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Abstract

Circulating inflammatory markers are essential to human health and disease, and they are

often dysregulated or malfunctioning in cancers as well as in cardiovascular, metabolic,

immunologic and neuropsychiatric disorders. However, the genetic contribution to the physi-

ological variation of levels of circulating inflammatory markers is largely unknown. Here we

report the results of a genome-wide genetic study of blood concentration of ten cytokines,

including the hitherto unexplored calcium-binding protein (S100B). The study leverages a

unique sample of neonatal blood spots from 9,459 Danish subjects from the iPSYCH initia-

tive. We estimate the SNP-heritability of marker levels as ranging from essentially zero for

Erythropoietin (EPO) up to 73% for S100B. We identify and replicate 16 associated genomic

regions (p < 5 x 10−9), of which four are novel. We show that the associated variants map to

enhancer elements, suggesting a possible transcriptional effect of genomic variants on the

cytokine levels. The identification of the genetic architecture underlying the basic levels of

cytokines is likely to prompt studies investigating the relationship between cytokines and

complex disease. Our results also suggest that the genetic architecture of cytokines is sta-

ble from neonatal to adult life.
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Author summary

Inflammation is a complex process which involves different mechanisms on both the

molecular and physiological levels. It is known to play a key role in a diverse group of con-

ditions, including cancers, metabolic and cardiovascular disease, allergies, autoimmune

disease, and, in some cases, neurological and psychiatric disorders as well. Studying circu-

lating cytokine marker levels in blood is crucial to the understanding of the disease mech-

anism and its relation to the inflammatory response. In this study we perform large-scale

analyses (N = 9,459) to investigate the genetic underpinnings of the variation in the levels

of ten different cytokines at five to seven days after birth. We show that they can be distin-

guished by the level to which they are genetically determined, and we find 16 genetic loci

(of which 4 are novel) which are significantly associated with markers’ levels in blood. We

additionally map the discovered loci to locations in the genome that are involved in gene

regulation, thereby providing a plausible functional mechanism. We contrast our results

with previous studies using adult samples and show that the genetic control of markers

levels may be stable over an individual’s lifespan. These results are informative not only at

the basic-research level, but also at a clinical level, as these markers are routinely used in

diagnostic procedures without necessarily taking into account the individual’s genetic

makeup.

Introduction

Circulating inflammatory markers are essential to human health and disease [1]. An important

group of small circulating proteins are cytokines. These have important roles in cell signaling

in general and in modulating immune function in particular, including inducing and reducing

inflammation [2] Circulating inflammatory cytokines have been implicated in many classes of

diseases, including cancers [3], cardiovascular diseases [4], metabolic diseases [5], autoim-

mune diseases [6] and neuropsychiatric disorders [7]. Their utility goes beyond their explana-

tory power in disease mechanism; since measuring their blood levels is a simple procedure,

they can be useful in their diagnostic and predictive power. For example, they can be used as

indicators for obesity and early cancer risk factors [8]. In addition to their involvement in dis-

ease, cytokines are also involved in both physiological function e.g. pain [9] and mental, cogni-

tive, or brain function [10]. The latter point might be extremely important given emerging

evidence for the links between immune function and psychiatric disorders [11–13].

Despite their relevance to disease mechanism and diagnostic power, only few studies have

examined the genetic architecture of circulating inflammatory markers[14–17]. Furthermore,

previous studies have mainly used adult samples; thus, it is unclear whether the genetic control

of inflammatory markers varies across age groups. Here, we estimate the genetic contribution

to variation in the circulating cytokine marker levels at birth for: interleukin 8 and 18 (IL8 and

IL18), monocytes chemoattractant protein (MCP1 aka CCL2), thymus and reactivation regu-

lated chemokine (TARC, also known as CCL17), erythropoietin (EPO), immunoglobulin A

(IgA), C-reactive protein (CRP), brain-derived neurotrophic factor (BDNF), vascular endothe-

lial growth factors (VEGFA) and S100 calcium-binding protein (S100B). Of note, the genetics

of S100B has not been previously studied.

Results

We use data from 12,000 neonatal blood spots as part of the Danish iPSYCH Initiative[18], in

which the concentrations of ten cytokines were measured using a two-step design with a
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discovery sample (N = 10,000) and a replication sample (N = 2,000). Five of the ten markers, i.
e. BDNF, IL8, IL18, MCP1 and S100B, were measured in both samples. Both discovery and

replication samples included subjects tested at birth who later in life had at least one inpatient

or outpatient hospital discharge code involving one or more of six psychiatric disorders:

schizophrenia, bipolar disorder, depression, autism, attention-deficit/hyperactivity disorder

and anorexia (S1 Table)[18], as well as a random population sample.

Genome-wide genotyping of DNA extracted from neonatal blood spots was accomplished

using the Infinium PsychChip v1.0 array in 23 waves (for detailed protocol see Pedersen et al.
[18]) and used to impute ~9 million 1000 Genomes Project Phase 3 SNPs. We performed two

rounds of strict quality control to remove possible technical artifacts within each wave and

across waves, respectively (Materials and Methods). We inferred the ancestry of each subject

using both national birth register data and genomic principal component (PC) analysis. Non-

Danish subjects were subsequently removed before the genetic association analyses. In total,

8,318 and 1,141 subjects were used in the discovery and replication analyses, respectively

(Materials and Methods). Marker levels were log-transformed and age-residualized using a

generalized additive model with 5 degrees of freedom (hereafter normalized, Materials and

Methods). As expected, we observed both positive and negative correlations of the measured

marker levels; correlation coefficients range from -0.06 to 0.43, but positive correlation is

observed in the majority of the cases (S33 Fig). This suggests a complex regulation mechanism

for immune responses.

We first estimated the proportions of the variance of marker levels accounted for by genetic

variants (h2
SNP) using restricted maximum likelihood[19]. S100B shows the highest h2

SNP

(0.73), while EPO has h2
SNP~0; (Fig 1A). SNP-heritabilities for the remaining eight markers

range from 0.08 (BDNF) to 0.21 (IL18 and VEGFA). For each marker, h2
SNP was partitioned

to autosomes, revealing that SNP-heritabilities of S100B, CRP, IL18 and IgA predominantly

stem from the chromosomes where their coding genes are located (Fig 1B), suggesting strong

cis-regulatory mechanisms. In contrast, analyses suggest disperse and polygenic trans-regula-

tion for IL8, MCP1 and TARC (Fig 1B).

Fig 1. SNP heritability of circulating protein levels. The variation of circulating marker levels captured by a. all the genotyped SNP; b. SNPs on each autosome

and c. polygenic scores computed from independent sample are shown. Cytokine SNP-heritabilities were shown in a by point estimates and standard errors.

These point estimates were also shown in parentheses following the cytokine names on b. The Pearson’s correlation coefficients between polygenic scores and

measured protein levels in the discovery sample are stratified by different p value thresholds (pT) of association in the discovery sample (S1, P<1x10-6; S2, P

<1x10-5; S3,1x10-4; S4, P<0.001; S5, P< 0.01; S6, P< 0.1; S7, P<0.5; S8, P<1.0). The effect sizes used to compute polygenic scores are derived from Ahola-Olli

et al.[17].

https://doi.org/10.1371/journal.pgen.1009163.g001
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We correlated blood marker levels with polygenic risk scores (PGRSs) constructed from

effect size estimates reported in a previous, independent study[17]. As shown in Fig 1C, mod-

erately high correlations were observed for VEGFA, IL18, MCP1 (r = 0.31, p<10−16; r = 0.18, p

<10−16; r = 0.19, p<10−16; respectively, using SNPs with association p<10−6 from the indepen-

dent study), whereas IL8 blood levels and PGRSs are only marginally correlated.

We performed a genome-wide association study for each cytokine using a multiple linear

regression model, including the first 6 principal components (PCs), diagnosis of any of the six

disorders, genotyping wave indicators and sex as covariates (Materials and Methods). The

same model was separately applied to both discovery and replication samples. We did not

observe inflation in the resulting association statistics (lambda: min = 0.99, max = 1.03; S1–S10

Figs). Except for the cases of BDNF and IL8, we observed a high number genetic variants sig-

nificantly associated (P<5x10-9) with the cytokine markers, ranging from 131 for EPO to

3,941 for S100B. Extreme p values (P< 10−100) are especially common for IL18, S100B and

VEGFA (Fig 2A) in line with analyses showing strong cis-regulatory mechanisms for these

markers (Fig 1B). As shown in Fig 2B, common variants (minor allele frequency: MAF>20%)

make up 56% of all significant variants.

We clumped the association signals into 20 independent loci (16 unique loci) indexed by at

least one significant SNP (P<5 x 10−9) (Materials and Methods, S11–S30 Figs), associated with

one or more markers (Table 1). Out of the 20 associations, four are novel and confirmed in the

replication study (P<0.0036, Table 1). The first novel association with IL18 is in 19p13.2

indexed by rs56195122 (P = 2.4x10-13, MAF = 0.03, replication P = 6.59x10-4, S17 Fig). The

SNP rs56195122 is in the first intron of the synaptonemal complex central element protein 2

gene (SYCE2), associated with several blood metabolites levels[21] and blood cell related traits

[22, 23]. The second locus is associated with MCP1, indexed by rs4493469 (P = 1.62x10-16,

MAF = 0.1, replication P = 2.0x10-3, 27kb upstream of the C-C chemokine receptor type 3

gene, CCR3, S20 Fig).

Genome wide significant SNPs were clumped into 20 independent regions. Information

about each region includes, leading SNP (SNP), Chromosome (Chr), cytoband (Region), geno-

mic position (Pos, hg19), effective allele (A1), alternative allele (A2), effect size (Beta), standard
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Fig 2. Distribution of association statistics for inflammation marker level a. The empirical cumulative distribution

function of the log10(-log10(P)) for the association of SNPs (P<5x10-9) with each inflammation marker. Colors indicate

different markers. b. Distribution of SNPs (P<1x10-9) in different minor allele frequency (MAF) bins is shown for each

marker. Colors indicate different MAF intervals. Numbers in the figure shows the proportion of SNPs in the region.

https://doi.org/10.1371/journal.pgen.1009163.g002
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error (Se), association p values (P), proportion of maker level variance accounted for by the

leading SNP (VE), imputation quality score (INFO), association p values in the replication

sample or previously reported studies (P repl) and the gene closest to the leading SNPs (Gene).

We discovered two novel regions associated with S100B levels in blood (Table 1). The first

region at 21q22.3 is indexed by rs62224256 (P<1x10-300, MAF = 0.49, replication P = 9.58x10-

38, S23 Fig) located 21kb downstream of the pericentrin gene (PCNT), which is a calmodulin

binding protein. Remarkably, the leading SNP accounts for 18% of the variation of S100B level

in blood in the discovery sample (Table 1). The A allele of the top SNP rs62224256 is associated

with reduced levels corresponding to 0.32 standard deviations (SD = 0.02, P<2x10-16) and

explains 14% of S100B variation in the replication sample (Fig 3A). We also discovered that

the human leukocyte antigen (HLA) region (build hg19, chr6: 28,477,797–33,448,354) is asso-

ciated with the variation of circulating S100B, led by rs28397289 (P = 7.67x10-19, MAF = 0.24,

S24 Fig). The association of the HLA region with S100B in the replication sample is indexed by

another SNP rs4713462 (replication P = 5.83x10-5, MAF = 0.30).

Additionally, 14 of the 20 loci replicated previously-reported associations (S1 Text and S10

Table).

We constructed PGRSs for: BDNF, IL18, IL8, MCP1 and S100B, measured in both samples,

for the replication analysis using the effect estimates from discovery association. Fig 3B shows

Pearson’s correlations between the PGRSs and the corresponding normalized marker levels

stratified by different “discovery association strength”. The PGRSs based on SNPs with

P<10−6 (S1) were correlated most strongly across all markers except IL8. In contrast, PGRS

Table 1. Genome wide significant associations with blood inflammatory marker levels.

Marker SNP Chr Region Pos A1/A2 Beta Se P VE INFO Freq P repl Gene

CRP rs3091244 1 1q23.2 159684665 A/G 0.33 1.89E-2 7.47E-68 5.2E-2 1.01 0.32 CRP

rs112635299 14 14q32.13 94838142 T/G -0.41 5.61E-2 3.31-E-13 9.02E-3 0.95 0.03 SERPINA1

EPO rs1130864 1 1q32.2 159683091 A/G 0.11 0.01 4.24E-23 1.02E-2 1.01 0.32 CRP

IgA rs3094087 6 6p21.33 31061561 T/C 0.10 0.01 1.83E-10 3.12E-3 1.03 0.15 HLA

IL18 rs10891329 11 11q23.1 112009892 T/C 0.32 7.4E-3 1E-300 4.0E-2 0.95 0.32 3.72E-37 IL18

rs10891268 11 11q23.1 111301044 A/G 6.1E-2 9E-3 1.21E-11 1.26E-3 0.98 0.22 4.46E-4 POU2AF1

rs56195122 19 19p13.2 13020506 A/G -0.15 2.08E-2 2.4E-13 1.22E-3 0.99 0.03 6.59E-4 SYCE2

rs9402686 6 6q23.3 135427817 A/G 5.65E-2 8.3E-3 1.51E-11 1.22E-3 1.0 0.26 0.58 HBS1L

MCP1 rs12075 1 1q23.2 159175354 A/G 0.11 5.1E-3 1.12E-92 5.47E-3 0.98 0.44 1.84E-8 ACKR1

rs4493469 3 3p21.31 46177992 T/C -7.01E-2 8.5E-3 1.62E-16 9.18E-4 0.97 0.10 2.0E-3 CCR3

rs2228467 3 3p22.1 42906116 T/C -8.19E-2 1.01E-2 6.22E-16 8.35E-4 1.02 0.07 1.24E-5 ACKR2

rs60200069 10 10q22.1 73503994 T/G -3.74E-2 5.2E-3 7.82E-13 6.86E-4 0.98 0.43 8.67E-2 CDH23

S100B rs62224256 21 21q22.3 47887095 A/G -0.61 1.31E-2 1E-300 0.18 0.98 0.49 9.85E-38 PCNT

rs28397289 6 6p21.33 31197407 T/C 0.15 1.72E-2 7.67E-19 8.46E-3 0.98 0.24 rs4713462

5.83E-5

HLA

TARC rs115952894 3 3p24.3 16950359 A/G 0.54 2.46E-2 1E-104 2.67E-2 1.0 0.05 PLCL2

rs2228467 3 3p22.1 42906116 T/C -0.41 2.09E-2 1.84E-82 2.05E-2 1.02 0.07 b4.23E-11 ACKR2

rs10886430 10 10q26.11 121010256 A/G 0.33 1.80E-2 1.23E-75 2.16E-2 0.89 0.11 GRK5

rs223896 16 16q21 57443146 A/G -0.12 1.08E-2 2.91E-29 7.10E-3 1.02 0.41 b1.3E-9 CCL17

VEGFA rs7767396 6 6q21.1 43927050 A/G 0.22 6.2E-3 3.31E-253 2.36E-2 0.99 0.47 a3.67E-171(c4.85E-1284) intergenic

rs11789392 9 9p24.2 2694914 T/C 0.13 7.0E-3 1.22E-73 8.09E-3 0.87 0.44 a4.91E-5 intergenic

a. from Ahola-Olli et al[17]

b. from Suhre et al[16]

c. from choi et al[20].

https://doi.org/10.1371/journal.pgen.1009163.t001
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constructed with all SNPs (S8), i.e. P�<1.0, show no significant correlation except for with

S100B. The PGRSs constructed with SNPs with P<10−6 accounts for 21% of S100B variation

in the replication sample (Fig 3C), and the correlation between PGRS and S100B levels is ~0.5.

For comparison, an analysis based on a previously-studied discovery sample[17] is shown in

S31 and S32 Figs. The observed low correlations between PGRS and IL8 levels (Figs 1C, 3B,

S31 and S32 Figs) can be partially explained by the low SNP heritability for IL8 estimated in

our sample (Fig 1A). On the other hand, the most significant correlations for the other cyto-

kines was achieved by the PGRS with the lowest p-value threshold indicate that the genetic

architecture of cytokines may be less polygenic than other human complex traits.

The associated loci contain a large number of genome-wide significant SNPs (P<5x10-9,

Fig 2A), making it challenging to infer the causal variants for follow-up experimental studies.

We performed Bayesian statistical fine-mapping on each associated region[24] (Materials and

Fig 3. Prediction of inflammation marker levels by genetic variants. a. The distribution of the normalized S100B level in the replication sample

is shown in the three genotype groups of rs62224256 (0: AA, 1, AG and 2 GG). A simple linear regression line(red) is added in the figure to show

the trend. b. The Pearson’s correlation coefficients between polygenic scores and normalized S100B level in the replication sample are stratified by

different p value threshold(pT) of association in the discovery sample (S1, P<1x10-6; S2, P<1x10-5; S3, P<1x10-4; S4, P<0.001; S5, P< 0.01; S6,

P< 0.1; S7, P<0.5; S8, P<1.0). Standard errors are show by the error bar. Stars indicate significant correlations (P<0.00125 = 0.05/40). c. A scatter

plot shows the predicted S100B level (normalized, fitted strait line) in the replication sample by SNPs with P<1x10-6 in the discovery sample.

https://doi.org/10.1371/journal.pgen.1009163.g003
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Methods). For each associated region, we inferred the most probable causal configuration

(causal set) assuming at most 3 causal variants per region (Materials and Methods). As shown

in Table 2, eleven causal sets include their corresponding leading SNPs, among which 3 are

one-variant sets. Nonetheless, 9 causal sets do not contain their corresponding leading SNPs,

indicating that the top association signals may be driven by the allelic combination of SNPs in

the causal sets (Table 2). Re-analysis assuming at most six causal variants per region did not

change the results (S9 Table).

The FINEMAP program was applied to each associated region (500kb left and right of the

leading SNP) in Table 1, assuming each region contains at most three causal variants. Abbrevi-

ations used: log10(BFc): common logarithm of Bayesian factor for the inferred most probable

causal configuration; log10(BF): common logarithm of Bayesian factor for the SNP being in the

causal set; PIP: posterior inclusion probability in the causal set; R2: LD r-square of the SNP

with the leading SNP in the corresponding region; P: association p value in the discovery sam-

ple; P repl: association p value in the replication sample or previous studies; Gene: closest gene

to the corresponding SNP; Enh gene: inferred genes regulated by the corresponding enhancer.

Most of the identified genetic variants are located outside of protein-coding regions. We

integrated associated loci with public epigenomic datasets[25–28] to infer plausible regulatory

mechanisms. Eighteen of the 50 identified leading SNPs implicated by both association and

fine-mapping analyses are located in enhancers from GeneHancer, the GeneCards Suite[29]

database of human enhancers and their associated genes (Materials and Methods)(Table 2 and

S2–S8 Tables). We also tested whether cytokine associated SNPs were enriched in DNAse

hypertensive sites, histone modification sites and chromatin states. However, after correcting

multiple testing no significant enrichment was observed (S34–S36 Figs). In Fig 4, we demon-

strate the annotation by the 21q22.3 region, indexed by rs62224256, associated with S100B

level. The SNPs rs11910707 (P = 1.26x10-205, replication P = 1.66x10-27, log10BF = 13.25, 12kb

upstream of PRMT2) and rs2839314 (P = 188x10-240, replication P = 4.30x10-19, log10BF = 4.1,

22kb upstream of DIP2A) are the most probable causal variants. The rs11910707 SNP overlaps

with the elite enhancer (Materials and Methods) GH21G046620, and rs2839314 –with

GH21G046541. Both enhancers modulate the transcription of the S100B gene (the former

through a double-elite association). Moreover, among the genes regulated by at least one of

these enhancers are PRMT2, DIP2A, and SPATC1L (Table 2). Thus, the most highly associated

signal with rs62224256 is highly likely to be a proxy of the two causal SNPs. As such, the closest

gene, PCNT, may or may not play roles in the regulation of circulating S100B.

Discussion

In this study, we investigate the genetic architecture of ten cytokines in whole blood at birth, in

a sample of 12,000 individuals, the largest study so far. Our results highlight an important role

for regulatory elements in determining levels of circulatory inflammatory markers. Impor-

tantly, we robustly replicate our findings in an in-house replication sample and by using data

from other studies[16, 17]. The latter studies, in contrast to the current study, were based on

adult samples, and, therefore, our results suggest that the genetic architecture of cytokines is

stable from neonatal to adult life.

Inflammation and conditions associated with it, such as infections and autoimmune dis-

eases, have been implicated in a number of disorders and medical conditions[1], including

mental disorders[7, 11, 13]. In the context of the latter type of disorders, studies such as ours

could be of great utility; while it has been known for a long time that mental disorders have

strong genetic etiologies [30], when it comes to reliable accounts of disease mechanism, our

current understanding is very limited compared to not only monogenic disorders, but also
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Table 2. Fine mapping of associated regions.

Marker Leading

SNP

log10

(BFc)

SNP 1og10

(BF)

PIP R2 P P repl Gene Enhancer ID Enh Gene

CRP rs3091244 93.24 rs3091244 2.56 0.17 1.0 7.47E-

68

CRP GH01G159751

(rs4131568,R2 = 0.82;

rs12094103,R2 = 0.79)

AIM2,CRP, FCRL6,

RPL27P2,DUSP23

rs376195567 2.75 0.24 0.05 3.66E-

24

CRP

rs3093059 2.38 0.11 0.02 2.26E-

14

CRP

rs112635299 10.31 rs112635299 3.6 0.63 1.0 3.31-E-

13

SERPINA1

EPO rs1130864 27.74 rs1130864 2.59 0.18 1.0 4.24E-

23

CRP GH01G159751

(rs4131568,R2 = 0.83;

rs12094103,R2 = 0.83)

AIM2,CRP, FCRL6,RPL27P2,

DUSP23

rs16842568 2.28 0.10 0.02 2.06E-6 CRPP1
IL18 rs10891329 362.57 rs10891325 3.08 0.55 0.79 6.19E-

263

1.26E-23 SDHD

rs11214126 9.12 1.0 0.26 2.03E-

98

4.84E-14 BCO2

rs10891343 4.74 0.98 0.55 7.23E-

287

8.58E-27 BCO2

rs10891268 21.25 rs10444327 2.65 0.24 0.0 1.32E-5 0.25 POU2AF1
rs117369151 2.53 0.29 0.05 1.62E-5 0.16 SIK2
rs79958943 3.70 0.78 0.12 4.49E-

15

2.68E-3 SIK2 GH19G012880

rs56195122 10.44 rs56195122 2.76 0.28 1.0 2.4E-13 6.59E-4 SYCE2 GH19G012890

(rs2072596,R2 = 0.91);

GH11G111658

(rs3745647,R2 = 0.90)

GCDH,PRS6P25,ZNF709,

ZNF136,ZNF788,SIK2,BGT4,

C11orf88,MIR34B, MIC34C

rs9402686 12.10 rs9402686 2.18 0.10 1.0 1.51E-

11

0.58 HBS1L

rs56293029 2.09 0.09 0.93 2.39E-

11

0.66 HBS1L

MCP1 rs12075 119.06 rs12075 4.87 0.97 1.0 1.12E-

92

1.84E-8 ACKR1

rs13962 0.96 4.64 0.17 0.013 0.11 ACKR1
rs72698561 3.55 0.65 0.04 7.85E-

17

0.14 CRPP1

rs4493469 30.68 rs6441947 2.91 0.31 0.03 0.01 0.61 CCR3
rs11923627 2.40 0.11 0.68 2.73E-

15

2.49E-2

(a5.90E-4)

CCR3

rs12495098 2.48 0.14 0.01 1.46E-

10

1.81E-4

(a1.54E-20)

CCR3 GH03G046297 CCR2, CCR5,CCR1,CCRL2,

TDGF1,LRRC2,FYCO1
rs2228467 17.78 rs2228467 6.94 1.0 1.0 6.22E-

16

1.23E-5

(a9.19E-20)

ACKR2

rs60200069 14.15 rs10823838 2.85 0.27 1.0 8.33E-

13

7.90E-2 CDH23 GH10G071740 ,CCR2,PSAP, DNAJB12

rs3747858 2.76 0.23 0.03 5.16E-9 0.28 CDH23 GH10G071745 VSIR,CDH23
S100B rs62224256 657.11 rs11910707 13.25 1.0 0.10 1.26E-

205

1.66E-27 PRMT2 GH21G046620 PRMT2, S100B, DIP2A,

SPATC1L
rs55912899 5.22 0.99 0.09 5.89E-

129

1.7E-6 PRMT2

rs2839314 4.07 0.96 0.13 1.99E-

240

4.30E-19 DIP2A GH21G046541 S100B,MCM3AP, SPATC1L,

DIP2A, RNU6

(Continued)
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other complex disorders such as autoimmune disorders [31, 32]. This is not necessarily due to

lack of significant genetic associations, e.g. for schizophrenia [33], but rather it could also stem

from the difficulty in defining the psychiatric traits. In this respect, leveraging the results of

studies such as ours could be useful for both diagnosis and as a future avenue for research;

given the links between inflammation, immunity and mental illness, and the properties of

some of the inflammatory makers studied here, it could be envisaged that the latter could be

used in a way similar to how endophenotypes could be used in psychiatry[34, 35]. Moreover,

the intricate genetic architecture identified in this study, which highlights gene regulation,

could be informative to molecular studies of psychiatric diseases and other types of diseases.

For example, it is likely to prompt studies using e.g. Mendelian randomization[36] to investi-

gate the relationship between inflammatory markers and complex disease.

Table 2. (Continued)

Marker Leading

SNP

log10

(BFc)

SNP 1og10

(BF)

PIP R2 P P repl Gene Enhancer ID Enh Gene

CRP rs3091244 93.24 rs3091244 2.56 0.17 1.0 7.47E-

68

CRP GH01G159751

(rs4131568,R2 = 0.82;

rs12094103,R2 = 0.79)

AIM2,CRP, FCRL6,

RPL27P2,DUSP23

TARC rs115952894 177.69 rs115952894 4.34 0.92 1.0 1E-104 PLCL2
rs76472873 3.0 0.36 0.0 2.21E-

57

PLCL2 GH03G016916 MIR3713, PLCL2

rs369616361 3.78 0.77 0.14 0.013 PLCL2
rs2228467 91.10 rs2228467 7.85 1.0 1.0 1.84E-

82

b4.2E-11 ACKR2

rs115667394 2.76 0.31 0.0 0.02 VIPR1
rs1427803 2.13 0.10 0.03 4.59E-

26

ACKR2

rs10886430 73.26 rs10886430 13.76 1.0 1.0 1.23E-

75

GRK5 GH10G119249 GC10P119246,

LOC105378511
rs10886437 3.45 0.60 0.65 5.05E-

51

GRK5

rs223896 53.73 rs4396523 2.94 0.30 0.11 2.30E-

23

CCL17 GH16G057409 CCL17, CIAPIN1, DOK4

rs223897 2.92 0.29 0.53 3.51E-

19

CCL17 GH16G057409 CCL17, CIAPIN1, DOK4

rs34379253 4.09 0.86 0.03 4.38E-

13

CCL17 GH16G057409 CCL17, CIAPIN1, DOK4

VEGFA rs7767396 278.31 rs9369421 3.70 0.75 0.0 0.001 a1.70E-2 intergenic GH06G043953 GC06M043993,

LOC105375067
rs73422214 12.65 1.0 0.07 1.70E-

29

a1.16E-13 intergenic GH06G043953 GC06M043993,

LOC105375067
rs4481426 3.74 0.77 0.77 4.95E-

194

a1.24E-127

(c5.25E-

1060)

intergenic GH06G043953 GC06M043993,

LOC105375067

rs11789392 132.60 rs11789392 5.12 0.98 1.0 1.22E-

73

a4.91E-5 intergenic

rs2219143 4.97 0.97 0.0 10.8E-

58

a3.0E-4 VLDLR GH09G002620 VLDLR, PIR48978

rs10812148 3.15 0.38 0.01 4.33E-

16

a0.115 VLDLR-AS1

a. from Ahola-Olli et al[17]

b. from Suhre et al[16]

c. from choi et al[20].

https://doi.org/10.1371/journal.pgen.1009163.t002
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The main strengths of our study are the large number of markers included, the large sample

size, and the replication sample (S37 Fig). The postnatally sampling on days 5–7 day renders

our findings relatively independent of the child’s behavior and natural environment, which

could be considered a major strength. However, it should be noted that the marker levels may,

in some cases, be influenced by perinatal complications, diseases and medication administered

to the child, as well as by the smoking habits, alcohol consumption, diet, weight and other gen-

eral life conditions of the mother. Certain peptides, e.g. antibodies, cross the placenta, and neo-

natal levels in the child therefore reflect those of the mothers at birth, thus reducing the power

of the study and accounting for the zero heritability of IL8 and BDNF. A possible source of

noise in the levels of inflammatory markers is that measurements come from dried, whole

Fig 4. Annotation of the region indexed by rs62224256 associated with S100B. The top panel shows the regional plot.

P values bellow 1x10-100 were censored at 1x10-100 for the clearness of illustration. Genes located in this region are shown

in the middle panel. The sub-region contains rs662224256 is zoomed in approximately. Two enhancers are represented

by the black and red bars. Genes regulated by the enhancers are underscored by red line and shaded bar when they are

regulated by both enhancers. The log10 Bayesian Factor (LBF), posterior inclusion probability(PIP) of being included in

the causal set and association p values (P) scales are shown in the same order as SNP rs-numbers. The genomic

coordinates (build hg19) of SNPs and enhancers are shown on the lower-left panel.

https://doi.org/10.1371/journal.pgen.1009163.g004
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blood samples that may not precisely correspond to concentrations measures in plasma or

serum in practice. However, our replication of findings from adult samples suggests that these

putative biases do not present a serious limitation to the study.

In conclusion, our study sheds some light on the complex genetic architecture of inflamma-

tory markers and highlights the important role of regulatory elements therein. We also show

that the mechanisms involved are relatively stable throughout life, by comparing our results to

those of studies which used adult samples. We hope that these results will prompt future stud-

ies looking into the links between inflammation and complex diseases and, in particular, that

they will contribute to investigations into the mechanisms of mental illness, which have proven

difficult to explain from a molecular perspective.

Materials and methods

Sample

The sample was based on complete and consecutive birth cohorts of all singletons born in

Denmark between May 1, 1981 and December 31, 2005. Only individuals who were residents

in Denmark on their first birthday and who have a known mother (N = 1,536,309) were

included. From this group, 78,000 subjects were genotyped in 23 waves by the Broad Institute

using the PsychChip version 1. For the discovery sample, 10,000 subjects were randomly

selected from the 23 waves of the iPSYCH initiative[18]. For the replication sample 2,000 sub-

jects were chosen from the second wave, excluding the discovery sample (for detailed descrip-

tion of samples see S1 Table).

Cytokine level measurements

The 2000 samples for replication analysis were measured using Luminex technology as

described by Skogstrand et al.[37, 38]. The second 10 000 samples used for discovery study

were measured using Meso-Scale technology as described in Skogstrand et al.[39]. Briefly,

dried blood spot sample were punched as 3.2mm disks into PCR-plates (Sarstedt,

72.1981.202). 130 μl extraction buffer (PBS containing 1% BSA and 0,5%Tween-20) were

added to each well, and the samples were extracted in 1 hour at room temperature on a micro-

well shaker set at (900rpm). The extracts were manually moved to sterile Matrix 2D tubes

(Thermo Scientific, 3232) and frozen at -80˚C. One (Luminex) or two (Meso-Scale) years

later, samples were thawed and analyzed using either Luminex technology in-house assays or

Meso-Scale plates printed customized for the project. Analyte concentrations were calculated

from the calibrator curves on each plate using 5PL (Luminex) or 4PL (Meso-Scale) logistic

regression. Analytes falling below the lowest concentration within the working range were

assigned to that value.

The measured levels were first inspected for potential outliers by scatter plots. Then, each

marker level was logarithm transformed and age-residualized using a generalized additive

model with 5 degrees of freedom, using the R function ‘gam’. The resultant data was further

checked for normality and outliers.

Quality control and imputation

Quality control, and imputation were performed for each wave separately. The quality control

parameters for retaining SNPs and subjects were: SNP missingness�0.05 (before sample

removal); subject missingness� 0.02; autosomal heterozygosity deviation (| Fhet |� 0.2); SNP

missingness�0.02 (after sample removal); and, SNP Hardy-Weinberg equilibrium (P > 10−6).

Genotype imputation was performed using the pre-phasing/imputation stepwise approach
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implemented in IMPUTE2[40]/ SHAPEIT2[41](chunk size of 3 Mb and with default parame-

ters). The imputation reference set consisted of 2,186 phased haplotypes from the full 1000

Genomes Project Phase 3. Only autosome chromosomes were analyzed.

After imputation, we identified SNPs with high imputation quality (INFO� 0.1) and

minor allele frequency (MAF > 0.01). Imputed dataset across 22 waves were merged and fur-

ther quality control measures were applied (min INFO� 0.1 and MAF� 0.01). The best-

guess genotypes were called using parameters: INFO� 0.9 and MAF > = 0.05. The set of

SNPs after linkage disequilibrium pruning (r2� 0.02) was used for relatedness testing and

population structure analysis. PLINK[42] was used for relatedness testing. One random mem-

ber of a pair of subjects with pi-hat� 0.2 were removed. Principal component analysis was

performed using EIGENSOFT[43] with the same collection of autosomal SNPs. After quality

control, 8,318 subjects remained for discovery and 1,141 subjects for replication sample. In

total, about 9 million SNPs were used in the association study.

SNP heritability, h2
SNP

The merged genotypes for discovery sample were quality controlled using the same parameter as

above. Before estimating the heritability, SNPs were thinned by the PLINK38 using the com-

mand:—indep-pairwise 100 50 0.2. The first 6 PCs (see next section), genotyping wave indicators

and sex were used as covariates in the restricted maximum likelihood-based program BOL-

T-REML[19]. To estimate per-chromosome SNP heritability, SNPs located in the focal chromo-

some was removed and the estimated h2
SNP was subtracted from the whole genome estimates.

Genome-wide association

Genome-wide association study of SNPs with inflammation marker levels were performed sepa-

rately for the discovery and replication sample using a multiple linear regression model imple-

mented in PLINK[42]. Principal components were computed separately for discovery and

replication, and the first 6 principal components were used as covariates, along covariates for sex

and wave indicator variables. We employed the first 6 PCs following regression analyses testing

each PC and each cytokine until we reached a PC which was not associated (P>0.05) with any of

the 10 cytokines. Manhattan plots in S1–S8 Figs presented the association results. The genomic

inflation factors were estimated and shown in the quantile-quantile plots in S1–S10 Figs. The

regional association results were constructed using LocusZoom[44](S11–S30 Figs). The pheno-

typic variance explained by a SNP was estimated by the ðb �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � p � ð1 � pÞ

p
Þ

2
, where β is the

estimated effect and p the allele frequency in the discovery sample.

Associated regions and genes

Association results were ‘clumped’ using PLINK based on the linkage disequilibrium structure

of the 1000 Genomes projects phase 3 EUR dataset, with parameters–clump-p1 5e-9 –clump-2
1e-6 –clump-r2 0.1. Five hundred kilo-base (kb) were used as inter-region distance threshold.

Genes whose genomic coordinates located within the boundaries of each region were assigned

to the corresponding region. SNPs with the smallest association p values were taken as the

leading SNP for the corresponding region. The associated SNPs were annotated to the closest

genes by genomic position the Ensembl tool VEP[45] (S2–S8 Tables).

Fine mapping

Association regions were fine-mapped using the FINEMAP[24] program. Regions were

defined as genomic segments 500kb on both sides of the most significant SNP in an associated
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region (P < 5x10-9). Linkage disequilibrium data from the 1000 Genomes Project phase 3

European sample were used in fine mapping. We performed two analyses: the first set the max-

imum number of causal variants to 3 and the other to 6. S2–S8 Tables listed all SNPs with pos-

terior inclusion probability (PIP) > 0.1 for 3-causal variants analysis. S9 Table listed all

inferred causal SNPs in each region for 6-causal variants analysis. The log10 Bayesian factors

for the causal set (log10BFc) and for each SNP are shown in the tables along with association

statistics.

Enhancer annotation

The associated SNPs were mapped onto genomic enhancer regions from the GeneHancer

database (v4.5) [25] using a specially-prepared annotated dataset. The GeneHancer database

contains enhancers that were integrated from five enhancer sources (Ensembl[46], ENCODE

[47], VISTA[48], dbSUPER[49] and FANTOM[50]) and enhancer-gene connections that are

based on five methods (eQTLs[51], eRNAs[50], TF-gene expression correlations, capture-HiC

[52], and genomic distance from TSS). Double-elite associations are considered to be more

confident annotations and are defined as enhancer-gene connections for which both the

enhancer itself and the connection to the gene are supported by at least two sources or meth-

ods, respectively.

Polygenic risk scoring

We computed the polygenic risk scores (PGRS) for both discovery and replication samples. To

compute the effect size: for discovery sample, we used the association results from the previous

study[17]; and, for the replication sample, we used both the association results from discovery

sample and the same previous study. The association summary statistics were first carefully fil-

tered by removing SNPs with: MAF < 0.05 or INFO< 0.8 or having a multi-character allele.

We, then, clumped the resultant data based on the 1000 Genomes Project 3 EUR linkage dis-

equilibrium structure using the program PLINK[42] with parameters:—clump-p1 1.0,—

clump-p2 1.0,—clump-r2 0.1 and—clump-kb 500. The same program was used for scoring

each subject in our sample. The correlations between normalized marker levels and PGRS

were computed using the R program with the cor.test for the Pearson’ correlation. The propor-

tions of the variance explained for each marker by each PGRS was computed as the square of

the Pearson’s correlation coefficients.
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