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Bacterial growth is crucially dependent on protein synthesis and
thus on the cellular abundance of ribosomes and related proteins.
Here, we show that the slow diffusion of the bulky tRNA complexes
in the crowded cytoplasm imposes a physical limit on the speed of
translation, which ultimately limits the rate of cell growth. To
study the required allocation of ancillary translational proteins to
alleviate the effect of molecular crowding, we develop a model for
cell growth based on a coarse-grained partitioning of the proteome.
We find that coregulation of ribosome- and tRNA-affiliated proteins
is consistent with measured growth-rate dependencies and results
in near-optimal allocation over a broad range of growth rates. The
analysis further resolves a long-standing controversy in bacterial
growth physiology concerning the growth-rate dependence of
translation speed and serves as a caution against premature identi-
fication of phenomenological parameters with mechanistic processes.

Bacterial cell growth and protein synthesis are tightly coupled
as proteins account for a large fraction of the cellular biomass

(1). In the model organism Escherichia coli, over half of the bio-
mass is protein (2), and protein synthesis accounts for more than
two-thirds of the cell’s ATP budget during rapid growth (3).
Therefore, the machinery of protein synthesis, i.e., ribosomes,
tRNAs, and ribosome-affiliated factors, plays a central role in
maintaining exponential growth (1, 4). This is manifested by an
increased ribosome content in rapidly growing cells (2, 5, 6), by
direct observations that protein synthesis is limited by the avail-
ability of free ribosomes (7), and by considerations that link evo-
lutionary selective pressure to the cost of protein synthesis (8).
The most striking evidence for the central role of ribosomes in

cell growth is provided by the linear relation between the ribo-
some mass fraction and the growth rate for bacteria grown in
media containing different nutrients. This linear relation, which
emerged from the systematic characterization of bacterial cells
growing at different rates (5, 9), is illustrated in Fig. 1A with data
for E. coli (2, 10, 11). It can be interpreted as reflecting the in-
trinsically autocatalytic activity of ribosomes synthesizing ribo-
somal proteins (9, 12) and identifies the fraction of ribosomes
allocated to making ribosomal proteins as a key determinant of
the growth rate (11). The picture that emerges from such con-
siderations has formed the basis of a systematic theory of bac-
terial growth, based on empirical “growth laws”, similar to the
phenomenological laws of physics (11, 13). The theory provides
a successful framework for the analysis of the interdependence
of cell growth and gene expression, of the effects of antibiotics,
and of protein overexpression (11) without the need to charac-
terize how the individual steps of synthesis and degradation are
affected by the global state of the cell (14).
In addition to their high ribosome content, rapidly growing

bacteria also contain large amounts of other proteins associated
with translation. In particular, the most abundant protein in fast-
growing E. coli is elongation factor Tu (EF-Tu), with about six to
seven molecules per ribosome (15), and accounting for up to
10% of the total protein mass under conditions of rapid growth
(2, 16). EF-Tu escorts charged tRNA to the ribosome and pro-
tects it from losing its amino-acylation (17, 18). The concentra-
tion of EF-Tu is closely linked to the concentration of tRNA,
as EF-Tu and tRNA are typically present is cells as ternary
complexes together with GTP (which activates EF-Tu) (19, 20).
EF-Tu and the 21 different tRNA synthetases (21), which charge

tRNAs with the corresponding amino acids, amount to a total
tRNA-affiliated protein mass of about two-thirds that of the ri-
bosomal protein mass in moderate-to-fast growth (15). As the
fraction of ribosomes allocated to making ribosomal proteins is a
central factor for cell growth, synthesizing this protein mass con-
stitutes a massive “investment” of cellular resources by divert-
ing ribosomes away from making ribosomal proteins and toward
making tRNA-affiliated proteins.
To understand why rapidly growing cells allocate such a large

fraction of their proteome to tRNA-affiliated proteins, we first
estimate the concentration of these proteins needed to saturate
the ribosome with charged tRNA. We find that slow diffusion of
the ternary complexes defines a lower bound on this concen-
tration, pointing to the role molecular crowding plays in pro-
teome allocation, which ultimately sets a speed limit on protein
synthesis and cell growth.
The high abundance of tRNA-affiliated proteins necessary to

maintain rapid translation must be balanced against the burden
associated with devoting precious ribosomal resources to their
synthesis (22). To elucidate how rapid growth can be achieved
subject to these constraints, we develop an explicit theory that
accounts for the cost of ribosomal protein synthesis and the cost
of synthesizing tRNA-affiliated proteins. Our theory is based on
the quantitative phenomenological framework developed by Scott
et al. (11), but in contrast to the earlier work allows the speed of
translation to vary (through the abundance of tRNAs and tRNA-
affiliated proteins). The resulting analysis shows that this theory
is consistent with a large amount of experimental data and
indicates that coregulation of tRNA- and ribosome-affiliated
proteins results in near-optimal resource allocation irrespective
of growth rate. Furthermore, our theory provides a resolution
to a long-standing contradiction in bacterial physiology, between
the observed growth-rate dependence of the translation speed
(23–25) (Fig. 1B) and the linear relation between ribosome
concentration and growth rate traditionally attributed to a con-
stant translation speed (1).
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Results and Discussion
Diffusion of Ternary Complexes Limits the Speed of Translation. Peptide
chain elongation is a complex process consisting of many sub-
steps (26). For our purpose, however, it suffices to consider a sim-
plified description by Michaelis–Menten kinetics (22), with
reversible binding of a ternary complex to the ribosome followed by
irreversible incorporation of the amino acid into the elongat-
ing chain (Fig. 1C). In particular, we do not consider the depen-
dence of the translation speed on the translated codon (27), so the
corresponding rates should be considered as averages over the
translated sequences. In this picture, binding between the ternary
complex and the ribosome is characterized by the Michaelis con-
stant KM = ðkoff + kelongÞ=kon, where kon and koff are the binding
and unbinding rates of ternary complexes to the ribosome, and
kelong is the effective rate of peptide elongation. This constant
establishes an absolute scale for the concentration of the ternary
complex necessary for efficient protein synthesis; the lower the
Michaelis constant is, the less ancillary protein is required. A lower
bound of this concentration scale can be estimated by the diffusion
limit as

KM =
koff + kelong

kon
≥
kelong
kon

≥
kelong
kdiffon

; [1]

where we have replaced the binding rate by its upper limit, the
diffusion-limited binding rate kdiffon . The binding rate can be esti-
mated as kdiffon = 4πDa for molecules of linear dimension a. For
the ternary complex, a ≈ 2 nm (20). Measured diffusion coeffi-
cients of proteins in the crowded cytoplasmic environment are
in the range of 0.4–8 μm2 · s−1 (28–30). From the size dependence
of the diffusion coefficient (30), we estimate the diffusion coeffi-
cient for the large ternary complex to be D ≈ 1 μm2 · s−1; thus
kdiffon ∼ 10 s−1 · μM−1. The elongation rate kelong must exceed the
largest translation speeds observed in vivo, 20–23 aa/s (2, 10).
(The maximal elongation rate required here is an average over
the translated sequences. Specific codons may have higher elon-
gation rates.) Assuming kelong ≈ 30 s−1, our estimate leads to
a Michaelis constant in the micromolar range (KM ≈ 3 μM),

comparable to the very high concentrations (∼3–30 μM) of the
major tRNA species found in rapidly growing E. coli (31).
This concentration scale can be converted to a proteome

fraction (φM) of tRNA-affiliated proteins (referred to henceforth
as T-proteins). This class of proteins includes EF-Tu and the
tRNA synthetases, which are found at constant ratio to EF-Tu in
E. coli (15). Considering the protein mass of EF-Tu and tRNA
synthetases, we obtain a scale of φM ≈ 0.02. This is consistent
with the measured proteome fraction of T-proteins in the cell,
which ranges between 5% and 13% depending on growth con-
ditions and corresponds to ∼60% of the ribosomal protein mass
(Fig. 1A). As the estimated Michaelis constant corresponds to
the concentration at which translation would proceed at half of
its maximal speed, these numbers indicate that the translation
speed ranges between 70% and 86% of its maximum, consistent
with earlier estimates for Salmonella (16). Our estimate of the
Michaelis constant thus suggests that translation indeed operates
close to the diffusion limit and that macromolecular crowding
imposes a substantial cost to the cell by setting a large scale for
the required allocation of T-proteins.

Growth Theory with a Four-Component Model of the Proteome. Our
estimates above indicate that T-proteins may account for a sub-
stantial fraction of the total proteome. Thus, a corresponding
fraction of ribosomes needs to be allocated to their synthesis. As
ribosomes are critical factors for cell growth, this allocation
represents a substantial investment of resources to the cell. We
next develop a theory of bacterial growth that accounts for the
trade-off between the costs of synthesizing ribosome- and tRNA-
affiliated proteins. Our theory describes the proteome as con-
sisting of four sectors and considers the constraints on allocating
resources of protein synthesis (in particular, ribosomes) to these
sectors. The theory extends the growth theory of Scott et al. (11),
which was based on a three-component model of the proteome
(Fig. 2A), by splitting the ribosome-affiliated proteome sector
into a ribosomal fraction and a fraction of T-proteins (Fig. 2B)
and allowing for a growth-rate dependence of the translation
speed, which depends on the T-proteins.

Fig. 1. Translation and cell growth. (A and B) Growth-
rate dependence of (A) the ribosome concentration
(measured by the fraction of total protein that is ri-
bosomal protein) and (B) the translation elongation
speed for growth in media with different nutrient
content. The data points in A are from refs. 2, 10, and
11, and those in B are from refs. 2, 10, and 23–25. The
black lines indicate a linear and Michaelis–Menten-
type fit to the data, respectively. (C) Michaelis–Menten
description of the translation speed: Peptide chain
elongation is described as reversible binding of a
ternary complex (T) to a ribosome (R) containing a
peptide chain with n amino acids and chain-irreversible
chain elongation. Binding of ternary complexes to
the ribosome is characterized by the Michaelis con-
stant KM. A lower limit for that constant is given by
diffusion-limited binding of ternary complexes.
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We start developing our theory from the known fundamental
constraints operating on exponentially growing bacteria. The first
is a balance of exponential protein mass accumulation (dM/dt) by
the translational output of the ribosomes,

dM=dt= λM = k
�
NRb −NRb;0

�
; [2]

where the first equality expresses exponential growth of the cell
and all its content at rate λ, and the second equality expresses
the synthesis of protein by ribosomes whose total abundance
is NRb (with NRb,0 not translating), and with the active ones work-
ing at an elongation speed k. It is convenient to express the num-
ber of ribosomes in units of the ribosomal protein mass, mRb.
Then, dividing through by the total protein mass M, we arrive at
a relation between the growth rate λ and the ribosomal protein
fraction,

λ= γ ·
�
ϕRb −ϕRb;0

�
; [3]

where ϕRb =NRb ·mRb=M is the total ribosomal protein mass
fraction, ϕRb;0 =NRb;0 ·mRb=M is the mass fraction of inactive
ribosomes, and γ = k=mRb is the rescaled elongation rate,
which has been taken as constant with k = kelong in previous
work (11, 13).
A second constraint is the need to balance the flux of energy and

amino acids consumed in translation against the influx mediated by
metabolic proteins (denoted by the mass fraction ϕP) (11),

λ= νϕP; [4]

where ν is a phenomenological parameter that characterizes the
quality of the growth medium (11).
The significant fraction of the proteome devoted to T-proteins

(ϕT) necessary to maintain rapid translation also needs to be
accounted for in the growth theory. Previously, Scott et al. used
the observed approximate proportionality between ϕT and the
ribosomal fraction; i.e.,

ϕT = α ·ϕRb; [5]

with the observed value α ≈ 0.6 for a broad range of growth rates
(discussed below), to define a ribosome-affiliated proteome frac-
tion ϕR ≡ϕRb +ϕT = ð1+ αÞ ·ϕRb. This amounts to increasing the
unit mass of ribosomal proteins to (1 + α) mRb, leading to the
relation

λ= γR
�
ϕR −ϕR;0

�
[6]

replacing Eq. 3, with γR = k=½ð1+ αÞ ·mRb�.
The dependence of the growth rate on the nutrient quality (ν)

and the elongation rate (γR) is derived in Scott et al.’s theory by
simultaneously solving Eqs. 4 and 6 subject to the constraint
ϕR + ϕP +ϕQ = 1, where ϕQ is a growth-rate–independent pro-
teome fraction. (Data in ref. 11 suggest a value ϕQ ≈ 55%.) The
results are summarized in Fig. 2A and in SI Text.
In this work, we examine in detail the effect of the cell’s allo-

cation of the tRNA-affiliated fraction (T-fraction), ϕT, on the
growth rate. To investigate the trade-off between a high transla-
tion speed and a high proteome fraction of T-proteins, the trans-
lation speed γ is now taken to depend on ϕT. This dependence
is again described by a Michaelis–Menten relation (22),

γðφTÞ= γmax
ϕT

ϕT +φM
: [7]

This relation follows from the Michaelis–Menten relation of the
translation speed on the ternary complex concentration cT (22),
k= kelongcT=ðKM + cTÞ, by defining a rescaled maximal translation
speed γmax = kelong/mRb and by expressing concentrations in
terms of the corresponding proteome fractions (ϕT = σcT, with
σ ≈ 2:5× 10−4μM−1) (Methods). The Michaelis constant φM in
Eq. 7 is thus also expressed in units of a proteome fraction; it
is related to the usual Michaelis constant, KM (estimated above),
via φM = σKM ×nt, where nt ≈ 30 is the number of different
tRNAs (not counting some rare tRNAs) (Methods), such that
each codon sees a tRNA concentration of KM. The translation
speed actually depends on the fraction of charged T-proteins and
not the total pool ϕT. In moderate-to-fast growth, the charged
fraction of tRNA is 70–80% (32), leading to an effective rescal-
ing of the Michaelis constant φM. Here, we do not include an
explicit partitioning between charged and uncharged T-proteins.
The four-component proteome model is thus defined by Eqs. 3

and 4, with γ given by Eq. 7, subject to the proteome constraint

ϕRb +ϕT +ϕP +ϕQ = 1: [8]

This model provides the growth rate λ and the proteome frac-
tions ϕRb and ϕP for different choices of the T-fraction ϕT,
once the parameters ν, γmax, and φM are specified. In the follow-
ing, we assume that ϕT = α ϕRb, with a constant (growth-rate–
independent) α, an approximation consistent with observed
ratios of EF-Tu to ribosomes (see below). The (approximate) pro-
portionality reflects the coregulation of ribosomal proteins and
elongation factors, which are found in the same operons (like-
wise, many tRNA genes are in ribosomal RNA operons) (1).

The Four-Component Model Is Consistent with the Growth-Rate
Dependence of Translation-Related Parameters. Next, we compare
with experimental data the growth-rate dependencies of the
proteome fractions and of the translation speed obtained from
the four-component model. This comparison also allows us to
estimate the parameters φM and γmax. We first consider the effect
of changing growth by changing the nutrient quality (changing ν).
By inverting the dependence of the growth rate on ν, we can plot
proteome fractions and the translation speed as a function of the
growth rate (rather than as a function of ν itself). As in the three-

Fig. 2. Proteome partitioning models with three and four proteome frac-
tions. (A) Three-component model of the proteome of refs. 11 and 13: The
proteome consists of three sectors, a fixed fraction (Q), a ribosome-affiliated
fraction (R), which exhibits the linear growth rate dependencies for nutrient
variation and translation inhibition sketched on the left, and a fraction of
metabolic and other fractions (P) that has the opposite growth rate depen-
dence. (B) The four-component model of this study splits the ribosome-
affiliated fraction into a ribosomal protein fraction (Rb) and a fraction of
tRNA- or translation speed-affiliated proteins (T), which increase and de-
crease together.
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component model, there is a maximal growth rate (obtained in
the limit of ν → ∞), at which the ribosomal proteome fraction is
maximal [ϕRb → ð1−ϕQÞ=ð1+ αÞ] and the metabolic proteome
fraction vanishes (ϕP → 0, a growth-rate–independent basal
offset in the metabolic sector that accounts for the metabolic
activity still present at maximal growth can be absorbed into the
growth-rate–independent Q sector; for a discussion see the
supporting information of ref. 33). For smaller growth rates, ϕRb
depends approximately linearly on the growth rate λ,

ϕRb =ϕRb;0 +
φM

α
+

λ

γmax
ð1− f ðλÞÞ; [9]

up to a small correction f(λ) (Eq. S10), which turns out to be
negligible for moderate to fast growth (e.g., above ∼0.5/h). How-
ever, comparing Eq. 9 to the form [6] for the three-component
model, the interpretations of the slope and the offset of the
linear relation are different as is discussed below. Because
ϕT ∝ ϕRb, ϕT also depends linearly on λ, and consequently the
translation speed γ (Eq. 7) is approximately given by a Michaelis–
Menten function of growth rate for moderate-to-fast growth.
In Fig. 3 A and B, we plot the calculated growth rate de-

pendence of the ribosomal proteome fraction (ϕRb) and the
translation speed k = γ(ϕT)/mRb, matched to the corresponding
data for growth in different nutrients (data as in Fig. 1 A and B).
With α set to 0.6, this matching determines the two parameters
characterizing the translation speed, the maximal speed γmax and
the Michaelis constant φM, and the offset ϕRb,0 attributed to in-
active ribosomes. The values of the fitted parameters are given in
Table S1. Specifically, we obtain φM = 0.029, which is only slightly
larger than the minimal value (0.02) estimated above based on
diffusion-limited ternary complex binding. As a consistency check
we also compare the calculated growth rate dependence of the
T-fraction (ϕT) with an estimate of that proteome fraction from
the measured amount of EF-Tu for growth in different nutrients
(15, 34) (the measured proteome fraction of EF-Tu was multi-
plied by 1.6 to account for the tRNA synthetases) (Methods). This
estimate and the results from the model show good agreement,
with exception of the fastest growth.
Finally, we plotted the ratio ϕT : ϕR in Fig. 3D, expressed as

a mass ratio (α) and as a ratio of molecule numbers (EF-Tu per
ribosome) together with experimental data for EF-Tu per ribo-
some (15, 34, 35) (gray symbols) and tRNA per ribosome (31,
36) (white symbols). Within the present model the ratio ϕT : ϕR
is constant; α = 0.6 corresponds to 7.6 elongation factors per
ribosome. The data for EF-Tu per ribosome show a slight, but
systematic reduction with increasing growth rate, possibly in-
dicating that the two proteome fractions are not exactly cor-
egulated, at least during very fast growth. For the ratio of tRNAs
to ribosomes, the situation is less clear: There is a slight decrease at
fast growth in one dataset (31), but not in another (1, 36). The
increased tRNA content seen at very slow growth [based on data
from chemostat growth (36)] is believed to arise from differential
stability of tRNA and rRNA at slow growth (2) and thus may not
reflect the dependence of the corresponding proteome fraction.
In sum, over moderate-to-fast growth rates, the four-component
model with coregulation of T-proteins and ribosomal proteins
recapitulates the growth dependence of the proteins involved
in translation, as well as the growth-rate–dependent trans-
lation speed under conditions where growth is modulated by
nutrient quality.
We next calculated the growth-rate dependence of the ribo-

somal and T-fractions under translation-limited growth, as studied
in ref. 11 using ribosome-targeting antibiotics, which is imple-
mented in the model by reducing the maximal translation speed
γmax for constant ν (dashed red lines in Fig. 3). With decreasing
γmax, the ribosomal fraction increases as observed with increasing
antibiotic concentrations (11). It exhibits a linear dependence on
the growth rate and extrapolates to a maximal ribosomal fraction
that is independent of the nutrient quality ν, i.e., independent

of the growth medium in the absence of the antibiotic (Fig. 3A).
The tRNA-affiliated fraction ϕT also increases, being forced to
do so by the assumption of coregulation (Fig. 3C). We note that
in the four-component model, translation limitation can also be
obtained by increasing the Michaelis constant of translation φM,
which leads to the same growth-rate dependence as changing the
maximal translation speed γmax.

Coregulation of Ribosomal and tRNA-Affiliated Proteins Corresponds
to Near-Optimal Allocation of Protein Synthesis Resources. So far, we
have assumed that the factor α, the ratio between the tRNA-
affiliated and ribosomal proteome fractions, is constant and in-
dependent of the growth rate. Based on an optimization scheme
originally proposed by Ehrenberg and Kurland (22), we have
varied α and adjusted it such that the growth rate is maximized
for any given growth conditions, i.e., for fixed medium parame-
ters (ν, γmax, φM). The optimal α is dependent on the growth rate
and a systematic decrease of the ratio of T-proteins to ribosomes
with the growth rate is obtained (Fig. 4). Although the data for
EF-Tu per ribosome (symbols in Fig. 4C) show a slight decrease
with increasing growth rate, the optimal α is smaller than the
observed values. However, for all realistic values of the growth
rate (up to three doublings per hour), a constant α = 0.6 as used
above leads to a growth rate within 10% of the maximum obtained
by optimizing α, and the experimental ratio of EF-Tu per ribo-
some, which decreases slightly at fast growth, even remains in
the ±5% region (gray symbols in Fig. 4C). As a result, we con-
clude that coregulation (or approximate coregulation) of ribo-
somal and T-proteins is a near-optimal strategy for the cell, which
may be “good enough” to achieve fast growth. As the additional
complexity of regulating the two proteome sectors separately to
achieve full optimization may incur additional fitness costs,
coregulation (with possibly some adjustment to lower the ratio
ϕT/ϕR at fast growth) may even be the most robust strategy for
the cell to adopt.

Effect of the Michaelis Constant on Cell Growth. Finally, we turn to
the effective Michaelis constant (φM or KM) for ternary complex

Fig. 3. Growth-rate dependence of translation-related parameters. (A) Ri-
bosomal proteome fraction; (B) translation speed; (C) tRNA-affiliated pro-
teome fraction; (D) ratio of tRNA- affiliated and ribosomal fractions (as mass
ratio α and ratio of numbers of molecules). In all plots, the solid line is for
growth variation by the nutrient quality (varying ν), and the dashed lines are
for growth variation by translational inhibition, e.g., using antibiotics (varying
γmax). The parameters (Table S1) are chosen to match the experimental data
(gray symbols). Data sources: (A and B) As in Fig. 1 C and D; T-protein data are
from refs. 15, 34, and 35; tRNA data in D are from refs. 31 and 36.
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binding to the ribosome, which plays a unique role in our model:
It sets an absolute concentration scale for the T-fraction, whereas
otherwise the model is concerned with allocating fractions of
the total proteome. Fig. 5A shows the maximal growth rate as a
function of the Michaelis constant, with a fixed value of α and with
α optimized for each given value of φM (red and blue lines, re-
spectively). For fixed α, lowering the Michaelis constant increa-
ses the translation speed, and thus the growth rate, by saturating
ribosomes with ternary complexes. Optimizing α with respect to a
smaller Michealis constant allows the cell to reduce its investment
in the T-fraction and to allocate more resources to the ribosomal
fraction (Fig. 5B), as with a smaller φM the same translation speed
can be achieved with a smaller concentration of ternary com-
plexes. In either case, a decrease of the Michaelis constant in-
creases the growth rate. Above we have argued that the value of
the Michaelis constant is set by a physical limit, namely that
binding of ternary complexes to the ribosome cannot be faster
than diffusion-limited. This limit is indicated in Fig. 5 by the
dashed vertical line. It points toward a key role molecular
crowding plays in cell growth. The link between crowding and cell
growth may be complex (37), as increased crowding slows diffu-
sion (38), but also reduces unbinding (39) and effectively increases
concentrations by reducing the accessible volume. However, if
translation remains close to the diffusion limit, as we suggest
here, slow diffusion should be the dominant effect of crowding
(40, 41).

Mechanistic Interpretation of the Phenomenological Model.We have
noted above that our growth theory with a four-component model
of the proteome leads to a modified interpretation of the slope
(1/γ) of the linear relation between ribosome concentration and
growth rate (Fig. 1A). We now discuss this point in more detail
and show that it resolves an old controversy surrounding the
phenomenological approach to bacterial growth. Within the phe-
nomenological approach, the mass balance argument presented in
Eqs. 2 and 3 was used to identify the phenomenological parameter

γ with a growth-rate–independent translation speed (1). This in-
terpretation is consistent with the observation that the slope is
changed in mutants with slow ribosomes, with a strong cor-
relation between the inverse slopes and the corresponding
translation speeds measured in vitro (11). Nevertheless, that
interpretation stood in contradiction to direct measurements in
E. coli that indicate a dependence of the translation speed on
growth rate (23–25) (Fig. 1B). Our discussion of the four-
component model above (Eq. 9) shows that the growth law of
Fig. 1A is consistent with a growth-rate–dependent translation
speed, with the modified interpretation that the slope in Fig. 1A
be identified with a growth-rate–independent maximal transla-
tion speed, γmax (Eq. 6). The modified interpretation remains
consistent with the slope-speed correlation for the slow ribosome
mutants. In fact, the need for such modified interpretation is also
obtained by asking for a functional form of γ(λ) that is compat-
ible with the linear relation between ribosome concentration and
growth rate. This argument, which is made in SI Text, leads to a
Michaelis–Menten-type dependence of the translation speed on
growth rate (Eq. 9 without the nonlinear term, included as the
black line in Fig. 1B with parameters given in Table S1).
Quantitative phenomenology provides a powerful approach for

predicting physiological responses to a variety of perturbations
(11) and for uncovering regulatory links within their physiological
context (33). However, our present study indicates that care must
be taken when assigning a mechanistic interpretation to the em-
pirical parameters appearing in such models. Coarse graining can
bring into focus relations that are not apparent in rich datasets;
nevertheless, coarse graining is a projection of the underlying
dynamics of the system, and different (and, possibly, mutually
contradictory) mechanistic models may be consistent with a par-
ticular set of phenomenological relations.

Concluding Remarks. In this study, we have derived an explicit
model for proteome partitioning that accounts for the fact that
an increase of the translation speed incurs a cost to the cell in the
form of required protein such as elongation factors and tRNA
synthetases. This fraction of the total protein mass that is de-
voted to the maintenance of the translation speed is ultimately
governed by the slow diffusion of the large ternary complexes
in a crowded cytoplasm. Furthermore, the analysis resolves the
apparent discrepancy between a very successful phenomeno-
logical framework for understanding the interdependence of
cell growth and gene expression based on the linear relation
between ribosome concentration and growth rate (which is
naturally interpreted as reflecting a constant translation speed)
on the one hand and the measured growth rate dependence of
the translation speed on the other hand. We have shown that
a growth-rate dependence of the translation speed is consistent with
the phenomenological approach and results in only a modified in-
terpretation of the parameters.
The limitation of the Michaelis constant for ternary complex–

ribosome binding by slow diffusion points toward a key role for
molecular crowding in proteomic resource allocation and cell
growth. In bacterial cells, the degree of crowding (or the water
content of a cell) can be varied via the osmolarity of the growth

"Fig. 4. Optimality of resource allocation. (A) Growth
rate as a function of the ratio α of the tRNA-related
and ribosomal proteome fractions (or the tRNA or
EF-Tu numbers per ribosome) for different values of
the nutrient uptake rate [bottom to top: ν = 1, 5, 10
doublings per hour (dbl/h) and maximal growth
rate]. The resulting optimal α is plotted as function of
the nutrient uptake rate (B) and against the corre-
sponding growth rate (C, blue line). The dashed and
solid lines in C indicate the range of α values for
which the growth rate remains within 5% and 10% of the maximal value, respectively. The data are the same as in Fig. 3D. For realistic growth rates, the
constant α of 0.6 assumed in the main text and the experimental values for EF-Tu per ribosome fall into this area. For simplicity, we have set the offset ϕRb,0 = 0 in
these plots.

Fig. 5. (A and B) Diffusion limitation of the minimal Michaelis constant. (A)
Maximalgrowth rateand (B) ribosomal and tRNA-affiliatedproteome fractions
ϕRb and ϕT (solid and dashed lines, respectively) as a function of the Michaelis
constant (φM orKM) of bindingof ternary complexes to ribosomes. The red lines
are for constant α and the blue lines for optimal α such that the growth rate is
maximized for each value of the Michaelis constant. The dashed lines indicate
our estimate of the diffusion-limited minimal value of the Michaelis constant.
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medium. Cells adapted to reduced water content still exhibit ex-
ponential growth, but with a reduced growth rate (42). Studying
the ribosome content and translation speed of these cells should
provide valuable insight into the link between crowding and cell
growth. Specifically, our study suggests that the slow diffusion of
ternary complexes is an important contribution to the slowdown
of growth. This could be directly probed by following the dif-
fusion of ternary complexes in cells under osmotic challenge.

Methods
Growth Theory with a Four-Component Proteome Partitioning Model. The
growth theorywith the four-componentmodel of the proteome is defined by
Eqs. 3–5, 7, and 8. Solving these equations defines the growth rate (λ), the
proteome fractions (ϕRb, ϕT, ϕP), and the translation speed (γ) as functions of
the parameters of translation (γmax, φM) and the parameter ν, which char-
acterizes the nutrient quality of the medium. Inverting the dependence of λ
on ν or γmax leads to the growth-rate dependence of the quantities for
nutrient-limited and translation-limited growth, respectively. A mathemat-
ical summary of the theory with a three-component and a four-component
model of the proteome is given in SI Text.

Conversion of Concentrations and Proteome Fractions. Proteome fractions (ϕ)
and concentrations (c) are converted through ϕ= σc. The factor σ is obtained as

σ = σ0
volume
mass

mass
total protein

Naa ≈ 3:8× 10−7μM−1 ×Naa; [10]

where σ0 = 600 μm−3/μM converts numbers of molecules per volume into
molar concentrations, Naa is the number of amino acids in the protein of
interest, and the remaining two factors convert protein mass units to volume
(43). The latter two factors [volume/mass ≈ 0.32 μm3/(OD460/10

9 cells), protein/
mass ≈ 5 × 1017 amino acids/OD460] are approximately independent of the
growth rate (2, 44). Specifically, for EF-Tu, Naa is 394 (20). The concentration
of ternary complexes as seen by the ribosome is, however, not the total
concentration of EF-Tu, but the concentration of a specific ternary complex
(a specific tRNA); i.e., the total concentration of EF-Tu is nt times the con-
centration seen by the ribosome, where nt ≈ 30 is the number of different
ternary complexes. As the concentrations of different tRNA species vary
wildly, we estimated an effective number of different tRNA species, nt ≈
30, excluding the minor tRNAs species for amino acids with more than one
tRNA. To obtain an overall estimate of the tRNA-related protein mass, the
proteome fraction of EF-Tu is multiplied by a factor 1.6 to account for the
tRNA synthetases, which are present in E. coli at a constant ratio to EF-Tu
(15). As only 10 of the 21 tRNA synthetases have been measured (with a mass
ratio to EF-Tu of 0.3), their total proteome fraction has been doubled in this
estimate.
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