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Summary

Understanding the detailed dynamics of neuronal networks will require the simultaneous 

measurement of spike trains from hundreds of neurons (or more). Currently, approaches to 

extracting spike times and labels from raw data are time consuming, lack standardization and 

involve manual intervention, making it difficult to maintain data provenance and assess the quality 

of scientific results. Here, we describe an automated clustering approach and associated software 

package that addresses these problems and provides novel cluster quality metrics. We show that 

our approach has accuracy comparable to or exceeding that achieved using manual or semi-manual 

techniques with desktop CPU runtimes faster than acquisition time for up to hundreds of 

electrodes. Moreover, a single choice of parameters in the algorithm is effective for a variety of 

electrode geometries and across multiple brain regions. This algorithm has the potential to enable 

reproducible and automated spike sorting of larger scale recordings than is currently possible.
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Magland et. al. present MountainSort, a new fully automatic spike sorting package with a powerful 

GUI. MountainSort has accuracy comparable to current methods and runtimes faster than real-

time, enabling automatic and reproducible spike sorting for high-density extracellular recordings.

Introduction

Advances in our understanding of how populations of neurons represent and process 

information has been enabled by tightly packed multi-electrode arrays that allow for 

isolation of large numbers of simultaneously recorded neurons (Csicsvari et al., 2003; Gray 

et al., 1995; Lopez et al., 2016; McNaughton et al., 1983). Data collected from these devices 

comprise multiple channels of continuously sampled extracellular voltages. A key step in 

making these data interpretable is spike sorting, the process of detecting spiking events and 

assigning those events to single units corresponding to putative individual neurons (Einevoll 

et al., 2012; Harris et al., 2016; Lewicki, 1998; Muller, 1996; Quiroga, 2012).

A number of challenges make spike sorting more complex than clustering in many other 

disciplines. First, there is no simple noise model. The background signal arises from the 

combinations of multiple complex signals, including small spikes from hundreds of distant 

neurons, and can contain electrical noise mixed with true neural signals (Einevoll et al., 

2012). Second, variation in waveform shapes for a given cell can be highly non-Gaussian 

and skewed, particularly when bursting occurs (Harris et al., 2001; Quirk et al., 2001; Quirk 

and Wilson, 1999) or when the cell positions drift over time relative to the physical electrode 

(Bar-Hillel et al., 2006; Calabrese and Paninski, 2011; Chestek et al., 2007; Emondi et al., 

2004). Multiple neurons may fire simultaneously, leading to time-overlapping spike signals, 

and while this may not occur frequently in some brain areas or with small electrode arrays, 

for large arrays sampling tens to hundreds of neurons, individual spikes will often time-

overlap with other events (Ekanadham et al., 2014; Franke et al., 2010).

The majority of spike sorting algorithms comprise a sequence of steps such as bandpass 

filtering, spatial whitening, detection of threshold-crossing events, and clustering based on 

voltage waveform shape in a suitable feature space; this generally involves one or more 

manual processing steps (Einevoll et al., 2012; Lewicki, 1998; Marre et al., 2012; Quiroga, 

2012). At one extreme, the clustering itself is performed by a human operator, viewing the 

event features in two-dimensional projections, and drawing cluster boundaries with the 

assistance of specialized user interfaces (Xclust, M.A. Wilson; MClust, A.D. Redish; Offline 

Sorter, Plexon). In other situations, clustering is automated, but the user must curate the 

results by selecting which clusters to reject, merge, or even split (Hill et al., 2011; Kadir et 

al., 2014; Rossant et al., 2016). There also exist post-processing steps that resolve 

overlapping spikes (Ekanadham et al., 2014; Franke et al., 2015; Pachitariu et al., 2016; 

Pillow et al., 2013), and algorithms based on independent component analysis (ICA) that do 

not explicitly involve clustering (Takahahi et al., 2002). Presently, despite many available 

packages and proposed algorithms, no generally adopted software packages offer fully 

automated sorting that can take in the raw time series data and output spike times and 

identities without the expectation of further curation.
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From the standpoint of efficient and reproducible science, any human intervention has 

disadvantages. Manual sorting can have error rates in excess of 20% (Wood et al., 2004) and 

there is substantial variability in labeling across different sorting sessions (Harris et al., 

2000; Pedreira et al., 2012; Rossant et al., 2016). Furthermore, the human spike sorter could 

never keep up with the increasing volume of data arising from increasingly large electrode 

arrays applied over increasingly long durations (Berenyi et al., 2014; Dhawale AK, 2015; 

Du et al., 2011; Lopez et al., 2016; Santhanam et al., 2007; Shobe et al., 2015).

Although fully-automated spike sorting has been of interest for many years (Abeles and 

Goldstein, 1977), and despite prior efforts to automate sorting algorithms (Calabrese and 

Paninski, 2011; Carlson et al., 2014; Einevoll et al., 2012; Ekanadham et al., 2014; Franke et 

al., 2010; Franke et al., 2015; Kadir et al., 2014; Lewicki, 1998; Marre et al., 2012; Pillow et 

al., 2013; Quiroga et al., 2004; Rodriguez and Laio, 2014; Swindale and Spacek, 2014; 

Takekawa et al., 2012), the majority of laboratories still rely heavily on manual intervention. 

In this work, we set out to develop a fully automated spike sorting algorithm having error 

rates that are comparable to or lower than those of existing manual and semi-manual 

approaches, and with runtimes faster than acquisition times. We introduce MountainSort, a 

novel spike sorting algorithm and open-source software suite of processing, visualization, 

and curation tools.

Results

A central goal of our overall spike sorting strategy has been to develop a single algorithm 

that can be applied to data from different brain regions without the need for brain-region 

specific models or parameters. This requires that the procedure be insensitive to differences 

in dataset properties such as non-Gaussian cluster distributions, electrode densities, and 

firing rates. Further, selecting parameters such as thresholds and regularization constants is 

time-consuming and can call into question the objectivity of results. Therefore, our guiding 

philosophy is to minimize both the number of user-defined parameters and the number of 

modeling assumptions, while maintaining high spike sorting accuracy and efficiency.

To satisfy these requirements we developed the spike sorting pipeline shown in Fig. 1A. This 

involves preprocessing, sorting on electrode neighborhoods, consolidation across those 

neighborhoods, fitting, derivation of cluster metrics, and automated annotation based on 

those metrics. The last step replaces manual curation (deciding on which clusters to accept), 

but importantly does not involve corrections to clustering as with other approaches. Details 

of all processing steps are provided in Methods. Here we give an overview of the most 

critical steps.

Clustering of neural events

At the heart of our sorting pipeline is a new, efficient, nonparametric, density-based 

clustering algorithm termed ISO-SPLIT (Fig. 1B), used to sort spike events based on their 

representations in a low-dimensional feature space. The algorithm makes only two general 

assumptions about cluster distributions in this space. First, we assume that each cluster 

arises from a density function which, when projected onto any line, is unimodal, having a 

single region of highest density. Second, we assume that any two distinct clusters may be 
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separated by a hyperplane, in the neighborhood of which there is a relatively lower density. 

In our experience, the unimodality hypothesis appears to hold for the large majority of 

neurons taken from a variety of brain areas — this assumption is also implicit in most neural 

clustering methods, even those that do not assume a Gaussian shape (Fee et al., 1996; 

Quiroga et al., 2004; Vargas-Irwin and Donoghue, 2007). In a minority of cases, we have 

observed a multimodal cluster distribution, reflecting more complex firing properties of a 

single neuron. Our strategy for handling this challenging scenario is discussed below.

Technical details for ISO-SPLIT are provided in Methods. The algorithm comprises a series 

of nonparametric statistical tests for unimodality and makes no assumptions about the 

shapes of clusters aside from having unimodal one-dimensional projections. It therefore 

involves few adjustable parameters. Essentially one needs only to specify a statistical 

threshold for rejecting the null-hypothesis of unimodality; the clustering output is largely 

insensitive to this threshold due to the test being repeated at every iteration. The method is 

also insensitive to the initialization (see Methods). We use the same set of parameters for all 

examples in this study. Moreover, the algorithm needs no a priori information about the 

expected number of clusters nor the expected cluster densities.

Sorting large electrode arrays

As indicated in Fig. 1, sorting is first performed independently on electrode neighborhoods 

(one neighborhood per electrode) based on the geometric layout of the array. Redundant 

clusters are then removed during the next phase entitled “consolidation across 

neighborhoods” (Fig. S1). There are a number of advantages of using such a consolidation 

approach rather than a more error-prone merging procedure (see Methods). Importantly, this 

approach allows scaling to very large electrode arrays as the neighborhood sizes will remain 

roughly constant.

Identification of putative “single unit”, “noise”, “non-isolated”, and “bursting” clusters

As part of the overall automation, we developed metrics for determining which clusters are 

sufficiently isolated from noise and other clusters to be included in the final output. In this 

way only sufficiently isolated clusters are selected for downstream analysis. Our quality 

assessment categorizes the clusters into three groups: “single unit”, “noise”, and “non-

isolated”. In addition, we automatically identify (based on timing information) clear cases 

where the events of a bursting unit are split into multiple unimodal clusters (see Methods). 

Such decisions have traditionally been handled via case-by-case curation by manual 

operators. In contrast, our strategy only requires the operator to set thresholds on cluster 

quality metrics, as defined below. These metrics can be adjusted based on the type of 

analysis that will be done. Furthermore, the metrics can also be exported alongside the event 

times and labels, allowing analyses sensitive to unit isolation and noise contamination to be 

repeated with different thresholds or weighting criteria.

As stated, a central goal of our approach is to minimize the number of modeling 

assumptions. Currently available metrics (Harris et al., 2001; Schmitzer-Torbert et al., 2005; 

Schmitzer-Torbert and Redish, 2004), while useful, make assumptions about an underlying 

noise model. Here, we introduce two new metrics that make no such assumptions and are 
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specifically suited to spike sorting: isolation and noise overlap. We also use a measure of 

cluster signal-to-noise (SNR) to exclude clusters contaminated by artifacts, and employ a 

timing criterion to flag bursting situations.

Isolation—The isolation metric quantifies how well separated (in feature space) the cluster 

is from other nearby clusters. Clusters that are not well separated from others would be 

expected to have high false positive and false negative rates due to mixing with overlapping 

clusters. This quantity is calculated in a nonparametric way based on nearest-neighbor 

classification.

Noise overlap—Noise overlap estimates the fraction of “noise events” in a cluster, i.e., 

above-threshold events not associated with true firings of this or any of the other clustered 

units. A large noise overlap implies a high false positive rate. The procedure first empirically 

computes the expected waveform shape for noise events that have by chance crossed the 

detection threshold. It assesses the extent of feature space overlap between the cluster and a 

set of randomly selected noise clips after correcting for this expected noise waveform shape.

The noise overlap and isolation metrics vary between 0 and 1, and in a sense, represent the 

fraction of points that overlap either with another cluster (isolation metric) or with the noise 

cluster (noise overlap metric). However, they should not be interpreted as a direct estimate of 

the misclassification rate, but should rather be considered to be predictive of this quantity. 

Indeed, due to the way they are computed, these values will depend on factors such as the 

dimensionality of the feature space and the noise properties of the underlying data. 

Therefore, the annotation thresholds should be chosen to suit the application. With that said, 

in this study we used the same sorting parameters and annotation thresholds for all analyses.

Cluster SNR—Depending on the nature of signal contamination in the dataset, some 

clusters may consist primarily of high amplitude artefactual signals such as those that arise 

from movement, muscle, or other non-neural sources. In this case, the variation among event 

voltage clips will be large compared with clusters that correspond to neural units. To 

automatically exclude such clusters we compute cluster SNR, defined as the peak absolute 

amplitude of the average waveform divided by the peak standard deviation. The latter is 

defined as the standard deviation of the aligned clips in the cluster, taken at the channel and 

time sample where this quantity is largest.

Bursting units—While events corresponding to a single unit almost always form a cluster 

that is well approximated by a unimodal distribution, there are instances where the 

underlying distribution is multimodal. From our data we see that this most often occurs 

when the first spike in a burst has a different shape and higher amplitude than subsequent 

spikes in the burst. Our sorting algorithm by design will separate these events into two or 

more clusters. Fortunately, such clusters can be readily identified using event timing 

information, as the smaller spikes will always occur within a short time after the first spike 

in the burst. In the case of our hippocampal data this time window is on the order of 15 ms 

(Harris et al., 2001). In Methods, we describe the criteria used to label a cluster as having a 

“bursting parent” cluster.
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Comparison to manual clustering for a tetrode dataset

If automated spike sorting is to be useful, it should provide cluster labels with accuracy 

comparable to or exceeding existing standards. We therefore began with a comparison of our 

automated approach to manual sorting for a dataset that poses serious spike sorting 

challenges: tetrode recordings from the CA1 region of rat hippocampus (Fig. 2A). The 

pyramidal cells in CA1 are densely packed, and thus large numbers of cells can be detected 

on the same electrode. Furthermore, extracellular recordings from single CA1 neurons show 

substantial waveform variability as a result of bursting and other history-dependent effects 

(Harris et al., 2001; Quirk et al., 2001). We chose a dataset with some electrode drift (45-

minute recording session) and some artifact contamination resulting from animal movement. 

The data were derived from a novel exposure to a spatial environment where we expected to 

see neurons changing their firing rates substantially over time (Frank et al., 2004; Wilson 

and McNaughton, 1993). The standard in the field for such datasets is either fully manual 

clustering, or semi-automatic clustering where the algorithm over-clusters the data leaving 

the user to manually merge clusters or redraw cluster boundaries (Rossant et al., 2016).

Three different manual operators clustered the dataset using drawn polygons across several 

different 2D projections (see Methods). As expected (Harris et al., 2000), while there were 

clusters that all three operators identified, there was variability across operators, both in 

which clusters were sufficiently isolated to merit inclusion, as well as in the placement of the 

boundaries separating clusters, resulting in a range of unmatched events in each cluster (Fig. 

2B). MountainSort was then run; results of the comparison are shown in the confusion 

matrices of Fig. 2C. A confusion matrix (or contingency table (Zaki and Meira, 2014)) 

summarizes the consistency between two sortings of the same data by showing the pairwise 

counts (Fig. S2A). The entry aij represents the number of events that were classified as i in 

the first sorting and as j in the second. To handle the arbitrary ordering of labels, the rows 

and columns are permuted to maximize the sum of the diagonal entries (Kuhn, 1955). A 

purely diagonal matrix corresponds to perfect agreement. For compact visualization, 11 of 

the 24 automatically sorted MountainSort clusters with the best match to the manual sorting 

results are shown.

As shown in Fig. 2C, all 6 clusters that are identified in 2 or more manual clusterings are 

also identified by MountainSort (MountainSort labels 23, 15, 24, 5, 14/16, 28). For example, 

MountainSort cluster 24 corresponds to clusters 3, 4, and 3 in the first, second and third 

manual sortings, respectively, with more than 97% of the manual events also detected by 

MountainSort. At the same time, MountainSort identifies a large number of events as part of 

these clusters that are not included in the manual sortings (Fig. 2C). That is not surprising 

given that our approach to manual clustering aims to minimize the mistaken inclusion of 

incorrect events at the expense of missing true events; this approach was chosen because 

false positives can lead to incorrect inferences about correlated activity (Quirk and Wilson, 

1999).

Are these additional events likely to be true spiking events associated with the cell? Ground 

truth is not available for this dataset, or for the vast majority of other datasets, but in this 

case we can take advantage of the well-known “place fields” of hippocampal neurons 

(O’Keefe and Dostrovsky, 1971) to infer the accuracy of the sorting. We therefore examined 
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the animal’s location at the times the spikes were detected. If the additional events are 

correctly classified, then they should congregate in the same location as the bulk of the 

events. This is indeed the case. As shown in Fig. 2D and S2B, events detected by 

MountainSort but not by manual operators have spatial distributions very similar to those of 

the jointly detected or individually detected events, suggesting that these additional events 

are likely to be correctly assigned to this cluster.

MountainSort also identifies a large number of clusters that were not identified by the 

manual sorters. For the tetrode data featured in Fig. 2 we used the following metric 

thresholds: noise overlap <0.03, isolation >0.95, firing rate >0.1 Hz, SNR >1.5, although 

identical classifications for this dataset would result from using only noise overlap and firing 

rate. After automated curation and one automated bursting-related cluster merge (below), 

this resulted in the identification of 24 putative single-units (Fig. 3A). Importantly, these 

isolated clusters have few, if any, refractory period violations even though MountainSort 

does not use time information for clustering decisions (Fig. 3B). Furthermore, 22 of the 24 

putative single-units have spatially restricted firing properties, consistent with expected 

behavior from hippocampal CA1 principal cells (Fig. 3C). MountainSort clusters 12 and 21 

do not have spatially restricted firing properties and are relatively low amplitude, however, 

both have few refractory period violations and also have noise overlap scores that are below 

threshold (0.01 and 0.02, respectively; noise overlap threshold = 0.03). Further, the high 

firing rates of these units suggest that they are likely to correspond to one of the subtypes of 

inhibitory interneurons that can be found near the CA1 cell layer (Freund and Buzsaki, 

1996).

We further evaluated the quality of the isolation of these additional units by identifying the 

cluster pairs which had the most similar waveforms, as quantified by isolation score, and 

asking whether there was evidence of contamination or low-quality clustering in those pairs. 

In this dataset, clusters 7 and 9 have the lowest isolation score of 0.96, and clusters 6 and 4 

have the next lowest, an isolation score of 0.97. Despite these lower isolation scores, both 

pairs of clusters have noticeable waveform differences, clear separation in the principal 

component space, and a difference in spatial firing preferences (Fig. S3A, B). This suggests 

that these clusters all represent well isolated single units that likely correspond to single 

neurons.

Overall, we found that an isolation score <0.99 could reflect either activity originating from 

at least two different neurons (Fig. S3A, B) or activity from a single, bursting neuron with 

substantial amplitude variation and a multimodal cluster distribution. One such bursting 

cluster pair was automatically identified in this dataset (Fig. S3C, D cluster labels 14, 16; 

isolation = 0.97). Examination of their respective waveforms shapes, spatial firing properties 

(Fig. S3C), and cross-correlation (Fig. S3D), suggests that the two clusters come from a 

bursting neuron, with the higher amplitude cluster often spiking before the lower-amplitude 

cluster. Indeed, after an automatic merge of MountainSort clusters 14 and 16 based on an 

identification of burst pairs (see Methods), we find strong similarity to manually identified 

clusters (Manual 1 cluster 5, manual 2 cluster 2, manual 3 cluster 5, Fig. S2B). Here we note 

that automatically joining these two clusters required adding assumptions about relative 

spike timing and amplitudes into the post-clustering automated annotation stage. 
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Nonetheless, while the merge is done in an automated fashion, the software maintains a 

record of that annotation alongside the original cluster assignments. This makes it 

straightforward for other scientists to assess all annotations made during sorting.

Five clusters were tagged as overlapping with noise (using noise overlap > 0.03). Visual 

inspection of the events in these clusters revealed four of the five having of broad and 

symmetric waveforms (Fig. S3E), characteristic of what one might expect from the 

summation of activity from many distant neurons crossing the event detection threshold. 

Furthermore, all five of these clusters have events falling in the refractory period, suggesting 

that the noise overlap measure effectively identifies clusters with events that should indeed 

be considered noise (Fig. S3F). In summary, the findings above indicate that MountainSort 

can produce high quality automatic sorting of tetrode datasets.

Finally, it is worth noting that only one of the isolated units was able to be identified on the 

basis of the individual channel sorting. This was MountainSort cluster 21. When using a 

single channel instead of all 4 channels, we found a noise overlap of 0.052 vs. 0.021, 

Isolation 0.98 vs. 0.99, and SNR 5.05 vs. 3.40. Interestingly, this is an interneuron of 

relatively low amplitude (mean peak height of ~110 μv). This suggests that single channels 

are insufficient to isolate single neurons, at least in hippocampal area CA1. We believe this 

would be true for any sorting algorithm.

Sorting of multi-contact electrode arrays

While tetrodes remain in use across many laboratories, new, high-density multielectrode 

arrays offer the ability to record from much larger ensembles of neurons (Berenyi et al., 

2014; Du et al., 2011; Rios et al., 2016). MountainSort has a number of features designed 

specifically for such arrays. To demonstrate and evaluate these features, we applied our 

algorithm to 7 hours of data from a 16-channel, polymer probe (Fig. 4A) (Tooker et al., 

2014; Tooker et al., 2013) dataset with challenges similar to those of the tetrode dataset used 

in Figs. 2 and 3. Although this array was placed in a different brain region (prelimbic 

cortex), had four times as many channels as the tetrode recording shown above, and 

contained a full seven hours of continuous recording, we used identical parameters for the 

clustering pipeline and for the quality metric thresholds.

Recall that MountainSort independently applies spike sorting on small electrode 

neighborhoods, and then consolidates across all channels. In the case of the 16-channel 

probe, each local neighborhood consisted of up to 7 electrodes. As a consequence, the 

feature space in which each electrode’s clustering was done was derived from a different, 

sometimes non-overlapping, set of electrodes. This is a notable difference with the tetrode 

dataset where every channel was included in every neighborhood.

Applying MountainSort to this dataset resulted in the identification of 37 putative single-

units (Fig. 4B). Importantly, as in Fig. 3, the putative single-units have few, if any, refractory 

period violations (Fig. 4C). Putative noise clusters (noise overlap > 0.03) are shown in Fig. 

S4. After removing clusters with high noise overlap, there was only one cluster pair flagged 

as non-isolated (isolation < 0.95). This was the one identified bursting cell pair, 

MountainSort ID 32 and 33, 0.91 isolation (Fig. S4C). The cluster pair with the next highest 
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overlap was cluster pair 30 and 31, 0.97 isolation, a pair identified as putative single-units 

during automated annotation (Fig. S4D). These results demonstrate that MountainSort can 

be applied to a range of datasets without the need for parameter adjustments.

Comparison with other sorting algorithms

MountainSort aims to provide a fully automated spike sorting pipeline in the sense that it 

takes as input a raw timeseries and generates a set of well isolated clusters. Most other 

software packages provide only a degree of automation by producing a set of clusters 

requiring further curation. This is oftentimes done using manual means: the expectation is 

that users will discard, merge, and sometimes even split clusters before using the results for 

downstream analyses. Setting aside the issue of human intervention, we compared 

MountainSort (MS) with two other spike sorting packages: KiloSort (KS) (Pachitariu et al., 

2016) and Spyking Circus (SC) (Yger et al., 2016). The three algorithms were applied to (a) 

real data from our laboratory (the tetrode dataset described above), (b) a publicly available 

extracellular dataset with known ground truth (128-channel silicon polytrode together with a 

juxtacellular ground-truth measurement) (Neto et al., 2016), and (c) simulated data obtained 

from superimposing synthetic waveforms on background signal taken from a real dataset. 

Each of the three software packages has parameters that can be modified to optimize 

performance for different applications. However, as our objective is to create a spike sorting 

environment that is well suited to a diverse set of problems without requiring parameter 

tuning, we used the recommended set of parameters in each of the three packages (i.e., 

default values or the settings used in the examples distributed with the software). 

Importantly, for each algorithm we used the same parameters in all three experimental 

settings.

Confusion matrices comparing MS with KS and SC on the hippocampal dataset are shown 

in Fig. 5. For visualization purposes, the obviously invalid clusters (based on 

autocorrelograms) were manually excluded from KS and SC prior to assembling the 

matrices. These matrices make it clear that the three algorithms find many of the same units, 

but also highlight a number of clusters where the algorithms produce different results. These 

include one cluster that MS identified but KS did not (MS 12), and 9 clusters that MS 

identified but KS merged into other clusters (MS 18, 7, 23, 25, 29, 11, 10, 27, 17), 7 clusters 

that MS identified but SC did not (MS 5, 27, 25, 12, 9, 8, 7), and 7 clusters that MS 

identified but SC merged into other clusters (MS 10, 23, 18, 17, 16, 11, 4). Taken together, 

neither KS nor SC identified MS 12, and both KS and SC merged MS 18, 17, 11, 10, and 23 

into other clusters. The 7 clusters found by KS but not by MS (appearing on the right side of 

Fig. 5A) correspond to low amplitude clusters rejected in the automated annotation stage of 

MountainSort for having a high noise overlap score.

Based on autocorrelograms and place maps, we believe the clusters found by MS and not by 

the other algorithms to be valid units, including MS12, a putative interneuron. Clusters in the 

KS or SC sorting which comprise events from multiple MS clusters (Fig. 5) could be the 

result of a MS false split or a KS or SC false merge. For simplicity, attention was focused on 

the cases where KS and SC had the same or overlapping MS cluster subsets (KS 48, SC 6; 

KS 8, SC 23; KS 2, SC 2). Despite KS and SC having a degree of agreement, the MS 
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clusters showed appreciable differences in PCA projections, waveforms, and spatial firing 

properties (Fig. S5), suggesting that the MS clusters were more likely to correspond to well 

isolated single units.

We then applied MS, KS, and SC to a publicly available 128-channel dataset with 

independent juxtacellular firing information for one of the cells (Neto et al., 2016). This 

dataset is one of ten datasets in the repository exhibiting varying levels of sorting difficulty. 

We found that only one of these featured a (ground-truthed) cell with sufficiently high 

amplitude-to-noise ratio to perform accurate sorting using any of the techniques. 

MountainSort identified this high amplitude unit with very high accuracy (>99%; 24 false 

positives and 32 false negatives out of 4895 true events) and appropriately marked it as a 

bursting pair. KiloSort also split the unit into two pieces with >99% accuracy, but has no 

mechanism to report bursting pairs. Spyking Circus split the true cluster into two pieces, but 

the larger portion (60% of events) were merged with a low amplitude cluster that included 

many false positives. Instructions for running these algorithms on this publicly available 

dataset are provided in the software repository for MountainSort.

In addition, we applied the algorithms to a publicly available tetrode recording from a rat 

hippocampus (Harris et al., 2000) with a juxtacellular ground truth channel. MountainSort 

found the unit with 10% false positives and 11% false negatives. Spyking Circus had only 

6% false positives but 21% false negatives. KiloSort could not be run (in the current version 

of the software) because the channel count was too low.

Fig. 6 shows that MountainSort has a consistently higher accuracy score than the other two 

algorithms, particularly when the number of detectable clusters is high (Fig. 6C). We note, 

however, that because we chose the default/recommended parameters for the three 

algorithms, these results do not preclude the possibility that KS and SC could do better if 

parameters were adjusted.

Assessment of computational efficiency

MountainSort was also able to cluster all of these datasets much faster than real-time. We 

carried out timing tests on a Linux workstation with 192 GB RAM and 20 physical 

processors with hyper-threading capability (although not all cores were used in the 

experiments, as indicated). The 46-minute, 4-channel dataset used in Figs. 2 and 3 had a 

total MountainSort runtime of 40 seconds (including 22 seconds preprocessing) when run 

using 16 threads. This is around 70 times faster than real time. The 6.6-hour, 16-channel 

dataset used in Fig. 4 involved over 7 million detected events and had a total MountainSort 

runtime of 805 seconds (including 336 seconds preprocessing) using 16 threads. This is 30 

times real time. The 128-channel publicly available dataset with juxtacellular ground truth 

(Neto et al., 2016) was sorted in 249 seconds (including 128 seconds preprocessing) using 

40 threads. This represents 2.5 times real time.

To assess how processing times scale with the duration of recording and number of events, 

we processed subsets of the 7-hour, 16-channel probe dataset which contained ~1.1 million 

events per hour. We found that processing times scaled roughly linearly with the data 

duration, with a preprocessing time of ~1 minute per hour of the recording and a sorting 
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time of ~1.3 minutes per hour (Fig. 7A). We also wanted to assess the efficiency on 

machines with fewer processing cores. We varied the number of logical cores between 4 and 

20 for processing a 4-hour subset of the same 16-channel data. We note that even though the 

processing is fastest when using 16 or more threads, the processing speed is still much faster 

than real time when restricting to only 4 logical cores. Taken together, and even assuming 

linear scaling with the number of electrodes (sublinear scaling is expected due to 

parallelization if we also increase the number of cores) our results suggest that 320 channels 

from the same electrode array could be sorted in real time on a single machine; this is on the 

order of the GPU rate reported in Pachitariu et al. (2016) for KiloSort.

Discussion

The MountainSort software suite provides fully automated spike sorting from electrode 

arrays of varied sizes and geometries in multiple brain regions, with accuracies comparable 

to or exceeding existing standards, and computational times much faster than acquisition 

times on non-specialized hardware. Importantly, MountainSort is also a fully functional 

package providing an intuitive graphical user interface with the ability to visualize subsets of 

selected clusters and annotation tools for exporting the data (see the online source code 

repository for documentation and tutorials). This stands in contrast to many previously 

developed clustering algorithms, where it would be difficult for users to test out algorithms 

on their own data. Thus, it is relatively straight-forward to incorporate MountainSort into a 

laboratory’s data processing pipeline.

To our knowledge, this is the first time that a fully-automated spike sorting approach has 

been demonstrated to have comparable error rates to existing manual and semi-manual 

standards. Moreover, MountainSort sorted a dataset from the hippocampus better than 

humans, despite the presence of both complex spike bursts and noise events that arise from 

muscle and movement-related artifacts. Indeed, MountainSort identified many more putative 

single units from a hippocampal CA1 tetrode than manual sorters (24 vs 5–10). We note here 

that there are principled reasons to expect that MountainSort would outperform manual 

sorting. Typical manual sorting, such as in this study, is done in a static feature space of 4 to 

16 dimensions (such as amplitude on channel 1, peak-to-trough ratio on channel 3, etc.), 

computed from filtered waveforms. Moreover, manual sorting usually involves drawing 

polygons in two dimensional projections. In contrast, MountainSort operates in a 10-

dimensional space corresponding to the first 10 principal components (PCs), computed from 

spatially-whitened waveforms (effectively it is more than 10 dimensions when considering 

the branch method, see Methods). Moreover, each of the 10 dimensions does not correspond 

to only one channel at a time, as with some other clustering approaches, but instead each is a 

PC across all of the channels of the neighborhood. Further aiding in separation is the 

recomputation of the PCs when doing cluster comparisons. Due to these differences, it is 

highly likely that MountainSort can more reliably separate clusters than could a human 

operator, the current gold standard for tetrode spike sorting.

Comparison of MountainSort to two other recently released packages, KiloSort and Spyking 

Circus, suggests that MountainSort also performs better than these other packages. When 

applied to the hippocampal dataset, all three algorithms identified a subset of well isolated 
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units, but MountainSort found units that were not identified by Spyking Circus, and both 

KiloSort and Spyking Circus merged units with distinct PCA features and spatial firing 

patterns that MountainSort separated. Comparisons on simulated data revealed the same 

trends: MountainSort consistently identified units with greater accuracy than the other 

algorithms.

These comparisons highlight two other features of MountainSort. First, these comparisons 

were based on using the default parameter values for all three algorithms. While it is 

possible that different parameters could have improved the performance of KiloSort and 

Spyking Circus, one of our major goals was to develop an algorithm with essentially no free 

parameters, and our success in sorting data from multiple brain regions as well as multiple 

simulated dataset using the same parameters illustrates the power of this approach. Second, 

while these comparisons used the fully automated output from MoutainSort, manual 

curation remained necessary for both KiloSort and Spyking Circus. It is important to note 

that these algorithms were not designed to be fully automatic, so the need for manual 

curation is not surprising, but it remains the case that, at the time of this publication, only 

MountainSort is successful in a fully automated mode.

Automation provides clear benefits for reproducibility among sortings of the same data and 

comparability across datasets. This is accomplished using novel isolation and noise overlap 

metrics. By contrast, commonly used cluster metrics, such as isolation distance (Harris et al., 

2001) and L-ratio (Schmitzer-Torbert et al., 2005; Schmitzer-Torbert and Redish, 2004), 

utilize Mahalanobis distance calculations, which are dependent upon the dimensionality of 

the selected feature space, making it difficult to compare cluster quality between datasets. 

Furthermore, the commonly-used L-ratio metric, among others (Hill et al., 2011), makes the 

assumption of a multivariate normal cluster distributions, which can be problematic because 

this is often not valid as in cases of burst firing or electrode drift. By taking into account 

dataset-specific noise and nearest neighbor distances, our noise overlap and isolation metrics 

provide a nonparametric means to compare cluster quality across datasets.

This ability to compare quality across datasets allow these cluster quality metrics, combined 

with the annotation and provenance strategy built in to MountainSort, to be propagated to 

downstream analyses. Maintaining access to all clusters and their cluster quality metrics, 

including those that likely correspond to multiunit spiking, has a number of important 

advantages. First, thresholds could be established by examining how known properties of a 

given set of units (such as the number and size of hippocampal place fields) vary as a 

function of cluster quality (Harris et al., 2016). Second, simple changes in inclusion 

thresholds can be used for direct assessment of whether cluster quality influences a specific 

finding. Cluster quality could also be used to weight the contribution of each unit to a given 

analysis, thereby ensuring that the best isolated clusters have a proportionally greater 

influence on the findings. Third, there are cases where including multiunit spiking improves 

the quality of the results, as is the case for clusterless decoding of animal position from 

unsorted hippocampal spiking activity (Deng et al., 2015; Kloosterman et al., 2013). 

Inclusion of all clusters regardless of quality, greatly simplifies the application of these 

techniques to the data.
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The combination of automation with a minimal set of parameters and model independence 

also has particular advantages. Existing spike sorting pipelines (Hill et al., 2011; Kadir et al., 

2014; Pachitariu et al., 2016; Rossant et al., 2016; Yger et al., 2016) typically depend upon 

numerous adjustable parameters, operator judgment, and even allow for cluster boundaries 

to be redrawn, significantly increasing potential inter-operator variability. Automation that 

relies on a single, common set of parameters eliminates these issues. Further, our algorithm 

is also effectively model-free, making only the assumption that clusters have unimodal 

density projections. In contrast, existing sorting algorithms that rely on a template matching 

step (Franke et al., 2015; Vargas-Irwin and Donoghue, 2007; Zhang et al., 2004) (i.e., 

minimizing the L2-norm of the error for a given model) implicitly assume a multivariate 

Gaussian noise model, resulting in increased variability in output and operator curation 

when this assumption is not valid. MountainSort’s model independence offers versatility, 

allowing it to deal gracefully with non-Gaussian waveform variation and to be used across 

recording conditions and locations.

While MountainSort’s assumption of unimodality works well even in the case of the 

hippocampal cells (with non-Gaussian cluster distributions) we applied it to, there are still 

cases where bursting results in multiple unimodal clusters that should be merged. 

MountainSort therefore involves a post-processing step for automatically detecting clusters 

that are bursting pairs. The software also provides annotation tools to allow the user to 

indicate that he or she believes that the clusters should be merged, but importantly the 

original automatic clustering is also preserved in the sorting output, allowing for 

identification of all user decisions. This occasional need for manual merging could be 

further mitigated by using additional post-clustering analyses beyond our current relatively 

simple automated bursting pair criteria (Harris et al., 2001; Quirk et al., 2001; Quirk and 

Wilson, 1999).

MountainSort also runs quickly, even on large datasets. Clustering is always performed on 

local electrode neighborhoods, so clustering time theoretically scales linearly with the 

number of channels. Importantly, the clustering stage, along with most other stages of the 

processing, are implemented as parallel computations that can be run simultaneously on 

multiple CPU cores. As a result, the total time required for sorting and metric computation 

was much shorter than the recording times for the same data on standard computer hardware 

for both tetrodes (70× real-time) and a 16-channel polymer probe (30× real-time). These 

speed-ups are in line with other approaches (Pachitariu et al., 2016; Yger et al., 2016) where 

strategies such as hardware acceleration have brought computational times down 

significantly. However, these alternative approaches lack an automated curation component. 

As computers become increasingly powerful, the time spent by manual operators remains 

the largest bottleneck to spike sorting. With the elimination of manual curation, total sorting 

time becomes faster than acquisition time, and we can explore further directions that would 

otherwise be infeasible. One is the ability to run the clustering algorithm multiple times, 

allowing for cross-validation in the absence of ground truth (Barnett et al., 2016). Such 

stability metrics ensure that clustering results are not overly sensitive to realistic noise 

perturbations.
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While MountainSort offers substantial advantages over current manual and semi-automatic 

clustering methods, additional work will be required to fully address two remaining 

challenges: overlapping spikes and drift. Currently, as with KlustaKwik (Kadir et al., 2014; 

Rossant et al., 2016), it has no problem with coincident spiking events where the two 

neurons are sufficiently separated in space (i.e., induce peak signal on different channels). 

However, neither package solves the harder problem of resolving spike waveforms that 

significantly overlap on the same electrode. Current solutions to that problem rely on model-

based frameworks (Ekanadham et al., 2014; Franke et al., 2010; Pachitariu et al., 2016; 

Pillow et al., 2013), which, as discussed, include strong noise model assumptions. These 

approaches have been shown to be successful when applied to in-vitro datasets, and it may 

be possible to adapt these approaches as a post-sorting step to identify events that are best 

explained as the superposition of two or more spikes.

MountainSort naturally handles some level of drift, where there are systematic changes in 

waveforms thought to result from movement of electrodes relative to the tissue or perhaps 

due to glial cells migrating along electrode shanks (Bar-Hillel et al., 2006; Calabrese and 

Paninski, 2011; Chestek et al., 2007; Emondi et al., 2004). We expect that MountainSort will 

correctly identify cluster boundaries as long as the resultant time-collapsed cluster is 

unimodal and does not overlap with another cluster. Errors are expected when these time-

collapsed clusters overlap with one another, however. That said, because MountainSort can 

be run on overlapping sections of data, it is conceptually straightforward to include 

augmentations that link clusters across time slices using segmentation fusion based 

algorithms (Dhawale AK, 2015). Cases where clusters drift in and out of noise or other 

clusters are more problematic, both for MountainSort and for all other current approaches. 

Here the new cluster metrics we have developed can be helpful, as clusters that drift into 

other clusters or the noise will tend to have poor isolation and noise overlap scores, allowing 

identification of times the cluster is sufficiently uncontaminated.

Taken together, our findings demonstrate that MountainSort is a sensible and efficient 

automated solution to the spike sorting problem. With a combination of minimal 

assumptions, fast run times, and a powerful graphical user interface, MountainSort can 

greatly shorten the time required for spike sorting while increasing the reproducibility and 

transparency of the process. With one electrode channel neighborhood allocated per 

available logical core, MountainSort is naturally extensible to distributed computing and 

large electrode arrays. Our approach is compatible with future refinements and extensions 

for resolving overlapping spikes and tracking units in the presence of drift.

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources will be fulfilled by the lead contact, Loren 

Frank (loren@phy.ucsf.edu).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Rat

Both tetrode and 16-channel probe datasets were collected from a male long-evans rat 

(RRID: RGD_2308852), roughly 2 months after implantation of tetrode microdrive and 

polymer multielectrode arrays. At the time of data collection, the rat was ~8 months of age 

weighing ~525 g, and was fed standard rat chow (LabDiet 5001) in addition to sweetened 

evaporated milk for reward during behavioral performance. The rat was ordered from 

Charles River Laboratories at a weight of 350 g and ~3 months of age.

METHOD DETAILS

Throughout our sorting pipeline (Fig. S1A) we adhere to the objective of minimizing the 

number of parameters and the number of assumptions made. We also aim for full 

automation.

For preprocessing we used a bandpass filter implemented via Fast Fourier Transform (FFT) 

convolution followed by a heuristic procedure for masking out high voltage artifacts: we 

simply removed chunks of data with amplitudes outside of the expected range by replacing 

these data by zeros. We then applied a (nonparametric) spatial whitening filter to the entire 

time series matrix (details below) which we found to be crucial for separating nearby 

clusters. Both procedures where parallelized by dividing the dataset into time chunks 

(overlapping chunks in the case of the bandpass filter).

Sorting is initially performed separately on neighborhoods (one for each electrode channel) 

using information only from the central electrode and its neighbors (Fig. S1B). The 

neighborhood patch is determined by the geometric layout and a single user-specified 

distance parameter, an electrode adjacency radius. For the tetrode dataset, the neighborhood 

comprised all four channels, but the sorting was still performed four times, with each 

channel being considered as the central channel on its respective local sorting. In other 

words, sorting was done four times in a feature space derived from all four channels, each 

time only with the events detected on one of the four channels. For the 16-channel probe, 

neighborhoods of size 6–7 were used for all but two channels. The feature space for each 

electrode’s sorting was derived from a different electrode neighborhood, an important 

difference from the tetrode dataset. The local sorting steps are event detection, clustering, 

and fitting as described below. In general, using larger electrode neighborhoods increases 

computation time, and we have observed that using more than 6–10 electrodes per 

neighborhood does not substantially influence sorting results for these examples.

In a second pass, the local sorting results are consolidated across electrodes to resolve 

duplications. By removing redundancies rather than merging clusters, we avoid a host of 

problematic scenarios. This is described in more detail below. Finally, per-cluster metrics are 

computed and automated annotation is applied so that clusters are labeled as “single unit”, 

“noise”, and “non-isolated”.
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Filtering and spatial whitening

We bandpass filter (600 Hz to 6000 Hz) each channel in a standard fashion via the FFT 

applied to overlapping chunks of time. As the final stage of preprocessing, spatial whitening 

removes correlations among channels that are not due to the neuronal signals of interest. We 

have found this to be crucial in separating nearby clusters. Let Y be the M × N signal matrix. 

The whitened signal is given by

where

is the singular value decomposition. This is sometimes known as ZCA (zero-phase 

component analysis) whitening. The new data has an identity covariance matrix and can be 

calculated by applying the following channel mixing matrix at each time sample:

This procedure is parallelized by splitting the dataset into time chunks and computing the 

covariance matrix in the first pass through the data and applying the mixing matrix in a 

second pass.

Event detection

As described above, event detection is performed independently on each electrode (as part of 

its local neighborhood sorting) using the preprocessed (whitened) data. With closely spaced 

electrodes, it is expected that the same event will be flagged multiple times on different 

channels, but the subsequent cluster consolidation and fitting stages resolve this redundancy. 

An event is flagged at time sample t0 whenever the following two criteria are met:

where Y is the preprocessed signal, μ is a detection threshold in units of standard deviations 

away from the mean, and τ is a detection interval specifying the minimum allowable time 

difference (in samples) between two events on the same channel. For our datasets we used μ 
= 3 and τ = 10 which corresponds to 0.33 ms at our 30 kHz sampling rate.

While the choice of these parameters is somewhat arbitrary, the detection threshold can be 

chosen to be quite low (in order to capture low amplitude firing events), with the caveat that 

the lower the threshold, the greater the computation time. Similarly, with low thresholds, the 

Chung et al. Page 16

Neuron. Author manuscript; available in PMC 2018 September 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



noise clusters (ultimately discarded) will be larger. Our experience has been that the final 

sorting results are independent of this choice, provided that it is low enough.

Feature extraction and the branch method

Clustering is performed separately in each electrode neighborhood (typically 5–10 

electrodes are used, regardless of total array size). Event clips are extracted, PCA features 

are computed, and then ISO-SPLIT clustering (described below) is applied in n-dimensional 

feature space, where n is typically 10. This has the potential to yield in an incorrect cluster 

merging due to the relatively low dimensionality of the feature space. Therefore, assuming 

that more than one cluster is found, we recompute the PCA features from the original clips 

for each initial cluster separately. Clustering is then applied to each of these and the 

procedure is repeated until no further cluster splitting occurs. In this way, we increase the 

sensitivity of distinguishing between distinct but nearby clusters. We call this the branch 
method.

At each stage of the branch clustering we use principal component analysis (PCA) features. 

For each detected time sample t0, a M × T clip centered at t0 is extracted from the 

preprocessed data. Here M is the number of channels constituting the neighborhood of the 

electrode of interest, and T is the clip size in samples. We used T = 50 throughout. These 

clips are considered as MT-dimensional vectors and are mapped into the n-dimensional 

feature space corresponding to the first n principal components. We used n = 10 throughout, 

regardless of the neighborhood size. Again, we note that the effective size of the feature 

space is larger due to the branch method in which event features are computed recursively.

Clustering via ISO-SPLIT

Clustering takes as input a set of points (n-component vectors) and assigns to each point an 

integer cluster label. Our efficient, nonparametric clustering method termed ISO-SPLIT is at 

the heart of the sorting pipeline. It is a density-based method that does not require a tunable 

scale parameter, nor does it need an a priori estimate for the number of clusters. Instead a 

statistical test is applied on one-dimensional projections at each iteration (Magland and 

Barnett, 2016). This crucial one-dimensional kernel operation (ISO-CUT) is described in a 

separate section below.

The algorithm is initiated with a fine parcellation (over-clustering) and then the points are 

redistributed between clusters in successive iterations until convergence (Fig. 1B). While in 

principle the results can depend on the initial parcellation (or clustering), in practice when 

the parcellation is fine enough, they do not. In fact, a deterministic (albeit more 

computationally intense) procedure would be obtained by initially assigning each point to its 

own cluster.

Each iteration then involves pairwise comparisons of nearby clusters. Let A and B be two 

clusters to be compared. First the points of A∪B are projected onto a line of optimal 

discrimination between the two sets. A simple choice, although not always ideal, is to use 

the line connecting the centroids of A and B. In our implementation, we select an optimal 

line based on the centroids and the empirical covariance matrices of the sets. Next a 

statistical test is performed to determine whether this one-dimensional sample is unimodal, 
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or alternatively has two or more modes. This is the ISO-CUT procedure described below. If 

the unimodality hypothesis is rejected, the data points are redistributed between A and B 
according to the optimal cut point as determined by ISO-CUT. Otherwise, if unimodality is 

accepted, then the two clusters are merged.

In order to avoid infinite loops, the algorithm keeps track of which cluster pairs have already 

been compared. Once all pairs of remaining clusters have been compared, the algorithm is 

deemed to have converged.

ISO-CUT

The ISO-CUT algorithm (the kernel operation in ISO-SPLIT) is a non-parametric method 

for testing whether a one-dimensional sample arises from a unimodal distribution and for 

determining an optimal cut point for clustering. It is similar to the Hartigan dip test for 

unimodality (Hartigan and Hartigan, 1985) but there are important differences. First, 

Hartigan’s test is only a criterion for accepting/rejecting the unimodality hypthosesis, 

whereas ISO-CUT also returns an optimal cut point. Second, ISO-CUT uses a maximum-

likelihood unimodal approximation to the data, which can be evaluated extremely efficiently 

using a modified version of isotonic regression. Third, ISO-CUT handles a crucial situation 

where the Hartigan test fails -- that is when a sparse cluster is adjacent to a very dense 

cluster. This situation arises often in spike sorting as cells can have vastly different firing 

rates.

Here we present a higher-level description of the algorithm and refer the reader to the Fig. 

S1 and the open source MATLAB and C++ implementations contained in the software itself 

for the lower-level implementation details. The first step of ISO-CUT is to sort the (assumed 

distinct) one-dimensional data points so we have x1 < x2 < … <xn. Next the maximum-

likelihood unimodal fit to the sample is computed. One can show that the density function 

for the fit is piecewise constant with endpoints at the data points, and that the sequence of 

values may be obtained using a modified version of isotonic regression, which we call up-

down isotonic regression, applied to the reciprocal of the spacings . A 

modified Kolmogorov-Smirnov (KS) statistic (Massey, 1951) is then computed to quantify 

the closeness of the empirical cumulative distribution function to the cumulative distribution 

function of the unimodal approximation (the modification is needed to handle the important 

case of sparse clusters on the periphery). If this unitless quantity is above the threshold (we 

used a value of 1 throughout) then unimodality is rejected.

In the case where the unimodality hypothesis is rejected, ISO-SPLIT returns a cut point, or 

an optimal cut point between two modes at a point of minimal density (note that the 

distribution may have more than two modes). Again, we aim to avoid density estimates in 

selecting such a cut point. Therefore, we employ the non-parametric isotonic regression once 

again by applying down-up isotonic regressions to the residuals  where ti is the 

estimate of the spacings based on the unimodal approximation. The cut point is taken at the 

deepest minimum of this sequence within a range of interest. Thus, the optimal cut point is 

obtained in a non-parametric manner without any density estimates.
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Cluster consolidation across electrodes

Just as ISO-SPLIT is at the heart of the local clustering, our cluster consolidation strategy 

(Fig. S1B) is the central step for handling the multi-electrode arrays in a nonparametric 

manner. Since spike sorting is applied separately on each electrode (along with its 

neighbors), the same neuron is likely to be identified multiple times. In fact, it is expected 

that the same neural unit will appear on several channels, depending on the density of the 

electrode array. It is therefore necessary to merge the results across all channels into a single 

sorting output.

There are several problems with comparing pairs of clusters for potential merging. First, 

depending on the size and density of the electrode array, and the number of neurons detected 

on each channel, this could pose a computational challenge. Second, there is a problem with 

non-transitivity of merge decisions. For example, we could determine that clusters A and B 

(on different channels) should be merged, and that B and C should be merged, but that A and 

C should not be merged.

No matter whether merge decisions are based on average waveform shape similarity, 

coincident firing times, or cluster overlap in feature space, there are other fundamental 

problems with making such pairwise merge decisions. Consider, for example, the case where 

clustering on channel 1 is accurate, whereas on channel 2 there is a false merge. Then the 

corresponding clusters may fail to match up, or the incorrect results of channel 2 may 

supersede the accuracy on channel 1. This can easily happen when neurons are closer to the 

first channel but still give a detectable, but small, signal on the second. A myriad of 

problematic situations like these can arise.

We therefore propose a different approach – an alternative to merging – which we refer to as 

cluster consolidation. The assumption is that in the majority of cases, a neuron will fire with 

largest signal on a single primary channel, with the peak signal being lower on neighboring 

channels. Therefore we retain a cluster Cm,i (the ith cluster identified on channel m) if its 

peak average signal on channel m is sufficiently greater than its peak average signal on every 

other channel. Otherwise it is considered redundant and is discarded. More precisely, cluster 

Cm,i is retained if for every channel number m′ ≠ m,

where Wm,i(m′,t) is the average spike waveform for cluster Cm,i on channel m′ and clip 

sample t, and η < 1 is a constant. The buffer parameter η (0.9 in this study) is included in 

order to minimize the chances that the same cluster is eliminated on every channel, and 

therefore excluded altogether.

Ideally each cluster will be represented exactly once after consolidation. However, 

sometimes a neuron may yield a very similar peak signal on two adjacent electrodes and 

may therefore be retained in more than one neighborhood. While this depends on the choice 

of η and the density of the electrodes, this is a relatively rare occurrence for our datasets.
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The goal of the second pass is to remove redundant clusters that survived the first pass of the 

consolidation (Fig. S1). As stated, we need to be careful about non-transitive merge criteria. 

To be clear, both passes involve only discarding rather than merging redundant clusters. The 

first step of the second pass is to sort the clusters in order of absolute peak amplitude (of the 

average spike waveform); if two clusters are determined to be duplicates, then we discard the 

one with lower absolute peak amplitude. Moving through the sorted list, each cluster is 

compared with all preceding clusters. Simply, if it is determined that it matches a previous 

cluster, then it is discarded.

The criteria for two clusters to match are three-fold: (a) they must have been detected on 

different channels, otherwise presumably they would not be separated by the clustering; (b) 

their peak amplitudes must be relatively close (within 30% for this paper), otherwise one 

would have been discarded in the first pass; (c) they must have a significant number of 

simultaneous (up to a time deviation threshold) firings (>50% coincident events for this 

paper).

Eliminating redundant events via fitting

While cluster consolidation removes redundant clusters, it can still happen that the same 

event may be redundantly flagged in more than one neighborhood. For example, if event a is 

correctly included in cluster A on channel neighborhood 1, but happens to be incorrectly 

assigned to cluster B on channel neighborhood 2, then, since A and B are not redundantly 

associated with the same unit, they will both survive the consolidation stage. However, it is 

important that each event be included exactly once in the final output. Therefore, the 

following procedure is used in a final pass to eliminate such redundant events.

In this fitting stage (a multi-pass procedure) we consider each detected event as a candidate. 

We begin with an empty set of accepted events, and add candidates during multiple sweeps 

through the data according to whether they reduce the L2-norm of the residual signal. Let Y 
be the M × N signal matrix (recall M is the number of channels and N the number of time 

samples). On the jth pass, let Yj be the residual signal (initialized by Y1 = Y). We first 

compute an L2-norm reduction score for each candidate event that has not yet been included 

as follows:

where (ti, ki) is the time sample and label for the ith candidate event, Wk(m,t) is the 

representative waveform for the kth cluster, and T is the clip size (assumed even). The ith 

event is then included if

That is, the L2-norm is reduced by including the event, and the amount by which it is 

reduced is greater than that of any overlapping candidate event. The waveforms for the 
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newly accepted events are then subtracted from Yj to obtain a new residual Yj+1 and the 

procedure is repeated until no further changes occur in a pass. To speed things up we keep 

track of which scores need to be recomputed on subsequent passes.

Partially overlapping events are thus handled properly, assuming that they are at least 

somewhat separated in either time or space. Note also that the requirement for the score to 

be positive has the benefit of removing outliers to some extent. Crucially, in contrast to 

model-based approaches, (Ekanadham et al., 2014; Franke et al., 2015; Pachitariu et al., 

2016; Pillow et al., 2013) which use L2 fitting to update waveform shapes, firing times, and 

amplitudes, in our scheme L2 fitting is only used to eliminate duplicate events. In particular, 

this preserves labels chosen by our non-Gaussian clustering method.

Isolation and noise overlap metrics

Here we describe the post-processing step that classifies “single unit”, “noise”, and “non-

isolated” clusters based on an objective set of criteria, as described above. We have elected 

not to use any firing time information (e.g., dips in cross-correlograms) to make these 

decisions, so as to leave such information as an independent validation metric. Adhering to 

our overall approach, we also do not want our metrics to depend on additional assumptions 

about cluster distributions. Here we define the isolation and noise overlap methods which 

control automated cluster selection.

First, we describe the isolation metric for assessing how well a cluster

is separated from the other clusters. Let A and B be two distinct clusters. For each x in A∪B, 

let n1(x), …, nk(x) be the k nearest neighbors of x in A∪B. Let ρ be the membership 

function so that ρ(A) = 1 and ρ(B) = 2. Then we define the k-nearest neighbor overlap 

between A and B to be

which is the fraction of the nearest neighbors that are classified consistently with their parent 

point1. The isolation metric is then given as

where the minimum is taken over all other clusters.

1Often the number of points in one cluster will be much larger than in the other. This can lead to an artificially high overlap metric 
because the likelihood of misclassification depends not only on the degree of separation but also on the relative sizes of the clusters. 
Therefore we only sample N random points from each of the two clusters where N is the minimum size of the two clusters. To reduce 
computation time we also require that N is at most 500.
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We take a somewhat different approach for noise overlap. We define the noise overlap of 

cluster A to be the overlap metric for A with a “fake” cluster

comprised of the same number of random noise events (clips extracted from the original data 

at purely random times). However, the difficulty in comparing these two clusters is that the 

event clips of A have a bias in that they were selected for being (perhaps by chance) super-

threshold. Therefore, we need to first remove this bias by subtracting out a multiple of the 

expected noise waveform Z to obtain adjusted clips prior to computing the overlap. We use 

the following weighted average for the expected noise waveform:

here the weight bi(m0, t0) is the value of the spike at its central channel and central time 

sample. We then define the noise overlap to be the overlap metric applied to the sets of event 

clips after projecting out the dimension defined by the expected noise shape:

Automatic identification of bursting clusters

We use two criteria (waveform similarity and relative timing) to flag a pair of clusters as 

belonging to the same unit, with one cluster A being labeled as the bursting parent of a 

second cluster B. First, the average spike waveforms must be similar to one another up to 

scaling. Here we require that the correlation across time and channels be greater than 0.8 (an 

adjustable threshold). Second, the cross-correlogram between clusters A and B must have a 

significant asymmetry within a chosen time window (±15 ms in our analyses) with events in 

B tending to occur a short time after events in A. This was quantified by comparing nafter, 

the number of B events occurring within 15 ms after events in A, to nbefore, the number of B 

events occurring within 15 ms before events in A. If nafter is significantly greater than 

2nbefore (p < 0.001, assuming a Poisson distribution), and the correlation criterion is met, 

then we flag (A,B) as a bursting pair. We note, however, that the output of MountainSort 

retains the identity of the individual clusters associated with each bursting pair. This 

maintains data provenance and allows for alternative criteria to be applied at a later date if so 

desired.

Manual clustering

Data were bandpass filtered 600–6000 Hz and then thresholded at 60 μv for event detection. 

Individual units (putative single neurons) were identified by drawing cluster boundaries in 

two-dimensional projections of peak amplitude, the first two principal components of each 

channel, peak to trough ratio, or spike width as variables (MatClust, M.P.K.). Only well-
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isolated neurons with stable spike waveform amplitudes were clustered. Clusters that were 

cut off at spike threshold were not selected.

Simulations using synthetic data

The datasets used in Fig. 6 were generated by superimposing synthetic waveforms on 

background signal taken from a real dataset. We wanted the background signal to include 

realistic noise, correlations between channels, and low-amplitude signals from distant 

neurons. We therefore started with the hippocampal dataset used in this paper, automatically 

removed time segments that included detectable (relatively high amplitude) spike events and 

then pieced together the remaining time segments using an overlap region and apodization (a 

filtering approach to smooth the signal) at the edges of the segments to avoid inflating the 

noise level on the overlaps.

The shapes of the superimposed spike waveforms were not derived from the sorted dataset 

because we did not want to bias the results toward whichever sorting algorithm used to 

obtain those shapes. We also wanted to easily control the number of simulated units and the 

distribution of peak amplitudes and shapes. Therefore, we created a formula that generated 

realistic spike shapes dependent on a rise time, peak amplitude, decay time and recovery 

time on each of the four channels. We generated units with differing firing rates (randomly 

selected between 0.5 and 3 spikes per second), different spike waveform shapes, and peak 

amplitudes ranging from zero to a maximum of 20 standard deviations above the mean, with 

more units at lower amplitude as reflected in real data.

In the first of the three simulated datasets, 15 units were simulated with around 8 having 

high enough amplitude to be detected (Fig. 6A and 6D). For the second dataset (Fig. 6B), 30 

units were simulated with around 15 detectable. For the third (Fig. 6C), 60 units were 

simulated with around 30 detectable. The MATLAB scripts for generating these may be 

found in the source code repository.

Computational efficiency measurements

We conducted all processing on a Dell Linux workstation with 192 GB RAM and 40 logical 

processing cores (Intel Xeon processor 2.8 GHz), although not all cores were used in the 

experiments, as indicated in the text. All algorithms were implemented as custom C++ 

programs.

In vivo datasets

A total of four 16-channel polymer shanks were targeted to Prelimbic cortex (+ 2.4 to 2.6 

AP, ± 1.1 ML, DV −3.4, 7° from saggital). The tetrode was constructed from four 12.5 μm 

nichrome wires (California Fine Wire) spun together, with each of the four wires 

electroplated with gold to an impedance of ~250 kΩ at 1 kHz. The tetrode was one of sixteen 

in individual cannulae whose centroid was targeted −3.6 AP, ±2.4 ML, and then adjusted to 

CA1 cell layer based on LFP and spiking activity.

For the tetrode dataset, the animal was run for 45-minutes on the first exposure to the W-

track continuous spatial alternation behavior (Frank et al., 2000; Kim and Frank, 2009).
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The 16-channel polymer probe dataset was collected during a 7-hr period while the animal 

was in a 13″ x 13″ walled rest box.

All data were sampled and saved at 30 KHz on a 320-channel modular headstage using 

Trodes software (SpikeGadgets llc.).

DATA AND SOFTWARE AVAILABILITY

The MountainSort clustering software, as well as the code used to generate the simulated 

datasets is publically available at: https://github.com/magland/mountainlab. The tetrode 

dataset is available at: http://dx.doi.org/10.17632/kmmndvycx8.1. The polymer probe 

dataset is available at: http://dx.doi.org/10.17632/j2mfvnsz2t.1 (part 1/3), http://dx.doi.org/

10.17632/ssb8s4766s.1 (part 2/3), and http://dx.doi.org/10.17632/9mgpgn7fsw.1 (part 3 of 

3).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• MountainSort is a new fully-automated spike sorting algorithm and software 

package.

• Accuracy is comparable to or greater than that of existing methods.

• Desktop computation speeds are ~70/30/2.5x real-time for 4/16/128 

electrodes.

• The software enables reproducible spike sorting for large datasets.
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Figure 1. Overview of the fully-automated MountainSort processing pipeline
(A) Flow diagram. After preprocessing, sorting is performed on individual electrode 

neighborhoods. Clusters are then consolidated across neighborhoods (see also Fig. S1). 

Clusters are either accepted or rejected in the automatic annotation phase based on the 

computed cluster metrics. (B) Illustration of the final 6 iterations of the ISO-SPLIT 

clustering algorithm for a synthetically generated set of points. At each iteration, two 

clusters are compared using a one-dimensional projection of the union of the two clusters 

(shown in the histograms at each iteration). The ISO-CUT procedure is applied to the 

projected data to determine whether the two clusters should be merged (single color in the 

histogram) or whether the points should be redistributed according to an optimal cut point 

(two colors in the histogram).
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Figure 2. Fully-automated MountainSort produces clusters comparable to manual operators
(A) Two-dimensional peak amplitude projections of the data used for manual sorting. Axes 

show values between 0 and 500 μv. (B) Pairwise confusion matrices (fig. S2A) for the three 

manual sortings. For each matrix, the numbers in the leftmost column and bottommost row 

correspond to cluster ID number for the respective manual sorter. Shading corresponds to the 

proportion of each column-labeled cluster that is classified into each row-labeled cluster. For 

the top matrix, this is the proportion of events in each manual 2 cluster that match the 

corresponding manual 1 cluster. Each number within the matrix corresponds to the absolute 

number of matching events. The final column corresponds to the number of events found in 

the row-labeled clustering not found in the column-labeled clustering. For the top matrix, 

this corresponds to the events in manual 1 clusters that are not found in any manual 2 
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clusters. Similarly, the second row from the bottom corresponds to the number of events 

found in the manual 2 clusters not found in any manual 1 clusters. (C) As in (B), except for 

purpose of compact visualization, only the MountainSort clusters which correspond to one 

or more manual clusters are shown. (D) Occupancy-normalized spatial firing rate color maps 

for three clusters corresponding across MountainSort (MS) and manual operators. See also 

Fig. S2. Track outline is shown in gray. Note that the track has no walls, and we used the 

animal’s head for position tracking. As the animal often looked out over the edge of the 

track, many of the positions shown are outside the track outline. Scalebar corresponds to 50 

cm. Note that colorbar scale varies across clusters.
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Figure 3. All MountainSort-identified putative single-unit clusters from the hippocampal CA1 
tetrode dataset
(A) Average waveforms (bandpass filtered 300 – 6000 Hz) for the putative single-unit 

clusters as determined using metric thresholds: noise overlap <0.03, isolation >0.95, firing 

rate >0.05 Hz. MountainSort cluster ID is inset. Scale corresponds to 250 μv and 1 ms. (B) 

Autocorrelograms for the corresponding clusters; X-axis range is ±100 ms, normalized Y-

axis range. (C) Occupancy-normalized spatial firing rate maps for the inset MountainSort 

cluster ID. Track outline is shown in gray. Scalebar corresponds to 50 cm.
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Figure 4. MountainSort identification of well-isolated units for 16-channel probe
(A) Geometric layout of polymer probe. Contact size 20 μm, horizontal contact edge-to-edge 

20 μm, vertical contact edge-to-edge 38 μm. (B) Average waveforms filtered 300 – 6000 Hz, 

of putative single-units with waveforms organized according to (A), with cluster 

identification number inset. Scalebar corresponds to 100 μv and 2 ms. (C) Corresponding 

autocorrelograms. X-axis scale 100 ms, normalized Y-axis scale.

Chung et al. Page 33

Neuron. Author manuscript; available in PMC 2018 September 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Confusion matrices comparing MountainSort with (A) Kilosort or (B) Spyking Circus 
applied to the hippocampal dataset of Fig. 3
See Fig. S2 for details on interpreting confusion matrices. For readability, entries with fewer 

than 10 events are marked with a period. MountainSort is fully automated, whereas a 

number of obviously invalid clusters needed to be manually excluded from the KiloSort and 

Spyking Circus runs before assembling the confusion matrix.
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Figure 6. Comparison among MountainSort, KiloSort, and Spyking Circus using three simulated 
datasets
(A,B,C) Synthetically generated spike waveforms were superimposed at random times on 

background signal taken from a real dataset (see Methods). Accuracies for each simulated 

cluster (see Methods) are plotted against the peak amplitude of the waveform. Clusters not 

matching any true units are not shown. Clusters automatically accepted by MountainSort 

(using the isolation and noise overlap metrics) are marked using a filled-in blue circle. (D) 

Synthetic waveforms for the eight clusters with largest peak amplitudes for the simulated 

dataset shown in (A).
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Figure 7. Computational efficiency by processing stage. All plots are from the 16-channel 
polymer probe dataset from Fig. 4
(A) Processing time versus acquisition time. Each hour of recording contains about 2 million 

events. (B) Processing time versus number of logical cores used (i.e., processing threads).
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