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Current-enabled optical conductivity of superconductors

Micha l Papaj
Department of Physics, University of California, Berkeley, CA 94720, USA

Joel E. Moore
Department of Physics, University of California, Berkeley, CA 94720, USA and

Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

In most superconductors, optical excitations require impurity scattering or the presence of mul-
tiple bands. This is because in clean single-band superconductors, the combination of particle-hole
and inversion symmetries prevents momentum-conserving transitions. In this work we show how the
flow of supercurrent can lead to new contributions to optical conductivity. As supercurrent breaks
inversion symmetry, transitions across the superconducting gap become allowed even in clean super-
conductors and dominate over impurity-induced contributions for energies comparable to the gap
width. The response is dependent on the nature of the underlying normal state as well as on the type
of superconducting order. Through use of the screening supercurrent with controllable magnitude
and direction, that arises from an external magnetic field, this enables a detailed investigation of the
superconducting state and possible gap symmetry determination in unconventional superconductors
for which other techniques have not been practicable.

Introduction.— Optical measurements are one of the
most fundamental experimental techniques enabling the
studies of quantum materials [1, 2]. Properties such as
reflectivity and transmissivity can shed light on the elec-
tronic structure of solids and enable characterization of
the ordered phases in many systems [3]. In particular,
optical measurements can give insight into the nature
of the superconducting state, for example by determina-
tion of the superconducting gap size [4–6]. On the the-
oretical level, optical properties can be characterized by
optical conductivity σ(ω), which can be obtained from
microscopic considerations. In the case of superconduc-
tors, such a description has been provided by Mattis and
Bardeen [7], who have analyzed the problem in the dirty
limit, where the superconducting coherence length ξ0 is
much larger than the mean free path l. In this limit the
optical response largely follows the normal state Drude
conductvity for ~ω � 2∆, where ∆ is the magnitude of
the superconducting order parameter. However, the real
part of σ(ω) becomes suppressed for smaller frequencies
and vanishes for ~ω ≤ 2∆. This theory, together with
its extensions to arbitrary purity [8, 9], has been very
successful in explaining the optical properties of many
superconductors.

The reasons for the considerable success of Mattis-
Bardeen results even beyond the dirty limit have re-
cently been elucidated in a theory for optical transi-
tions of clean, multiband superconductors [10]. Those
authors have shown that, due to a combination of inver-
sion and particle-hole symmetries, a selection rule for-
bids momentum-conserving optical transitions across the
superconducting gap in simple single-band superconduc-
tors. They have also shown that when multiple bands
are present, some transitions become allowed, giving rise
to new optical conductivity contributions that can dom-
inate over Mattis-Bardeen terms in very clean systems

(l � ξ0), such as FeSe. Moreover, it can be shown that
when a superconductor breaks inversion symmetry, opti-
cal transitions become allowed and the material will ex-
hibit a variety of linear and nonlinear optical effects [11].
While intrinsic inversion-breaking superconductors are
rare, another opportunity for breaking inversion opens
up when we consider supercurrent flow through the ma-
terial, as currents are known to strongly affect the opti-
cal properties of other materials, such as Dirac and Weyl
semimetals [12].

In this work, we investigate the effect of inversion-
breaking supercurrent on optical conductivity of super-
conductors. We demonstrate that optical transitions are
possible even in clean, single-band superconductors when
the flow of supercurrent is introduced. By treating op-
tical conductivity at the linear response level, we show
that the predicted signal depends on the nature of the
normal state as well as the type of superconducting order.
This is corroborated by the comparison of supercurrent-
induced responses between single band and Dirac fermion
systems, and between s-wave and d-wave pairings. The
predicted optical response dominates over that of Mattis-
Bardeen theory for photon energies in the vicinity of the
superconducting gap edge. As the supercurrent flow can
be established and controlled by applying external mag-
netic field through the Meissner effect, this approach in-
troduces a control knob that can modify an optical re-
sponse of a superconductor in an experimental setting
without requiring the system to be driven far from equi-
librium. Combining these factors leads to a promising
tool for investigation of the superconducting state.

Supercurrent and the excitation spectrum.— When a
supercurrent flow is introduced in a superconductor, the
Cooper pairs in the condensate acquire finite momentum
2q. As a result, the dispersion of quasiparticle excitations
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FIG. 1. The effect of supercurrent on quasiparticle dispersion.
In the absence of supercurrent, transitions across the super-
conducting gap are forbidden. However, inversion breaking
due to the current flow enables transitions that contribute to
interband optical conductivity. Blue and red colors indicate
degree of superposition between particle and hole-like states.

now includes a term corresponding to a Doppler shift [13]:

E(k) =
√
ξ2
k + ∆2 + vk · q, (1)

with ξk = εk − µ, where εk is the particle dispersion
in the normal state, µ is the chemical potential, ∆ is
the superconducting order parameter, and vk = ∂εk/∂k
is the group velocity. As the Cooper pair momentum
2q is determined by the direction of the supercurrent,
the quasiparticle energy increases or decreases, depend-
ing whether it moves parallel or anti-parallel to the cur-
rent. Therefore, supercurrent flow introduces anisotropy
into the quasiparticle dispersion, in simple cases leading
to tilting of the spectrum. This is presented in Fig. 1,
which shows the Bogoliubov-de Gennes (BdG) spectrum
around the superconducting gap. When the Cooper pair
momentum exceeds a critical value, Eq. (1) allows for
zero energy excitations. This leads to the appearance
of segmented Fermi surface, which has recently been ob-
served in thin films of 3D topological insulators under
proximity effect [14] and can lead to topological phase
transition [15, 16]. A related phenomenon in which the
Doppler effect plays a role is the Volovik effect [17], where
the supercurrent in vortices leads to changes in the den-
sity of states. This effect has been discussed and detected
in optical measurements previously [18–20]. However, in
our case we are concerned with small in-plane magnetic
fields that do not lead to formation of vortices. Super-
current was also explored in the context of infrared acti-
vation of the Higgs mode in superconductors [21, 22].

The supercurrent flow can arise either due to an ex-
plicit transport current or due to an external applied
magnetic field [23]. In the latter case, as a result of the
Meissner effect, a screening supercurrent develops at the
surface of the superconductor. This screening supercur-
rent is directly connected to the magnetic vector poten-
tial A via the London equation:

jS = −nSe
2

m
A, (2)

where nS is the superfluid density, e is the electron charge
and m is the electron mass. The behavior of A at the

surface of a superconductor can be determined by com-
bining London and Maxwell equations. Assuming that
the boundary of the superconductor is at z = 0 plane
and the supercurrent flows along x direction, in London
gauge (∇ ·A = 0) the vector potential will only have a
non-zero x component. At the surface the vector poten-
tial can thus be determined to be Ax(z = 0) = BextλL,
where Bext is the magnitude of the external magnetic
field, which is pointing along y direction (B(z > 0) =
Bextŷ), and λL is the London penetration depth. There-
fore, in order to obtain a larger Cooper pair momentum
2q = 2eBextλL due to the external magnetic field, one
should increase the external magnetic field and use super-
conductors with longer λL. With Cooper pair momen-
tum and supercurrent present, the inversion symmetry is
broken and we can now investigate the new contributions
to optical conductivity.
Superconductor models.— In this work we focus on

two different models of superconductors that exemplify
the different aspects of supercurrent-enabled optical con-
ductivity. To study these types of superconductors,
we employ BdG formalism to calculate the Matsubara
Green’s functions as discussed below. We obtain results
for single-band spin degenerate s-wave superconductor
and Dirac fermion under proximity effect from s-wave
superconductor. The results can also be extended to
d-wave superconductors as shown in Supplemental Ma-
terials [24]. The mean-field Hamiltonian is assumed to

arise from interacting Hamiltonian H =
∑

kσ ξkc
†
kσckσ +∑

λqc
†
k+qσc

†
k′−qσ′ck′σ′ckσ, leading to a gap equation at

zero temperature:

∆k = −
∑
p

λk−p
∆p

2
√
ξ2
p + ∆2

p

(3)

In the s-wave case, the interaction strength is momentum
independent λp = λ and in consequence, the supercon-
ducting order parameter is also momentum independent
∆k = ∆.

In each case, the influence of the supercurrent is intro-
duced by including the vector potential using minimal
coupling ki → ki + qiτz, where τz = ±1 for particle and
hole sector of mean-field BdG Hamiltonian. In all of the
following calculations we will assume that the supercur-
rent, and thus the Cooper pair momentum, is directed
along x axis and so q = qxx̂. In the case of analytical so-
lution for the optical conductivity of proximitized Dirac
fermion, we do not solve for the superconducting order
parameter self-consistently when supercurrent is present.
Still, for small supercurrent this should not introduce
qualitative differences [25], which we also verify numeri-
cally in the tight-binding model case.

The most generic model of superconductor that we
consider consists of a single spin-degenerate tight-binding
band with nearest neighbor hopping t on a square lattice
with unit lattice constant at chemical potential µ with a
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FIG. 2. Feynman diagrams in Matsubara formalism. (a)
Current-current correlation function evaluated using a bub-
ble diagram with vertex correction to ensure satisfaction of
Ward identities. (b) Self-consistent equation for the vertex
correction. Straight lines indicate propagators in Matsubara
formalism and wiggly line indicates interaction that leads to
superconducting pairing.

superconducting gap ∆:

HTB
BdG(k) = (t(2− cos(kx)− cos(ky))− µ) τz + ∆τx (4)

Such a simple model can nevertheless fully demonstrate
the supercurrent-induced optical conductivity.

For the purpose of analytical derivation we also con-
sider a Dirac fermion with s-wave superconducting order
parameter:

HD
BdG(k) = (~vkxsy − ~vkysx − µ) τz + ∆τx (5)

where si are Pauli matrices representing the spin degree
of freedom. This model can describe the surface state of
a 3D topological insulator under proximity effect from a
conventional superconductor, as in the case of the re-
cent experiment reporting observation of a segmented
Fermi surface [14]. In such a scenario, the Fermi energy
is placed high above the Dirac point and so for small pho-
ton energies we can focus only on the upper Dirac cone
around the superconducting gap. This allows us to treat
this system as effectively a single-band superconductor
with a helical spin-texture [24].

Formalism.— To obtain the optical conductivity
σab(ω) we work within linear response using the Kubo
formula in Matsubara formalism adapted to the BdG
approach. This corresponds to evaluation of the current-
current correlation function as depicted in Fig. 2(a). Ex-
pressed in terms of Matsubara Green’s functions this
gives [26]:

Πab(iωn) =

− 1

βV

∑
k,ikr

Tr ja0G0(k, ikr + iωn)Γb(iωn)G0(k, ikr),

(6)

where ja0 is the component of bare current operator
for the BdG Hamiltonian as described below, Γb is the
current operator with vertex correction included, and
G0(k, ikn) = (ikn − HBdG)−1 is the Matsubara Green’s
function for the BdG Hamiltonian. From this we can ob-
tain the real (dissipative) part of the optical conductivity
by analytic continuation:

Reσab(ω) =
1

ω
ImΠab(ω + iη) (7)

The vertex correction Γ is crucial in consideration of
optical responses in the presence of the supercurrent as
it ensures the satisfaction of Ward identities and in turn
that the obtained results are physical. Indeed, calcu-
lating the uncorrected current-current correlation func-
tion for the case of supercurrent flow in a system with
a parabolic band yields a non-zero result [24]. However,
since the system with a parabolic band is Galilean invari-
ant, the current operator is proportional to momentum
j0 ∼ k, which means it commutes with the full interact-
ing Hamiltonian [ja0 , H] = 0. Therefore, no non-trivial
optical response is possible. In order to rectify this issue,
we include the vertex correction at the ladder approxi-
mation level, which constitutes an appropriate conserv-
ing approximation for the superconductivity treated at
the mean-field level [27, 28]. Such a vertex correction is
depicted in Fig. 2(b) and corresponds to the following
self-consistent equation:

Γa(iωn) =

ja0 −
λ

βV

∑
k,ikr

τzG0(k, ikr + iωn)Γa(iωn)G0(k, ikr)τz

(8)

For the s-wave case, since the interaction strength is
momentum-independent, the correction to the vertex is
only a function of frequency, constant in momentum
space.

The bare current operators in each of the models
are calculated including an infinitesimal vector poten-
tial perturbation δA in the normal state Hamiltonians
in particle-hole space according to minimal coupling rule
k→ k− eδAτz, where τz = ±1 for particle and hole sec-
tors of BdG Hamiltonian. By taking appropriate deriva-
tive we arrive at the current operator in a given direction:

ja0 = −∂HBdG(k− eδAτz)
∂δAa

∣∣∣∣∣
δA=0,∆=0

(9)

Optical conductivity results.— We can now employ the
formalism described above to obtain the real part of the
optical conductivity. Since the s-wave superconductors
have no Fermi surface for small Cooper pair momenta,
only the interband contribution is relevant to their op-
tical conductivity at T = 0. We begin with the prox-
imitized Dirac fermion as the analytical result allows for
gaining better insight into the phenomenon. In this case
we obtain the result including the vertex correction [24]:

ReσDaa(ω) =
e2

h

π

4

∆

µ

~2v2q2
x∆

~2ω2
√
~2ω2 − 4∆2

Θ(ω−2∆), (10)
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FIG. 3. Real part of optical conductivity in a superconductor
carrying supercurrent. (a) Analytical expression for σaa(ω)
for s-wave superconductor with Dirac fermion dispersion. As
s-wave superconductors are fully gapped for small Cooper pair
momentum, the optical conductivity only carries the inter-
band contribution and remains gapped for ~ω < 2∆. (b)
Numerical results for σxx(ω) calculated using tight-binding
model. The solid line shows 1/(ω2

√
ω2 − 4∆2) dependence

that can be inferred from analytical calculation without ver-
tex correction.

with a = x, y, which means optical conductivity for Dirac
fermion case is equal in the directions parallel and per-
pendicular to the supercurrent. This expression, pre-
sented in Fig. 3(a), highlights several important char-
acteristics of supercurrent-induced optical conductivity.
First of all, since the supercurrent in this case only tilts
the dispersion of quasiparticles, the energy separation of
the two BdG branches of the spectrum at a given mo-
mentum k remains the same. Therefore, the minimal
photon energy at which a transition can occur is still
2∆ and optical conductivity remains zero for smaller en-
ergies. Moreover, the optical conductivity also has a
1/
√
~ω − 2∆ singularity at the gap boundary, which will

correspond to a peak in experimentally relevant scenar-
ios. The origin of this singularity is related to the density
of states of a BCS superconductor, which contains pre-
cisely this type of singularity at the gap edges. Finally,
ReσDaa(ω) depends quadratically on the Cooper pair mo-
mentum q.

In the case of tight-binding band described by Eq. (4)
we cannot obtain an analytical result and we have to rely
on numerical calculation for the current-current correla-
tion function with vertex correction as shown in Fig. 3(b).
In numerical calculations we have used t = 1, µ = 0.9,
λ = −1, and qx = 0.025. As mentioned above, approx-
imating the band as parabolic would lead to no non-
trivial optical response due to Galilean invariance. Nev-
ertheless, calculation using bare current vertices can give
additional insight into the functional form of frequency
dependence, leaving the exact prefactor (dependent on
the deviation from parabolic dispersion) to be deter-
mined numerically. As discussed in Supplemental Ma-
terials, the frequency dependence is ∼ 1/(ω2

√
ω2 − 4∆2)

and can be precisely fitted to the numerical results as
demonstrated in Fig. 3(b). This means that the results
for tight-binding band shares similarities with the Dirac

0 5 10 15 20
0

5

10

15

20

FIG. 4. Optical conductivity for superconducting Dirac sur-
face state of CaKFe4As4 at T = 1 K, with ∆ = 5 mev,
v = 105m/s and µ = 20 meV with l/ξ0 = 8, for supercurrent
that closes half of the superconducting gap. Yellow dotted line
shows corresponding Mattis-Bardeen contribution from impu-
rity scattering, red dashed line shows supercurrent-induced
part, and blue solid line shows both contributions combined.

fermion case, stemming from the same s-wave type of
order parameter. Those features are the presence of the
singularity at the gap edge and absence of optical absorp-
tion inside of the gap. However, in contrast to the Dirac
fermion, in this case the optical conductivity in the di-
rection perpendicular to the supercurrent (σyy) vanishes.
This signifies the impact of the normal state dispersion
on the detailed characteristics of supercurrent-induced
optical conductivity.

Discussion.— As presented above, the characteristics
of supercurrent-induced optical conductivity vary consid-
erably depending both on the nature of the underlying
normal state as well as the type of the superconducting
order parameter. As a consequence, optical conductiv-
ity with supercurrent present may serve as an important
tool in characterization of the superconducting state. In
particular, as the supercurrent flow can be introduced by
applying external magnetic field and utilizing the Meiss-
ner effect, the anisotropies of both the normal state dis-
persion as well as the superconducting gap can be in-
vestigated using a vector magnet. As was shown in the
Bi2Te3/NbSe2 system [14], applying only 20 mT of in-
plane field was sufficient to realize Doppler energy shift
comparable to the superconducting gap. At the same
time, that experiment has demonstrated that the screen-
ing supercurrent effects are sensitive to magnetic field
direction. Therefore, similar effects may be visible in op-
tical conductivity measurements. This could enable dis-
entangling the various Fermi pockets that contribute to
superconductivity in materials such as some iron-based
superconductors, where superconductivity in bulk bands
and Dirac surface states coincides. This method could
also elucidate the nature of the superconducting order pa-
rameter in recently studied moiré superconductors such
as twisted bilayer and trilayer graphene [29, 30].
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To estimate the visibility of the proposed effect, it is
necessary to evaluate it in comparison to the Mattis-
Bardeen optical conductivity σMB that arises purely
from impurity effects. As an example, we compare the
supercurrent-induced and impurity-driven optical con-
ductivity for clean iron superconductors with Dirac sur-
face states (such as CaKFe4As4 [31]). The results of such
comparison are presented in Fig. 4. The supercurrent-
induced effect dominates over σMB in the vicinity of the
superconducting gap. This is the region, where the dif-
ference between the two sources of interband transitions
is the most apparent: while σMB follows Drude tail for
large ω, it gets suppressed at the gap edge. In contrast,
supercurrent flow introduces singular behavior of σ(ω) at
the gap edge, leading to the appearance of a sharp peak.
Moreover, in real materials the optical conductivity will
depend on the direction of the supercurrent with respect
to crystalline axes due to corrections to dispersion such
as hexagonal warping [32]. Since both the magnitude of
the peak as well as the anisotropy of optical conductivity
can be controlled by the direction of the current (and in
turn, the direction of the external magnetic field), it is
possible to clearly distinguish current-enabled and impu-
rity effects.

In summary, we have shown that introducing current
flow in a superconductor, either through applying exter-
nal magnetic field or by direct transport current, can sig-
nificantly affect its optical properties at photon energies
close to the superconducting gap magnitude. The effect
is generic, appearing independently of the nature of the
normal states as well as the pairing symmetry, yet it is
sensitive to both of these important material character-
istics. As such, supercurrent-driven optical conductivity
may become a valuable tool in investigations of novel su-
perconductors.

Note added: We thank Liang Fu and Philip Crowley
for bringing our attention to the issue of Galilean in-
variance and its impact on the optical response. They
have recently studied the optical response of s-wave su-
perconductors with supercurrent using a different formal-
ism than ours, and our results are in agreement in that
case [33].
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Science Research Center of the U.S. Department of En-
ergy (DOE). M.P. received additional fellowship support
from the Emergent Phenomena in Quantum Systems pro-
gram of the Gordon and Betty Moore Foundation and
J.E.M. acknowledges a Simons investigatorship.
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PROJECTION TO SUPERCONDUCTIVITY IN UPPER DIRAC CONE

In this section we discuss how for large chemical potential µ we treat Dirac fermion under proximity effect as a
single-band superconductor. The BdG Hamiltonian for Dirac fermion under proximity effect and with supercurrent
flowing is:

H(k) =


−µ −~v(ky + i(kx + qx)) ∆ 0

~v(−ky + i(kx + qx)) −µ 0 ∆
∆ 0 µ ~v(ky + i(kx − qx))
0 ∆ ~v(ky − i(kx − qx)) µ

 (S1)

In absence of superconducting pairing (∆ = 0), its eigenvalues are given by Es1,s2(k) = s1~v
√

(kx + s2qx)2 + k2
y−s2µ,

where s1 = ±1 and s2 = ±1. These eigenvalues have corresponding eigenvectors ψs1,s2 :

ψs1,−1 = (0, 0, s1i exp (−iα−) , 1)
T
/
√

2, ψs1,+1 = (−s1i exp (−iα+) , 1, 0, 0)
T
/
√

2 (S2)

where α± = arctan(kx ± qx, ky). Since we are interested in the properties of the system at low energies, we can focus
on only a single band and its BdG partner, which are given by s1 = 1, s2 = 1, and s1 = −1, s2 = −1. We can now
transform the Hamiltonian of Eq. (S1) to the basis given by Eq. (S2). When chemical potential is large compared to
all the other energy scales of the problem, we can neglect the coupling to the bands that are further away from Fermi
energy. When we expand the transformed Hamiltonian to the lowest order in qx, we obtain:

Hprojected(k) =

(
~vk − µ+ ~vqx kxk ∆

∆ −~vk + µ+ ~vqx kxk

)
(S3)

In this approximation, for large chemical potential Dirac fermion under proximity effect from an s-wave superconductor
can be effectively described as a single band superconductor. To apply this in the optical conductivity calculation in
the main text, we transform other operators to this basis as well.

OPTICAL CONDUCTIVITY OF SUPERCONDUCTORS DUE TO IMPURITIES

In the main text we compare the supercurrent-induced optical conductivity to the effects resulting from impurity
scattering. For s-wave superconductors we use the original results of Mattis and Bardeen [7], which are given in terms
of the normal state Drude conductivity σN (ω):

ReσMB
s-wave(ω)

ReσN (ω)
=

(2∆ + ~ω)

~ω
E

(
(~ω − 2∆)2

(~ω + 2∆)2

)
− 4∆

~ω
K

(
(~ω − 2∆)2

(~ω + 2∆)2

)
, ~ω > 2∆ (S4)

where E(z) and K(z) are complete elliptic integrals of the first and second kind, respectively. This form is responsible
for suppression of the real part of optical conductivity at the superconducting gap edge. For large photon frequencies,
ReσMB(ω)/ReσN (ω) ≈ 1 and the optical conductivity of a superconductor follows what remains of the Drude
conductivity tail.

In the case of d-wave superconductor, we use the following approximate expression [34]:

ReσMB
d-wave(ω)

ReσN (ω)
=

1

2~ω

∫ ∞
−∞

dε

(
tanh

(
ε+ ~ω
2kBT

)
− tanh

(
ε

2kBT

))〈
Re

1√
1−

(
∆

ε+~ω

)2

cos2(2θ)

〉
θ

〈
Re

1√
1−

(
∆
ε

)2
cos2(2θ)

〉
θ

(S5)
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where the averaging over angle θ in momentum space is defined as:〈
Re

1√
1− t2 cos2(2θ)

〉
θ

= Re
1

2π

∫ 2π

0

dθ
1√

1− t2 cos2(2θ)
= Re

2

π
K
(
t2
)

(S6)

Similarly to the s-wave case, this form reproduces Drude conductivity tail for large frequencies. However, inside of
the superconducting gap it does not immediately go to zero due to the nodal character of the gap. Still, the optical
conductivity inside of the gap becomes suppressed compared to normal state Drude peak.

ANALYTICAL SOLUTION FOR THE VERTEX CORRECTION FOR S-WAVE SUPERCONDUCTORS

For analytical solution of the vertex correction equation we largely follow the procedure outlined in the Appendix
of Ref. [27]. This procedure will work for the single band tight-binding model as well as for the Dirac fermion. This
is because, as shown in the first section, for large chemical potential we can project the proximitized Dirac fermion
Hamiltonian to just the upper cone, obtaining an effective single band Hamiltonian. We can therefore work with a
generic Hamiltonian of the form:

H =

(
ξ1(k) ∆

∆ ξ2(k)

)
(S7)

Since the interaction strength in the vertex correction equation is momentum-independent, the vertex correction
added on top of the bare current operator will also be constant in momentum space and we can express it as coefficients
in Pauli matrices expansion as:

Γa(k, ω) =

3∑
i=0

ja,i0 (k)τi +

3∑
i=0

Γa,iτi (S8)

For the models under consideration in this work ja,10 = ja,20 = 0. Using the generic Hamiltonian to calculate the
Matsubara Green’s functions and plugging this vertex correction expansion into the self-consistent vertex correction
equation we obtain:

Γa,1

Γa,2

Γa,3

 =

∫
d2k

(2π)2

λ

D(k)

 −(ξ1 − ξ2)2 iω(ξ1 − ξ2) 2∆(ξ1 − ξ2)
−iω(ξ1 − ξ2) −

(
4∆2 + (ξ1 − ξ2)2

)
2i∆ω

2∆(ξ2 − ξ1) 2i∆ω 4∆2

Γa,1

Γa,2

Γa,3

+

2∆ja,30 (ξ1 − ξ2)

2i∆ja,30 ω

4∆2ja,30


(S9)

where D(k) =
√

4∆2 + (ξ1 − ξ2)2
(
4∆2 + (ξ1 − ξ2)2 + (η − iω)2

)
. Due to the form of D(k), for small superconducting

gap and frequencies of the same order the main contributions to the integral will come from region of momentum
space where ξ1 − ξ2 ≈ 0 and so Γa,1 ≈ 0. We can then solve for the remaining Γa,i components and by using the
self-consistent gap equation we also find that Γa,3 = 0. We finally obtain:

Γa,2(ω) =
2i∆

ω

I[ja,30 ]

I[1]
, I[f(k)] =

∫
d2k

(2π)2

f(k)

D(k)
(S10)

We can now use this to evaluate the corrected current-current correlation function to find optical conductivity.
From the diagram presented in the main text using the fact that Γa,1 = Γa,3 = 0 we obtain:

Πaa(ω) =

∫
d2k

(2π)2

4∆ja,30 (2∆ja,30 + iΓa,2ω)

D(k)
(S11)

Plugging in the result for Γa,2 we get:

Πaa(ω) =

∫
d2k

(2π)2

8∆2ja,30

(
ja,30 − I[ja,3

0 ]
I[1]

)
D(k)

(S12)
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Now we can see that when ja,30 is momentum-independent, I[ja,30 ] = ja,30 I[1] and the optical conductivity vanishes.
This is precisely the case for parabolic system with supercurrent flow, where ja,30 ∼ qx. This result guarantees that
in Galilean invariant system the optical response will vanish as expected. The above equation can also be used to
determine analytically optical conductivity for the case of proximitized Dirac fermion, with the result presented in the
main text. We have also verified the conclusions above for parabolic system numerically without the approximations
taken during the derivation, as shown in the next section.

SUPERCURRENT-INDUCED OPTICAL CONDUCTIVITY AND GALILEAN-INVARIANT SYSTEMS

In this section we expand upon the discussion of the supercurrent-induced effects in Galilean-invariant systems. As
mentioned in the main text, when a single band system has a parabolic dispersion in the normal state, the bare current
operator is proportional to momentum (j0 ∼ k) and since the interactions conserve momentum, j0 commutes with both
the kinetic and the interaction terms in the Hamiltonian. As the Kubo formula relates conductivity to 〈[ja0 (t), jb0(0)]〉,
when current operator commutes with the full Hamiltonian, [ja0 (t), ja0 (0)] vanishes and so does any non-trivial optical
response. However, when the BCS Hamiltonian is treated within the mean-field approximation, the current operator
with supercurrent flowing in the system will not in general commute with the approximate mean field Hamiltonian,
leading to a contradiction with the more general principles derived from the full Hamiltonian. This issue, related to
gauge invariance, has been recognized in the early days of BCS theory and a solution has been proposed by Nambu
[28], restoring gauge invariance in the mean-field BCS formalism by including the vertex correction shown in the main
text. Therefore, to obtain physically correct result, we always include this vertex correction in the calculations shown
in the main text.

Nevertheless, calculations using bare vertices for parabolic systems retain some value due to their analytical
tractability, as the functional dependence on frequency and Cooper pair momentum can remain valid for lattice
systems that lack Galilean invariance. We start with a single spin-degenerate parabolic band with particles of mass
m at chemical potential µ with a superconducting gap ∆:

HP
BdG(k) =

(
~2k2

2m
− µ

)
τz + ∆τx (S13)

We can now directly evaluate the Kubo formula as described by the current-current correlation diagram from the main
text using bare current operators instead of the one with vertex correction. By computing the momentum integral at
T = 0 we obtain the following results:

ReσP, bare
xx (ω) =

e2

h

~2q2
x

2m

8π∆2

~2ω2
√
~2ω2 − 4∆2

Θ(ω − 2∆), (S14)

ReσP, bare
yy (ω) = 0 (S15)

This non-zero result is in contradiction with the general consideration based on Galilean invariance. To see how this
is changed after introducing vertex correction, in additional to the analysis in the previous section we calculate the
corrected expression numerically for the parabolic case as well and show it in Fig. S1(a). As expected, the corrected
expression vanishes identically in the entire frequency range. However, the frequency dependence given by Eq. (S14)
still describes the behavior of the system with a tight-binding band as demonstrated in the main text, just with a
different numerical prefactor. Similarly, other features like the presence of singularity at the gap edge or vanishing
of the response for frequencies within the gap is also retained. As an additional demonstration of the impact of the
vertex correction, in Fig. S1(b) we show the bare and corrected results of numerical integration for the tight-binding
model. The corrected result (the same as presented in the main text in Fig.3(b)) is reduced compared to the bare
result, but doesn’t vanish like the optical conductivity for the parabolic system.

We can perform a similar analysis without the vertex correction for the Dirac fermion case, obtaining:

ReσD, bare
xx (ω) =

e2

h

3π

4

∆

µ

~2v2q2
x∆

~2ω2
√
~2ω2 − 4∆2

Θ(ω − 2∆), (S16)

ReσD, bare
yy (ω) =

1

3
σDxx(ω) (S17)

We see that without the vertex correction, the σxx and σyy components are different from each other. However, while
the component parallel to the supercurrent gets reduced by the correction, the component perpendicular to it remains
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FIG. S1. Comparison of optical conductivity with and without vertex correction. (a) System with purely parabolic bands.
The optical conductivity calculated using bare current operators is non-zero and given by Eq. (S14). However, when vertex
correction is included, the optical conductivity vanishes as expected from Galilean invariance. (b) System with tight-binding
band. The optical conductivity calculated with vertex correction is reduced, but doesn’t vanish due to deviation from Galilean
invariance caused by the crystalline lattice.

the same. Therefore, after the correction is taken into account, both components of optical conductivity are equal as
indicated in the main text.

Finally, we also consider the case of a spin-degenerate parabolic band with d-wave order parameter:

Hd-wave
BdG (k) =

(
~2k2

2m
− µ

)
τz + ∆

k2
x − k2

y

k2
F

τx (S18)

The parametrization of the order parameter is chosen such that the maximal gap in the spectrum is the same as in the
case of both s-wave models, 2∆. Again, we perform the calculations analytically without the vertex correction, which
in this case is more complicated to solve for due to the momentum dependence of the underlying interaction. When
discussing the d-wave case based on a standard Kubo formula for non-interacting mean-field system, we can separate
the interband and intraband contributions as even a small Cooper pair momentum introduces a Fermi surface due to
the nodal nature of the superconducting gap. For the interband contributions we obtain:

Reσd-wave, bare
xx,inter (ω) =

e2

h

~2q2
x

2m∆


K( 1

x2 )−E( 1
x2 )

x x > 1
K(x2)−E(x2)

x2 x < 1
, (S19)

Reσd-wave, bare
yy,inter (ω) = 0 (S20)

where K(z) and E(z) are complete elliptic integrals of the first and second kind, respectively, and we have introduced
symbol x = ~ω/2∆ for compactness. Similarly to the parabolic s-wave case, the component perpendicular to the
supercurrent vanishes. However, due to the nodal character of the superconducting gap, σbare

xx,inter does not vanish

immediately for ~ω < 2∆. Instead, it saturates at a constant value before becoming cut off for ω < 2~
√
µ/mqx at

T = 0 as both BdG branches are either occupied or empty within that energy window. The behavior at the gap
boundary is also singular, but in contrast to s-wave superconductors the singularity is logarithmic log(~ω − 2∆). We
next calculate the intraband component, which for small Cooper pair momenta is given by:

Reσd-wave, bare
xx,intra (ω) = Reσd-wave

yy,intra(ω) =
e2

h

2µ3/2qx√
m∆

η

η2 + ω2
(S21)

In contrast to the interband contribution, the lowest nonvanishing order of intraband conductivity is linear in qx,
compared to q2

x for all the interband contributions obtained above. The intraband contribution also has a Drude-
like behavior, with the peak width determined by the scattering rate η. As such, it is similar to impurity-induced
conductivity of dirty superconductors, and in turn to normal state optical conductivity. Moreover, in this scenario
the intraband term is the same to the lowest order in qx for the components parallel and perpendicular to the
supercurrent. The total uncorrected optical conductivity is reached by summing both interband and intraband terms,
and is presented in Fig. S2. While the results obtained above are without the vertex correction, which would cause the
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FIG. S2. Optical conductivity of d-wave superconductor for parabolic band without the vertex correction. While the presence of
vertex correction would cause the contribution to vanish, a Galilean invariance breaking system, such as a simple tight-binding
cosine band would result in a similar behavior, with singularity at the gap edge and non-vanishing conductivity inside of the
superconducting gap.

interband contribution to vanish due to Galilean invariance, one can expect a similar behavior for the tight-binding
case, in analogy to the s-wave superconductor. Keeping that in mind, both types of contributions can be distinguished
by their different dependence on the Cooper pair momentum (and consequently external magnetic field) as well as
by the absence of interband contribution for components perpendicular to the current. The exact ratio of these two
contributions is also dependent on the purity of the superconductor: for very clean systems the intraband term will
be limited to only the lowest frequencies, and the interband term will dominate.
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