p Ll 2

The infinite sum converges quickly and the values of le can be computed

from

.2 .2
R =Hm .l_—_i__l_i
J i=0 .2 '.2
T =N h

One might argue that if only a finite number of eigenvalues are given
then one should use the same number of normalizing constants. Numerical
experiments show that the potentials computed in this manner oscillate
around the previous potentials and are unsymmetric near the boundaries (see

Figure 1).

6. Numerical examples

The algorithm presented in section 2 has been tested on a number of

potentials. We have concentrated on those which are symmetric around the
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middle of the interval. Thus the potential and the boundary conditions
are uniquely determined by the eigenvalues. Our first problem is the
reconstruction of the Mathieu equation with Neumann boundary conditions.
The theory assumes the potential is smooth. This is the case if only a
finite number of eigenvalues are perturbed. We have also considered the
reconstruction of discontinuous potgntiais. The numerical results are
encoﬁraging, buf‘we have no convefgence proof for this kind of potential.
Our first test problem is q = 2 cos 2x and h =H = 0. The eigen-
values have been carefully tabulated (seé th]). Fig. 1 shows the poten-
tial comﬁuted ffom the first 6 eigenvalues with 80 poin£s in (0,w]. The
function a(x) was evaluated by using (5,3). The exact potential | |
corresponding to this a(x) will be symmetric around m/2 and have the
tabulated eigenﬁalues Aé,...,xs. For j>5 lthe eigenvalues are Xj = jz.
The potential converges tbward 2 éos 2x  as we increase the number of
eigenvalues. The obvious way of approximéting a(x) 1is to set Aj = j2
and pj = 7/2- for j > 5, thus truncating the series (1.2). Fig. 1
shows phat this technique gives an hnsymmetric potential. The phenomenon
persists even if we ihcrease the number of eigenvalues. To test the h
behavior of the method we computed g and H wusing the mesh length
ﬁ = /N with N = 20, 40 and 80 and found H = -.179, -0.047 and -0.012.
In our second test problem the po;ential is -2 if "7w/4 < x < 3u/4
and 2 otherwise. The cénstants-in the boundary conditions aré. h=H=0.
The eigenvalues are zeroes of a nonlinear equation, which only involve
elementary functions. They were found by Newton's method. Fig. 2 shows

the solution (called G-L) computed from ,AO,...,X7 with 80 points in

(0,7]. We have compared the Gel'fand-Levitan technique to Hochstadt's



~14-

Fig. 1. Reconstruction of the Mathieu potential from 6 eigenvalues.
. a(x) computed from A: Eq. (5.3), B: Eq. (1.2) truncated.
C = exact solution.
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Fig. 2.

‘Reconstruction of - a discontinuous potential from 8 eigenvalues

by three methods: G-L = Gel'fand-Levitan, H = Hochstadt, and
Y = Yen (the lattéer shifted vertically by 2 for the sake of
clarity).
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method and to Yen's method. In Hochstadt's algorithm the inverse problem
is reduced to solving two systems of ordinary differential equations, one
linear and one nonlinear (see [7,5]). Yen [9] represents the potential by
a Fourier series and finds the Fourier coefficients by solving a system of
nonlinear equations. In Fig. 2 we display the solutions with a vertical
shift of 2 for the sake of clarity. Hochstadt's solution differs from the
solution of the Gel'fand-Levitan equation by at most 0.03. Yen's solution
agrees with the other two in the interval (m/4,3m/4). Note that‘Gibbs'
phenomenon is present in all three cases. This shows the connection
between the three methods which are completely different in theory and in

implementation.

7. Open problems

In this paper we have concentrated on one particular inverse eigen-
value problem, namely finding the potentiai and the boundary conditions
from the eigenvalues and the.normalizing éonstants. This problem is dis-
cussed in the classical paper by Gel'fand and Levitan [3]. Here we have
emphasized the reconstruction of symmetric potentials. There are a number
of related inverse eigenvalue problems. For example: (a) If the boundary
éonditions are given and h = H and the potential is symmetric, then it
is uniquely determined by the reduced spectrum, i.e. all the eigenvalues
except the first (see [1]). (b) The potential is uniquely determined by
the eigenvalues and the normalizing constants if Eq. (1.1) has Dirichlet
boundary conditions (see [3]). (c) If in addition the potential is sym-

metric then it is uniquely determined by all the eigenvalues (see [1]).
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(d) An unéymmetrié_potential‘is uniquely determined by two interlacing
‘spectra corfespohding to two rélated sets of boundary conditions (for
details:see [7]), “<e) If the boundary cohditions are given, then the
lowest eigenvalué iﬁ one:of the spectra can be deleted (see [1]).
The.numerical ﬁethod presenﬁed in this paper is tﬁe simplest the
aﬁthor.could think of and.for which it is straightfofward to give a con-
vergencevproof. However, many problems suggest themselves, such as
establishing asymptofié expénéions in general and studying the relative
efficiency between Riéhardson'svexﬁrapolation and deferred correction.
One can also consider replacing ﬁhe.trapezoidal rule by another quadra-
ture formula or replacing the centered differences by higher order differ-
ences. Moreover, one need not.solve the ordinary differential equation
by the trapezoidal method, and different techniques can be used for
interpoléting the computed potentials. The qgéstion of stability of the
me thod has not been studied sufficiently. It is straightforward to
establish tﬁe stability of Kii’ provided the eigenvalues and the normal-
izingvconstants are only slightly perturbed; i.e.. a 1is small. It it
" more diffiéult to obtain the general result. In practice only a finite
amount of data is given. The effect of using finitely many eigenvalues
when'calcgiating é;hmetric potentials can be estimated, but the estimates
are very pessimistic (see [5,9]). Finally, our method is unreasonably
expensive if only a small number of eigenvalues and normalizing constants
is perturbed. vThis problem should be solved directly by using the theory
of degenerate integral kernels and trigpnometric_identities. It is
expected that some of‘tﬁese questions will be answered in a forthcoming

thesis by Jerome Coonen.
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