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Integrated transcriptomic
analysis reveals immune
signatures distinguishing
persistent versus resolving
outcomes in MRSA bacteremia
Rajesh Parmar1, Harry Pickering1, Richard Ahn2,
Maura Rossetti 1, David W. Gjertson1, Felicia Ruffin3,
Liana C. Chan4,5,6, Vance G. Fowler Jr3†, Michael R. Yeaman4,5,6†,
Elaine F. Reed1*† and MRSA Systems Immunology Group
1Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of
California Los Angeles, Los Angeles, CA, United States, 2Department of Microbiology, Immunology, &
Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States, 3Division of
Infectious Diseases, Duke University, Durham, NC, United States, 4Department of Medicine, David
Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States,
5Divisions of Molecular Medicine and Infectious Diseases, Los Angeles County Harbor-UCLA Medical
Center, Torrance, CA, United States, 6Lundquist Institute for Biomedical Innovation at Harbor-UCLA
Medical Center, Torrance, CA, United States
Introduction: Staphylococcus aureus bacteremia (SAB) is a life-threatening

infection particularly involving methicillin-resistant S. aureus (MRSA). In

contrast to resolving MRSA bacteremia (RB), persistent MRSA bacteremia (PB)

blood cultures remain positive despite appropriate antibiotic treatment. Host

immune responses distinguishing PB vs. RB outcomes are poorly understood.

Here, integrated transcriptomic, IL-10 cytokine levels, and genomic analyses

sought to identify signatures differentiating PB vs. RB outcomes.

Methods:Whole-blood transcriptomes of propensity-matched PB (n=28) versus

RB (n=30) patients treated with vancomycin were compared in one independent

training patient cohort. Gene expression (GE) modules were analyzed and

prioritized relative to host IL-10 cytokine levels and DNA methyltransferase-3A

(DNMT3A) genotype.

Results: Differential expression of T and B lymphocyte gene expression early in

MRSA bacteremia discriminated RB from PB outcomes. Significant increases in

effector T and B cell signaling pathways correlated with RB, lower IL-10 cytokine

levels and DNMT3A heterozygous A/C genotype. Importantly, a second PB and

RB patient cohort analyzed in a masked manner demonstrated high predictive

accuracy of differential signatures.

Discussion: Collectively, the present findings indicate that human PB involves

dysregulated immunity characterized by impaired T and B cell responses

associated with excessive IL-10 expression in context of the DNMT3A A/A

genotype. These findings reveal distinct immunologic programs in PB vs. RB
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outcomes, enable future studies to define mechanisms by which host and/or

pathogen drive differential signatures and may accelerate prediction of PB

outcomes. Such prognostic assessment of host risk could significantly enhance

early anti-infective interventions to avert PB and improve patient outcomes.
KEYWORDS

Staphylococcus aureus, MRSA, persistence, transcriptomics, proteomics, host immunity
1 Introduction

Staphylococcus aureus bacteremia (SAB) represents a common,

life-threatening and emerging bloodstream infection (1, 2)

accounting for up to 15% of hospital-acquired infections in the

United States (3, 4) and greater frequency worldwide. Among these

cases, antibiotic-persistent S. aureus bacteremia is of urgent and

growing concern. This condition occurs when the infecting clinical

isolate of S. aureus is not cleared from the bloodstream, despite

appropriate dosing and pharmacology of anti-staphylococcal

therapy to which the isolate is susceptible in vitro per CLSI

breakpoints. Such persistent bacteremia cases are prevalent and

potentially lethal (5–7), particularly when involving methicillin-

resistant S. aureus (MRSA). The etiologies of SAB are diverse,

including invasive skin/soft tissue infections, catheter-associated

infections, prosthetic joint infections, and endocarditis among

others (7–12). In patients with MRSA bacteremia, outcomes vary

greatly depending on the source and hematogenous dissemination

of infection (13). Antibiotic-persistent MRSA bacteremia (PB)

occurs when the infecting isolate is not cleared from the

bloodstream despite appropriate treatment with an antibiotic to

which it exhibits susceptibility in vitro. This paradox suggests that

differential host responses in context of anti-infective therapy

contribute to clinical outcomes in the face of SAB due to a

particular MRSA isolate (14).

Specific host-pathogen interactions influencing outcomes of

MRSA infection have been a topic of increasing research (15, 16).

Yet, the intersection of host and S. aureus mechanisms underlying

antibiotic persistent vs. resolution of MRSA bacteremia (RB)

remain incompletely understood. In recent years, development of

high-throughput genomic, transcriptomic and proteomic platforms

has enabled identification of disease-associated immune

phenotypes (17, 18). In this study, we tested the hypothesis that

peripheral blood transcriptional profiling integrated with proteomic

and genotypic correlates would offer new insights into immune

mechanisms impacting PB vs. RB outcomes in MRSA bacteremia.

There were four explicit goals of the current investigation: 1)

identify transcriptional signatures that differentiate PB vs. RB

outcomes in the setting of gold-standard vancomycin therapy in

the absence of other omics data; 2) discern relationships linking

transcriptomic, IL-10 cytokine levels and genotypic signatures to
02
further enhance differential host response signatures in such PB vs.

RB outcomes; 3) disclose putative molecular and cellular

mechanisms that may impact these differential outcomes; and 4)

evaluate the predictive accuracy of signatures identified using a

separate cohort of patients with PB or RB outcomes. Patients having

PB vs. RB outcomes exhibited significantly differential patterns of

gene co-expression. Specifically, up-regulation of T and B cell

signaling genes were hallmarks of RB outcomes, particularly when

integrated with low IL-10 levels and host DNMT3A A/C genotype

associated with resolution. These findings suggest host

transcriptional responses in context of genotypic regulation may

shape cellular and proteomic host responses necessary for clearing

of MRSA infection in the setting of vancomycin treatment. Such

findings further substantiate the potential for systems immunology

applications to enhance predictive, diagnostic, or prognostic

assessment that could guide medical intervention for improved

clinical outcomes.
2 Materials and methods

2.1 Study cohort

This case-controlled study consisted of 85 SAB patients from

two cohorts. Cohort-1 consisted of 58 patients (28 PB and 30 RB)

propensity matched by sex, race, age, hemodialysis status, type I

diabetes, or presence of an implantable device. Details of clinical

characteristics of study cohort-1 are presented in Table 1. In

general, patients with persistent bacteremia (PB = 28) had higher

rates of endovascular sources of infection (PB = 7 and RB = 2),

metastatic infection (n=33) including metastatic endocarditis (PB =

7 and RB = 2), metastatic vertebral osteomyelitis (PB = 5 and RB =

1), metastatic nonvertebral osteomyelitis (PB = 4 and RB = 2),

longer length of stay (PB = 20.5 days and RB = 13.1 days), and worse

overall outcomes compared to RB (n=30). Cohort-2 was a separate

validation cohort that consisted of 27 patients (13 PB and 14 RB),

where the clinical data and clinical outcomes were blinded to the

investigators. SAB cases were evaluated and consented at enrolment

in the S. aureus Bacteremia Group (SABG) biorepository at Duke

University Medical Centre (DUMC). Cases for the current study

were carefully selected based on the following inclusion criteria:
frontiersin.org
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TABLE 1 Characteristics of the MRSA study cohort: clinical and laboratory parameters.

Characteristic

Cohorts (cohort-1 N = 58)

Persistent
Bacteremia (PB)

(n=28)

Resolving
Bacteremia (RB)

(n=30)

p-value

Demographics

Age (years, mean ± SD) 64.10 ± 13.9 62.64 ± 12.6 0.998

Gender (male/female) 19/9 21/9 0.720

Race

Black 13 14 1.000

Caucasian 15 15 1.000

Unknown 0 1 1.000

Underlying comorbidity

Neoplasm 0 7 0.009

Diabetic 14 18 0.825

Hemodialysis dependent 13 9 0.177

HIV positive 1 0 1.000

Transplant Recipient 1 5 0.060

Injection Drug Use 1 0 1.000

Corticosteroid Use (30 day) 7 7 1.000

Surgery Past 30 Days 5 8 0.276

Endocarditis, previous episodes 1 1 1.000

Site of Acquisition

Hospital-acquired 1 3 0.627

HCA community -acquired 25 24 1.000

Non-HCA community -acquired 2 3 1.000

Source of Bacteremia

Endovascular infection 7 2 0.153

GI/GU infection 4 5 1.000

Respiratory/Lung 2 1 0.612

Skin, soft tissue, joint/bone infection 7 8 1.000

None/Unknown 4 7 0.526

Implantable devices

Heart Valve 1 0 1.000

Joint 3 1 1.000

Orthopedic rod 0 0 NA

Plate and Screw 3 1 1.000

Bone Plate 0 0 NA

Intravascular graft 0 2 0.154

Hemodialysis graft 8 3 0.366

Pacemaker/defibrillator 8 6 0.661

(Continued)
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laboratory confirmed MRSA bacteremia; receipt of broad-spectrum

antibiotic therapy that included vancomycin for suspected

bacteremia due to high prevalence of MRSA; vancomycin

administration based on therapeutic drug level monitoring for all

patients; enrolled in the SABG study between 2007 and 2017 (to

ensure contemporary medical practices). Clinical PB was defined as

any patient having continuous MRSA positive blood cultures for at

least 5 days after vancomycin antibiotic treatment (7). Clinical RB

was defined as any patient having negative blood cultures within 5

days after the initiation of vancomycin therapy. The duration of

therapy varied based on the extent of the infection, but generally

ranged from two to six weeks.

PB and RB subjects were considered eligible for inclusion if they

were successfully matched 1:1 by sex, age, race, hemodialysis status,

diabetes mellitus, and presence of any implantable medical device

using nearest neighbor propensity scores generated from logistic

regression models fit separately across 4 strata (Supplementary

Table S1) (19). Empiric vancomycin therapy was initiated in all

patients in each cohort prior to blood draw for analysis. Peripheral

blood transcriptome profile and cytokine IL-10 levels were obtained

from vancomycin-treated MRSA bacteremia patients collected at

the time of initial diagnosis.
2.2 IL-10 cytokine profiling

We utilized Human 38-plex magnetic cytokine/chemokine kits

(EMD Millipore, HCYTMAG-60K-PX38) per manufacturer

instructions. For quantification serum IL-10, we employed a

Luminex 200TM instrument, and concentrations of each analyte

were computed using Milliplex Analyst software version 4.2 (EMD
Frontiers in Immunology 04
Millipore). The Luminex assay and analysis were conducted by the

UCLA Immune Assessment Core.
2.3 RNA sequencing, mapping,
quantifications, and quality control

Total RNA was isolated with Qiagen RNA Blood kit, and QC

was performed with Nanodrop 8000 and Agilent Bioanalyzer 2100.

Globin RNA was removed with Life Technologies GLOBINCLEAR

(human) kit. Libraries for RNA-seq were prepared with KAPA

Stranded RNA-seq Kit. The workflow consists of mRNA

enrichment, cDNA generation, and end repair to generate blunt

ends, A-tailing, adaptor ligation and PCR amplification. Different

adaptors were used for multiplexing samples in one lane.

Sequencing was performed on Illumina Hiseq3000 for a single

read 50 run. Each sample generated an average of 15 million reads.

Data quality check was done on Illumina SAV. Demultiplexing was

performed with Illumina Bcl2fastq2 v 2.17 program.
2.4 Weighted gene co-expression
analysis (WGCNA)

In our study, we used R package ‘WGCNA’ to construct a gene

co-expression network (20). Before performing the WGCNA, we

used normalization with 12720 genes and selected the top 5000

expressed genes. After filtering out the low expressed genes,

normalized expression data were transformed by using the voom

transformation method (21, 22) using the integrated function in the

WGCNA package. After filtering out the low expressed genes in the
TABLE 1 Continued

Characteristic

Cohorts (cohort-1 N = 58)

Persistent
Bacteremia (PB)

(n=28)

Resolving
Bacteremia (RB)

(n=30)

p-value

Implantable devices

Indwelling intravascular catheter 7 4 0.575

Metastatic infection 19 14 0.317

Metastatic endocarditis 7 2 0.097

Metastatic vertebral osteomyelitis 5 1 0.063

Metastatic nonvertebral osteomyelitis 4 2 0.554

Average length of stay 20.5 days 13.1 days NA

Duration of antibiotics, days (mean ± SD) 51.0 ± 18.5 30.5 ± 17.5 < 0.001

Host DNMT3A genotype

Heterozygous A/C 3 18 <0.001

Homozygous A/A 25 12 0.001
fro
MRSA (Methicillin-Resistant Staphylococcus aureus), PB (Antibiotic-Persistent MRSA bacteremia), RB (Antibiotic-Resolving MRSA bacteremia), HCA, Healthcare-associated; GI/GU,
Gastrointestinal/Genitourinary.
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dataset, the next step ofWGCNA is to build a scale-free network. In a

scale-free network, several nodes, which are called hub nodes, are

highly connected to other nodes in the network (22). In our study, we

use the unsigned co-expression measure, which means that the

positive correlation and negative correlation are equal. We

constructed the gene co-expression network using the following steps.

First, a soft thresholding power (b) to which co-expression

similarity was raised to calculate adjacency. By raising the absolute

value of the correlation to a power b ≥ 1 (soft thresholding), the

weighted gene co-expression network construction emphasizes high

correlations at the expense of low correlations. To determine the best

soft threshold power, scale independence and average connectivity

degree of modules with different power values were calculated by the

gradient method. We selected the power b to ensure that the co-

expression network was a ‘scale-free’ network, which was biologically

close to reality (R2 > 0.9). Moreover, to minimize the effects of noise

and spurious associations, we subsequently constructed the Topology

Overlap Matrix (TOM) from the adjacency matrix and calculated the

corresponding dissimilarity matrix (1-TOM).
2.5 Identification of co-expression modules

In WGCNA, we used the dynamic tree cut method to

hierarchically cluster genes using the dissimilarity matrix (1-

TOM) (23). The minimum size of a module was set as 30 genes,

and modules with high similarity were identified by clustering and

then merged with a height cut-off of 0.98.
2.6 Identification of modules associated
with clinical trait of MRSA infection

The module eigengenes (MEs), which were measured by

principal component analysis (PCA), were generated for each GE

module along with the module identification procedure (24). We

used MEs as a representative of the gene expression profiles in each

GE modules, with logistic regression analysis to identify modules of

highest interest. Next, we performed a module-trait relationship

analysis by calculating the correlation between module eigengenes,

DNMT3A genotype, and clinical outcome of MRSA infection.
2.7 Identification of hub genes in PPI
networks of GE modules

The online database STRING (http://string-db.org) (25) was

used to develop protein-protein interaction (PPI) networks.

Cytoscape software was used to construct a PPI network and

analyze the interactions of the different genes in the gene-

expression (GE) modules (26). Hub genes are defined as genes

with high correlation in PPI network created by using significant

GE modules. Higher connectivity of genes in the PPI network

means the higher probability of these genes as a key modulator in

the pathway. The cytoHubba plug-in was used to screen modules of

the PPI network in Cytoscape to identify the top hub genes in the
Frontiers in Immunology 05
network (27, 28). The PPI network was visualized with Cytoscape

followed by the identification of hub genes with the maximal clique

centrality (MCC) algorithm (29). Gene ontology (GO) analysis was

performed to find out the functional role of significant GE modules

common among all data sets using ShinyGO online servers that are

based on DAVID Gene enrichment analysis tool (30).
2.8 Random forest predictions

Prediction of clinical outcome and calculation of a variable

importance score based on the T cell and B cell hub genes data from

RNA-seq data and IL-10 cytokine was performed using a random

forest machine learning R-package (66). PB and RB status was

predicted based using hub gene expression and IL-10 cytokine levels

in ten-fold cross-validation per iteration. Then, the classifiers were

trained and tested using a 10-fold cross-validation strategy. Receiver

operating characteristics (ROCs) were used to estimate the

sensitivity and specificity of the PB and RB classification method.

The Area Under the ROC Curve (AUC) was calculated for each

ROC to evaluate the accuracy of PB and RB classification.

Subsequently, we used the random forest model to make

predictions on the masked validation data. Briefly, we used

predict function for making predictions on a blinded cohort using

a trained random forest model in R (31).
2.9 Relationship between clinical outcomes
and integrated transcriptomic signatures

To compare DNMT3A genotype, gene expression levels or IL-

10 cytokine level between clusters of patients, binomial logistic

regression was used, with dichotomized cluster membership as the

dependent variable. To compare gene-module expression levels

between clusters, linear regression was used, with gene-module

eigen values as the dependent variable.
3 Results

3.1 Network construction and gene
expression module classification

RNA-seq was performed on whole blood from 28 PB and 30 RB

subjects extensively matched by sex, race, age, hemodialysis status,

Type I diabetes, and presence of an implantable device (Table 1).

WGCNA was used to identify modules of co-expressed genes

associated with the clinical RB or PB phenotype. WCGNA was

executed on the top 5000 expressed genes (Supplementary Table S2)

using soft–thresholding powers ranging from 1 to 20.When the power

value was set at 5, the connectivity between genes in the network

satisfied the scale-free network distribution (Supplementary Figures

S1A, B). Thus, we transformed the co-expression similarity matrix

into an adjacency matrix using a soft-threshold power of 5. A

hierarchical clustering tree identified 58 gene modules (GE) with

correlation greater than 0.98.
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3.2 Identification of gene modules
associated with PB and RB
clinical outcomes

ME values, which represent average expression of each gene

module (GE), were assessed to identify the relationship between GE

modules and PB vs. RBMRSA clinical outcomes. Logistic regression

was used to identify GE modules significantly associated with PB vs.

RB clinical outcome (p<0.05). GE module-2 (ME2) was significantly

upregulated in RB compared to PB (Figure 1A) and comprised 99

genes (Supplementary Figure S2, Supplementary Table S3). To

understand the function of the genes in ME2, pathway

enrichment analysis was performed using the ShinyGO online

tool. The top 10 enriched pathways in ME2 revealed several key

biological processes principally regulating T cell and leukocyte

activation and differentiation, cell-cell adhesion, adaptive immune

response, and immune system processes (Figure 1B, Table 2).

Significantly enriched biological processes are highlighted as an

interactive clustering tree (Figure 1C). Key genes upregulated in

ME2 as a correlate of RB include those involved in T cell signaling,

such as TCF-7, CD5, ZAP70, CD27, LCK, CD3E, IL2RB,

and GATA3.
3.3 Identification of transcriptional
modules associated with host
DNMT3A genotype

Prior studies by our group performed on a subset of patients

included in this study demonstrated that a gain-in-function

mutation in DNA methyltransferase 3A (DNMT3A; heterozygous
Frontiers in Immunology 06
A/C genotype) is significantly associated with reduced risk of PB

(14). In this study of 58 MRSA-infected subjects, there was a

significant association between clinical outcomes and DNMT3A

genotypes (Chi-Square Test, c² = 10.42, p<0.001). Specifically, more

patients with DNMT3A A/A genotype had PB outcomes, while

those with DNMT3A A/C genotype had RB outcomes, indicating a

genotype-specific relationship with clinical outcomes (Table 1).

These findings confirm and extend our previous findings that

DNMT3A genotype is associated with MRSA clinical outcome

(14). Therefore, to assess potential relationships between

DNMT3A and transcriptomic profiles, GE modules were

compared between patients with DNMT3A A/A vs. A/C

genotypes. Logistic regression was used to identify GE modules

significantly associated with host DNMT3A genotype (p<0.001) GE

module ME7, containing 59 genes, was significantly upregulated

in patients with the DNMT3A A/C genotype (Figure 2A).

Comparative expression heatmap of GE module ME7 across all

subjects is shown in Supplementary Figure S3 and Supplementary

Table S4.

To understand the potential function of co-expressed genes in

ME7, we again performed pathway enrichment analysis using

ShinyGO. Pathway enrichment analysis of the ME7 module genes

indicated they function in regulation of B cell receptor signaling

pathway and B cell proliferation, activation, and differentiation

(Figure 2B, Table 3). Graphical representation of enriched

biological processes and pathways in GE modules ME7 are shown

in Figure 2B. Significantly enriched biological processes are

highlighted as an interactive clustering tree using ShinyGO

(Figure 2C). Notably, biological processes for B cell signaling in

ME7 clustered and contain key genes in B cell signaling such as

CD19, CD79A, CD79B, CD22, and FCRLA (Table 3).
B

CA

FIGURE 1

T cell signaling pathways distinguish persistent from resolving MRSA bacteremia. (A) Module trait relationship between ME2 and clinical outcome.
Module eigengene expression distributions for RB or PB. Eigengene expression values for 28 (PB) and 30 (RB) libraries were plotted for ME2 by
outcome of MRSA infection (p<0.05). (B) Functional characteristic analysis of ME2 gene expression. Pathway analysis was performed using the 92
differentially coexpressed ME2 genes associated with clinical outcome of MRSA infection. (C) Enriched biological processes of ME2. Visualization of
the relationship among enriched GO categories using hierarchical clustering tree. Biological processes with shared genes are clustered together. Dot
sizes are proportional to respective increasingly significant p-values. The green boxes highlight key T cell signaling pathways in the enriched gene-
expression module.
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B

CA

FIGURE 2

B cell signaling pathways are upregulated in patients with the DNMT3A A/C genotype. (A) Module trait relationship between ME7 with host DNMT3A
genotype. Module eigengene expression distributions for RB or PB. Eigengene expression values for 28 (PB) and 30 (RB) libraries were plotted for
ME7 by host DNMT3A genotype (p<0.05). (B) Functional characteristic analysis of ME7 gene expression. Pathway analysis was performed using the
59 differentially co-expressed ME7 genes associated with host DNMT3A genotype. (C) Enriched biological processes of ME7. Visualization of the
relationship among enriched GO categories using hierarchical clustering tree. Biological processes with shared genes are clustered together. Dot
sizes are proportional to respective increasingly significant p-values. The green boxes highlight key B cell signaling pathways in the enriched gene-
expression module.
TABLE 2 Pathway enrichment analysis of GE module ME2 (Top ten enriched pathways are shown).

Enrichment
FDR nGenes

Pathway
Genes

Fold
Enrichment Pathway Genes

9.67E-08 12 280 11.49378151
Pos. reg. of T
cell activation

CD6, SIRPG, GATA3, CD5, ZAP70, SLAMF1, CD27, ICOS, LCK,
CARD11, CD3E, HLA-DPB1

9.11E-07 11 281 10.49847184
T
cell differentiation

TCF7, GATA3, ZAP70, CD27, RORC, CAMK4, METTL3, GPR183, LCK,
CARD11, CD3E

2.36E-07 12 307 10.48292776

Pos. reg. of
leukocyte cell-
cell adhesion

CD6, SIRPG, GATA3, CD5, ZAP70, SLAMF1, CD27, ICOS, LCK,
CARD11, CD3E, HLA-DPB1

1.28E-09 16 412 10.4150771
Reg. of T
cell activation

CD6, TCF7, SIRPG, GATA3, CD5, ZAP70, SLAMF1, SIT1, CD27,
CAMK4, ICOS, METTL3, LCK, CARD11, CD3E, HLA-DPB1

1.88E-08 14 363 10.34334792

Pos. reg. of
lymphocyte
activation

CD6, SIRPG, GATA3, CD5, ZAP70, SLAMF1, PCID2, CD27, ICOS,
GPR183, LCK, CARD11, CD3E, HLA-DPB1

7.72E-09 15 406 9.908432338
Lymphocyte
differentiation

ITM2A, TCF7, GATA3, ZAP70, SLAMF1, PCID2, DOCK10, CD27,
RORC, CAMK4, METTL3, GPR183, LCK, CARD11, CD3E

8.35E-10 18 541 8.923083614

Reg. of
lymphocyte
activation

CD6, TCF7, SIRPG, GATA3, CD5, ZAP70, SLAMF1, PCID2, SIT1, CD27,
CAMK4, ICOS, METTL3, GPR183, LCK, CARD11, CD3E, HLA-DPB1

2.96E-10 19 574 8.877310924 T cell activation

CD6, TCF7, SIRPG, GATA3, CD5, ZAP70, SLAMF1, SIT1, CD27,
CAMK4, ICOS, METTL3, NLRC3, GPR183, LCK, CARD11, CD3E,
HLA-DPB1

4.44E-08 15 469 8.57744889
Mononuclear
cell differentiation

ITM2A, TCF7, GATA3, ZAP70, SLAMF1, PCID2, DOCK10, CD27,
RORC, CAMK4, METTL3, GPR183, LCK, CARD11, CD3E

2.19E-09 19 678 7.515599514
Reg. of
cell activation

CD6, TXK, TCF7, SIRPG, GATA3, CD5, ZAP70, SLAMF1, PCID2, SIT1,
CD27, CAMK4, ICOS, METTL3, GPR183, LCK, CARD11, CD3E,
HLA-DPB1
F
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3.4 Identification of hub genes associated
with PB and RB clinical outcomes

To identify the genes most predominant in the function of each

GE module, we generated PPI networks using the STRING database

and CytoScape platform (32–34). We identified the hub genes

within GE modules ME2 and ME7, which were significantly

associated with PB or RB. For GE module ME2, a PPI network

was created based on ME2 co-expressed genes (PPI enrichment p-

value<1.0e-16) resulting in 89 nodes and 134 edges (Supplementary

Figure S4). This strategy corroborated enrichment of genes involved

in T cell function. The MCC algorithm identified the top 20 hub
Frontiers in Immunology 08
genes involved in T cell signaling and immunologically related

pathways (Figure 3A, Supplementary Table S5).

For ME7, which was upregulated in patients carrying the

DNMT3A A/C genotype, a PPI network was created based on 59

co-expressed genes. The identified network contained 52 nodes and 81

edges (PPI enrichment p-value<1.0e-16) (Supplementary Figure S5).

The MCC method identified 20 hub genes with a high degree of

connectivity and function in B cell signaling pathways (Figure 3B,

Supplementary Table S6). Fourteen of the 20 genes involved in T cell

function were significantly upregulated in RB compared to PB (p<0.05)

(Figure 4). Seven of the 20 B cell hub genes were significantly

upregulated in RB compared to PB outcomes (p<0.05) (Figure 5).
BA

FIGURE 3

Protein-protein interaction networks identify key T and B cell immune response hub genes connected to MRSA outcome. Identification of the top
20 hub genes in ME2 (T-cell, panel (A) and ME7 (B cell, panel (B) enriched GE modules with a higher degree of connectivity. Hub genes were
identified from the gene-gene interaction network using maximal clique centrality (MCC) algorithm. Edges represent the gene-gene associations.
The red nodes represent genes with a high MCC sores (highly essential), uclie the yellow node represent genes with a low MCC score (less essential)
by using Cytoscape software: cytoHubba plug−in.
TABLE 3 Pathway enrichment analysis of GE module ME7 (Top ten enriched pathways are shown).

Enrichment
FDR nGenes

Pathway
Genes

Fold
Enrichment Pathway Genes

1.34E-06 5 28 83.07580175
Reg. of B cell receptor
signaling pathway CD22, STAP1, BLK, FCRL3, CD19

1.70E-09 8 67 55.54919281 B cell receptor signaling pathway
CD79B, CD22, STAP1, CD79A, BLK, MS4A1,
FCRL3, CD19

7.11E-05 5 69 33.71191955
Reg. of antigen receptor-mediated
signaling pathway CD22, STAP1, BLK, FCRL3, CD19

1.23E-06 7 102 31.92717087 B cell proliferation
CD22, CD79A, BLK, MS4A1, TNFRSF13C,
FCRL3, CD19

0.000880279 4 67 27.77459641 Reg. of B cell proliferation CD22, BLK, TNFRSF13C, FCRL3

0.000773527 5 130 17.89324961 Reg. of B cell activation CD22, BLK, TNFRSF13C, FCRL3, CD19

0.001073037 5 149 15.61156006 B cell differentiation CD79B, CD79A, MS4A1, FCRL3, CD19

1.61E-06 9 271 15.45025981 B cell activation
CD79B, CD22, CD79A, BLK, MS4A1, TNFRSF13C,
FCRL3, FCRL1, CD19

7.11E-05 8 326 11.4165519
Antigen receptor-mediated
signaling pathway

CD79B, CD22, STAP1, CD79A, BLK, MS4A1,
FCRL3, CD19

0.000803056 7 357 9.12204882 Lymphocyte proliferation
CD22, CD79A, BLK, MS4A1, TNFRSF13C,
FCRL3, CD19
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3.5 Integration of transcriptomic, IL-10
cytokine and genotypic correlates
of outcomes

The cytokine IL-10 is associated as being significantly elevated in

the serum of patients with poor clinical outcome in SAB (35, 36). We

previously extended this knowledge, showing that PB outcome is

associated with the DNM3TA A/A genotype and correlated with

significantly higher IL-10 levels as compared to RB outcome (14). To

better understand the mechanism linking IL-10 levels to outcomes in

MRSA bacteremia, we determined the relationship between identified

hub genes in the B and T cell enriched signaling modules (ME7 and

ME2 respectively), IL-10 cytokine levels and DNMT3A genotype

(Figure 6). Based on previous findings (37), we divided IL-10 levels

into 4 categories: 0.01 pg/mL (category 0), 1-20 pg/mL (category 1), 21-

40 pg/mL (category 2) and >41 pg/mL (category 3) (Supplementary
Frontiers in Immunology 09
Table S7). Patients stratified into 3 clusters: Cluster 1 (n=32), Cluster 2

(n=15) and Cluster 3 (n=11) (Figure 6A). Binomial logistic regression

was used to determine the relationship for membership of each cluster

with DNMT3A genotype, gene expression and IL-10 cytokine level.

Cluster-1 patients were associated with DNMT3A A/A genotype

(p=0.016, Odds Ratio [OR] = 1.41, 95% confidence interval [CI] =

1.09-1.82) and expressed high IL-10 levels (p=0.181, OR = 1.09, CI =

0.96-1.22). Cluster-2 contained patients with both RB (60%) and PB

(40%) outcomes. Patients in cluster-2 had lower expression of genes

from the B cell enriched module compared to RB-enriched cluster-3

(p=0.382x10-8, linear regression coefficient = -5.544), but similar

expression of genes from the T cell enriched module (p=0.0359,

linear regression coefficient = 1.557), suggesting that RB outcome is

most likely in patients with higher expression of both the B and T cell

genes. Patients in Cluster-3 had the highest expression of genes from

the T cell and B cell enriched GE modules and were significantly
FIGURE 4

T cell signaling hub genes are upregulated in resolving vs persisting MRSA bacteremia. Boxplots of gene expression levels of the top 20 T cell
signaling hub genes from ME2 in RB (n=30) vs PB (n=28) MRSA infection. Expression values are given as counts per million (CPM). p-values are
based on one-sided paired t-tests.
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associated with RB outcome (p=0.027, OR = 1.26, CI = 1.03-1.53).

Cluster-3 patients were also increased in the DNMT3A A/C genotype

(p=0.036, OR = 1.25, CI = 1.02-1.54) and had lower IL-10 cytokine

level (p=0.083, OR = 0.92, CI = 0.084-1.01). Conversely, patients in

cluster-1 exhibited the lowest expression of genes from the T cell and B

cell enriched GE modules and were significantly associated with PB

outcome (p=0.011, OR = 1.37, CI = 1.07-1.75) (Figure 6).
3.6 Prediction of PB vs. RB outcomes in an
independent MRSA bacteremia
patient cohort

To evaluate the predictive capacity of T and B cell hub gene

expression and IL-10 cytokine levels for predicting outcome of
Frontiers in Immunology 10
MRSA bacteremia, we built a random forest classification model

based on these 41 variables. The accuracy of this model to correctly

identify clinical PB vs. RB outcomes was then compared in a distinct

cohort of patients (Cohort-2). The classification accuracy of the

model, evaluated by 10-fold cross-validation, was 0.812 (Figure 7A).

The final model included the top 20 performing variables

(Figure 7B). When this model was applied to a validation cohort

(n=27), it had an 85% accuracy in predicting PB outcomes and a

30% accuracy in predicting RB outcomes (Supplementary Table S8).

To support these findings, we compared levels of the variables

included in the final model between PB and RB in the validation

cohort (Figure 7C). This independent cohort analysis confirmed

our findings that upregulation of specific B- and T cell-related genes

in context of reduced IL-10 cytokine level are characteristic of

RB outcome.
FIGURE 5

Expression of B cell signaling hub genes are downregulated in persistent MRSA bacteremia. Boxplots of gene expression levels of top 20 B cell
signaling hub genes from ME7 in two clinical outcome of RB (n=30) or PB (n=28) MRSA infection. Expression values are given as counts per million
(CPM). p-values are based on one-sided paired t-tests.
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4 Discussion

In the present study, we examined the transcriptome, DNMT3A

genotype and IL-10 proteome of whole peripheral blood to

differentiate immune response pathways associated with RB

versus PB outcomes in clinical MRSA bacteremia. Our central

findings show upregulation of T and B cell immune response

genes early during MRSA infection is associated with decreased

incidence of PB in the setting of appropriate vancomycin therapy.

Furthermore, transcriptional profiles correlated with lower IL-10

cytokine level and heterozygous DNMT3A A/C genotype, both of

which have been associated with reduced risk of PB outcome in

human MRSA bacteremia (14, 38).

Significant differences in transcriptional profiles were identified

in PB vs. RB patients. Analysis of GE modules revealed two

particularly interesting relationships: 1) T cell networks associated

with PB vs. RB outcome; and 2) B cell networks associated with

DNMT3A genotype and IL-10 cytokine level. Overall, GE modules

showed significantly higher co-expression signatures of these T cell

and B cell gene networks in RB as compared to PB patients. Specific
Frontiers in Immunology 11
hub genes within these networks included T cell activation and

differentiation (Figure 1), and B cell receptor signaling, activation

and proliferation (Figure 2). For example, upregulated T cell genes

CD3E, CD6, CD5, and CD27, members of the T cell signaling

protein family, were upregulated in RB compared to PB

(Figures 3A, 4). The surface proteins CD5 and CD6 modulate T

cell activation in response to pathogen associated molecular

patterns (PAMPs), including those found in MRSA (39, 40).

Interestingly, CD27 differentiates naïve from memory T cell

subsets, with greater expression on naïve T cells (41). The finding

that CD27 expression is upregulated in RB patients is consistent

with the notion that activation of naïve T cells is as important as

that of memory T cells in controlling MRSA bacteremia. Thus, T

cell receptor-mediated responses appear to play a critical role in the

modulation of T cell activation, expansion, and maintenance of

long-term memory important in protecting against persistent

MRSA bacteremia.

Consistent with this premise, the T cell chemoattractant CXCR3

was significantly upregulated in RB as compared to PB patients.

CXCR3 is important for trafficking and recruitment of Th1 and
B

A

FIGURE 6

Enrichment of T cell and B cell hub genes, DNMT3A A/C genotype and low IL-10 cytokine concentration converge in resolving MRSA bacteremia.
(A) Heatmap of hub genes enriched in T cell and B cell signaling (Y-axis) and Cluster number (X-axis). Clustering was performed using
Clustering_method =“ward.D2”, Clustering_distance_cols =“euclidean”. Cytokine data: IL-10 was divided into 4 groups according to plasma cytokine
concentration. 0.01pg/ml: denoted as 0 category, 1-20 pg/ml: denoted as 1 category, 21-40 pg/ml: denoted as 2 category, > 41 pg/ml: denoted as 3
category. Host genotype data: Two categories A/C and A/A genotype in DNMT3A (DNA methyltransferase-3A), A/C heterozygous genotype in the
DNMT3A correlating with RB outcome of MRSA infection. MRSA Outcome: RB (resolvers) & PB (persistent). (B) Two clinical outcomes in methicillin-
resistant SAB. Schematic representation of composite immune signatures in RB vs. PB endotypes of MRSA bacteremia.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1373553
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Parmar et al. 10.3389/fimmu.2024.1373553
Th17 polarized CD4+ T cells in response to infection. This finding is

substantiated by the fact that a mixed Th1/Th17 immune response

is known to mediate clearance of MRSA infection (42, 43). CXCR3

also recruits cytotoxic CD8+ T cells that contribute to clearance of

infection, potentially including host cells harboring intracellular S.

aureus (44). It should be noted that higher expression of genes does

not necessarily imply greater inflammatory response. For example,

many T and B regulatory cell genes are involved in modulation of

immune response. Among these, IL-10 expression is characteristic

of regulatory (Treg) and B10 (regulatory B or Breg) cell subsets. The

fact that IL-10 levels were reduced in RB outcomes supports the

concept that effector T and B cells are likely prioritized over Treg

and Breg for effective clearance of MRSA from the bloodstream.
Frontiers in Immunology 12
Thus, taken together, the current findings support the hypothesis

that appropriate expression and polarization of T and B cell

responses are integral to resolution of MRSA bacteremia in the

setting of vancomycin therapy.

While Th17 and Th1 T cell polarization appear important to RB

outcomes, other T cell polarization pathways likely contribute as

well. For instance, the transcription factors GATA3 and TCF7 were

also identified as top hub genes in the T cell module (Figures 3A, 4).

GATA3 promotes Th2 polarization and humoral immunity which

protects against exotoxin-mediated complications of MRSA

bacteremia (45–47). On the other hand, Th2 pathways may also

modulate hyper-inflammatory immune responses to MRSA that

may be detrimental to host clearance of infection (48). TCF-7 is a
B

C

A

FIGURE 7

Persistent and resolving outcomes of MRSA bacteremia are predicted from hub genes and IL-10 cytokine data using random forest. (A) Random
Forest Model for clinical outcome classification curves of receiver operating characteristics (ROC) for a random forest model using a training set
cohort-1 58 subjects of MRSA infected (train set) the data. The mean AUC over 1000 random data splits is shown. (B) Feature importance for the
random forest algorithm based on mean decrease in accuracy. The figure illustrates the feature importance values computed using the Random
Forest algorithm and based on mean decrease in accuracy. The y-axis represents the importance scores, with higher values indicating greater
importance for model accuracy. The green line indicates the chosen cutoff for feature importance, beyond which features are considered significant
for inclusion in the model. (C) Top 20 classifiers in the validation cohort for predicting clinical PB vs. RB outcomes. The boxplots show the top 20
classifiers consisting of 19 T and B cell hub genes and IL-10 cytokine levels in the validation cohort. Expression values are given as counts per million
(CPM) and cytokine level is in pg/mL. p-values are based on one-sided, paired t-tests.
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transcriptional activator with critical roles in the development,

differentiation, and durability of CD4+ and CD8+ T cells (49–53).

This relationship with CD8+ T cells is of special interest, as

persistent MRSA may exploit intracellular invasion to evade

immune responses (54). Therefore, it is plausible that TCF-7

upregulation contributes to immune responses that guard against

persistence strategies by MRSA. Taken together, these findings

suggest that specific pathways of activation and polarization of

CD4+ and CD8+ T cells overall or subsets thereof are important

contributors to RB outcomes.

The above results indicate crucial hallmarks of effector T cell

transcriptomes in RB outcomes. By comparison, upregulation of B

cell networks was identified as contributing to RB vs. PB outcomes

in context of DNMT3A genotype and IL-10 levels. Our previous

work identified a gain-in-function polymorphism in the human

DNMT3A gene as associated with a reduced risk of PB outcomes

(14). The heterozygous A/C genotype in the DNMT3A gene was

associated with lower IL-10 cytokine level and RB outcomes as

compared to the A/A genotype which correlated with PB. Hence, in

the current study we sought to identify transcriptional networks

corresponding to distinct DNMT3A genotypes using GE module

analysis. Expression of GE module ME7 was significantly enriched

for genes involved in B cell signaling and upregulated in patients

with the DNMT3A A/C genotype correlating with RB (14). The top

20 hub genes in B cell function associated with the DNMT3A A/C

genotype included: CD1C, CD19, CD22, CD72, CD79A, CD79B,

FCER2, and MS4A1 (Figures 3B, 5). Notably, CD19, CD22, CD72,

CD79A, CD79B have been previously implicated in B cell-mediated

protection against invasive S. aureus infection (55). Other genes

upregulated in this module include members of the B cell signaling

protein family, which function in B cell receptor activation and

regulation of antigen receptor-mediated signaling (Figures 3B, 5). In

contrast, FCRL2, FCRLA and NT5E are modulators of B cell

response. Together, the fact that these genes were upregulated in

context of the DNMT3A A/C genotype suggests epigenotypic

regulation of DNA (methylation) modulates protective B cell

responses in MRSA bacteremia.

Increased production of IL-10 has been shown in a variety of

experimental models and in humans to correlate with worsened

outcomes in S. aureus infection (56). Various investigators have also

linked DNMT3A change-in-function polymorphisms to impaired T

and B cell immune responses via dysregulated cytokine production

(57–60).

The current results also suggest novel mechanistic insights

underpinning this relationship. For example, the DNMT3A A/C

genotype was associated with increased co-expression signatures of

T and B cell gene networks. This correlation plausibly aligns to the

A/A genotype favoring host susceptibility to PB by IL-10

modulation of protective immune responses (Figure 6). Further

supporting this concept, our Random Forest classification model of

MRSA clinical outcome using differentially expressed T and B cell

hub genes and IL-10 cytokine level had good classification

performance (AUC = 0.81). Notably, a subgroup of patients with

RB clinical outcome carried the DNMT3A A/C genotype, expressed

similar levels of genes in the T cell enriched module, yet had

reduced expression of genes in the B cell enriched module.
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Conversely, a subgroup of DNMT3A A/A positive patients with

PB expressed T cell but not B cell module genes. Therefore, the

combined DNMT3A genotype, IL-10 level, and T and B cell hub

gene signature is a more reliable predictor of RB/PB outcome

(Figure 7). The fact that the predictive value of the composite

model was affirmed in the validation cohort strengthens the

potential to accurately predict RB vs. PB outcomes based on an

integration of T and B cell hub gene signatures and IL-10

levels (Figure 7).

Beyond insights into MRSA immune evasion strategies,

functions corresponding to identified T and B cell signaling

pathway genes associated with PB and RB outcome in relation to

IL-10 cytokine level and host DNMT3A genotype may also guide

therapeutic development or strategies to address persistence.

Several lines of evidence suggest that blocking IL-10 signaling

facilitates clearance of viral infection and prevents tumor growth

in animal models (61, 62). Likewise, IL-10 blockade increased

clearance and abrogated hematogenous dissemination of C.

neoformans to the brain implying this strategy has therapeutic

potential in treatment of fungal infections (63). Thus, it is

tempting to speculate that IL-10 blockade in patients carrying the

DNMT3A A/A genotype would promote Th1/Th17-mediated

protective immune responses and resolution of MRSA

bacteremia. However, IL-10 can also act as a pro-inflammatory

cytokine, particularly with respect to CD8+ T cell function in certain

bacterial infections (64–67). Thus, the specific role and relationship

of IL-10 in context of mixed Th17/Th1 responses believed essential

for protection against S. aureus bacteremia remain to be explored.

It is important to consider the limitations of this study. The

current investigation was designed to detect patterns of host

immune response signals, networks and pathways that differ in

PB vs. RB outcomes in MRSA bacteremia. While not designed to

determine immunologic mechanisms, T and B cell signatures

reported in this study were obtained and validated using three

patient cohorts from a single center. Further validation with an

independent cohort is an ensuing goal. Despite this limitation, using

this carefully matched case-controlled study cohort, we not only

identified associated transcriptional signatures of protective T and B

cell gene networks, but also confirmed previous reports linking the

DNM3TA A/C genotype and lower IL-10 cytokine level infection

with PB (Figure 6). Future investigation to determine if these

signatures exist in MRSA bacteremia patients from other

geographic populations will be informative. The present studies

derive from patients treated with vancomycin, the gold-standard

therapy for MRSA bacteremia. One notable aspect is that not every

patient with PB underwent full source control, which may

contribute factors influencing the clinical outcome of PB. We are

lacking specific clinical information for Minimum inhibitory

concentration (MIC) values, time to therapeutic vancomycin

levels, and potential missed doses in this study. However, all

patients with suspected bacterial sepsis received broad spectrum

antibiotic therapy that typically included vancomycin for MRSA

due to high prevalence of MRSA at our institution. For this reason,

there were likely no delays in vancomycin therapy. Although we are

unable to confirm whether the groups were similar in terms of time

to achievement of therapeutic vancomycin levels, we believe this is
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unlikely because vancomycin was administered based on

therapeutic drug monitoring for all patients and all patients in

each group were already on vancomycin when blood was drawn for

transcriptomic analysis. The duration of therapy varied based on

the extent of the infection, but generally ranged from two to six

weeks. Further studies are also warranted to mechanistically explore

whether the transcriptomic signatures associated with RB versus PB

in patients treated with vancomycin holds true for other anti-

infective therapies used in MRSA bacteremia. Lastly, DNMT3A

encodes a DNA methyltransferase that plays a crucial role in

epigenetic modifications which influencing gene expression

patterns. The relationship between DNMT3A, IL-10 and adaptive

immune responses involves intricate regulatory mechanisms within

the immune system. Thus, altered DNMT3A activity may influence

the expression of T and B cell genes involved in immune regulation,

potentially impacting the production of multiple cytokines in

response to MRSA (57, 68).

In summary, current findings underscore the importance of

lymphocyte-mediated immunity for resolution of MRSA infection.

The protective response was associated with genes corresponding to

T and B cell functions in context of established IL-10 responses and

genotypic relationships in host defense against S. aureus. The fact

that patients with RB predominantly carried the DMN3TA A/C

genotype is consistent with our prior findings that DNA

methylation and epigenetic status governs integrated regulation of

T and B cell function, and IL-10 expression shaping PB vs. RB

outcomes. Finally, a major strength of this study was validation of

key findings from training cohorts using an independent patient

cohort analyzed in a masked manner. The implications for future

studies include validating the predictive value of omics classification

of PB or RB risks in larger cohorts of patients with MRSA

bacteremia from diverse populations across clinical endotypes,

exploring T and B cell signaling networks eliciting protective

immunity to MRSA, and understanding antibiotic-specific

relationships. S. aureus has a remarkable ability to evade host

innate and adaptive immune defenses (69, 70), thus these insights

may shed new light on the dynamic interplay between immune

response and organism persistence strategies. The rapid onset of

lymphocyte gene expression profiles linked to dysregulated host

immunity in PB clinical outcomes makes this gene signature a

prime target in the search for the regulatory origins of T cell and B

cell dysfunction in MRSA infection (Figure 6). Translation of this

knowledge holds promise for guiding development of novel

diagnostic methods, innovative anti-infectives, vaccines and

immunotherapeutic to address the challenge of persistence in S.

aureus and perhaps other infections as well.
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