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Ground motion models (GMMs) are used to predict ground motion intensity measures given

parameters descriptive of source, path, and site conditions. These GMMs incorporate source,

path, and site response models that represent approximately the average conditions in the

database from which the GMMs were derived. In the case of NGA-type models, global

data is used, potentially with path and site adjustments for large regions with ample data

(e.g., California), so the predictions represent either global or regional averages. In contrast,

when GMMs are applied for a specific engineering project, the source, path, and site response

attributes of interest are those local to the site, which may depart from the global or regional

averages represented by the GMM. In this context, I refer to the source, path, and site models

in the GMM as ergodic. Alternative models that consider local, or site-specific features, are

considered non-ergodic, and have the potential to significantly reduce the ground motion

variability that is considered in probabilistic seismic hazard analysis.

My thesis work is concerned principally with the site response component of GMMs, and

in particular, with evaluating the effectiveness of predictive models available for non-ergodic

site response analysis. The ergodic site amplification within a GMM represents the global

or regional average for the site’s value of time-averaged upper 30 meters shear wave velocity
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and basin depth. Many local effects may introduce departures in site response from the

ergodic model, including strong impedance contrasts within the shear wave velocity profile,

an unfavorable location relative to a basin edge, complexity of local terrain, and perhaps

other factors. Therefore, the ergodic site response model has two drawbacks: (1) potential

for a biased estimate of mean site response and (2) because the ergodic model averages

over a diverse array of conditions having many different site responses, the model carries a

relatively large standard deviation.

The alternative of non-ergodic site response takes into account the particular geologic

conditions at a site that control site response. If applied properly, non-ergodic site response

can produce unbiased estimates of site response and remove site-to-site variability from the

total standard deviation, which is a significant contributor. One method of evaluating non-

ergodic site response in practice is to utilize recordings at the site to evaluate misfits from a

GMM, and then use this information to construct a median site response model. However,

when on-site recordings are not available, site-specific analysis requires the application of

various predictive models. The questions addressed in this research relate to the effectiveness

of different predictive models for estimation of site response.

The general approach followed in this research was to develop a database of available

recordings for sites in a study region, analyze the data to develop non-ergodic site responses,

and then either 1) apply existing predictive models to the sites with “measured” (i.e., non-

ergodic) site responses and then evaluate their effectiveness over the population of sites or;

2) develop a new predictive model where existing models cannot be reasonably applied.

The first approach of evaluating existing tools is applied to a population of 159 sites in

California. The second approach of developing a new model is applied to 7 sites in Obihiro

(Japan), where soft soil conditions (VS30 = 102 to 211 m/s) require the development of a

novel modeling framework.

For the California sites, the predictive models considered are ground response analy-

sis (GRA; one-dimensional shear wave propagation through a soil column), square-root

impedance method (SRI), and models conditioned on horizontal-to-vertical spectral ratio

(HVSR) vs frequency plots. The GRA and SRI methods require a shear wave velocity (VS)
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profile for the site and models for material damping for each soil horizon in the profile.

Among the 159 sites, the profile depth range is 30 to 255 m (profile period range is 0.06 to

1.02 sec). The HVSR model requires HVSR data, which can be derived from microtremors

or earthquake recordings. A challenge that was encountered in the application of GRA and

SRI methods was the lack of soil profiles to accompany VS profiles. I developed protocols

for estimation of soil type parameters that allow geotechnical damping models to be ap-

plied. Additional damping models were also considered, including one that is informed by

high-frequency spectral decay of site ground motions (κ0).

Despite the depth of the profiles considered in this work being relatively modest, ground

response analyses (or square-root-impedance analyses) are able to improve site response

predictions relative to ergodic models for approximately 36% of sites (for periods less than

or equal to the site period). The inability of site-specific methods to improve prediction

accuracy for the 64% sites could stem from three potential sources: (1) simulations of one-

dimension wave propagation do not accurately characterize the physics of site response; (2)

the measured VS profile from the site does not accurately represent site conditions, either

because of strong site heterogeneity or inaccurate measurements; (3) portions of the site

profile beneath the profile depth significantly impact the site response in the frequency

range of the measured profile. These problems are common to some extent in virtually all

site response simulations, so understanding their collective impact is of practical importance.

The unknown influence of these factors introduces epistemic uncertainties, which we quantify.

Lacking any knowledge of whether a given site is well represented with one-dimensional

simulations, this epistemic uncertainty is only slightly reduced from that of the site-to-site

variability in ergodic models within soil column period range. For the subset of sites where

this modeling is effective, the epistemic uncertainty is more substantially reduced by amounts

ranging from 0.05-0.10 in natural log units.

The HVSR model considered in this work (adapted from a model in literature) uses the

frequency and amplitude of peaks in HVSR spectra. I identify three populations of sites based

on microtremor data – those for which a clear HVSR peak is evident (40%), those for which

no peak occurs (40%), and intermediate/ambiguous cases (20%). When the ergodic model
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is used, sites with a peak are observed to have higher bias and site-to-site variability than

sites without peaks; as a result, commonly used models for site-to-site variability represent

a blending of these condition because the occurrence of peaks is not accounted for. Use

of the HVSR model for sites with peaks does not appreciably change the bias but reduces

dispersion at long periods (> 1 sec) relative to what is obtained with an ergodic model. The

lack of improvement at short period could be caused by false positives (peaks in HVSR that

do not appear in site response) and not well-aligned peak positions between HVSR and site

response, and may also be influenced by the model used in our analyses having been derived

for conditions in Japan. I recommend a California-specific bias correction for sites without

a peak.

For the Obihiro (Japan) sites, I developed a region-specific site amplification model ap-

plicable to the peaty organic soils in this region. The analysis of site response from regional

data required removal of source-specific biases and careful consideration of source-to-site

path effects. These considerations were essential to avoid mapping source- or path-related

model misfits into estimates of site response. I considered two subduction ground motion

models as reference models. By paying special attention to the conditions for which the path

models are effective, and making adjustments for between-island path misfits (Hokkaido to

Honshu and vice-versa), I found the proposed approach effectively identifies site effects, and

that the results are insensitive to the selected ground motion model. Observed site responses

are characterized by strong resonances at first-mode site frequencies as derived from HVSR

measurements.
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CHAPTER 1

Introduction

1.1 Motivation

Ergodic models for site response provide a mean estimate conditioned on certain site pa-

rameters (typically the time averaged shear wave velocity in the upper 30 meters of the site,

VS30, and basin depth). The ergodic estimate of site response includes all site amplification

mechanisms (impedance, nonlinearity, resonance, two- and three-dimensional wave propaga-

tion in basins, etc.), but these effects are smoothed over a large number of sites with different

characteristics. As such, the associated site-to-site uncertainties (denoted φS2S) are substan-

tial, increasing mean or > 50th percentile ground motions at long return periods as derived

from probabilistic seismic hazard analyses (PSHA) relative to what would be obtained with

more accurate methods.

Site-specific or non-ergodic site response is intended to account for wave propagation

processes at a specific site that control site response. An unbiased estimate of site-specific site

response, for example as derived from analysis of earthquake recordings, substantially reduces

φS2S [83, 92]. For sites without recordings, many projects seek to estimate site response using

ground response analyses (GRA), which consider the effects of one-dimensional (1D) shear

wave propagation and soil nonlinearity. One alternative method used for some applications

is the square-root impedance (SRI) method (first introduced as quarter wave length method

by [61] and later renamed as SRI by [19]). A different modeling approach, which is not

conditioned on assumptions regarding wave propagation, supplements the site amplification

from VS30-scaling models with models for peaks in site amplification functions that are related

to horizontal-to-vertical spectral ratio (HVSR) vs frequency plots ([52, 53, 72]), typically
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from microtermor measurements at the site of interest. Parameters derived from such plots

include the peak frequency (fpeak) and the amplitude of peaks as site parameters [52, 53, 55,

56, 72]. Open questions related to these practices are: (1) How effective are such methods at

capturing observed behavior, and how does this change with period?; and (2) What levels of

epistemic uncertainty (φS2S) should be used in PSHA when these site-specific site response

methods are used?

Answers to the above questions obviously depend on the availability of models that could

be reasonably expected to predict site response for a given region. This study has two major

elements in which such models are and are not available. The bulk of this thesis is related

to site response in California, where site response models are available and are used in a

wide variety of projects developing hazard estimates. The second element of developing a

new model is applied to a study region in Obihiro (Japan), where soft soil conditions (VS30

= 102 to 211 m/s) require the development of a novel modeling framework.

For the California case in which existing models are to be assessed, a sensible means

by which to answer the above questions is through comparisons of prediction results to

data. For the case of GRA, this general line of research contains numerous contributions

over many years, with a typical application taking various input motions, running them

through 1D soil columns, and comparing resulting response spectra to those from recordings

[29, 38, 59]. However, with the exception of vertical arrays, this research approach has a

limited ability to answer the above questions, because predicted ground surface motions are

strongly dependent on input motions, which are often highly uncertain. As a result, the

effectiveness of the site response prediction is somewhat obscured.

The use of vertical arrays overcomes this problem because of the availability of recorded

input motions, and has produced interesting findings that illustrate limitations, biases, and

uncertainties associated with ground response analyses [3, 62, 63, 117]. However, there are

limitations associated with the use of vertical arrays to validate GRAs. First, the number of

vertical arrays with sufficient ground motion recordings and site characterization is limited

(but certainly growing with time). Second, vertical arrays only measure site response over

the length domain of the array; as such they are not useful for evaluating long-period features
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that involve wavelengths longer than array dimensions. Third, the within-motion boundary

condition that is used in analysis of vertical array data does not match that used in typical

forward applications, in which outcropping input motions are selected.

To address these limitations, I apply here an alternative method for validating ground

response analyses and other methods using data from surface-only instruments. The concept

is to use recordings to infer the non-ergodic site response over a wide frequency range. The

effectiveness of ground response analysis, and other methods, is then assessed by comparing

predicted levels of site response against observation. This departs from the aforementioned

prior work in that model effectiveness is not based on ground motions from a particular

event (or series of events), but on the site amplification relative to a reference condition.

This work was comprised of four components, as described in the following paragraphs.

The first component is assembling the required data. If not already available from another

project (such as NGA projects, which involve large-scale data collection and synthesis), this

is a substantial task. The information required is identical to that needed for ground motion

model development, namely, a database that includes information on source attributes, site

conditions at recording stations, and ground motions (with record-specific processing details).

In this project, I supplemented the NGA-West2 database with additional sites and events,

as described in Chapter 2. A need for the present work that is not shared in ground motion

model development projects, is seismic velocity profiles at recording stations (particularly

shear-wave velocity, VS, versus depth profiles).

The second component consists of ground motion analyses targeted at extracting infor-

mation on site responses at recording stations. The steps involved in developing these results

are described elsewhere in [92], so the procedure is not repeated here. What these analyses

provide is an estimate of a site term, denoted ηS, for each site and response spectral oscillator

period. This site term represents the mean difference between a regionally-unbiased ground

motion model and observed motions at the site. For weak shaking conditions that do not

induce soil nonlinearity, the sum of ηS and the ergodic site term for the site (FS), comprises

the mean non-ergodic site response (µlnY) relative to the ground motion model’s reference
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condition:

µlnY = FS + ηS (1.1)

The third component consists of predicting site response for each site in the data in-

ventory using available information on site conditions. In the case of GRA, a VS profile is

required, and borehole data indicating soil stratigraphy and soil type characteristics for each

layer is also useful (for estimation of modulus reduction and damping relations). SRI also

requires soil unit weight and VS profiles. Methods using horizontal-to-vertical spectral ratios

(HVSR) require these spectral ratio plots, preferably from ambient noise measurements or

continuously streamed noise from permanent strong motion stations from each site [51, 72].

The fourth component involves model-to-data comparisons in the form of residuals anal-

yses for estimating model bias and uncertainty and the metrics for quantifying the overall

model performance.

For the Obihiro (Japan) case, I apply a similar approach as given above, except that the

third element (applying models and comparing to data) is replaced with model development.

The model considered in this case is conditioned on HVSR-based site parameters.

1.2 Organization

The organization of this dissertation is described as following:

Chapter 2 describes the development of a California database for ground motion studies.

In this chapter, the full ground motion database will be introduced including data collec-

tion and processing. I also describe the procedures used to assign necessary site and event

parameters.

Chapter 3 focuses on developing HVSR-based site parameters. I will first introduce

relevant literature regarding HVSR measurements and data processing, as well as prior site

amplification models that apply HVSR-based site parameters. Next, I describe the data

sources used to obtain HVSR data in my study. Lastly, I present a new procedure for HVSR

data processing and its parameterization (fundamental peak identification and fitting).
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In Chapter 4, I will describe the ergodic model and each of the three site-specific site

response models. The protocols for model inputs of each model will be discussed. Chapter 5

will present the comparison of observed-to-predicted site response given by three site-specific

models for California sites. In Chapter 6, I synthesize the results from Chapter 5 to examine

overall model biases, model predictability and performance, and the resultant site response

uncertainty and variability (φS2S).

Chapter 7 presents the study of site response for peaty organic soil sites in Obihiro. In

this chapter, I will discuss the data sources; extract non-ergodic site response by carefully

considering effects of source, path, and region; and develop a region-specific site amplification

model.

Finally, Chapter 8 summarizes the scope and major findings from this study, and provides

recommendations for future work based on what has been learned in this study.
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CHAPTER 2

Development of California Database

The non-ergodic ground motion analyses described in Chapter 1.1 require a large database

with many recordings (referred to here as Full Database). The database requirements for

this study match those for ground motion model development projects. A subset of the

database is used in components three and four as described in Section 1.1 (Database Subset

for Site Response Studies).

2.1 Full Database

The database used in this dissertation draws from an expanded version of the NGA-West2

database ([9]), which is a global database for active tectonic regions. There is a significant

contribution of data from California to the NGA-West2 database (373 events, 1463 stations,

14,231 recordings) over the time period 1938 to 2010. The site portion of the database ([88])

was developed to provide the principal site parameters used in model development - VS30 and

various depth parameters denoted as zx. As part of this project and other complimentary

projects, the spreadsheet files that comprised the original NGA-West2 flatfile (pertaining to

sources, sites, and ground motions) were converted into tables within a relational database,

which is housed on a local server. Data modifications and additions are made within the

relational database. The database is accessed using Python scripts within Jupyter notebooks

on DesignSafe ([80]).

I have identified earthquakes and recordings since 2011 in California, which significantly

extend the NGA-West2 database. Figure 2.1 shows the locations of events sorted by mag-

nitude, most of which occur in five main regions: Bay Area, Eastern Sierra and Nevada,

6



central California, southern California, and Imperial Valley and northern Mexico. These

five zones incorporate most of the urban areas in the state, and contain a large fraction of

the ground motion stations. I focus here on the Bay Area and southern California regions.

Moreover, since difficulties can be encountered in the analysis of site terms using small mag-

nitude data, I only consider M >= 4.0 events ([91]). The data from events within the Bay

Area and southern California regions in Figure 2.1 is derived from 25 earthquakes that have

produced about 9,300 three-component recordings within the distance cutoffs suggested by

[22].

Figure 2.1: Locations of earthquakes in California and northern Mexico with M >= 4.0

since 2011 for which ground motion data has been compiled for addition to the NGA-West2

database
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Figure 2.2: The Figure 2.1 in [22] showing magnitude- and distance-dependent cutoff criteria

Not all the data from the selected data events were used. There are well-known problems

with sampling bias from recordings at large distance, where the potential exists for only

unusually strong records to be present in databases, producing bias. To avoid this problem,

I apply magnitude- and distance-dependent screening criteria for modern digital sensors as

given by the top black curve in Figure 2.2. The curve is approximately expressed by,

Rmax(km) = 73.08 + 52.31×M (2.1)

Only recordings with RJB < Rmax are used. The data are also further screened for magnitude

(requiring M >= 4), to remove duplicate recordings (e.g., seismometers and accelerometers

at the same location), and to remove recordings that appear to be unreliable from instrument

malfunctions or similar. This leaves about 5873 usable three-component records. Figure 2.3

shows the locations of these events and of the 1185 recording stations with recordings.
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Figure 2.3: Map of California showing locations of considered earthquakes with M >= 4.0

since 2011 and locations of stations that recorded the events (blue - new stations, red -

stations in NGA-West2 database)

Each of the three-component records has been processed according to standard protocols

developed during Pacific Earthquake Engineering Research center (PEER)-NGA projects,

as described in [9]. This processing provides a lowest and highest usable frequency for

each ground motion component. Horizontal ground motion components are combined to

median-component (RotD50) as defined by [18] using the routines given in [109]. I take

the lowest useable frequency for RotD50 as the higher of the two as-recorded values. This

is applied because one compromised component (i.e., by using frequencies lower than its

lowest usable frequency) compromises the combination represented by RotD50. Figure 2.4

shows the number of usable RotD50 horizontal-component ground motions as a function of

oscillator period. The fall-off begins at about 1.0 sec and the data is reduced by 50% at 2.5

sec.
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Figure 2.4: Number of usable RotD50-component ground motions as a function of oscillator

period for the data added for the Bay Area and southern California regions

2.2 Assignment of site parameters for full database

Considering both the NGA-West2 data and new data, there are 1818 recording sites shown

in Figure 2.3. Of those, 1340 are sites that were included in the NGA-West2 site database.

Hence, there are 478 new sites that require assignment of site parameters. I use measured

VS profiles to compute VS30 when available, and in the absence of this data, I use proxies

(slope gradient - [108]; terrain category - [114, 115]; surface geology - originally by [111] and

Kriging interpolated by [99], and later updated by [97, 112]).

When more than one proxy-based model for VS30 estimation is available, it is customary

to employ multiple models to compute a weighted estimate of the mean VS30. In the NGA-

West2 project, the mean misfit of a proxy model relative to observations (µlnV) and its

aleatory dispersion (σlnV) were used to compute relative weight as ([88]):

relative weight =
1

µ2
lnV + σ2

lnV

(2.2)

Actual weights were adjusted from relative weights to ensure their sum is one. However, that

method does not consider correlations between proxy models. An approach was proposed in
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[73] to assign weights that accounts for correlations between the inputs used in two proxy-

based models. Here, I extend that approach to consider an arbitrary number of n models.

As a problem of linear optimization with linear constraints, it can be formulated in matrix

form as,

Minimize w>Σw (2.3)

subject to 0 ≤ Iw ≤ 1 and 1>w = 1 (2.4)

where w is a column vector of length n, Σ is a covariance matrix of dimension n× n of all

available proxy models, 0 and 1 represent column vectors of length n, and I is an identity

matrix (1 along diagonal, 0 otherwise). The i−th row and j-th column entry of Σ is the

covariance of proxy models i and j, computed as:

Σij = σlnV,iσlnV,jρi,j (2.5)

where σlnV,i and σlnV,j are standard deviation terms representing the aleatory uncertainty of

models i and j, and ρij is the correlation coefficient between the two models.

Equation 2.3 is an objective function that, when minimized, provides the weights w

for the considered proxy models that minimize the aleatory uncertainty of the combined

(weighted) model. The first linear constraint in Equation 2.4 requires the estimated weights

to be within the range 0 and 1. The second linear constraint in Equation 2.4 ensures that

the sum of estimated weights is one. The mean prediction of the combined model is,

V̂S30 = w>V̄S30 (2.6)

where V̄S30 contains column vectors of mean VS30 estimates for each proxy model.

The optimization process requires a “training” dataset. The dataset includes VS30 values

from NGA-West2 site database ([89]), measured profiles in California from a profile database

(PDB; [5, 85]), and additional VS30 values at a USGS web site1 and CESMD website2 (the

additional sites have a measured VS30 but not a measured profile, which is why they do not

1https://earthquake.usgs.gov/data/vs30/us/

2https://strongmotioncenter.org/wserv/stations/builder/
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appear in the profile database). I excluded VS30 values measured using the Remi method due

to potential bias associated with that approach ([35]). This results in 994 unique sites with

measured VS30 values. I considered four proxy models: (1) purely surface geology ([111, 112]),

(2) surface geology with local data adjustment ([97, 99]), (3) terrain proxy model ([114]), and

(4) surface gradient model ([108]); and denoted them as geo, kri, terr, and slp respectively.

Except for slp model, the other three models are not always available at a given site in

California. This various availability of proxy models would lead to different combination of

models with different best weights. I develop a flowchart to present each possible scenario

and the resultant best weights of each scenario is summarized in Table 2.1. The calculation

of best weights was performed using the constrOptim function in R.

Figure 2.5: The flowchart of each possible scenario for proxy models’ availability

There are two important notes: (1) I did not combine kri and geo when they are both

available at a site. This is because they are highly correlated (with correlation coefficient

= 0.9), including the two together would cause collinearity issue; (2) kri is the preferred

approach so the availability of kri was examined first following by geo and terr.
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Table 2.1: The best weights of each proxy model under different availability scenarios

kri geo terr slp

Scenario 1 0.73 - 0.15 0.12

Scenario 2 0.79 - - 0.21

Scenario 3 - 0.74 0.12 0.13

Scenario 4 - 0.8 - 0.2

Scenario 5 - - 0.5 0.5

Scenario 6 - - - 1

Model kri and geo play similar roles and perform better than terr and slp. The relatively

low weight for terr and slp is caused by the larger residuals and dispersion.

2.3 Database subset for site response studies in California

A subset of the full database is applied for site response studies. The criteria used to define

this subset are: (1) a minimum number of recordings per site of 10 (applied to ensure

statistically robust estimates of site term, ηS); (2) availability of a VS profile for the site at

least 30 m in depth.

Figure 2.6 shows a histogram of the number of recordings at stations in the full database.

Of the 1818 sites in the full database, 366 meet the minimum recordings/site criterion.
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Figure 2.6: Histogram of number of recordings at stations in the full database. Ten is the

minimum number of records/station for sites considered in the present research

I performed a search for VS profiles for each of the sites meeting the first criterion. This

was done using the PDB. I find 159 sites with a VS profile more than 30 m depth and within

around 200 m of the strong motion site. Many of these profiles are from [116], which provides

VS profiles from various surface wave tests and H/V spectral ratios from microtremors. Of

the 159 sites with VS profiles, only 9 have a boring log that indicates stratrigraphic details and

soil/rock layer descriptions. This geotechnical data is needed to apply models for modulus

reduction and damping as a function of shear strain.

Most of the recordings used in this research involve low ground motion amplitudes. Fig-

ure 2.7 shows a histogram of strain index, which is defined as:

Iγ =
PGV

VS30

(2.7)

where PGV is from the surface recording RotD50 component. This ratio provides an index

related to shear strain ([60, 66]), and can be used to judge the degree to which soil responses

are likely to be affected by nonlinearity. As shown in Figure 2.7, 97% of ground motions

in the subset have Iγ < 0.03%. I conclude that the soil responses are predominantly in

the linear range, meaning that modulus reduction is effectively unity and damping is at the
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minimum value. I refer to the minimum damping from geotechnical models ([36] for soils

with fines; [76] for granular soils) as DL
min. As a result, the primary need for stratigraphic

and material description information is to define DL
min as a function of depth.

Figure 2.7: Histogram of strain index number of recordings at stations in the full database

To derive Dmin profiles for use in ground response analyses, the Section 4.2 describes (1)

how stratigraphy was inferred to enable estimates of unit weight and DL
min (for sites without

borehole logs); and (2) how site spectral amplitude decay parameter (κ) was measured from

recordings and then interpreted to constrain small-strain damping. As such, that section

supports the development of alternative damping profiles, each of which are being considered

in the validation analyses.
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CHAPTER 3

HVSR-Based Site Parameters for California

3.1 Introduction of HVSR

One common feature of site response is resonance at one (fundamental site frequency, f0) or

more site frequencies (fd) [14, 15, 37], which produce peaks that are smoothed out in ergodic

models. The use of the horizontal-to-vertical Fourier amplitude spectral ratio (HVSR) has

the potential to add this site-specific attribute to predictions of ergodic site response at low

cost, relative to non-ergodic procedures. While VS30 provides a reasonable, first-order esti-

mate of site response over a wide frequency range [2, 27, 31], f0 can be effective at describing

site amplification for frequencies proximate to f0, but it has limited utility elsewhere. Hence,

the two parameters serve different purposes and they can be most effectively utilized together

[25, 47].

Many previous studies, mostly considering data from Europe, Japan, and central and

eastern North America, have investigated the use of HVSR. These studies have generally

found that HVSR is effective at identifying the peak frequency associated with resonance

effects, whereas attempts to associate HVSR peak amplitudes with site amplification levels

has been inconclusive [25, 40, 64, 72, 96]. Before going forward, a point of clarification on

notation – frequency f0 is taken as the frequency of the peak site response as obtained from

non-ergodic analysis, which is not an independent variable, while frequency fpeak is measured

from HVSR of noise signals or continuously streamed data and hence is an independent site

parameter (in some literature this is referred to as f0).

In this chapter, I will describe data sources used to obtain HVSR plots for the Database

subset for site response studies sites, identified in Chapter 2. I will then present, data
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processing procedures developed for this work, the procedures used to compute HVSR from

the data, and external (to the database) routines that can be used to evaluate HVSR-related

parameters required for site response studies.

3.2 HVSR data sources

There are generally two sources for HVSR data: earthquake strong motions and ambient

noise. Ambient noise is preferred for HVSR-based site amplification model development for

the following reasons: (1) it does not require the availability of recorded ground motions,

which are generally not available at sites where ground motions are to be predicted in

practice; (2) ambient noise is an independent data source from earthquake ground motions

and as such is better suited to the development of independent variables to be used in GMMs

(the converse of using earthquake ground motions to derive parameters to compute those

same motions introduces undesirable circularity into the process); and (3) ambient noise can

be recorded over long time intervals (several hours), which allows the HVSR to be evaluated

over a wider frequency range than may be possible from earthquake recordings. To acquire

ambient noise, one approach is to deploy a microtremor array temporarily to measure ground

vibrations often referred to as “noise” (denoted MAM below) [54, 116]. Another approach is

to record noise (natural ground vibrations from microtremors) from continuously streamed

data (CSD), three-component instruments installed temporarily or in permanent housings

to record earthquakes. An advantage of using CSD is that the signals are recorded at exactly

the location of the station, while MAM sensors may be located at some distance from the

ground motion instrument. In this study, I first used the CSD and then MAM when CSD is

not available.

It is desirable for HVSR to be measured from signals that represent “natural” ground

vibrations with minimal anthropogenic impact. As such, I sought time intervals near mid-

night during the pandemic quarantine period (2020/04/28 23:00:00 - 2020/04/29 01:00:00).

Checks were also performed to confirm that no earthquake occurred near the selected time

window. The data was queried from two data centers: Incorporated Research Institutions for
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Seismology (IRIS) and Center for Engineering Strong Motion Data (CESMD). The arrays

accessed via IRIS and CESMD are listed in Table 3.1; the main data provider was SCSN.

Table 3.1: The number of sites contribution by network

Network

Name

Southern Califor-

nia Seismic Network

(SCSN)1

USGS Northern

California Network

(NCSN)2

ANZA Regional Net-

work (ANZA)3

FDSN code4 CI NC AZ

Number of sites 122 17 2

For earthquake strong motions, the data are usually acquired from high gain broadband

seismometers (with channel code “HH” based on IRIS SEED manual5) and strong motion

accelerometers (with channel code “HN”). For the measurement of ground vibrations from

microtremors, seismometers are preferred. This is because strong motion accelerometers

(mainly episensor type of sensor) are designed for large amplitude and high frequency seismic

signals; their instrument band is limited at low frequency and the gain is low. As shown

below, this causes the noise to be captured for a limited range of frequencies. In contrast,

broadband seismometers (including STS-2, CMG-3T, and Trillium types of sensors) have

broader instrument bands starting below 0.1 Hz and extending to at least 100 Hz. Figure 3.1

shows the nominal sensor responses6. Each sensor response in Figure 3.1 corresponds to an

individual instrument. From left to right, the shape of the response is an upward slope at

low frequencies, a plateau, and a downward slope at high frequencies. The plateaus occur at

different levels, corresponding to different levels of gain (i.e., ratio of volts to measured ground

velocity). For HVSR purposes, the most desirable instruments have the widest plateau and

the highest gain.

5https://ds.iris.edu/ds/nodes/dmc/data/formats/seed/

6https://www.passcal.nmt.edu/content/instrumentation/sensors/sensor-comparison-chart
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Figure 3.1: The plot of comparison of sensor responses

For many stations in the SCSN, both broadband seismometers and strong motion ac-

celerometers are installed. Therefore, I compared HVSR derived from CSD from the two

instrument types. The HVSR data processing procedure will be discussed in next section;

only the results are displayed here to illustrate the distinction between instrument types.

In Figure 3.2, HVSR from broadband seismometers are plotted on the left side and HVSR

from strong motion accelerometers are plotted on the right side for three stations. The sites

in Figure 3.2 have peaks from the seismometer data at 0.25 Hz, 1.5 and 5 Hz, and 0.2 Hz,

respectively, which are absent from the HVSR derived from accelerometers. HVSR shapes

at relatively high frequencies (> about 5 Hz) are similar in both cases. This comparison sug-

gests that the effectiveness of continuously streaming accelerometers for HVSR applications

is limited to high frequencies.

A second comparison of HVSR that can be made is between MAM (temporarily deployed

sensor for noise measurements) and CSD (noise from permanent instrument). This compari-

son is facilitated by MAM data retrieved at three stations as documented in [116]. Figure 3.3

compares HVSR from the two sources, which shows that the plots display consistent peaks

positions and similar overall shapes. The main differences between the two sets of results

are in the amplitudes of the peaks, which could be explained by the differences in measure-

ment locations, measurement durations, instrument gain, or different characteristics of the
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recorded signals. The small deviations do not significantly impact forward application in

site response modeling (in Chapter 4).

The database subset for California site response studies contains 159 stations (Sec-

tion 2.3). Of these sites, 111 have CSD from IRIS and CESMD (the providers are listed

in Table 3.1) and another 29 stations have MAM data as provided in [116]. Accordingly,

there is a total of 140 stations with HVSR from either CSD or MAM.
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Figure 3.2: The comparison of HVSR between broadband seismometers and strong motion

accelerometers from CI ADO (longitude: -117.43391, latitude: 34.55046, VS30 = 375.73

m/s, and surface geology is Quaternary Holocene alluvium), CI LJR (longitude: -118.86775,

latitude: 34.80762, VS30 = 303.38 m/s, and surface geology is Mesozoic Cretaceous quartz

monzonite), and CI VES (longitude: -119.08469, latitude: 35.84089, VS30 = 392.37 m/s, and

surface geology is Quaternary Pleistocene older alluvial terrace deposits)
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Figure 3.3: The comparison of HVSR between broadband seismometer and microtremor

array measurements

3.3 HVSR processing procedure

This section describes procedures used to process microtremor time series and develop HVSR-

frequency plots. These procedures extend the framework described in the Site Effect Assess-
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ment using AMbient Excitations (SESAME) guidelines [87] and similar protocols often used

in California (K. Hayashi, A. Martin, oral and written personal communication, 2018, 2019).

The procedures presented here have been developed in consultation with several topical ex-

perts (A. Yong, A. Martin, K Hayashi, J. Steidl, B. Cox, J. Vantassel, and L. Schleicher)

along with collaborating UCLA researchers (T. Gospe, P. Zimmaro). A code written in R

has been developed that has some differences from existing software (Geopsy [110], one of

the most popular tools for HVSR; and hvsrpy[106], a library written in Python). Elements

of the current procedure that differ from those used in other codes/guidelines are explained

below.

3.3.1 Windowing

Data from ambient noise usually are recorded over long durations (typically hours). The

time series will be cut into multiple sub-windows so that statistics of interest (e.g., mean

and standard deviation) can be calculated. More windows result in more robust statistics

(30 is the least number for normality in statistics so I took 30 as the minimum number

of sub-windows). However, the larger the number of windows, the shorter the window

durations, which reduces the resolution of low-frequency HVSR features. SESAME guidelines

recommend that the frequency of interest in HVSR should be at least 10 divided by the

window duration in seconds. For example, if the frequency of interest is 0.1 Hz (usually

the recommended corner frequency of instrument in industry standard for HVSR), then

the durations of sub-windows must be at least 10/0.1 = 100 seconds (I used 150 seconds).

Therefore, to resolve a minimum frequency of 0.1 Hz (which was used as a default), the

duration of ambient noise should be at least 150*30/3600 = 1.25 hours. If the frequency of

interest is higher or lower than 0.1 Hz, the duration of signals could be shorter or longer,

respectively. For the 140 selected stations in Section 3.2, all CSD have two-hour durations

and all MAM signals have at least 1 hour durations.

Each of the sub-windows within the time series is tapered at its time limits using a window

function. The window function has a maximum of one within a chosen interval, and decreases
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to zero outside of the interval. Ordinates of the function express the proportion of the original

data that is used (e.g., 0.5 means the amplitude will be decreased by half). The window

function ensures ground motion amplitudes (generally velocities) at the beginning and end

are zero. For most applications involving microtremor data, this will also provide nearly

zero displacements at the limits of the window. The Tukey window [103] (also known as the

tapered cosine window) is a commonly used window function in ground motion processing

and is used here. Figure 3.4 illustrates the Tukey window function.

Figure 3.4: Tukey window with period of 5 sec α = 0.5

In Figure 3.4, the duration of the Tukey window is 10 seconds and the period (i.e., the

length of time over which the tapers are applied at the start and finish of the window) is

5 seconds. In this case, the period is the half of the window duration, which means it will

taper the first and last quarter of data but not change the two quarters of data in the middle.

The Tukey window can be formulated as,

w(n) =


1
2
[1 + cos(π( 2n

α(N−1)
− 1))], 0 ≤ n < α(N−1)

2

1, α(N−1)
2
≤ n ≤ (N − 1)(1− α

2
)

1
2
[1 + cos(π( 2n

α(N−1)
− 2

α
+ 1))], (N − 1)(1− α

2
) < n ≤ (N − 1)

(3.1)
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where α is the ratio of period to window duration in the Tukey window (0.5 for the example

in Figure 3.4), n is the sequence number of the data point, and N is the total number of

data points. The effect of tapering on a time series is illustrated in Figure 3.5.

Figure 3.5: An example of Tukey window tapering

For ground motion and ambient noise processing, we avoid taking large values of α to

avoid removal of signal. A typical value is α = 0.05 = 5% (taper the first and last 2.5% of

signals).

3.3.2 Mean removal

After windowing, the detrending function is applied as the first step in signal processing to

remove any offset or overall trend from the windowed time series. While ground motion pro-

cessing may adopt detrending functions that comprise a constant that is subtracted from the

data, a linear trend line, or a higher order polynomial, for ambient noise HVSR processing,

I only subtract the mean from the windowed time series.
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3.3.3 Filtering

In earthquake ground motions, the signals generated from earthquakes and ambient noise are

both recorded simultaneously in the sensors. Because noise effects are often concentrated at

the low (and sometimes high) ends of the frequency range of recordings, filtering is applied

to minimize the effects of noise while retaining the earthquake signal. Butterworth filters are

applied, which have two required parameters – a filter corner (fc) and a filter order (n), as

illustrated in Figure 3.6. For earthquake data processing, the corner frequency is generally

selected where the ratio of signal to noise is around 3 [68]). Filters that remove low and high

frequency noise are referred to as low-cut (high pass) and high-cut (low pass), respectively.

A schematic of a low-cut filter transfer function is shown in Figure 3.6.

Figure 3.6: Transfer function of low-cut Butterworth filter in both frequency and period

domains from [20]

The transfer function (filter response in the figure) is described as a function of frequency

on the left, and a function of period on the right. The corner frequency and period, fc and

Tc respectively, are specified by the analyst and indicate the frequency (or period) where the

transfer function amplitude is
√

0.5 = 0.71. For example, the low-cut transfer function can
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be expressed as

TF =

√
(f/fc)2n

1 + (f/fc)2n
(3.2)

where n controls the steepness of the transfer function (Figure 3.6).

The high-cut transfer function is defined as

TF =

√
1

1 + (f/fc)2n
(3.3)

Although low-cut and high-cut corner frequencies must differ, both are denoted as fc.

Figure 3.7 shows unprocessed and filtered data from an earthquake in Japan in 2003 at

the Toitokki station to illustrate the effects of filtering and the selection of low-cut corner

frequencies. It shows acceleration, velocity, displacement, and Fourier amplitude spectra

(FAS) for the raw data (green) and processed data (blue). The two vertical red lines in

the FAS plot indicate the corner frequencies of 0.045Hz and 20Hz. Of these two corner

frequencies, the low-cut corner frequency is often more important as it significantly influences

the long period waves (best view in displacement) and also determines the highest usable

periods of processed data. Figure 3.8 presents the resultant displacements under different

choices of low-cut corner frequencies.

Figure 3.7: Raw and processed data from earthquake in Japan in 2003, at Toitokki station
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Figure 3.8 (first frame) shows that without a low-cut filter the displacements can be un-

realistic. The offsets at the beginning and end of displacement indicate non-zero permanent

displacement. Although windowing with a 5% taper duration has been applied, it does not

fix the issue. In order to minimize signal loss, it is desirable to select the minimum possible

low-cut corner frequency that removes the baseline problems evident in Figure 3.8. For the

present case, this occurs at fc = 0.045 Hz.

In ambient noise, the frequency content is unbounded so the corner frequencies are de-

termined by the limits of the instrument. Accordingly, corner frequencies are selected in

a different manner. As shown in Figure 3.1, the frequency range that defines the plateau

is different for each type of sensor. For the broadband seismometers considered in this re-

search, the plateau for the sensors ranges from around 0.1 Hz (or lower) to about 100 Hz.

As a result, 0.1 Hz and 100 Hz (or the Nyquist frequency if it is less than 100 Hz) are taken

as default low-cut and high-cut corner frequencies, respectively. For most engineering ap-

plications, the maximum frequency of interest is up to 20-25 Hz (or minimum period down

to 0.05 second), which means that high-cut filtering is often not needed (and in some cases

Fourier coefficients beyond 25 Hz are simply not used).
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Figure 3.8: Displacement time-histories for a series of filters with different high pass corner

frequencies
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3.3.4 Horizontal component combination method

Because horizontal microtremor signals (velocity time series) are recorded in two directions,

a method to combine these components is required. The geometric mean is typically used

in Geopsy. We proposed to use a median-component motion, denoted as RotD50 ([18]),

because it is a central value of the horizontal component motions that is not dependent on

the azimuths of the sensors. Another approach for combining horizontal components is the

Effective Amplitude Spectrum, EAS ([49] and [13]). This approach defines the horizontal

component for a given frequency as the product of 1/
√

2 and the sum of squared Fourier

Amplitudes of the two as-recorded components. We prefer our definition of the combined

component because it corresponds to the actual ground motion in a particular direction that

produces median response.

The analysis of RotD50 involves the computation of ground motion amplitudes for a range

of azimuths, and taking the median of the results. The component of ground motion rotated

by angle θk can be calculated as,

hROT (θk; t) = h1(t)cos(θk) + h2(t)sin(θk) (3.4)

where h1(t) and h2(t) are the as-recorded signals, rotation angle θk is measured relative to

the azimuth for component h1, and hROT (θk; t) is the combined motion at rotation angle θk.

All of these signals are in the time domain. The Peak Ground Acceleration (PGA) at each θk

is calculated and the rotation angle θmed corresponding to the median PGAs is identified for

the calculation of RotD50. The time series corresponding to this azimuth is then computed

as,

hRotD50(t) = h1(t)cos(θmed) + h2(t)sin(θmed) (3.5)

The time series produced by Equation 3.5 is used as the H component in the HVSR calcu-

lation.
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3.3.5 Smoothing

Fourier amplitude spectra (FAS) are computed for the combined horizontal-component mo-

tion and the vertical-component motion. Spectral smoothing is then applied to smooth out

the spectrum and to facilitate to identification of peaks. The Konno & Ohmachi (KO)

[69] smoothing filter, which accounts for variable numbers of points at low frequency [87],

is applied to both the horizontal and vertical components. Figure 3.9 shows the effect of

KO smoothing by comparing the raw FAS (in blue) with the smoothed FAS (in red). The

smoothed FAS retains the overall shape of the spectrum, including the local peaks.

Figure 3.9: Comparison between raw FAS and smoothed FAS

KO smoothing is formulated as,

FASKO(fs) =
∑
∀f

WB(f, fs)FAS0(f) (3.6)

where FASKO and FAS0 represent the smoothed and raw FAS; fs is the frequency for which

the smoothed ordinate is to be computed; f is frequency as used in the weighting function,

and ∀f means f will sample all frequencies in the FAS; and WB(f, fc) is the window (weight)

function, defined by [69] as,

WB(f, fc) =
[sin(log10(f/fc)

b)

log10(f/fc)b

]4

(3.7)

where b is a coefficient for band width controlling the degree of smoothing. The degree of

smoothing increases as the bandwidth decreases. I use 20 as the default value.
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3.3.6 HVSR calculation

HVSR is computed as a function of frequency by dividing the smoothed FAS of combined

horizontal hRotD50(t) by the smoothed FAS of the vertical-component. This operation is

applied to each sub-window. The final HVSR is the arithmetic mean of HVSR coordinates

across all windows, and similarly, uncertainties are quantified by the arithmetic standard

deviation across all HVSR ordinates. This use of the RotD50 component, the arithmetic

mean, and the arithmetic standard deviation, differs from the approaches used in Geopsy

and hvsrpy. Those codes use the geometric mean of the horizontal components and the

natural log standard deviation. The arithmetic moments are selected in lieu of logarithmic

moments because the distribution of HVSR amplitudes was investigated and found to be

marginally more normal than log-normal. An example of HVSR results at one of the select

stations, CI ADO, is shown in Figure 3.10.

Figure 3.10: Comparison between raw FAS and smoothed FAS
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3.3.7 Sub-window selection

The final step in the processing procedure is the selection of sub-windows for FAS and HVSR

computations. It is desirable for each sub-window used in HVSR computations to reflect

genuine ground vibrations from ambient sources. This may not be the case for some sub-

windows, which may be affected by anthropogenic transients or similar effects. Accordingly,

not all sub-windows in Section 3.3.1 are valid for final HVSR calculations. Sub-window

selection occurs in two steps, one follows windowing and is based on examination of data in

the time domain, and another follows HVSR calculation and involves examination of data

in the frequency domain.

The time domain examination of the data is intended to identify and remove sub-windows

with “triggering”. “Triggering” refers to temporary vibration sources affecting a signal,

which can compromise the accuracy of HVSR. It is preferred for the ground vibrations

producing the signals to be from far-field noise sources that produce approximately constant

amplitudes in time. In contrast, local noise will have transient bursts due to the erratic

nature of traffic or other anthropogenic sources. Therefore, it is necessary to remove the sub-

windows with “triggering” and ensure that the rest of the sub-windows have approximately

constant amplitudes in time. One way to identify the potential triggers within a window is

based on relative values of the short-term average (STA) and long-term average (LTA) signal

amplitudes. The STA and LTA are computed using 5- and 30-sec durations, respectively.

The SESAME guideline [87] calls for the amplitude ratios to be within the range of STA/LTA

= 0.1 to 10. This method is objective, but the process also benefits from visual checking

of sub-windows. I remove the sub-windows with unrealistically large spikes (peak is 3 or 4

times larger than the rest).

For the second selection in the frequency domain, the purpose is to stabilize the mean and

standard deviation. It is possible that ordinates of some individual HVSR at some frequencies

are unreasonably large or small (e.g., the denominator from the vertical component could

be very small, blowing up the ratio). If these HVSRs are included, the mean and standard

deviation become unstable. To ensure the stability of moments, sub-windows producing
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such results are removed. These criteria are applied based on visual inspection by identifying

ordinates (especially near peaks) that are too far away from the mean (more than 3 standard

deviations).

3.4 Peak identification

The mean curve of HVSR plots can generally be classified as containing no peaks, one peak,

or multiple peaks [72]. If there are multiple peaks, the first two peaks (i.e., the two peaks

at the lowest frequencies) are most significant and taken into consideration. A peak may

indicate the site has strong impedance contrast(s) near one or more modal frequencies (e.g.,

[102]) whereas multiple peaks may indicate multiple impedance contrasts at different depths.

When there is no peak present in an HVSR, this suggests the site is either underlain with

a sediment-filled depth profile that lacks a significant impedance contrast or it is a rock site

with nearly depth-invariant near-surface velocities. Therefore, one of the most important

characteristics that should be identified is the presence of lack of presence of a peak. In this

section, I discuss peak identification and peak parameterization.

3.4.1 Peak versus No Peak

The mean HVSR curve is used for peak identification. SESAME guideline provide a proce-

dure for the identification of peaks that first considers three criteria that assess the reliability

of the HVSR curve and then consider six conditions intended to establish the presence of

a clear HVSR peak. The first two criteria for the reliability of HVSR curves constrain the

minimum required number of sub-windows and duration; in the present study these are sat-

isfied based on the data selection criteria described in Section 3.2. The remainder of this

section will focus on the remaining conditions, which are summarized in Table 3.2.

The Reliability 3 criterion in Table 3.2 is for the third condition to establish a reliable

HVSR curve. The rows labeled Clear x (x takes numbers from 1 to 6) represent the x-th

condition for a clear peak. SESAME suggests that a clear peak must satisfy Reliability 3

and at least five out of six Clear conditions.
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Note in Table 3.2, fpeak (f0 was the variable name used in SESAME) is the peak frequency

of interest (there could be multiple fpeak values in a single curve); f is the independent

frequency; AH/V (f) is the amplitude of HVSR mean curve at frequency f ; Apeak is the

amplitude at fpeak; σA(f) is standard deviation of AH/V (f) at f ; σA(fpeak) is then standard

deviation of AH/V (f) at fpeak; and σf is standard deviation of fpeak. In Table 3.2, the rows

labelled Reliability 3, Clear 5, and Clear 6 are fpeak-dependent. The greater fpeak is, the

more stringent are the standards for establishing a peak as reliable and clear. Clear 3 is also

considered in [72].

Table 3.2: Criteria of peak identification from SESAME

Parameters CESAME

Reliability 3: fpeak > 0.5 Hz, f ∈ [0.5fpeak, 2fpeak] σA(f) < 2

Reliability 3: fpeak < 0.5 Hz, f ∈ [0.5fpeak, 2fpeak] σA(f) < 3

Clear 1: f ∈ [0.25fpeak, fpeak] AH/V (f) < 0.5Apeak

Clear 2: f ∈ [fpeak, 4fpeak] AH/V (f) < 0.5Apeak

Clear 3: Apeak >= 2

Clear 4: peak of SD curve fpeak[AH/V (f)− σA(f)] within [fpeak/1.05, 1.05fpeak]

Clear 4: peak of SD curve fpeak[AH/V (f) + σA(f)] within [fpeak/1.05, 1.05fpeak]

Clear 5: fpeak < 0.2 Hz σf < 0.25fpeak

Clear 5: fpeak ∈ [0.2, 0.5) Hz σf < 0.2fpeak

Clear 5: fpeak ∈ [0.5, 1.0) Hz σf < 0.15fpeak

Clear 5: fpeak ∈ [1.0, 2.0] Hz σf < 0.1fpeak

Clear 5: fpeak > 2.0 Hz σf < 0.05fpeak

Clear 6: fpeak < 0.2 Hz σA(fpeak) < 3

Clear 6: fpeak ∈ [0.2, 0.5) Hz σA(fpeak) < 2.5

Clear 6: fpeak ∈ [0.5, 1.0) Hz σA(fpeak) < 2

Clear 6: fpeak ∈ [1.0, 2.0] Hz σA(fpeak) < 1.78

Clear 6: fpeak > 2.0 Hz σA(fpeak) < 1.58

I initially applied the SESAME criteria to the data from the California sites, with the

result that very few (∼ 20) sites are identified as having peaks. I did not consider this result

to be reliable, because simple visual inspection of the data indicate far more sites with peaks.
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Accordingly, I devised an approach by which two analysts inspected each HVSR to identify

sites with or without peaks. The two analysts (the author of this document and my advisor)

developed their own criteria for these assessments. Based on these results, I identified the

elements of the SESAME criteria that produce different results from the visual inspections.

The details of this process are explained in the following paragraphs and Section 3.5.

We consider HVSR from both ambient noise data at 140 stations and earthquake strong

motions at all 159 stations. It is important to mention that for strong motions the duration

of recordings is usually 1 to 2 minutes. It cannot be sub-windowed. To get a certain number

of sub-windows to meet reliability criteria, I take the recordings from multiple events as

separate sub-windows. Although the number of recordings for the selected 159 stations is

at least 10 (described in Section 2.3), 10 stations are removed due to too few selected sub-

windows during HVSR processing (which results in 149 stations for strong motion HVSR).

Table 3.3 summarizes the statistics of peaks and no peaks based on SESAME and from

visual inspections from the two analysts.

Table 3.3: The summary of statistics of peaks and no peaks

Number of Peaks Number of No Peaks

Strong Motions SESAME 18 131

Analyst I (PW) 62 87

Analyst II (JPS) 38 111

Noise SESAME 25 115

Analyst I (PW) 74 66

Analyst II (JPS) 65 75

3.4.2 Peak fitting

If there exists clear peaks in HVSRs, the next step is parameterizing the curve to fit the

peak. Previous studies ([48, 51, 72]) have chosen a Gaussian pulse function to fit peaks. The

Gaussian pulse function is defined as ([72]),

ln(F̂H/V,i) = ln(api)exp
(
−
( ln(f/fpi)

wi

)2)
(3.8)
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where F̂H/V,i is the estimated HVSR, api is the fitted amplitude term, wi is the fitted pulse

width term, fpi is the fitted peak frequency, i is the order of peak, and f is the frequency.

The function is fit with respect to frequency on a log-scale.

Having applied this function to multiple sites, the main drawback is that the Gaussian

amplitudes transition to an amplitude of unity at the tails, which may not be the case for

many sites. To address this issue, I propose a new form of the Gaussian fitting function,

F̂H/V,i = c0 + c1exp
(
− 1

2

( ln(f/fpi)

2wi

)2)
(3.9)

where c0 is a frequency-independent constant adjusting the overall amplitude, c1 is the peak

amplitude relative to c0, and all other parameters are as defined previously. Comparing

to the orignal form in Equation 3.8, besides the new constant term c0, additional updates

include:

• ln is removed from the left side of the equation. This change was made because, as

mentioned above, HVSR ordinates were not found to be log-normally distributed.

• I put 1
2

and 2 in front of wi in the function to make the form of the equation more

Gaussian in form.

Since the HVSR model (forward site response prediction model, which will be discussed

in Section 4.1.4) takes inputs of fitted coefficients from the original function and the fitted

coefficients from the two functions may not be the same, I fit peaks using both functions.

The fitted coefficients from new function will be used for future model development.

3.5 Interpretation

In the last section, I presented the results of peak identification using criteria presented by

SESAME and two analysts judgements based on visual inspection. In this section, I identify

causes of the differences between these results and propose new recommended criteria for

peak identification for HVSR derived from strong motion and noise sources.
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3.5.1 Variability of results from different data sources

Table 3.4 presents statistics of sites with peaks and no peaks for 138 selected stations with

colocated HVSR from strong motions and noise. Peak identification results from SESAME

are not considered here as it gives too few sites with peaks to produce meaningful statistics.

Table 3.4: The comparison of peaks identified from HVSR computed using strong motion

and noise data sources

StrongM vs Noise Peaks - Peaks No Peaks - No Peaks No Peaks - Peaks Peaks - No Peaks

Analyst I Count 39 45 35 19

Percent ∼ 28% ∼ 33% ∼ 25% ∼ 14%

Analyst II Count 24 65 40 9

Percent ∼ 17% ∼ 47% ∼ 29% ∼ 6%

In Table 3.4, Column“Peaks - Peaks” represents the number (or proportion) of sites

where peaks are identified from both strong motions and noise, while “No Peaks - Peaks”

indicates sites where the peak is identified from noise but not from strong motion (vice versa

for “No Peaks - No Peaks” and “Peaks - No Peaks”). Figure 3.11 shows examples of “P-P”,

“N-N” and “N-P” sites. HVSR results based on microtremor data for all sites for which the

data is available are presented on a Github site given in the Appendix along with indicators

from Analyst I and II regarding the presence of peaks. Similar plots are also presented for

ground motion based HVSR data.

Table 3.4 compares the results of sites identified as having or not having peaks from two

data sources by aggregating sites into these four categories. There are differences between

the identifications from the two analysts (to be discussed later). However, both analysts are

in reasonable agreement regarding the identification of peaks from strong motion and noise

data sources ( 17% + 47% = 65% vs 28% + 33% = 61%). Additional important questions

are: 1) if HVSR from both data sources have peaks, then how do the fitted coefficients from

the two sources differ?; and 2) are there any indicators for the agreement of peaks from the

two data sources?
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Figure 3.11: The examples of HVSR for “P-P”, “N-N”, and “N-P” sites

The first question is investigated by comparing fitted parameters in the scatter plot

shown in Figure 3.12. In Figure 3.12, 39 points are plotted for sites with peaks identified

from both strong motion and noise data based on Analyst I judgements (Analyst II results

are similar). The figure shows some dispersion in the plot of fp, however, most points are

along the 45-degree line. This trend demonstrates that the peak frequencies are strongly
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correlated (correlation coefficient is 0.65). The plot of ap indicates a weaker correlation.

There are more points below the 45-degree line, which indicates that peak amplitudes from

strong motion data are generally slightly larger than those from noise. Both sets of fitted

coefficients will be used in the forward HVSR model (although the model was developed

based on strong motions [72]).

Figure 3.12: Comparison of fp and ap between strong motions and noise

Next, I explore two potential indicators for the agreement of peaks from the two data

sources. The first potential indicator is VS30 and the second is surface geological unit. To

investigate the effect of VS30, a box plot for the four categories of sites is shown in Fig-

ure 3.13. The category names are the initials of column names from Table 3.4. Additionally,

a summary of results for different surface geological units is provided in Table 3.5.

It can be seen that the median VS30 for “N-N” is higher than the other three cate-

gories. This indicates that clear peaks are less likely at harder sites, potentially due to fewer

impedance contrasts for these conditions. The P-P sites have the smallest interquartile range

(the length of each box) while it is largest for “N-N”. This indicates less variability in site

conditions for “P-P” sites.
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Figure 3.13: Box plot of VS30 aggregated by four peak categories

Table 3.5: The statistics of four peak categories aggregated by surface geological units

Geological unit N-N N-P P-N P-P

crystalline 17 11 6 10

Kjf 3 2 2 0

Qal1 0 1 2 4

Qal2 2 2 1 3

Qal3 7 5 2 8

Qoa 2 7 3 6

QT 3 3 0 1

Serpentine 2 0 0 0

Tsh 3 0 2 1

Tss 5 2 1 1

Tv 1 2 0 5

Table 3.5 shows the disaggregation of results for the 138 sites based on the four peak
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categories into a series of surface geological units. These surface geological units will be

discussed in detail in Section 4.2.1.2. For the present analysis it is important to recognize

crystalline, Kjf, Serpentine, Tsh, Tss, Tv are older and rocky units, while Qal1, Qal2, Qal3,

Qoa, and QT are softer soil units. The results indicate that “P-P” is more likely at soft soil

sites and “N-N” is more likely at rock sites.

3.5.2 Variability of user judgements

Table 3.4 shows that the judgements made by Analysts 1 and 2 do not completely align.

Here we investigate the causes of the different outcomes. Table 3.6 summarizes percentages

of sites where both both analysts identify peaks, both identify no peaks, and intermediate

cases. Results are provided for 149 selected stations using strong motion data and 140

Table 3.6: The comparison of peaks between two independent judgements

Analyst II vs Analyst I Peaks - Peaks No Peaks - No Peaks No Peaks - Peaks Peaks - No Peaks

StongM Count 34 83 28 4

Percent ∼ 23% ∼ 56% ∼ 19% ∼ 3%

Noise Count 54 54 21 11

Percent ∼ 39% ∼ 39% ∼ 15% ∼ 8%

stations based on noise. The agreement percentages between analysts are 23 + 56 = 79%

and 39 + 39 = 78% for strong motion and noise, respectively. The main reason for the

differences between analysts is the application of weaker criteria for peak identification from

Analyst I than from Analyst II. Analyst II applied the following criteria in his visual analysis:

• the amplitude of peak should be reasonably high (around 2 for strong motion and a

little less for noise);

• the peak should not be too close to the boundary of usable frequencies;

• the peak should not be too wide;

• the uncertainty of peak amplitude and frequencies should be not too large;
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• and lastly, the peak amplitude should be sufficiently higher than the ordinates at

neighboring frequencies (around factor of 2);

Analyst I applied similar rules but with weaker thresholds, for instance, in the third condition

he used a factor of 2 or less. This results in more peaks from Analyst I. Comparing to

SESAME conditions summarized in Table 3.2, ours reflect almost all of the conditions but

in a more subjective way. To make the peak identification more objective and consistent,

it is critical to develop similar quantitative criteria as SESAME but the criteria should be

weaker and mimic analyst judgements informed by the California data. In next subsection,

I will present the recommended criteria.

3.5.3 Recommended criteria for peak identification

As shown in Table 3.3, SESAME gives the minimum number of sites with identified peaks.

All of the SESAME sites are included in the sites identified by Analysts I and II. This means

that SESAME applies the most conservative rules and it only returns a small subset of sites

with peaks. As noted earlier, the SESAME criteria appear to be too conservative, missing

sites that clearly have peaks based on visual inspection. I present in Figure 3.14 two example

sites where both analysts identified peaks while SESAME does not.

Figure 3.14: Example sites to illustrate the missing peak issue by SESAME

The gray lines are the individual HVSR curves from each sub-window, the red solid line

is the mean curve, the dash blue lines are the bounds of mean ± one standard deviation,
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and the horizontal purple dash line is at amplitude = 2. Analyst inspections indicate that

there is a clear peak with fpeak ≈ 0.7 Hz at CI BBR site (on the left) and a clear peak with

fpeak ≈ 2.5 Hz at CI SWS site (on the right). However, more than one SESAME condition

fails to identify the peaks. The estimated statistics for the two sites for each SESAME

condition are listed in Table 3.7.

Table 3.7: Criteria of peak identification from SESAME

Site Parameters Estimated

Statistics

Decision

CI BBR fpeak 0.75 Hz

Reliability 3: σA(f) 0.379 < 2, pass

Clear 3: Apeak 2.52 > 2, pass

Clear 1: min(AH/V (f)) 0.96 0.96 < 0.5Apeak = 1.26, pass

Clear 2: min(AH/V (f)) 0.65 0.65 < 0.5Apeak = 1.26, pass

Clear 4-1: peak frequency

of mean - SD, fpeak

0.73 0.73 ∈ [fpeak/1.05 = 0.71, 1.05fpeak =

0.79], pass

Clear 4-2: peak frequency

of mean + SD, fpeak

0.82 0.82 6∈ [fpeak/1.05 = 0.71, 1.05fpeak =

0.79], fail

Clear 5: σf 1.34 Hz 1.34 ≮ 0.15fpeak = 0.11 Hz, fail

Clear 6: σA(fpeak) 0.29 0.29 < 2, pass

CI SWS fpeak 2.80 Hz

Reliability 3: σA(f) 0.315 < 2, pass

Clear 3: Apeak 2.66 > 2, pass

Clear 1: min(AH/V (f)) 1.22 < 0.5Apeak = 1.33, pass

Clear 2: min(AH/V (f)) 1.46 1.46 ≮ 0.5Apeak = 1.33, fail

Clear 4-1: peak frequency

of mean - SD, fpeak

2.84 2.84 ∈ [fpeak/1.05 = 2.67, 1.05fpeak =

2.94], pass

Clear 4-2: peak frequency

of mean + SD, fpeak

2.76 2.76 6∈ [fpeak/1.05 = 2.67, 1.05fpeak =

2.94], pass

Clear 5: σf 1.46 Hz 1.46 ≮ 0.05fpeak = 0.14 Hz, fail

Clear 6: σA(fpeak) 0.30 0.30 < 1.58, pass

Both sites have two failed conditions (SESAME allows at most one failed condition for

a site to be identified as having a clear peak, thus neither site is identified as having a
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peak by the SESAME criteria). There are many other sites with slightly less clear peaks

than these two that are identified as having peaks by our rules but failed by two or more

SESAME conditions. To address this overly strict definition of peaks, I propose to change

the thresholds in Clear 1, Clear 2, Clear 3, and Clear 4, and to remove Clear 5 (as Clear

5 is barely satisfied by any sites). I also recommend separating the rules for strong motion

and noise since the amplitudes in strong motion and noise differ (as shown in Figure 3.12

and discussed in Section 3.5.1). I set the new thresholds to the boundaries where they can

best separate peaks and no peaks sites. The new recommended criteria are summarized in

Table 3.8.

Table 3.8: The new recommended criteria of peak identification for strong motions and noise

Parameters Strong Motions Noise

Reliability 3: fpeak > 0.5 Hz, f ∈ [0.5fpeak, 2fpeak] σA(f) < 2 σA(f) < 2

Reliability 3: fpeak < 0.5 Hz, f ∈ [0.5fpeak, 2fpeak] σA(f) < 3 σA(f) < 3

Clear 1: f ∈ [0.25fpeak, fpeak] AH/V (f) < 0.6Apeak AH/V (f) < 0.6Apeak

Clear 2: f ∈ [fpeak, 4fpeak] AH/V (f) < 0.4Apeak AH/V (f) < 0.6Apeak

Clear 3: Apeak >= 2.9 Apeak >= 1.6

Clear 4: peak of SD curve fpeak[AH/V (f)− σA(f)] within [fpeak/1.18, 1.18fpeak] within [fpeak/1.15, 1.15fpeak]

Clear 4: peak of SD curve fpeak[AH/V (f) + σA(f)] within [fpeak/1.19, 1.19fpeak] within [fpeak/1.12, 1.12fpeak]

Clear 5: fpeak < 0.2 Hz - -

Clear 5: fpeak ∈ [0.2, 0.5) Hz - -

Clear 5: fpeak ∈ [0.5, 1.0) Hz - -

Clear 5: fpeak ∈ [1.0, 2.0] Hz - -

Clear 5: fpeak > 2.0 Hz - -

Clear 6: fpeak < 0.2 Hz σA(fpeak) < 3 σA(fpeak) < 3

Clear 6: fpeak ∈ [0.2, 0.5) Hz σA(fpeak) < 2.5 σA(fpeak) < 2.5

Clear 6: fpeak ∈ [0.5, 1.0) Hz σA(fpeak) < 2 σA(fpeak) < 2

Clear 6: fpeak ∈ [1.0, 2.0] Hz σA(fpeak) < 1.78 σA(fpeak) < 1.78

Clear 6: fpeak > 2.0 Hz σA(fpeak) < 1.58 σA(fpeak) < 1.58
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3.6 Conclusions

In this chapter, I have introduced new criteria for categorizing sites based on HVSR. The

categories are clear peak sites (“P-P”), no peak sites (“N-N”), and ambiguous sites (“P-N”

or “N-P”). The “P-P” sites are defined as sites where both HVSRs from two data sources

(strong motion and noise) show a clear peak in Section 3.5.1 or both analysts identify a

peak using one data source in Section 3.5.2. Under the definition from Section 3.5.1, I find

that “P-P” sites in general are younger geological units and are relatively soft sites with

smaller VS30. In the subsequent sections and chapters, I will use the definition of “P-P” sites

according to judgements of two analysts from Section 3.5.2.

I have also put forward new protocols for HVSR data analysis. This includes a new

procedure for HVSR processing implemented in a program coded in R. This new procedure

accepts the framework and many functions from Geopsy and also introduces a few new

features (e.g., combining two horizontals by RotD50). Secondly, the aforementioned criteria

enable relatively robust identification of sites with peaks, without peaks, and intermediate

cases. As will be shown subsequently, this is important information for modeling purposes. I

have developed new objective-based criteria adaptable to the different data sources. Lastly,

I introduced a new Gaussian fitting function with more flexibility to capture HVSR peak

amplitudes.
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CHAPTER 4

Site Response Analysis Methods and Protocols

In this chapter the use and applicability of predictive methods for site response are described.

Besides the most fundamental ergodic model, I also review site-specific models potentially

suitable for non-ergodic analysis, including, ground response analysis (GRA), square root

impedance (SRI) method, and a hybrid of VS30-based ergodic models and supplemented

with a model conditioned on HVSR-based parameters (HVSR). Protocols for specification

of model inputs are also presented.

4.1 Site response models

In this section, I will briefly introduce the site response models considered in the study.

4.1.1 Ergodic model

In the ergodic ground motion model, site amplification FS (in BSSA14 model [22]) is a func-

tion of time-averaged shear wave velocity VS30, distance RJB, magnitude of earthquake M,

location region, and depth that is used to represent basin effect z1. It contains three parts, a

linear component of site amplification Flin, a nonlinear component of site amplification Fnl,

and a basin depth effect model Fδz1(δz1),

FS(VS30, RJB,M, region, z1) = Flin + Fnl + Fδz1(δz1) (4.1)

the coefficients of this function parameters are set based on regressions using a global

database [22].

The linear site amplification and nonlinear site amplification were originally proposed by
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[88]. The linear site amplification Flin describes the scaling of ground motion with VS30 for

linear soil response conditions, typically with small strains under weak ground motions. Flin

is expressed as

Flin =

 c ln(VS30

Vref
) VS30 ≤ Vc

c ln( Vc
Vref

) VS30 > Vc
(4.2)

where c is the VS30 scaling, Vc is the maximum velocity beyond which ground motions no

longer scale with VS30, and Vref is a reference velocity (760 m/s). Parameter c and Vc are

period-dependent and given by [88].

The nonlinear site amplification Fnl is

Fnl = f1 + f2ln(
PGAr + f3

f3

) (4.3)

where f1, f2, and f3 are model coefficients, and PGAr is the median peak horizontal accel-

eration for reference rock where VS30 = 760m/s. The model takes f1 = 0 to force Fnl to 0

for PGAr � f3. f3 is a transition intensity measure (IM) between linear behavior (lower

than f3) and linear decrease at rate of f2ln(IM) (higher than f3). f3 is taken as 0.1g. f2

expresses the degree of nonlinearity and is a function of VS30,

f2 = f4[exp{f5(min(VS30, 760)− 360)} − exp{f5(760− 360)} (4.4)

where f4 and f5 are period-dependent coefficients, also given by BSSA14.

Basin term Fδz1 is formulated as

Fδz1(δz1) =


0 T < 0.65

f6δz1 T ≥ 0.65&δz1 ≤ f7/f6

f7 T ≥ 0.65&δz1 > f7/f6

(4.5)

where f6 and f7 are model coefficients, provided by BSSA14. δz1 (in km) is computed as

δz1 = z1 − µz1(VS30) (4.6)

where µz1(VS30) is a function of VS30 relating to z1. For California, it can be computed as

ln(µz1) =
−7.15

4
ln
( V 4

S30 + 570.944

13604 + 570.944

)
− ln(1000) (4.7)
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where µz1 is also in km. Therefore, given VS30, z1, and PGAr, the ergodic site response FS

can be estimated. If input motions are weak, there is no need to consider nonlinear site

amplification so the inputs are only VS30 and z1.

4.1.2 GRA

One-dimensional ground response analyses (GRAs) model shear wave propagation through

horizontal soil layers. As such, these analyses capture impedance and resonance effects

on site response, and through the use of equivalent-linear or nonlinear methods, can also

capture the effects of stiffness decrease and damping increase with increasing shear strain

([93]). However, additional aspects of wave propagation that contribute to site response are

not captured, including basin effects.

Given the partial consideration of the full wave field in GRA, and its widespread utiliza-

tion in engineering practice, validation is an important topic. The prior validation studies

are largely based on the utilization of vertical array data. This study differs from that body

of work by using data from surface-only instruments. By so doing, I significantly increase

the number of observations that can be considered, but at the cost of the input motion

being uncertain. Moreover, the present approach defines long-period site response features

for consideration in the validation, which is not possible with vertical array data.

There are three principle considerations in running GRA: (1) selection of an analysis

platform, (2) selection of material properties, and (3) development of input motions. I use

the analysis platform DeepSoil Ver 7 ([50]), which I run in the linear mode. To run linear

GRA, the required input parameters include a VS profile, soil unit weight, and damping under

small-strain conditions (Dmin). All of the selected stations have measured VS profiles. The

other two parameters, unit weight and Dmin, are estimated from borehole data (conditioned

on soil type and depth) where available, but otherwise are inferred using procedures presented

in Section 4.2. Input motions are developed using a deconvolution approach presented in

Section 4.2.
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4.1.3 SRI

The square-root-impedance (SRI) method, introduced by [61] and subsequently revised and

further described by [19], applies principles of wave energy conservation to estimate changes

in wave amplitude across layer boundaries. It is widely used in engineering seismology,

particularly in combination with semi-stochastic ground motion simulation routines (e.g.,

[16]). Prior validation studies have considered the SRI method in combination with simula-

tions, but seldom has the method been validated as a stand-alone model. Such validation is

undertaken here.

SRI is based on ray theory, whereby conservation of energy requires that the amplitude

of motion along a ray path to be inversely proportional to the square root of local seismic

impedance ρV , where ρ and V are density and seismic wave velocity, respectively. Therefore,

the amplification ratio at a soil site can be expressed as (notation taken from [61]),

A =
(ρRVR
ρSVS

)1/2(cosiR
cosiS

)1/2

(4.8)

where VR and VS are the near-surface velocities for rock and soil respectively, ρR and ρS are

the rock and soil mass densities, and iR and iS are vertical angles of incidence (0 indicates

vertical propagation). It is common to assume a vertical angle of incidence, which causes

the cosine terms to cancel out (per Snell’s Law, this may be a reasonable assumption near

the ground surface for body waves; e.g., [70]).

For a given frequency, amplification is computed using Equation 4.8 by taking refer-

ence rock properties as fixed (independent of frequency) and taking the seismic impedance

(product of velocity and density) of surface materials as depth-averaged values measured

from the ground surface to a depth corresponding to a quarter wavelength ([21]). Because

wavelength is frequency-dependent, depth-averaged impedance and amplification are also

frequency-dependent. As in [21], I average seismic velocity and density separately instead of

their product being averaged. Site amplification for a frequency of interest f is computed as

follows:

1. Identify the reference condition for the calculation at depth zR; taken here as the top
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of the last layer in the profile (usually having the fastest velocity). This establishes ρR

and VR;

2. Select an arbitrary depth z < zR, and for this depth compute the shear wave travel

time ∆tVS(z) from surface to depth z;

3. Compute the average density ρS(z), the average velocity VS(z) = z
∆tVS (z)

, and the

corresponding frequency f(z) = 1
4∆tVS (z)

, which is based on the quarter wavelength;

4. Compute site amplification associated with frequency f(z) as

A[f(z)] =

√
ρRVR

ρS(z) ∗ VS(z)
(4.9)

5. Repeat steps 2-4 for different depths z < zR to develop amplification estimates over the

largest possible frequency range. The lowest frequency corresponds to a quarter wave-

length equivalent to zR, which is close to the fundamental-mode resonant frequency of

the soil column.

The amplification A(f) obtained from this procedure applies in the frequency domain

for the case of zero material damping. The effects of damping are accounted for through

application of decay parameter κ ([16]), specifically the change in κ from the surface to depth

zR, denoted ∆κ. The correction is applied as

Ac[f(z)] = A[f(z)] ∗ exp(−πf∆κ) (4.10)

4.1.4 HVSR model

As described above, VS30-based ergodic models cannot capture peaks from site-specific res-

onance effects because the model prediction is smoothed over a large number of sites with

different characteristics. These features of site-specific site response can potentially be cap-

tured by using a hybrid approach consisting of a VS30-scaling model (producing smooth

amplification in frequency space) and a peak function conditioned on HVSR parameters

(namely fpeak) ([52, 53, 55, 56, 72]). In this study, I apply the hybrid model proposed by

[72], which modifies the SS14 ergodic model.
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The HVSR semi-empirical site response model is given as,

FSm = FS + FHV (4.11)

where FS is from the ergodic model. FHV is the site amplification term conditioned on the

fitting parameters from HVSR (described in Section 3.4).

The FHV model is defined as,

FHV =


c̄, no clear peak

ln(α̂1)exp
(
−
(

ln(αpfp1T )

ω̂1

)2)
+ β̂, only one clear peak

ln(α̂1)exp
(
−
(

ln(αpfp1T )

ω̂1

)2)
+ ln(α̂2)exp

(
−
(

ln(αpfp2T )

ω̂2

)2)
+ β̂, more than one clear peaks

(4.12)

where c̄, α̂1, α̂2, ω̂1, ω̂2, and β̂ are coefficients; fp1 and fp2 are frequencies fit to HVSR peaks;

and T is the oscillator period. Note if there are more than one peaks, only the first two clear

peaks are taken and the subscripts 1 and 2 related to the lower- and higher-frequency clear

peaks. The FHV model in [72] produces peaks centered on the peaks from HVSR (fp1, fp2).

Since the publication of this model, a number of studies have shown that the peaks in site

response can be slightly shifted relative to the peaks from HVSR. Accordingly, I introduce

a scaling factor on the peak frequency αp in Equation 4.12. This parameter is investigated

in Chapter 5. A simulation-based study found a value of αp = 1.2 ([55, 56]).

The amplitude terms α̂1 (and α̂2) and pulse width terms ω̂1 (and ω̂2) are defined as:

ln(α̂i) = c1 + c2api, i = {1 or 2} (4.13)

where c1 = 0.134 and c2 = 0.103

ω̂1 = ω̂2 = 0.4 (4.14)
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and the constant term β̂ is computed as,

β̂ =



β1, if ln(T ) ≤ t1

β2−β1
t2−t1 (ln(T )− t1) + β1, if t1 < ln(T ) ≤ t2

β2, if t2 < ln(T ) ≤ t3

β3−β2
t4−t3 (ln(T )− t3) + β2, if t3 < ln(T ) ≤ t4

β3, if ln(T ) > t4

(4.15)

in which βi and ti are functions of frequencies (fpi) and amplitudes (api) are taken from the

fitting of HVSR peaks. The functions for each coefficient are listed in Table 4.1.

Table 4.1: Functions of parameters of βi and ti

Parameter Function

β1 −0.7 + 0.35(ln(ap1) + 0.5)− 0.05(ln(fp1)− 1)

β2 0.2exp(0.3(3− ln(fp1)))− 0.7

β3 0

t1 −2− ln((ln(fp1)− 1)2 + 1)

t2 t1 + 2ln(3ln(ap1) + 1)− 2

t3 t2 + ln(5(ln(ap1)− 1.2)2 + 1)

t4 t3 + ln(ap1) + 0.3ln(fp1) + 1

The FHV model in [72] was modified for the present applications. There are several

rationales for these modifications. First, the model was developed for data in Japan, whereas

it is now being applied to sites in California. As a result, I did not consider my use of

the model to be “bound” by the published coefficients. Second, as mentioned previously

and shown in Equation 4.12, because site response peaks in oscillator period space do not

necessarily occur at the inverse of fp, I sought to enable flexibility in the location of peaks

through the αp parameter. Third, in my use of the model for the diverse conditions at

my study sites, I identified some issues with the model, particularly in connection with the

β̂ model (Equation 4.15) when certain periods used in the model are too proximate. In

consideration of all these factors, four models adjustments relative to [72] were applied:
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1. Parameter t2 is a period coefficent which should be greater than t1. This condition is

satisfied when ap1 ≥ 1.77. However, if the amplitude of the peak is less than 1.77, t2

is less than t1, which produces a step in the β̂ function. To address this issue, I apply

in the model,

a′p1 = max{2, ap1} (4.16)

where ap1 is still the parameter from peak fitting and a′p1 is the corrected parameter

should be used to replace ap1 in any subsequent functions.

2. Parameter β2 should be less than β1 as indicated in the schematic shown in Figure 4

in [72]. However, for some sites in this study, β2 exceeds β1. I address this issue by

applying in the model,

β′2 = max{β1, β2} (4.17)

where β1 and β2 are the values calculated based on the functions in Table 4.1 and β′2

is the corrected parameter applied in this study.

3. Period parameters t3 and t2 should not be too close in period space. If the corrected

a′p1 is around e1.2 = 3.3, then t3 = t2 + ln(1) = t2. This is addressed by updating the

equation for t3 as,

t3 = min{t2 + ln(1.2), t2 +
t4 − t2

2
} (4.18)

The first term t2 + ln(1.2) means t3 is increased by 20% from t2 in log-scale and the

second term t2 + t4−t2
2

means t3 is the middle point of t2 and t4. The reason I made

this update is because the model works well when t3 is greater than t2 but t3 should

not be greater than the mid-period between t2 and t4. 20% was estimated from the

curve in Figure 4 in [72].

4. An adjustment in the location of the peak site response relative to 1/fpi is allowed

through use of the αp coefficient.

5. An adjustment of coefficient c̄ is made based on the California no peak sites data (from

c̄ = 0.1 to c̄ = 0.0625).

54



With these adjustments, the FHV term (Equation 4.11) can be estimated from HVSR

data.

4.2 Protocols for model inputs

In this section, I describe the development of model inputs for site response analysis, includ-

ing dynamic material properties and input motions.

4.2.1 Inference of unit weight and Dmin

Ground response analyses for linear conditions require shear wave velocity, unit weight, and

Dmin profiles. Shear wave velocity profiles are measured at each of the selected sites. In most

forward applications, geotechnical site characterization provides borehole logs that describe

site stratigraphy and soil type information, which can be used to derive the input parameters

used to predict unit weight and DL
min. As described in Section 2.3, this is not the case for

many of the sites considered in this research. This section describes how I estimate unit

weight and soil parameters used to estimate material damping.

4.2.1.1 Unit weight

For soil units, I estimate unit weight using phase relationships, which relate unit weight to

void ratio, specific gravity, and saturation. Void ratio is taken from an empirical relationship

with VS shown in Figure 4.1 and given as ([84]):

VS = 42.9 + 94.1/e2 (4.19)

where VS is in units of m/s.
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Figure 4.1: Empirical relationships between void ratio, age, and shear-wave velocity for

alluvial sediments in southern California ([41]). Equation 4.19 fits the combined data ([84])

Specific gravity is commonly taken as GS = 2.7. Saturation (S) is taken as 1.0 below the

first depth where VP exceeds 1500 m/s. Above that depth, or over the full depth where VP

data is absent, saturation is assumed as 50%. Total unit is then computed as:

γ =
GSγw
1 + e

(
1 +

eS

GS

)
(4.20)

where γw is the unit weight of water (taken as 10kN/m3).

For rock units, I assigned unit weight based on VS as follows:

γ =


20kN/m3, 450 < VS < 700m/s

22kN/m3, otherwise

(4.21)

4.2.1.2 Stratigraphy and soil type to estimate Dmin in soil layers

Stratigraphic and soil type information is needed to apply the geotechnical model for Dmin

estimation by [36], which is conditioned on plasticity index (PI), over-consolidation ratio

(OCR), and mean effective stress. Effective stress can be calculated using unit weights from

the prior section and water table depth (as applicable). PI and OCR are generally derived

from laboratory tests on samples retrieved from the field. This section presents procedures

used to estimate these parameters for sites without stratigraphic logs (150 out of 159).
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I consider two types of available information as potentially useful to assign stratigraphy

and soil type information - the mapped surface geology and the VS profile. Surface geology

is used to estimate soil type near the ground surface. The VS profile is used in combination

with the surface unit assignment to estimate variations of stratigraphy with depth.

Surface geology is taken from state-wide geologic maps by [111] and [112]. I assume

relationships between surface geological unit and PI/OCR as presented in Table 4.2. Con-

siderations in the development of the relationships in Table 4.2 include:

• Geologically young sediments (Holocene) are assumed to have low OCR, and older

units are assumed to have relatively high OCRs. The rationale is that young deposits

have relatively limited pseudo-overconsolidation from aging and are unlikely to have

experienced significant unloading from natural geological processes.

• Young sediments deposited in quiescent environments (e.g., bays, lakes, central/flat

portions of alluvial basins) are assumed to be relatively fines- and clay-rich, thus having

high PI. Young alluvial sediments deposited on steeper gradients are assumed to be

relatively granular (PI = 0).

• Tertiary sedimentary bedrock units often carry information on rock type (e.g., shale,

sandstone, etc.). I assume the bedrock units are similar to corresponding soil units

(i.e., shale and sandstone interpreted as clay and sand, respectively).

• For pre-Quaternary units without information on material type or depositional envi-

ronment, there is no basis for assuming relatively coarse- or fine-grained behavior. I

assume an intermediate condition in this case (roughly corresponding to low-plasticity

silt).

Table 4.2 is organized in reference to 12 geological units, recommended by [111], that are

encountered for the stations in the full database: Qal1, Qal2, and Qal3 are relatively young

alluvial sediments likely to be of Holocene age; Qoa is older alluvium of Pleistocene age; QT

describes sediments in the early Pleistocene to Pliocene periods, for which the method of

deposition is unknown; Tsh, Tss, and Tv comprise Tertiary age bedrock consisting of shale,
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sandstone, or volcanic-origin materials (typically basalt or rhyolite), respectively; serpentine

is a metamorphic rock of Tertiary age largely comprised of the clay mineral serpentinite; and

Kss, Kjf, and crystalline are hard rock, typically of Cretaceous age.

Before assigning one of the hard rock classes (Kss, Kjf, crystalline), I perform a visual

check of morphology using Google EarthTM. When this check indicates that the surface

appears to be soil, and if the velocity of the nearest-surface layer is compatible with soil, I

assign a soil surficial unit and assign rock at greater depths where velocities become fast.

The soil property assignments in Table 4.2 apply for ground surface layers. The assign-

ment of properties at depth is made in consideration of gradients in the VS profile. If the

surface layer consists of sediments or Tertiary rock, the soil index properties are not changed

in successive layers absent sudden changes in velocity with depth. Sudden changes can trig-

ger soil type changes - for example, when a granular layer is underlain by a much slower

layer, the underlying unit is taken as clay. Similarly, when a fine-grained surface layer is

underlain by a much stiffer layer, the underlying material is taken as granular. When a layer

velocity exceeds 760 m/s, it is taken as rock. Figure 4.2 shows the flow chart used to assign

soil type information as a function of depth.
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Table 4.2: The list of 12 geological units and their corresponding PI and OCR. Ma indicates

million years

Geological

age

Geol. unit Description Estimated

Parameters

Holocene

(< 0.011 Ma)

Qal1 Quaternary Holocene alluvium with flat gradients (<

0.5%).

PI = 30

OCR = 1.2

Qal2 Quaternary Holocene alluvium with moderate gradi-

ents (0.5− 2.0%).

PI = 10

OCR = 1.2

Qal3 Quaternary Holocene alluvium with steep gradients (>

2%).

PI = 0

OCR = 1.2

Pleistocene

(< 2.6 Ma)

Qoa Quaternary Pleistocene alluvium. Soil composition

unknown.

PI = 10

OCR = 2

Pliocene (2.6-

5.3 Ma). Young

era within the

Tertiary.

QT Quaternary to Tertiary deposits, including Saugus Fm.

in So. CA, Paso Robles Fm. in central Coast Ranges,

and Santa Clara Fm. in San Francisco Bay area. Soil

composition unknown.

PI = 10

OCR = 2.5

Tertiary

(2.6-66 Ma)

Tsh Shale and siltstone units, such as the Repetto, Fer-

nando, Puente, and Modelo Fms in So. CA.

PI = 15

OCR = 3

Tss Sandstone units, such as the Topanga Formation in

So. CA and Butano Formation in San Francisco Bay

area.

PI = 0

OCR = 3

Tv Volcanic units including the Conejo Volcanics in Santa

Monica Mtns and the Leona Rhyolite in East Bay

Hills.

PI = 15

OCR = 3

Serpentine Serpentine rock is clay-rich. PI = 15

OCR = 3

Cretaceous Kss Cretaceous sandstone of the Great Valley Sequence NA

Kjf Franciscan complex rocks, including mélange, sand-

stone, shale, chert, and greenstone.

NA

crystalline Crystalline rocks, including Cretaceous granitic rocks,

Jurassic metamorphic rocks, schist, and Precambrian

gneiss.

NA
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Figure 4.2: Flow chart used to assign soil type information as function of depth
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4.2.1.3 Dmin in firm rock layers

The Darendeli ([36]) model cannot be used for pre-Tertiary rock (units Kss, Kjf, crystalline).

Laboratory data on material damping for such materials is limited. A presumably judgement-

based model was presented by [86] and has been widely used since that time. Choi ([32])

performed testing on welded Bandelier Tuff and Topopah Spring Tuff and developed damping

models. Models from these two sources are compared in Figure 4.3. The Dmin-component

from Topogah Spring Tuff is considered more representative of bedrock materials in our

study region based on its unit weight (Bandelier Tuff has low unit weights). The Dmin range

for this material is about 0.2− 1.0% (average = 0.3%). I have used the Choi model for the

present work, but acknowledge that its use carries large uncertainty.

Figure 4.3: Comparison of rock damping model from Schnabel ([86]) and range from Choi

([32])

4.2.1.4 Validation of protocols for estimation of soil type and DL
min

For 150 of the 159 sites considered in this research, material classifications from laboratory

tests or borehole logs are unavailable. The procedures for estimating material type and DL
min

for soil and rock materials in Sections 4.2.1.2 and 4.2.1.3, respectively, were developed to

overcome this data gap. Here I validate these procedures using data for the nine sites with

boring logs. Two types of validation are considered - validation of material type indirectly

through the DL
min assignment, and relatively direct validation of material type via an index
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Table 4.3: Validation sites for DL
min and material type assignments

SSN Site Name in PDB Surface Geological Category

[112]

Source Reference

100473 Wonderland School crystalline ROSRINE Phase 2b

100562 Caltech Old Seismology Lab crystalline Fumal et al ([42]) and

Boore ([17])

1148 Griffith Observatory crystalline ROSRINE Phase 2b

1213 Little Rock P.O. Qal3 Fumal et al ([42]) and

Boore ([17])

303 Colton Interchange East Qal2 Gibbs et al ([45]) and

Boore ([17])

3060 San Bernardino Fire Station Qal2 Gibbs et al ([43]) and

Boore ([17])

316 Kagel Canyon Tsh ROSRINE Phase 1

337 Obregon Park Qal3 Gibbs et al ([45]) and

Boore ([17])

63 Rinaldi Receiving Station Qal3 Gibbs et al ([44]) and

Boore ([17])

parameter.

The nine validation sites are listed in Table 4.3 with their surface geologic categories

([112]) and the respective sources of borehole data. For the nine validation sites, I estimate

DL
min for each layer using material type information from the boring logs, which is compared

to estimates derived from the protocols in Section 4.2.1.2 in Figure 4.2. While the profiles

from two sources do not align perfectly, the trends with depth and overall levels of damping

are similar.
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Figure 4.4: Profiles of Dmin at nine validation sites

For the second type of validation, I assign a soil behavior type index (Ic) to each soil

layer based on its material description (the four bedrock sites are excluded). This is done

by first assigning a soil behavior type zone (1-9) as given in Table 4.4, and then assigning a

representative Ic for each zone as per the contours shown in Figure 4.5. Figure 4.6 shows the

resulting Ic profiles for the five soil sites. The Ic profiles exhibit larger differences than was

seen in DL
min. However, because soil type is only important for the present analysis to the

extent that it affects VS (which is measured) and DL
min (which is not particularly sensitive

to material type), the differences shown in Figure 4.6 are rather inconsequential.

1Overconsolidated or cemented
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Table 4.4: Soil behavior type zones (Robertson [81])

SBT Zone Proposed Common SBT Description Representative Ic

1 Sensitive fine-grained 3.0

2 Clay - organic soil 3.8

3 Clays: clay to silty clay 3.3

4 Silt mixtures: clayey silt & silty clay 2.8

5 Sand mixtures: silty sand to sandy silt 2.3

6 Sands: clean sands to silty sands 1.6

7 Dense sand to gravelly sand 1.3

8 Stiff sand to gravelly sand1 2.0

9 Stiff fine-grained 2.6

Figure 4.5: Contours of soil behavior type index, Ic (thick lines) and normalized sleeve

friction (dashed lines) on normalized normalized cone penetration resistance classification

chart ([81])
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Figure 4.6: Profiles of Ic at five soil validation sites

4.2.2 κ-informed damping model

Figure 4.7 shows Fourier amplitude spectra for ground motions at two examples sites in our

database. The spectra show a characteristic feature, which is decay of Fourier amplitudes

with increasing frequency for frequencies beyond the peak in the spectrum. This frequency-

dependent decay can be described as:

D(f) = exp(−πκf) (4.22)

where f is frequency in Hz and κ is a decay parameter that can be established through fits to

data ([11]). Key aspects of the fitting procedure concern the selection of limiting frequencies

and the combination of horizontal components. The protocols followed in the fitting process

applied in the present study are as described by ([3]), which were influenced by prior work

by [24] and [71].
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Figure 4.7: Analysis of κ from recordings at two example sites

The decay parameter arises from material damping and wave scattering that occurs on the

wave path from source-to-site, often including appreciable contributions from site response.

The path and site response contributions to κ combine as (adapted from [10]):

κ = κ0 + κRR (4.23)

where R is site-to-source distance, κR is the slope by which κ increases with distance, and

κ0 represents the cumulative effect of damping and wave scattering through the soil column.

The relationship between κ0 and profile attributes can be expressed as ([28, 30, 58]):

κ0 =

∫ zs

0

dz

Qef (z)VS(z)
(4.24)

where zs is the site column thickness (depth to reference crustal rock) and Qef (z) is the

depth-dependent effective material quality factor, representing both the effects of frequency-

dependent wave scattering and frequency-independent soil damping. Qef can be converted

to an effective soil damping as follows ([28]):

Def (%) =
100

2Qef

(4.25)

Measurements of κ from recordings can, in principal, inform levels of damping applied in

ground response analyses as follows:

1. Measure κ for a set of sites from multiple earthquakes, as shown for example in Fig-

ure 4.7.
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2. Develop a regionally appropriate model for κR.

3. Adjust each measured value of κ, for each event recorded at a given site, to estimate

κ0 by re-arranging Equation 4.23 as κ0 = κ− κRR.

4. Since the soil/rock column thickness analyzed in ground response analysis is typically

smaller than the full profile to reference crustal rock (VS ≈ 2.5 ∼ 3km/s), adjust κ0

from Step (3) as,

∆κ = κ0 − κ0,b =

∫ zp

0

2Def (z)

100

dz

VS(z)
(4.26)

where κ0,b is the site decay parameter at the base of the profile and zp is the depth of

the analyzed soil column (zp < zs).

5. Modify the laboratory damping with a profile-specific adjustment factor FD to match

∆κ from Step (4), which can be represented by re-writing Equation 4.26 as:

∆κ =

∫ zp

0

2DL
min(z) ∗ FD

100

dz

VS(z)
(4.27)

The depth-invariant value of FD represents the means by which the field observations

of κ inform the damping model. In some cases, FD may be unreasonably high. To

constrain FD so that it provides damping values within a realistic range, I have enforced

a maximum value of FD = 10. The approach maintains the scaling of damping with soil

type and depth in the laboratory models, while adjusting for other effects encountered

in field conditions (scattering). The maximum value of FD is taken by considering

two references [3] and [95]. The former paper studied 21 vertical array sites and

estimated FD and the latter paper studied four vertical array sites and calculated

the best multipliers (which has the same meaning as FD) of Dmin to fit observed site

responses. The range of the recommended values for FD and multipliers are from 1.5

up to 9.15, so I take the maximum value as 10.

Implementation of the above procedure requires several model components – distance

correction term κR and site decay parameter for the base of profile condition κ0,b. The

following sub-sections describe the calculation of κ from recordings, models used for these

components, and example results.
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4.2.2.1 Fitting of κ from ground motions

I apply the κ-fitting procedures described in [3], which were adapted from [24] and [113]. The

fit occurs over a range of frequencies from fe to fx (upper and lower bounds, respectively)

that is selected for each record.

Search ranges for fe and fx are taken as 10-18Hz and 22-28Hz, respectively, each with

0.5Hz increments. For each possible combination of fe and fx, κ is computed for combinations

of the two horizontal components rotated to various azimuths. The variability of κ with

azimuth is computed for each fe − fx combination, which is expressed as a coefficient of

variation (COV). I seek the combination of fe and fx that minimizes the azimuthal variability,

and then take κ as the median. The Fourier amplitude spectra for two example sites shown

in Figure 4.7 are for the azimuths and frequency ranges identified using this process.

4.2.2.2 Analysis of path- and site contributions to κ

Rates of crustal attenuation vary spatially due to variations in geologic conditions. Con-

ditions producing relatively fast ground motion attenuation rates (i.e., low crustal quality

factor, Q) would be expected to increase κR. Insight into spatial variations of attenuation

rates are provided by maps of frequency-independent Q (denoted QS) by [39] for Northern

California and [57] for Southern California. Figure 3.8 shows maps of California indicating

variations of QS at a depth of 10 km from the two sources. I estimate QS at a depth of

10 km from [39] by linear interpolation between depths (the model does not provide QS at

depth of 10 km). There are systematic differences between QS from the two sources, with

values of southern California model being higher.
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Figure 4.8: Spatial variation of frequency-independent quality factor (QS) for California as

derived from two models at a depth of 10 km. The heat maps are generated by Inverse

Distance Weighting (IDW) in QGIS. Zones considered in mixed-effects analysis of path κ

are shown.

Allowing for differences in QS between the two sources, considering both maps and cal-

culating the best fit, I have assigned four zones of approximately uniform QS, with the

intention of computing κR separately for each zone. If the value of κR for zone i is taken as

κR,i, then the κRR term in Equation 4.23 is computed as:

κRR =
∑
i

κR,iRi (4.28)

where Ri is the path length (between source and site) through zone i. Distance Ri is zero if

the path does not go through zone i.

I use mixed-effects regression (more specifically, random intercept model) to obtain κ0,j)

for each station j and κR,i for each zone i, by adapting Equation 4.23 as follows:

κk,j = κ0,j +
n∑
i=1

κR,iRk,i (4.29)

where κk,j is the measured κ from recording k at station j, κ0,j is the site-specific decay

parameter at station j, n is the number of zones in California, and Rk,i is the source-to-site

path length for recording k that goes through zone i. Station terms κ0,j are taken as random

effects and path terms κR,i as fixed effects. Equation 4.29 is solved using an equivalent matrix
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form. The matrix form can be expressed explicitly as follows, the an example consisting of

three sites,

κ1,1

κ2,1

...

κn1,1

κn1+1,2

κn1+2,2

...

κn1+n2,2

κn1+n2+1,3

κn1+n2+2,3

...

κn1+n2+n3,3



=



1 0 0

1 0 0
...

...
...

1 0 0

0 1 0

0 1 0
...

...
...

0 1 0

0 0 1

0 0 1
...

...
...

0 0 1




κ0,1

κ0,2

κ0,3

+



R1,1 R1,2 R1,3 R1,4

R2,1 R2,2 R2,3 R2,4

...
...

...
...

Rn1,1 Rn1,2 Rn1,3 Rn1,4

Rn1+1,1 Rn1+1,2 Rn1+1,3 Rn1+1,4

Rn1+2,1 Rn1+2,2 Rn1+2,3 Rn1+2,4

...
...

...
...

Rn1+n2,1 Rn1+n2,2 Rn1+n2,3 Rn1+n2,4

Rn1+n2+1,1 Rn1+n2+1,2 Rn1+n2+1,3 Rn1+n2+1,4

Rn1+n2+2,1 Rn1+n2+2,2 Rn1+n2+2,3 Rn1+n2+2,4

...
...

...
...

Rn1+n2+n3,1 Rn1+n2+n3,2 Rn1+n2+n3,3 Rn1+n2+n3,4




κR,1

κR,2

κR,3

κR,4



(4.30)

where each site has n1, n2, and n3 records respectively, then there are (n1 +n2 +n3) measured

κ. In this example, there are three unknown random intercepts κ0,1, κ0,2, and κ0,3, and four

unknown slope parameters κR,1, κR,2, κR,3, and κR,4. Two matrices, indicator matrix with

dimension (n1 + n2 + n3) by 3 and distance matrix with dimension (n1 + n2 + n3) by 4, can

be populated knowing source and site locations.

The mixed effect regressions are then performed in R [packages nlme([79]) or lme4([12])]

using the full database (i.e., NGA-West2 stations and records in California as augmented

here). The resulting κR values are shown for each zone in Figure 4.9, where they are plotted

against the QS values from the two references. The error bars shown in the figure indicate the

estimation error for κR from the regressions and the within-zone ranges of QS. Regressions

provided negative κR in Zone 2. This is because the data is not adequate to constrain κR.

As κR physically cannot be negative and the negative estimate of κR is not statistically

significant (with p-value > 0.05), I take it as zero for subsequent use in this study.

What I had expected to see in Figure 4.9 is a trend of decreasing κR with increasing
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QS, which is expected based on the problem physics. This is not encountered, which may

result from limitations in the data set from which κR is estimated or from limitations in the

California QS model. I apply the zone-specific κR coefficients in subsequent analysis despite

their non-conformance with prior expectation.

Figure 4.9: Variation of κR with average QS within the four zones shown in Figure 4.8.

Average QS is taken from both [39] for Northern California and [57] for Southern California

4.2.2.3 Base of profile site decay parameter, κ0,b

The base of profile site decay parameter κ0,b is needed to estimate the change in site kappa

over the profile depth (∆κ) using Equation 4.26. Because the sites considered in this research

are surface-only instruments, κ0,b cannot be measured (i.e., from a downhole instrument) but

instead is estimated from models. Several such models were considered.

Silva et al. ([90]) used California data to relate κ0 to VS30,

κ0 =


0.008sec, VS30 > 1500m/s

0.020sec, 760 < VS30 < 1500m/s

0.030sec, 360 < VS30 < 760m/s

(4.31)

Van Houtte et al. ([105]) and Xu et al. ([113]) used larger databases from the KiK-net
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array in Japan and NGA-West2 data to derive empirical relationships between κ0 and VS30.

Van Houtte et al. ([105]) proposed

lnκ0 = 3.490− 1.062ln(VS30) (4.32)

where VS30 is in units of m/s and κ0 is in units of sec.

Xu et al. ([113]) proposed

lnκ0 =


k1(lnV1)2 + k2lnV1 + k3, 100m/s < VS30 < V1

k1(lnVS30)2 + k2lnVS30 + k3, V1 < VS30 < V2

k1(lnV2)2 + k2lnV2 + k3, V2 < VS30 < 3000m/s

(4.33)

where k1 = 0.18, k2 = 1.816, k3 = −7.38, V1 = 155m/s, and V2 = 2000m/s. The units of κ0

are sec.

I apply the [113] relationship in the present work. To obtain κ0,b, I estimate the VS30

corresponding the base of the soil column by projecting vertically (constant velocity) the VS

at the deepest portion of the profile. I then enter this value into Equation 4.33 to compute

κ0,b. Results of this process for the two example sites are shown in Table 4.5, as are derived

values of ∆κ and FD using Equation 4.26 and 4.27.

Table 4.5: Site kappa results for the SSN = 100173 and SSN = 3046 sites

Site κ0(sec) κ0,b(sec) ∆κ(sec) FD

Keenwild Fire Station, Mountain Center, CA (SSN:

100173)

0.054 0.018 0.036 10

Borrego Springs, CA (SSN : 3046) 0.044 0.026 0.018 10

4.2.3 Q− VS damping model

An empirical relation between Qef and VS was proposed by [26],

Qef = 7.17 + 0.0276VS (4.34)

An equivalent damping can be computed from Qef using Equation 4.25.
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The performance relative to data of ground response analyses with this damping model

will be compared in Chapter 5 and 6 to ground response analysis performance when a

geotechnical damping model and κ-informed damping model are used.

4.2.4 Development of input motions

For a linear system, site amplification in the frequency-domain (i.e., the site-modification of

Fourier coefficients) is independent of input motion attributes. However, the amplification

of response spectral ordinates is dependent on the characteristics of input motions, due to

sensitivity of oscillator response to the shape of the input spectrum ([91]). As a result, I

gave careful consideration to the means by which the input motion was derived, which is

explained in this section.

Our approach is to utilize the recorded ground motion at the soil surface as a starting

point for derivation of the input motion. I utilize a deconvolution approach, termed here the

“inverse transfer function method” (ITF), to convert the surface records to estimates of the

equivalent outcropping motion at the reference depth.

Figure 4.10 illustrates the ITF method, which has the following steps:

1. Fourier coefficients (conjugate complex-valued) of the recorded motion are computed,

Z(f);

2. The site transfer function amplitude, |H(f)|, under linear conditions is derived using

DeepSoil and the site soil properties (the program does not provide transfer function

phase);

3. I divide the surface record Fourier amplitudes by transfer function amplitudes for each

frequency to estimate Fourier amplitudes of the input motion, |X(f)|. The phase of the

surface record is combined with this amplitude to evaluate Fourier coefficients for the

input, X(f). After this calculation, an inverse Fourier transform (IFFT) is performed

to compute the estimated input motion in the time domain.
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Figure 4.10: Flow chart for the ITF method

Figure 4.11 - 4.16 show for six example sites the VS profiles, measured (or assumed)

soil parameters (unit weight and damping) evaluated using procedures from Section 4.2.1,

surface (|Z(f)|) and derived input Fourier amplitudes (|X(f)|) for a site recording, and

response spectra for that same recording. Damping profiles are provided as derived from

the geotechnical model (DL
min), the κ-informed model, and the Q− VS model. As shown in

the figures, the changes in Fourier amplitudes and response spectra between the surface and

the reference condition are limited to frequencies higher that the fundamental site frequency

(f0). Figure 4.17 compares transfer functions to ratios of response spectra for each site; in

each case there is only a single transfer function, but the ratios of the response spectra vary

from motion-to-motion. Note that |H| and R.R.S. represent transfer function amplitude and

ratio of response spectra of surface records to converted input motions.

There are some sites where the results of the deconvolution process produce unrealistic

spectral shapes for input, as shown for example in Figure 4.18(a). This tends to occur

when soil damping is high, specifically when high damping scaling factors are applied in

the κ adjustment (Section 4.2.2). When this occurs, forward applications in which site

amplification is computed using GRA may be unreliable at high frequencies, leading to

unusual shapes of the site amplification (Figure 4.18(b)). To overcome this problem, Step

(3) in the ITF procedure was modified to use the transfer function derived from geotechnical

models for the derivation of the Fourier amplitudes of the input motion, |X(f)|, while forward
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analyses used the three alternate damping models. This modified (or hybrid) approach was

used to produce the results shown in Figures 4.11 - 4.16 and summarized in Chapters 5 - 6.

Figure 4.11: Site properties and modification of example surface recording for the site SSN

= 100173

Figure 4.12: Site properties and modification of example surface recording for the site SSN

= 3046
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Figure 4.13: Site properties and modification of example surface recording for the site SSN

= 100135

Figure 4.14: Site properties and modification of example surface recording for the site SSN

= 3058
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Figure 4.15: Site properties and modification of example surface recording for the site SSN

= 100047

Figure 4.16: Site properties and modification of example surface recording for the site SSN

= 3089
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Figure 4.17: Comparison of surface/input transfer functions and response spectral ratios for

sites SSN = 100173, SSN = 3046, SSN = 100135, SSN = 3058, SSN = 100047, SSN = 3089.
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Figure 4.18: (a) Response spectra for input motions derived from deconvolution procedures;

where large soil damping is used (κ-informed model), the spectra become unstable at short

periods. (b) Site amplifications computed from ground response analysis using the input

motions derived using κ-informed damping model; the rapid fall off at short periods is

unrealistic and prompted the use of the DL
min damping model for the deconvolution. The

results in this figure apply for site SSN = 80000050.

Similar to the present work, the variation of surface/reference response spectral ratios

was previously investigated by Stafford et al. ([91]). I describe that work here to place the
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present results in context. [91] relate response spectra to the zeroth spectral moment, m0

([16] and [23]):

Sa ∝
√
m0 (4.35)

where Sa is the response spectral ordinate. The zeroth spectral moment of surface motion

can be expressed as (Parseval’s formula),

m0,Z(fn, ξn) = 2

∫ ∞
0

|X(f |M, R)|2|H(f)|2|Hosc(f |fn, ξn)|2df (4.36)

where fn and ξn are the oscillator natural frequency and damping, f is frequency in Hz,

M is the earthquake moment magnitude, R is the source-site distance. The input motion

Fourier amplitude is expressed as |X(f |M, R)|. The conditioning on magnitude and distance

is provided because [91] predict it using point source simulations. |H(f)| is the soil column

transfer function amplitude, as before. |Hosc(f |fn, ξn)| is the transfer function of the SDOF

oscillator with natural frequency fn and damping ratio ξn. Similarly, the zeroth spectral

moment for the reference site condition can be expressed as,

m0,X(fn, ξn) = 2

∫ ∞
0

|X(f |M, R)|2|Hosc(f |fn, ξn)|2df (4.37)

Therefore, the site response expressed as ratio of response spectra is

Amp(fn, ξn) =
Sa,Z(fn, ξn)

Sa,X(fn, ξn)
=

√
m0,Z(fn, ξn)

m0,X(fn, ξn)
(4.38)

If the reference site input motions are converted surface motions as descried above, then the

zeroth spectral moments for surface and at reference site would be

m0,Z,im(fn, ξn) = 2

∫ ∞
0

∣∣∣X(f |M, R)

H(f)

∣∣∣2|H(f)|2|Hosc(f |fn, ξn)|2df (4.39)

m0,X,im(fn, ξn) = 2

∫ ∞
0

∣∣∣X(f |M, R)

H(f)

∣∣∣2|Hosc(f |fn, ξn)|2df (4.40)

And Equation 4.39 can be simplified to

m0,Z,im(fn, ξn) = 2

∫ ∞
0

|X(f |M, R)|2|Hosc(f |fn, ξn)|2df (4.41)

since |H(f)| terms are canceled out.
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I compare the amplification computed from using surface motions directly applied as

input motions (Ampsr(fn, ξn)) with amplification computed using converted input motions

(Ampim(fn, ξn)) by take the ratio of the two,

Ratio(f |fn, ξn) =
Ampsr(fn, ξn)

Ampim(fn, ξn)
=

m0,Z(fn, ξn)/m0,X(fn, ξn)

m0,Z,im(fn, ξn)/m0,X,im(fn, ξn)

=
(
∫∞

0
|X(f |M, R)|2|H(f)|2|Hosc(f |fn, ξn)|2df) ∗

( ∫∞
0

∣∣∣X(f |M,R)
H(f)

∣∣∣2|Hosc(f |fn, ξn)|2df
)

(
∫∞

0
|X(f |M, R)|2|Hosc(f |fn, ξn)|2df)2

(4.42)

Let |Zosc(f |fn, ξn)|2 = |X(f |M, R) ∗Hosc(f |fn, ξn)|2 then Equation 4.42 can be simplified as

Ratio(f |fn, ξn) =
(
∫∞

0
|H(f)|2|Zosc(f |fn, ξn)|2df) ∗

( ∫∞
0

∣∣∣ |Zosc(f |fn,ξn)|
H(f)

∣∣∣2df
)

(
∫∞

0
|Zosc(f |fn, ξn)|2df)2

(4.43)

Approximating integration by summation, then Equation 4.43 becomes

Ratio(f |fn, ξn) =
(
∑∞

i=0 |H(fi)|2|Zosc(fi|fn, ξn)|2) ∗
(∑∞

i=0

∣∣∣Zosc(fi|fn,ξn)
H(fi)

∣∣∣2)
(
∑∞

i=0 |Zosc(fi|fn, ξn)|2)2
(4.44)

Per the Cauchy-Schwarz inequality2, this ratio is greater than or equal to one. The ratio

is unity for the case of H(f) = 1 for the full frequency range. The ratio increases if H(f)

departs from 1. Therefore, use of converted input motions will always decrease the site

response computed from GRA relative to direct use of surface records as input motions.

This conclusion holds as long as the transfer function H(f) is non-unity for some frequencies

within the considered range. As a result, GRAs would over-estimate site response if surface

records were used as input motions.

2https://en.wikipedia.org/wiki/Cauchy-Schwarz_inequality
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CHAPTER 5

Comparison of Observed-to-Predicted Site Response

for California Sites

The objective of the ground motion analyses conducted in this research was to examine

the effectiveness of alternate site response models at predicting observed site responses.

This occurs by comparing observations-to-models for individual sites, and by assembling

results across groups of sites (including the full inventory). This chapter provides the former

examination by illustrating representative example results for individual sites.

Four site response analysis methods are considered. The first is the ergodic model (con-

ditioned on VS30 and sediment depth) that comprises the reference model to which others are

compared. The second is ground response analysis (GRA), which simulates vertical wave

propagation through a damped, elastic medium. The third is the square-root impedance

method (SRI), which approximates the impedance components of ground response with

simple expressions based on the principle of wave energy conservation across layer interfaces.

The fourth is the Horizontal-to-vertical spectral ratio (HVSR) model, which consists of a

hybrid of the ergodic model and modifications to that model conditioned on site parameters

derived from HVSR, which accounts for potential site-specific resonance effects.

In this chapter, I first describe how site response effects are evaluated from record-

ings. Then, I present representative results comparing model predictions to observed site

responses. As part of these analyses, I describe several approach for quantifying the quality

of model-to-data fit. Results for individual sites are provided on a Github site, accessible at

https://github.com/wltcwpf/CSMIP-Report-Supplements.
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5.1 Evaluation of observed site response

5.1.1 Residuals analysis and quantification of non-ergodic site response

Site amplification is represented by variable Y (in arithmetic units), which is the ratio of a

ground motion intensity measure on the ground surface (Z) to the intensity measure on the

reference condition (typically rock), X:

Y = Z/X or lnY = lnZ − lnX (5.1)

All three variables (X, Y, Z) are assumed to be log-normally distributed with standard devia-

tions φlnX , φlnY , and φlnZ , respectively. The use of variable φ for standard deviation indicates

that it is associated with the within-event dispersion of earthquake ground motions. The

total standard deviation (σ) also includes contributions from between-event variability τ .

Earthquake ground motions are affected by source, path, and site effects, each of which

has corresponding terms in ground motion models (GMMs). Each of those terms may be

systematically in error for a particular earthquake source, wave path, and site. Provided

sufficient data exists, those systematic component errors can be estimated through mixed

effects methods of residuals analysis (e.g., by nlme library in R [79]). A general expression

to help visualize such effects is as follows (adapted from [7]):

lnZij = (µlnX)ij + (FS)ij + ck + ηE,i + ηP,ij + ηS,j + εij (5.2)

where Zij represents a recorded ground motion for event i and site j, (µlnX)ij represents the

mean from a GMM for a specified reference site condition, (FS)ij represents the mean site

amplification from an ergodic site term relative to the reference condition, ck represents the

mean model misfit relative to the data population (evaluated from mixed effects analyses),

and ηE,i, ηP,ij, and ηS,j represents event, path, and site terms, respectively. The term εij rep-

resents the remaining residual when each of the above so-called random effects are removed.

For the present work, I am not studying non-ergodic path effects; hence, I use a slightly

simplified form of Equation 5.2:

lnZij = (µlnX)ij + (FS)ij + ck + ηE,i + ηS,j + εij (5.3)
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Note that the sum (µlnX)ij + (FS)ij is simply the GMM log mean (µlnZ)ij. The difference

between the observation and the mean prediction comprises the total residual Rij:

Rij = lnZij − [(µlnX)ij + (FS)ij] (5.4)

The Full Database (Section 2.1) is significantly expanded (in California) relative to that

used to develop NGA-West2 models. Accordingly, I recomputed residuals for the full data

set used in the derivation of the model by [22] supplemented with the additional California

data. Event terms and site terms were evaluated by partitioning total residuals as

Rij = ck + ηE,i + ηS,j + εij (5.5)

where ck is the overall model bias for the model k. The partitioning in Equation 5.5 used

mixed effects analysis procedures (lmer by [12] or nlme by [79]). With the residuals having

been derived in this manner, the true (non-ergodic) site response relative to the reference

condition used in the ergodic site response model (typically VS30 = 760m/s) is computed as:

µlnY,j = (FS)j + ηS,j (5.6)

As a first approximation, the mean site response (µlnY )ij is independent of event i if the

magnitude is greater than four and the amplitude of shaking is sufficiently weak than the

effects of nonlinearly are modest. As a result, mean site amplification is denoted (µlnY )j.

Equations 5.2 - 5.6 strictly apply only for the case of an ergodic site amplification model.

For the case of ground response methods in which the base condition may be different from

the ergodic reference, Equation 5.3 and 5.4 can be re-written as

lnZij = (µBlnX)ij + (F k
S )j + ck + ηE,i + ηkS,j + εij (5.7)

Rij = lnZij − [(µBlnX)ij + (F k
S )j] (5.8)

where F k
S is the mean site response relative to the reference condition as computed using

the GRA or SRI methods (index k would refer to one of these specific methods), µBlnX is

the GMM mean ground motion for the base-of-profile reference condition, and ηkS is the site

term for ground response model. Equation 5.3 and 5.7 can be re-arranged as

ηS,j + εij = lnZij − [(µlnX)ij + (FS)j]− ck − ηE,i (5.9)
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ηkS,j + εij = lnZij − [(µBlnX)ij + (F k
S )j]− ck − ηE,i (5.10)

Consider the case of FS taken from an ergodic model; for such models reference conditions

can be relatively easily modified to different velocities. For this case, the terms in the brackets

on the right side are different between Equation 5.9 and 5.10, but their sum is the same (i.e.,

a change in reference site condition maps into and equal and opposite changes to the GMM

and site term). Accordingly, site terms (ηS) have the same meaning regardless of reference

condition and therefore can be compared for different modeling approaches (which may have

different reference conditions) in an “apples-to-apples” sense. Of course, when comparing

two different site response modeling approaches, the two site terms would be expected to

be different because of differences between the terms in brackets. The ck and ηE,i terms are

assumed to be identical, because they are computed using the global data and the number of

sites considered in this research (159) is much smaller than the number in the global dataset

(1818). Equations 5.9 and 5.10 can be re-arranged to place site-related parts together on

the left side of the equations,

ηS,j + (FS)j + εij = lnZij − (µlnX)ij − ck − ηE,i (5.11)

ηkS,j + (F k
S )j + εij = lnZij − (µBlnX)ij − ck − ηE,i (5.12)

Based on Equation 5.6, the sum of the first two terms on the left side of Equation 5.11 can

be recognized as being the non-ergodic mean site responses (µlnY ). Making this substitution,

recognizing that the mean of the εij terms is zero and the bias and event terms are identical,

and taking the difference of the two equations (Equation 5.12 - Equation 5.11), provides:

ηkS,j + (F k
S )j − µlnY,j = (µlnX)ij − (µBlnX)ij (5.13)

The means for the two reference conditions are related by

(µBlnX)ij = (µlnX)ij + (FB
S )j (5.14)

where FB
S is the site amplification from an ergodic model for the reference condition (relative

to the reference condition in FS, which is 760 m/s in this study). Making this substitution in
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Equation 5.13 and moving the non-ergodic site response (µlnY,j) and mean site amplification

for model k to the right side,

ηkS,j = µlnY,j − (F k
S )j − (FB

S )j (5.15)

Hence, the site term for model k is the non-ergodic site response (Equation 5.6) minus

the model prediction, adjusted for differences in reference condition (as applicable). For

the present study, (FB
S )ij is zero for the HVSR model and is non-zero and site-dependent

for the ground response models (GRA, SRI). Analogous to Equation 5.6, the non-ergodic

site response relative to the ground response reference condition can be evaluated from

Equation 5.15 as,

(µBlnY )j = ηkS,j + (F k
S )j = µlnY,j − (FB

S )j (5.16)

This version of site amplification is used in plots presented subsequently in Chapter 5 and

6.

Site terms in the Full Database are based on a wide range of available site recordings,

including some with as few as one recording. In contrast, the Database Subset for Site

Response Studies (Section 2.3) only considers sites with at least 10 recordings along with

meeting other site characterization criteria. As a result, the uncertainty in site terms and

mean site responses is much lower for the subset than for typical sites in the larger database.

However, as period increases, some motions for individual sites within the subset are beyond

their usable range (i.e., when period exceeds the inverse of the lowest usable frequency, as

defined in Section 2.1). To illustrate this effect, Figure 5.1 shows the decay of the number of

sites with usable site terms with period, where a site is no longer considered usable once the

available number of recordings at that site is less than 5. Fall-off in the number of available

sites occurs beyond a period of 2 sec, but the data loss is modest even out to 10 sec.
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Figure 5.1: Decay of number of usable sites with oscillator period due to exceedance of usable

period range. For this plot, the minimum number of records for a site to be considered usable

is 5

Each of the residuals terms in Equation 5.3 and 5.5 has an accompanying standard

deviation. The standard deviation of ηE,i is denoted τ and represents the event-to-event

variability. The standard deviation of ηS,j is denoted φS2S and represents the site-to-site

standard deviation. The standard deviation of εij is denoted φSS and represents the “single

station” within-event dispersion that combines effects of path-to-path variability and event-

to-event variability in site response.

Figure 5.2 shows histograms of site terms for two intensity measures (peak acceleration

and velocity) and their correlation. The degree of correlation is strong, as reflected by a

correlation coefficient of 0.822. Figure 5.3 shows the dispersion terms evaluated from this

process as a function of oscillator period.
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Figure 5.2: Histograms of PGV and PGA and their scatter plot

Figure 5.3: Standard derivations of partitioned residuals τ , φS2S, φSS. Shown as dotted

when data population is reduced by 25% from the number for PGA.

By default, the above residuals analyses and dispersion terms apply to ground motion
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predictions using the ergodic site amplification model. Chapter 6 describes how the residuals

analyses are modified for cases where site-specific models are used in lieu of ergodic site

amplification models, which produces different estimates of the site-to-site variability φS2S.

5.1.2 Identification of site response peaks

Observed site responses established from data using Equation 5.6 may, for some sites, exhibit

peaks when site amplification is plotted with respect to oscillator period. For the assessment

of site response prediction methods (particularly HVSR), it is useful to have an assessment of

the presence of peaks in observed site responses. The procedures described in Chapter 3 for

use with HVSR data are not directly applicable for this application, because the amplitudes of

peaks are different (often lower). Instead, I adopt the Analyst II visual identification method

described in Section 3.4 with modifications (e.g., the amplitude of peak could be small,

and the peak amplitude is not necessarily 2 times larger than the ordinates at neighboring

frequencies).

Figure 5.4 shows results for nine example sites, three of which unambiguously exhibit

peaks (based on visual inspection), three of which have no peaks, and three intermediate

cases. For sites with peaks, the new proposed function in Equation 3.9 is fit to the data

(lowest frequency peak) and the fitted peak frequency 1/T posc is identified. This frequency may

be slightly different from the oscillator frequency having the largest site response (denoted

as f0; corresponding period is T0 = 1/f0).
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Table 5.1: Breakdown of sites with peaks, no peaks, ambiguous cases as derived from site

response

Number Percentage Mean of VS30 Mean of 1/T p
osc

Peaks 77 48% 493.8 3.7 Hz

No Peaks 32 20% 513.8 –

Intermediate 50 32% 454.0 –

Figure 5.4: Nine example sites illustrating peaks (first row), no peaks (second row), and

intermediate peaks (third row) for site response

In the Github site, I present observed site responses for all sites (159) considered in this

research. For sites with peaks, fits as described above are shown and peak frequencies are

identified. Table 5.1 summarizes the results.
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5.2 GRA

5.2.1 Representative results

I provide here example results for the same set of six example sites introduced in Section

4.2.4 (Figure 5.5 - 5.7). The full set of analysis results for 159 sites are uploaded in my

Github site. For each site, the observed site response (Equation 5.16) is compared to the site

response predicted from an ergodic model ([88]) adjusted to be referenced to the base-of-

profile condition (FS − FB
S ) and site-specific GRA. The three damping models described in

Sections 4.2 (geotechnical, κ-informed, Q− VS) are applied in GRA, such that their relative

levels of effectiveness can be assessed. Site fundamental periods are shown in the figures as

estimated by the simplified Rayleigh method suggested by [104]. Maximum usable periods,

beyond which the available numbers of recordings is ≤ 5, are also shown.

The results in Figure 5.5 - 5.7 show that the relatively smooth variations of site amplifi-

cation with period that are predicted by the ergodic model seldom align with observed site

responses, which often have local peaks and troughs. Figure 5.5 shows results for two sites

(SSNs 100173 and 3046) that visually appear to exhibit good “fit” over a broad period range

(i.e., the shapes of the site amplification vs period plots are similar, even if they are shifted

relative to each other). Both are predominantly rock sites with shallow surficial layers of soil

or weathered rock and large impedance contrasts (apparent from VS profiles in Figure 4.11

- 4.12). These conditions give rise to large amplification near short fundamental periods

(∼0.1-0.2 s), and rapid fall-off of amplification for longer periods. This condition is well

represented with the GRAs, with the κ-informed Dmin and the DL
min best representing short

period amplifications for the two sites, respectively.
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Figure 5.5: Non-ergodic site responses at the site SSN = 100173 and site SSN = 3046,

compared with site response predictions obtained with use of ground response analysis and

an ergodic model. The maximum period used in the plots is the median of the maximum

usable periods from data processing. The ground response model provides a good estimate

of the shape of the amplification function in these cases.

The favorable conditions for the two sites depicted in Figure 5.5 are not typical (similar

findings of good fit over the full period range occur for around 14% of the 159 sites in the

inventory). More commonly, comparisons indicate significant misfits over some or all of the

period range. The sites in Figure 5.6 (SSNs 100135 and 3058) exhibit generally good fit of

GRA to observation at short periods and poor fit at long periods. These sites have profiles of

gradually increasing stiffness with depth to 25 m. A modest impedance contrast occurs for

SSN 100135 (Figure 4.13), whereas 3058 has no interface with a large contrast (Figure 4.14).

The modeled soil columns produce resonant periods near 0.35 s and 0.25 s, respectively,

with amplification shapes up to resonance captured well by GRAs, although the amount of

amplification is over-estimated. The misfits occur at longer periods, where the data indicate

significant amplification continuing up to overall peaks near about 2.0 sec (100135) and 0.45

sec (3058), whereas the GRAs fall off to zero amplification beyond the modeled soil column

periods of ∼0.25-0.35 sec. This indicates that the soil portions of these profiles may continue

beyond the maximum depths of the site models (30 m). This highlights both a benefit and

a limitation of GRA:

• Benefit: Despite the incompleteness of the profile, the use of GRA is nonetheless
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beneficial within the period range of the soil column, relative to the ergodic model.

There is about 28% of the 159 sites having good fit within the soil column period.

• Limitation: GRA cannot capture site response for periods beyond the soil column

period, which instead is better represented by the ergodic model (especially for 100135).

This conforms with recommendations of [93] to only consider results of GRA up to the

soil column period, and to transition site amplification to ergodic prediction at longer

periods.

Among the three Dmin models, again κ-informed damping performs best at short periods.

Figure 5.6: Non-ergodic site responses at the sites with SSN = 100135 and 3058, compared

with site response predictions obtained with use of ground response analysis and an ergodic

model.

The sites in Figure 5.7 (SSNs 100147 and 3089) exhibit poor fit of GRA to observation

for all periods. Other than a large velocity step at 4 m for SSN 100147, these sites have

profiles of gradually increasing stiffness with depth and no significant impedance contrasts.

In both cases, the sites de-amplify ground motion (relative to the reference site condition of

VS30 = 760m/s) at short periods (i.e., T < 0.4 − 1.0 sec), but amplify ground motions at

long period with peaks near 2.0 sec. The inability of GRA to model long period site response

is similar to that shown in Figure 5.6, and as before, the ergodic model provides improved

performance. What distinguishes these sites is the poor GRA performance at short periods,

which is caused the de-amplification. De-amplification over at least a log cycle of period
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(as in Figure 5.7) occurs for around 25% of sites in the inventory, and thus is a relatively

common condition. In the case of the sites in Figure 5.7, the reduction may be influenced by

attenuation of high frequency motions from damping in deep sediments (e.g., SSN = 100047

site has z1.0 = 567.5 m and z2.5 = 840.2 m given in NGA-West2 flatfile).

Figure 5.7: Non-ergodic site responses at sites with SSN = 100047 and 3089, compared

with site response predictions obtained with use of ground response analysis and an ergodic

model.

5.2.2 Goodness of fit

In the last section, I judged goodness-of-fit visually. In judging the quality of the fit, there

are two considerations: (1) the general proximity of two site amplification vs period plots

and (2) similarity of shapes of the plot. Visual judgements of goodness-of-fit have the draw-

backs of being subjective and non-automated (time-intensive). Here I describe alternative

quantitative metrics to measure the goodness-of-fit.

Residuals of site amplification defined similarly to Equation 5.4 (difference between obser-

vation and model prediction in natural log units) are useful for individual intensity measures,

but not for judging the relative positions of period-dependent quantities. Pearson’s sample

correlation coefficient r has been used to quantify the overall goodness-of-fit of observed

and simulated transfer functions from vertical arrays ([98] and [3]). Here I apply the same

concept to compare oscillator period-dependent amplification functions. The correlation is
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computed for a given site j and recording i as,

rij =

∑
t∈T

(
(F k

S )i(t)− (F k
S )i

)
(µlnY (t)− µlnY )√∑

t∈T

(
(F k

S )i(t)− (F k
S )i

)2√∑
t∈T (µlnY (t)− µlnY )2

(5.17)

Subscript j applies to all terms and is not shown. Subscript k is an index representing

model type (ergodic, GRA with alternate damping models). T represents the period range,

t represents a particular period, t ∈ T (i.e., t can be any possible value in T ). (F k
S )i(t) is the

site amplification for model k at period t, (F k
S )i is the average of (F k

S )i(t) over T . µlnY (t) is

the observed site amplification for site j (Equation 5.16) and µlnY is the average of µlnY (t)

over T . For a given site j, there is only one µlnY (t), while there are multiple (F k
S )i(t) (one

for each recorded earthquake.

The mean value of r across all events, denoted as r̄, is used to measure goodness-of-fit.

Large positive values indicate good fit. Table 5.2 shows r̄ values for the six example sites

over the full period range and for periods up to the fundamental soil column period in both

cases of ergodic and GRA-based predictions using the κ-informed Dmin damping model. In

the case of GRA, for the sites visually identified as “good fit” (Figure 5.5), the correlation

coefficients for full range of periods (scenario one) range from 0.72 to 0.89 and for the periods

up to fundamental periods (scenario two) range from 0.48 to 0.89, whereas “poor fit” sites

(Figure 5.6 and full period range for Figure 5.7) have low or negative correlation over the

full period range and correlations less than 0.25 over the more restrictive (short period)

range. In the case of the ergodic model, correlation coefficients are low for four of the six

sites, including the first two “good fit” sites, indicating less favorable fit. In summary, the

mean correlation coefficients reflect good performance of GRA for good fit sites and the

poor performance of poor fit sites. Correlation coefficient does not reflect what was visually

judged as good fit at short periods for the intermediate sites.
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Table 5.2: The summary of correlation coefficients for six example sites for both ergodic and

GRA-based site response estimates

Site r̄ for ergodic

over the full

period range

r̄ for ergodic for

the periods up

to fundamental

periods

r̄ for GRA over

the full period

range

r̄ for GRA for

the periods up

to fundamental

periods

SSN = 100173 0.587 -0.939 0.891 0.891

SSN = 3046 -0.670 -0.863 0.724 0.475

SSN = 100135 0.852 0.781 -0.785 0.145

SSN = 3058 -0.170 0.784 0.317 -0.039

SSN = 100047 0.315 0.006 -0.118 0.251

SSN = 3089 0.883 0.953 -0.852 -0.206

A limitation of mean correlation coefficient is that it does not capture misfit related to

vertical offsets between amplification functions. For example, the short-period, GRA mean

correlation coefficient for site SSN = 100047 are relatively high, whereas vertical offsets are

large (about one in ln units). An alternative metric used to quantify the similarity of two

curves is Fréchet distance . As illustrated in Figure 5.8, if a person and a leashed dog walk

along separate curved paths, each can change velocity to maintain slack in the leash. The

Fréchet distance between the two curves is the length of the shortest leash sufficient for

both to traverse their separate paths, under the condition that neither is allowed to move

backwards. If the velocities of the person and dog were the same, Fréchet distance would be

the longest distance between their position over the duration of the walk. Fréchet distance

is reduced by allowing velocities to change.
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Figure 5.8: Schematic comparison of vertical distance between paths (left, max of 2) and

Fréchet distance (right, max of
√

2)

The application of Fréchet distance as a means by which to compare alternate site am-

plifications can be expressed as,

Ψ(F̄ k
S , µlnY ) = mint1,t2∈Tmax{|F̄ k

S (t1)− µlnY (t2)|} (5.18)

where F̄ k
S is the mean linear site amplification from model k across all events, and t1 and t2

are the periods of F̄ k
S and µlnY . As before, all of the arguments in Equation 5.18 apply for a

given site (i.e., site j). I allow t1 and t2 to not match, but the calculation starts from short

period and progresses to long periods without moving backwards. The calculation is made

using function Frechet as provided in library SimilarityMeasures (Toohey, 2015) in R.

In addition, I also compute Fréchet distance normalized by the range of µlnY (max(µlnY ) −

min(µlnY )).

Table 5.3 - 5.4 show Fréchet distances and normalized Fréchet distances for the six ex-

ample sites for the same model-to-observation combinations considered in Table 5.2. Low

Fréchet distances, or normalized Fréchet distances, indicate better fit than large values. Site

100173 has large Fréchet distances, despite the similarity of shapes, due to the vertical shift.

For the other sites, Fréchet distances, especially over the period range below the site period,

are lower for good fit sites than for poor fit sites (Table 4.3). This trend also holds for nor-

malized Fréchet distances (Table 5.4), except that even 100173 has relatively small values

due to its large range. The range of normalized Fréchet distances for “good fit” sites is less

than 0.9, whereas the normalized Fréchet distances for “intermediate fit” is around 1, and

“poor fit” is greater than 1.5.
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Table 5.3: Summary of Ψ for six example sites for both ergodic and GRA

Site Ψ for ergodic

over the full pe-

riod range

Ψ for ergodic for

the periods up

to fundamental

periods

Ψ for GRA over

the full period

range

Ψ for GRA for

the periods up

to fundamental

periods

SSN = 100173 0.624 0.542 0.677 0.566

SSN = 3046 0.724 0.355 0.352 0.326

SSN = 100135 0.269 0.140 0.814 0.446

SSN = 3058 0.765 0.187 0.404 0.397

SSN = 100047 1.004 0.555 0.767 0.687

SSN = 3089 0.734 0.734 0.839 0.839

Table 5.4: Summary of normalized Ψ for six example sites for both ergodic and GRA

Site Normalized Ψ

for ergodic over

the full period

range

Normalized Ψ

for ergodic for

the periods up

to fundamental

periods

Normalized Ψ

for GRA over

the full period

range

Normalized Ψ

for GRA for

the periods up

to fundamental

periods

SSN = 100173 0.568 0.871 0.616 0.910

SSN = 3046 0.900 0.669 0.438 0.615

SSN = 100135 0.406 0.339 1.228 1.078

SSN = 3058 1.079 0.543 0.569 1.155

SSN = 100047 0.987 1.746 0.753 2.161

SSN = 3089 0.580 1.297 0.664 1.483
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5.3 SRI

The square-root-impedance (SRI) method, introduced by [61] and subsequently revised and

further described by [19], applies principles of wave energy conservation to estimate changes

in wave amplitude across layer boundaries. It is widely used in engineering seismology,

particularly in combination with semi-stochastic ground motion simulation routines (e.g.,

[16]). Prior validation studies have considered the SRI method in combination with simula-

tions, but seldom has the method been validated as a stand-alone model. Such validation

is undertaken here; I present example results for the same set of 6 sites considered from

Section 5.2.

Example results from SRI calculations are presented here for the same six example sites

considered in Section 5.2.1. Results are presented in Figure 5.9 - 5.11 following the same

format used for GRA comparisons – observed site response (Equation 5.16) is compared

to an adjusted ergodic model prediction and site-specific SRI. The three damping models

described in Section 4.2 (geotechnical, κ-informed, Q − VS) are applied in GRA, such that

their relative levels of effectiveness can be assessed.

Figure 5.9 shows results for the “good fit” sites (SSNs 100173 and 3046). The fit of the

SRI results over the full period range appears to be quite good, similar to the findings from

GRA. Figure 5.10 - 5.11 show results for the second and third groups of sites. As before,

the fits of SRI results to observation generally mirror the trends encountered for GRA. In

particular, the fits are uniformly poor for these sites at long periods where SRI (and GRA)

does not provide information on site amplification. However, a distinction from GRA is that

the κ-informed damping model overestimates short period attenuation relative to alternative

damping models, whereas that damping model provided the best outcomes with GRA.
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Figure 5.9: Non-ergodic site responses for sites with SSN = 100173 and 3046, compared with

site response predictions from ergodic model and from site-specific SRI.

Figure 5.10: Non-ergodic site responses for sites with SSN = 100135 and 3058, compared

with site response predictions from ergodic model and from site-specific SRI.

Figure 5.11: Non-ergodic site responses for sites with SSN = 100047 and 3089, compared

with site response predictions from ergodic model and from site-specific SRI.

Table 5.5 lists goodness-of-fit metrics of SRI-based predictions using the DL
min damping
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model for the six example sites for the same observation-to-model combinations considered

previously for GRA. Interestingly, shape-based metrics for the good-fit sites for the period

range up to fundamental periods are improved for SRI relative to GRA, and (Normalized)

Fréchet distances are reduced. The trends of comparisons across sites and for different period

ranges are as discussed in Section 5.2.2.

Table 5.5: The summary of Fréchet distance, normalized Fréchet distance, and correlation

coefficients for SRI

Site r̄ for SRI

over the

full period

range

r̄ for SRI

for periods

up to fun-

damental

period

Ψ for SRI

over the

full period

range

Ψ for SRI

for the

periods

up to fun-

damental

period

Normalized

Ψ for SRI

over the

full period

range

Normalized

Ψ for SRI

for periods

up to fun-

damental

period

SSN = 100173 0.907 0.980 0.658 0.290 0.599 0.466

SSN = 3046 0.821 0.909 0.374 0.145 0.464 0.274

SSN = 100135 -0.820 -0.120 0.866 0.270 1.306 0.653

SSN = 3058 0.179 -0.019 0.359 0.244 0.507 0.711

SSN = 100047 0.007 0.482 0.729 0.560 0.716 1.761

SSN = 3089 -0.866 -0.311 0.748 0.748 0.591 1.322

5.4 HVSR model

The Horizontal-to-vertical spectral ratio (HVSR) model consists of a hybrid of the ergodic

model and modifications to that model conditioned on site parameters derived from HVSR,

which accounts for potential site-specific resonance effects. In this section, I will use the

model described in Section 4.1.4 to predict site response using HVSR parameters derived

from strong motions and noise data. The first sub-section below focuses on the compatibility

of peaks in model predictions and observed site responses. The second sub-section compares

observed and predicted amplification function shapes in the same manner as undertaken

previously for GRA and SRI. All site responses presented in this section are relative to the
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GMM reference condition (760 m/s); non-ergodic site responses are taken from Equation 5.6.

5.4.1 Observed and predicted site response peaks

As discussed in Chapter 3, sites can be classified based on their HVSR shape into three

categories: clear peak sites, no peak sites, and ambiguous sites. This section provides for

each category representative example results for model-to-data comparisons and a synthesis

of findings.

Clear peak sites

Here I consider two sites identified as having peaks by both analysts. Figure 5.12 shows

for each site the HVSR plot but with the frequency axis transformed to period (not an

oscillator period) and the empirical site response (and the model predictions) also plotted

against oscillator period. The site with station sequence number SSN = 100296 (VS30=442.27

m/s) has a peak at 1/fp1 = 1.5 sec from HVSR, which is also in the observed site response.

The fundamental period of the soil column over which VS is measured, also marked in the

figure, is much smaller (0.2 sec) due to the limited depth range of the measured profile. The

site with SSN = 3061 (VS30 = 743.19 m/s) has a clear HVSR peak at 1.0 sec, which again is

apparent in the site response.

For both of these sites, the ergodic model does not predict the specific features of the

peaks. The models shown in Figure 5.12 are ergodic and HVSR models. The HVSR model

captures the peaks in the site response; this occurs because the HVSR peak coincides with

that of the site response.
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Figure 5.12: Non-ergodic site responses for clear peak sites with SSN = 100296 and 3061,

compared with site response predictions from ergodic model and from HVSR model.

The alignment of the peaks that is seen in Figure 5.12 does not happen for all clear peak

sites. From Section 3.5.2, based on analysts visual interpretation, the database contains 34

and 54 clear peak sites for strong motion and noise data sources, respectively. The alignment

of the peaks from these clear peak sites with site response peaks can be summarized as follows:

• For strong motion: Of the 34 clear peak sites, 19 (56%) also have site response peaks.

Of those 19 sites, the peaks from HVSR and site response reasonably align for 18 (95%)

and for 12 of the aligned sites (63%), their peak amplitudes are also similar.

• For noise: Of the 54 clear peak sites, 28 (52%) also have site response peaks. Of those

28 sites, the peaks from HVSR and site response reasonably align for 20 sites (71%)

and for 15 of the aligned sites (54%), their peak amplitudes are similar.

These results show that strong motion-based HVSRs better align with observed site

response than do HVSRs derived from ambient noise. This might be anticipated because

there is a certain degree of circularity in using the same data source (earthquake strong

motions) to derive HVSR and site response. On the other hand, the effectiveness of noise-

based HVSR at identifying the presence of peaks and predicting the locations of the peaks is

quite good for these sites. This is encouraging regarding the potential effectiveness of noise

HVSR-based models to assist in ground motion prediction (which is the case for the sites

in Figure 5.12). One way of quantifying this effectiveness is the false positive rate, which is
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defined as the percentage of sites that lack a peak despite HVSR suggesting the presence of

a peak. The false positive rate is 48% for the noise-based HVSR (slightly higher if judged

on the basis of peak alignment).

No peak sites

Here I consider two sites identified as not having peaks by both analysts. Figure 5.13

shows for each site HVSR and site response plots in the same format as Figure 5.12. The

site with SSN = 100609 (VS30=514.40 m/s) has some fluctuations in site response that could

be interpreted as peaks at 0.1 and 0.8 sec, whereas the site with SSN 3070 (VS30=244.42

m/s) has broad and smooth variations of site amplification with period similar to those of

the ergodic model, and no peaks. For both of these sites, the HVSR model shifts vertically

the predictions of the ergodic model due to the lack of identified HVSR peaks (the shift is

by an amount c̄ = 0.0625 based on the data, per Equation 4.12), which modestly reduces

bias in both cases.

Figure 5.13: Non-ergodic site responses for clear peak sites with SSN = 100609 and 3070,

compared with site response predictions from ergodic model and from HVSR model.

As shown in Table 3.6, the numbers of no-peak sites based on HVSR are 83 and 54 for

strong motion and noise sources, respectively. For these no-peak sites, the alignment with

features of observed site responses can be summarized as follows:

• For strong motion: Of the 83 no peak sites, 44 (53%) lack site response peaks. Hence

the rate of false negatives is 47%.
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• For noise: Of the 54 sites, 28 (52%) lack site response peaks (false negative rate of

48%).

These results show that the strong motion- and noise-based HVSR are similar in their ef-

fectiveness at identifying sites without site response peaks. The false negative rate (about

47-48%) is similar to the false positive rate for clear peak sites.

Sites with ambigous peak assignments

Here I consider two sites with mixed peak identifications (peak identified by Analyst I

but not Analyst II). Figure 5.14 shows for each site HVSR and site response plots in the

same format as Figures 5.12 - 5.13. The site with SSN = 100096 (VS30=1015.75 m/s) has a

site response peak at 0.12 sec that is a little lower than that predicted by the HVSR model

with a peak at 1/fp1 = 0.15 sec. The site with SSN 100177 (VS30 = 452.47 m/s) generally

has broad and smooth variations of site amplification with period, although a relatively local

peak may be present at 1.5 sec that is not well predicted by Analyst I HVSR peaks at 0.6

sec (strong motion) and 2.5 sec (noise). Other than the aforementioned peaks, the ergodic

model provides a reasonable first-order representation of the site response for these sites.

Figure 5.14: Non-ergodic site responses for clear peak sites with SSN = 100609 and 100177,

compared with site response predictions from ergodic model and from HVSR model.

Analyst interpretation of HVSR derived from strong motion and noise data sources led

to 32 ambiguous peak sites. For these sites, I evaluate the occurrence of peaks in observed

site responses, with results summarized as follows:
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• For strong motion: Of the 32 sites, 16 (50%) have site response peaks. Of that group

of 16 sites, 8 sites have peak frequencies aligned with those from HVSR and 4 sites

have comparable amplitudes.

• For noise: Of the 32 sites, 17 (53%) have site response peaks. Among those 17 sites,

10 sites have peak frequencies alighted with those from HVSR and 5 sites also have

comparable amplitudes.

In summary, slightly more than 50% of ambiguous sites have peaks in site response, and

many of those sites have their peaks successfully predicted by HVSR.

5.4.2 Representative results and goodness-of-fit

Table 5.6 lists goodness-of-fit metrics for HVSR model predictions using the parameters

fitted from strong motion and noise HVSR. Unlike the GRA and SRI models, the HVSR

model does not have a restricted period range based on the depth of VS profiles. Accordingly,

the goodness-of-fit metrics were evaluated over the full period range.

The most favorable goodness-of-fit metrics are obtained for the two clear-peak sites, with

relatively mixed results for the other pairs of sites. A compilation of goodness-of-fit statistics

across all of the sites in the clear-peak, no peak, and ambiguous peak groups is provided in

Chapter 6.
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Table 5.6: The summary of Fréchet distance, normalized Fréchet distance, and correlation

coefficients for HVSR models

Sources Site r̄ for HVSR model

over the full period

range

Ψ for HVSR model

over the full period

range

Normalized Ψ for

HVSR model over

the full period range

Strong SSN = 100296 0.700 0.382 0.611

Motion SSN = 3061 0.761 0.549 0.396

SSN = 100609 -0.512 0.370 0.628

SSN = 3070 0.817 0.947 0.479

SSN = 100096 -0.403 0.414 0.591

SSN = 100177 0.910 0.875 0.695

Noise SSN = 100296 0.728 0.397 0.635

SSN = 3061 0.864 0.468 0.338

SSN = 100609 -0.512 0.370 0.628

SSN = 3070 0.817 0.947 0.480

SSN = 100096 -0.393 0.414 0.591

SSN = 100177 0.845 0.709 0.563
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CHAPTER 6

Synthesis of Site Response Model Performance Results

for California Sites

6.1 Approach

The results for the 12 sites (six for GRA and SRI, and another six for HVSR model) presented

and discussed in Chapter 5 are useful to illustrate the proposed approach of using non-ergodic

site response as a means to validate site response models, and to show examples of “good”

and “poor” predictions. To fully realize the benefits of this approach for site response model

validation, it is necessary to assimilate results over many sites, since many more sites can be

used than with validation using vertical arrays.

The assimilation of results across multiple sites is undertaken with residuals analyses,

using procedures described in Section 5.1 and elaborated upon here. Term ck represents

overall model bias, which is computed across the full global data set and not just the subset

of 159 sites considered in this work. Hence ck is not useful for site response validation. Term

ηS,j on the right side of Equation 5.5 is a random effect indicating how well ground response

analyses predict site response for site j relative to the overall model bias (in this chapter, ηS is

written without subscript k, and is understood to be different between site response analysis

methods). If ground response analyses were unbiased for all sites, site-specific random effects

ηS,j for site j and its average over all sites for which ground response analyses are performed

(η̄Sj) would both be zero. Conversely, statistically significant absolute values of ηS,j indicate

biased predictions of site response.

An important role of site-specific analysis is to predict differences in site response between
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sites with different properties; this is quantified using the standard deviation of ηS,j. As

discussed further below, this dispersion includes effects from modeling uncertainty and soil

property uncertainty, and its evaluation is an important objective of this research. Term εij

represents the remaining variability after fixed event and site effects are subtracted. The

standard deviation of εij reflects the effects of path-to-path variability and event-to-event

variability in site response for a given site. This variability is commonly referred to as

single-station within-event variability, φSS (given by [7]).

6.2 Overall and model bias

Overall bias ck is plotted in Figure 6.1. This bias is computed using the Full Database

described in Section 2.1. The bias is relatively small but non-zero, which occurs because

the data used in the present study has been expanded by 30% relative to that used in

the development of the GMM. Figure 6.1 also shows η̄S for the four site response models

(ergodic, GRA, SRI, HVSR), which were computed using the subset of 159 sites considered

in the present work. The GRA and SRI results are shown with the three considered damping

models (geotechnical, κ-informed, Q − VS). The HVSR model is shown with peaks fitted

from strong motions and noise data sources. If the subset of sites considered in this research

were to have a similar average site response as the global average, the η̄S for the ergodic

model would match ck. As shown in Figure 6.1, η̄S is actually smaller than ck, suggesting a

lack of bias in the database subset relative to the larger global database.

The performance of each site response prediction method in an average sense can be

evaluated from the individual η̄S results. In particular, their performance relative to the η̄S

for the ergodic model is of interest. To help guide such interpretations for the cases of GRA

and SRI, Figure 6.1 shows median site profile periods and the 5-95% confidence intervals;

these represent maximum usable periods for such analyses. The results in Figure 6.1(a)

indicate that the site-specific methods exhibit small biases over their usable period range (<∼

0.2 sec). Biases for the ergodic model are also small, generally being closer to zero than the

site-specific methods. Among the ground response (GRA and SRI) results in Figure 6.1(a),
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the κ-informed damping model produces the smallest biases among the alternate damping

models for periods in the usable range. The ground response models also show large positive

biases for periods beyond the usable range, indicating under-prediction. This is expected, as

most sites have amplification at these long periods, whereas GRA and SRI predict effectively

zero site response for such conditions. The HVSR model is usable over the full period range

and produces the smallest biases among the site-specific methods at both short and long

periods.

An important question related to site response prediction with ground response methods

(GRA and SRI) is – under what conditions do these methods provide reliable estimates of

site effects? This question is addressed in Section 6.3. Another interesting subject, addressed

here and Section 6.5, is how aggregated statistics for “good fit” sites compare to those for

the data population as a whole. For this purpose, I define “good fit” as normalized Fréchet

distances < 0.6 over the usable period range, which applies to 38 sites based on GRA with

the DL
min damping model. As shown in Figure 6.1(b), biases of GRA and SRI models for

these good fit sites are smaller than biases for the overall data population within the usable

period range (i.e., T <∼ 0.3 sec), much smaller (except for SRI with κ-informed damping

model) at long periods than those from Figure 6.1(a), and are also smaller than those from

the ergodic model over the full range of periods.

Similar questions related to the use of HVSR methods are – (1) does the use of such

methods improve site response predictions generally and (2) are the biases of predictions

with these methods, and their dispersions, different for sites with different HVSR peak char-

acteristics (clear peak, no peak, ambiguous)? These questions are addressed in Sections 6.4

and 6.6.
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Figure 6.1: Comparison of model bias using GRA and SRI with three damping models,

HVSR model, and ergodic model for (a) full database of 159 sites and (b) for subset of 38

sites with “good fit” using GRA by DL
min damping model, as defined by normalized Fréchet

distances < 0.6 over the usable period range and full period range, respectively. The vertical

black solid line represents the median of soil column fundamental periods of 159 sites (as

estimated using simplified Rayleigh method in Urzúa [104]). The two gray dotted lines

represent 5 and 95th percentiles.
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6.3 Predictability of GRA effectiveness

I evaluate four parameters for their potential to identify sites for which ground response anal-

yses reliably predict observed site response. Prediction quality is judged from between-site

residuals for individual intensity measures (ηS) and normalized Fréchet distance. Low abso-

lute values of ηS and low values of normalized Fréchet distance indicate good fit. Parameters

considered for their ability to identify good fit sites are:

• Velocity ratio, RV ([4]): the ratio of time-averaged shear wave velocities over 5 m

intervals at the base and top of each array (RV = VSDH/VS5 ).

• Maximum between-layer amplification over profile, Amax: The square root of the

impedance ratio (Equation 4.8) is computed across all interfaces in an array, and the

maximum value is taken as Amax.

• Time-averaged shear wave velocity for profile, VSZ .

• Shear wave velocity at base of profile, VSb.

• Profile thickness, zp.

Figure 6.2 shows trends of between-site residuals as derived from GRA with the geotechnical

damping model with each of these parameters. Figure 6.3 shows the same information,

but with the κ-informed damping model. Site residuals ηS are shown for PSA at oscillator

periods of 0.01 sec (PGA), 0.2 sec, and 0.5 sec. The data are shown with symbols (one

per site). I do not necessarily expect a strong trend of the residuals with the parameters

on the abscissa, hence no fit line is provided. Rather, I provide binned means and binned

standard deviations. A parameter could be considered as having predictive power for GRA

effectiveness if either the mean of site residuals trends towards zero for a certain range of

that parameter, or if the dispersion of site residuals appreciably decreases for a certain range

of the parameter.

Examining the results in Figure 6.2, I do not find an appreciable trend of binned means

with any of the considered parameters because the means are generally near zero, hence that
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indicator of parameter effectiveness does not apply in this case. Moreover, I find no trend

of decreasing dispersion with any of the considered parameters. Figure 6.3 illustrates the

effectiveness of GRA with κ-informed damping model against the same five parameters. The

trends are similar to those shown in Figure 6.2.

One limitation of using site residuals ηS to evaluate model effectiveness is that they

only quantify misfits at individual periods, and as such, do not describe fit across a range

of periods (i.e., compatibility of shapes). Goodness-of-fit metrics (Section 5.2.2) provide a

means by which to describe such cross-period fits. In next section, I show that normalized

Fréchet distance represents well curve similarity, so this metric is used here.

Figure 6.4 shows the variation of normalized Fréchet distance with the five site parame-

ters. The Fréchet distance used here is computed over the usable period range for each site

(i.e. periods less than site period). Because Fréchet distance is always positive, trends in

binned means occur that were not evident with residuals. The trends are towards reduced

normalized Fréchet distance as RV , VSZ , and VSb increase, indicating improved fit for higher-

impedance conditions. As shown in Figure 6.4, log-linear fit lines trend downward, with the

slopes and p-values as shown in the figure. All of the slopes are statistically significant, but

the slope for the VSb parameter has the smallest p-value, indicating the most significance.
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Figure 6.2: Trends of between site residuals (ηS) computed using geotechnical damping model with site parameters RV , Amax,

VSZ , VSb, and zp
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Figure 6.3: Trends of between site residuals (ηS) computed using κ-informed damping model with site parameters RV , Amax,

VSZ , VSb, and zp
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Figure 6.4: Trends of normalized Fréchet distances (Ψ) computed using geotechnical damping model with site parameters RV ,

VS30, VSZ , and VSb
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6.4 HVSR model effectiveness

In Section 3.4, I described groups of sites based on their HVSR signatures: clear peak, no

peak, ambiguous. It might be expected that the HVSR-based site response model would

have different levels of predictive power for sites belonging to these different groups. In

this section I evaluate biases and trends against independent variables using the ηS terms.

Analysis of dispersions (φS2S) is deferred to Section 6.6.

First, I examine the compatibility of fp1 (from HVSR) with the oscillator period of the

peak site response (T posc) (Section 5.1). The database used in this analysis consists of the sites

for which peaks were identified from both HVSR and site response. I consider the 54 sites

with noise-based HVSR clear peaks combined with the 20 ambiguous sites with noise-based

HVSR peaks from Analyst I. Among those 74 sites, 41 also have a site response peak, which

comprises the data set used for the peak comparison. Figure 6.5 shows the product fp1T
p
osc

vs fp1. Of the 41 sites, 24 have reasonably close alignment of fp1 with 1/T posc, based on the

product being within a factor of two of unity (i.e., < 2 or > 0.5). For these 24 sites, the site

response and HVSR peaks are likely related to the same resonances. On the other hand,

when the ratio is beyond a factor of two from unity, the peaks may be unrelated (these data

points are labelled as “outliers” in Figure 6.5). Based on the data in this plot with aligned

peaks, the ratio of periods (equivalent to the product of frequency and period used in the

plot) has an average value of 0.93. The outlier data suggest there could be a trend with fp1,

but the “good fit” sites lack this trend, and I do not seek to capture it. On the basis of this

analysis, I select αp = 0.93 for use in Equation 4.12.
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Figure 6.5: The relation between fp1T
p
osc and fp1. There are 17 outlier points (in gray) with

fp1T
p
osc > 2 or fp1T

p
osc < 0.5

Figure 6.6 shows the means of site terms (ηS) for all sites in the clear peak, no peak, and

ambiguous peak groups. Means produced using the ergodic model for each group of sites are

also shown for comparative purposes. Interestingly, the ergodic model is unbiased for three of

the four groups (all sites, P-P, N-N). The smallest mean (closest to zero) for the HVSR model

is encountered for the all sites group. The clear peak and no peak groups produce positive

and negative biases, respectively. The largest bias is encountered for the ambiguous peak

group (e.g., 0.22 at 0.07 sec for HVSR from noise), where again the ergodic model produces

less bias. For φS2S, the HVSR model in the no peak group reduces uncertainties relative

to the ergodic model over the full period range and with the largest reduction (about 0.15

natural log unit) occurring at period 0.4 sec. For the clear peak group, the uncertainties are

reduced beyond period 1 sec, which may be be a consequence of the HVSR model capturing

long period peaks. The HVSR model does not reduce uncertainties relative to the ergodic

model for the clear peak group at short periods nor in the ambiguous group. There are

118



several reasons for HVSR model misfits that produce large uncertainties: (1) there are false

positives in the clear peak group (sites without peaks in site response) and instances of offset

peaks (Figure 6.5) – no adjustments have been made to reduce these effects; and (2) the

model used for the present work was developed for conditions in Japan, and has not been

customized for California. It remains to be seen whether a model customized for California

conditions can outperform an ergodic, VS30-based model.

Figure 6.6: Comparison of between-site standard deviations (φS2S) from adjusted HVSR

model categorized by clear peak sites, no clear peak sites, and ambiguous sites, and ergodic

model.

Figure 6.7 shows the means of site terms (ηS) for the 24 sites with 0.5 ≤ fp1T0 ≤ 2.

Conditioning the site periods to align in this manner substantially reduces the mean bias

for the P-P category, particularly for the case of peaks derived from strong motion data. In

addition, the period range over which φS2S is reduced by the HVSR model is broadened to

periods beyond 0.2 sec (it was > 1.0 sec in Figure 6.6).
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Figure 6.7: Comparison of between-site standard deviations (φS2S) from adjusted HVSR

model for peak well-aligned sites

Figure 6.8 plots values of ηS sampled at fp1 for the 74 sites with peaks in noise-based

HVSR. The 74 sites are from the 54 clear peak sites and 20 sites from the ambiguous

peak group with peak identification by Analyst I. The η̄S values are plotted against fp1

(Figure 6.8(a)) and peak amplitude α1 (Figure 6.8(b)). The plot shows a weak trend between

the mean of η̄S and fp1 in which the mean of η̄S is increasing as fp1 gets larger. However,

the plot of bias with α1 indicates no trend.

Figure 6.8: The scatter plot of mean of ηS over the full period range against fp1 and α1 for

74 peak sites
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6.5 Full-population comparisons of GRA goodness-of-fit metrics

As described in Section 5.2.2, I have considered three metrics of multi-period goodness of fit,

which are mean correlation coefficient, Fréchet distance, and normalized Fréchet distance.

In this section, I compare the effectiveness of these metrics for the full data population using

GRA residuals.

For the interpretation of results derived from ground response methods, our approach is

based on a classification of each site as having good, intermediate, or poor fit (denoted as

Categories 3, 2, 1) based on visual inspection. Then I identify the degree to which the various

goodness-of-fit metrics are able to distinguish between the three qualitative categories.

Figure 6.9 shows histograms of the three goodness-of-fit metrics from GRA using the

DL
min damping model (the histograms for the other damping models are similar). Green

bars indicate good fit, blue intermediate fit, and red poor fit. All three metrics are able

to distinguish the qualitative categories, in the sense that green sites are clustered at low

Fréchet distance and high correlation coefficient, whereas red sites have demonstrably higher

Fréchet distances and lower correlation. However, neither of the goodness-of-fit metrics are

able to perfectly separate the three categories.

Among the various goodness-of-fit metrics, normalized Fréchet distance exhibits the best

performance, because it most clearly distinguishes performance categories. Whereas correla-

tion coefficient has mixing of green and blue bars with red bars, normalized Fréchet distance

better distinguishes green and blue bars from red. It is also helpful that the range of the

parameter is relatively broad.
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Figure 6.9: Histograms of three metrics for goodness of fit

I use the one-way analysis of variance (ANOVA) F-test statistic to evaluate if the three

goodness-of-fit metrics are statistically distinct between the three categories. The F-test

statistic is formulated as1,

F =
between group variability

within group variability
(6.1)

Distinction can be quantified from p-values, in which values less than 0.05 indicate that the

three categories exhibit statistically distinct values of the goodness-of-fit metrics. As shown

in Table 6.1, all of the metrics provide for statistically significantly distinct categories.

I apply optimization to search for the boundaries of each metric that can best separate the

three categories so as to minimize the error (the proportion of mis-classified sites). Error is

defined by differencing the class specified by the metric, on the basis of optimized boundaries,

with the label from visual inspection and then normalized by the total number of sites as

1https://en.wikipedia.org/wiki/F-test

122

https://en.wikipedia.org/wiki/F-test


Table 6.1: Summary of F-test for each metric

Metric p-value

Correlation coefficient < 2e-16

Fréchet distance 2.96e-9

Normalized Fréchet distance 2.86e-7

follows:

Errj =

∑n
i=1 1{classji 6= labeli}

n
(6.2)

where n is the number of sites, 1{} is an indicator function which returns one if the condition

in bracket is satisfied and zero otherwise. classji is the category classified for site i by the

metric value mji and boundary θj while labeli is the “true” category labeled by visual

inspection. Suppose the two boundaries are θj1 and θj2, then I will have the category

classified by correlation coefficient as,

class1i =


1, mji ≤ θj1

3, mji ≥ θj2

2, otherwise

(6.3)

and the category classified by (normalized) Fréchet distance ({j = 2, 3}) as,

classji =


1, mji ≥ θj1

3, mji ≤ θj2

2, otherwise

(6.4)

The inequality signs for correlation coefficient and (normalized) Fréchet distance are

different because the good fits correspond to large positive correlation coefficients but small

(normalized) Fréchet distances.

Table 6.2 shows the optimal boundaries for each metric and the corresponding errors.

Based on those results, normalized Fréchet distance gives the smallest minimum error, so it

appears to be the best suited means by which to categories goodness-of-fit. The sites are

considered to be “good fit” sites if their normalized Fréchet distances ≤ 0.6 (category 2 or

3).
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Table 6.2: Summary of minimum error for each metric

Metric θ1 θ2 Min.Err

Correlation coefficient -0.51 0.64 0.375

Fréchet distance 0.64 0.31 0.230

Normalized Fréchet distance 0.65 0.45 0.171

6.6 Site response uncertainty and variability

The standard deviations of the random variables (non-constant) terms in Equation 5.4 are

related as follows:

σ =
√
τ 2 + (φS2S)2 + (φSS)2 (6.5)

where σ, τ , φS2S, and φSS are the standard deviations of Rij, ηE, ηS, and εij, respectively.

Our principal interest is in φS2S, which represents the between-site variability of the misfits in

predicted ground motion using ergodic, GRA, SRI, or HVSR models. There are two sources

of this variability: (1) modeling uncertainty, which is caused by the analysis method not

representing accurately the site response physics, and (2) soil property uncertainty, which

occurs if the measured input parameters (VS profile, inferred damping profile, and HVSR-

based) for the sites have some deviations from actual properties.

Figure 6.10 shows the period-dependence of φS2S when site response is evaluated us-

ing site-specific models (GRA, SRI, and HVSR) and the ergodic model. The site specific

results are shown for GRA and SRI with three considered damping models (geotechnical,

κ-informed, and Q − VS) and for the HVSR model with both data sources (ground motion

and noise). As in Figure 6.10, the range of site VS profile fundamental periods is shown to

indicate the useful period range. Figure 6.11 shows the same information but for the subset

of “good fit” sites (38 sites) with normalized Fréchet distance < 0.6 based on GRA with

the DL
min damping model; because these “good fit” sites are defined for the case of ground

response models, φS2S is only shown for those model.
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Figure 6.10: Comparison of between-site standard deviations (φS2S) from site-specific anal-

yses (GRA and SRI) using three damping models and ergodic model. Statistics represent

results across all sites
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Figure 6.11: Comparison of between-site standard deviations (φS2S) from site-specific anal-

yses (GRA and SRI) using three damping models and ergodic model. Statistics represent

results across “good fit” sites with normalized Fréchet distance less < 0.6 based on GRA

with the DL
min damping model.

A general observations from Figure 6.10 is that φS2S is not appreciably different for the

ergodic model and the various site-specific models. The lack of appreciable φS2S reduction

through the use of site-specific methods indicates that such analyses are, on average, not

improving ground motion estimates significantly relative to the use of an ergodic model.

Important elements of Figure 6.10 are summarized:

1. With the exception of HVSR models, site-specific φS2S values for T < 0.2 sec are lower

than the ergodic model; these short periods are within the usable period ranges for the

sites. In particular, the peak in φS2S at 0.06 sec that is produced by the ergodic model

is reduced through the application of ground response methods by about 0.1 natural

log units (this local peak of uncertainty is not a feature of the ergodic model itself, but

rather it is a feature of the data set).

2. In the period range of 0.2− 1 sec, where the data “fall off” as modeled profile periods
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are exceeded, but also where many peak site responses occur, there are relatively large

differences between results of GRA and SRI among damping models, with κ-informed

damping models providing the smallest φS2S values.

3. At long periods (T > 0.6 sec), the ergodic model has lower φS2S than ground response

methods (GRA and SRI). I do not expect good results from GRA or SRI in this period

range, which is beyond the fundamental period of the modeled soil columns and hence

little-to-no site response is predicted. The HVSR models significantly outperform

ground response methods in this period range, and slightly reduce φS2S relative to

the ergodic model. This reduction occurs because HVSR methods are able to capture

long period resonance effects that are missed by ergodic models or ground response

methods.

Part of the reason for the moderate φS2S reduction in Figure 6.10 is that site responses for

some of the sites are not well represented by GRA and SRI, even over the applicable period

range of the modeled soil column. However, as shown in Figure 6.11 for the subset of “good

fit” sites where relatively shallow ground response is an important driver of site response, I

find reductions of φS2S over a broader period range (up to 2 sec) and on the order of up to

0.10. These reductions are most consistently achieved from the use of GRA, whereas SRI

provides some relatively high dispersions. Among the various damping models, κ-informed

damping produces higher dispersion for the subset of good-fit sites. This occurs because

(1) the “good fit” sites are defined based on the DL
min damping model, not the κ-informed

damping model, and (2) the κ-informed damping model over-predicts damping comparing to

DL
min at 9 of the 38 “good fit” sites (SSN = 100109, 100114, 100283, 100341, 100542, 100545,

3055, 3076, 3088), which produces large short-period biases that inflate the dispersion.

Site-to-site variability also provides an effective means by which to evaluate the perfor-

mance of the HVSR model. I evaluated HVSR model performance, in terms of means and

standard deviations of site terms for the full population and various subsets with different

peak characteristics, in Section 6.4 and Figure 6.6.
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CHAPTER 7

Region-Specific Linear Site Amplification Model for

Peaty Organic Soil Sites in Hokkaido, Japan

7.1 Project introduction

The application of ergodic site terms in ground motion models (GMMs) to regions having

very soft, peaty organic soils is a process that carries large epistemic uncertainty. One

substantial driver of this uncertainty is that the ground conditions at peat sites can have

very slow time-averaged shear wave velocities in the upper 30 m (VS30), perhaps 100m/s or

less. Figure 7.1 shows VS30 histograms from site databases in the NGA-West2 and NGA-

Subduction projects. The slowest VS30 values in these histograms are in the range of 150−

200m/s. As a result, the application of ergodic models to soft peat sites represents an

extrapolation beyond the data range – the ergodic mean site response is simply unknown.

Figure 7.1: Histograms of total and measured VS30 values for sites in NGA-West2 database

(left) and NGA-Subduction database (right). From [88] and [6], respectively.

A second driver of large uncertainty can be anticipated because soft peats usually overlie

relatively firm, non-organic soils at depth. As a result, there exists within the site profile
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steep velocity gradients that can give rise to more pronounced impedance and resonance

effects than would be typical at non-peat sites. Such effects produce site response transfer

functions with strong peaks at one or more site frequencies. These features of site response

cannot be captured by VS30-based models as used in typical GMMs, although they could

potentially be captured by a model that combines VS30-scaling terms with site resonance

terms that take the peak frequency (fpeak) as a site parameter (e.g., [52, 53, 55, 56, 72]).

As a result of these issues, the ergodic site terms in current GMMs for subduction earth-

quakes in Japan, whether based on VS30 directly (Abrahamson et al, 2018, [1]) or VS30- and

site period-based site classes (four such classes are used in Zhao et al, 2016a and 2016b

[118, 119]) (denoted as the Aea and Zea GMMs, respectively) are expected to have bias

and large uncertainty when applied to peaty organic soil sites in Hokkaido. As a result, our

objective in this study is to improve ground motion estimates by developing region-specific

ergodic site amplification models derived from non-ergodic site responses at recordings sites.

In other words, I seek to gain insights into the features of local site response from non-

ergodic analyses, including impedance contrast and resonance effects, and then to build a

more generic (local but ergodic) model from those results.

The approach taken in this paper is to develop a linear site amplification model using

recordings with relatively low amplitudes, for which significant nonlinear effects are not

expected. I then examine nonlinear effects through residuals analysis using data from one

event that produced relatively strong shaking. The direct outcome of this study is a site

amplification model for a soft soil region in Japan that is useful for case history analyses

([101]) and hazard applications. However, the broader value of the work presented here

is to illustrate an approach for developing regional site amplification models for relatively

data-rich regions with unique geological conditions.

7.2 Data sources

The region-specific analysis performed in this study applies to the portion of the Tokachi

River in Hokkaido, Japan passing through peaty organic soil layers that extend roughly from
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the river mouth to 40 km upstream of the river mouth, as shown in Figure 7.2. This region

contains seven instruments operated by Obihiro Development and Construction Depart-

ment (ODCD), for which I have obtained recordings from ten earthquakes in the NGA-Sub

database. This section discusses the data compiled for analysis of non-ergodic site responses

at these seven stations.

Figure 7.2: Map of northern Japan showing event locations considered in this study and

location of Tokachi River study region. Detail map of study region shows locations of local

ground motion stations

7.2.1 Ground motions and related metadata

Table 7.1 provides metadata for the seven ODCD stations in the study region. The station

locations were provided by ODCD and the basis for the site information (VS30 and classifi-

cation) is provided in next section. As shown in Figure 7.2, the station locations are roughly

evenly distributed across the study region. The site classes referred to in Table 7.1 range from
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Table 7.1: Metadata of seven stations owned and operated by Obihiro Development and

Construction Department (ODCD)

Station Name Gyushubetsu Higashiinaho Horooka Reisakubetsu Rabirai Toitokki Tonai

Longitude 143.4622 143.6063 143.5489 143.4744 143.5642 143.6043 143.4250

Latitude 42.7921 42.7876 42.7841 42.8359 42.7556 42.7281 42.8917

VS30 (m/s) 130.83 211.54 102.17 181.36 150.48 117.18 181.36

fpeak (Hz) 1.14 1.60 1.42 1.62 1.14 1.60 1.50

Site Class IV III IV IV IV IV IV

I to IV, with larger-numbered classes corresponding to softer site conditions ([118, 119]).

The stations in Table 7.1 have recorded ten earthquakes. Figure 7.2 shows the locations

of these events, each of which has ground motion data that is incorporated into the NGA-

Subduction database ([67]). Event metadata for the ten events is provided in Table 7.2 along

with the numbers of processed recordings produced by each event in the NGA-Subduction

database. The numbers of records per event range from 13 to 1293; there is a dramatic

increase in station density and data quality since the 1995 Kobe earthquake.

Limiting distance criteria are intended to avoid potential bias with instrument trigger

levels, and operate by eliminating data beyond a distance Rmax where an appreciable fraction

of recordings may not appear in the data as a result of having amplitudes below the trigger

threshold. As described in Section 4.5.2 of [33], Rmax depends on earthquake magnitude and

instrument type. In some cases, where the rupture distances of Obihiro stations are modestly

larger than Rmax, I extend the NGA-Subduction values of Rmax (by no more than 40%) to

include in the analyses stations at these distances. Backarc stations are not used because the

Obihiro sites of interest in this study are located in forearc regions, and our principle interest

is source-site wave paths within the forearc region. Event 2 data are excluded because of

the 13 recordings in the NGA-Sub database, nine do not meet the Rmax criteria, and the

remaining four have rupture distances much less than those for ODCD stations (113 km vs

300 km). Despite not using Event 2, I do not renumber other events (Events 1 and 3-10).
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Table 7.2: Summary of event metadata and numbers of recordings for the ten considered earthquakes

Event 1 2 3 4 5 6 7 8 9 10

Date/Time 1994/12/28,

12:19

1995/01/06,

22:37

2004/11/28,

18:32

2004/12/06,

14:15

2008/09/11,

00:21

2011/03/11,

05:46

2011/04/07,

14:32

2011/11/24,

10:25

2012/12/07,

08:18

2003/09/25,

19:50

Magnitude 7.7 7.0 7.0 6.7 6.8 9.1 7.1 6.2 7.3 8.29

Strike/Dip/Rake 180/30/90 179/21/69 211/24/81 222/26/90 228/21/108 200/20/88 24/37/87 223/16/103 174/61/82 230/20/90

Fault Type Reverse Reverse Reverse Reverse Reverse Reverse Reverse Reverse Reverse Reverse

Event Type Interface Interface Interface Interface Interface Interface Slab Interface Slab Interface

Longitude 143.75 142.31 145.28 145.34 144.15 142.86 141.92 142.89 144.12 144.09

Latitude 40.43 40.22 42.95 42.85 41.78 38.10 38.20 41.75 37.84 41.78

Hypocenter

Depth (km)

10 47.8 48.17 45.84 30.86 23.74 65.9 43.21 52 25

Number of

Recordings in

NGA-Sub

31 13 378 204 407 1293 799 177 866 645

Number of

NGA-Sub

Recordings

selected

10 0 84 57 64 692 439 57 353 173

Number of

Recordings

ODCD array

3 3 7 7 6 7 7 6 7 6

132



The NGA-Subduction data for the ten events did not include recordings at the ODCD

stations. I was provided with raw (digital but unprocessed) recordings from the seven ODCD

stations by S. Takashi (personal communication, last update 10 November 2017). The data

were processed following standard procedures as given in [67], which includes instrument

correction, application of both high and low pass acausal filters at operator-determined corner

frequencies, and baseline correction of the processed signals. Following the application of

this processing, I computed median-component intensity measures RotD50 ([18]) for peak

acceleration, peak velocity, and 5% damped pseudo-spectral accelerations (PSA) using the

R package by [109].

As shown in Figure 3, Events 1-9 produced relatively weak motion recordings at the

ODCD stations, which are useful for developing the linear component of a regional site

amplification model. In contrast, Event 10 (2003 Tokachi-Oki Earthquake) produces appre-

ciably stronger shaking. Accordingly, our approach to model development is to develop a

linear model using data from Events 1-9, and then to perform residuals analysis using data

from Event 10 to investigate potential nonlinearity effects.

Figure 7.3: Histogram of median-component peak accelerations at ODCD sites

7.2.2 Site conditions

Each of the seven ODCD sites in the study region are underlain by peaty organic soils in the

Tokachi River basin. The geomorphic terrain class for six of the seven sites per the Japanese
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Engineering Geomorphologic Classification scheme ([107]) is ‘back marsh’ (the seventh, in the

furthest downstream area, is ‘delta and coastal lowland’). The site class as given by [118] is

IV, which is described as soft soils with VS30 < 200m/s and site period T ≥ 0.6s. The peaty

organic soils extend to a depth of 2 - 6 m, and are underlain by alluvial deposits of sandy,

silty and clayey sediments. Under the levees, the peat layer is typically 0.5 - 1.0 m thinner

due to consolidation of the soft peat beneath the levee fill. Penetration resistance measured

during CPTs and SPTs, as well as shear wave velocities are low in the area. Relatively firm

material, likely Pleistocene in age, is located at greater depths generally around 35 - 40 m.

We performed geophysical testing at or in the vicinity of the Toitokki, Horooka, Rabirai,

Reisakubtsu, and Gyushubetsu stations using Spectral Analysis of Surface Wave (SASW)

and ambient noise techniques. Rayleigh wave dispersion curves and horizontal-to-vertical

spectral ratio vs frequency plots (HVSR plots) were obtained from these tests and plotted in

Figure 7.4 - 7.5. The HVSR data was processed by the procedure described in Section 3.3.

Sites Tonai and Higashiinaho were not part of the site exploration program. For these sites,

HVSR plots were developed using pre-event noise in acceleration signals by first estimating

the p-wave arrival time, and then taking preceding portions of the signals for use in analysis;

and their VS30 values were also estimated by proxy-based models in Table 7.1.
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Figure 7.4: The dispersion curves and VS profiles for ODCD sites.
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Figure 7.5 plots the resulting H/V spectral ratios (from microtremors where available,

for pre-event noise otherwise) for the seven Obihiro stations. Gaussian pulses (described in

Section 3.4.2) were fitted to prominent peaks in the H/V spectra ([48, 72]). The resulting

fpeak values, established from the pulse fitting procedure, are given in the figure. Sites

Toitokki and Rabirai have two HVSR peaks, which raises the question of how to select fpeak

for such cases. I adopt this approach: (1) if the peaks are of comparable amplitude but

distinct in frequency (ratio of the peak frequencies is greater than about 3-5), adopt as

fpeak the value for the lower frequency peak; (2) if the peaks are of significantly different

amplitude (> factor of two), use the peak with the larger amplitude (this is usually the lower

frequency peak); and (3) if the peaks are of comparable amplitude and the frequencies are

similar (ratio of the peak frequencies is less than about 3-5), re-fit the Gaussian function

to encompass both peaks together. Case 1 applies to the Rabirai site and Case 3 applies

to the Toitokki site. For the Toitokii site, a combined fit of the two peaks is shown in

the figure. The relatively large uncertainty in HVSR that is shown for sites Tonai and

Higashiinaho is associated with the use of pre-event noise data of relatively short duration.

Sites Toitokki, Rabirai, and Gyushubetsu also have a lower frequency peak (around 0.2 Hz)

that is with comparable height as the selected peak. Per the criteria in analyst II’s visual

analysis described in Section 3.5.2, these low frequency peaks are not selected because their

scatterings (uncertainties) are large and they are near the limits of the frequency range of

the HVSR plot.
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Figure 7.5: HVSR vs frequency plots for ODCD sites as established from microtremor or

pre-event noise data, and fitted pulse with identified peak frequencies.

7.3 Ground motion data analysis

This section presents the analyses of ground motion recordings to support model develop-

ment. I first describe the analysis of residuals and the main data trends. Next I evaluate

event-specific biases and regional (between-island) complexities in path. The intent of those

analyses is to provide region-adjusted, within-event residuals for each event and recording

at the seven ODCD sites. Finally, I evaluate non-ergodic site responses for each site.

7.3.1 Residuals analysis and trends

The approach to data analysis operates on residuals, which are the difference between the

natural log of an observation and its prediction from a GMM (the same approach as presented

in Section 5.1 ). “Observation” in this case is a computed RotD50 intensity measure from an

earthquake under consideration; as shown in Table 7.2, the analyses consider all recordings

that meet data selection criteria (not just those in the study region). The GMMs applied

in these analyses are Zea, which is specifically intended for use with Japan subduction

earthquakes, and Aea applied with Japan-regionalized path correction terms. Two GMMs

are used to investigate sensitivity of derived site terms to the alternate reference GMMs. The
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maximum rupture distances recommended for use with these GMMs are 300 km. I consider

data at distances beyond these limits, although measures are taken to minimize path biases

at large distances.

Total residuals are computed using the reference GMMs as:

Rij = ln(Yij)− (µlnY )ij (7.1)

where Yij is an observed RotD50 intensity measure for site j from event i, and (µlnY )ij is the

natural log mean prediction from the alternate GMMs given event magnitude, site-source

distance, site condition, and other parameters used in the models. Non-zero residuals have

many potentially causative factors. An event can produce ground motions systematically low

or high relative to the GMM. Likewise, a source-to-site path may be associated with attenu-

ation rates that are relatively fast or slow in comparison to the model. Our goal ultimately

is for the residuals to be used to analyze site response. As a result, if the residuals include

systematic effects related to source or path, our ability to infer site response is compromised.

This problem is addressed in the analysis by removing, to the extent justified by the data,

systematic (repeatable) source and path effects from total residuals. The remainder of this

section describes how these adjustments were made.

Figure 7.6 plots total residuals vs distance for four events and at four periods (0.005,

0.08, 0.8, 5.0 sec) from the Zea GMM (qualitatively similar results are obtained for other

events and from the Aea GMM; results provided in Figure 7.7 - 7.8). The figure is organized

by event location; Part (a) applies to events off the coast of Hokkaido, Part (b) to Honshu.

Important attributes of the data to consider in Figure 7.6 are (1) the slope of the data

relative to distance and (2) offsets in residuals between islands or different attenuation rates

for ground motions recorded on the two islands.
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Figure 7.6: Variation of Zea total residuals with distance for four events at periods 0.005,

0.08, 0.8, and 5 s.

Based on Figure 7.6 - 7.8, I find:

• A flat slope of residuals for a particular island indicates an unbiased GMM path term,

whereas a gradient indicates path term bias. Events 3, 4, and 7 exhibit gradients in

short-period (0.005 and 0.08 s) residuals from recordings on the event-adjacent island,

specifically a downward trend for Hokkaido stations beyond 200 km (Events 3 and 4)

and Honshu stations beyond 200-300 km (Event 7). Event 6 data lacks downward-

gradient features, which is also the case for other events (Figure 7.7 - 7.8).

• The data show diverging trends for Hokkaido and Honshu stations beyond about 300

km. This suggests the presence of between-island regional attenuation effects not

captured by the GMMs.
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I considered adjusting the GMM to correct these problems, but ultimately elected to

limit the maximum considered distances for these events to 200 km (Events 3 and 4) and

300 km (Event 7). Within these distances, residuals for event-adjacent islands are nearly

flat. For the other considered events where residual gradients did not occur, the maximum

considered distance was taken as Rmax.

Figure 7.7: Variation of Zea total residuals with distance for the other four events at periods

0.005, 0.08, 0.8, and 5 s.
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Figure 7.8: Variation of Aea total residuals with distance for all eight events at periods 0.005,

0.08, 0.8, and 5 s.
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7.3.2 Event terms

The vertical offset from zero of the total residuals in Figure 7.6 - 7.8 is an event attribute

referred to as an event term. I take the event term for a given event i as the average of the

residuals from stations within the range of applicability of the selected GMM:

ηE,i =
1

ni

ni∑
j=1

Rij (7.2)

where ni is the number of recordings available for event i. Note that the use of Equation 7.2

implies the lack of an overall bias (across all events) in the GMM, which if present would

be a constant term added to the left side of Equation 7.2. As described above, stations in

the backarc and with site-to-source distances beyond maximum limiting distance of NGA-

Subduction data are excluded. Data are also excluded beyond the aforementioned limiting

distances for Events 3, 4, and 7.

Event terms obtained from Equation 7.2 are shown in Figure 7.9. Positive and negative

event terms indicate under- and over-prediction, respectively, and both conditions are en-

countered. The event terms for Event 9 are very large – values above 1.5 for periods less

than about 0.3 sec.

Figure 7.9: Event Terms (PSA) for the eight events recorded in the ODCD array from Zea

GMM (left) and Aea GMM (right)
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7.3.3 Regional (between-island) terms

Japan is known to have strong regional variations in anelastic attenuation (e.g., [46]). These

effects, if not included in a GMM, can introduce large differences in residuals for recordings

on opposite sides of the volcanic front (i.e., forearc vs backarc sites), and potentially for

recordings on different islands. The effects of paths crossing the volcanic front was addressed

in our analysis by screening out backarc data. Additional regional complexities in the forearc,

where encountered (Events 3, 4, 7) were addressed with application of distance cutoffs. The

remaining issue considered here is potential effects of source-to-site paths passing between

islands, specifically Honshu to Hokkaido and vice-versa. To investigate this, I first compute

within-event residuals as

δWij = Rij − ηE,i (7.3)

Next, I plot δWij with binned means and ± one standard derivations vs distance for

Honshu and Hokkaido stations using data from all events. As shown in Figure 7.10, there

are divergences of within-event residuals for these data groups for distances beyond about

300 km, particularly at short periods. Because these divergences are a path issue, they should

be corrected to the extent practical prior the analysis of site terms. Accordingly, I separate

sources as Hokkaido-adjacent (denoted North; latitude > 39 degrees) and Honshu-adjacent

(denoted South; latitude < 39 degrees), and sites by location (Hokkaido or Honshu). The

North events are 1, 3, 4, 5, and 8, and the South events are 6, 7, and 9. This categorization

of events and sites facilitates analysis of between-island terms that correct ground motions

when an earthquake occurs in one region (e.g., South) and a subset of the recordings are in

the other region (e.g., North).
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Figure 7.10: Event-corrected within-event residuals for eight events, separated by region,

derived using the (left) Zea GMM and (right) Aea GMM.

Region terms are computed for each combination of event and station regions as the

average of within-event residuals,

ηreglk =
1

nlk

∑
∀i∈l,∀j∈k

δWij (7.4)

where the ∀ symbol in combination with ∈ (e.g., ∀i ∈ l) indicates ‘for any value of i among

the set specified by array l’, which is used to parse the data into source-site groups. As

before, i is the event index and j is the site index. I take l ∈ {0, 1} (i.e., l can be 0 or 1) to

segregate event regions (0 refers to South Events and 1 refers to North Events) and k ∈ {0, 1}

to segregate station regions (0 refers to Honshu and 1 refers to Hokkaido). Figure 7.11 plots

region terms over the period range 0.08 sec to 5 sec with their 95% confidence intervals for

each source-site regional combination.
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Figure 7.11: Region terms for Hokkaido and Honshu stations from South and North regional

events, as derived from (a) Zea GMM and (b) Aea GMM.

The results in Figure 7.11 show that for common source-station regions, such as South

events and Honshu stations (index l = 0 and k = 0), region terms of both models are

relatively small (less than 0.2) and have little trend with period. However, when the indices

differ, there are large biases. The large positive region terms at short periods (<∼ 1 sec) for

South events and Hokkaido stations are consistent with the corresponding upward (positive)

trends of residuals in Figure 7.10. There is a large negative bias at long periods for North

events and Honshu stations from both GMMs, whereas the Aea GMM also has a large

positive bias at short periods for this combination.

Because this between-island effect is a new finding, before incorporating these regional

effects into our analyses, I tested the statistical significance of the distinctions between data
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groups by applying the statistical F test ([34]). This test examines whether a data set is

better described by a combined single model or a set of sub-models. The combined model in

this case would be to not consider regional terms, whereas the sub-models include the four

regional combinations. I compute the F statistic as:

F =
(RSSf −

∑1
l=0

∑1
k=0 RSSl,k)/(

∑1
l=0

∑1
k=0 ml,k −mf )

σ̂2
(7.5)

where RSS stands for residuals sum of squares, RSSl,k represents the residuals sum of

squares of the sub-model for the l event region and k station region, and m refers to the

number of fitted parameters in the full model and sub-models. Since the ‘models’ are simple

means, m = 1 in each case (for combined model and each individual sub-model). As a point

of clarification regarding notation, m is not referred to as a degree of freedom in the statistics

literature, although that term has been used in some engineering applications ([77, 94]). I

adopt here the statistics terminology.

The denominator is expressed by,

σ̂2 =

∑1
l=0

∑1
k=0 RSSl,k∑1

l=0

∑1
k=0(Nl,k −ml,k)

=

∑1
l=0

∑1
k=0RSSl,k∑1

l=0

∑1
k=0 dfl,k

(7.6)

where Nl,k is the number of recordings for the data belonging to source group l and station

group k, ml,k is the number of fitted parameters for that sub-model, and dfl,k = Nl,k−ml,k is

the degree of freedom for that sub-model. The degree of freedom of the full (combined) model

is dff = N −mf =
∑1

l=0

∑1
k=0Nl,k −mf . In this case, sums in Equation 7.5 - 7.6 unrelated

to RSS are (
∑1

l=0

∑1
k=0ml,k−mf ) = dff −

∑1
l=0

∑1
k=0 dfl,k = 3 and

∑1
l=0

∑1
k=0 dfl,k = 1802.

This F statistic can be compared to the F distribution to evaluate a significance level

(p) for the test. Large values of p (i.e., > 0.05) are taken to indicate that the sub-models

are not distinct. Table 7.3 shows for four periods the results of F testing for the case of one

overall combined model in comparison to four sub-models. The F statistic, the minimum

value of the F statistic for p = 0.05, and the significance level are provided. In each case, the

testing indicates that the sub-models are distinct, meaning that the use of regional terms is

justified.
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Table 7.3: F-test for significance of region effects for both sources and sites. Underlined

results apply to the Zea GMM, results in parenthesis apply to the Aea GMM, and results

without special markings apply to both.

Full Model

f

Submodels

l = {0, 1}

k = {0, 1}

F-statistics F-critical3,1802

value at

significance

level p = 0.05

p-value

T = 0.005s RSS 1162.80

(976.16)

1066.56

(880.98)

54.20

(64.89)

2.61 0

df 1805 1802

T = 0.08s RSS 1197.04

(1369.93)

1083.47

(1245.25)

62.96

(60.14)

0

df 1805 1802

T = 0.80s RSS 1175.42

(821.11)

1092.85

(799.82)

45.38

(15.99)

0

df 1805 1802

T = 5.00s RSS 703.74

(800.22)

637.34

(714.40)

62.58

(72.15)

0

df 1805 1802

Note the numbers 3 and 1802 at the subscripts of F-critical3,1802 are the df of the numer-

ator and denominator F statistics in Equation 7.5.

I also consider two additional F tests to examine the difference between Honshu and

Hokkaido recordings, considering only data from source region (i.e., only South event data

in one set of tests, and only North event data in a second set of tests). In this case, the

F-statistic is computed as:

Fl =
(RSSl −

∑1
k=0RSSl,k)/(

∑1
k=0ml,k −ml)

σ̂2
l

(7.7)

where l is either 0 or 1, and the denominator is,

σ̂2
l =

∑1
k=0RSSl,k∑1

k=0(Nl,k −ml,k)
=

∑1
k=0RSSl.k∑1
k=0 dfl,k

(7.8)

The combined model for these tests groups Honshu and Hokkaido recordings for a given
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event group l=0 or 1, and RSSl represents the RSS for that combined model. The results

of two F-tests for l=0 (South Event) and l=1 (North Event) are given in Table 7.4. In most

cases, the testing confirms that the separation of regions for each event group is justified,

although there are exceptions. These exceptions occur at periods where the regional terms

in Figure 7.11 are nearly zero (e.g., T = 0.005s for North events of Zea GMM, where the

p-value is 0.35; or T = 0.8s for North events of Aea GMM, where the p-value is 0.48).

To incorporate the between-island regional terms into residuals analyses, I adjust the

within-event residuals from Equation 7.4 as follows:

δW reg
ijlk = δWij − ηreglk (7.9)

where δW reg
ijlk is the region-adjusted within-event residual. Figure 7.12 shows the distance

variation of δW reg
ijlk (with binned means and ± one standard derivation bars) for all data

(Figure 7.12(a)), North events only (Figure 7.12(b)) and South events only (Figure 7.12(c)).

Figure 7.12 applies to the Zea model; the same plots are provided in Figure 7.13 for the Aea

model. For each figure, results are shown separately for South (Honshu) stations in blue and

North (Hokkaido) stations in red. For the present study, the most critical results are those

for Hokkaido stations and both event types, particularly over the distance range applicable

to the OCCD study region. The two vertical lines drawn in Figures 7.12(b)-(c) indicate the

distance range of ODCD stations across all events in the respective groups (∼100-200 km

for North events, ∼320-500 km for South events).

The results in Figure 7.12(a) can be compared to those in Figure 7.10 to see the effect of

the regional terms on residuals trends – those trends are slightly reduced but not eliminated.

While the residual trends for North events are generally flat (Figure 7.12(b)), the much

better-recorded South events produce mixed results (Figure 7.12(c)). The Zea residuals

are reasonably flat for Hokkaido stations in the distance range of interest. The Aea GMM

(Figure 7.13(b)) produces an upward trend for some periods (0.08 sec) and a trends for other

periods that is generally flat within the distance range, but trends upward at the upper limit

of the range (approximate 500 km or greater). To address this, I apply a 450 km cutoff to the

Aea model for the case of South events and Hokkaido recordings. No further adjustments to
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Table 7.4: F-test for significance of region effects for both sources and sites. Underlined

results apply to the Zea GMM, results in parenthesis apply to the Aea GMM, and results

without special markings apply to both.

South

Event

model l = 0

Submodels

l = 0

k = {0, 1}

F-statistics F-critical1,1503

significance

level p = 0.05

p-value

T = 0.005s RSS 950.91

(846.95)

894.66

(765.70)

94.50

(159.48)

3.85 0

df 1504 1503

T = 0.08s RSS 998.71

(1182.01)

909.06

(1094.03)

148.23

(120.86)

0

df 1504 1503

T = 0.80s RSS 922.59

(674.12)

911.62

(653.85)

18.09

(46.59)

0

df 1504 1503

T = 5.00s RSS 558.50

(671.92)

527.15

(612.48)

89.39

(145.86)

0

df 1504 1503

North

Event

model l = 1

Submodels

l = 1

k = {0, 1}

F-statistics F-critical1,299

significance

level p = 0.05

p-value

T = 0.005s RSS 172.41

(129.06)

171.90

(115.28)

0.88

(35.74)

3.87 0.35

(0)

df 300 299

T = 0.08s RSS 177.46

(187.4)

174.41

(151.21)

5.22

(71.73)

0.02

(0)

df 300 299

T = 0.80s RSS 199.03

(146.22)

181.23

(145.97)

29.36

(0.50)

0

(0.48)

df 300 299

T = 5.00s RSS 139.12

(111.31)

110.19

(101.92)

78.51

(27.53)

0

(0)

df 300 299
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the Zea and Aea path models are applied for the analysis of site terms.

Figure 7.12: Trend of region-corrected within-event residuals with closest distance at periods

of 0.08, 0.8, and 5 sec for (a) all data; (b) North events only; (c) South events only. Distance

range of ODCD stations marked.
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Figure 7.13: Trend of region-corrected within-event residuals with closest distance at periods

of 0.08, 0.8, and 5 sec from Aea GMM for (a) all data; (b) North events only; (c) South

events only. Distance range of ODCD stations marked.

7.3.4 Site terms

By adjusting residuals for event biases, ηE,i and regional biases, ηreglk , the remaining region-

adjusted within-event residual, δW reg
ijlk, represents errors in the prediction of observed inten-

sity measures from the GMM that can be attributed to the combination of systematic site
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effects at each station and relatively random, event-to-event path errors. If the path errors

are indeed random, they would average to zero when summed over many observations. With

this in mind, I estimate the effect of site response, also called the site term, ηS,j, at site j as

follows

ηS,j =
1

nj

nj∑
i=1

δW reg
ijlk (7.10)

where nj is the number of recordings for station j. As with the event term computation,

this represents a frequentist interpretation of the problem statistics.

The site response model assumed to apply for a given intensity measure at a given site

is taken as ([92]):

FS = f1 + f2ln
(xIMref + f3

f3

)
(7.11)

where FS is site amplification in natural log units, xIMref represents the amplitude of shaking

for a reference site condition (generally rock) for a particular earthquake at a particular site

(expressed as an intensity measure), f1 is the coefficient representing linear site response, f2

represents the slope (generally negative) in amplification-ln(xIMref ) space for xIMref >> f3,

and f3 represents a transitional value of the reference site intensity measure below which

the site response is nearly linear, and above which the trend of amplification with xIMref is

nearly linear in log-log space.

The site term in Equation 7.10 represents the misfit between the observed site response

and the site response predicted by the ergodic model in the GMM. If the observations are

primarily from weak ground motions that do not introduce a significant nonlinear response,

the only site response coefficient from Equation 7.11 that can be evaluated empirically is f1,

which is taken as

(f1)j = ηS,j + FS,j (7.12)

where FS,j is the ergodic site response as evaluated from the selected model.

Figure 7.14 shows for each of the seven sites the region-adjusted within-event residuals

δW reg
ijlk and site terms (top) and the total site response (bottom) computed as in Equa-

tion 7.12, using the Zea GMM. Each of the sites exhibits a peak at a specific natural period.

For example, at the Toitokki site (dark blue), the first peak site response occurs at a period
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of about 0.5 sec, and the amplification at that period is approximately e2.8 ≈ 16.4. This very

high site amplification is likely associated with resonance and impedance effects from the

soft upper peat layers relative to deeper, stiffer sediments. A somewhat surprising feature

of this dataset is the similarity of the observed site responses across the seven sites. While

some details change, for each site the amplification peaks between 0.5-0.9 sec, has a peak

width of about one log cycle of period, a minimum amplification near 0.1 s, and a gradual

increase in amplification towards PGA. As such, the Tokachi River setting provides a nearly

ideal setting for the development of a regional site response model.

Figure 7.14: Region-adjusted within event residuals (a) and estimated site responses (b) for

the seven Obihiro stations as derived from Zea GMM.

Figure 7.15 compares linear site response terms (f1) for each site as derived from the
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two reference GMMs. This comparison shows that despite the different source and path

models in the reference GMMs, the derived site responses are quite similar. Because the site

responses derived from the two models are consistent, either could be used for subsequent

model development. I utilize results from the Zea GMM for this purpose.

Figure 7.15: Comparison of site-specific linear site responses as derived using the Zea and

Aea GMMs

7.4 Site amplification model development

In this section, I develop a site amplification function that takes site frequency as derived

from microtremor-based HVSR (fpeak) as input to capture the observed site amplification in

an average sense across the seven sites and which presumably would have general applicability

across the study region shown in Figure 7.2. I also develop an alternative model in which

the only site information is that it is located on peat in the general study region, but fpeak

is unknown.

7.4.1 Site parameters

Because the peaty organic soil sites in the study region exhibit site amplification effects

suggestive of a resonant ground response effect at a site frequency, I sought to use HVSR

to estimate the frequency of the peak response (fpeak). The concept is to use fpeak as a site
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parameter to be used in the regional ergodic model. It is desirable that the process used

to estimate fpeak be independent of the ground motions, which can be best accomplished

by measuring fpeak from microtremors. Before going forward, a point of clarification on

notation – frequency fp as used in the site amplification model (next subsection) is the fitted

oscillator frequency of the peak site response, which is not an independent variable (it is

derived from ground motions, hence it is not independent of those motions). There are two

reasons why fp and fpeak may not match: (1) one corresponds to oscillator frequency (fp)

and the other to frequency as used in Fourier analysis (fpeak) and (2) even when Fourier

representations of site response are used, site response peaks may not match HVSR peaks.

Regarding point (1), some prior models have taken the oscillator peak as 80% of the HVSR

peak ([56]). Point (2) has been investigated in prior research, which has shown that fpeak

is consistent with the frequencies of peak site response for many, but not all, soil sites

([14, 47, 25, 54, 65, 74, 75, 96]). In this study, fp is allowed to deviate from fpeak; differences

are set by the data, as described below.

7.4.2 Mean amplification

In order to capture the peaked shape of site amplification observed at the Obihiro sites, I

selected a Mexican hat wavelet function1. This function is intended to capture site resonance

effects that dominate amplification shapes at short to intermediate periods (T < 2 sec).

A linear decay function is used at longer periods (T > 2 sec). The recommended site

amplification function for linear conditions is as follows,

f1(T, t0) =


c0 + 2c1√

3c2π1/4

(
1−

(
ln(Tfp)

c2

)2)
e
− 1

2

(
ln(Tfp)

c2

)2

, T ≤ Ttr

c3ln
(

T
Ttr

)
+ f1(Ttr, fp), T > Ttr

(7.13)

where c0 controls the overall level of site amplification, c1 scales the amplitude of the hat

function, c2 describes the width of the PSA peak in natural log period space, Ttr = 2 sec

is the transition period between the Mexican hat and linear functions, and c3 describes the

1https://en.wikipedia.org/wiki/Mexican hat wavelet
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linear decay of amplification with log period beyond Ttr. Frequency fp is the frequency of

the peak in the Mexican hat fitting function. A similar function was used by [55].

I performed a least squares fit of Equation 7.13 to the observed amplification for each of

the seven sites, with the results in Figure 7.16 and Table 7.5. The p-values indicate that all

coefficients are statistically significant except for c3, which is not statistically distinct from

zero. Nonetheless, I retain non-zero c3 to improve fits at long periods.

Table 7.5: Coefficients for Mexican hat model parameters for each site

Station Name Gyushubetsu Higashiinaho Horooka Reisakubetsu Rabirai Toitokki Tonai

c0

Standard error

p-value

1.519

0.155

0

1.016

0.151

0

1.435

0.155

0

1.534

0.160

0

1.403

0.156

0

1.289

0.149

0

1.268

0.156

0

c1

Standard error

p-value

1.724

0.345

0

1.838

0.343

0

1.729

0.347

0

1.496

0.337

0

1.635

0.344

0

1.846

0.337

0

1.597

0.329

0

c2

Standard error

p-value

1.362

0.227

0

1.398

0.243

0

1.387

0.239

0

1.202

0.206

0

1.355

0.244

0

1.358

0.224

0

1.162

0.186

0

c3

Standard error

p-value

-0.647

0.693

0.351

-0.400

0.720

0.578

-0.756

0.697

0.278

-0.474

0.598

0.428

-0.613

0.688

0.373

-0.717

0.709

0.312

-0.210

0.604

0.728

fp (Hz)

Standard error

p-value

1.550

0.269

0

1.319

0.245

0

1.480

0.267

0

2.062

0.305

0

1.530

0.274

0

1.343

0.230

0

2.008

0.273

0
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Figure 7.16: Fit of model to observed amplification when model coefficients are taken from

site-specific optimization.

To develop the model for sites other than the seven stations in the study region, I exam-

ined the relationship between fp and fpeak as shown in Figure 7.17. Confidence intervals on

the best fit line (shown in the figure) encompass the 45 degree line and the intercept term

is effectively null. I take 1.13fpeak as the estimator of fp for use in the Mexican hat func-

tion. All other coefficients are taken as constant across all sites. The other coefficients were

obtained by minimizing the sum of square of errors after specifying fp as above, with the

resulting values in Table 7.6 in the row labelled “Model using fp from fpeak”. The resulting

model predictions are compared to data and optimal fit of model to observed amplification

for the seven Obihiro sites in Figure 7.17. The results are generally good, although some

loss of fidelity occurs relative to the site specific (non-ergodic) fits and optimal fit of model

shown in Figure 7.17.
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Figure 7.17: Relationship between HVSR peak frequency (fpeak) and peak in Mexican hat

fitting function of site response (fp). Note that fp corresponds to a peak frequency for

oscillator response.

Table 7.6: Coefficients for Mexican hat model parameterse

Model c0 c1 c2 c3

Model using fp from fpeak 1.34 ± 0.06 1.70 ± 0.13 1.34 ± 0.08 -0.55 ± 0.20

Model using fp = 1.60 Hz ± 0.10

(population mean)

1.35 ± 0.06 1.67 ± 0.13 1.33 ± 0.09 -0.53 ± 0.26

I also develop a model for the case in which fpeak is unknown. In this case, I regress

Equation 7.13 to the combined data set for all sites to obtain a new set of coefficients as

shown in Table 7.6 in the row labelled “Model using fp = 1.60 Hz ± 0.10 (population mean)”;

this value of fp was regressed as part of the model development, and represents a regional

average site frequency. By combining all sites, the pulse width is slightly decreased and

linear decay rate at long periods is slightly increased. The regional average curve is plotted

relative to the observed amplification levels at all Obihiro sites in Figure 7.18.

158



Figure 7.18: Fit of model to observed amplification when model coefficients are taken from

regional average model.

7.4.3 Aleatory variability model and model bias

The standard deviation terms to use with the proposed site amplification model are τ for

between-event variability and φ for within-event variability. The τ model is assumed to be

unaffected by the site amplification model described here, and can be taken from GMMs. The

φ model can be taken from the standard deviation of the within-event residuals obtained

through the use of the Zea GMM or Aea GMM in combination with the proposed site

amplification models. To develop this within-event standard deviation model, I compute

residuals as in Equation 7.2, but now using the region-specific site amplification model in

lieu of the Zea site term. After subtracting event terms (Equation 7.3) and regional terms

(Equation 7.9), I then partition the within-event residuals as:

δW reg
ij = c+ η′S,j + εij (7.14)

where c is the model bias, η′S,j is the site term at site j obtained through the use of the

modified GMM (the prime ′ differentiates this site term from that in Equation 7.10) and

εij is the remaining residual. The model bias indicates the overall model misfit relative to

the data (equivalent to the average of all δW reg
ij ). The standard deviation of η′S,j is denoted

the site-to-site dispersion (φS2S) while the standard deviation of εij is the single-station

within-event dispersion (φSS).
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These standard deviations are shown in Figure 7.19 for both the model employing re-

gional average parameters and site-specific fpeak values. Figure 7.19(a) shows that φS2S is

approximately 0.2 for both of the proposed models, which is significantly below average val-

ues for the entirety of Japan (from [8]). This is expected because of the relatively uniform

geotechnical conditions in the study region. Figure 7.19(b) shows single-station standard

deviations (φSS), which are similar to the Japan average values obtained previously from

Kik-net data by [82]. The φSS values in Figure 7.19(b) are practically unaffected by using

alternate regional site response models.

Figure 7.19: Comparison of within-event standard deviation terms from Obihiro stations

(this study) and Japan averages: (a) site-to-site standard deviations as compared to Japan-

average from [8]; (b) single-station standard deviation as compared to Japan-average from

[82].

Figure 7.20 compares the model bias for the regional average and site specific models,

both of which are effectively zero. Also shown for comparative purposes is the bias obtained

using the site term in the Zea GMM, which is very large (indicating underprediction). The

substantial bias of the GMM for the Obihiro sites demonstrates the need for site-specific site

factors for these peaty organic soils.
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Figure 7.20: Comparison of model bias for the ergodic model of Zea GMM and the Zea

GMM combined with the two proposed region-specific site amplification models.

7.4.4 Nonlinearity

The previously developed models for mean site response (Equation 7.13, Figure 7.16) are

based on relatively weak ground motions from 8 events, and hence provide linear site ampli-

fication. To investigate nonlinear effects, I examine model misfits relative to the data from

Event 10 (the 2003 Tokachi-Oki Earthquake), which produces significantly stronger ground

motions than the other considered events at the ODCD stations (Figure 7.3).

The analysis of Event 10 follows the process used for other events. Equation 7.1 is used

to compute total residuals, and Equation 7.2 is used to compute the event terms (ηE,10).

Figure 7.21 compares the event terms for Event 10 to the other events considered. In the case

of ODCD stations, the GMM used for residuals calculation is modified from the published

version,
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Figure 7.21: Event term for Event 10 compared to those for Events 1-9.

Region-adjusted within event residuals are computed using Equation 7.9. Figure 7.22

plots δWreg,ij for Event 10 along with those for the other events, using ODCD stations only.

The residuals are plotted as a function of PGAr, which is the median peak acceleration for

the reference site condition from the Zea GMM for Site Class 2. If the site response from

the various events recorded at the ODCD sites is effectively linear, then no trend in δWreg,ij

would be expected with PGAr. This is effectively the case for the Events 1-9 data for each

of the intensity measures considered in Figure 7.22, with the possible exception of a small

upward trend for 5.0 sec PSA. The Event 10 data, however, indicate PGAr dependencies

that are downward at short periods and upward at 5.0 sec
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Figure 7.22: Region adjusted within event residuals for data recorded at ODCD stations

versus reference site PGAr (Site Class 2).

The trends of the results in Figure 7.22 are fit by regression using the relation in Equa-

tion 7.11 with f1 = 0 (the setting of f1 to zero is because of its inclusion in the model used

for residuals analysis; Equation 7.16) and f3 = 0.1g (a typical value). As a result, only

parameter f2 is set by regression. Nonlinearity is evident from curvature in the fit line, and

is quantified by f2 6= 0. The downward curvature at short periods is expected, and results

from increased damping in sediments as strains increase. The upward trend at long periods is

also fairly common. This typically occurs because nonlinearity softens the soil, increasing its

fundamental period. Because the elastic (small strain) period is in the range of 1-2 sec, this

softening will bring the soil deposits to resonance at longer periods, which would be reflected

by increased long period PSA as indicated by the trend line. Furthermore, a prior study

([100]) on the 2004 Niigata Chuetsu-Oki earthquake also showed the reduced nonlinearity

and they claimed that this is likely a property of the peat (more linear than inorganic soils).

Figure 7.23 plots f2 with period for application in Obihiro, along with recommended values

for this parameter from [88] (a semi-empirical model for active tectonic regions, exercised
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using the regional geometric mean VS30 of 150 m/s). The Obihiro data has generally the

same pattern with period as the ergodic model, but with reduced nonlinearity, and positive

values of f2 at long periods.

Figure 7.23: Nonlinear term f2 as function of period as regresses from Obihiro data and from

ergodic model for active regions (applied for VS30 = 150m/s)

7.5 Conclusions

Ground motion models generally include site terms intended for application over a range of

VS30 ≈ 200 to 1500 m/s. These model limits naturally lead to questions of how to capture

site response effects for sites with conditions that fall outside of this range. I address this

question for a very soft soil region (Ohibiro) in Hokkaido Japan underlain by peaty organic

soils and other, non-organic, recent sediments. The range of VS30 in the study region is

100-210 m/s (geometric mean 150 m/s).

I evaluate non-ergodic site responses at seven Obihiro sites using data from nine earth-

quakes. This analysis required removing regional biases in path effects identified for condi-

tions when ground motions propagate between islands (e.g., event is off the coast of Honshu

and ground motions are recorded on Hokkaido). After correcting for these effects, and ap-
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plying standard event term adjustment, site responses for the seven sites are found to have

common characteristics, which include strong site resonances at periods of 0.5-0.9 sec that

are associated with resonances of the soft and weak surficial soils in the region relative to

stiffer underlying soils.

The recommended site response model consists of a modified Mexican Hat wavelet func-

tion (Equation 7.3), the most important parameter of which is a peak frequency fp that

is estimated from peaks of microtremor-based HVSR (fpeak) as fp = 1.13fpeak. The model

can be applied without a site-specific measurement of fpeak by using a regional average of

fp = 1.6 Hz. Using data for an event that produces strong shaking, I derive an approximate

nonlinear model, which has broadly similar characteristics to an ergodic model for active re-

gions. Application of the regional model substantially reduces site-to-site aleatory variability

from a general model from Japan (e.g., 0.48 to 0.20 for PGA).

The regional model for mean site response and within-event standard deviation are ap-

plicable to the Obihiro region along the Tokachi River, Japan, as shown in Figure 7.2. The

model is based on data from seven sites, and could be in error for sites in the study region if

they contain peat deposits of significantly different character or thickness. While the model

is unlikely to be directly applicable to other regions, the modeling approach outlined herein

can be applied to other regions with unusual geologic conditions that may substantially

impact site response.
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CHAPTER 8

Summary and Conclusions

8.1 Scope

In this research I study site response effects on earthquake ground motions. My approach is

to analyze strong motion data to evaluate non-ergodic site response, and then evaluate the

performance of predictive models (using data from California) or develop a predictive model

(using data from Obihiro, Japan).

My work on data from California is presented in Chapters 2 - 6 of this dissertation, I aug-

ment the NGA-West2 ground motion database ([9]) with data from relatively recent events,

and combine this data with profiles from the Shear Wave Velocity Profile Database ([5])

to compute observation-based site response at ground motion recording stations and then

investigate the degree to which it can be estimated using alternate prediction approaches.

To conduct the study, I began by converting the NGA-West2 data tables to a relational

database format, and then supplemented that data with recordings from 25 earthquakes

since late 2011 in California. Based on this expanded database, I identified 159 sites that

have ample recordings (at least 10 events with M ≥ 4) and an on-site measured VS pro-

file (with at least 30 meters depth) for use in analysis. I developed protocols for assigning

soil parameters when borehole data is limited (including unit weight, geotechnical damping,

κ-informed damping, and Q − VS damping). I then conducted site-specific site response

analyses and used a method that combines an ergodic VS30-based site response with adjust-

ments conditioned on parameters derived from horizontal-to-vertical spectral ratios (HVSR).

I present and interpret results for individual sites and synthesize results for the full inventory

of sites to investigate the predictability of site response with GRA, SRI, and HVSR mod-
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els, and to investigate epistemic uncertainties associated with the application of all three

site-specific site response methods.

The analysis of site response and model development for soft peaty organic soil sites

in Obihiro Japan is presented in Chapter 7. I first established a dataset for the study

region from national ground motion database for Japanese networks along with local data

for peaty organic soils in Obihiro. I then analyzed non-ergodic site responses using data from

10 subduction zone earthquakes. Two subduction ground motion models were applied as

reference models to investigate sensitivity of inferred site responses to the reference GMM.

Inferred site responses were used to develop region-specific site amplification models with

and without the availability of a site-specific site parameter, fpeak.

8.2 Summary of major findings

The first part of this research using the California data had the broad objective of investigat-

ing the effectiveness of ground response analysis, and other methods of site response analysis,

through comparisons to observed site response as established from analysis of recordings. I

describe and illustrate the application of a new approach using non-ergodic site responses

derived from surface-only instruments as the basis for validation studies. Effectiveness of

predictive models is judged, in this context, through bias and site-to-site uncertainty of

predicted site response.

The technical contributions of the ground motion analysis work fall into two general

categories. First, several procedural matters had to be developed to implement the work,

and second, the results provide new and valuable insights into the effectiveness of site-specific

site response analysis methods and their associated epistemic uncertainties.

Significant original procedural elements include the following:

1. I have developed procedures to implement ground response analyses and square-root

impedance methods given limited available site information (i.e., no boring logs). As

described in Chapter 4, I considered two types of available information to assign layer
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boundaries (stratigraphy) and soil type information – the mapped surface geology and

the VS profile. Surface geology is used to estimate soil type near the ground surface.

The VS profile is used in combination with the surface unit assignment to estimate

variations with depth.

2. I implemented a κ-informed damping model to leverage ground motion observations

from sites as a means to constrain soil material damping. The procedure involves

analysis of κ for each recording at a site, followed by subtraction of path κ derived

on a record-specific basis given spatially variable path κ coefficients developed in this

study. The result is a site κ, which provides a basis for adjustment of soil damping.

3. I developed new procedures for HVSR processing and developed a code implementing

these procedures in R. New criteria for peak identification and Gaussian peak fitting

were developed. Furthermore, I have proposed a new categorization method based on

peaks in HVSR to classify sites.

4. I proposed new metrics to quantify goodness-of-fit for site response predictions relative

to observations. I proposed and applied a normalized version of Fréchet distance to

supplement mean correlation coefficient. I demonstrated that this metric is effective

at identifying sites with and without “good” data to model fits.

5. I proposed “inverse transfer function method” (ITF) to deconvolve surface records to

estimate input motions for a reference soil layer for use in GRA (Section 4.2.4). I

demonstrated that GRA would over-estimate site amplification if the surface records

had been used.

The insights into the effectiveness of site-specific site response analysis methods and their

associated epistemic uncertainties can be summarized as:

1. Despite the depth of the profiles considered in this work being relatively small (30

to 255 m; site period ranging from 0.06 to 1.02 sec), ground response analyses (or

square-root-impedance analyses) are able to improve site response predictions relative
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to ergodic models (reduce normalized Fréchet distance within soil column period) for

approximately 36% of sites.

2. The inability of site-specific ground response methods (GRA and SRI) to improve

prediction accuracy for the 64% sites could stem from three potential sources: (1) sim-

ulations of one-dimension wave propagation do not accurately characterize the physics

of site response; (2) the measured VS profile from the site does not accurately represent

site conditions, either because of strong site heterogeneity or inaccurate measurements;

(3) portions of the site profile beneath the profile depth significantly impact the site

response in the frequency range of the measured profile.

3. The three problems identified in (2) above are common to some extent in virtually

all site response simulations, so understanding their collective impact is of practical

importance. The unknown influence of these factors in forward applications that do

not have the benefit of on-site recordings introduces epistemic uncertainties, which I

quantify. Lacking any knowledge of whether a given site is well represented with one-

dimensional simulations, this epistemic uncertainty is only slightly reduced from the

site-to-site variability in ergodic models. However, for the subset of sites whether this

modeling is effective, the epistemic uncertainty is substantially reduced by up to 0.10

in natural log unit (from 0.4 to 0.3 at 0.06 sec).

4. Given the significant differences in epistemic uncertainties for sites with unknown vs.

known applicability of one-dimensional methods as an effective means of representing

site response, the ability to identify this condition a priori is of substantial practical

importance. I investigated five potential predictors of ground response analysis effec-

tiveness, most of which represent impedance effects in different ways. Contrary to

prior work using a much more limited dataset from vertical arrays, I find that ranges

of these parameters indicating high impedance conditions provide for more effective

site response predictability, with arguably the velocity of the base layer (VSb) having

the strongest predictive power. These features were not observable with single-period

residuals, but were visible with the Fréchet distance parameter.
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5. Damping models informed by site-specific κ perform better than alternative models, as

indicated by reduced bias relative to alternative damping models for all sites. However,

there are over-estimation of damping from this method for some sites, as discussed in

Section 6.6.

6. Ground response analysis is more effective at minimizing epistemic uncertainty than

square-root impedance methods although there is some sensitivity to damping models.

7. When divided into groups with HVSR-based clear peaks, no peaks, and ambiguous

peaks, observed site responses have different levels of site response complexity and site-

to-site variability. The site response for no-peak sites is relatively “simple” (smooth

variations of amplification with oscillator period) and can be well predicted by a simple,

period-independent adjustment of an ergodic model. For the clear peak and ambiguous

peak categories, the more complex site response features are only partially captured

by an existing HVSR-based model that was developed for conditions in Japan.

8. As measured by dispersion reduction relative to an ergodic model, HVSR models are

ineffective at short periods (T <∼ 0.6 sec) but are effective at longer periods (T >∼ 1.0

sec). The reason for the different model effectiveness for different period ranges is not

well understood.

9. For sites with peaked HVSR signatures and peaked site response, the HVSR peaks oc-

cur at slightly lower frequencies than the oscillator frequency of the peak site response.

Site response amplitudes are lower on average.

10. The performance of the HVSR model for clear peak and ambiguous peak sites was

strongly influenced by false positives (peaks identified from HVSR that are not present

in site response) and wrong detected peak locations. Moreover, for about 2/3 of the

sites with peaks in both HVSR and site response, the peak frequencies are reason-

ably aligned (within a factor of 2), whereas for 1/3 the peaks are misaligned. These

challenges reduce the effectiveness of HVSR-based modeling in this study.

In the second part of research, the major research findings can be summarized as,
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1. A region-specific linear site amplification model with and without site parameter, fpeak,

for peaty organic soil sites in Hokkaido was developed.

2. There are complexities in path effect when subduction events occur adjacent to one

island (e.g., Honshu) and are recorded on a separate island (e.g., Hokkaido). These

effects are not amenable to modeling with an anelastic coefficient, and are captured

here with a constant shift.

3. As observed by other investigators, I find that Japan has strong regional variations in

anelastic attenuation within both islands.

8.3 Future work

Because this study has demonstrated a new means by which to evaluate site response and

use it for model validation purposes, the potential future implementations for other data

sets are nearly limitless. Additional future work that would benefit calculations of the type

performed here include:

1. The only available Subduction models at the time when Obihiro study was conducted

were Aea and Zea models. As multiple NGA-Subduction models (e.g., [78]) have been

developed, I will re-analyze the data using the new models.

2. Further validate and improve methods developed in this study to assign soil parameters

where the sites do not have boring logs. The initial validation was conducted by using

nine sites that are part of this study. Further investigation using more sites is needed.

3. Through more comprehensive data analyses, refine spatial estimates of path κ.

4. Investigate alternative goodness of fit parameters, borrowing from the Fréchet distance

concept, but considering an average distance instead of a peak value and considering

alternate normalization strategies.

5. Improve peak identification algorithms to reduce the rate of false positives and false

negatives, which significantly impacts model performance for site response prediction.
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6. Develop a California-specific HVSR site response model.

Studies of the type performed here for California would benefit from improved site char-

acterization. There has been a trend in recent years for site characterization to focus on the

upper 30 m, but for site response studies of the type performed here, deeper characteriza-

tion to firm rock layers is especially useful. These investigations should ideally include the

development of stratigraphic logs that include detailed soil type descriptions.
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APPENDIX A

Appendix

The supplements materials are archived on my Github site at: https://github.com/wltcwpf/

CSMIP-Report-Supplements. The materials on the site include 1) a Google drive link to the

site where it saves all the plots of HVSR from strong motion and noise data along indicators

from Analyst I and II regarding the presence of a peaks; 2) plots of comparison between

HVSR and non-ergodic site responses (named as “HVSR SiteResponse Comparison.pdf”);

3) plots of site responses with Gaussian fitting function (named as “SiteResponse plots.pdf”);

4) plots of GRA, SRI, and HVSR site response models for all sites (named as ‘‘Linear Am

plications GRA.pdf”, ‘‘Linear Amplications SRI.pdf”, and ‘‘Linear Amplications HVSR.pd

f”, respectively); and 5) station table of 159 sites (named as “Station Table.csv”).
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