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Time-and-frequency gated photon coincidence counting; a novel multidimensional
spectroscopy tool

Konstantin E. Dorfman∗ and Shaul Mukamel†

University of California, Irvine, California 92697-2025
(Dated: May 24, 2016)

Coherent multidimensional optical spectroscopy techniques are broadly applied across the elec-
tromagnetic spectrum ranging from NMR to the UV. These reveal properties of matter through cor-
relation plots of signal fields generated in response to sequences of short pulses with variable delays.
Here we discuss a new class of multidimensional techniques obtained by time-and-frequency resolved
photon coincidence counting measurements of N photons which constitutes a 2N dimensional spec-
trum. A compact description of these signals is developed based on time ordered superoperators
rather than the normally ordered ordinary operators used in Glauber’s photon counting formal-
ism.The independent control of the time and frequency gate parameters reveals details of matter
dynamics not available otherwise. Application to an anharmonic oscillator model with fluctuating
energy and anharmonicity demonstrates the power of these signals.

I. INTRODUCTION

Multidimensional spectroscopy measures correlations
of matter dynamics during various time intervals con-
trolled by sequences of short pulses to get material in-
formation [1–3]. These can be distances between spins
in NMR, vibrational motions of protein in the infrared
and energy migration in photosynthesis in visible regime.
Such correlation plots carry qualitatively higher level of
information than single interval one-dimensional (1D)
techniques. Here we demonstrate how similar ideas
may be extended to single-photon coincidence counting
measurements. An N time-and-frequency gated photon
measurement provides a 2N dimensional parameter ωjtj
space. These techniques performed on bulk ensembles
or at the single molecule level offer novel windows into
molecular events and relaxation processes that are com-
plementary to coherent multidimensional techniques [4].

A semiclassical formalism for describing the photon
counting process was first derived by Mandel [5, 6]. The
full quantum mechanical description of field and photon
detection was developed by Glauber [7]. A theory of the
electromagnetic field measurement through photoioniza-
tion and the resulting photoelectron counting has been
developed by Kelley and Kleiner [8]. An ideal photon de-
tector is a device that measures the radiation field inten-
sity at a single point in space. The detector size should
be much smaller than spatial variations of the field.

The response of an ideal time-domain photon detector
is independent on the radiation frequency. The joint fre-
quency and time resolution is limited by the Fourier un-
certainty ∆ω∆t > 1. A naive calculation of such signals
without time and frequency gating can work for slowly
varying spectrally broad optical signals where we are far
from the Fourier limit ∆ω∆t = 1 but otherwise may
yield unphysical negative signals [9]. The mixed time-
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frequency representation for the coherent optical mea-
surements with interferometric or autocorrelation detec-
tion can be calculated in terms of a mixed material re-
sponse functions and a Wigner distribution for the incom-
ing pulses, the detected field and the gating device[10].
Multidimensional gated fluorescence signals for single-
molecule spectroscopy have been calculated [11].

Glauber’s theory of photon counting and correlation
measurements [12–14] focuses on theradiation field and
is formulated in the field space alone; matter is not con-
sidered explicitly. Signals are related to multi-point nor-
mally ordered field correlation functions, convoluted with
time and frequency gating spectrograms of the corre-
sponding detectors. This approach takes the detected
field as given and does not address the matter informa-
tion and how this field has been generated. Temporally
and spectrally resolved measurements can reveal impor-
tant matter information. An adequate microscopic de-
scription where joint matter and field information could
be retrieved by a proper description of the detection pro-
cess is required for e.g single photon spectroscopy of sin-
gle molecules [15–17].

This paper extends the diagrammatic approach de-
veloped in [18] for calculating time-and-frequency gated
photon counting measurements shown in Fig. 1. In par-
ticular we apply the formalism of [18] to calculate N -
th order photon correlation measurements generated by
a fluctuating oscillator model that represents a generic
molecular system with energy and electron transport.
The connection with real molecules makes time-and-
frequency gated photon counting a practical spectro-
scopic tool for studying material systems by analyzing
correlated optical signals. These observed signals are rep-
resented by a convolution of a bare signal that assumes
unrestricted time and frequency resolution and a detec-
tion spectrogram that represents the time and frequency
gate functions. The detection process is described in the
joint field and matter space by a sum over pathways each
involving a pair of quantum modes with different time
orderings. The signal is recast using time ordered su-
peroperator products of matter and field. In contrast to
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Glauber theory which is based on normally ordered field
operator, the approach of [18] employs time-ordered su-
peroperators. Time ordering in spectral measurements of
atomic source fields was studied in detail by Knoll et al.
and Cresser [19, 20]. Passive (filter-like) systems in quan-
tum optics has been studied by [21]. Experimental appli-
cations to normal and time ordered intensity correlation
measurements have been reported in the seminal work
of Kimble et al. [22]. According to these studies free-
field operators, in general, do not commute with source-
quantity operators. This is the origin of the fact that
the normal and time ordering of the measured field cor-
relations, according to the Kelley-Kleiner theory [8], are
transformed into normal and time ordered source quan-
tities occurring inside the integral representations of the
filtered source-field operators.

The paper is organized as follows. To make the tech-
nical presentation more comprehensive we first summa-
rize the approach of ref. [18]. In Section II we present
closed expressions suitable for spectroscopy applications
for time-and-frequency resolved single photon counting
based on matter correlation functions. In Section III we
extend the formalism to multiple detections. In Section
IV we apply this to calculate photon counting signals
from a simple anharmonic oscillator model coupled to a
dynamical two-state-jump model and simulate these re-
sults in Section V. We conclude by discussing the relation
between our approach with the commonly used physical
spectrum [9] in Sec. VI.

II. GATED SINGLE PHOTON COUNTING

For spectroscopic applications one has to formulate the
signal in terms of matter, rather than field quantities. To
connect photon counting signals to the matter response
one can use microscopic theory based on the perturbative
series over field-matter interactions. Utilizing the super-
operator algebra outlined in our earlier papers and its
relation with gated photon counting signals (see Fig. 1 a
and Appendix A) one can obtain the gated single photon
counting signal (see Appendix B) by reading the signal
off the diagrams in Fig. 1b

S(1)(t, ω) = D2(ω)

×
∫
dt′
∫
dτD(t, ω; t′, τ)V (1)(t′, τ), (1)

where D(t, ω, t′, τ) is a detector time-domain spectro-
gram which takes into account the detector parame-
ters given by Eq. (B5). The detected signal Eq. (1)
is given by a convolution of the spectrograms of the
detector and matter correlation function V (1)(t′, τ) =

〈T V †R(t′+τ)VL(t′)〉. The detector spectrogram is an ordi-
nary function of the gating parameters whereas the mat-
ter correlation function is a superoperator quantity (see
Appendix B) related to the state of the field and matter
prior to detection.

Eq. (1) can be alternatively recast using
time/frequency spectrograms

S(1)(t, ω) = D2(ω)

×
∫
dt′
∫
dω′

2π
WD(t, ω; t′, ω′)W (1)

V (t′, ω′), (2)

Here

WD(t, ω, t′, ω′) =

∫
dτD(t, ω, t′, τ)eiω

′τ (3)

is a detector Wigner spectrogram and

W
(1)
V (t′, ω′) =

∫
dτe−iω

′τV (1)(t′, τ). (4)

is the Wigner spectrogram for the first order matter cor-
relation function.

To understand how to construct photon counting sig-
nal from matter correlation functions we use the loop di-
agram shown in Fig. 1b. Two red arrows represent inter-
actions with the detector, whereas two blue arrows corre-
spond to emission from the molecule. The two branches
of the loop correspond to ket (left branch) and bra (right
branch). During some arbitrary field matter interactions
depicted by dashed lines, the molecule is promoted to an
excited state governed by a population density matrix,
whereas the field density matrix remains diagonal in the
vacuum state |0〉〈0|. After photon emission depicted by
two interactions with bra and ket the material density
matrix moves to the lower state and the field density
matrix is in the state |1〉〈1|. The spectral modes s and
s′ via their frequency difference ωs − ω′s are responsible
for the temporal bandwidth of the bare signal. If only
a single mode photon is absorbed by the detector, all
temporal resolution is lost. Similarly, the time difference
τ between the interaction times with the detector yields
spectral bandwidth of the photon. Both spectral and
temporal bandwidths of the bare photon are then com-
bined with the corresponding bandwidths of the gates
and yield the final measurement. These diagrams pro-
vide a natural physical picture of the generation of the
photon by molecule and its subsequent detection.

III. GATED MULTIPLE PHOTON COUNTING

A more elaborate measurement is time-and-frequency
resolved photon coincidence counting (PCC) given by Eq.
(C1). The corresponding diagrams are shown in Fig. 2 a
and b, respectively. The gated coincidence signal can be
similarly calculated (see Appendix C)

S(2)(t1, ω1; t2, ω2) = D2(ω1)D2(ω2)

×
∫
dt′1

∫
dτ1D

(1)(t1ω1; t′1, τ1)

×
∫
dt′2

∫
dτ2D

(2)(t2, ω2; t′2, τ2)

× V (2)(t′1, τ1; t′2, τ2). (5)
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FIG. 1. (Color online) (a) Schematic of time-and-frequency resolved photon counting signal S(1)(t, ω). (b) Corresponding loop
diagrams that represent the relevant field matter interactions. Red lines correspond to interaction with detector, blue lines
represent interactions with molecule. Dashed lines represent arbitrary dynamics of the system prior to the photon emission.
Diagram rules are presented in [23].

Here D(j) j = 1, 2 indicate the two detector’s spectro-

grams and V (2)(t′1, τ1; t′2, τ2) = 〈T V †R(t′2 + τ2)V †R(t′1 +
τ1)VL(t′1)VL(t′2)〉 is the relevant second order matter cor-
relation function. The same arguments about temporal
and spectral bandwidth discussed about for a single pho-
ton detection apply here as well. The corresponding sig-
nal recasted using Wigner spectrogram reads

S(2)(t1, ω1; t2, ω2) = D2(ω1)D2(ω2)

×
∫
dt′1

∫
d
ω′1
2π
W

(1)
D (t1ω1; t′1, ω

′
1)

×
∫
dt′2

∫
d
ω′2
2π
W

(2)
D (t2, ω2; t′2, ω

′
2)

×W (2)
V (t′1, ω

′
1; t′2, ω

′
2), (6)

where

W
(2)
V (t′1, ω

′
1; t′2, ω

′
2) =

∫
dτ1e

−iω′1τ1
∫
dτ2e

−iω′2τ2

× V (2)(t′1, τ1; t′2, τ2) (7)

is the Wigner spectrogram of the second order matter
correlation function.

As can be seen from Eqs. (5) and (6) these consti-
tute multidimensional measurements analogous of the
χ(3) nonlinearities detected in rephasing and nonrephas-
ing contributions to the photon echo experiments (see
Section IV)[24]. Here ω1 and ω2 are analogous to Fourier
components of the t and τ delays - ωt and ωτ , respec-
tively, whereas the time difference between two detectors
t1 − t2 > 0 is analogue of time t2.

The fundamental material quantity that yields the
emission spectra (1) is a two-point dipole correlation

function in Eq. (B9) and for the coincidence g(2) mea-
surement (5) it is four-point dipole correlation function
in Eq. (C4). Note that in the perturbative expansion, eq.
(B2), we used superoperator time ordering in both field
and matter correlation functions since we expressed the
signal using correlation functions of the field or matter
alone.

The normalized N - th order photon correlation mea-
surement that describes time-and-frequency measure-
ment performed at N detectors characterized by central
time tj and central frequency ωj , j = 1, ..., N is similarly
defined as

g(N)(t1, ω1,Γ1; ..., tN ;ωN ,ΓN ) =
〈n̂t1,ω1 ...n̂tN ,ωN 〉
〈n̂t1,ω1

〉...〈n̂tN ,ωN 〉
,

(8)

where Γj , j = 1, ...N represents other parameters of the

detectors such as bandwidth (σjT and σjω are the time
gate, and frequency gate bandwidths, respectively). In
the absence of gating Eq. (8) reduces to Eq. (A1) . The
only difference is the use of superoperator time-ordering
rather than normal ordering. However, Eq.(20) directly
addresses the photon generation and emission process
by the source whereas Eq.(A1) assumes that the field
is given.

IV. APPLICATION TO AN OSCILLATOR
WITH FLUCTUATING FREQUENCY AND

ANHARMONICITY

As an illustration we now apply our formalism to a
toy model of the single anharmonic vibrational mode de-
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FIG. 2. (Color online) (a) Schematic of time-and-frequency resolved photon coincidence signal S(2)(t1, ω1; t2, ω2). (b) Corre-
sponding loop diagrams.

scribed by the Hamiltonian

Ĥ = ~ΩB̂†B̂ +
1

2
~∆B̂†B̂†B̂B̂, (9)

where B̂† (B̂) are boson creation (annihilation) operators

satisfying the commutation relation [B̂, B̂†] = 1. Both
frequency Ω and anharmonicity ∆ are subjected to fluc-
tuations described by coupling to a stochastic bath un-
dergoing a two-state jump TSJ process [25–27]

Ω = Ω0 + Ω1σz,

∆ = ∆0 + ∆1σz. (10)

Ω0 and ∆0 are the average values, whereas Ω1 and ∆1

describe stochastic frequency modulation by chemical
exchange represented by two-state-jump (TSJ) model
(state up “u” (σz = 1) and down “d” (σz = −1) where
σz is the Pauli spin matrix.

Three vibrational levels are accessible by third or-
der signals: the ground state |g〉, the first excited state

|e〉 = B̂†|g〉 and the doubly excited |f〉 = 1√
2
B̂†|e〉. Their

energies are 0, Ω and Ω + ∆, respectively. The corre-
sponding density matrix has nine components denoted

|νν′〉〉 = |ν〉〈ν′|; ν, ν′ = g, e, f . The dipole moment ma-

trix elements are µeg = µ and µef =
√

2µ.

We shall use the stochastic Liouville equation (SLE)
[25, 26, 28–30] for modeling spectral lineshapes. It as-
sumes that the observed quantum system is coupled to
a classical bath that undergoes stochastic dynamics; the
bath affects the system but the system does not affect the
bath. The bath dynamics is described by a Markovian
master equation

dρ

dt
= L̂ρ(t) = − i

~
[H, ρ(t)] + L̂ρ(t). (11)

The SLE ignores system/bath entanglement but provides
a very convenient level of modeling for lineshapes. We
choose the lorentzian gates (see Appendix D). Details of
the TSJ model and corresponding signals calculation are
presented in Appendix E.

We start with the S(1) signal Eq. (1). The bare signal
given by a two-point correlation function of dipole oper-
ator V has now to be replaced by a bosonic operators B.
The two contributions of the signals are depicted as two
loop diagram in Fig. 1 which are complex conjugate of
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each other. The signal is given by

S(1)(t, ω) = 2RD2(ω)(−~2)|µeg|2
∫
dt′
∫
dτD(t, ω; t′, τ)

× 〈〈I|Geg,eg(τ)Gee,ee(t′)|ρee〉〉S . (12)

where R denotes the real part, the initial state in the

spin space is spin up state: |ρee〉〉S = ρee(0)|ee〉〉
(

1
0

)
,

and we trace over the final state 〈〈I| = (1, 1)Tr, where
Tr = 〈〈ff |+ 〈〈ee|+ 〈〈gg|. Matrix multiplication for the
matter correlation (E9) yields the final expression for the
signal

S(1)(t, ω) = −ID
2(ω)

σω
|µeg|2ρee(0)

×
[

1

2σT∆−eg
+

2iΩ1e
−kt

(k − 2iΩ1)(k + 2σT )

(
1

∆−eg
− 1

∆+
eg − ik

)]
,

(13)

where ∆±eg = ω − ω±eg − i(σT + σω). One can see clearly

that in the short time limit the term with d state: ∆−eg
cancels out and the signal is dominated by the u state
via ∆+

eg. In the long time limit the second term in the
square bracket is small and the signal is governed by a d
state via ∆−eg.

The coincidence signal (5) is described by the four di-
agrams shown in Fig. 2. After the change of variables
it can be shown that diagrams iii and iv are complex
conjugate of ii and i, respectively. Diagram i is anal-
ogous to nonrephasing, whereas diagram ii corresponds
to rephasing contributions to 2D optical signals. Reading
the signal off the diagrams yields

S(2)(t1, ω1; t2, ω2) =

iv∑
j=i

S
(2)
j (t1, ω1; t2, ω2)

= 2R
ii∑
j=i

S
(2)
j (t1, ω1; t2, ω2), (14)

where

S
(2)
i (t1, ω1; t2, ω2) = D2(ω1)D2(ω2)~4|µeg|2|µef |2

×
∫
dt′1

∫
dτ1D

(1)
> (t1ω1; t′1, τ1)

×
∫
dt′2

∫
dτ2D

(2)
> (t2, ω2; t′2, τ2)

× 〈〈I|Gge,ge(τ1)Gee,ee(t′1 − t′2 − τ2)Gef,ef (τ2)Gff,ff (t′2)|ρff 〉〉S ,
(15)

S
(2)
ii (t1, ω1; t2, ω2) = D2(ω1)D2(ω2)~4|µeg|2|µef |2

×
∫
dt′1

∫
dτ1D

(1)
> (t1ω1; t′1, τ1)

×
∫
dt′2

∫
dτ2D

(2)
< (t2, ω2; t′2, τ2)

× 〈〈I|Gge,ge(τ1)Gee,ee(t′1 − t′2)Gfe,fe(−τ2)Gff,ff (t′2 + τ2)|ρff 〉〉S .
(16)

(a) (b) 

(c) (d) 
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FIG. 3. (Color online) The first order photon counting signal

S(1)(t, ω) (13) for the TSJ model as a series of snapshots at
different time t. Different panels correspond to different gat-
ing bandwidths: (a) - σT = 0.7 cm−1, σω = 0.8 cm−1, (b) -
σT = 7 cm−1, σω = 8 cm−1, (c) - σT = 7 cm−1, σω = 18
cm−1, (d) - σT = 17 cm−1, σω = 18 cm−1. All other param-
eters is listed in Section V.

Here D> (D<) indicate the sign of τ and corresponds
to the first (second) term in the square bracket in Eq.
(D7). The initial state in this case is the spin up state

|ρff 〉〉S = ρff (0)|ff〉〉
(

1
0

)
. The final form for the signal

is given in (E10) - (E11). Careful analysis shows that
for short t2 the PCC signal is dominated by ∆+

fe and for

long t2 it is dominated by ∆−fe in spectral gate of the
second detector ω2. Similarly for short t1 − t2 the signal
is governed by ∆+

eg components whereas for long t1 − t2
it is dominated by ∆−eg for the spectral gate of the first
detector ω1.

V. SIMULATIONS

Below we simulate the first order - S(1)(t, ω) Eq. (13)
and second order - S(2)(t1, ω1; t2, ω2) photon counting
signals given by Eqs. (E10) - (E11). Simulation param-
eters are Ω0 = 12500 cm−1, Ω1 = 125 cm−1, ∆0 = 250
cm−1, ∆1 = 5 cm−1, dephasings γe = 8.56 cm−1,
γf = 17.22 cm−1, jump rate k = 7.68 cm−1, dipole mo-

ments µfe =
√

2µeg.

Fig. 3 illustrates the effect of gating on S(1)(t, ω) .
For narrow time and frequency gates Fig. 3a both up
and down frequencies ω±eg show up as narrow resonances

dominated at short time by ω+
eg and at longer time - by

ω−eg. The overall magnitude of the signal decreases with
time, and due to the narrow time gate this decrease is
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FIG. 4. (Color online) The 2D second order photon counting

signal S(2)(t1, ω1; t2, ω2) for the TSJ model (E10) - (E11) as
2D frequency correlation plot vs ω1 and ω2 for fixed times
t2 = 3.3 ps, t1 − t2 = 3.3 fs. Different panels correspond to
different gating bandwidths: (a) - σT1 = 0.7 cm−1, σω1 = 0.8
cm−1, σT2 = 0.75 cm−1, σω2 = 0.85 cm−1 (b) - σT1 = 7
cm−1, σω1 = 8 cm−1, σT2 = 7.5 cm−1, σω2 = 8.5 cm−1, (c) -
σT1 = 7 cm−1, σω1 = 18 cm−1, σT2 = 7.5 cm−1, σω2 = 18.5
cm−1, (d) - σT1 = 17 cm−1, σω1 = 18 cm−1, σT2 = 17.5
cm−1, σω2 = 18.5 cm−1. All other parameters is listed in
Section V.

noticeable between the spectra at different t. When both
time and frequency bandwidths of the gates are increased
Fig. 3b the overall spectral resolution is suppressed and
the resonances broaden. The time resolution decreases
as well, so the distinction between signals at maximum
resonances become less pronounced. When further in-
creasing the spectral gate bandwidth while keeping the
time gate intact, Fig. 3c shows that only the spectral
broadening increases, whereas the distinction in time re-
main the same as in panel b. Finally when both time
and frequency gates become more wide than the jump
rate k, both spectral and temporal resolutions decrease
and the signal is further broadens and distinction at dif-
ferent times becomes even less apparent.

We next turn to gated second order counting signal
S(2)(t1, ω1; t2, ω2) . Fig. 4a shows three resonant peaks.
As in the case of the photon echo - two diagonal peaks
correspond to populations and are governed by two un-
coupled cascading and f → e and e → g transitions.
These two peaks occur at ω2 = ω±fe but are dominated

by ω+
fe. An additional off-diagonal peak at ω1 = ω+

eg,

ω2 = ω+
fe is governed by the coherence induced by jump

which couples two cascading transitions. These three
peaks can be explained in the following way. At short
time t2 the peak at ω2 = ω+

fe is much stronger than at

ω2 = ω−fe. Similarly at long t1−t2 most of the population

is at ω1 = ω−eg. The seemingly doubling of the resonance

at ω2 = ω−fe is due to the oscillating phase of the signal
that depends on the ω2 and becomes narrower than the
chosen gating bandwidth. An interesting effect occurs
by increasing the time and frequency resolution. Fig. 4b
shows that besides obvious decrease in spectral resolu-
tion, which results in overall broadening of the peaks,
the intensity distribution between three peaks change as
well. In panel a we saw that most population is concen-
trated at one peak at ω2 = ω+

fe and ω1 = ω−eg. Here we

see that the peak at ω2 = ω+
fe and ω1 = ω+

eg becomes
stronger as well but still weaker than the former. This
occurs since the broader time gate bandwidth σT1 al-
lows to capture the population in ω+

eg transition that was
present there at earlier times and is contributing now to
the signal. Fig. 4c shows that if we increase only the
spectral gate, while keeping the time gate the same as in
panel b, the overall spectral resolution for detector 1 is
decreased, whereas it becomes better for detector 2. This
interesting effect occurs, since the actual spectral resolu-
tion for ω2 is a combination of the bandwidths of both
detectors 1 and 2, and the combined bandwidth enters in
different terms of the signal with different signs. Some
terms depend on the sum of the both detector’s time and
frequency bandwidths, some - depend on their difference.
For certain parameter regime, the increase in the gating
bandwidth can actually help to resolve the peaks better.
Finally when both time and frequency gating bandwidths
become broad in both detectors, Fig. 4d shows that the
overall resolution drops, while the relative intensity be-
tween two intense peaks at ω1 = ω±eg become equal due
to the larger value of the σT1.

We next present frequency-frequency correlation spec-
tra of S(2)(t1, ω1; t2, ω2) at fixed times t1 and t2. We first
fix the gating bandwidth as in the case of Fig. 4c. Fig.
5a shows that if both t1 and delay t2−t1 are short (much
shorter than the jump rate k), the signal shows two diago-
nal peaks at ω2 = ω+

fe, ω1 = ω+
eg and ω2 = ω−fe, ω1 = ω+

eg

which are due to uncoupled cascading transitions that
don’t give rise to the coherence since the temporal gates
are much narrower than the jump rate and dephasing
and the short time dynamics is governed by these uncou-
pled transition. Further increase of the time delays t2
and t1 − t2 shown in panel b shows a slight increase in
the peak intensities due to larger time, whereas panel c
shows a decrease in the intensity of the peak at ω1 = ω+

eg

and ω2 = ω−fe due to smaller delay time t2. Panel d shows
a new third off-diagonal peak since the delay t1 − t2 be-
comes large enough to accommodate the ω−eg transition.
Broader resonances are seen in panel d. When both t2
and t1−t2 become relatively large (around 3.3 ps) the in-
tensity of the three peaks becomes redistributed towards
the lowest peak ω−eg and ω−fe as shown in Fig. 5e. Fur-
ther increase of the t1 − t2 eliminates the higher energy
diagonal peak at ω1 = ω+

eg as shown in Fig. 5f. Finally
when t2 becomes large as well Fig. 5g, and h show that
the peak at ω+

fe is eliminated as well leaving only the
“down” states contribution via a single diagonal peak at
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(e) (f) (g) (h) 

FIG. 5. (Color online) The 2D second order photon counting signal S(2)(t1, ω1; t2, ω2) (E10) - (E11) as 2D frequency correlation
plot vs ω1 and ω2 at fixed gating parameters from Fig. 4c. Different panels correspond to various values of the times t1 and
t2: (a) - t2 = t1 − t2 = 3.3 fs, (b) - t2 = t1 − t2 = 1 ps, (c) - t2 = 3.3 ps, t1 − t2 = 3.3 fs, (d) - t2 = 3.3 fs, t1 − t2 = 3.3 ps, (e) -
t2 = t1 − t2 = 3.3 ps, (f) - t2 = 3.3 ps, t1 − t2 = 33 ps, (g) t2 = 33 ps, t1 − t2 = 3.3 ps, (h) - t2 = t1 − t2 = 33 ps. The rest of
the parameters is listed in Section V.

ω1 = ω−eg and ω2 = ω−fe as can be expected from the TSJ
model.

We now compare Fig. 5 with the “physical spectrum”.
This is done by replacing the time-and-frequency resolved
detector spectrograms in Eqs. (15) - (16) by the physical
spectrum D>(t, ω; t′, τ)→ Dps(t, ω; t′, τ) where

Dps(t, ω; t′, τ) = θ(t− t′)θ(t− t′ − τ)

× e(iω−Γ/2)(t−t′)−(iω+Γ/2)(t−t′−τ). (17)

We took Γ = σω as this is a pure frequency gate, so all
the rest of the parameters are exactly the same as in Fig.
5. Comparison of Fig. 6 with Fig. 5 shows that for phys-
ical spectrum is unable to capture the system dynamics
at short times (top row - panels a-d), especially at short
t2 time (panels a and d) which does not give any spectral
resolution for detector 2. In the same time, the physi-
cal spectrum gives very well resolved long time dynamics
which is depicted by panels (e-h). This is a consequence
of the fact that physical spectrum is obtained using a
time-stationary filter, whereas the time-and-frequency
resolved gating uses time-nonstationary filters. Clearly
the characterization of pulsed experiments requires time-
nonstationary filters as shown in [31]. Moreover, the
physical spectrum at long time delays t2 and t1 − t2 has
higher resolution than the time-and-frequency resolved
measurement shown in Fig. 5. This is due to the fact
that physical spectrum is governed by a single parame-
ter of the frequency gate bandwidth which enters as the

peak spectra width. Time-and-frequency resolved mea-
surements have a linear combination of the time and fre-
quency gate which governs the linewidth and can be quite
broad if all the bandwidths add up. Another important
distinction of the physical spectrum is that for given time
delays t2 and t1−t2 the physical spectrum shows a differ-
ent intensity profile for the same resonances compared to
the time-and-frequency resolved measurement. This is a
consequence of the better control over the temporal and
spectral bandwidths of the signal. Larger bandwidths al-
low to capture photons at earlier times which may come
from an up- states.

Another important feature of the physical spectrum is
that it does not correctly include the quantum fluctua-
tions in the higher order field correlation measurement.
A typical example of such a spectrum is the squeezing
spectrum of the atomic resonance fluorescence. Its first
treatment led to correct results [32]. However, in that
treatment the authors used inconsistent spectral filtering
and ignored time-delayed commutators. As discussed in
Ref. [19], these commutator terms are not negligible and
they are not properly incorporated in the filtering theory.
Using the present superoperator approach formulated in
the joint field plus matter space analysis we have earlier
demonstrated that commutator terms are necessary for
computing the relevant components of the nonlinear sus-
ceptibility in the parametric down conversion generation
[33]. Furthermore, this approach allows to express all the
correct features of the multipoint field correlation func-



8

����� ����� ����� �����
�����

��	��

��
��

�����

�����

�� (��-�)

�
�
(�
�

-
� )

����� ����� ����� �����
�����

��	��

��
��

�����

�����

�� (��-�)
�
�
(�
�

-
� )

����� ����� ����� �����
�����

��	��

��
��

�����

�����

�� (��-�)

�
�
(�
�

-
� )

����� ����� ����� �����
�����

��	��

��
��

�����

�����

�� (��-�)

�
�
(�
�

-
� )

����� ����� ����� �����
�����

��	��

��
��

�����

�����

�� (��-�)

�
�
(�
�

-
� )

����� ����� ����� �����
�����

��	��

��
��

�����

�����

�� (��-�)

�
�
(�
�

-
� )

����� ����� ����� �����
�����

��	��

��
��

�����

�����

�� (��-�)
�
�
(�
�

-
� )

����� ����� ����� �����
�����

��	��

��
��

�����

�����

�� (��-�)

�
�
(�
�

-
� )

(a) (b) (c) (d) 

(e) (f) (g) (h) 

FIG. 6. (Color online) The 2D second order photon counting signal S(2)(t1, ω1; t2, ω2) for the TSJ model calculated using
physical spectrum for the same parameters as in Fig. 5.
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FIG. 7. (Color online) The 2D second order photon counting

signal S(2)(t1, ω1; t2, ω2) for the TSJ model calculated using
physical spectrum for fixed times t2 = 3.3 ps, t1 − t2 = 3.3
ps. Panels a-d and the rest of the parameters are the same as
those in Fig. 4.

tions without adding phenomenological quantum noise
terms that are typically needed to account for higher or-
der correlation of the multimode quantum states of light.

Finally, the control of the temporal resolution of the
physical spectrum is relatively low. We already discussed

in detail Fig. 4 where we showed how by changing gating
bandwidths one can significantly change the intensity of
various peaks. Fig. 7 shows the corresponding physical
spectrum result. One can see that the resonance at ω1 =
ω+
eg, ω2 = ω+

fe remain the strongest for all the values of

the gating bandwidths. Two peaks at ω1 = ω−eg, ω2 = ω±fe
have roughly equal intensity and are weak. Increasing the
bandwidths of the gates slightly increase their intensity
from panel a to d.

VI. DISCUSSION

Eberly and Wodkiewicz [9] had argued that specific
detector gating with finite bandwidth must be added to
describe the real detector. A two-level detector charac-
terized by a single parameter Γ that accounts for both
time-and-frequency detection is known as the physical
spectrum [34, 35]. This result can be recovered from our
model by simply removing the time gate Ft = 1 and only
a Lorentzian frequency gate such that

Ff (ω, ω′) =
i

ω′ + ω + iΓ/2
. (18)

Using the physical spectrum time-and-frequency resolved
photon coincidence signal is given by

g
(2)
Γ1Γ2

(ω1, ω2; τ) =

limt→∞
〈Â†ω1,Γ1

(t)Â†ω2,Γ2
(t+ τ)Aω2,Γ2

(t+ τ)Âω1,Γ1
(t)〉

〈Â†ω1,Γ1
(t)Âω1,Γ1

(t)〉〈Â†ω2,Γ2
(t+ τ)Âω2,Γ2

(t+ τ)〉
,

(19)
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where

Âω,Γ(t) =

∫ t

−∞
dt1e

(iω−Γ/2)(t−t1)Ê(t1), (20)

is a gated field. This model which provides a simple
benchmark for finite-band detector analysis, has several
limitations. First, the parameters of the time and fre-
quency gates are not independent, this cannot fully rep-
resent experimental setups where frequency filter and
avalanche photodiode are two independent devices. Sec-
ond, this method does not fully address the generation
and photon bandwidth coming from the emitter, as the
analysis is performed in the field space alone. Finally,
the multi photon correlation function presented in [35] is
stationary. For instance, the four-point bare correlation
function

AB(ω1, ω2, t1, t2) = 〈E†ω1
(t1)E†ω2

(t2)Eω2
(t2)Eω1

(t1)〉
(21)

depends on four times and four frequencies. After gating
[34, 35] the correlation function (21) becomes dependent
upon CB(ω1, ω2, t2− t1), which depends only on the time
difference t2 − t1, which is approximation for a station-
ary fields. This model also works only if t� Γ−1, which
means that Γ cannot approach zero (e.g.perfect reflec-
tion in Fabri Perot cavity). It also works when Γτ0 � 1
where τ0 is the scale of change in the field envelope. For
comparison, the photon coincidence counting (PCC) (8)
for N = 2 reads

g(2)(t1, ω1,Γ1; t2;ω2,Γ2)
〈n̂t1,ω1

n̂t2,ω2
〉

〈n̂t1,ω1〉〈n̂t2,ω2〉
, (22)

which depends on two times t1, t2 and two frequency ω1,
ω2 arguments.

Eq. (22) has several important advantages compared
to theory of [34, 35]. First, independent control of
time and frequency gates (with guaranteed Fourier uncer-
tainty for the time and frequency resolution) along with
the fact that bare photon number operator depends on
two time variables n̂(t, τ) allows to capture any dynam-
ical process down to very short scale dynamics. Second,
the gating (B4) provide a versatile tool that can capture
nonequlibrium and non stationary states of matter which
can be controlled by gating bandwidths. In this case a
series of frequency correlation plots for ω1, ω2 (keeping
the central frequencies of the spectral gates as variables)
for different time delays t1 − t2 yields a 2D spectroscopy
tool capable of measuring ultrafast dynamics. Third,
superoperator algebra allows to connect the gated field
correlation function (C1) with the bare correlation func-
tion (21), using arbitrary time-and-frequency gates (not
necessarily Lorentzian) as well as material response that
precedes the emission and detection of photons. The su-
peroperator expressions require time ordering and there-
fore can be generalized on other correlation functions of
the field operators that are not normally ordered. Su-
peroperator algebra is an effective tool for bookkeeping

field-matter interactions prior to the spontaneous emis-
sion of photons. Finally, as we show in the next section
PCC can be recast in terms of matter correlation func-
tion by expanding the total density matrix operator in
perturbation series and tracing the vacuum modes. Pho-
ton counting measurement can thus be related to matter
response as is done in nonlinear spectroscopy.

In summary, time-and-frequency gated photon count-
ing may provide a novel tool for multidimensional opti-
cal spectroscopy. Besides the low intensity requirement
that allows to have low background noise and avoid laser
intensity fluctuations, photon counting provides similar
and complementary information to coherent multidimen-
sional techniques. In particular the time-and-frequency
coincidence signals provide information similar to that
of a 2D photon echo experiments (rephasing and non-
rephasing contributions). The independent variation of
the time and frequency gating parameters allow to have
extra control knobs for manipulation of the signals. This
technique improves the conventional physical spectrum
in several ways. First, it allows to observe the short time
system dynamics. Second, the time and frequency reso-
lution are controlled independently, whereas in the physi-
cal spectrum both are determined by a single parameter.
Finally the microscopic origin of the proposed method
allows to connect photon counting observable with the
multipoint matter correlation functions that govern the
system properties. We note that the time-and-frequency
resolved detection requires ultrafast time gating which
is not trivial. However recent advances in ultrafast up-
conversion techniques for the single photon detectors can
resolve this problem by allowing to time the photons with
up to ∼ 100 fs resolution [36].
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Appendix A: Gated photon counting measurements

An N -th order photon correlation measurement is
given by the following normally-ordered product of the
electric field operators [7]

g(N) =
: 〈n̂1...n̂N 〉 :

〈n̂1〉...〈n̂N 〉
, (A1)

where n̂j = Ê†j Êj is the photon number and : 〈...〉 :
denotes the normally ordered combination of operators.
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The correlation function (A1) is measured in a N -th coin-
cidence measurement using N photon detectors. In order
to extract physical parameters of light such as photon
statistics, correlations etc. one has to understand how
the photon detector works. To a good approximation we
can represent an ideal detector by two-level atom that is
initially in the ground state b and is promoted to the ion-
ization continuum represented by the manifold a by the
absorption of a photon (see Fig. 1a). Photon detection
brings the field from its initial state ψi to a final state ψf .
The probability amplitude for photon absorption at time
t can be calculated in first-order perturbation theory [7]

〈ψf |Ê(t)|ψi〉 · 〈a|d|b〉, (A2)

where d is the dipole moment of the atom and Ê(t) =

Ê†(t) + Ê(t) is the electric field operator (we omit the
spatial dependence). Clearly, only the annihilation part
of the electric field contributes to the photon absorption
process. The transition probability to find the field in
state ψf at time t is given by the modulus square of the
transition amplitude∑

ψf

|〈ψf |Ê(t)|ψi〉|2 = 〈ψi|Ê†(t)
∑
ψf

|ψf 〉〈ψf |Ê(t)|ψi〉

= 〈ψi|n̂(t)|ψi〉. (A3)

Since the initial state of the field ψi is rarely known with
certainty, we must trace over all possible initial states as
determined by the field density operator ρ. Thus, the
output of an ideal detector is more generally given by
tr
[
ρE†(t)E(t)

]
. Eq. (A3) represents an ideal detector,

which has infinite spectral bandwidth. Real detectors
have finite temporal and spectral resolutions controlled
by a shutter, streak camera, or avalanche photodiode in
case of temporal resolution and spectrometer in the case
of spectral resolution. One can think of a realistic detec-
tor as a sequence of time and frequency gates that acquire
temporal and spectral information about the detected
photons. In many applications of quantum technologies,
such as lithography, or quantum optics the temporal res-
olution is not crucial and the temporal gate is removed.
Here we include both spectral and temporal gates. The
gating works in the following way. First a time gate gov-
erned by a Ft(t

′, t) centered at time t is applied to a bare

field (undated) Ê(t′):

Êt(t
′) = Ft(t

′, t)Ê(t′). (A4)

In order for Ft(t
′, t) to represent unitary transformation

one has to add Langevin noise operator [37]. This is done
to account for vacuum fluctuations caused by other field
modes. However, we have recently shown [33] how the
multipoint correlation function of the field is calculated
in the joint field plus matter space given by the sum
over Liouville space pathways. This microscopic method
can account for all the effects of multiple vacuum modes
by theses paths without adding a Langevin noise source.

We then apply a spectral gate governed by a function
Ff (ω′, ω) centered at frequency ω is applied to spectral

component of time-gated field (A4) Êt(ω
′, ω)

Êt,ω(ω′) = Ff (ω′, ω)Êt(ω
′). (A5)

Finally the time-and-frequency gated field operator
Êt,ω(t′′) is defined in terms of the bare field operator

Ê(t) as follows

Êt,ω(t′′) =

∫ ∞
−∞

dt′Ff (t′′ − t′, ω)Ft(t
′, t)Ê(t′). (A6)

Alternatively if the frequency gate is applied before the
time gate, the gated field operator is given by

Êω,t(t
′′) =

∫ ∞
−∞

dt′Ft(t
′′, t)Ff (t′′ − t′, ω)Ê(t′). (A7)

In the following we will employ the protocol of (A6). Eq.
(A7) can be done similarly.

We now turn to the gated photon counting signals.
This will be done by working in Liouville space [38, 39],
i.e. the space of bounded operators in the joint matter-
field Hilbert space. It offers a convenient bookkeeping de-
vice for matter-light interactions. Signals are described
as time-ordered products of superoperators. We first in-
troduce the basic notation. With each Hilbert space op-
erator A we associate two superoperators [40]

ALX ≡ AX, (A8)

which represents the action from the left, and

ARX ≡ XA, (A9)

which implies action from the right. We further introduce
two linear combinations of the left and right operators,
the commutator superoperator

A− ≡ AL −AR, (A10)

and the anti-commutator

A+ ≡
1

2
(AL +AR) . (A11)

This notation allows to derive compact expressions for
spectroscopic signals. At the end of the calculation, after
the time-ordering is taken care of, we can switch back to
ordinary Hilbert space operators.

Appendix B: Derivation of the matter correlation
expressions for the gated single photon counting

signals

The lowest order signal related to photon counting is
time-and-frequency resolved photon number

S(1)(t, ω) ≡ nt,ω =

∫
dt′′〈Ê†t,ωR(t′′)Êt,ωL(t′′)〉T , (B1)
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where the integration over t′′ collects signal for extended
period of time limited by the temporal bandwidth of the
time gate. 〈...〉T = Tr[...ρT (t)] and

ρT (t) = T e− i
~
∫
dτĤ′−(τ), (B2)

represents the total field plus matter density matrix. It
contains information about system evolution prior to the
detection (e.g. photon generation process, etc.), T is a
time-ordering superoperator that rearranges products of
superoperators such that their time arguments increase
from right to left. The field-matter interaction Hamil-
tonian in the interaction picture and the rotating-wave
approximation reads

Ĥ ′−(t) = V̂L(t)Ê†L(t)− V̂R(t)Ê†R(t) +H.c., (B3)

where V̂ (V̂ †) are lowering (raising) dipole operator V̂ =

µσ̂−, V̂ † = µ∗σ̂+ given by the ladder matrices σ̂± =
σ̂x± iσ̂y where σ̂x and σ̂y are Pauli matrices and µ is the
transition dipole moment. Note, that unlike the standard
notation in (A1) there is no need to introduce normal or-
dering of operators; a time-ordering of the superoperators
takes care of the book keeping.

Using the gating transformation (A6) one can recast
Eq. (B1) as

S(1)(t, ω) =

∫
dt′
∫
dτD(t, ω; t′, τ)n(t′, τ). (B4)

Here

D(t, ω, t′, τ) =∫
dω′′

2π
e−iω

′′τ |Ff (ω′′, ω)|2F ∗t (t′ + τ, t)Ft(t
′, t). (B5)

n(t′, τ) is a bare photon number defined in terms of su-
peroperators as follows

n(t′, τ) = 〈n̂(t′, τ)〉T , (B6)

where

n̂(t′, τ) =
∑
s,s′

Ê†sR(t′ + τ)Ês′L(t′). (B7)

Here Ês(t) =
√

2π~ωs/Ωâse−iωst and Ω is the mode
quantization volume.

To clarify the implications of gating on the detected
signal (B4) we first consider the bare signal(B6) using
the loop diagram shown in Fig. 1b. The bare signal is
given by the product of two transition amplitude super-
operators [23] (one for bra and one for ket of the matter,
and the field joint density matrix), each creating a co-
herence in the field between states with zero and one
photon. By combining the transition amplitude super-
operators from both branches of the loop diagram we
obtain the photon occupation number that can be de-
tected. Ideal frequency domain detection only requires a

single field mode [11]. However, maintaining any level of
time resolution requires a superposition of several field
modes. The underlying matter pathway information is
not directly accessible in the standard detection theory
that operates in the field space alone [7] and requires to
work in the joint matter and field space. The leading
contribution to S(1) signal (B4) comes from second or-
der expansion of field matter interactions with vacuum
modes (see diagram in Fig. 1b)

n(t′, τ) =
1

~2

∫ t′

−∞
dt1

∫ t′+τ

−∞
dt2〈T V †R(t2)〈VL(t1)〉

×
∑
s,s′

〈T Ês′R(t2)Ê†s′R(t′ + τ)ÊsL(t′)Ê†sL(t1)〉v,

(B8)

where we utilized superoperator time ordering and 〈...〉 =
Tr[...ρ(t)] where ρ(t) is the density operator that ex-
cludes vacuum modes and 〈...〉v = Tr[...ρv(t)] where
ρv(t) = |0〉〈0| is the density matrix of the vacuum modes.
One can now evaluate explicitly the vacuum field cor-
relation function where â†s(âs) is creation (annihilation)
operators for mode s which satisfy boson commutation
relation [âs, âs′ ] = δs,s′ . Replacing discreet sum over

modes by a continuous integral
∑
s → V

(2π)3

∫
dωsD̃(ωs)

with D̃(ωs) being the density of states one can obtain

n(t′, τ) = D2(ω)〈T V †R(t′ + τ)VL(t′)〉, (B9)

where D(ω) = 1
2π D̃(ω) is a combined density of states

evaluated at the central frequency of the detector ω for
smooth enough distribution of modes. The correspond-
ing detected signal (B4) is given by Eq. (1).

Appendix C: Derivation of the matter correlation
expressions for the gated multiple photon counting

A more elaborate measurement is time-and-frequency
resolved photon coincidence counting (PCC) shown in
Fig. 2a

S(2)(t1, ω1; t2, ω2) ≡ 〈n̂t1,ω1
n̂t2,ω2

〉T

=

∫
dt′1

∫
dτ1D

(1)(t1ω1; t′1, τ1)

×
∫
dt′2

∫
dτ2D

(2)(t2, ω2; t′2, τ2)

×
∑
s,s′

∑
r,r′

〈Ê†r′(t′2 + τ2)Ê†s′(t
′
1 + τ1)Ês(t

′
1)Êr(t

′
2)〉T ,

(C1)

where D(j) j = 1, 2 indicates the two detector’s spectro-
grams. The same arguments about temporal and spectral
bandwidth discussed about for a single photon detection
apply here as well. The corresponding diagram that de-
scribes the emission and detection coincidence process is
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depicted in Fig. 2b. As can be seen from Eq. (C1) this
constitutes a multidimensional measurement analogous
of the χ(3) nonlinearities detected in rephasing and non-
rephasing contributions to the photon echo experiments
(see Section IV)[24]. Here ω1 and ω2 are analogous to
Fourier components of the t and τ delays - ωt and ωτ ,
respectively, whereas the time difference between two de-
tectors t1 − t2 > 0 is analogue of time t2.

Following the same logic regarding the expansion of the
signals in the field-matter interactions as in the previous
section the second order bare correlation function is given
by

S(2)(t1, ω1; t2, ω2) =

∫
dt′1

∫
dτ1D

(1)(t1ω1; t′1, τ1)

×
∫
dt′2

∫
dτ2D

(2)(t2, ω2; t′2, τ2)

× 〈n̂(t′1, τ1)n̂(t′2, τ
′
2)〉T . (C2)

The bare PCC rate 〈n̂(t′1, τ1)n̂(t′2, τ
′
2)〉T can be read off

the diagram shown in Fig. 2b. The leading contribution
is coming from fourth order expansion over field-matter
interactions

〈T n̂(t′1, τ1)n̂(t′2, τ
′
2)〉T =

1

~4

∫ t′1

−∞
dt1

∫ t′1+τ1

−∞
dt3

×
∫ t′2

−∞
dt2

∫ t′2+τ2

−∞
dt4〈T V †R(t4)V †R(t3)VL(t1)VL(t2)〉

×
∑
s,s′

∑
r,r′

〈T Er′R(t4)Es′R(t3)E†r′R(t′2 + τ2)E†s′R(t′1 + τ1)

× EsL(t′1)ErL(t′2)E†sL(t1)E†rL(t2)〉v. (C3)

After tracing back the vacuum modes we obtain

〈n̂(t′1, τ1)n̂(t′2, τ
′
2)〉T = D2(ω1)D2(ω2)

× 〈T V †R(t′2 + τ2)V †R(t′1 + τ1)VL(t′1)VL(t′2)〉. (C4)

The corresponding gated coincidence (C2) is given by Eq.
(5).

Appendix D: Models for gating functions

For Gaussian gates

Ft(t
′, t) = e−

1
2σ

2
T (t′−t)2 , Ff (ω′, ω) = e

− (ω′−ω)2

4σ2ω , (D1)

the detector time-domain and Wigner spectrograms are
given by

D(t, ω, t′, τ) =
σω√
2π
e−

1
2σ

2
T (t′−t)2− 1

2 σ̃
2
ωτ

2−[σ2
T (t′−t)+iω]τ

(D2)

WD(t, ω; t′, ω′) = NDe
− 1

2 σ̃
2
T (t′−t)2− (ω′−ω)2

2σ̃2ω
−iA(ω′−ω)(t′−t)

,
(D3)

where

σ̃2
ω = σ2

T + σ2
ω, σ̃2

T = σ2
T +

1

σ−2
ω + σ−2

T

,

ND =
1

σT [σ2
ω + σ2

T ]1/2
, A =

σ2
T

σ2
T + σ2

ω

. (D4)

Note that σT and σω can be controlled independently and
are not subject to uncertainty restrictions, but the actual
time and frequency resolution is controlled by σ̃T and
σ̃ω, respectively, which always satisfy Fourier uncertainty
σ̃ω/σ̃T > 1. For lorentzian gates

Ft(t
′, t) = θ(t′ − t)e−σT (t′−t), Ff (ω′, ω) =

i

ω′ − ω + iσω
,

(D5)

the detector time-domain and Wigner spectrograms are
given by

D(t, ω, t′, τ) =
1

2σω
θ(t′ − t)θ(t′ + τ − t)e−(iω+σT )τ−2σT (t′−t)

× [θ(τ)e−σωτ + θ(−τ)eσωτ ] (D6)

WD(t, ω; t′, ω′) = − 1

2σω
θ(t′ − t)e−2σT (t′−t)

×
[

−1

i(ω′ − ω)− σT − σω
+

1− e−[i(ω′−ω)−σT+σω](t′−t)

i(ω′ − ω)− σT + σω

]
.

(D7)

Appendix E: Calculation of the photon counting
signals using two-state-jump model

1. Green’s functions for the TSJ model

The total density matrix ρ for TSJ model has 18 com-
ponents |νν′s〉〉 given by the direct product of nine Liou-
vills space states |νν′〉〉 and the two spin states s = u, d.

The Liouville operator L̂ is diagonal in the vibrational
Liouville space variables and is thus given by nine 2×2
blocks in spin space [26]

[L̂]νν′s,ν1ν′1s′ = δνν1δν′ν′1 [L̂S ]s,s′ + δνν1δν′ν′1δss′ [L̂S ]νν′s,νν′s,

(E1)

where L̂S describes the two-state-jump kinetics given by

[L̂S ] =

(
−kd ku
kd −ku

)
. (E2)

The up (down) jump rates ku (kd) are connected by the
detailed balance relation ku/kd = expβ(εd − εu) where
εd − εu is the energy difference between the u and d
states. The coherent part L̂S = −(i/~)[HS , ...] vanishes

for the states |aa〉〉, |cc〉〉 blocks [L̂S ]gg,gg = [L̂S ]ee.ee =

[L̂S ]ff,ff = 0. The remaining blocks of LS reads
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[L̂S ]νν′,ν1ν′1 = δνν1δν′ν′1

(
−i(εν0 − εν

′

0 )− i(εν1 − εν
′

1 ) 0

0 −i(εν0 − εν
′

0 ) + i(εν1 − εν
′

1 )

)
, (E3)

where εg0 = 0, εe0 = Ω0, εf0 = 2Ω0 + ∆0, εg1 = 0, εe1 = Ω1,

and εf1 = 2Ω1 + ∆1. The two Liouville space Green’

functions G(t) = −(i/~)θ(t)eL̂t - the solution of Eq. (11)
are given by [26]

Ggg,gg(t) = Gee,ee(t) = Gff,ff (t) = (−i/~)θ(t)

×
[
1̂ +

1− e−(ku+kd)t

kd + ku

(
−kd ku
kd −ku

)]
, (E4)

Gνν′,ν1ν′1(t) = (−i/~)θ(t)δνν′δν1ν′1

×
[(

η2

η2 − η1
1̂− 1

η2 − η1
L̂νν′,νν′

)
eη1t

+

(
η1

η1 − η2
1̂− 1

η1 − η2
L̂νν′,νν′

)
eη2t

]
,

(E5)

where 1̂ is unit 2×2 matrix and η1,2 = −kd+ku
2 − i(εν0 −

εν
′

0 )±
√

(kd+ku)2

4 − (εν1 − εν
′

1 )2 + i(εν1 − εν
′

1 )(kd − ku).

In the low temperature limit kBT � εu − εd and thus
ku = 0, Eqs. (E4) - (E5) are given by the following 2× 2
matrices

Ggg,gg(t) = Gee,ee(t) = Gff,ff (t)

= (−i/~)θ(t)

(
e−kt 0

1− e−kt 1

)
, (E6)

Geg,eg(t) = (−i/~)θ(t)

×
(

e−(k+iω+
eg)t 0

k
k+2iΩ1

[e−iω
−
egt − e−(k+iω+

eg)t] e−iω
−
egt

)
, (E7)

Gfe,fe(t) = (−i/~)θ(t)

×
(

e−(k+iω+
fe)t 0

k
k+2i(Ω1+∆1) [e−iω

−
fet − e−(k+iω+

fe)t] e−iω
−
fet

)
, (E8)

where k = ku and ω±eg = Ω0±Ω1, ω±fe = Ω0 +∆0± (Ω1 +

∆1).

2. Signals for the TSJ model

In order to evaluate the signal in Eq. (12) we first
calculate the matter correlation function. Taking into
account (E6) and (E8) and performing matrix multipli-
cations one obtain for the correlation function in Eq. (12)

〈〈I|Geg,eg(τ)Gee,ee(t′)|ρee〉〉S =
1

~2
θ(τ)θ(t′)ρee(0)

×
[
eiω
−
egτ +

2iΩ1

k − 2iΩ1
e−kt

′
(eiω

−
egτ − e(−k+iω+

eg)τ )

]
.

(E9)

Evaluating time integrals in Eq. (12) yields the final
result for the signal (13).

The coincidence signal (15) - (16) can be calculated
similarly. After calculation of matter correlation function
and performing all the time integrals we finally obtain:

S
(2)
i (t1, ω1; t2, ω2) = 2RD

2(ω1)D2(ω2)

4σf1σf2
|µeg|2|µfe|2

[
1

∆−eg∆−fe

(
e−i∆

−
fe(t1−t2)

(∆−fe − 2iσT1)(∆−fe + 2iσT2)
− 1

4σT1σT2

)

+
2iΩ1e

−kt1

(k − 2iΩ1)∆+
fe

(
1

∆−eg
− 1

∆+
eg − ik

)(
e−i∆

+
fe(t1−t2)

(∆+
fe − i(2σT1 + k))(∆+

fe + 2iσT2)
− 1

2σT2(2σT1 + k)

)

+
2i(Ω1 + ∆1)e−kt2

[k − 2i(Ω1 + ∆1)]∆−eg

(
1

∆−fe

[
e−i∆

−
fe(t1−t2)

(∆−fe − 2iσT1)(∆−fe + i(2σT2 + k)
− 1

2σT1(2σT2 + k)

]

− 1

∆+
fe − ik

[
e−(i∆+

fe+k)(t1−t2)

(∆+
fe − i(2σT1 + k))(∆+

fe + 2iσT2)
− 1

2σT1(2σT2 + k)

])]
, (E10)
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S
(2)
ii (t1, ω1; t2, ω2) = 2RD

2(ω1)D2(ω2)

4σf1σf2
|µeg|2|µfe|2

[
1

∆−eg∆−∗fe

(
ei∆

−∗
fe (t1−t2)

(∆−∗fe + 2iσT1)(∆−∗fe − 2iσT2)
− 1

4σT1σT2

)

+
2iΩ1e

−kt1

(k − 2iΩ1)∆+∗
fe

(
1

∆−eg
− 1

∆+
eg − ik

)(
ei∆

+∗
fe (t1−t2)

(∆+∗
fe + i(2σT1 + k))(∆+∗

fe − 2iσT2)
− 1

2σT2(2σT1 + k)

)

+
2i(Ω1 + ∆1)e−kt2

[k + 2i(Ω1 + ∆1)]∆−eg

(
1

∆−∗fe

[
ei∆

−∗
fe (t1−t2)

(∆−∗fe + 2iσT1)(∆−∗fe − i(2σT2 + k)
− 1

2σT1(2σT2 + k)

]

− 1

∆+∗
fe + ik

[
e(i∆+∗

fe −k)(t1−t2)

(∆+∗
fe + i(2σT1 + k))(∆+∗

fe − 2iσT2)
− 1

2σT1(2σT2 + k)

])]
, (E11)

where ∆±fe = ω2 − ω±fe − i(σT2 + σω2).
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mofen, S. Götzinger, and V. Sandoghdar, Phys. Rev.
Lett. 108, 093601 (Feb 2012), http://link.aps.org/

doi/10.1103/PhysRevLett.108.093601

[18] K. E. Dorfman and S. Mukamel, Physical Review A 86,
013810 (2012)
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