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Abstract

Dynamical Diffraction: Friend or Foe? 4D–STEM Measurements Robust To Multiple
Scattering

by

Steven Zeltmann

Doctor of Philosophy in Engineering- Materials Science & Engineering

University of California, Berkeley

Professor Andrew M Minor, Chair

Four-dimensional scanning transmission electron microscopy (4D–STEM) is a modern op-
erating mode of a transmission electron microscope in which a focused electron probe is
rastered across the sample and the diffraction pattern is recorded at each position. The
resulting diffraction patterns can be analyzed to obtain a wealth of local structural informa-
tion, such as deformation or strain, changes in symmetry or lattice distortions, orientation of
a crystal lattice, as well as to measure electric and magnetic fields. More advanced analyses,
i.e. ptychography, can also extract structural information at a spatial resolution finer than
the size of the electron probe.

Several challenges arise in realizing these measurements: First, the sheer number of diffrac-
tion patterns recorded in a 4D-STEM experiment leads to computational challenges and
puts demands on the complexity of the algorithms used to recover the structural informa-
tion. Second, experimental considerations often strictly limit the number of electrons in each
of the diffraction patterns, which can be mitigated through robust analysis approaches or by
de-noising that takes advantage of the high dimensionality of the data. Most critically, all of
the structural measurements described above are effectively trivial in the limit of thin and
weakly scattering materials but become rather challenging when analyzing diffraction from
a thick sample where multiple scattering effects are present.

In this work, we will explore several means to mitigate these challenges. First, to handle
the large quantities of data and the low number of electrons recorded by modern detectors
operated at their full speed, we will show a hyperspectral denoising method based on total
variation denoising and show its application to 4D–STEM datasets.

The bulk of this work, however, will focus on the latter challenge: dynamical scattering.
In 4D–STEM measurements of local strain or deformation, dynamical scattering causes
unwanted contrast inside of diffraction disks which hinders accurate determination of the
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lattice. To mitigate this, we demonstrate a method for imprinting known contrast into the
diffraction disks to improve the precision of the measured lattice. In measurements of the
local orientation of the crystal, multiple scattering causes the diffraction disk intensities to
vary in a highly nonlinear way as the crystal tilts, and as a function of the thickness of
the crystal. We present a hybrid pattern-matching and simulation-matching algorithm for
precisely determining both the orientation and thickness of a crystalline sample from 4D–
STEM measurements. Finally, many polar structures of technological interest exist only
under exacting electrical and mechanical boundary conditions and so can only be studied
as a thick and heterogeneous sample. To measure polarization structures in such materials,
we construct a dynamical scattering model for the system and demonstrate an optimization
procedure which recovers local polar order from large-area scans of a thick multilayer sample.
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Chapter 1

Introduction

Transmission electron microscopy (TEM) is one of the most powerful techniques for study-
ing structures at the nanoscale, both because of its unmatched spatial resolution and the
flexibility of the instrument to perform a wide variety of imaging, diffraction, and spec-
troscopy measurements. In a TEM, a beam of electrons is accelerated to relativistic speeds
and focused by a sequence of magnetic lenses onto the sample. Following interaction of the
beam with the sample, lenses carry the beam on towards a detector where it is measured.
A modern TEM instrument is capable of a wide variety of operating modes: the sample can
be illuminated with a plane wave or a focused probe, the scattered wave can be projected
from the plane of the sample or into the far field, and detectors of different shapes and sizes
can record the scattered electrons. In scanning transmission electron microscopy (STEM),
we utilize the focused probe illumination mode and place the detector in the far field, where
a converged beam electron diffraction (CBED) pattern is present. In this work, we focus
on one particular operating mode of the microscope: 4D-STEM. In this mode, a focused
probe is scanned across the sample, and a pixelated detector is used to capture an image
of the diffraction pattern at each position. This mode relies on advanced pixelated detector
hardware, and so is a modern innovation in the field of TEM. By collecting a detailed image
of the diffraction by the sample at every point it has enabled a wide range of structural
measurements not possible before.

1.1 4D–STEM

In a 4D–STEM experiment, a diffraction pattern is acquired at each scan position of a
focused electron probe. This operating mode of the TEM instrument was not practical until
the advent of fast digital pixelated detectors, which have frame rates fast enough acquire
a useful number of patterns before drift or instability degrade the experiment. The first
reported experiment that could be termed 4D–STEM was identified in Ophus’ review [123]
to be that of Zaluzec [196] in 2002, who recorded diffraction patterns from a 30x30 pixel
grid in real space and measured the deflection caused by the Lorentz force in a magnetic
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sample. Today, further advances in detector technology have enabled much larger scans to
be acquired in less time, and various analyses have been subsequently developed to make use
of these large quantities of diffraction data. The simplest analysis, and one often conducted
routinely from datasets that are also used for more sophisticated analyses, is virtual imaging.
In this analysis, intensities from regions of diffraction space are summed to produce images
corresponding to various arbitrary bright- or dark-field images [49, 195, 76]. Structural
measurements dominate the materials science applications of 4D–STEM. By matching the
diffracted spots in each pattern to the crystal structure of a material, orientation maps can
be produced [124, 160, 82, 37, 149]. By precisely determining the position of each diffracted
disk the local lattice parameters can be computed, and their change can be mapped over a
field of view to image the strain in a sample [37, 147, 149, 148]. Disordered samples can also
be analyzed, for example using fluctuation microscopy to detect short- and medium-range
ordering [16, 177, 93, 51]

Nanobeam 4D–STEM

The experiments and analysis in this work will all utilize a subset of 4D–STEM, which we
refer to as “nanobeam” diffraction. This term refers to the configuration where the conver-
gence angle of the electron beam is set such that the Bragg disks in a CBED pattern do
not overlap. This configuration is compatible with many of the structural measurements
of interest to materials scientists, such as strain and orientation mapping and electric field
measurements. By avoiding overlap between diffracted disks, we obtain a diffraction pattern
where different scattering vectors do not interfere coherently. This coherent inteference trans-
fers information at sub-unit-cell length scales, and is the basis of differential phase contrast
and ptychography at atomic resolution. However, this interference greatly complicates the
simulation of the diffraction pattern as each plane wave in the converged probe can no longer
be considered completely independently. Where the diffraction disks overlap their intensity
is not simply summed, and so finding the position and intensity of each diffraction disk
independently is no longer feasible. 4D–STEM experiments where diffraction disks overlap
and interfere coherently are often termed phase-contrast measurements, since the intensities
in the overlap regions depend on the relative phase between the interfering beams.

1.2 Multiple Scattering

Thanks to the strong interaction between fast electrons and the sample, the diffraction
patterns recorded in a 4D–STEM experiment contain a wealth of information about the
material structure. But the downside of this strong interaction is that in most samples of
materials science interest, the electron interacts with the sample multiple times. The multiple
scattering of the probe greatly complicates the analysis of the diffraction patterns, as the
simple kinematic model of scattering that only depends on the geometry of the problem must
be replaced with the dynamical model which is fully quantum mechanical. The dynamical
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model is challenging to solve, but numerous strategies for computing diffraction patterns
with it are available and will be discussed in this work. Inverting the dynamical scattering
problem is an open area of research, particularly for atomic resolution data [30, 47, 133]. In
the work presented here we will explore dynamical inversion of nanobeam patterns, a problem
which is far simpler and that we will show can be performed from large scale 4D–STEM data
and thus be applied to practical materials science problems.

In electron microscopy, the term “multiple scattering” is usually taken to encompass the
pheonomenon where the electron probe undergoes any two or more scattering events. Thus
this term also encompasses inelastic scattering and other phenomena. In this work, we are
specifically concerned with the situation where the electron scatters in multiple elastic events:
this is termed as dynamical diffraction, and we will maintain this distinction throughout the
work. Many instruments now place their 4D–STEM detectors behind energy filters, which
make it possible to exclude inelastically scattered electrons from the recorded patterns, so
that the only multiple scattering observed is dynamical diffraction.

1.3 Overview

The focus of this work is on advancements in the analysis of 4D–STEM data for materials
science, particularly on developments in the analysis of diffraction data from thick and
complex samples to extract robust information that is useful to materials science. 4D–STEM
diffraction data contains a wealth of structural information about a material, but extracting
this information in a reliable manner is a challenge due to the scale of the data obtained
in each experiment. Unlike conventional diffraction experiments, in 4D–STEM we typically
analyze patterns of relatively low dose, since long integration times mean that acquiring a
scan from a large region is prohibitively slow. Further, while a conventional TEM diffraction
analysis might examine a handful of converged beam diffraction patterns, in 4D–STEM we
typically find ourselves analyzing tens to hundreds of thousands of diffraction patterns.

In this work, we will explore several developments that aid in overcoming these challenges
and making 4D–STEM a useful and robust technique for materials science. The work is
organized as follows: In Chapter 2, we will review the physics of electron scattering, with a
particular focus on computational aspects related to dynamical scattering, as much of this
work will rely on using large-scale computation to interpret diffraction data.

Chapter 3 addresses the challenge of low dose per diffraction pattern in 4D–STEM
through the development of a high-performance implementation of a hyperspectral total
variational denoising algorithm. This approach to denoising exploits the high dimension-
ality of the data to allow neighboring pixels to share information, but without blurring of
sharp edges. Our implementation is highly optimized to quickly denoise scanning diffraction
data, and can also be used for even the largest datasets currently being collected by using
distributed computing.

One of the greatest challenges to 4D–STEM analysis in materials science is that it is often
impossible to produce samples of a given material that are thin enough that the electron



CHAPTER 1. INTRODUCTION 4

beam will only scatter one time as it traverses the sample. This means that the scattering in
most of the 4D–STEM datasets in materials science is dynamical, and this greatly hinders
interpretation of the diffraction patterns. Artifacts like phantom strain and inversion of
electric field contrast can lead to spurious interpretations of the physics of a material, and
must be addressed to make 4D–STEM robust. The bulk of this dissertation will focus on
this challenge.

In Part I we will first meet dynamical diffraction as a foe, and explore two measurements
that can be made robust despite dynamical effects. In Chapter 4, we address the problem of
strain mapping from thick samples, where dynamical diffraction causes unwanted contrast
inside of diffraction disks that makes it impossible to precisely find their locations. Using
special patterned apertures, we are able to impart known, strong contrast onto the diffraction
disks, which allows them to be located with much higher precision. This approach allows us to
obtain much more precise strain maps from thick samples and using a lower electron dose. In
Chapter 5, we explore the problem of determining the orientation of a crystalline sample from
4D–STEM diffraction patterns. We devise an efficient algorithm for matching orientations
against a simulated library, but we find that dynamical effects limit the maximum attainable
precision.

In Part II, we will instead meet dynamical diffraction as a friend, and explore two mea-
surements that can be made robust by inverting dynamical effects. In this part, we utilize
large scale computational modeling of the dynamical diffraction process, and develop ef-
ficient algorithms for recovering structural properties from 4D–STEM data that contains
significant dynamical scattering. In both cases we find that we can achieve better precision
in our measurements by utlilizing, rather than suppressing, dynamical diffraction effects. In
Chapter 6, we extend the orientation mapping algorithm developed in Chapter 5 to include
dynamical scattering using an adaptive grid search and Bloch wave simulations. We find
that not only can we match orientations from thick samples and low-dose measurements
with higher precision, but we can also obtain a measurement of the thickness of the sample
simultaneously with the refined orientation. In Chapter 7, we take this approach further by
analyzing a sample consisting of multiple distinct crystal layers along the beam direction.
We develop a multiple scattering model based on the multilayer structure and parameterize
it over a number of phyiscally relevant structural distortions. We then develop an optimiza-
tion prodcedure for matching these parameters to 4D–STEM experimental data, and use it
to recover the structure of polar vortices in the material without interference from tilting of
the foil.
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Chapter 2

Theory

The scattering of fast electrons by crystalline materials has been studied since the early days
of the electron microscope, with Bethe providing a description of dynamical scattering in 1928
[14], even before Ruska’s electron microscope was constructed [81] in 1932. In this section,
we will give an overview of the process of electron diffraction in the context of 4D–STEM,
focusing on effects that are important for nanobeam diffraction and giving less emphasis
to effects that dominate in plane wave or highly converged electron probes. Numerous
modern textbooks give a full account of the material we will discuss here. Fultz and Howe
provide a good foundation beginning from x-ray and neutron scattering and building up
to electron diffraction [48]. Zuo and Spence1 provide a comprehensive account of modern
electron microscopy, with detailed descriptions of scattering by partially ordered materials,
thermal scattering, and defect contrast [205]. Kirkland provides a particular focus on the
multislice formalism [79], while De Graef focuses on the Bloch wave description [40]. These
two books are particularly invaluable for practical computations as they are accompanied
by full-featured computer programs for performing simulations using their chosen methods.

2.1 Electron Scattering

Atomic Form Factors

The fundamental interaction that gives rise to all of the crystalline diffraction phenomena
we will discuss is the single-atom scattering of the incoming electron. Electrons are charged
particles, and so scatter off of the electrostatic potential around each atom. The electrostatic
potential V a(r) is determined by both the electron density ρe(r) and the nuclear charge
density ρn(r) as

∆V a(r) = −|e|
ϵ0

[ρn(r)− ρe(r)] (2.1)

1I would like to thank John Spence who, shortly before his passing in 2021, gifted me a copy of this
textbook after we were introduced at the Microscopy and Microanalysis virtual conference.
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Figure 2.1: Relativistic corrected (300 kV) single atom scattering factors for Si and Au
using two different parameterizations. The Lobato and Van Dyck [98] method contains
only an elastic part and is purely real, while the Weickenmeier and Kohl method simulated
absorption due to phonon and core loss interactions as well as damping by the Debye-Waller
factor [183].

where ∆ is the Laplacian operator, e is the electron charge, and ϵ0 is the permittivity of free
space. The single atom electron scattering factor is defined as the probability for an electron
plane wave with direction k to be scattered by the electrostatic potential into the direction
k′, and is equal to the Fourier transform of the atomic potential

f e(∆k) =

∫
R3

V a(r) exp [−2πi∆k · r] d3r (2.2)

where ∆k = k′− k [40]. The form factors are usually assumed to be spherically symmetric,
and so are typically written to depend simply on k, the magnitude of the change in direction.

The electron scattering factors can be related to the widely tabulated x-ray scattering
factors by the inclusion of the nuclear potential (as x-rays do not interact with the nuclear
charge). However, for electron microscopy there are a number of parameterizations of the
scattering factors which are commonly used in calculations. The most modern parameteri-
zation is the one published by Lobato and Van Dyck [98], which has the correct asymptotic
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behaviors and is highly smooth. Kirkland also has a modern and widely-used parameteriza-
tion, which is often the one chosen for multislice calculations [79].

It is possible to define an effective single atom scattering factor that takes into account
inelastic phenomena, by adding an imaginary component f ′(k) to the elastic factor.

f e(k) = f eelastic(k) + if ′(k) (2.3)

These are referred to as absorptive potentials, and their computation and parameterization
are more challenging as the physics of inelastic scattering and absorption are far more com-
plex than the elastic scattering we have described here. Early on, Hashimoto and coworkers
proposed a simple model where the inelastic component was assumed to be simply pro-
portional to the elastic factor, and they found that a proportionality constant of 0.1 was
generally in agreement with experiments [64]. A commonly used model of the absorptive
component was derived by Hall and Hirsch [61], who used the Einstein model to derive the
following absorptive form factor due to thermal diffuse scattering

f ′(k) =
1

k

∫
f(q)f(q − g)

(
exp

[
−Mg2

]
− exp

[
−M

[
q2 − (q − g)2

]])
d2 q (2.4)

While it is possible to evaluate this integral numerically, Weickenmeier and Kohl give a
useful parameterization of the model [183]. A FORTRAN code which computed the factors
from the parameterization was released along with their paper, which was freely available
at the time of publication but is no longer directly accessible as the BITNET network for
contacting the authors has not existed for over a decade [184] and 51

4
in floppy disks are no

longer routinely distributed. Luckily this code lives on as part of the open-source EMSoft
distribution [41], and has been translated to Python as part of py4DSTEM [158]. Both of
these implementions also include code to compute a core-loss contribution, supplied to De
Graef by Weickenmeier and Kohl and following the theory by Rose [151].

A comparison of the single atom scattering factors for Si and Au is shown in Figure 2.1,
using both the Lobato-Van Dyck (L-VD) and Weickenmeier-Kohl (W-K) parameterizations.
The L-VD factors and the real part of the W-K factors are in close agreement, though the
L-VD parameterization is smoother because the W-K potentials are defined over multiple
domains of the argument and are not necessarily continuous. The W-K factors are lower
at high scattering angle because they are computed with Debye-Waller damping while the
L-VD values are not (due to implementation differences in py4DSTEM). The imaginary part
of the W-K factors are also shown in the plots, scaled up for clarity, and have a distinct
dependence on scattering magnitude that differs from the elastic part.

In addition to these parameterizations of the atomic form factors, it is also possible to
derive factors from more comprehensive models of the electron density in an atom. Wu et
al used multipole density functions to allow the electron density to have anisotropy due to
bonding effects [188], and was able to fit the parameters of this model to converged beam
electron diffraction patterns. Their model also included the effect of charge transfer on the
atomic potentials, which allows the form factor for atoms which gain electrons to become

https://github.com/py4dstem/py4DSTEM
https://github.com/py4dstem/py4DSTEM
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Figure 2.2: Comparison of IAM and DFT potentials for a unit cell of PbTiO3, computed
using abTEM and GPAW.

negative. They found the effect of the more accurate form factors to be most prominent at
large scattering angles, and that the different models produce a detectable difference in the
diffraction patterns.

Crystal Potential

In a crystalline sample, the potential that interacts with the incoming electron wave is
comprised of contributions from each of the atoms. Using the parameterized potentials
described above, we typically proceed using the independent atom model (IAM), which
assumes that the potential of the crystal is simply the sum of the potentials at each atomic
site. For a unit cell containing N atoms at positions rj, the potential of the unit cell Vcell(r)
is thus given by

Vcell(r) =
N∑
j=1

V a
j (r − rj) (2.5)

This potential has the periodicity of the lattice and so can be expanded as a Fourier series
over the reciprocal lattice points g

V (r) =
∑
g

Vg exp [2πig · r] (2.6)

which holds for an infinite crystal, where the potential has discrete peaks at the reciprocal
lattice points and is zero elsewhere in reciprocal space.

In any other case than an infinite perfect crystal, the potential is a function of a continuous
reciprocal coordinate q:

V (q) =
1

Ω

∫
R3

V (r) exp [−2πiq · r] d3r (2.7)
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It is common to separate the potential as a convolution between a unit-cell contribution
corresponding to an infinite crystal and a shape function T (r) that modifies the extents of
the crystal, so that

V (q) =
1

Ω

[
N∑
j=1

f ej exp (−2πig · r)

]
[T (r)] (2.8)

In addition to the above expression using the single atom scattering factors, it is also
possible to derive the crystal potential from ab initio calculations. This method is able to
fully capture the effects of charge transfer and bonding, which is particularly important for
thin samples where it may be possible to image these effects directly [103, 171]. ab initio
potential calculations are implemented as part of the abTEMmultislice simulation code [102],
which uses GPAW to perform its density functional theory (DFT) calculations [113, 86]. A
comparison of DFT and IAM potentials for a unit cell of PbTiO3 with distortions induced
by a built-in polarization is shown in Figure 2.2. In this example, there are large differences
between the two potential calculations but they are largely confined to the regions between
the atoms where the density is low. The electrostatic potential is dominated by the nuclear
contribution and core electrons, which are not changed drastically due to bonding, and so at
the atomic sites the relative difference is negligible. Diffraction simulations performed using
these potentials resulted in a difference in intensities of at most 0.1%. However, for light
elements the valence contributions can become important.

2.2 Kinematic Diffraction

Diffraction is a phenomenon that arises from coherent interference of wave scattered by
a regular arrangement of scatterers. By assuming that the scattering interaction is weak,
we can develop a simple description of the diffraction process which is referred to as the
“kinematic” theory, as it relies only on the geometry of the scatterers (as opposed to the
“dynamical” theory, which also accounts for propagation). Derivation of the kinematic
theory uses the first Born approximation, which assumes that the wave does not lose intensity
upon scattering and is scattered only once. A complete derivation of the equation for the
scattered wave in the first Born approximation is beyond the scope of this work, and can be
found in the textbook of Fultz and Howe [48]. The wavefunction ψ of an electron originally
entering as a plane wave with direction k and scattered by a potential is written as

ψscattered(∆k, r) =
−m
2πℏ2

eik·r

|r|

∫
R3

V (r′) exp [−2πi∆k · r′] d3r′ (2.9)

where m is the electron mass and ℏ is the reduced Planck constant. An intuitive explanation
for this relationship is that the potential is comprised of an ensemble of individual scatterers,
and upon illumination by a plane wave each of these scatterers coherently emits a spherical
wave, and these waves interfere at some location r away from the sample. Since we are
generally not interested in the near-field wave, we can use a coordinate transformation (again,



CHAPTER 2. THEORY 10

with the details to be found in [48]) to obtain an expression that only depends on ∆k. If we
assume that the scatterers are individual atoms in a perfect crystal, scattered wave simplifies
to

ψ(∆k) =
N∑
j=1

f ej (∆k)e
−2πi∆k·rj (2.10)

Finally, the scattered intensity is simply

Iscattered = ψ∗
scatteredψscattered (2.11)

The kinematic theory brings us to a simple conclusion: the diffracted wave is proportional
to the Fourier transform of the distribution of scatterers. The diffracted wave arises from
coherent superposition of waves scattered by each atom (or, in a continuous sense, from each
voxel of potential). In a perfect crystal, these waves interfere coherently only along directions
corresponding to reciprocal lattice points, and relativistic effects cause the intensity scattered
by more than a few tens of milliradians to be negligible.

2.3 Dynamical Diffraction

Dynamical diffraction is derived not from the geometry of the scattering medium but from the
Schrödinger equation that describes the evolution of a quantum mechanical wave through
a potential [40]. There are many conventions for writing the Schrödinger equation for a
relativistic electron moving along the z direction through a potential and scattering by small
angles, all of which are equivalent. Here we will use the notation of Kirkland [79], who gives
the equation as

∂ψ(r)

∂z
=

[
iλ

4π
∇2
xy + iσV (r)

]
ψ(r) (2.12)

where λ is the relativistically corrected wavelength, ∇2
xy is the Laplace operator in 2D, and

σ is the relativistically corrected interaction constant.
Let us examine the three components of Equation 2.12 in turn. The first term, on the

left side of the equality, describes the evolution of the wave as it progresses along the z axis.
This description of the scattering is a differential equation along a spatial dimension, and so
it will include the effect of propagation of the wave. The two terms on the right then describe
what happens to the wave as it propagates. The Laplace operator ∇2

xy in the second term is
a double spatial derivative—its magnitude is large where the curvature of the wave is large,
and vice versa. This term thus describes the spreading out of the wave as it propagates,
causing the wavefront to tend to become smoother. The third term encapsulates interaction
with the sample potential, and causes the wave to gain a phase factor proportional to the
potential V (r). The constant of proportionality for this interaction is σ, defined as

σ =
2πγm0eλ

h2
(2.13)
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where γ is the relativistic mass ratio, m0 and e are the rest mass and charge of the electron,
and h is Planck’s constant.

Evaluation of this governing equation for dynamical diffraction is nontrivial. Examining
this equation, we observe that it takes the form of ∂ψ

∂z
= Aψ, where for the moment we will

understand A to be an operator2 consisting of the terms in the square brackets in 2.12. On
this basis, the solution should should have the form of

ψ(z) = eiAzψ(0) (2.14)

If we write A as a combination of two operators, A = T + V , where T corresponds to the
transmission term and V to the potential interaction term inside the square brackets, the
exponential solution becomes

ψ(z) = eiAzψ(0) = ei(T +V)zψ(0) = eiT zeiVzψ(0) ← this is wrong!

Unfortunately, the two terms encapsulated by A do not commute, and we cannot evalu-
ate this solution directly. In other words, dynamical diffraction is not simply kinematic
diffraction plus a spreading term—it is the processes of spreading and interacting occuring
simultaneously.

There are two common methods for solving Equation 2.12 and computing diffraction
intensities, and we will explain them here as representing different approaches to performing
the exponentiation in Equation 2.14. The first, and most common in practice today, is
referred to as the multislice method. The multislice method takes advantage of the fact that
over a very small distance ϵ, it is indeed true that

ei(T +V)ϵ = eiT ϵ × eiVϵ (2.15)

Thus it is valid to write

ψ(z) = eiAzψ(0) = eiT ϵeiVϵeiT ϵeiVϵ · · · eiT ϵeiVϵeiT ϵeiVϵψ(0) (2.16)

where the products are evaluated enough times such that the total of the small distances
ϵ equals the sample thickness. The second method is the Bloch wave approach, where
we write the wavefunction as the sum of Bloch waves, which are plane waves modulated
by a function that has the periodicity of the lattice. This choice of a representation is
guaranteed, by Bloch’s theorem, to satisfy the Schrödinger equation in a periodic potential.
This representation is beneficial because it leads to a matrix representation of A which is
diagonalizable. The exponential of a matrix that has been diagonalized as UΛU−1 is easy
to compute:

eUΛU−1

= UeΛU−1 (2.17)

and since Λ is diagonal its exponential can be evaluated elementwise. In the next section,
we will explore these two methods in further detail.

2It is possible, using either the Darwin-Howie-Whelan form or the Bloch wave form (as will be seen
below), to write A as a matrix, in which context the equations in this paragraph are more rigorously true.
Here I am calling them “operators” since they represent the transformations the matrices impart to the wave
on multiplication, which is an abuse of notation.
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2.4 Computation

As described above, computation of diffraction intensities under dynamical diffraction condi-
tions are nontrivial. In this section, we will provide an overview of the two primary methods
for solving Equation 2.12 for a given sample and experimental condition. We will also discuss
the PRISM algorithm, which is a variant of the multislice algorithm which borrows concepts
from the Bloch wave approach and is widely used in 4D–STEM simulations.

Multislice Method

As described above, the multislice method relies on evaluating the two terms inside the
brackets of Equation 2.12 over small distances in sequence. In this section, we will describe
the procedure for evaluating these operators. For a complete description of the method, with
careful attention to its implementation, we refer to the textbook by Kirkland [79].

The first operator in Equation 2.12, which represents propagation of the electron wave, is
challenging to solve in real space because of the presence of the double differential operator.
However, there is a simple expression for evaluating it in reciprocal space, where derivatives
become a multiplication by the frequency coordinate [40]. Evaluation of the propagation
operator is thus given by

ψ(z + ϵ) = F−1
{
eiλϵk

2F {ψ(z)}
}

(2.18)

where F is the Fourier transform and F−1 is the inverse Fourier transform.
The second operator, which represents interaction with the sample potential, is simple to

evaluate. First, we project the potential within the slice (of thickness ϵ) onto the xy-plane:

Vϵ(z) =

∫ z+ϵ/2

z−ϵ/2
V (r) dz (2.19)

The action of the operator is to add a phase to the wave proportional to this slice of the
potential

ψ(z + ϵ) = eiσVϵ(z)ψ(z) (2.20)

If we denote the j-th potential slice along the thickness of the sample as V
(j)
ϵ , the full

multislice computation is written as

ψ(z) =
N∏
j=1

{
F−1

[
eiλϵk

2
{
F
[
eiσV

(j)
ϵ

]}]}
ψ(0) (2.21)

Bloch Wave Method

Here we will summarize the Bloch wave method, following the notation given in the textbook
by DeGraef [40]. Each Bloch wave Ψ(j)(r), indexed by the superscript (j), takes the form of
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a plane wave (with wavevector k(j)) modulated by a function C(j)(r) with the periodicity of
the lattice:

Ψ(j)(r) = C(j)(r)e2πk
(j)·r =

∑
g

C(j)
g e2πi(k

(j)+g)·r (2.22)

In the rightmost equality, the Bloch wave is written as a Fourier series with coefficients Cg.
The restriction that C(j) has the periodicity of the lattice allows us to write the Fourier series
on the right hand side as a sum over the reciprocal lattice of the crystal, i.e. the g vectors
of the Fourier decomposition of the Bloch wave are the same as the diffraction vectors of
the crystal. The total wavefunction in the crystal is a combination of these Bloch waves,
weighted by their excitation amplitudes α(j)

ψ(r) =
∑
j

α(j)C(j)(r)e2πk
(j)·r

=
∑
j

α(j)
∑
g

C(j)
g e2πi(k

(j)+g)·r
(2.23)

Substituting the Bloch wave description into the Schrödinger equation yields a set of rela-
tionships, one for each Bloch wave, between the wavevector k of the Bloch wave and the
incident electron wavevector k0:

[k20 − (k + g)]Cg +
∑
h̸=g

Ug−hCh = 0. (2.24)

Ug−h is the Fourier component of the sample electrostatic potential corresponding to the
scattering vector g −h. By applying continutity of the wavefunction and its first derivative
at the entrance and exit planes of the crystal, ignoring backscattered electrons, and assuming
high incident electron energy, it is possible to write the Bloch wave equations as [40]:

2k0sgC
(j)
g +

∑
h̸=g

Ug−hC
(j)
h = 2knγ

(j)C(j)
g (2.25)

where kn is the normal compoment of the indicent electron wave and γ(j) is the normal
component of the Bloch wave: k(j) = k0 + γ(j)n. sg is the excitation error for the beam g,
given by

sg =
−g · (2k + g)

2|k + g| cosα
(2.26)

where k is the wavevector of the incident electron beam, and α is the angle between the
sample normal and the incident beam direction. Solution of this system of equations is
possible by casting it as an eigenvalue/eigenvector decomposition. In this form the equations
are written as

ĀC(j) = 2knγ
(j)C(j) (2.27)
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whereC(j) is interpreted as a matrix whose column vectors contain the Bloch wave coefficients
C

(j)
g . The matrix Ā contains the term 2k0sg on its diagonal and Ug−h on the off-diagonal.

Ā =


0 U−g · · · U−h

Ug 2k0sg · · · Ug−h
...

...
. . .

...
Uh Uh−g · · · 2k0sh

 (2.28)

When absorption is included, the imaginary component of the potential U ′
g is included in

the matrix Ā by adding iU ′
0 to the diagonal and iU ′

g−h to the off-diagonal.
In this form, the matrix Ā is fully determined by the structure of the material and the

crystal orientation—by computing the eigenvalue/eigenvector decomposition of this matrix,

we obtain the Bloch wave coefficients C
(j)
g and the normal components γ(j). The final step

is to obtain the scattered wave amplitudes for a given crystal thickness. The electron wave
ψ at a depth z in the crystal is

ψ(z) = CE(z)C−1ψ(0) = Sψ(0) (2.29)

where C is the matrix containing the eigenvectors, ψ(0) is a vector with the value of 1 at the

index corresponding to the incident beam direction and zero elsewhere, and E(z) = e2πiγ
(j)zδij

is a diagonal matrix which depends on the thickness and the Bloch wave normal components.
We have also introduced the scattering matrix S which maps the vector representing the
incident electron wave to the scattered wave.

Implementation in py4DSTEM

The approach above allows us to compute the dynamical diffraction intensities for a per-
fect crystal for a given orientation and thickness. We have implemented this method in
py4DSTEM as part of the Crystal module, extending the kinematic diffraction calculation
routines that were developed there by Ophus et al [124].

First, the crystal structure is input by specifying the lattice and atomic basis, importing
from a CIF file, or by searching the Materials Project database. From the crystal structure,
all reciprocal lattice points are computed up to a maximum scattering vector kmax specified
by the user. For calculation of kinematic diffraction patterns we also compute the Fourier
coefficients of the sample potential at each reciprocal lattice point, using the atomic form
factors as parameterized by Lobato and Van Dyck [96].

In principle, one could include every reciprocal lattice point (up to kmax) in a Bloch wave
calculation, and obtain the diffraction intensities for every reflection. However, the compu-
tational complexity of the eigendecomposition used in the Bloch method scales as the third
power of the number of beams included, so the computation time can be massively reduced
by first evaluating which beams may be excited for a given sample orientation and only
performing the Bloch computation on these beams. In py4DSTEM this is performed by first

https://github.com/py4dstem/py4DSTEM
https://github.com/py4dstem/py4DSTEM
https://github.com/py4dstem/py4DSTEM
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computing a kinematic diffraction pattern: we input the orientation of the crystal and choose
thresholds for the maximum excitation error sg, and compute a kinematic pattern contain-
ing a list of the reflections that meet the thresholds along with their kinematic intensities.
The datastructure for this return data contains a list of reflections, with the hkl indices,
kinematic diffraction intensity (computed as the magnitude of the Fourier coefficient of the
reflection damped by a function depending on the excitation error), and projected locations
in the diffraction plane (qx, qy) for each. Further reduction of computational complexity
can be achieved by sorting the reflections into weak and strong beams and eliminating the
couplings between weak beams, as described in [178], but this is not currently implemented
in py4DSTEM.

Several other Bloch wave implementations have been described in the literature: EMSoft
by DeGraef [41] is open source, under continued development, and served as a reference for
our own implementation; Zuo et al maintain a cloud-based, paid version of their closed-source
implementation; and several accelerated schemes have been reported such as the GPU-based
one in [138].

Modeling Absorption

Accurately reproducing the dynamical diffraction intesities for thick samples requires treat-
ment of diffuse scattering, which causes electrons to scatter out of the Bragg beams and
into the pattern background. In multislice simulations, this effect is captured by the “frozen
phonon” method, which involves simulating multiple configurations of the atoms using a
purely elastic (i.e. non-absorbing) potential but with each configuration having the atoms
slightly displaced from their ideal positions by a thermal vibration factor. This approach
reproduces diffuse scattering contrast outside the Bragg spots such as Kikuchi lines. The
potential is generally computed using the elastic form factors for isolated atoms. Several
parameterizations of these form factors are available, with the most common ones in current
use being those by Lobato et al [96], Kirkland [79], and Weickenmeier and Kohl (which we
will refer to as WK) [183]. These elastic form factors are very well supported by experiments
using both electrons and X-rays, and when used with the frozen phonon method they yield
generally similar diffraction patterns that agree well with experiments [98].

By contrast, in the Bloch wave approach off-Bragg scattering is not explicitly included
and absorption is reproduced by instead adding an imaginary component to the atomic form
factors, and thus to the sample potential. These absorptive form factors are generally de-
rived from assumptions about the absorption mechanisms and not from experiments. Early
attempts to determine absorptive form factors simply modeled the imaginary part as being
proportional to the real part, and a factor of 0.1 was found to give the best match to experi-
ments [64]. Later work found that the absorptive part of the potential is much more tightly
localized to the atomic sites than the elastic part, leading to substantial experimental errors
from the “proportional” approach, and that applying the Einstein model of atomic vibrations
allows computation of more accurate absorptive form factors [152]. The Weickenmeier-Kohl
parameterization of the elastic form factors was designed to admit an analytical evaluation

https://github.com/py4dstem/py4DSTEM
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of the Einstein absorption model, leading to the WK form factors being predominantly used
in absorptive Bloch calculations. The original Fortran code for the WK model is available
open-source as a component of the EMSoft library [41] that accompanies the excellent text-
book by DeGraef [40]; we have re-implemented the WK subroutines in Python as part of
the Bloch wave computation functionality of py4DSTEM [158]. These routines also have
the option of including a “core” contribution to the absorption due to electron energy loss,
using the model of [151].

PRISM

In the above description of the computational methods for computing diffraction patterns,
we considered the problem of computing a single pattern. In the case of multislice, we made
no assumptions on the content of the initial electron wave, while for the Bloch method our
derivation assumed plane wave illumination. When simulating 4D–STEM experiments, we
aim to generate a sequence of diffraction patterns for each scan position of a converged
beam electron probe. A natural strategy for accomplishing this in the multislice method
is to generate a separate incident wave representing the shifted, converged probe, for each
scan position. This particular multislice approach to 4D–STEM has computation time that
scales with the number of probe positions. In contrast, since the Bloch wave method can
only produce plane wave patterns3, the strategy is different. In this case, we instead perform
a separate Bloch wave computation for each plane wave inside the probe-forming aperture.
These plane waves are then combined to form the position-dependent diffraction patterns
by summing them coherently, weighted by phase factors that shift the resulting wave to the
desired scan position. This particular Bloch wave approach to 4D–STEM has computation
time that scales with the number of pixels inside the probe-forming aperture.

Because the multislice method is able to simulate samples other than perfect crystals,
it is generally preferred in modern practice to produce simulations that faithfully represent
complex experiments. However, to simulate 4D–STEM data with large scan dimensions (and
often with coarse reciprocal space sampling), the strategy described above that scales with
number of scan positions is inefficient. The PRISM, or plane wave interpolated scattering
matrix, method developed by Ophus [122] and later extended by DaCosta et al [146] is a
strategy that combines the flexibility of multislice with the strategy described for Bloch wave
calcualtions above. Instead of using a separate converged beam probe for each scan posi-
tion, PRISM performs a multislice simulation for each plane wave pixel in the probe-forming
aperture and stores the resulting complex exit waves in a “compact” scattering matrix. The
position-dependent patterns are then produced as in the Bloch wave strategy, by coherently
summing the plane wave exit waves with the appropriate phase factors. Ophus also intro-

3It is possible to combine multiple plane waves into a single Bloch wave computation, but the subproblems
corresponding to each plane wave do not interact. This implies that A will be a block diagonal matrix, so each
of the submatrices can be diagonalized independently and combined afterwards. It is more computationally
efficient to diagonalize a sequence of small, dense matrices than one large, sparse block matrix.
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duced an interpolation scheme that allows for a tradeoff between simulation accuracy and
computation time, which we will not describe here.

Software

A wide range of software packages are available for computing electron diffraction. Here, we
will briefly summarize a few packages which are under current development and which are
capable of simulating 4D–STEM experiments. The majority of the current packages use the
multislice algorithm, often with the option to use PRISM for 4D–STEM scans. The first
implementaion of PRISM was in the the package Prismatic [142], and the software has
undergone a large upgrade in version 2.0 [146]. Prismatic is one of the most highly optimized
codes available, implemented in C++ and has a streaming multi-GPU algorithm for use on
clusters and supercomputers. Thus it is often considered the best choice for the largest
simulations, but its interface is primarily through special plaintext configuration files that
can present a steep learning curve. The abTEM code implements multislice and PRISM, and
has a single-GPU algorithm for both (though multi-GPU support is promised to be available
soon) [102]. abTEM is written in Python and uses the Atomic Simulation Environment for
handling structures [86]. abTEM also naturally interfaces with ab initio simulation codes,
and can perform diffraction simulations directly from electron densities computed with DFT.
EMSoft contains both a GPU-accelerated multislice code and a CPU-based Bloch wave code,
as well as the ability to simulate Kikuchi diffraction in a scanning electron microscope; while
written in Fortran, it is still under active development [41]. py4DSTEM contains a Bloch wave
simulation code that is largely based on EMSoft, and all of the Bloch wave simulations in
this work were produced using py4DSTEM. Finally, a number of packages can also perform
simulations that include diffraction of electrons that have undergone inelastic scattering.
These include muSTEM [2], MULTEM [97], and py multislice [20].

https://prism-em.com/
https://github.com/py4dstem/py4DSTEM
https://github.com/py4dstem/py4DSTEM
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Chapter 3

Hyperspectral Denoising of
4D–STEM Datasets Using a Total
Variation Method

3.1 Introduction

The rise of direct electron detectors for scanning transmission electron microscopy has
brought data collection into a new speed regime, opening up the possibility of new tech-
niques that capture complex scattering information at every position of the STEM probe
without requiring prohibitievly long dwell times. These techniques include both high speed
electron energy loss spectroscopy (EELS) mapping, where an EEL spectrum is aquired at
every scan position and which is now routinely possible at atomic resolution [84, 55], as
well as four dimensional STEM (4D-STEM), where a 2D diffraction image of the probe is
acquired at every probe position [123].

The fastest detectors available currently operate at speeds approaching 100,000 frames
per second [134], for a pixel rate on the order of 1010 /s. To realize these high speeds, these
detectors operate in electron counting mode where readout noise is mitigated by operating
at very low fluence. By ensuring that only one out of every 40–100 pixels is illuminated by
an electron in each frame, it is possible to set a threshold that yields a binary image that
rejects electronic noise and that is not affected by the large variance of the energy deposited
per incident electron [58]. The resulting data, when acquired at full speed, is thus incredibly
low dose; for example, the 4D Camera at the National Center for Electron Microscopy is
576× 576 pixels large and so could handle 3,000–8,000 electrons per frame at the fill factors
cited above. However it must be noted that this maximum fill factor applies locally, and
so in a nanobeam STEM experiment where the Bragg disks are small in comparison to the
distance between them, only a fraction of this dose can be utilized.

Some STEM imaging modalities can produce useful results at these low doses, in particu-
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lar ptychographic reconstructions1. [120, 75]. O’Leary et al reported using electron counted
data containing fewer than 300 electrons per pattern to image a zeolite structure at atomic
resolution [120]. However, many nanobeam 4D–STEM measurements break down when ap-
plied to sparse, low dose data. Strain mapping by cross-correlation of a template image with
a known reference requires approximately 106 electrons per pattern to achieve good accuracy
and is often not possible below 103–104 electrons per pattern (see Chapter 4 or [199]). Other
nanobeam measurements that also rely on Bragg disk detection, such as automated crystal
orientation mapping (Chapter 5 or [124]) or phase mapping [71], share similar requirements
on dose per pattern.

For these types of nanobeam diffraction experiments, when acquired using fast counting
mode detectors, it is therefore necessary to use some form of denoising in order to make
useful measurements. Several examples of denoising for electron microscopy data, including
volumetric and hyperspectral data, are available in the literature. A powerful method for
image denoising is block matching and 3D-filtering, or BM3D, which is a form of nonlocal
means that searches for similar patches across an image [36]. The same block-matching
concept has also been used as the basis for machine learning denoising models [8, 179]. Block
matching has been extended for time series of images, where it is known as BM4D [105].
BM4D could in principle be extended to 4D data as well (which would presumably be known
as BM5D), but likely at very high computational cost as the set of possible patches becomes
considerably larger than the already-large original data as the dimensionality increases. For
4D–STEM data, tensor singular value decomposition has been explored as a straightforward
and efficient means of denoising by finding a low-rank approximation to the measurement,
similar to principal component analysis [201].

Total variational (TV) denoising is a popular method for reducing noise in images which
is attributed to Rudin, Osher, and Fatemi [156]. It has since been extended to higher
dimensional data such as 3D volume imaging [5] and hyperspectral data[29]. It is particularly
known for its edge-preserving properties, which is advantageous for nanobeam 4D–STEM
experiments where diffraction disks are expected to have sharp boundaries. TV is also
useful as a regularizer in the solution of inverse problems, for example when reconstructing
tomograms from a limited number of tilts [159], where the TV algorithm is often preferred
for its ability to remove noise while preserving sharp edges at the surface of the sample.

In this work, we first extend a computationally efficient TV algorithm by Jia and Zhao
originally devised for 2D images to work on 3D and 4D hyperspectral datasets with vary-
ing weights along each dimension. We demonstrate a high performance implementation
of this modified algorithm using a FISTA accelerated convergence scheme, and MPI-based

1It is important to distinguish between dose per diffraction pattern and dose per area. By simply stepping
the beam very finely, ptychography can realize a substantial dose per area even with limited dose per pattern.
A good reconstruction algorithm is ideally capable of stitching this dose together effectively, and so a high
signal-to-noise can be obtained from a large number of low signal-to-noise measurements, limited by the
dose per area. In the case of other nanobeam measurements, where the individual diffraction patterns are
analyzed individually, this accumulation of signal does not occur and the measurement is limited by dose
per pattern
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distributed implementation that allows the processing of terabyte-scale datasets on a super-
computer. We investigate the capability of the algorithm to reduce the effects of Poisson
noise on simulated data and also show its use on a number of experimental datasets.

3.2 TV Denoising Algorithm

The total variational denoising method recovers a denoised signal u from a noisy measure-
ment f by solving an optimization problem, written here for a 2D image:

min
u

[
∥∇xu∥1 + ∥∇yu∥1 +

µ

2
∥u− f∥22

]
, (3.1)

written here for a two dimensional image, and where µ is an appropriately chosen positive
parameter. The operators ∇x and ∇y are backwards difference operators along the x and y
directions, respectively. For example:

∇xu(i, j) = u(i, j)− u(i− 1, j), i = 2, ..., N, j = 1, ..., N (3.2)

with the boundary value ∇xu(1, j) = 0. The algorithm gets the name “total variation” from
the use of the 1-norm of the difference operator applied to the signal inside the optimization:

∥u∥1 :=
∑
i,j

|u(i, j)|, (3.3)

which represents the total magnitude of variation between neighboring pixels of the image.
Numerous approaches for solving this optimization problem are available in the literature.

The original paper by Rudin et al cast the problem to the solution of a differential equation
and showed an approximate, iterative numerical scheme for its evaluation [156]. Later Osher
and coworkers introduced the split Bregman iteration scheme that remains popular [54, 126].
In this work, we adapt the algorithm of Jia and Zhao [74], originally shown for 2D images,
for TV denoising of 3D and 4D datasets. This algorithm (which we will refer to here and
in the accompanying code as J-Z) is advantageous for large and high-dimensional datasets
because each iteration involves only evaluating local gradients of the function, and is easily
adaptable to accelerated convgence schemes. The J-Z algorithm solves the minimization
problem in Eq. 3.1 using the following iteration scheme:

bkx := cut
(
∇xu

k + bk−1
x , 1/λ

)
(3.4)

bky := cut
(
∇yu

k + bk−1
y , 1/λ

)
(3.5)

uk+1 := f − λ

µ

(
∇T
x b

k
x +∇T

y b
k
y

)
(3.6)

where bx and by are auxiliary arrays and the cut operator is defined as

cut(c, 1/λ) :=


1/λ for c > 1/λ
c for − 1/λ ≤ c ≤ 1/λ
−1/λ for c < −1/λ

(3.7)
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and ∇x and ∇T
x are backward and forward difference operators along the dimension x:

∇xu(i, j) = u(i, j)− u(i− 1, j) (3.8)

∇T
xu(i, j) = u(i, j)− u(i+ 1, j) (3.9)

The parameter µ controls the balance between TV minimization and fidelity to the measured
data. The λ parameter is effectively a step size of the algorithm, which Jia and Zhao showed
to be optimally chosen such that λ/µ = 1/8.

A simplified listing of a Python program to evaluate this algorithm for 2D images is given
below, where raw data is the noisy measurement, denoised is the array that holds the
denoised data and which is initialized with zeros, and lam and mu are the parameters λ and
µ, respectively.

Listing 3.1: A simplified Python implementation of the J-Z total vairation denoising algo-
rithm in two dimensions.

import numpy as np

denoised = np.zeros_like(raw_data)
bx = np.zeros_like(raw_data)
by = np.zeros_like(raw_data)

for i in range(number_iterations):
bx = np.clip(

denoised - np.roll(denoised, 1, axis=0) + bx,
-1/lam, 1/lam

)
by = np.clip(

denoised - np.roll(denoised, 1, axis=1) + by,
-1/lam, 1/lam

)

denoised = raw_data - \
((bx - np.roll(bx, -1, axis=0)) * (lam/mu) +
(by - np.roll(by, -1, axis=1)) * (lam/mu))

Convergence of the algorithm is proven by Jia and Zhao [74], but iterative thresholding
algorithms of this type are known to have a slow rate of convergence. Beck and Teboulle
demonstrated a general method for accelerating the convergence of this type of algorithm,
which they refer to as Fast Iterative Shrinkage-Thresholding (FISTA) [11]. Their method
stores both the current iterate and the previous one, and combines them using a specially
chosen and variable weighting. In the remainder of this work, all results are presented using
a FISTA-accelerated version of the J-Z algorithm. For each auxiliary array bx,y,... we also
store a history array dx,y,.... At each iteration, the update is modified to become (presented
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in one dimension here for compactness):

dk := cut
(
∇uk + bk−1, 1/λ

)
(3.10)

bk = dk +

(
tk − 1

tk+1

)
(dk − dk−1) (3.11)

uk+1 := f − λ

µ

(
∇T bk

)
(3.12)

The FISTA acceleration parameter tk is initialized to be 1 at the first iteration, and updated
according to the following rule:

tk+1 =
1 +

√
1 + 4t2k
2

(3.13)

FISTA acceleration has the benefit that a much faster rate of convergence is achieved without
additional computation at each step. The price of this speedup is that we need to store an
additional history array, with the same size as the raw data, for each dimension of the
problem. When dealing with large scale 4D–STEM datasets, this can become a substantial
challenge as the memory demand for TV denoising becomes 10 times the original data
size (one needs to store the raw array, four auxiliary arrays, four history arrays, and the
reconstruction).

In this work, we extend the J-Z algorithm to operate in higher dimensions and reformu-
late the smoothing parameter µ so that it can be specified separately along each axis of the
reconstruction. For example, in the case of a 4D–STEM dataset (where we label the dimen-
sions as rx, ry, qx, and qy, corresponding to real and reciprocal space axes), the hyperspectal
TV problem becomes:

u∗ = min
u

[
1

µrx
∥∇rxu∥1 +

1

µry
∥∇ryu∥1 +

1

µqx
∥∇qxu∥1 +

1

µqy
∥∇qyu∥1 +

1

2
∥u− f∥22

]
(3.14)

Note that we have now allowed µ to vary for each dimension of the problem. This allows for
the relative smoothing to be different between real space and reciprocal space, to account for
different expected variation of the signal in each space. The new dimensions are added to
the J-Z algorithm by adding extra auxiliary arrays, which are associated with the difference
operator along each dimension, and using the same iterative procedure. We have found that
the ideal step size λ is dependent on the number of dimensions D as λ(D)/µ = 1

4D

cyTVDN: A Cython Implementation of 3D/4D TV Denoising

The J-Z algorithm for TV denoising is simple to implement, with our nearly complete 2D
example (Listing 3.1) fitting in ten lines of Python. Unfortunately, this näıve implementation
proves to be extremely inefficient when applied to large datasets. This is because each of
the individual operations performed on the arrays by numpy [63] will silently produce a

https://github.com/cyTVDN/cyTVDN
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temporary array. While only the final one is retained on each line, this causes a large number
of allocations and deallocations of memory, and for large datasets puts a lot of pressure on the
memory management. To get around this limitation, we have developed a highly optimized
total variation denoising code using Cython [13], which is a library for writing optimzed
extensions to Python using a C-like syntax that gives access to low-level features and high
performance. Using Cython we are able to concatenate several steps of the algorithm in order
to reduce memory traffic, and utilize OpenMP directives to enable parallel computation on
multi-core processors [28]. The Cython code is automatically compiled into a library that is
then accessible from within an ordinary Python interpreter. Our implementation is known
as cyTVDN and is freely distributed as open-source code [197]. This implementation focuses
specifically on 3D and 4D hyperspectral data, and includes the original J-Z algorithm and the
FISTA acceleration scheme described above. Other optimized TV denoising programs are
also available, such as proxTV which generalizes to any number of dimensions with variable
weighting, is accessible through Python and MATLAB, and is distributed open-source [7, 6].

Distributed Algorithm

While the algorithm we have chosen is relatively memory-efficient, as we are specifically
interested in denoising of very large (several to hundreds of gigabytes) datasets acquired
by fast electron detectors, the memory required by this approach will frequently exceed the
level available even in substantial workstation computers. For the unaccelerated algorithm
(i.e. without FISTA) the total memory required during evaluation is 5 times the dataset
size for 3D data, and 6 times the dataset size for 4D data; adding FISTA acceleration
increases these to 8 and 10 times the original dataset size, respectively. In order to make this
method feasible for larger datasets, we have devised a distributed parallel algorithm for use
on computing clusters or supercomputers, using MPI for communication between workers
residing on separate computers.

To divide the problem between multiple workers, the dataset is divided into a 2D grid of
sub-arrays, along the first two axes (the “slow” storage axes of the C-ordered array), and each
worker loads and operates on one sub-array. If each worker were to operate independently on
its own sub-array, the final solution would not respect the global boundary conditions of the
algorithm, but rather would enforce those constraints at each of the boundaries between sub-
arrays. Thus, distributed evaluation of the algorithm requires that the sub-arrays overlap one
another, and synchronize data at each iteration so that the final solution respects the overall
boundary conditions. Each worker’s local data thus also contains one pixel in each direction
of overlap with its neighboring tiles, except at the edges of the array where the ordinary
boundary conditions should apply. At each step of the iteration, inter-worker communication
is used to synchronize the overlap regions between each tile, shifting data from the tile which
has correctly evaluated the updated result in the overlap region to its neighboring tile which
has inappropriately applied the boundary conditions. On the accumulator update step, the
overlap regions on the low index overlap regions are invalid, while the overlap regions on
the high index side are valid; each worker with a neighbor towards the low index side copies

https://github.com/cyTVDN/cyTVDN
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data from that neighbor into its local accumulator. On the reconstruction update step, the
difference operator works in the opposite direction and the situation is flipped: tiles with
neighbors to the low index side will contain invalid data in the overlap region, and so copies
data from that neighbor into the local reconstruction.

3.3 Methods

Simulated 4D–STEM data was produced using the multislice method as implemented in
abTEM [102]. The simulation cell, shown in Figure 3.1 consists of a substrate of amorphous
carbon with several fcc Au nanoparticles, with octahedral shape and approximately 5 nm in
size, in random orientations on the substrate. Simulations were performed using a 2.5 mrad
semiconvergence angle to produce well-separated nanobeam diffraction disks, at an acceler-
ating voltage of 300 keV. We summed 20 frozen phonon configurations to ensure that each
pattern contained a diffuse background resulting from thermal distortions of the lattice. The
4D–STEM scan was produced using a step size of 4 Åand diffraction patterns were binned
to achieve a pixel size of approximately 0.8 Å−1. The resulting dataset had a size of 50× 50
scan positions and 100 × 100 pixels in reciprocal space, with the real space extents span-
ning the full (200 Å)2 area of the simulation cell and the diffraction patterns cropped to
a maximum scattering angle of 40 mrad. Diffraction patterns from the amorphous carbon
and the central Au nanoparticle and virtual images are shown in the first row of Figure 3.2.
The noisy dataset was produced by applying Poisson noise statistics at a signal level of 500
electrons per pattern, as shown in the second row of Figure 3.2.

Denoising was performed using the cyTVDN package with the FISTA acceleration scheme
enabled. The binned dataset is approximately 100 MB in size, so FISTA denoising required
approximately 1 GB of RAM to evaluate. Each denoising run was performed for 50 iterations
and the mean square error between the simulated data and the reconstruction was tracked
at each step. Each denoising run took approximately 2.5 seconds to complete on a 32-core
workstation with two AMD EPYC 7252 CPUs running at 3.1 GHz.

3.4 Results and Discussion

The results of denoising of the simulated 4D–STEM dataset are shown in the bottom row
of Figure 3.2. Denoising was performed using µR = 1.6 × 10−2 and µQ = 2.0 × 10−1, and
iteration was halted when the relative magnitude of the update step was 1% (this choice of
parameters is discussed further below). With these selection of parameters, an improvement
in SNR of 9.1 dB is achieved after 10 iterations. The maximal diffraction pattern, computed
by taking the maximum pixel value across the real space scan for each pixel in diffraction
space, is a useful way of summarizing the information in a 4D–STEM scan, as it highlights
the diffraction signals and suppresses the background. In the maximal diffraction pattern
from the noisy dataset, we observe that many of the higher order reflections that were

https://github.com/cyTVDN/cyTVDN
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Figure 3.1: Atomic model used for multislice simulations of a 4D–STEM dataset. Octahe-
dral Au nanoparticles of approximately 5 nm size are distributed on an approximately 3 nm
thick amorphous carbon support.
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Figure 3.2: Denoising of the simulated Au nanoparticle dataset. The first two columns show
diffraction patterns selected from a region of amorphous carbon and from the nanoparticle
at the center of the scan. The third column shows the maximal diffraction pattern across
the field of view. Virtual images are shown in the final two columns. Denoising recovers
diffracted disks in the patterns that were rendered undetectable at low dose, at the cost of
some blurring of the vitual images.

easily observed in the infinite dose simulation are now buried beneath the noise. In the
denoised data, these higher order reflections are once again visible. This recovery is possible
because while the pixel values within these reflections are on the same order as the noise in
the noisy data, the intensity is correlated between neighboring scan positions and between
neighboring diffraction pixels. Total variation denoising is able to use these correlations,
without excessive blurring between neighboring pixels, to recover the original singal. In
the individual diffraction pattern chosen from over the Au NP, diffraction disks that were
not clearly observable in the noisy data are recovered with intensity substantially above
the background, but weak reflections in the original data are not recovered. Some blurring
between pixels is still observed, as each of the diffraction disks in the denoised data has a
small “halo,” and the virtual brightfield and darkfield images show some loss in the sharpness
of the edges of the particles, though the contrast is increased.
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Figure 3.3: Effect of the data weighting parameters, µR for real space and µQ for diffraction
space, on the SNR increase for the simulated Au nanoparticle dataset after denoising, using
FISTA accelerated convergence. The left panel shows the SNR after running for 50 iterations,
while the right panel shows the highest SNR achieved during the iterative reconstruction
process. For some choices of the smoothing parameters, the algorithm reaches an optimal
solution but proceeds to diverge as iteration continues except for a small range of parameter
space. If iteration is stopped at the appropriate step, it is possible to achieve optimal
performace of the reconstruction over a wide range of parameters.

Parameter Selection and Convergence

As noted in [95], the optimal solution of the TV problem for a given choice of the smoothing
parameters may in fact have a lower total variation than that of the underlying data, and so
the reconstructed dataset may diverge from the underlying data (which has a nonzero total
variation) despite continuing to minimize the objective function. Thus the physically optimal
solution is not the same as the the global optimum solution of the TV minimization. While
the algorithms used for TV minimzation have been shown to be guaranteed to converge to
the minimum of the objective function, for many choices of µ the reconstruction will deviate
strongly from the underlying signal.

In order to explore the dependence on the real space and reciprocal space smoothing
parameters, we performed TV denoising for 50 iterations using FISTA acceleration for a
wide range of the parameter space, as shown in Figure 3.3. We found that a signal to noise
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ratio (SNR) improvement of approximately 8 dB could be achieved after 50 iterations, using
the optimal set of parameters. However, the range of parameters the yield this optimal
reconstruction is relatively small, and is particularly sensitive to the choice of the real space
parameter. We also tracked the SNR gain at each iteration step for each parameter choice,
and found that over a wide range of parameter space an even higher signal improvement
was realized (up to approximately 9 dB), but continuted iteration caused the result to di-
verge from the underlying signal. By tracking the magnitude of each update step between
iterations, we found that the peak SNR was typically observed when the magnitude of the
update step dropped to about 1% the magnitude of the reconstruction. In other numerical
experiments with multislice simulations and arbitrary test objects, we found this 1% cutoff
to generally optimal. This stopping condition gives the user greater flexibility in choosing
the smoothing parameters that prevents oversmoothing of the data.

3.5 Conclusions

In this work, we demonstrated an efficient method for total variational denoising of hyper-
spectral datasets based on the algorithm of Jia and Zhao [74]. Our accelerated implementa-
tion of this algorithm, cyTVDN, is implemented in Cython, using OpenMP for local parallel
computation and MPI for distributed parallelism. We demonstrated the effectiveness of
the method for recovery of diffraction signals from sparse, low dose 4D–STEM data using
simulated data to compare the reconstructions against the ground truth signal. Since the
total variation method requires a weighting parameter (or multiple weighting parameters,
in the case where real space and reciprocal space are weighted differently), we explored the
performance and convergence of the algorithm for different choices of the parameter. In
general this smoothing parameter is dependent on the level and character of the noise in the
measurement, and so predicting the optimal value a priori is difficult. We found that the al-
gorithm performs poorly except for a narrow range of parameters when evaluated for a fixed
number of iterations, but that when an appropriate stopping criterion is utilized there is a
broad range of the parameter spcae that yields nearly optimal reconstructions. This finding
should greatly improve the relevance of the method to experimental datasets, collected under
conditions where the noise model has not been painstakingly calibrated beforehand.

https://github.com/cyTVDN/cyTVDN
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Part I

Dynamical Diffraction as a Foe
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Robust Measurements Despite Dynamical Diffraction

In the following two Parts of this work, we will meet dynamical scattering in opposite ways.
Here in Part I, we meet dynamical diffraction as our nemesis, a confounding effect that
degrades or even inverts our measurements, and we will explore the possibility of making
robust measurements despite its effects. The measurements we’ll consider in this part, strain
and orientation mapping, are founded on simple models of how the diffraction patterns
change due to the structural features of interest. For strain mapping, the simple model tells
us that diffraction disks rigidly shift due to changes in the lattice vectors of the crystal—
dynamical scattering violates this by causing intensity redistributions within disks that make
it difficult to measure their positions as if they were simple flat disks. For orientation
mapping, the simple model for relating diffraction positions and intensities to the crystal
orientation fails because it does not account for interaction between scattered beams or any
thickness effects—dynamical scattering causes a model mismatch, though one that may be
suppressed through adjusting the algorithm.

In Part II we will meet dynamical diffraction from the other direction, as something to
utilize in our measurements, and find that we can not only find vindication in orientation
mapping but also fully take advantage of multiple scattering and recover even greater detailed
information from our samples.

Bragg Disk Position Detection

In order to measure the local strain from a crystalline sample in nanobeam diffraction, the
positions of each of the Bragg disks must be located to high precision. Strain is then obtained
by fitting a lattice to these positions and measuring the change in these lattice vectors
over a region of interest, or by calibrating the lattice distances and comparing to known
atomic spacings. In the limit of a perfectly thin sample, the Bragg disks in a nanobeam
pattern are perfect replicas of the direct beam in reciprocal space, and they can be located
efficiently by cross-correlation of an image of the unscattered beam with the diffraction
pattern. When sample thickness increases, the disks no longer appear as perfect copies
of the unscattered beam but instead develop complex internal contrast. The converged
beam is composed of a combination of plane waves with a cone of incident angles, and
under dynamical diffraction conditions the diffracted intesities vary strongly for even these
small tilts. This contrast within the disk causes it to not match exactly, and so the peak
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(110) (110) + 1 mrad (110) + 2 mrad

Figure 3.4: Converged beam electron diffraction patterns from an 80 nm thick Si crystal near
the (110) zone axis at 300 kV. The crystal is tilted by a small amount about the vertical
axis, causing substantial intensity redistribution within the diffraction disks (complicating
measurement of their positions, and thus determination of the local strain). Simulations
were performed using py4DSTEM.
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Figure 3.5: Diffraction intensities for several reflections from an 80 nm thick Si crystal near
the (110) zone axis at 300 kV. The crystal is tilted amount about the vertical axis, causing
nonlinear intensity redistribution between the diffraction disks (complicating orientation
matching). Simulations were performed using py4DSTEM.

https://github.com/py4dstem/py4DSTEM
https://github.com/py4dstem/py4DSTEM
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correlation with the unscattered beam is no longer a suitable way to measure the diffraction
vector. An example of these phenomena is shown in Figure 3.4, where the center of mass
of each diffracted disk is often far from its geometric center, and tilt of just 1 mrad (less
than 0.1◦) causes complex redistribution of the intensities within each disk. In Chapter 4,
we investigate a practical approach to overcoming this limitation, by use of a patterned
aperture. The “bullseye” apertures we develop in this Chapter add numerous sharp edge
features into the diffraction disk, and when cross correlation is peformed these edges simply
overwhelm whatever contrast fluctuations exist due to dynamical diffraction.

Orientation Determination by Dictionary Matching

In order to measure the local orientation of a crystalline sample from nanobeam diffraction,
the intensities of each of the Bragg disks must be determined and matched to a suitable
model. Figure 3.5 highlights the difficulty of high-precision orientation mapping from thick
samples. Using the same model as above, we track the intensity of various diffracted beams
as a function of small tilts away from the zone axis (the tilts corresponding to the CBEDs
are marked with gray lines). We observe that the diffraction intensities vary in a complicated
and nonlinear means with respect to even small tilts of the crystal. Further, each diffracted
disk appears to have a different functional dependence on the tilt, so a simple model for
including thickness in a kinematic simulation like using a shape factor will not capture
these physics. In Chapter 5, we will find that despite these fluctuations, we are still able
to produce useful maps of the crystal orientation, and that these effects can be suppressed
somewhat by our library matching algorithm. However, we will find that our precision is
indeed limited by this effect—this will be addressed in Part II.
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Chapter 4

Patterned Probes for High Precision
4D-STEM Bragg Measurements

Nanoscale strain mapping by four-dimensional scanning transmission electron microscopy
(4D-STEM) relies on determining the precise locations of Bragg-scattered electrons in a se-
quence of diffraction patterns, a task which is complicated by dynamical scattering, inelastic
scattering, and shot noise. These features hinder accurate automated computational detec-
tion and position measurement of the diffracted disks, limiting the precision of measurements
of local deformation. Here, we investigate the use of patterned probes to improve the preci-
sion of strain mapping. We imprint a “bullseye” pattern onto the probe, by using a binary
mask in the probe-forming aperture, to improve the robustness of the peak finding algo-
rithm to intensity modulations inside the diffracted disks. We show that this imprinting
leads to substantially improved strain-mapping precision at the expense of a slight decrease
in spatial resolution. In experiments on an unstrained silicon reference sample, we observe
an improvement in strain measurement precision from 2.7% of the reciprocal lattice vectors
with standard probes to 0.3% using bullseye probes for a thin sample, and an improvement
from 4.7% to 0.8% for a thick sample. We also use multislice simulations to explore how
sample thickness and electron dose limit the attainable accuracy and precision for 4D-STEM
strain measurements.

4.1 Introduction

Strain at the nanoscale is important in understanding deformation mechanisms of structural
materials [181], as well as for engineering of transport properties in semiconductor devices

The results presented in this chapter have been published as a journal article titled “Patterned probes
for high precision 4D-STEM bragg measurements” in Ultramicroscopy 209, 112890, by Steven E Zeltmann,
Alexander Müller, Karen C Bustillo, Benjamin Savitzky, Lauren Hughes, Andrew M Minor, and Colin Ophus
[199]. The material is presented here with permission of the co-authors.
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[12]. Nanostructures can support strains of up to ≈ 10% without relaxation, providing great
opportunities to engineer properties in ways that are not available in bulk materials [90].
A variety of techniques exist for measuring deformation with nanometer-scale resolution,
including X-ray ptychography [65] or coherent diffraction [150], though at present the highest
spatial resolution is achieved in the transmission electron microscope (TEM). TEM strain
measurements have been accomplished by dark-field holography [83, 34], atomic resolution
imaging [15, 50, 68], and converged-beam techniques [77, 202, 33, 69].

In scanning transmission electron microscopy (STEM), a converged electron probe is
rastered across the sample, and some of the scattered electrons (usually those scattered
incoherently by thermal diffuse scattering) are measured to assign a value to each pixel [140].
Modern electron detector technology allows the full scattering pattern at each STEM probe
position to be recorded, an experiment referred to as four-dimensional scanning transmission
electron microscopy (4D-STEM) [123]. This method, also referred to as scanning electron
nanodiffraction (SEND) or nanobeam electron diffraction (NBED), has been used in analyses
of crystal orientation [148, 23, 128], local ordering of glassy states [94], sample thickness [87,
203], and other analyses as described in a recent review [123].

4D-STEM is used for mapping strain at the nano-scale by locating the Bragg scattered
electrons in each pattern, whose position on the detector is related to the local lattice spacing.
This approach has been used to map strain in electronic devices [176], structural materials
[132], including in situ deformed samples [51, 131], two-dimensional materials [62], and other
systems where nanoscale deformation is of interest. 4D-STEM allows a large field of view
and flexibility with regards to sample type and orientation [9, 154]. Figure 4.1a shows a
schematic view of the experimental setup for 4D-STEM strain mapping—the convergence
angle is chosen so that non-overlapping convergent beam electron diffraction (CBED) disks
are obtained in each pattern.

In investigations of mechanical deformation and strain-engineered semiconductor devices
the strains of interest are generally on the order of ≈ 1%, which is much larger than the
currently achievable precision, reported to be 6× 10−4 [59] using the standard microprobe-
STEM mode (i.e. without precession or patterned probes). This precision is not sufficient for
several potential applications of 4D-STEM strain mapping, such as temperature mapping by
thermal expansion measurement or mapping certain structural transformations via the lattice
parameters, where strains may be on the order of 10−4. We note that direct comparison
between precision limits reported in the literature is difficult because the precision limit
depends on the sample properties, microscope image distortions, and the electron dose [106,
132, 56].

The precision of the strain maps obtained by 4D-STEM is governed by the precision
with which the Bragg scattered electrons can be located in each diffraction pattern. Non-
uniform intensity of the diffracted disks, which can be caused by sample bending or dynamical
diffraction in thick samples [35], makes accurate detection of the positions of the diffraction
disks difficult. Reducing the convergence angle of the electron probe shrinks the diffraction
disks, hiding some of the dynamical effects at the expense of a larger real-space probe size.
For this reason, much of the existing literature on 4D-STEM strain mapping uses convergence
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angles 0.2–1 mrad. When operating at larger convergence angles, the centers of mass of the
diffracted disks are not necessarily at the reciprocal lattice points, thereby requiring methods
sensitive to the locations of the edges of the disk [153, 132]. Disk position detection is often
accomplished by cross- or phase-correlation of the diffraction pattern with a template image.
These methods are still not ideal, as simulations performed by Mahr et al [106] found that
the inner structure of the CBED disks is the limiting factor for precision of 4D-STEM strain
measurements.

Post-processing of the 4D-STEM data and sophisticated data analysis methods have
been shown to improve the precision of strain measurements. Pekin et al [132] investigated
the optimal image filtering and correlation algorithms for diffraction disk detection, as well
the robustness to non-uniform diffracted disks and signal-to-noise level. They found that
the precision of disk location measurements can be degraded by an order of magnitude due
to uneven illumination of the CBED disks. More computationally intensive disk-finding
algorithms have also been implemented [106, 114].

Changes to the experimental setup provide another route to improve precision. Precession
of the incident electron beam with incoherent summation of the diffraction patterns at each
beam tilt “averages out” dynamical contrast and illuminates higher-order diffraction disks,
which can yield a substantial improvement in strain precision to 2×10−4 [153]. However, this
procedure requires specialized hardware in order to precess the beam in combination with
scanning, and longer acquisition times. Mahr et al [106] showed simulations of the precision of
4D-STEM strain measurements for different experimental conditions, and suggested the use
of patterned probes, but found no substantial improvement over standard circular apertures
when imprinting a single cross on the probe. “Hollow-cone” or Bessel structured probes,
produced using an annular condenser aperture, are akin to precession diffraction, but with
all tilts illuminated simultaneously (and thus added coherently). Such probes were simulated
and realized experimentally by Guzzinati et al [59], yielding strain precision of 2.5 × 10−4,
rivaling precession diffraction. This approach also allows for higher convergence angles, as
the sparsity of the patterned probe reduces the interference between the scattered beams.
Diffraction patterns through thick samples also contain a large background intensity due to
inelastic scattering, which can be effectively eliminated by zero-loss energy filtering [60, 182].

In this paper, we investigate the use of probes with patterning in momentum space
to improve the robustness of cross-correlation disk detection. Using an amplitude grating
in the probe-forming aperture of the condenser system imprints known patterning on the
diffraction pattern that allows accurate position location even in the presence of highly non-
uniform illumination of the diffracted disks, as shown schematically in Figure 4.1b. Such
patterned apertures are easily fabricated by physical vapor deposition and focused ion beam
(FIB) machining; are mechanically stable; and, due to high conductivity, do not suffer from
charging artifacts. We used mutlislice simulations to optimize the design, and estimate the
improvement in accuracy and precision of disk detection for patterned apertures relative
to typical circular probes. We also carried out 4D-STEM strain measurement experiments
on unstrained silicon samples and characterized the improvement of precision when using
patterned probes.
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Condenser Aperture

Sample

Di�raction Pattern Di�raction Pattern

Amplitude Grating

a b

Figure 4.1: (a) Schematic of experimental setup for 4D-STEM strain mapping. A converged
electron probe is rastered across the sample and a diffraction pattern is acquired at each
probe position. Thick regions of the sample have complicated dynamical contrast inside the
CBED disks that make accurate position determination difficult. In (b), a grating is inserted
in the condenser system of the microscope to pattern the probe in momentum space. This
pattern is imprinted on the diffracted disks, providing sharp edges in registry with the probe
pattern that makes computational determination of their position more robust.

4.2 Theory

Measuring Disk Positions

We determine the position of both scattered and unscattered Bragg disks by measuring the
relative translation between a template image Iref(r) and a disk image I(r) using digital
image correlation. This correlation image Icorr(r) can be determined efficiently by taking
the Fourier transforms F{} of each image,

G(q) ≡ F{I(r)}
Gref(q) ≡ F{Iref(r)}

and then using the expression,

Icorr(r) = I(r)⊗ Iref(r) (4.1)

= F−1

{
G(q)G∗

ref(q)

|G(q)G∗
ref(q)|p

}
, (4.2)
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Figure 4.2: Numerical tests of image registration of an ideal STEM probe with a noisy
measurement. Position error was measured for 1000 randomly generated probes along one
dimension, for (a) circular disks with different radii, (b) varying numbers of concentric rings,
and (c) varying numbers of intersecting rays. These measurements are compared to the
theoretical precision given by Eq. 4.3. Inset images show examples of noisy measurements.
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where r = (x, y) and q = (qx, qy) represent the real space and reciprocal space coordinates
respectively, ⊗ is the correlation operator, ∗ indicates the complex conjugate, and p is the
correlation power law coefficient. The cross-correlation is given when p = 0, and phase
correlation is defined by p = 1. Values of p between 0 and 1 define a hybrid image correlation
[132]. In this work, we use cross-correlation with p = 0 for all simulations, and both cross
and hybrid (p = 0.25) for the experimental data.

To estimate the error of a measured disk position, we follow the methods of Clement et
al [32]. We first assume an ideal, noise-free measurement of the template probe image Iref(r)
is available, from careful measurements of the vacuum probe image. Next, we assume the
measured image of a disk I(r) has a signal given by a Poisson distribution with a mean of n
counts per pixel, and therefore also a variance of n. The variance σx

2 of a cross-correlation
measurement of the image translation error along the x direction is given by

σx
2 =

1

nDx

, (4.3)

where Dx is the normalized “image roughness” [32] along the x direction, given by

Dx =
1

LxLy

∑
qx,qy

(2πqx)
2|G(q)|2 (4.4)

where Lx and Ly are the image dimensions. This expresses that the addition of more edges
to the image template will lead to greater precision, as the presence of more edges will weight
the higher Fourier coefficients more heavily. In addition, upsampling a band-limited image
will increase the image dimensions Lx, Ly without increasing the higher Fourier components
and lead to decreased precision.

If all units are in pixels, the image roughness for a circular disk with radius R is given
by Dx ≈ R. Using this expression in Eq. 4.3 gives a variance of

σx
2 =

1

nR
. (4.5)

Note that this expression will often have a small numerical prefactor ≈ 1 due to image details
such as the maximum bandwidth and sharpness of the edges. The 2D variance will be given
by σx

2+σy
2. To verify the above analysis, we performed numerical measurements of the disk

position error for circular disks with various radii and counts per pixel. These measurements
are shown in Figure 4.2a, and are in excellent agreement with Eq. 4.5.

To lower the disk position error, we must increase the image roughness Dx and Dy. One
possibility is to add a series of concentric rings, as in Figure 4.2b. For M total concentric
rings that are linearly spaced, the image roughness is given by

σx
2 =

2

nR(M + 1)
. (4.6)

Increasing the number of concentric rings to 3, 7, or 15 will decrease the disk position error
variance by factors of 1/2, 1/4, and 1/8, respectively.
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Figure 4.3: Numerical tests of the impact of sampling on relative position error variance.
Concentric ring probes show the scaling expected from the theory at greater than Nyquist
sampling, but have substantial position error due to aliasing at lower sampling. Dashed
lines are the prediction of Equation 4.6. Inset: example images of under-, Nyquist, and
over-sampled disk images for 3, 7, and 15 ring disks.

An alternative method of increasing the image roughness Dx and Dy is to add linear ray
features, radiating out from the center of the disk as shown in Figure 4.2c. An increasing
number of rays lowers the position error variance, by increasing the image roughness Dx.
Interestingly, combining concentric rings with linear rays does not further decrease the po-
sition error, though it can, in some circumstances, reduce the total number of counts while
maintaining the same position error variance.

Finally, we note that the position error of a circular disk in terms of the total electron
dose N = πR2n is

σx
2 =

πR

N
. (4.7)

Thus we see that for a constant disk radius R, the variance has the expected scaling of 1/N .
For a constant electron doseN , the variance scales linearly with radius R. This represents the
fundamental trade-off between real space and reciprocal space error for Bragg disk position
measurements. Increasing the probe’s outer angle will generate a smaller probe in real
space and thus improve real space resolution, but will worsen the measurement precision in
reciprocal space.

In order to realize the benefits of the patterned probes on the disk detection precision, the
imprinted features inside the disks must be sufficiently resolved by the detector. The effect of
the detector resolution is shown in Figure 4.3 for probes with varying number of concentric
rings and a constant dose of 1024 total counts. Note that the lines on the plot for the theory
drop the factor of 2 in Eq. 4.6, which arose from the “missing” pixels cut off by the pattern,
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Figure 4.4: Numerical tests of the STEM probe size using different ring patterns at different
convergence angles, for an aberration-free microscope at 300 kV. Adding the ring pattern to
the probe causes the real-space probe size to grow by a factor determined by the number of
rings. Inset: cumulative radial intensity profiles of probe intensity for a 2 mrad convergence
semiangle.

whereas here we fix the total dose such that the intensity per pixel roughly doubles inside
the illuminated portion of the pattern. Nyquist sampling of the patterned probes requires
one pixel per ring (as marked on the figure). We observe that at slightly below Nyquist
sampling the patterned probes show substantially worse performance as compared to even
an unpatterned probe, and as the pattern collapses into only a few pixels it shows the same
performance as an unpatterned probe. Thus while sampling of just above one pixel per ring
is sufficient, it is preferable to oversample the pattern to avoid the catastrophic drop-off in
precision at just below Nyquist sampling.

The above analysis for ideal disk position measurement will often underestimate the po-
tential gains of using patterned probes because real experiments often contain a significant
amount of background signal and fine structure imparted to the disks by dynamical diffrac-
tion. In the following sections, we will show how adding various amplitude features to the
STEM probe can reduce the disk position error for both multislice STEM image simulations
and STEM experiments.

Probe Size

In STEM imaging experiments, especially at atomic resolution, it is usually advantageous to
form as small a converged probe as possible. This is achieved when an aberration-free (flat
phase) plane wave illuminates the probe-forming aperture, with as large a semi-convergence
angle as possible. However, in 4D-STEM strain measurements, the minimum probe size
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should be the dimensions of the crystalline unit cell being measured. Increasing the probe
size can be achieved by reducing the semi-convergence angle, or by adding amplitude patterns
to the probe as described in the previous section. The dependence of the real space probe
size on the number of patterned rings added to an aberration-free STEM probe is shown in
Figure 4.4. In order to include the effects of both increasing the size of the central lobe and
increasing the intensity of the probe tails, we have defined the STEM probe size as the radius
containing 80% of the total probe intensity. The inset of Figure 4.4 shows the cumulative
radial intensity of different patterned STEM probes with a semiconvergence angle of 2 mrad
at 300 kV. The patterned probes have long tails that extend out from the center, decreasing
the realspace resolution. Compared to the typically reported full width at half maximum,
this probe size metric will overestimate the size of the probe, but better capture the effect
of the long tails of the structured probes.

All STEM probe patterns lead to the same scaling law for probe size, where the probe
size varies inversely with the semi-convergence angle. Adding additional amplitude rings to
the probe will increase the prefactor of these power laws. For example, Figure 4.4 shows
that forming a 1 nm radius probe using 1, 3, 7, and 15 rings would require semi-convergence
angles of 0.9, 3, 7, and 14 mrads respectively. Thus, when using patterned STEM probes,
we will generally need to use somewhat larger semi-convergence angles to produce probes of
the same size. When estimating the probe size in an experiment, the best practice is always
to record real space images of the STEM probe in order to obtain an accurate estimate of
the probe size and thus the spatial resolution.

4.3 Methods

Multislice Simulations

In 4D-STEM experiments, the strain mapping precision is not only dependent on single-
disk matching precision, but rather on the precision of the lattice fit to several diffracted
disks in a whole (near) zone axis pattern. To investigate the strain mapping precision taking
account of the whole pattern fitting, we performed multislice simulations on an unstrained Si
⟨110⟩ model using a custom MATLAB code and potentials from Kirkland’s parametrization
[78], with some implementation details give in [122]. Poisson random noise was applied
to the diffraction patterns to simulate shot noise for different numbers of electrons per
diffraction pattern. We simulated a 5 nm thick model to obtain diffraction patterns with
largely kinematical scattering, and a 20 nm thick model to obtain patterns with dynamical
contrast in the CBED disks. The convergence angle was chosen to be 2.7 mrad at 300 kV
to provide nearly-touching CBED disks, which maximizes the real-space resolution while
avoiding interference between the diffracted beams, and gives the worst-case scenario for
disk location; the simulations are aberration-free, which also maximizes the local variations
in the CBED disks. The bullseye pattern is rotated by an arbitrary amount to prevent
aliasing artifacts that may arise if the bars with the simulation grid.
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Numerical Measurement of Disk Positions

The procedure for obtaining strain maps from a 4D-STEM dataset involves (a) precisely
locating the diffracted disks in each diffraction pattern, (b) obtaining a guess of the reciprocal
lattice vectors u0 and v0, (c) using the approximate reciprocal lattice vectors to index each
diffracted disk, and finally (d) solving an (overdetermined) linear least squares problem to
obtain the best-fit u and v vectors for each diffraction pattern, from which we calculate the
strain. All of the analysis in this work was performed using the open-source py4DSTEM
Python module [157] available at the py4DSTEM github repository.

In each diffraction pattern we locate the diffracted disks by taking the Fourier correlation
(Eq. 4.2) of a convolution kernel, or template image, with each diffraction pattern. For
experimental data, the convolution kernel can be obtained either by imaging the probe in
diffraction through vacuum or by averaging the direct beam from many diffraction patterns.
For simulated data, we use the initial wavefunction as the convolution kernel. The peaks
in the correlation image between the kernel and the diffraction pattern correspond to the
locations of the diffracted disks. The positions of the diffracted disks are further refined by
subpixel registration using the matrix-multiplication discrete Fourier transform upsampling
approach [57, 166] and a final local parabolic fitting [53]. This subpixel refinement method
locally upsamples the correlation image in a 1.5 px wide window around each correlation
peak by a given factor (16 in this work), without computing the entire upsampled correlation
image. Each identified peak is indexed based on an initial guess of the lattice vectors, and
linear least squares fitting is used to determine the reciprocal lattice vectors in each diffraction
pattern. Each indexed peak is weighted by the correlation intensity in the least squares fit.
Strain maps are then obtained by mapping the change in the lattice vectors. There are several
thresholds and filters applied in this procedure—while we slightly tune these parameters for
the different simulated models and experimental samples, in all cases the normal probe and
bullseye probe at each condition are processed with identical parameters.

Cross-validation

In measuring the strain mapping precision from the simulated data, we make use of ground
truth knowledge of the sample, i.e. that the model was completely strain-free and there
were no projection distortions. For real experimental data, there are artifacts that com-
plicate this analysis: the sample may be bent or strained due to fabrication artifacts or
beam heating, and the microscope projection system introduces astigmatism that distorts
the pattern. Since strain information in 4D-STEM is calculated from the lattice fitted to
the diffracted disks in each diffraction pattern, we can estimate the precision of the strain
measurement by evaluating the agreement between the fitted lattice and the individual disk
position measurements.

While the residual error from the linear least squares fit of the lattice vectors is one such
metric, because of the limited number of diffraction patterns in a dataset and the effects of
the artifacts described above, for the experimental diffraction patterns we calculate a “cross-

https://github.com/py4dstem/py4DSTEM
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validation” error. Cross-validation is often used to evaluate the quality of high-dimensional
models [4]. In each diffraction pattern, half of the identified disks are chosen at random
and a best-fit lattice is obtained from only these disks. The expected positions of the other
half of the disks in the same pattern are computed from this lattice, and we define the error
as the root mean square (RMS) difference between these predicted positions and the actual
measured disk positions. For each diffraction pattern, we repeat this procedure of training
on a random subset and testing against the other measurements 200 times per diffraction
pattern to ensure statistical relevance.

Bullseye Aperture Fabrication

We fabricated a set of bullseye apertures by FIB milling a gold-coated silicon nitride TEM
window. Although the theory indicates adding linear rays to the concentric ring pattern does
not improve strain precision, we included four rays for structural support in the fabricated
apertures. An approximately 1 µm thick layer of gold was thermally evaporated onto the flat
side of a 200 nm thick silicon nitride TEM window (Norcada, Canada) with a single 250 µm
square window. Approximately one gram of gold was evaporated at a pressure better than
2× 10−6 torr, with the substrate kept at room temperature.

The bullseye apertures were milled into the gold-coated window using a FEI Helios G4
UX dual beam SEM/FIB at 30 kV. The milled aperture plate is shown in Figure 4.5. We
milled bullseye patterns with 2, 3, and 4 rings and with 70, 40, 20, and 10 µm diameters.
The 70, 40, and 10 µm bullseyes match the sizes of the standard circular apertures installed
in our microscope, which simplifies beam alignments. In addition, we milled a set of circular
apertures of 20, 10, 5, 2, and 1 µm diameter, which can be used to produce STEM probes with
very small convergence angles or low beam current for imaging very dose-sensitive materials.
Since the apertures are more closely spaced than is typical, electrons pass through all of
them and a third condenser beam-forming aperture was therefore used to isolate a single
probe for nanodiffraction experiments.

Strain Map Acquisition

The bullseye aperture plate was installed in the second condenser aperture holder of a FEI
TitanX operated at 300 kV. A silicon ⟨110⟩ sample was prepared by wedge polishing followed
by Ar ion milling. 4D-STEM datasets were acquired with a scan size of 25×25 pixels,
diffraction pattern image size of 512×512 pixels, and a probe semi-convergence angle of
approximately 3 mrad. Diffraction patterns were acquired using a Gatan Orius 830 CCD.
We obtained scanning diffraction datasets from two regions of the wedge sample: a “thin”
region with relatively even illumination of the diffracted disks, and a “thick” region with
substantial dynamical contrast.
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Figure 4.5: SEM micrograph of the fabricated bullseye aperture plate.

4.4 Results and Discussion

Multislice Simulations

Multislice simulations of 5 and 20 nm thick unstrained silicon along the ⟨110⟩ zone axis
are shown in Fig. 4.6. The diffraction patterns in Fig. 4.6a from the 5 nm model show
even illumination of the CBED disks and the (002) forbidden reflection is not excited. The
diffraction patterns in Fig. 4.6e from the 20 nm model show uneven illumination of the disks
and the (002) reflection is partially illuminated due to double diffraction.

Figure 4.6b and f show the locations of the u and v reciprocal lattice vectors identified
in each diffraction pattern of the simulated 4D-STEM scans, illustrating the variation in the
measured lattice vectors as the probe scans across a totally strain-free sample. In the limit
of small strains, the uncertainty in the reciprocal lattice vectors relative to the reciprocal
lattice vector length is equal to the uncertainty in the measured strain. The center of each
histogram corresponds to the lattice vectors measured from the 5 nm model with infinite
dose, which we take as the ground truth. The u and v vectors correspond to the (11̄1)
and (1̄11) reflections (drawn in the bottom left panel of Fig. 4.6a) and each have a length
of ≈ 70 pixels. Both the normal and bullseye probes converge to the same lattice vectors
at high dose, though in all cases the spread of values is substantially larger for the normal
probes. These wide variations in the lattice vectors from an unstrained sample lead to
correspondingly large fluctuations in the calculated strain values. The asymmetric error in
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Figure 4.6: Strain mapping precision of simulated silicon diffraction data at different samples
thickness and electron dose. (a,e) Representative simulated diffraction patterns at different
electron doses per pattern. (b,f) Comparison of the u and v reciprocal lattice vectors mea-
sured at each scan position in the simulation of a strain-free sample. The center of each
histogram represents the average u, v positions obtained from the noise-free simulation data.
(c,g) Cross-validation error and (d,h) RMS fit error, relative to the reciprocal lattice vector
length (equivalent to the strain error in the small strain limit). (a-d) are obtained from a
5 nm model with largely kinematical scattering, while (e-h) are from a 20 nm model with
dynamical contrast inside the CBED disks. The reciprocal lattice vectors are drawn in the
bottom left panel of (a), and have length ≈ 70 pixels.
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the histograms is likely due to the presence of the partially-illuminated forbidden reflections,
which causes the cross-correlation peak uncertainty to be larger in one direction [132].

Figure 4.6d and h show the RMS residual error of the linear least squares lattice vector
fitting, relative to the length of the (1̄11) reciprocal lattice vector. This error is one metric
for the precision of the strain measurement as it reflects the uncertainty in the fitted lattice
vectors. The error decreases with increasing electron dose and the bullseye apertures have
≈ 3.5 times lower error at up to ≈ 105 counts. For this number of rings, the image roughness
metric (Eq. 4.6) predicts a 4-fold increase in the precision of locating a single diffraction
disk, without accounting for the presence of the incoherent background counts found in the
multislice results. As the illumination of each diffraction disk varies across the pattern,
the location precision of each diffraction disk also varies, complicating comparison with the
single-disk location precision theory. At higher signal levels, the error stops decreasing as we
approach the limits of the subpixel fitting algorithm. At 108 counts and above, the bullseye
apertures show ≈ 7 times improved precision.

When dynamical contrast causes intensity variations inside the diffracted disks, the
normal probes show substantially worse performance. When locating the disks by cross-
correlation, as in this calculation, the location assigned to each disk is biased towards the
center of mass of the disk. In the simulated diffraction patterns, many disks are seen to
be half-illuminated, which leads to substantial position errors regardless of the number of
counts. The patterned probes are less sensitive to this type of error, as the cross-correlation
intensity should peak when the rings are in registry even if the rings are not fully illumi-
nated. Thus we observe in Fig 4.6g and h that the precision of the normal probe saturates
by 105 counts while the bullseye probe precision improves with increasing dose until 107

counts. This robustness to uneven disk illumination gives the bullseye probes an even larger
precision advantage compared to the kinematical case for thin specimens, with the minimum
error decreasing by ≈ 30 times at high electron counts.

Experimental Measurements of Strain in Silicon

Representative diffraction patterns from the scans are shown in the top row of Figure 4.7.
In the thick scan region, the (002) forbidden reflection is fully illuminated and there is
substantial dynamical contrast inside the CBED disks.

As we cannot guarantee that the silicon specimen is strain-free, we cannot use the spread
in the measured lattice vectors as an indicator of the precision of the measurement, and in-
stead report only the cross-validation error for the experimental scans. The cross-validation
(CV) error relative to the length of the (111) reciprocal lattice vector for the experimental
scans is shown in Figure 4.7c and g. When finding the disk locations in the thin region
by cross-correlation, use of the bullseye patterned probe causes the mean CV error score to
decrease to 0.3% from 3.6%, an improvement of 12 times. In the thick region, the CV score
decreases to 0.8% from 10.3%, an improvement of ≈ 13 times. The improvement in strain
precision we observe in experiments is larger than predicted by the image roughness theory
and observed in the multislice results. The inelastic component present in the experimental
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Figure 4.7: Cross-validation error determination from 4D-STEM experiments on a Si ⟨110⟩
wedge. Diffraction patterns from a thin region of the wedge with (a) the standard circular
aperture and (b) with the bullseye amplitude grating. The cross validation error, computed
by fitting a lattice to half of the identified diffraction disks and measuring the error of the
remaining half, using (c) cross-correlation and (d) hybrid fitting. Diffraction patterns from
a thick region of the wedge (e) without and (f) with the bullseye aperture. Cross-validation
strain error for (g) cross-correlation and (h) hybrid correlation disk detection. Strain maps
from each region of the Si wedge sample are shown in (i)–(l). The label on each strain map
incates the standard deviation of that strain component over the field of view.
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data likely plays a large part in this discrepancy, as the presence of substantial intensity
between the Bragg disks reduces the contrast between the disks and the background, com-
pounding the center-of-mass bias in the unpatterned probes and increasing the impact of
the patterned bars in the disks on matching precision.

While cross-correlation performs well when the pattern background is low, hybrid corre-
lation has been shown to better handle the ‘plasmonic blur’ in real samples [132]. To test
if hybrid correlation can also improve the strain precision when using patterned probes we
repeated the disk finding procedure with p = 0.25 (Eq. 4.2). We observe that the CV er-
ror decreased substantially compared to cross-correlation for the normal probes, as shown in
Figure 4.7d and h. However, in both the thick and thin Si wedge regions, the CV error of the
bullseye apertures was 50–100% worse when using hybrid correlation. The image roughness
theory discussed above does not generalize easily to hybrid correlation and does not account
for additive background noise, and so cannot be used to explain the change in precision.

Using an identical procedure, we also computed the CV error for the multislice simula-
tions, shown in Figure 4.6c and g. Because the lattice fitting in the CV approach uses only
half the identified Bragg spots, the CV error is always higher than the RMS least squares
residual. The trend is the same as for the RMS error in both thicknesses tested. For the 5 nm
model the CV error is 3–7 times higher for the normal probes compared to the bullseyes,
while for the 20 nm model the CV error is up to 29 times higher for the normal probe
compared to the bullseye probe.

Strain maps produced from each region of the Si wedge using cross-correlation to locate
the diffraction disks are shown in Figure 4.7(i)–(l), and the standard deviation of the mea-
sured strain in each region is marked on the maps. Strain values are referenced to the median
measured lattice in each scan region. In the thin region of the Si wedge, the normal probe
registers strains of approximately ±1.5% across the scanned area. Bending in the thin region
of the wedge leads to mistilt of a few milliradians across the scan region, which shifts the
center of illumination of the pattern and the centers of mass of the diffraction disks. While
sample mistilt does change the projected lattice spacing and thus the expected diffraction
disk positions very slightly (on the order of 0.1% for the magnitude of tilting we observed),
the strong position bias towards the center of mass of the disks when using normal probes
leads to large variation in the measured strain. When using bullseye probes on the same
sample region, the strain is measured as only ±0.1%. In the thick region of the wedge the
sample appears flat across the field of view—here, the normal probes show smoothly varying
strain from top-to-bottom of the scan, likely due to variation in sample thickness altering
the fine structure inside the diffraction disks. The bullseye probe again reveals a flat strain
distribution with standard deviation of about 0.1%.

Recently, Gizzinati et al [59] demonstrated a Bessel beam structured probe for improved
4D-STEM strain mapping precision. By inserting an annulus in the second condenser aper-
ture of an aberration corrected microscope, they produce a hollow cone probe with a semi-
convergence angle of 6 mrad, giving spatial resolution of 1.3 nm. In the present work (with-
out aberration correction), we measured the full width at half maximum of the probe to
be 2.7 nm at 3 mrad. This follows the expected scaling, where using a semi-convergence
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angle half as large leads to a doubling of the real-space probe size. Probes with strong
amplitude structuring will necessarily sacrifice real space resolution for momentum resolu-
tion because of missing frequencies in the wavefunction. In the Bessel beam approach this
broadening of the probe is partially mitigated because the beam is so sparse in momentum
space that diffracted beams can overlap without substantial interference—this permits high
convergence angles, leading to smaller realspace probes. Our approach is practically limited
to α < θB/4, where α is the semi-convergence angle and θB is the Bragg scattering angle. By
observing the variation in strain in a flat region of the sample, they estimated their strain
precision as 2.5 × 10−4. In this work, by comparison, we observed strain precision as good
as 2.2× 10−4 – 2.9× 10−5 for different simulated models (by the RMS residual metric), and
8× 10−3 – 3× 10−3 in experiments on an Si wedge (by the CV metric).

The patterned probe approach has parallels to Sobel (edge-enhancing) filtering of the
diffraction images. In using the Sobel filter, we assume that the CBED disks should have
sharp edges and uniform intensity, and so once filtered the disks become rings. Naturally,
dynamical structure in the CBED disks will also create edges that are exaggerated by the
filter, and indeed Pekin et al. found that Sobel filtering improves precision for flat disks but
causes artifacts when dynamical structure is present [132]. By applying the patterning to
the probe before the sample, we avoid this drawback by adding many edges that are defined
by the template.

Compared to other TEM strain mapping techniques, 4D-STEM has generally been re-
ported to have lower precision and lower resolution than other TEM strain mapping tech-
niques, such as atomic resolution imaging and darkfield holography. In particular, 4D-STEM
strain mapping is not not possible at atomic resolution as phase interference between scat-
tered beams complicates measurement of the Bragg scattering. However, 4D-STEM offers
the greatest flexibility with regards to sample type and orientation, allowing analyses of
partially or completely amorphous samples, polycrystals, highly defective materials, and
low-symmetry oriented crystals. Simultaneous measurement of other signals is also possible
from 4D-STEM data, such as differential phase contrast (DPC) for electric field mapping.
With patterned probes, the precision of 4D-STEM strain measurements can rival that of
other techniques, though still with the trade-off between resolution and flexibility. Detailed
comparisons of the various TEM strain mapping techniques are available in the literature
[34, 10].

Early studies on 4D-STEM strain mapping were limited in acquisition speed by CCD
detectors, so most of these works used well-exposed diffraction patterns with high electron
doses (qualitatively, these patterns match those in our simulations where we find precision
saturates and becomes dose-insensitive). With the latest generation of fast detectors oper-
ated at full speed, the dose per pattern is limited by the brightness and coherence of the
source, limiting the attainable precision. A potential drawback of the patterned probe ap-
proach is the reduction in probe intensity. Our bullseye grating reduces the beam intensity
by roughly half, leading to either a twofold increase in exposure time for the same dose (with
accompanying increase in sample drift during a measurement) or the use of less coherent
illumination to increase the probe current (which will degrade the probe size and quality of
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the diffraction patterns). However, as the bullseye probes tested here give a roughly four-
fold improvement in precision at equal dose while the precision scales as the square root of
the dose, higher precision can be realized without compensating for the lost current. For
thin samples, where the scaling laws (Eqs. 4.6 & 4.5) hold, using the bullseye aperture with
identical microscope settings would give roughly 4/

√
2 ≈ 2.8 times improvement, while for

thick samples the improvement can be larger.
Using the bullseye patterned probes also requires more pixels per CBED spot in order

to resolve the fine pattern features with high fidelity. In some cases, particularly for thick
samples and CCD detectors, this requirement necessitates “spreading out” the diffracted
beam intensity over more pixels, lowering the signal-to-noise ratio. Conversely, when using
direct electron detectors with limited dynamic range, the ability to operate at a higher
convergence angle and distribute intensity over more pixels can be advantageous.

4.5 Conclusion

We have demonstrated how electron probes with patterning in momentum space can improve
the precision of the CBED disk detection procedure used for calculating strain from scanning
diffraction data. This approach greatly improves the precision of strain measurements from
thicker samples by reducing the systematic errors that arise when locating the Bragg disks
in diffraction patterns through thick samples, and potentially enabling more reliable tem-
perature and subtle deformation measurements. In strain maps from a nominally unstrained
silicon sample we observe that the anomalous strain measurements caused by dynamical ef-
fects are reduced from ϵ = ±1.5% to about ±0.1%. The specific findings can be summarized
as follows:

• Imprinting structure on the STEM probe in momentum space adds known, constant
contrast to CBED disks which improves the precision of cross-correlation of a known
template to the experimental data. For an evenly illuminated CBED disk the position
measurement precision increases by a factor determined by the “roughness” of the
pattern, independent of dose. For the “bullseye” pattern we used, a 4-fold improvement
is expected.

• In multislice simulations of a thin sample with largely kinematic scattering, the strain
mapping precision improved by a factor of ≈ 4 times at all doses, in agreement with
theory. At high doses, the precision reaches a plateau, limited by the subpixel fitting. In
simulations of thick samples, where dynamical scattering causes uneven illumination of
the CBED disks, the precision improvement is even greater, up to a factor of 29 times.

• In experiments on an unstrained Si sample, we observe an improvement in precision
of about 12 times for both thick and thin regions of the wedge sample. Due to the
inelastic background scattering, the hybrid correlation algorithm performs better than
cross-correlation when using a normal circular probe. Using the bullseye patterned



CHAPTER 4. PATTERNED PROBES 51

probe, the cross-correlation algorithm performs best. Strain maps produced from thick
and thin regions of the silicon sample show substantially flatter strain across the same
sample regions.
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Chapter 5

Automated Crystal Orientation
Mapping in py4DSTEM using Sparse
Correlation Matching

Crystalline materials used in technological applications are often complex assemblies com-
posed of multiple phases and differently oriented grains. Robust identification of the phases
and orientation relationships from these samples is crucial, but the information extracted
from the diffraction condition probed by an electron beam is often incomplete. We therefore
have developed an automated crystal orientation mapping (ACOM) procedure which uses
a converged electron probe to collect diffraction patterns from multiple locations across a
complex sample. We provide an algorithm to determine the orientation of each diffraction
pattern based on a fast sparse correlation method. We test the speed and accuracy of our
method by indexing diffraction patterns generated using both kinematical and dynamical
simulations. We have also measured orientation maps from an experimental dataset con-
sisting of a complex polycrystalline twisted helical AuAgPd nanowire. From these maps
we identify twin planes between adjacent grains, which may be responsible for the twisted
helical structure. All of our methods are made freely available as open source code, includ-
ing tutorials which can be easily adapted to perform ACOM measurements on diffraction
pattern datasets.

The results presented in this chapter have been published as a journal article titled “Automated Crystal
Orientation Mapping in py4DSTEM using Sparse Correlation Matching” in Microscopy and Microanalysis
28(2), 390-403, by Colin Ophus, Steven E Zeltmann, Alexandra Breufach, Alexander Rakowski, Benjamin
H Savitzky, Andrew M Minor, and Mary C Scott [124]. The material is presented here with permission of
the co-authors.
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5.1 Introduction

Polycrystalline materials are ubiquitous in technological applications. An ideal crystal struc-
ture can be fully defined with a small number of parameters: the 3 vectors defining its unit
cell, and the position and species of each atom inside the unit cell [17]. To fully describe
crystalline materials in the real world however, we require a description of both the crys-
tal lattice, and all defects present in a given material. These include point defects such as
dopants, vacancies, or interstitials [43], line defects such as dislocations [89], planar defects
including internal boundaries and surfaces [172], and volume defects such as precipitates [80].
Strain fields in the surrounding material can be induced by each of these defects, or generated
by the boundary or growth conditions of the material such as in thin film stresses [72]. One
large subset of crystalline materials are polycrystalline phases, which consist of many small
crystalline grains, arranged in either a random or organized fashion. Many material prop-
erties such as mechanical strength [174], optical response [129, 100], or thermal or electrical
conductivity [26] are strongly modulated by the density and orientation of the boundaries
between crystalline grains [175]. Thus characterizing the orientation of polycrystalline grains
is essential to understanding these materials.

The two primary tools used to study the orientation of polycrystalline materials are
electron backscatter diffraction (EBSD) in scanning electron microscopy (SEM), and trans-
mission electron microscopy (TEM). EBSD can measure the orientation of crystalline grains
with very high accuracy, but has limited resolution and is primarily sensitive to the sur-
face of materials [67, 185, 186]. Alternatively, we can directly measure the atomic-scale
structure and therefore the orientation of polycrystalline grains, either by using plane wave
imaging in TEM [91], or by focusing the probe down to sub-atomic dimensions and scan-
ning over the sample surface in scanning TEM (STEM) [141]. This is possible due to the
widespread deployment of aberration correction for both TEM and STEM instruments [92,
145]. Atomic resolution imaging, however, strictly limits the achievable field-of-view, and
requires relatively thin samples, and thus is primarily suited for measuring polycrystalline
grain orientations of 2D materials [125, 143].

Another approach to orientation mapping in TEM is to use diffraction space measure-
ments. For crystalline materials, diffraction patterns will contain Bragg spots with spacing
inversely proportional to the spacing of atomic planes which are approximately perpendicu-
lar to the beam direction (described by both the Laue condition and Bragg equations [48]).
To generate a spatially-resolved orientation map, we can focus a STEM probe down to di-
mensions of 0.5 to 50 nm, scan it over the sample surface, and record the diffraction pattern
for each probe position, a technique referred to as nanobeam electron diffraction (NBED)
[127], scanning electron nanobeam diffraction (SEND) [173], or four dimensional-scanning
transmission electron microscopy (4D-STEM) (we choose this nomenclature for this text)
due to the 4D shape of the collected data [24]. 4D-STEM experiments are increasingly en-
abled by fast direct electron detectors, as these cameras allow for much faster recording and
much larger fields of view [123, 119, 130].

By performing template matching of diffraction pattern libraries on 4D-STEM datasets,
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we can map the orientation of all crystalline grains with sufficient diffraction signal. This
method is usually named automated crystal orientation mapping (ACOM), and has been used
by many authors in materials science studies [194, 148, 187, 82, 101, 99, 73, 206]. ACOM
experiments in 4D-STEM are highly flexible; two recent examples include [85] implementing
ACOM measurements in liquid cell experiments, and [189] adapting the ACOM method to
a scanning confocal electron diffraction (SCED) experimental configuration. ACOM is also
routinely combined with precession electron diffraction, where the STEM beam is continually
rotated around a cone incident onto the sample, in order to excite more diffraction spots
and thus produce more interpretable diffraction patterns [147, 23, 112, 45]. Recently, [109]
have combined simulations with machine learning segmentation to map orientations of 2D
materials, and [192] have used machine learning methods to improve the resolution and
sensitivity of orientation maps by training on simulated data. For more information, [193]
has provided a review of ACOM methods in SEM and TEM.

In this study, we introduce a new sparse correlation framework for fast calculation of
orientation maps from 4D-STEM datasets. Our method is based on template matching of
diffraction patterns along only the populated radial bands of a reference crystal’s reciprocal
lattice, and uses direct sampling of the first two Euler angles (which, in the convention we
have adopted, correspond to the zone axis), and a fast Fourier transform correlation step
to solve for the final Euler angle (in our convention, the in-plane rotation of the pattern).
We test our method on both kinematical calculations, and simulated diffraction experiments
incorporating dynamical diffraction. Finally, we generate orientation maps of polycrystalline
AuAgPd helically twisted nanowires, and use clustering to segment the polycrystalline struc-
ture, and map the shared (111) twin planes of adjacent grains.

5.2 Methods

Overview

The problem we are solving is to identify the relative orientation between a given diffraction
pattern measurement and a parent reference crystal. We solve this problem with three steps:

1. First, we generate a diffraction pattern library which covers all unique crystal orien-
tations using kinematical simulation. This library, stored in a sparse polar coordinate
representation P , is called an “orientation plan.”

2. We find all diffracted spots/disks in each diffraction pattern, and convert them into
the same sparse polar coordinate representation X.

3. We determine the best fit orientation(s) by finding the maximum value(s) of the cor-
relation C between the diffraction patterns and the orientation plan.

All of the previously discussed ACOM implementations work in essentially the same
way, i.e. by precomputing the diffraction library in some form, and then comparing each
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diffraction pattern to this library using a cost function based on some form of correlation.
Performing template matching directly on diffraction patterns, which may contain millions of
pixels, against a library of similarly sized patterns, is computationally expensive. However,
the underlying information we are interested in, i.e. the projected lattice in the pattern, is
typically composed of at most a few dozen non-zero points. Our sparse correlation method
involves reducing the diffraction patterns to a simpler representation where the correlation
can be evaluated rapidly, by first detecting the positions of the Bragg disks in the pat-
tern, then segmenting the data into radial bands, and only evaluating the correlation in the
populated bands.

The primary advances of this paper are: (1) We use Fourier transforms along the annular
direction in polar coordinates for both the diffraction library and diffraction patterns to
efficiently solve for the in-plane image rotation. For a full polar coordinate transform, only
a small number of radial bins will contain reciprocal lattice points, and thus the output
is sparse along the radial direction. We utilize this sparsity by only evaluating the polar
coordinate correlations on radial shells that contain reciprocal lattice points of the reference
structure, making the calculations much faster. (2) We give users fine-grained control over
the relative weighting of diffraction peak radii and intensities in the correlation calculation,
as well defining a kernel size which can be increased to allow more pattern distortion, or
decreased to reduce the chance of false positive signals from grains with close orientations.
(3) We automatically determine the symmetry-reduced range of allowed zone axes from the
input crystal. (4) We provide all methods and codes as an open source implementation for
the community to freely use and modify. Below we detail each of the steps for our orientation
matching algorithm, and their required input calculations.

Structure Factor Calculations

The structure factors of a given crystalline material are defined as the complex coefficients
of the Fourier transform of an infinite crystal [167]. We require these coefficients in order
to simulate kinematical diffraction patterns, and thus we briefly outline their calculation
procedure here.

First, we define the reference crystal structure. This structure consists of two components,
the first being its unit cell defined by its lattice vectors a, b, and c composed of positions
in r = (x, y, z), the 3D real space coordinate system. The second component of a crystal
structure is an array with dimensions [N, 4] containing the fractional atomic positions pn =
(pa, pb, pc)n and atomic number Zn, for the nth index of N total atoms in the unit cell.
Together these positions and atomic numbers are referred to as the atomic basis. Because
pn is given in terms of the lattice vectors, all fractional positions have values inside the range
[0, 1). The unit cell and real space Cartesian coordinates of the fcc Au structure are plotted
in Fig. 5.1a.

All subsequent calculations are performed in reciprocal space (also known as Fourier
space or diffraction space). Thus the next step is to compute the reciprocal lattice vectors,
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Figure 5.1: ACOM using correlation matching in py4DSTEM. (a) Structure of fcc Au.
(b) Atomic scattering factor of Au. (c) Structure factors for fcc Au. (d) Zone axes included
in orientation plan. (e) Diffraction patterns for various orientations, and (f) corresponding
orientation plan slices. (g) Correlogram maxima for each pattern in (e) as a function of
zone axis, and (h) corresponding in-plane rotation correlation. Highest correlation scores
are shown in (g) and (h) using red circles.

https://github.com/py4dstem/py4DSTEM
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defined by [52]

a∗ =
b× c

a · [b× c]
=
b× c
Ω

b∗ =
c× a

b · [c× a]
=
c× a
Ω

c∗ =
a× b

c · [a× b]
=
a× b
Ω

, (5.1)

where × represents the vector cross product and Ω is the unit cell volume in real space. Note
that this definition does not include factors of 2π, and therefore all reciprocal coordinates
have spatial frequency units.

Next, we calculate the position of all reciprocal lattice points required for our kinematical
diffraction calculation, given by

ghkl = ha∗ + k b∗ + l c∗, (5.2)

where h, k, and l are integers representing the reciprocal lattice index points corresponding to
the Miller indices (h, k, l). We include only points where |qhkl| < kmax, where q = (qx, qy, qz)
are the 3D coordinates in reciprocal space, i.e. those which fall inside a sphere given by the
maximum scattering vector kmax. To find all reciprocal lattice coordinates, we first determine
the shortest vector given by linear combinations of (a∗, b∗, c∗), and divide kmax by this vector
length to give the range for (h, k, l). We then tile (h, k, l) in both the positive and negative
directions up to this value, and then remove all points with vector lengths larger than kmax.

The reciprocal lattice defined above represents all possible coordinates where the structure
factor coefficients Vg(q) could be non-zero. The structure factor coefficients depend only the
atomic basis and are given by

Fhkl =
1

Ω

N∑
n=1

fn(|ghkl|) exp [−2πi(h, k, l) · pn] , (5.3)

where fn are the the single-atom scattering factors for the nth atom, which describe the
scattering amplitude for a single atom isolated in space. There are multiple ways to param-
eterize fn, but here we have chosen to use the factors defined by [96] which are implemented
in py4DSTEM. Fig. 5.1b shows the atomic scattering factor for an Au atom.

We have now defined all structure factor coefficients for a perfect infinite crystal as

Vg(q) =

{
Fhkl if q = ghkl

0 otherwise.
(5.4)

Fig. 5.1c shows the structure factors of fcc Au, where the marker size denotes the intensity
(magnitude squared) of the Fhkl values.

https://github.com/py4dstem/py4DSTEM
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Calculation of Kinematical Diffraction Patterns

Here we briefly review the theory of kinematical diffraction of finite crystals, following [40].
We can fully describe an electron plane wave by its wavevector k, which points in the direction
of the electron beam and has a length given by |k| = 1/λ, where λ is the (relativistically-
corrected) electron wavelength. Bragg diffraction of the electron wave along a direction
k′ occurs when electrons scatter from equally spaced planes in the crystal, described in
reciprocal space as

k′ = k + ghkl. (5.5)

For elastic scattering, k′ has the same length as k, and so scattering can only occur along
the spherical surface known as the Ewald sphere construction [46]. For a perfect infinite
crystal, scattering will seemingly almost never happen since it requires intersection of the
Ewald sphere with the infinitesimally small points of the reciprocal lattice vectors. However,
real samples have finite dimensions, and thus in reciprocal space their lattice points will be
convolved by a shape factor D(q). Therefore diffraction can still occur, as long as Eq. 5.5 is
approximately satisfied.

If the sample foil is tilted an angle α away from the beam direction, the vector between
a reciprocal lattice point g and its closest point on the Ewald sphere has a length equal to

sg =
−g · (2k + g)

2|k + g| cos(α)
. (5.6)

The sg term is known as the excitation error of a given reciprocal lattice point g. When
the excitation error sg = 0, the Bragg condition is exactly satisfied. When the length of sg
is on the same scale as the extent of the shape factor, the Bragg condition is approximately
satisfied.

A typical TEM sample can be approximately described as a slab or foil which is infinite
in two dimensions, and with some thickness t along the normal direction. The shape function
of such a sample is equal to

D(qz) =
sin(πqzt)

πqz
. (5.7)

Because this expression is convolved with each reciprocal lattice point, we can replace qz with
the distance between the Ewald sphere and the reciprocal lattice point. For the orientation
mapping application considered in this paper, we assume that α = 0, and that the sample
thickness t is unknown. Instead, we replace Eq. 5.7 with the approximation

D(qz) = exp

(
− qz

2

2σ2

)
, (5.8)

where σ represents the excitation error tolerance for a given diffraction spot to be included.
We chose this expression for the shape function because it decreases monotonically with
increasing distance between the diffraction spot and the Ewald sphere qz, and produces
smooth output correlograms.
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To calculate a kinematic diffraction pattern for a given orientation w, we loop through
all reciprocal lattice points and use Eq. 5.6 to calculate the excitation errors. The intensity
of each diffraction spot is given by the intensity of the structure factor |Fhkl|2, reduced by a
factor defined by either Eq. 5.7 or Eq. 5.8. We define the position of the diffraction spots in
the imaging plane by finding two vectors perpendicular to the beam direction, and projecting
the diffraction vectors q into this plane. The result is the intensity of each spot Im, and its two
spatial coordinates (qmx , qmy), or alternatively their polar coordinates qm =

√
qmx

2 + qmy
2

and γm = arctan2(qmy , qmx). Note that the in-plane rotation angle is arbitrarily defined
for kinematical calculations in the forward direction. The resulting diffraction patterns are
defined by the list of M Bragg peaks, each defined by a triplet (qmx , qmy , Im) in Cartesian or
(qm, γm, Im) in polar coordinates.

Fig. 5.1e shows diffraction patterns for fcc Au, along five different zone axes (orientation
directions). Each pattern includes Bragg spots out to a maximum scattering angle of kmax =

1.5 Å
−1
, and each spot is labeled by the (hkl) indices. The marker size shown for each

spot scales with the amplitude of each spot’s structure factor, decreased by Eq. 5.8 using

σ = 0.02 Å
−1
.

Generation of an Orientation Plan

The orientation of a crystal can be uniquely defined by a [3×3]-size matrix←→m , which rotates
vectors d0 in the sample coordinate system to vectors d in the parent crystal coordinate
system dxdy

dz

 =

 ux vx wx
uy vy wy
uz vz wz

d0xd0y
d0z


d = ←→m d0, (5.9)

where the first two columns of←→m given by u and v represent the orientation of the in-plane
x and y axis directions of the parent crystal coordinate system, respectively, and the third
column w defines the zone axis or out-plane-direction. The orientation matrix can be defined
in many different ways, but we have chosen to use a Z −X − Z Euler angle scheme [155],
defined as

←→m =

 C1 −S1 0
S1 C1 0
0 0 1

 1 0 0
0 C2 S2

0 −S2 C2

 C3 −S3 0
S3 C3 0
0 0 1

 , (5.10)

where C1 = cos(ϕ1), S1 = sin(ϕ1), C2 = cos(θ2), S2 = sin(θ2), C3 = cos(ϕ3), and S3 =
sin(ϕ3). The Euler angles (ϕ1, θ2, ϕ3) chosen are fairly arbitrarily, as are the signs of rotation
matrices given above.

In order to determine the orientation←→m of a given diffraction pattern, we use a two-step
procedure. The first step is to calculate an orientation plan P ((ϕ1, θ2), ϕ3, qs) for a given
reference crystal. The second step, which is defined in the following section, is to generate
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a correlogram from each reference crystal, from which we directly determine the correct
orientation.

The first two Euler angles ϕ1 and θ2 represent points on the unit sphere which will become
the zone axis of a given orientation. The first step in generating an orientation plan is to
select 3 vectors delimiting the extrema of the unique, symmetry-reduced zone axes possible
for a given crystal. Fig. 5.1d shows these boundary vectors for fcc Au, which are given by
the directions [001], [011], and [111]. We next choose a sampling rate or angular step size,
and generate a grid of zone axes to test. We define a 2D grid of vectors on the unit sphere
which span the boundary vectors by using spherical linear interpolation (SLERP) formula
defined by [164]. These points with a step size of 2◦ are shown in Fig. 5.1d. The rotation
matrices which transform the zone axis vector (along the z axis) are given by the matrix
inverse of the first two terms in Eq. 5.10.

We then examine the vector lengths of all non-zero reciprocal lattice points ghkl and find
all unique spherical shell radii qs. These radii will become the first dimension of our orien-
tation correlogram, where each radius is assigned one index s. We loop through all included
zone axes, and calculate a polar coordinate representation of the kinematical diffraction pat-
terns. [187] pointed out that a polar transformation can make the in-plane rotation matching
step more efficient, as the pattern rotation becomes a simple translation. We will further
speed up the in-plane matching by using Fourier correlation along the angular dimension
after the polar transformation [39].

For each zone axis, the first step to compute the plan is to rotate all structure factor
coordinates by the matrix inverse of the first two terms in Eq. 5.10. Next, we compute the
excitation errors sg for all peaks assuming a [0, 0, 1] projection direction, and the in-plane
rotation angle of all peaks γq. The intensity values of the orientation plan for all qs shells
and in-plane rotation values ϕ3 are defined using the expression

P0((ϕ1, θ2), ϕ3, qs) =
∑

{g : |g|=qs}

qs
γ|Vg|ω × (5.11)

max

{
1− 1

δ

√
s2g + [mod(ϕ3 − γg + π, 2π)− π]2 qs2, 0

}
,

where δ is the correlation kernel size, γ and ω represent the power law scaling for the radial
and peak amplitude terms respectively, max(...) is the maximum function, which returns
the maximum of its two arguments, mod(...) is the modulo operator, and the summation
includes only those peaks g which belong to a given radial value qs. We have used the
combined indexing notation for (ϕ1, θ2) to indicate that in practice, this dimension of the
correlation plan contains all zone axes, and thus the entire array has only 3 dimensions.
The correlation kernel size δ defines the azimuthal extent of the correlation signal for each
reciprocal lattice point. Note that Eqs. 5.8 and 5.7 are not used for the calculation of
orientation plans.
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We normalize each zone axis projection using the function

A(ϕ1, θ2) =
1√∑

ϕ3

∑
qs
P0((ϕ1, θ2), ϕ3, qs)

2
,

yielding the final normalized orientation plan

P ((ϕ1, θ2), ϕ3, qs) = A(ϕ1, θ2)P0((ϕ1, θ2), ϕ3, qs) (5.12)

By default, we have weighted each term in the orientation plan with the prefactor qs|Vg|,
i.e. setting γ = ω = 1. The qs term gives slightly more weight to higher scattering angles,
while the |Vg| term is used to weight the correlation in favour of peaks with higher structure
factor amplitudes, which was found to be more reliable than weighting the orientation plan
by |Vg|2, which weights each peak by its structure factor intensity.

Fig. 5.1f shows 2D slices of the 3D orientation plan, for the 5 diffraction patterns shown in
Fig. 5.1e. The in-plane rotational symmetry of each radial band is obvious for the low index
zone axes, e.g. for the [001] orientated crystal, the first row of the corresponding orientation
plan consists of four spots which maintains the 4-fold symmetry of the diffraction pattern
and can be indexed as [020], [200], [020] and [200]. The final step is to take the 1D Fourier
transform along the ϕ3 axis in preparation for the Fourier correlation step defined in the
next section.

Correlation Pattern Matching

For each diffraction pattern measurement, we first measure the location and intensity of
each Bragg disk by using the template matching procedure outlined by [158]. The result
is a set of M experimental diffraction peaks defined by the triplets (qm, γm, Im) in polar
coordinates. Note that while all ACOM approaches we are aware of store the diffraction
libraries in vector format [148], here we also reduce the experimental data to a list of peak
position and intensity vectors. This has the effect of deconvolving the probe shape from
the diffracted disk, and thus improving the resolution. From the experimental peaks, we
calculate the sparse polar diffraction image X(ϕ3, qs) using the expression

X(ϕ3, qs) =
∑

{qm : |qm−qs|<δ}

qm
γIm

ω/2 ×max {1− (5.13)

1

δ

√
(qm − qs)2 + [mod(ϕ3 − γm + π, 2π)− π]2 qs2, 0

}
.

Note that the polar coordinates qs and ϕ3 used in this expression are identical to those
used in the orientation plan calculation. The measured diffraction intensity is not normal-
ized, as realistic sample thicknesses we expect the intensity to vary significantly from the
kinematically predicted values.



CHAPTER 5. KINEMATIC CRYSTAL ORIENTATION MAPPING 62

By default, we again use prefactors weighted by the peak radius and estimated peak
amplitude given by the square root of the measured disk intensities. However, if the dataset
being analyzed contains a large number of different sample thicknesses, multiple scattering
can cause strong oscillations in the peak amplitude values. The intensity weighting factor
ω provides a similar effect as the “gamma correction” used in many diffraction template
matching routines [27], but acts on the measured disk intensities rather than the original
diffraction pattern. As we will see in the simulations below, in these situations the best
results may be achieved by setting ω = 0, i.e. ignoring peak intensity and weighting only
by the peak radii. Note that in the diffraction image, the correlation kernel size δ again
gives the azimuthal extent of the correlation signal. However, in Eq. 5.13 it also sets the
range over which peaks are included in a given radial bin, and the fraction of the intensity
assigned to each radial bin. To prevent experimental disk position errors from causing
peaks to be assigned erroneously when the radial bins are near to one another (such as due
to different reflections with nearly-similar spacing), experimental peaks can be included in
multiple radial bins if they fall within the correlation kernel size of multiple bins. The kernel
size δ can be optimized for each type of sample: if the sample contains crystals with large
lattice distortions, a larger kernel size can be used to increase the tolerance. Alternatively, if
a sample consists of many overlapping grains then the kernel size can be decreased to lower
the probability of false positive matches for nearby orientations.

Finally, we calculate the correlation C((ϕ1, θ2), ϕ3) of this image with the orientation plan
using the expression

C((ϕ1, θ2), ϕ3) =
∑
qs

F−1 {

F {P ((ϕ1, θ2), ϕ3, qs)}∗F {X(ϕ3, qs)}} , (5.14)

where F and F−1 are 1D forward and inverse fast Fourier transforms (FFTs) respectively
along the ϕ3 direction, and the ∗ operator represents taking the complex conjugate. We use
this correlation over ϕ3 to efficiently calculate the in-plane rotation of the diffraction pat-
terns. The maximum value in the correlogram will ideally correspond to the most probable
orientation of the crystal. In order to account for mirror symmetry of the 2D diffraction
patterns, we can also compute the correlation

Cmirror((ϕ1, θ2), ϕ3) =
∑
qs

F−1 {

F {P ((ϕ1, θ2), ϕ3, qs)}∗F {X(ϕ3, qs)}∗} , (5.15)

where the mirror operation is accomplished by taking the complex conjugate of F {X(ϕ3, qs)}.
For each zone axis (ϕ1, θ2), we take the maximum value of C and Cmirror in order to account
for this symmetry. Figs. 5.1g and h show 5 output correlograms, for the 5 diffraction patterns
shown in Fig. 5.1e. For each zone axis (ϕ1, θ2), we have computed the maximum correla-
tion value, which are plotted as a 2D array in Fig. 5.1g. In each case, the highest value
corresponds to the correct orientation.



CHAPTER 5. KINEMATIC CRYSTAL ORIENTATION MAPPING 63

Note that to calculate the correlation values, we have re-binned the vector peak data from
both the orientation plan and experimental peaks into a polar coordinate image with sparse
radial bins. It is also possible to perform the correlations of Eqs. 5.14 and 5.15 directly on the
inputs into Eq. 5.11 and experimental peaks (qm, γm, Im). However, in our numerical tests,
correlations computed from vector inputs were slower than the image correlation approach for
all ranges of parameters tested. We attribute this to two factors: first, the polar coordinate
images we use have a very small number of radial bins since we only operate on shells
which which contain reciprocal lattice vectors. Second, calculating the correlation of all
in-plane rotations using Fourier transforms is highly efficient due to the high speed of the
fast Fourier transform. This is why we have elected to compute the orientation correlations
using radially-sparse polar coordinate images.

Fig. 5.1h shows the correlation values along the ϕ3 axis, for the (ϕ1, θ2) bins with the high-
est correlation value in Fig. 5.1g. The symmetry of the correlation values in Fig. 5.1h reflect
the symmetry of the underlying patterns. For the [0, 0, 1], [0, 1, 1], and [1, 1, 1], diffraction
patterns, the in-plane angle ϕ3 correlation signals have 4-fold, 2-fold, and 6-fold rotational
symmetry respectively. By contrast, the asymmetric diffraction patterns with zone axes
[1, 1, 3], and [1, 3, 5] have only a single best in-plane orientation match.

The above default values are designed for matching of kinematical diffraction patterns.
However, thermal excitation and multiple scattering can lead to non-zero intensities of the
“kinematically forbidden peaks,” i.e. diffraction signals at reciprocal lattice points where the
structure factor is zero. In order to include forbidden peaks, we can include all points where
V = 0 in Eq. 5.4 by setting the structure factor threshold to zero. In a future update of the
code, we will use dynamical (i.e. including multiple scattering) structure factor calculations
to include peaks which are likely to be excited by multiple scattering. Additionally, we can
set ω = 0 in Eqs. 5.11 and 5.13, which removes the dependence of the correlation function
on the peak intensities entirely, and uses only the peak positions. These steps will calculate
the orientation correlation score using only the position of all scattering vectors, including
the forbidden peaks.

Matching of Overlapping Diffraction Patterns

In order to match multiple overlapping crystal signals, we have implemented an iterative
detection process. First, we use the above algorithm to determine the best fit orientation for
a given pattern. Next, the forward diffraction pattern is calculated for this orientation. We
then loop through all experimental peaks, and any within a user-specified deletion radius are
removed from the pattern. By default, this deletion radius is set to half of the correlation
kernel size, i.e. 0.5 δ. This value can be modified by the user depending on how close together
the diffraction peaks are for a given experiment. Peaks which are outside of the deletion
radius, but within the correlation kernel size, have their intensities reduced by a factor
defined by the linear distance between the experimental and simulated peaks divided by
the distance between the correlation kernel size and the deletion radius. Then, the ACOM
correlation matching procedure is repeated until the desired number of matches have been
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a θ=30º, Ф=360º θ=20º, Ф=360º θ=10º, Ф=360º

θ=30º, Ф=90º θ=30º, Ф=60º θ=30º, Ф=45ºb

c mp-410 mp-411 mp-413
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ErCo3 UP23m 4/mmm

2/m 43m 6m2

Figure 5.2: Examples of alternative orientation plan types in py4DSTEM. Fiber
texture examples where (a) orientations fully orbit around a single zone axis (the fiber axis),
or (b) contain only a symmetry-reduced wedge of zone axes which orbit around a the fiber
axis. (c) Examples of orientation plans generated directly from Materials Project entries
[70], using pymatgen symmetries [121].

found, or no further orientations are found. Note that while we could update the correlation
score after peak deletion, we output the original magnitude of the full pattern correlogram
in order to accurately calculate the probability of multiple matches.

https://github.com/py4dstem/py4DSTEM
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ACOM Integration into py4DSTEM

The ACOM pattern matching described has been implemented into the py4DSTEM python
toolkit written by [158]. A typical ACOM workflow starts with using py4DSTEM to import
the 4D dataset and one or more images of the vacuum probe. We then use a correlation
template matching procedure to find the positions of all diffracted disks at each probe po-
sition [132]. We use the correlation intensity of each detected peak as an estimate of the
peak’s intensity. The resulting set of M peaks defined by the values (qm, γm, Im) are stored
as a PointList object in py4DSTEM. Because the number of peaks detected at each probe
position can vary, we store the full set of all detected peaks in a PointListArray object in
py4DSTEM, which provides an interface to the ragged structured numpy data.

Most experimental datasets contain some degree of ellipticity, and the absolute pixel size
must be calibrated. We perform these corrections on the set of measured diffraction disks
using the py4DSTEM calibration routines defined by [158]. We know that the correlation
approach is relatively robust against both ellipticity and small errors in the reciprocal space
pixel size. However, precise phase mapping may require us to distinguish between crystals
with similar lattice parameters; these experiments will require accurate calibration.

We perform ACOM in py4DSTEM by first creating a Crystal object, either by specifying
the atomic basis directly, or by using the pymatgen package [121] to import structural data
from crystallographic information files (CIF), or the Materials Project database [70]. The
Crystal object is used to calculate the structure factors, and generate an orientation plan.
The final step is to use the orientation plan to determine the best match (or matches) for
each probe position, from the list of calibrated diffraction peaks. If the sample contains
multiple phases, we perform the orientation plan calculation and correlation matching for
each unique crystal structure.

In addition to specifying the orientation plan spanning 3 vectors as in Fig. 5.1, we define
additional methods to describe the space of possible orientations. One such example is fiber
texture, where we assume the crystals are all orientated near a single zone axis known as the
fiber axis, shown in Figs. 5.2a and b. We can vary the angular range of zone axes included
away from the fiber axis as in Fig. 5.2a, as well as choose the azimuthal range around this axis
as in Fig. 5.2b to account for symmetry around the fiber axis. Alternatively, an “automatic”
option is provided, which uses pymatgen to determine the symmetry of the structure and
automatically choose the span of symmetrically unique zone axes which should be included
in the orientation plan, based on the point group symmetry [40]. This is shown for a selection
of different Materials Project database entries in Fig. 5.2c.

Simulations of Diffraction Patterns from Thick Samples

One important metric for the performance of an orientation mapping algorithm is how well it
performs when the diffraction patterns contain significant amounts of multiple scattering. We
have therefore used our ACOM algorithm to measure the orientation of simulated diffraction
patterns from samples tilted along many directions, over a wide range of thicknesses. We

https://github.com/py4dstem/py4DSTEM
https://github.com/py4dstem/py4DSTEM
https://github.com/py4dstem/py4DSTEM
https://github.com/py4dstem/py4DSTEM
https://github.com/py4dstem/py4DSTEM
https://github.com/py4dstem/py4DSTEM
https://github.com/py4dstem/py4DSTEM
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performed these simulations using the multislice algorithm [35], and methods defined by [79]
and [122]. These methods are implemented in the Prismatic simulation code by [146].
The diffraction patterns were generated using a acceleration potential of 300 keV, a 0.5

mrad convergence angle, with real space and reciprocal pixel sizes of 0.05 Å and 0.01 Å
−1

respectively, with 4 frozen phonons. In total we have simulated 3750 diffraction patterns from
Cu, Ag, and Au fcc crystals, over 25 zone axes ([0, 0, 1] to [3, 4, 4] excluding symmetrically
redundant reflections) and thicknesses up to 100 nm with a 2 nm step size. These diffraction
patterns were generated using the simulation pipeline and database defined by [144].

Chemical Synthesis of Twisted AuAgPd Nanowires

The performed synthesis was reproduced with minor modifications from a known method
given by [180]. All reagents were purchased from Sigma Aldrich. We prepared the follow-
ing solutions: 500mM of Polyvinylpyrrolidone (PVP, MW 40,000) in Dimethylformamide
(DMF), 50mM Gold(III) chloride trihydrate (HAuCl4· 3H2O, >49.0% Au Basis) in DMF,
50mM Silver nitrate (AgNO3) in deionized (DI) water (resistivity> 18MΩ/cm), and 400mM
L-ascorbic acid (>99.0%, crystalline) in DI water. We created the reaction solution in a 4
mL glass vial (washed 3x with DI water and acetone) by mixing 800µL DMF, 100 µL PVP,
20 µL HAuCl4, and 20 µL AgNO3. We mixed the solution for approximately 2 seconds using
a Vortex-Genie 2 Mixer set to a value of 10, which spins the reaction solution at a speed
of approximately 3200 rpm, then added 100 µL of L-ascorbic acid solution drop-wise to the
mixture while gently swirling by hand. At this point, the color changed from pale yellow
to clear. We left the solution at room temperature for 7 days, at which point the solution
was light brown/purple. The primary product of this reaction was straight, ultrathin Au-Ag
nanowires (2 nm in diameter).

To twist the underlying ultrathin Au-Ag nanowires, we prepared solutions of 1.875mM
L-ascorbic acid and 2mM H2PdCl2 in DI water. In a 4 mL glass vial (3x washed with DI
water/acetone), we added 50 µL of the Au-Ag reacted solution to 640µL of the L-ascorbic
acid solution. Finally, we added 60 µL of the H2PdCl4 solution and allowed the sample to
incubate for at least 30 minutes. We purified the reaction solution by centrifuging the product
down at 7500 rpm for 4 minutes. We decanted the supernatant, and then rinsed the reaction
with DI water 3 times and re-dispersed in DI water. We prepared TEM samples of this
material by depositing 10µL of purified nanowire solution onto 400 mesh formvar/ultrathin
carbon grids.

4D-STEM Experiments with Patterned Apertures

We collected the experimental data using a double aberration-corrected modified FEI Titan
80-300 microscope (the TEAM I instrument at the National Center for Electron Microscopy
within Lawrence Berkeley National Laboratory). This microscope is equipped with a Gatan
K3 detector and Continuum spectrometer, and was set to collect diffraction patterns inte-
grated over 0.05 seconds, with 4x binning giving a calibrated pixel size of 0.00424 Å−1. We

https://prism-em.com/
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Figure 5.3: Zone axis misorientation as a function of sampling and maximum
scattering angle for kinematical simulations. The mean tilt error and number of
patterns matched per second are shown inset for each panel.

used an accelerating voltage of 300 keV, an energy slit of 20 eV, and a spot size of 6. The
beam current was 6 pA. We used a 10 µm bullseye aperture (probe size of approximately
1 nm) to form the STEM probe in order to improve detection precision of the Bragg disks
[199]. We used a convergence semiangle of 2mrad, with a camera length of 1.05 m. We
recorded the experimental dataset using a probe step size of 5 Å, with a total of 286 and 124
steps in the x and y directions.
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Figure 5.4: ACOM of overlapping diffraction patterns. (a) Three overlapping diffrac-
tion patterns with randomly chosen in-plane rotations. (b) First match, (c) second match,
and (d) third match returned by ACOM code. The fitted zone axes and correlation scores
are inset into fits.
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Figure 5.5: Dynamical simulated diffraction patterns. (a) Example diffraction patterns
for Au oriented to the [011] zone axis for 10-80 nm thick slices. (b) Plots showing the mean
zone axis misorientation in degrees as a function of thickness for Cu, Ag, and Au. Each plot
shows the errors for correlation prefactors of qs|Vg| (red) and qs (blue).

5.3 Results and Discussion

ACOM of Kinematical Calculated Diffraction Patterns

For the first test of our correlation method, we applied it to the same patterns calculated to
generate an orientation plan for fcc Au. Next, we measured the calculation time and angular
error between the measured and ground truth zone axes for each pattern. The results are
plotted in Fig. 5.3 for different maximum scattering angles kmax, and angular sampling of 1◦

and 2◦.
The results in Fig. 5.3 show that the angular error in zone axis orientation is relatively

insensitive to the angular sampling. However, the angular error drops by a factor of 10 from
approximately ≈ 3◦ to ≈ 0.3◦ when increasing the maximum scattering angle included from

kmax = 1 Å
−1

to 1.5 Å
−1
, and by another factor of 2-3 when increasing kmax to 2 Å

−1
. This is

unsurprising, as examining Fig. 5.1e shows that there is a large number of visible Bragg spots

outside of kmax = 1 Å
−1
, and because Bragg disks at higher scattering angles provide better

angular precision relative to low k disks. This result emphasizes the importance of recording
as many diffraction orders as possible when performing orientation matching of 4D-STEM
data. More spots can be included by collecting data out to higher scattering angles, or by
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reducing the convergence semiangle to bring weakly diffracting peaks above the noise floor.
Setting kmax beyond the highest angle detected disks will not yield any additional precision
but will make the orientation plan larger, so kmax should be chosen to correspond to the
highest scattering angle peaks detected in an experiment.

The inset calculation times reported are for the single-threaded ACOM implementation
in py4DSTEM, running in Anaconda [3] on a laptop with an Intel Core i7-10875H processor,
running at 2.30 GHz. The calculation times can be increased by an order of magnitude or
more when running in parallel, or by using a GPU to perform the matrix multiplication and
Fourier transform steps.

ACOM of Overlapping Diffraction Patterns

A common feature of polycrystalline samples is overlapping grains along the beam direction,
leading to overlapping diffraction patterns. To demonstrate the ability of our method to
work with overlapping grains, we have generated a combined set of diffraction patterns with
three low index zone axes and random in-plane rotations, plotted in Figs. 5.4a. Figs. 5.4b-d
shows the first three matches returned by our ACOM code using a kernel size of δ = 0.08
Å, a zone axis step size of 1◦, and a prefactor of qs|Vg|. The multi-pattern peak deletion
radius was slightly decreased from the default value of 0.04 Å to 0.02 Å to prevent removal
of adjacent peaks as matches are assigned. Our ACOM code has correctly returned 3 zone
axes which match the ground truth values. This example also demonstrates a procedure
which could be used to map the location and orientation of multiple phases, even when the
diffraction patterns overlap.

ACOM of Dynamical Simulated Diffraction Patterns

In diffraction experiments using thick specimens, strong dynamical diffraction effects such as
multiple scattering can occur. This effect is especially pronounced in diffraction experiments
along low index zone axes, where the diffracted peak intensities oscillate as a function of
thickness. In order to test the effect of oscillating peak intensities on our ACOM method,
we have simulated diffraction patterns for Cu, Ag, and Au fcc crystals, along multiple zone
axes. Some example diffraction patterns for the [011] zone axis of Au are plotted in Fig. 5.5a.
We see that all diffraction spots have intensities which oscillate multiple times as a function
of thickness.

We performed ACOM by generating orientation plans with an angular sampling of 2◦,

a correlation kernel size of 0.08 Å
−1
, and maximum scattering angles of kmax = 1.0, 1.5,

and 2.0 Å
−1
. We kept the radial prefactor of weighting set to γ = 1, and tested peak

amplitude prefactors of ω = 1.0, 0.5 and 0.0. The average zone axis angular misorientation
as a function of thickness is plotted in Fig. 5.5b. In total, we performed orientation matching
on 3750 diffraction patterns, and a total of 33750 correlation matches on a workstation with
an AMD Ryzen Threadripper 3960X CPU (2.2 GHz, baseclock). The typical number of

https://github.com/py4dstem/py4DSTEM
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patterns matched per second were of 80-90, 45-55 and 25-30 patterns/s for kmax values of

1.0, 1.5, and 2.0 Å
−1

respectively.
As expected, the errors are higher than those achieved under kinematic conditions, and

the trend for smaller errors with larger kmax is also preserved (mean errors of 7.25◦, 3.09◦

and 1.39◦ for kmax values 1.0, 1.5 and 2.0 Å
−1

respectively, γ = 1, ω = 0.25). We did not
observe any dependence of the orientation accuracy on the simulation thickness. Despite
the correlation prefactor |V g| performing well for the examples shown in Fig. 5.1, for the
dynamical diffraction simulations along zone axes it was out-performed by prefactors of
both

√
|Vg| (ω = 0.5) and omitting the peak amplitude prefactor altogether (ω = 0). We

therefore suggest that when mapping samples with a large range of thicknesses, or many
crystals aligned to low index zone axes, the position of the diffracted peaks is significantly
more important than their amplitudes or intensities. One possible method to increase the
average accuracy for a randomly orientated sample while using higher amplitude prefactors
is to perform an experiment which recovers more kinematical values for the diffracted peak
intensities, for example by precessing the electron beam when recording diffraction patterns
[111, 73].A precession experiment could however make the diffraction patterns of some grains
more dynamical, and thus worsen the orientation accuracy for some probe positions. We
note that there is likely no global optimal choice of orientation mapping hyperparameters for
all materials and thicknesses, and this may be a worthwhile topic for future investigations.

4D-STEM ACOM of Twisted AuAgPd Nanowires

We have tested our ACOM algorithm with a 4D-STEM dataset collected for an AuAgPd
nanowires. These nanowires are morphologically twisted into double helices via a colloidal
growth process as previously reported by [180]. An image of the vacuum bullseye STEM
probe is shown in Fig. 5.6a. For each detector pixel, we have calculated the maximum
value across all STEM probe positions to generate a maximum diffraction pattern, shown
in Fig. 5.6b. The beamstop used to block the center beam is visible, as well as various

crystalline diffraction rings out to approximately 1.4 Å
−1
.

After performing the correlation peak finding algorithm in py4DSTEM, we have an esti-
mated position and intensity of all detected Bragg peaks. A 2D histogram of these peaks,
known as a Bragg vector map, is plotted in Fig. 5.6c. Sharp polycrystalline diffraction rings
are clearly visible, as well as false positives generated by the beamstop edge. These false
positives were manually removed by using a mask generated from an image of the beamstop.
A high angle annular dark field (HAADF) image was simultaneously recorded during the
4D-STEM data collection, which is shown in Fig. 5.6d.

The final experimental pre-processing steps are to calibrate the diffraction pattern center,
the elliptical distortions, and the absolute pixel size. We performed these steps by fitting
an ellipse to the (022) diffraction ring, and by assuming a lattice constant of 4.08 Å, corre-
sponding to the fcc Au structure [104]. This process is explained in more detail by [158].
We assumed that the Ag lattice constant is similar to that of Au. Despite the presence of

https://github.com/py4dstem/py4DSTEM


CHAPTER 5. KINEMATIC CRYSTAL ORIENTATION MAPPING 72

Scattering Angle [1/Å]

In
te

ns
ity

0.80.6

(111)
(002)

(022)
(113)

(222)

0.4 1.41.21.00.20.0100 Å

a vacuum probe

simultaneous HAADF image
Bragg peak histogram

maximum diffraction pattern Bragg vector mapb

d e

c

0.5 1/Å

Figure 5.6: 4D-STEM scan of twisted polycrystalline AuAgPd nanowires. (a)
Diffraction image of probe over vacuum, showing bullseye pattern. (b) Maximum of each
pixel in diffraction space over all probe positions. (c) Histogram of all peak locations detected
by correlation in py4DSTEM of (a) with each pattern included in (b). (d) HAADF-STEM
image of the sample. (e) 1D histogram of scattering vectors, with fcc AuAg inverse plane
spacings overlaid.

Pd in the nanowires, there was no significant presence of secondary grains corresponding
to the smaller lattice of fcc Pd grains. An intensity histogram of the corrected Bragg peak
scattering angles are shown in Fig. 5.6e. We have overlaid the 5 smallest scattering angles
of Au on Fig. 5.6e to show the accuracy of the correction.

We have performed ACOM on the AuAgPd nanowire sample, with the results shown in
Fig. 5.7 shown for up to 3 matches for each diffraction pattern. For each probe position,
the sum of the maximum detected correlation signals for up to three matches are shown
in Fig. 5.7a. The structure is in good agreement with Fig. 5.6, though with additional
modulations due to some grains generating more diffraction signal than others. Using a
correlation intensity threshold of 0.5, we have plotted the number of matching patterns in
Fig. 5.7b. The threshold of 0.5 was arbitrary chosen as a lower bound for a potential match,
as the correlation values are scaled by the experimental intensity. Examples of 2 matches to
a single diffraction pattern are plotted in Fig. 5.7c. In this figure the correlation score for
the first matched pattern was higher than the second. The second match found shows some

https://github.com/py4dstem/py4DSTEM
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Figure 5.7: Orientation mapping of polycrystalline AuAgPd nanowires. (a) Total
of measured correlation signal for each probe position. (b) Estimated number of patterns in-
dexed for each probe position. (c) Example of 2 orientations indexed from a single diffraction
pattern, collected at the position indicated by the arrow shown in (b), with correlation scores
inset. (d) Orientation maps of the 3 highest correlation signals for each probe position. A
legend for the crystallographic orientation is shown above, and arrows indicate the direction
of the x and y axes, while the zone axis direction is out of the page.
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Figure 5.8: Orientation analysis of grains in AuAgPd nanowires. (a) Crystal grains,
with in-plane (111) planes colored by orientation. (b) (111) planes shared by two overlapping
grains.

deformation between the measured and simulated Bragg peak positions, and matches fewer
peaks. It therefore produces a lower correlation score, which can be used to threshold the
results as in Fig. 5.7d. Note that the threshold values for inclusion of any given match into
the orientation maps is always user-defined.

Fig. 5.7d shows the 3D orientations plotted as inverse pole figures for all probe positions,
with the 3 best matches shown. Each image is masked by the total correlation signal, so that
low correlation values are colored black. Almost every diffraction pattern with Bragg disks
detected was indexed for at least one orientation with high confidence. Additionally, the
patterns are very consistent, with a large number of adjacent probe positions recording the
same orientation. Some secondary grains are also clearly visible in the second-best match,
while very few patterns have been assigned a third match with high confidence.

In order to investigate the grain organization of the AuAgPd nanowires, we have per-
formed clustering analysis on the orientation maps. Grains with similar orientations have
been clustered together by looping through each probe position and comparing its orien-
tation to its neighbors. Grains with at least 10 contiguous probe positions are shown in
Fig. 5.8a. (111) planes which lie in the image plane are overlaid onto the grain strucure,
colored by their orientation. Confirming our observations in Fig. 5.7d, only a few grains
with substantial overlap were reliably identified. This might be due to the low thickness of
the sample (only a single grain along the beam direction), some grains not being oriented
close enough to a zone axis to be detected, or multiple scattering deviations in the diffracted
signal. There is a noticable bias in the orientation of the (111) planes, which tend to be
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oriented horizontally near the growth direction of the nanowires.
One hypothesis for the growth mode of these twisted nanowires is that adjacent grains

are connected by (111) twin planes, forming local helical structures to give the observed
twisted structures. To test this hypothesis, we determined the position of (111) planes from
Fig. 5.8a which are shared by two overlapping grains. Fig. 5.8b shows the location of these
shared (111) planes (with plane normal differences below 8◦), colored by the normal vector
of the plane. Many shared (111) planes were detected, most with normal vectors aligned to
the wire growth direction. These observations support the hypothesis that these nanowires
are composed of grains connected by (111) twin planes.

These experimental observations demonstrate the efficacy of our ACOM method. In
order to improve these results, we will need to collect diffraction data with a wider angular
range. This can be achieved by using precession electron diffraction [153], multibeam electron
diffraction [66], or by tilting the sample or beam and recording multiple 4D-STEM datasets
[110].

5.4 Conclusion

We have introduced an efficient and accurate method to perform automated crystal orien-
tation mapping, using a sparse correlation matching procedure. We have implemented our
methods into the open source py4DSTEM toolkit, and demonstrated the accuracy of our
method using simulated diffraction patterns, where we show that lowering or removing the
peak-intensity weighting can improve the accuracy for thick samples with substantial dy-
namical diffraction. We also applied ACOM to an experimental scan of a complex helical
polycrystalline nanowire, where we were able to identify shared twin planes between adjacent
grains which may be responsible for the twisted helical geometry. All of our methods have
been made freely available to the microscopy community as open source codes. We believe
that our implementation of ACOM is efficient and accurate enough to be incorporated into
automated online TEM software [168]. In the future, we will improve our ACOM method
using machine learning methods [116], and we will extend our ACOM methods to include
multibeam electron diffraction experiments [66].

5.5 Source Code and Data Availability

All code used in this manuscript is available on the py4DSTEM GitHub repository, and the
tutorial notebooks are available on the py4DSTEM tutorial repository. All simulated and
experimental 4D-STEM datasets are available at [links will be added after publication].

https://github.com/py4dstem/py4DSTEM
https://github.com/py4dstem/py4DSTEM/tree/acom
https://github.com/py4dstem/py4DSTEM_tutorials/tree/main/notebooks/acom


76

Part II

Dynamical Diffraction as a Friend
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Robust Measurements by Inverting Dynamical

Diffraction

In the previous Part, we explored two situations where dynamical scattering from thick
samples could poison 4D–STEM measurements of sample properties. This occured because
for these measurments, experimental reality deviates from the simple assumptions about
the scattering processes that the method utilized. In the case of strain mapping, intensity
variations in converged beam diffraction patterns interfered with our algorithms for locating
the diffraction disks. The strong variation of the diffracted intensity to the varying tilts in
the converged beam could not be accounted for but were ultimately able to be overpowered
by modifying the experiment. In the case of orientation mapping, diffraction intensities in
experimental patterns from thick samples simply do not match the single scattering model
that was used to generate the library for matching, and experimental modifications that
could mitigate this (such as precession electron diffraction [147, 73]) were not available.

The challenge in the previous Part was that dynamical scattering causes the diffraction
patterns to be extremely sensitive to thickness, tilt, lattice distortions, etc. In this Part this
sensitivity is not an artefact but the basis of our measurements. By including a suitable
model of the dynamical scattering process in the measurement pipeline, we can use this
sensitivity to our advantage and obtain precise measurements of structural features of the
sample from nanobeam 4D–STEM data. The challenge in this case becomes the scale of
computation required to include the dynamical scattering model in our measurements. And
the scale of this is exascerbated by the fact that there is no way to write down an analytical
solution to the inverse diffraction problem when we simulate full patterns1.

In this section, we will discuss two methods for precise structural measurements that
utilize Bloch wave calculations to match the parameters of a scattering model with experi-
mental intensities. In both cases, we use strong prior knowledge about the crystal to simplify
the space for refining the model. Further, we make a critical simplifying assumption: in a
nanobeam diffraction pattern at a suitable shallow convergence angle, the summed intensity
of each diffraction disk is approximately proportional to the intensities of the spots in the

1For the extremely simple case of a perfect two-beam condition we can write an expression for the forward
model and potentially invert it; this expression is found in any TEM textbook, e.g. [48, 40]. There has been
some research on analytic solutions to very particular three-beam conditions [19, 162], but since there is
no general solution to polynomials of degree 5 and above an exact analytic solution to the N-beam case is
unlikely.
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plane wave pattern. This assumption separates our methods from those that fit each pixel
in a CBED disk, such as the PRIMES family of techniques [137, 136, 135, 139], and allows
our method to be orders of magnitude faster to evaluate, asuch that it is applicable to large
area nanobeam diffraction scans.

Crystal Orientation and Thickness

In Chapter 6, we extend the orientation mapping approach of Chapter 5 to include dynamical
scattering. This extension is nontrivial: using the measurement from the kinematic library
as a starting point, we perform thousands of Bloch wave diffraction calculations for a range of
orientations in the neighborhood of the initial guess and for a dense sampling of thicknesses.
The kinematic library matching provides us with a robust initial guess: in general, most of
the diffraction vectors that can be excited in a certain orientation do get excited, and most
of the ones that can’t be kinematically excited don’t get excited. Thus we only need to look
at the fine variation in intensities in order to get precise measurements of the orientation
and thickness thanks to the extreme sensitivity of the intensities to these quantities.

Tilt and Polarization in a Stacked Heterostructure

In Chapter 7 we tackle a substantially harder problem, where two structural deviations that
we are trying to recover from experimental data have substantial crosstalk, and cannot be
separated using simple models of the scattering. In this chapter, we seek to disentangle the
effects of polarization and tilting of the lattice in a trilayer superlattice structure. Using
kinematic models of the scattering one would conventionally derive a metric for these vari-
ables based on symmetry breaking of the diffracted intensities. The challenge here is that
in a sample with both varying polarization and tilt of the lattice, these two metrics will
be nearly identical and the two measurements will be inextricably mixed, and are usually
separated using Fourier filtering by assuming that one varies faster than the other. In our
method, we derive a full dynamical model of the scattering that takes into account the fact
that the sample is made of heterogenous materials and that only one of the layers can be
polarized. Unlike in Chapter 6, where we were able to use effectively a brute-force search for
the best match, in this section the problem has many more dimensions and none of them
are inexpensive to evaluate. Thus, we derive a semi-analytic expression for computing the
gradients of the diffracted intensities with respect to each structural distortion parameter,
and perform gradient descent to arrive at the best fitting description of the local structure.
Using this procedure we are able to effectively separate two signals which are normally totally
confounded due to the complex scattering process and the similarities between them.
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Chapter 6

A Dynamical Diffraction Refinement
Method for Precise 4D–STEM
Measurements of Crystal Orientation
and Thickness

Diffraction intensities are extremely sensitive to the tilt and thickness of the crystal, in
particular in the vicinity of a zone axis orientation. This sensitivity is highly nonlinear, and
thus makes orientation mapping unreliable when the pattern library used for comparison does
not include the same thickness effects as the experiment. Here, we demonstrate a refinement
routine which compares the diffraction intensities measured in a 4D-STEM experiment to
those from dynamical diffraction simulations, in order to precisely measure the local tilt of
a crystalline sample. This refinement also matches the thickness of the crystal as a part
of the refinement procedure. Using a wedge polished Si sample with a thickness gradient
and a low-angle defect, we demonstrate the effectiveness of this method for improving the
orientation mapping precision and for measuring sample thickness from single nanobeam
electron diffraction patterns.

6.1 Introduction

Determining the orientation of a crystalline sample with respect to the electron beam in
a (scanning) transmission electron microscope, (S)TEM, is a fundamental skill in electron
microscopy. From a plane wave or nanobeam diffraction pattern and knowledge of the
crystal structure, one can relate the diffraction spots to crystal directions and compute the
orientation [48]. For a nanobeam four-dimensional STEM experiment (4D–STEM), where
many thousands of diffraction patterns are aquired as the probe is rastered over the sample,
automated methods have been developed to perform the same procedure. These methods are
generally referred to as automated crystal orientation mapping (ACOM) after several papers
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by Rauch and co-workers [147, 148, 149]. More recently, Cautaerts et al. have released a
GPU-accelerated implementation of the same procedure as part of pyxem [27], and Ophus
et al. have released a more computationally efficient algorithm as part of py4DSTEM [124],
both of which are open-source packages. These automated methods work by computing a
library of simulated diffraction patterns for a range of crystal orientations and comparing
each experimental pattern to the library, and assigning each pattern an orientation based on
which simulation it best matches.

Both the manual technique and the automated approaches utilize the geometry of the
crystal lattice to compute the locations of diffracted spots for a given crystal orientation; if
the intensities of the diffracted disks are also utlilized, they are computed using the kinematic,
single-scattering approximation. This model for the diffracted intensities is inaccurate for
thick samples and for orientations nearby to high-symmetry crystal directions, where mul-
tiple scattering effects are important and a dynamical model is needed. This mismatch
limits the accuracy of ACOM orientation mapping—Ophus et al found that under the best
conditions a minimum orientation error of 2◦ was present at all examined thicknesses when
using dynamical diffraction simulations as the input [124]. This level of precision is often
sufficient to establish orientation relationships between grains in polycrystalline samples, but
it is insufficient to detect bending or ripples in a thin film and is below the precision of elec-
tron backscatter diffraction orientation mapping in a scanning electron microscope, which
can achieve absolute orientation precision of about 0.5◦ [67]. Previous work on matching
experimental electron diffraction patterns to dynamical simulations have mostly focused on
comparison with converged beam electron diffraction (CBED) patterns, since the fine de-
tails of these patterns are exquisitely sensitive to the structure, orientation [138], and even
temperature of the a crystal [88, 204].

Here, we demonstrate the use of dynamical diffraction simulations for improving the pre-
cision of orientation measurements from nanobeam 4D–STEM experiments. This procedure
operates by comparing the integrated diffraction disk intensities to dynamical diffraction
calculations computed over a range of orientations in the neighborhood of the initial guess
provided by matching against a pattern library using py4DSTEM [124]. These dynamical
diffraction calculations are performed using the Bloch wave method, which allows us to per-
form all computations on lists of reflections and their intensities using sparse representations
of the diffraction data.

6.2 Orientation and Thickness Refinement Procedure

Initialization with Kinematic Library Matching

The dynamical refinement procedure builds upon the kinematic library matching approach of
Ophus et al [124], which forms the first step in our method. The kinematic library matching is
implemented in the ACOM module of py4DSTEM, and involves first detecting the positions
and intensites of each of the Bragg disks in the 4D–STEM dataset by cross-correlation

https://github.com/py4dstem/py4DSTEM
https://github.com/py4dstem/py4DSTEM
https://github.com/py4dstem/py4DSTEM
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with a template image. Then a library of kinematic diffraction patterns is computed based
on the assumed known crystal structure of the material. This library contains a sparse
representation of the diffraction pattern simulated for each orientation within a uniform
sampling of the space of symmetrically unique orientations of the crystal. Each list of
Bragg disks detected in the experiment is subsequently transformed into the same sparse
representation and its correlation with each library pattern is computed. The orientation of
the best matching pattern in the library is assigned to that pixel in the scan. The in-plane
rotation of the pattern is determined to subpixel precision, while the rotations that bring
the crystal orientation vector into alignment with the beam direction are only determined
to the precision set by the sampling of the library.

Dynamical Diffraction Calculations

Our method for refining the orientation using diffraction intensities involves comparison with
dynamical diffraction calculations evaluated over a grid of orientations and thicknesses. We
use the Bloch wave method (see Chapter 2 or the textbook by De Graef [40]) to perform
these calculations. The Bloch wave method is ideal for a number of reasons: First, it is
easy to include very small tilts of the crystal with high accuracy, since we do not need to
generate an orthogonal simulation cell and our tilt resolution is not tied to the pixel size
of the calculation, as is the case for multislice methods. In addition, with the Bloch wave
method the primary computational effort comes in diagonalization of the structure matrix,
but once it is obtained we can compute diffraction intensities for any thickness with minimal
additional computation. This is very advantageous as we find that a dense sampling of
thicknesses is beneficial in ensuring convergence of the refinement to match the experimental
data. Finally, the output of the Bloch wave calculations are a list of reflections and their
associated intensity, which naturally matches with the data structure that we use for the
kinematic library sparse matching algorithm and with the Bragg disk detection routine. All
of the dynamical diffraction calculations in this work were conducted using the Crystal
module of py4DSTEM (version 0.13.7), which is available as open-source software. The
dynamical refinement procedure shown in this work is in the process of being integrated into
the main distribution of py4DSTEM.

Adaptive Grid Refinement

With the approximate orientations of the crystal obtained from matching against the kine-
matic library in hand, we can proceed to perform the dynamical refinement. First, we use
the knowledge of the approximate orientation at each pixel to assign Miller indices to each of
the experimental Bragg peaks. We also generate a kinematic diffraction pattern for the same
orientation, which we use as the list of beams to include in the Bloch wave simulation. The
use of the kinematic pattern instead of the experimental one for the list of beams ensures
that the Bloch wave simulation includes beams that may have been missed in the experiment
because they fell below the detection threshold or had position errors that prevented proper

https://github.com/py4dstem/py4DSTEM
https://github.com/py4dstem/py4DSTEM
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assignment of the Miller indices. Beams that were not detected must be included because
they contribute to the scattering behavior, but are ignored in computing the loss function
for refinement[138].

For each of the indexed experimental patterns, we use the Bloch wave simulation method
to refine the orientation guess and determine the local thickness of the crystal using an
iterated refinement procedure. At each refinement step, we simulate plane wave diffraction
patterns for a cone of orientations around the previous guess, and for a range of thickness
values. At each step, we choose the orientation that minimizes the cost function

C(R, t) =
∑
g

(
Isim(R,t)(g)− Iexp(g)

)
(6.1)

to be the refined guess, where R is the rotation matrix for each test orientation, t is the
thickness, Iexp is the list of experimentally measured disk intensities, and Isim(R,t) are the
simulated intensities.

Follwing this step, we proceed by choosing a finer sampling of a smaller range of orienta-
tions for each subsequent iteration. This adaptive sampling approach allows us to hop over
the many local minima that appear in the cost function while still finely exploring the region
of the best match, without performing prohibitively many calculations for each pattern. As
it is computationally inexpensive to compute the intensities at many thicknesses, we use the
same dense sampling of thickness at each step.

6.3 Experimental Methods

Experimental data was acquired using the TEAM1 instrument at the National Center for
Electron Microscopy, an FEI Titan equipped with probe and image correctors, a Gatan
Continuum spectrometer/energy filter, and a Gatan K3 direct electron detector. A silicon
wedge sample was produced from a commerical 111 oriented wafer by mechanical polishing
followed by ion milling. This produced a sample with smoothly decreasing thickness which
varied from the bulk down to approximately 15 nm at the edge, with likely a few nanometers
of amorphous material on the surface. 4D-STEM data were acquired from this sample at an
accelerating voltage of 300 kV, a semi-convergence angle of 1.4 mrad, and with an energy
selecting slit with a width of 10 eV. We also acquired low-loss EELS maps from the same
area of the sample at a semi-convergence angle of 17 mrad in order to obtain an independent
measurement of the thickness of the sample by the log-ratio method.

6.4 Results and Discussion

Bragg Disk Detection

From the 4D–STEM dataset, we begin by using template matching to obtain the locations
of all of the diffraction disks [132]. We then use the kinematic library matching routine
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from [124] to identify the approximate orientation in each diffraction pattern. Results of
the kinematic orientation matching are shown in Figure 6.2. As expected, the sample is
identified as being single crystal and oriented near the (111) zone axis. Using the identified
orientation at each scan position, we assign crystallographic indices to each of the detected
Bragg disks.

While the cross-correlation intensities measure between each disk and the template in
the first step are approximately equal to the disk intensity, modifications to the probe kernel
and the presence of background intensity make this relationship imperfect. Thus the disk
intensities are updated by integrating a circular region centered on the disk position and
subtracting a local background value fitted to the neighborhood of the disk. In the present
case, as the electron dose is relatively low at approximately 105 per pattern and the data
was aquired without a patterned aperture [199], the disk positions contain substantial errors
which result in large apparent variations in the lattice across the field of view. These errors
in disk positions will translate into large errors in the integrated disk intensities, as we center
our integration window on the measured disk positions. To mitigate this, we use the average
lattice vector from the entire scan to determine the locations of the integration windows,
correcting only for translation of the entire pattern across the detector caused by STEM
descan misalignment.

Virtual images obtained from intensity integration procedure described above for the
direct beam and each of the first order reflections in the 4D–STEM dataset are shown in
Figure 6.1, and show prominent fringes corresponding to variation of the thickness of the
wedge polished sample. The fringes are most prominent in the brightfield image and the
(022) and (202) images but are present in all of them. From inspection of the diffraction
patterns the sample is tilted so that the center of the Laue circle lies primarily between
these three diffracted disks. The spacing of the fringes in these images does not necesarily
correspond to those that would be observed in a two-beam bright/dark-field image as the
sample is nearly perfectly on a zone axis and thus many diffraction conditions are operating.
At the bottom left of the scan region, there is a defect which likely arose during the thinning
process and which caused a large tilt of the lattice such that the thickness fringes disappear.

Kinematic Orientation Mapping

Using the kinematic library matching code of Ophus et al [124], we generated a library of
diffraction patterns which cover the span of unique orientation directions for a diamond cubic
crystal at spacings of 2◦. The lists of Bragg peaks from each scan position in the experiment
are matched to the library in order to determine the best match, and these orientations
are shown in Figure 6.2. The out-of-plane orientation corresponds to the crystal direction
pointing along the electron beam direction, and the matching results show that the sample
is oriented along the (111) direction as expected. Using these estimated orientations, we are
able to assign crystallographic indices to each of the Bragg peaks identified in the experiment
by simulating a kinematic pattern at the estimated orientation and pairing up experimental
peaks with fall within a given cutoff distance. We also retain the simulated pattern, which
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Figure 6.1: Virtual images obtained from the 4D–STEM dataset for the direct beam (bright-
field) and each of the first order (darkfield) reflections.

contains all the possibly excited Bragg vectors out to a scattering vector of 1.5 Å−1 to use as
the basis for Bloch wave calculations. The in-plane orientations show the crystal direction
pointing in the downward direction of the scan. As shown in Figure 6.2 these orientations
are “symmetry-reduced,” and show a consistent (022) type orientation. However, because
the orientation matches from the kineamtic matching are close to, but not exactly on, a zone
axis orientation there is an instability in the heuristic used to compute this in-plane rotation
of the lattice. Thus pixels with different color on the out-of-plane map may give a different
crystallographic index to the downward direction. For the dynamical refinement procedure
this indexing should be consistent in order for the reference frames of each simulation to
match one another, and so we apply a different heuristic that ensures that the final Euler
angle for all of the patterns is reduced by the 6-fold symmetry of the (111) zone axis. For
polycrystalline scans care must be taken that within each cluster of pixels corresponding to
a grain, the indexing heuristic is similarly stable and globally consistent.
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Figure 6.2: Crystal orientation measured using the kinematic dictionary matching approach
of Ophus et al. [124], showing (left) the crystal orientation pointing downward in the plane
of the scan and (right) the orientation of the crystal facing the electron beam. The kinematic
matching library shows the sample to be single crystalline, and reveals a slight misorientation
boundary near the bottom of the scan.

Dynamical Refinement

At this stage we have, for each scan position in the dataset, an approximate orientation
(obtained from kinematic library matching), a list of Bragg beams which may potentially
be excited in this orientation (derived from the approximate orientation), and a list of each
experimentally measured diffraction disk containing its crystallographic index and integrated
intensity. With this information in hand we can proceed to the Bloch wave dynamical refine-
ment procedure. This refinement procedure as applied to a single representative diffraction
pattern chosen from the dataset is shown in Figure 6.3. The cost function from Eq. 6.1 is
three dimensional, so for visualization we project it along the thickness and mistilt dimen-
sions by taking the minimum across the other dimension(s). At each iteration, we sample
a region of tilt vectors around the best match from the previous step, with the first step
seeded with the estimate from the kinematic library matching. We used three refinement
steps which progressed from exploring 3.5◦ of misorientation in 0.25◦ steps to exploring 0.1◦

of misorientation in 0.01◦ steps.
The cost function is highly oscillatory with respect to thickness but is relatively cheap

to compute for many thickness values, so we evaluate it across the full set of candidate
thicknesses at every iteration. It is also clear that there are many local minima as a function
of tilt, so it is necessary to sample the entire grid around each guess (i.e. gradient descent
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Figure 6.3: Projections of the 3D cost function onto thickness and orientation dimensions
during progression of the iterative refinement procedure for a single diffraction pattern.
Each row corresponds to one iteration, and the orientation search range is progressively
narrowed around the best match from the previous search (indicated with a blue circle on
the tilt projection). The first iteration searches a neighborhood centered on the orientation
obtained from the kinematic library matching routine.
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Figure 6.4: (left) Crystal orientations obtained from the dynamical refinement, shown as
mistilt from the (111) crystal orientation (the maximum mistilt shown on the left panel is
1◦). (right) Histogram of misorientation of each pixel in the scan. The majority of the crystal
is oriented within about 0.2◦ of the perfect zone axis orientation, and the defect area on the
bottom left of the scan region is misoriented by approximately 0.5◦.

or another iterative procedure are not appropriate as they are bound to get trapped in these
local minima). The combination of thickness and tilt that minimze the cost function are
marked on each iteration. As we progress, the range of tilts is made smaller and the sampling
progressively finer in order to converge on the optimal match. We also note that the best
matching thickness is highly dependent on the accuracy of the tilt value, as it changes from
≈ 1950 Å at the first iteration to ≈ 1100 Å at the final step (and finds a deeper minimum as
the refinement progresses).

Dynamical Refined Crystal Orientation

The refined orientation of the crystal is shown in Figure 6.4, where the saturation corresponds
to the angle between the local orientation and an exact (111) zone axis orientation, and the
color corresponds to the azimuthal angle of this misorientation. The histogram shows the
distribution of misorientations from (111) on the same color scale as the orientation map.
The majority of the crystal is found to be oriented within 0.2◦ of the zone axis orientation,
and the defected region is misoriented by an average of about 0.5◦ from the rest of the scan
region, with a total misorientation of about 0.7◦ from the zone axis. The majority of the
scan region is tilted in the northeast direction, but some positions near the dislocation pileup
at the center of the scan region tilt to the south or southwest, which may correspond to local
lattice distortions produced by the defects. However, we cannot be certain of the source of
these direction changes without high resolution imaging of the area or another independent
measure of the local distortions. Instability in the indexing heuristic could cause some pixels
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Figure 6.5: Maps of local sample thickness obtained from the dynamical refinement proce-
dure and compared with low-loss EELS log ratio estimates of the thickness.

to be indexed differently and lead to a change in the apparent azimuthal direction which is
a multiple of 60◦.

Crystal Thickness

The thickness matched at each scan position is shown in Figure 6.5, alongside with the
sample thickness estimated from comparing the intensity of the first plasmon resonance in
low-loss EELS. The thickness returned by the dynamical refinement procedure is in excellent
qualitative agreement with the EELS result, showing the same wedge strcture of the sample.
However, line traces through three different locations on the crystal show that the dynam-
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ical refimenent procedure typically overestimates the sample thickness. There are several
potential sources for this discrepancy: first, the model for the absorptive potential may be
mismatched with the experiment. In particular, the Debye-Waller factor (for which we used
an assumed room temperature value) may be incorrect, which would change how the mod-
elled intensities decrease with thickness. The presence of an amorphous damage layer or a
surface oxide on the sample may also be responsible for disagreement bewtween the EELS
and dynamical refinement. The presence of these surface layers would alter the effective Z of
the sample, which would have a small effect on the EELS measurement, and miscalibration
of the characteristic scattering length of the plasmon can contribute to the uncertainty in
measured thickness [108]. Meanwhile, defect layers would contribute an amorphous back-
ground intensity to the diffraction patterns which reduce the total intensity in the Bragg
disks, and this could lead to the refinement procedure overestimating the thickness (while
still producing a highly accurate measurement of the orientation). Finally, the EELS data
were acquired at the same zone axis orientation as the diffraction data in order to ensure
good alignment between the two scans for pixelwise comparison, and channeling effects may
alter the strength of the plasmon signal and thus the measured thickness [1].

6.5 Conclusion

In this work, we have developed a method for using dynamical diffraction simulations to
improve the precision of orientation matching from nanobeam 4D–STEM experiments and
to simultaneously obtain the thickness of the sample. This method relies on the extreme
sensitivity of the diffracted intensities to small tilts and to the thickness of the sample, and
uses an adaptive grid search to minimize the number of expensive diffraction calculations
required to match the experimental data. We found that the dynamically refined orienta-
tions have precision of approximately 0.2◦, and that the simultaneously measured thickness
deivates from the thickness obtained from low-loss EELS by approximately 25%. This orien-
tation precision is substantially better than what has been observed with kinematic library
matching and allows for the identification of small-angle defects in crystals.
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Chapter 7

Uncovering Polar Vortex Structures
by Inversion of Multiple Scattering
with a Stacked Bloch Wave Model

Nanobeam electron diffraction can probe local structural properties of complex crystalline
materials including phase, orientation, tilt, strain, and polarization. Ideally, each diffraction
pattern from a projected area of a few unit cells would produce clear a Bragg diffraction pat-
tern, where the reciprocal lattice vectors can be measured from the spacing of the diffracted
spots, and the spot intensities are equal to the square of the structure factor amplitudes.
However, many samples are too thick for this simple interpretation of their diffraction pat-
terns, as multiple scattering of the electron beam can produce a highly nonlinear relationship
between the spot intensities and the underlying structure. Here, we develop a stacked Bloch
wave method to model the diffracted intensities from thick samples with structure that
varies along the electron beam. Our method reduces the large parameter space of electron
scattering to just a few structural variables per probe position, making it fast enough to
apply to very large fields of view. We apply our method to SrTiO3/PbTiO3/SrTiO3 mul-
tilayer samples, and successfully disentangle specimen tilt from the mean polarization of
the PbTiO3 layers. We elucidate the structure of complex vortex topologies in the PbTiO3

layers, demonstrating the promise of our method to extract material properties from thick
samples.

The results presented in this chapter have been published as a preprint titled “Uncovering polar vortex
structures by inversion of multiple scattering with a stacked Bloch wave model” as arXiv:2211.05842, by
Steven E Zeltmann, Shang-Lin Hsu, Hamish G Brown, Sandhya Susarla, Ramamoorthy Ramesh, Andrew
M Minor, and Colin Ophus [200]. The material is presented here with permission of the co-authors.
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7.1 Introduction

Multiple scattering is often viewed as an unwanted and cumbersome artifact in electron
microscopy as it is responsible for confounding effects such as contrast reversals in phase
contrast images and electric field maps [191, 161], complex features inside nanobeam diffrac-
tion disks that hinder precise strain mapping [106, 34, 132, 199], and failure of many super-
resolution imaging techniques [30].

In a näıve sense, an electric field built in to a thin sample causes a tilt of the electron
wave as it propagates through the material. Depending on the optical setup and the length
scale of the changes in the field this manifests as an intensity redistribution in a diffraction
pattern when using a larger convergence angle [115], or a shift of the diffraction pattern when
using a small convergence angle [31, 25]. In materials where the polarization is associated
with a structural distortion, the diffracted intensities also change as a result of the change in
the lattice electrostatic potential [38]. This is shown schematically in Fig 7.1a, which shows
a sequence of diffraction patterns simulated at differing polarization for a thin sample of
PbTiO3 (PTO).

When the sample thickness increases and multiple scattering occurs, however, the changes
in the diffraction patterns become far more complex than this description. Deb et al. showed
that when diffraction disks overlap, under the weak phase approximation there should be no
contrast between opposing pairs of diffraction disks due to polarization; however, anomalous
contrast between Friedel pairs arises when multiple scattering pathways are considered [42].
Mahr et al [107] showed that for an interface with an electric field due to a difference in
mean inner potentials, dynamical scattering causes the measured electric field to oscillate
wildly for most experimental setups, with beam precession providing the only partial remedy.
Nguyen et al [118] also observed that when measuring chiral polarization domains via the
diffraction intensity changes associated with a structural distortion, the chiral directions flip
as a function of thickness. This case is shown schematically in Fig 7.1b for sample of PTO
that is thick enough to cause multiple scattering of the electron probe.

Various approaches for reconstructing sample properties or structure under conditions of
multiple scattering have been developed that utilize the S-matrix description of the scat-
tering process [22, 44, 133, 47, 21]. In these approaches, the electron scattering process is
encapsulated in the “scattering matrix,” an object which contains the information about the
material structure and thickness-propagation effects, such that the S-matrix multiplies with
a vector representing the incident electron wave to yield a vector representing the scattered
wave [169]. As we will discuss in the theory section below, there is useful correspondence
between the entries of the S-matrix and the properties of the sample, such as its thick-
ness, polarization, or tilt. This correspondence can be used in both the forward direction to
simulate diffraction intensities given known structural parameters, as well as in the reverse
direction to recover structural parameters from diffraction intensities. Much of the literature
on this method is concerned with atomic-resolution reconstruction of the sample potential.
Donatelli and Spence demonstrated a method for recovering the sample potential at high
resolution from a tilt series of diffraction patterns by iterative inversion of the S-matrix and
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without prior knowledge of the sample thickness [44]. Brown and coworkers have developed
methods for recovery of the S-matrix, originally from focal series 4D-STEM data [22, 21] and
later extended to a single defocus [47]. Their former method provided some 3-dimensional
information about the sample, which they recovered from the S-matrix by an optical sec-
tioning approach. Alternatively, when the approximate structure of the material is known,
and variation along the beam direction can be ascribed to a small number of parameters,
the PRIMES (parameter retrieval and inversion from multiple electron scattering) family
of methods can be used to obtain property variation along the beam direction [137, 136,
135, 139]. These methods all utilize a stacked S-matrix model to represent parameter vari-
ation along the beam direction, which are refined against test CBED patterns using various
numerical optimization schemes.

In this work, we analyze a complex sample consisting of multiple distinct layers through
the thickness, and use a model of the electron multiple scattering to extract information
about the material. The sample, consisting of 16 unit cells of SrTiO3 (STO), 16 unit cells of
PTO, and 16 units cells of STO, is shown in Fig 7.1c. The vortex structures in this material
have been previously studied by plan-view and cross section transmission electron microscopy
[190, 38] and by x-ray coherent diffractive imaging [163]. These vortex structures offer the
promise of creating new electronic states of matter, with structured domains with nanometer-
scale domain sizes. Similar to PRIMES, we do not aim to recover the full atomic structure
of the material. Instead, we model the scattering matrix using parameters that represent
small perturbations from an a priori known average structure of the material, and refine
the model to match measured diffraction intensities. Parameterizing the scattering model
allows us to choose a small and physically meaningful set of variables to refine against, and
by computing gradients of the model semi-analytically we are able to dramatically accelerate
the discovery of the model parameters. Our method is sufficiently fast to allow us to perform
the parameter matching for each probe position in a four-dimensional scanning transmission
electron microscopy (4D-STEM) scan, where a shallow converged electron probe is rastered
across the sample surface.

7.2 Theory

To compute the dynamical diffraction intensities, we utilize the Bloch wave method, which is
fully described in DeGraef [40]. In this method, the electron wave is written as a combination
of Bloch states, and thus the Schrödinger equation for the fast electron wave is cast as an
eigenvalue/eigenvector decomposition

ĀC = 2knγC, (7.1)

where the “structure” matrix Ā is determined by the crystal structure and orientation of
the sample, C is a matrix whose column vectors contain the Bloch wave coefficients, kn is
the normal component of the incident wavevector, and γ relative normal component of each
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Figure 7.1: Nanobeam electron diffraction signals from lattices with varying in-plane po-
larization, indicated by the arrows. Diffraction pattern simulations of (a) thin PbTiO3, (b)
thick PbTiO3, and (c) multilayer with 16:16:16 unit cells of SrTiO3:PbTiO3:SrTiO3. Left to
right, the in-plane PbTiO3 polarization varies smoothly from zero, full left-facing, zero full
right-facing, and zero polarization.
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of the Bloch waves. The entries of the structure matrix are given by

Ā =


0 U−g · · · U−h

Ug 2k0sg · · · Ug−h
...

...
. . .

...
Uh Uh−g · · · 2k0sh

 (7.2)

where Ug−h is the Fourier component of the sample electrostatic potential corresponding to
the scattering vector g − h and sg is the excitation error for the beam g. The excitation
error is given by

sg =
−g · (2k + g)

2|k + g| cosα
(7.3)

where k is the wavevector of the incident electron beam, and α is the angle between the
sample normal and the incident beam direction. To include absorption due to thermal diffuse
or inelastic scattering, an imaginary component of the sample potential U ′

g is included in the
matrix Ā by adding iU ′

0 to the diagonal and iU ′
g−h to the off-diagonal. By computing the

eigenvalue/eigenvector decomposition of this matrix, we obtain the Bloch wave coefficients

C
(j)
g and the normal components γ(j), which are used to obtain the scattered wave amplitudes

for a given crystal thickness. The electron wave ψ at a depth z in the crystal is

ψ(z) = CE(z)C−1ψ0 = S(z)ψ0 (7.4)

where C is the matrix containing the eigenvectors and E(z) = e2πiγ
(j)zδij is a diagonal matrix

which depends on the thickness and the Bloch wave normal components. ψ0 is a vector
containing the Fourier coefficients of the incident electron wave—in the case of plane wave
illumination, it is a vector with the value of 1 at the index corresponding to the incident
beam direction and zero elsewhere.

This transformation can by compactly represented by the scattering matrix S which maps
the vector representing the incident electron wave to the scattered wave at depth z. Writing
the equation in this form, we see that the S-matrix is the exponential of the structure matrix
A multiplied by 2πiz.

Stacked S-matrix model

In the description of the Bloch wave model above, we obtained a single S-matrix which
transformed a plane wave ψ0 incident onto a crystal of some thickness z into the scattered
wave ψ. If the electron wave were to immediately enter another crystal, we can model this
further scattering by simply using the S-matrix of that layer to transform the previously
scattered wave into the final scattered wave [165, 137]. This operation is equivalent to
multiplying the complex S-matrices together and applying it once to the original wave.
From a numerical standpoint, it is more convenient to successively apply the S-matrices to
ψ0 rather than multiply the S-matrices first, as matrix-vector multiplications are cheaper
than the matrix-matrix products needed to construct the total S-matrix.
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In this work, we will model the trilayer STO:PTO:STO sample using the product of 3
S-matrices:

S = SSTO SPTO SSTO (7.5)

For the trilayer sample we consider here, the epitaxial relationship between the layers
considerably simplifies the use of the stacked S-matrix approach, as the layers share the
same lattice—this ensures all of the S-matrices share the same set of beams. In a situation
where the layers do not share the same lattice, one must ensure that all of the component
S-matrices include all of the beams from all of the layers. Further, in such case it is possible
for a beam scattered by the top layer to be evanescent in a lower layer, with exponentially
decaying intensity [165].

Derivatives of the stacked S-matrix model

Using the Bloch wave method, we have obtained a scattering matrix which is the exponential
of the structure matrix, whose entries are readily obtained from the crystal properties. The
full scattering matrix describing the multilayer is represented as a product of three such S-
matrices. In order to match the parameters of the model to our experimental data, we will
use an optimization procedure to minimize the error between the model and the experiment.
Unfortunately, each evaluation of the scattered wave using this model requires (for each
layer) building a new A-matrix and diagonalizing it, which is computationally expensive
and makes numerical optimization inefficient. Therefore we aim to obtain the derivatives
of the scattering matrix with respect to the entries of the structure matrix, so that we
can compute the gradient of the error without the large number of function evaluations
necessitated by finite differences. Najfeld and Havel [117] define the directional derivative
DV (t,A) of a matrix exponential etA in the direction V as

DV (t,A) ≡ lim
h→0

1

h

(
et(A+hV ) − etA

)
(7.6)

We will also use the notation dS
dθ

to refer to the derivative of a scattering matrix in the
direction Vθ, where θ is one of the structural perturbation parameters. For a matrix which
has been spectrally decomposed as A = UΛU−1, (i.e. its eigendecomposition has been
computed, where the columns of U contain the eigenvectors and the diagonal of Λ contains
the eigenvalues λi) the directional derivative of its exponential can be computed as [117]

DV (t,A) = U
((
U−1V U

)
⊙Φ(t)

)
U−1. (7.7)

where ⊙ is the Hadamard, or elementwise, product. The entries of Φ(t) depend on the
eigenvalues of A:

Φij(t) =

{
(etλi − etλj)/(λi − λj) if λi ̸= λj
tetλi if λi = λj

(7.8)

To compute the derivative of the total S-matrix comprised of an ordered collection of N
separate scattering matrices indexed with the superscript (j) (i.e. S =

∏
j S(j)), with respect
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to a parameter θ we use the product rule

dS
dθ

=
N∑
i=0

[
j=i−1∏
j=0

S(j) · dS
(i)

dθ
·
k=N∏
k=i+1

S(k)

]
. (7.9)

Due to our choice of parameters for the model, many of the derivatives dS(j)

dθ
will be zero. For

the terms where there are nonzero derivatives, the derivative of the total S-matrix comprises
the scattering up to the layer affected by the parameter θ, the change in scattering within that
layer, and the further scattering of the wave by the following layers in the heterostructure.

In our model of the trilayer sample, there are two relevant classes of structural perturba-
tion that we will attempt to recover: crystal tilt and structural distortion due to polarization.
In the following section, we will derive the direction matrices Vθ for these types of pertur-
bation.

Crystal tilt

Because tilt of the crystal is included solely in the diagonal elements of the structure matrix
via the excitation errors sg, the derivative direction is

(Vtilt)g,h = 2k0
dsg
dk0

δg−h (7.10)

The derivative of sg with respect to the transverse (x and y) components of the incident
wavevector are approximately

dsg
dk{x,y}

= −
g{x,y}
|g + k0|

+
(g{x,y} + k{x,y})(g · (2k + g))

2|g + k|3
. (7.11)

We have neglected the cosα term in the denominator of sg in this derivation to greatly
simplify the expression at the cost of some small error in the magnitude of ds

dk
.

Polarization

While it is possible under certain conditions to recover the locations of each atom in the unit
cell by recovering the full S-matrix from diffraction data, [44, 22] here we parameterize the
model in terms of the polarization directly, and displace the Ti and O sites by interpolating
between their positions in the canonical non-polar and polar structures. For each atom in
the unit cell, we define displacement vectors δr

(j)
a and δr

(j)
b which takes the atom from its site

r(j) in the non-polar structure to its site in the canonical polar structure, for polarizations
in the a and b directions respectively. For intermediate or mixed-direction polarizations, we
linearly scale the displacement vectors by the relative polarization, ρa and ρb for a and b
polarizations respectively. The Fourier coefficients of the crystal potential are thus written
as

Ug =
1

Ω

∑
j

f (j)
e e2πi((r

(j)+ρaδr
(j)
a +ρbδr

(j)
b )·g) (7.12)
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where Ω is the unit cell volume, and the atomic form factors f
(j)
e are computed using the

absorptive Weickenmeier-Kohl parameterization for isolated neutral atoms [183]. The deriva-
tive of the structure factor with respect to the relative a-axis polarization parameter, ρa, is
then

dUg

dρa
=

1

Ω

∑
j

2πif (j)
e (g · δra)e2πi((r

(j)+ρaδr
(j)
a +ρbδr

(j)
b )·g) (7.13)

and a similar expression arises for dUg

dρb
. The derivative direction matrix for polarization is

simply filled with the derivatives of the Fourier coefficients, e.g.(
Vρ{a,b}

)
g,h

=
dUg−h

dρ{a,b}
(7.14)

Note that we do not take into account expansion of the unit cell, so the mean inner potential
term U0 does not change, and thus polarization only affects the off-diagonal elements of the
structure matrix.

Numerical Optimization

To fit the stacked S-matrix model to the experimental measurements, we implemented a
version of the alternating direction method of multipliers [18]. At each iteration of the
optimization algorithm, we first update the model parameters at each probe position using
our previously derived gradients and taking a step along the direction of steepest descent.
We then perform regularization of the fitted model parameters to ensure convergence to a
physically sensible solution and enforce smoothness.

Gradient Descent

The loss function L is the sum squared difference between the simulated diffraction intensities
from the model and the experimental intensities for each Bragg beam recorded

L =
∑
g

(
Iexp(g)− µ|Sψ0(g)|2 − ν

)2
(7.15)

The modeled intensities have both an additive intensity offset ν and multiplicative scaling
µ, which we found necessary in order to compensate for background noise and intensity
variation in the experimental data. Note that the S-matrix calculations are performed using
a different, and larger, set of Bragg beams, in order to include scattering into the higher
order beams (not recorded on the detector) in the forward model. Only the Bragg beams
present in the experiment contribute to the loss function. The derivatives of the loss function



CHAPTER 7. MODEL-BASED DYNAMICAL INVERSION 98

with respect to the intensity scale parameters are given as

∂L
∂µ

=
∑
g

−2|Sψ0|2
(
Iexp − µ|Sψ0|2 − ν

)
(7.16)

∂L
∂ν

=
∑
g

−2
(
Iexp − µ|Sψ0|2 − ν

)
(7.17)

(where we have dropped the dependence on g from the notation for compactness). The
derivatives with respect to the structure perturbations involve the derivatives of the S-
matrix, and so are much more complicated expressions. For a generic parameter θ that
enters into the S-matrices, the derivative of the loss function is

∂L
∂θ

= −4µRe

[
ψ∗dS

dθ
ψ0

]
·
[
Iexp − µ|Sψ0|2 − ν

]
(7.18)

The gradients with respect to the tilt and polarization variables are obtained using the
derivative directions in Eqs. 7.11 and 7.13, the product rule in Eq. 7.9, and the S-matrix
derivative method in Eq. 7.7. At each step of the optimization procedure, we update the
parameters by taking a step along the negative gradient direction of this loss function.

Regularization

In order to obtain physically sensible solutions to the optimization problem we found it
necessary to apply several regularizers. Before performing the optimization, we de-noise
the integrated disk intensities using principal component analysis, retaining the first 16
components.

At each iteration step, we apply further regularization. First, the estimated parameters
are smoothed across the real-space dimensions of the scan using a Gaussian kernel. Since the
intensity scale and offset and the tilts are expected to vary slowly across the field of view,
we used a kernel size of 50 nm for the intensity parameters and 25 nm for the tilts. The
polarization is expected to vary more rapidly, so we used a kernel size of 2 nm. Note that
the experiment used a probe step size of 1 nm, giving equivalent values for the size of each
kernel in terms of the number of probe positions.

In addition, we also clip the fitted parameters to be within set bounds, so that outliers
do not excessively propagate error to their neighbors via the smoothing kernel. We note
that we do not apply any explicit high-pass filtering to the fitted polarization values (on
the contrary, they are Gaussian filtered, albeit with a very small kernel size). However, the
strong smoothing regularization applied to the tilt and intensity signals can have the side
effect of forcing all of the high frequency variation into the polarization channel.

Atomic Form Factors

Wu et al [188] showed that 4D-STEM may be sensitive to the charge transfer between sites
in ionic materials, using strontium titanate as a model system, which would imply that the
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independent atom model for the crystal potential may not be valid for our computations. To
test this possibility we used the GPAW density functional theory package [113] to simulate
the charge transfer between species, and then used abTEM [102] to perform diffraction sim-
ulations for the simulated charge densities that match our experimental conditions. From
these simulations we observed that the maximum deviation in the diffracted intensities be-
tween the DFT and IAM potentials was approximately 0.1% of the probe intensity, validating
the use of the IAM model for our computations.

7.3 Methods

Heterostructure Growth

We synthesized a trilayer structure consisting of 16 unit cells of SrTiO3, 16 unit cells of
PbTiO3, and 16 unit cells of SrTiO3, on top of a SrRuO3 buffer layer on a single crystal
DyScO3 substrate. The layers were grown at 610◦C in a 100 mTorr oxygen atmosphere,
using reflection high-energy electron diffraction (RHEED)-assisted pulsed laser deposition
(PLD) with a KrF laser. The trilayer structure was removed from the substrate by chemical
processing.

4D-STEM Experiments

We performed 4D-STEM measurements on the TEAM I microscope, an aberration-corrected
Thermo Fisher Scientific Titan operated at 300 kV with a probe current of 100 pA. We
used a STEM probe semiangle of 2 mrad, and a STEM probe step size of 1 nm. We
recorded diffraction patterns using a Gatan K3 direct electron detector located beyond a
Gatan Continuum energy filter. We operated the K3 detector in electron counting mode
using a binning of 4x4 pixels, a camera length of 1.05 m, and an exposure time of 47 ms. We
analyzed the 4D-STEM experiments using custom Python and Matlab code. The diffraction
pattern simulations and Bloch wave calculations and optimizations have been implemented
as part of the py4DSTEM analysis toolkit [158, 124, 198].

7.4 Results & Discussion

Tilt/Polarization Confounding

Figure 7.2 shows how local mistilts of the sample from the perfect zone axis orientation can
confound the measurement of local polarization when using a conventional metric based on
Friedel pair asymmetry. The top row of Fig. 7.2a shows a sequence of simulated diffraction
patterns for the STO/PTO trilayer sample at varying polarization in the x-direction. The
inset numbers indicate the polarization signal measured using the anomalous contrast of
the (200) Friedel pair [42], computed as (I200 − I200)/(I200 + I200) and normalized to the
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(a) (b)

(c)

Figure 7.2: Confounding of tilt and polarization signals for a STO:PTO:STO trilayer. (a)
Sequences of diffraction patterns simulated at relative x-direction polarization varying from
0–1 for various mistilts from a perfect [001] orientation. The two diffraction disks conven-
tionally used to measure polarization, (200) and (200) are highlighted, and the inset text

indicates the relative polarization measured as
I200−I200
I200+I200

. (b) Line traces of selected diffraction

intensities for different mistilts, with the (200) and (200) reflections highlighted. (c) Map
of apparent polarization signal for a trilayer with Px = 1 as measured from the asymmetry
of the (200) and (200) disks for different mistilts. Contrast reversals in the polarization
signal occur with at little as 5 mrad mistilt. The overlaid numbers indicate the tilt values
corresponding to the rows of (a).
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θx = θy = 0, Px = 1 value. The signal is monotonic with increasing polarization and
approximately linear, indicating that in the ideal case the symmetry breaking of this pair of
diffraction disks is a good measurement of the local polarization. As shown in the left panel
of Fig. 7.2b, the intensities of these disks branch as a function of polarization. When tilting
the incident beam towards the positive y-axis, as in the second row of Fig. 7.2a, the symmetry
of (200) pair of diffraction disks is not broken, but the different excitation of these beams
(shown in the center panel of Fig. 7.2b) causes the signal to be suppressed by approximately
20%. However, when the beam is tilted by 5 mrad (≈ 0.3◦) towards the x-axis (as shown
in the right panel of Fig. 7.2b), the effect of the tilting is to break the symmetry of the
(200) disks. This slight mistilt in either direction along the x-axis completely destroys the
polarization measurement. In the third row of Fig. 7.2a, where the beam is tilted towards
the positive x-axis, there is an apparent nonzero polarization even when the material is not
polarized. In the fourth row of Fig. 7.2a (and the right panel of Fig. 7.2b) a tilt towards
the negative x-axis causes an inversion of the polarization signal when Px > 0, non-monotic
behavior when Px < 0, as well as an apparent nonzero polarization even when the material
is not polarized. These effects are plotted as a function of x and y tilts in Fig. 7.2c.

Gradients of the Diffracted Intensities

Computations of the derivatives of the diffraction disk intensities with respect to x-direction
polarization and tilt are shown in Figure 7.3, evaluated over a range of tilts and polarizations.
The inset numbers indicate the difference between the derivative of the (200) Friedel pair,
which demonstrates the sensitivity of the signal derived from the anomalous contrast of
those reflections to the chosen parameter. The difference in overall magnitude between the
polarization and tilt derivatives is affected by the choice of units for the parameters; in the
figure they have been scaled to be visually uniform, and in the optimization procedure the
problem is rescaled to promote uniform convergence along all the parameter directions. In
the on-zone, unpolarized case (P = 0, θ = 0) in the top left, the (200) anomalous contrast
signal will not distinguish between polarization of the crystal and tilt, as both cause the same
anomalous contrast. However, other reflections respond in different ways to polarization and
tilt. Thus, when considering all of the diffracted beams the gradient directions for tilt and
polarization are approximately 62◦ separated. Since they are not orthogonal, an iterative
optimization will be needed in order to solve the polarization and tilt. In the case of nonzero
polarization and tilt, the gradients tend to become more parallel. In particular the gradients
with respect to y-direction polarization and tilt, which are fully orthogonal to the x-direction
parameter gradients at P = 0, θ = 0, will become partially coupled to the other direction
when the crystal is tilted or polarized.

Experimental Results

The fitted polarization and tilts of the STO:PTO:STO multilayer sample are plotted in
Fig. 7.4 over the full field of view. Immediately, we can see several domains in the polarization
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Figure 7.3: Derivatives of the diffracted intensities with respect to x-polarization Px and tilt
about the x-axis θx. The inset numbers show the value of ∂I200

∂□ −
∂I200
∂□ in arbitrary units,

where □ represents polarization for the left 3 columns, and tilt for the right 3 columns.

maps in Figs. 7.4a and b where the regular periodic structures show the tubular vortex
structures. The “axial” polarization represents the PTO polarization along the directions
parallel to the vortex cores, while the “lateral” polarization is perpendicular. Inside each
vortex, the projected polarization is relatively constant in a given domain. Various domain
boundaries are also visible, where the polarization abruptly changes sign, in either the axial or
lateral directions, or both. These domain structures and domain walls are in good agreement
with previous observations of STO/PTO multilayer samples [190, 38, 170]. The tilt maps
shown in Figs. 7.4c and d show significant rotation from the ideal zone axis, especially in
the y-axis direction. These maps demonstrate the need to include tilt in the modeling of
the diffraction signals. The smoothness of the estimated tilt is due in part to the strong
regularization applied during the reconstruction.

The polarization maps contain many complex domain and domain wall structures. We
expect that the vortex cores will have alternating polarization signs in the axial direction.
This alternating structure is visible in all domains in Fig. 7.4a, though interestingly we also
observe a negative offset from zero mean axial polarization in the largest domain spanning
the grain in the bottom half of the map. The grains at the top and bottom edges also
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a b

c dTilt Tilt

Figure 7.4: (a),(b) Polarization and (c),(d) tilt of the STO:PTO:STO sample recovered from
the optimization procedure. Approximate polarization directions are labeled above.
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show a significant positive offset from zero mean. These observations suggest that there may
be a net axial polarization in many of the domains, which can’t be directly observed from
qualitative estimates of the polarization which have been high-pass filtered [170].

By contrast, in the lateral direction we expect oscillations in the polarization, but that
each domain will have a larger net positive or negative polarization. This is because phase
field predictions of the polarization structure of the PTO vortex phase predict that that every
other vortex will be displaced towards one of the STO/PTO interfaces, while the remaining
vortices will be displaced towards the other PTO/STO interface [170]. This in turn causes
a net polarization flow to one of the lateral directions. Susarla et al. provide more phase
field modeling and predicted vortex domain structures [170]. These net polarization features
are indeed observed in Fig. 7.4b. Domains in the top third of the map and bottom left show
significant polarization towards the negative direction, while the domains in the bottom two
thirds show significant polarization in the positive direction. Various small domains are
interspersed into the larger domains, but each shows a non-zero mean polarization. Overall,
these observations provide a significant step forward in accurate modeling of the intensity of
Bragg peaks when the beam undergoes significant multiple scattering and the sample has a
large mistilt from the ideal zone axis.

Future Directions

In this work we have shown a stacked S-matrix model for scattering through a trilayer
heterostructure parameterized with a single homogeneous polarization direction within the
PTO layer. However, the samples we investigated are known to have polarization that varies
in a complex manner through the thickness. A natural extension of Equation 7.5 to account
for this is to model the PTO layer with a product of NL S-matrices with distinct polarization:

SPTO =

NL∏
i

ŜPTO(ρa,i, ρb,i; t = T/NL) (7.19)

where ρa,i and ρb,i are the relative polarization of the i-th layer in the a and b directions,
and T is the total thickness. This modification to the model allows us to more accurately
reproduce the physics of the scattering, at the cost of adding substantially more optimization
variables. This added complexity can be mitigated somewhat by applying constraints to the
variation in polarization with thickness. For example, if the polarization is constrained to
vary linearly then the polarization variables at the i-th layer are expressed in terms of just
two optimization variables, ρtop and ρbottom regardless of the number of layers modeled

ρi = ρtop +
i

NL − 1
(ρbottom − ρtop) (7.20)

Pennington and Koch [135] have used a similar stacked model to solve for polarization
changes along the beam direction, but their approach relies on having a “composite” CBED
measurement that spans a large range of incident beam directions. This approach is both
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experimentally more challenging and several orders of magnitude more computationally in-
tensive, but the inclusion of many beam directions may be necessary in order to obtain 3D
information. It may also be possible to use multibeam electron diffraction [66] to obtain
several nanobeam diffraction patterns with large angular separation simultaneously.

7.5 Conclusions

In this work, we have constructed a model of the electron multiple scattering through a com-
plex multi-layer sample, parameterized over the physically relevant variables, and utilized an
optimization procedure to fit the model to experimental data. Simple models for measuring
the polarization of materials from nanobeam electron diffraction patterns, using symmetry
breaking of pairs of diffracted disks, break down in the presence of even small tilts of the
crystal, causing contrast changes and reversals. Using a stacked S-matrix approach, we are
able to use all of the scattered beams to determine polarization and tilt simultaneously. In
order to make the problem computationally feasible for a large area scan, we derived the an-
alytic gradients of the diffraction intensities and used them to perform regularized gradient
descent.
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Part III

Conclusion
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Chapter 8

Summary and Future Work

8.1 Conclusions

In this dissertation, we began by overviewing the theory of diffraction in a TEM, how dynam-
ical diffraction arises, and how diffraction patterns are computed using quantum mechanical
methods. In Chapter 3, we demonstrated an algorithm for hyperspectral total variational
densoising, with a high-performance open-source implementation, cyTVDN, that is specif-
ically designed to handle very large 4D–STEM datasets. On simulated low-dose data we
observed that the method could effectively reduce the noise in diffraction patterns and re-
covered Bragg disks that could be detected and utilized in structural analyses. In Chapter 4,
we demonstrated how momentum-patterned electron probes can improve the precision of the
Bragg disk detection that is used for calculating strain from 4D–STEM data. Our approach
greatly improved the precision of strain measurements, in particular for thick samples with
strong dynamical diffraction effects. In experimental strain maps we found that anomalous
strain due to measurement errors was reduced from ϵ = ±1.5% to about ±0.1% by the use
of the patterned aperture, and in simulations we found the patterned probes to yield precise
strain maps at lower dose than feasible with unpatterned probes. In Chapter 5 we intro-
duced an efficient method to perform automated crystal orientation mapping using a sparse
library matching procedure. This algorithm was imlemented as part of the open-source
analysis suite py4DSTEM and is freely available. We applied the method to a complex poly-
crystalline nanowire sample, and used it to determine the orientation relationships between
neighboring grains. In Chapter 6 we extended the algorithm of the previous chapter to also
include dynamical diffraction effects, using an adaptive grid refinement procedure and Bloch
wave simulations. We found that the orientation precision was improved from the library
matching precision of 2◦ to about 0.2◦, while also simultaneously generating a measurement
of the sample thickness. Finally, in Chapter 7 we extended the simulation matching approach
even further to measure slight polar distortions in a complex multilayer sample. From a su-
perlattice sample consisting of three distinct layers along the beam direction, we were able
to separate the effects of tilting of the foil from the polarization of the center layer. These

https://github.com/cyTVDN/cyTVDN
https://github.com/py4dstem/py4DSTEM
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effects are normally confounded when using a kinematic model of the diffraction process,
but could be separated by our Bloch wave-based refinement procedure. To accelerate this
procedure, we derived semi-analytic expressions for the gradients of the diffraction intensities
with respect to the structural distortions, which allowed us to use the model to solve for the
tilt and polarization of the material across a large-area scan.

8.2 Future Work

Several of the parts of this work have room for future development. In Chapter 5, our
crystal orientation mapping method currently operates under the assumption that the sample
consists of only one phase. However, many samples of interest consist of multiple distinct
phases, such as in transition metal dichalcogenide heterostructures or precipitates in metallic
samples. Adding the ability to distinguish between two phases is challenging for a number of
reasons. For many samples, the phases present may have a symmetry relationship between
them, and in many orientations they could be indistinguishable. Often, phases will have
nearly equal lattice parameters, and then precise measurement of the disk positions becomes
critical.

The work in Chapter 7 on fitting a dynamical diffraction model to measurements from
a complex sample also has room for future development. In that work the complexity of
the model had to be limited in order to keep the computational cost low so that large area
scans could be fitted. This meant that we could not include and truly 3D information in the
model despite the fact that the sample is expected to have property variation along the beam
direction. Fitting methods like this also suffer greatly when there is a model mismatch, and
in this case we believe that the thickness of the sample may have been varying over the field
of view. An interesting future direction for this work would be to perform the fitting using
the optimization procedure produced by the machine learning community. This could be
performed by either using the minimization methods from the machine learning community
to perform the fit to each of the diffraction patterns, or by training a model that can more
rapidly predict the structural parameters from the diffraction intensities. With a more
powerful fitting algorithm, it may become feasible to include more parameters in the model
and obtain more robust measurements.

Several of the methods described here could also be adapted to work with experiments
that include a variety of different beam tilts in the measurement. Multibeam diffraction
[66], which uses a specially patterned condenser aperture to illuminate the sample with
several converged probes separated by a few degrees from the optic axis, yields multiple
diffraction patterns for each probe position. Orientation mapping, for instance, could be
improved by considering the diffracted intensities arising from each of the tilted beams,
and could overcome the inherent orientation matching limit imposed by the flatness of the
Ewald sphere at high accelerating voltage. Similarly, precession diffraction [111] records
diffraction patterns from a cone of incident angles and sums them incoherently. This produces
more kinematic-like intensities which may match the library calculations more faithfully. In
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addition, it tends to allow one to record higher-order reflections, which are more sensitive
to tilt and so could improve the accuracy of the dynamical refinement. In order to include
these composite diffraction techniques, the simulation pipelines would need to be modified,
likely requiring longer computation time.
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