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ABSTRACT 

 

Decoding the molecular-scale determinants of functional properties at aqueous interfaces 

 

by 

 

Dennis C. Robinson Brown 

 

Current water purification membrane technologies cannot readily treat the high 

concentration and multi-component produced water (PW) from oil and gas operations. This 

stems, in part, from membrane fouling induced a diverse array of organic and inorganic 

solutes. At present, the design of antifouling membrane materials relies on macroscale 

heuristics such as ensuring the smoothness, charge neutrality, and hydrophilicity of the 

membrane surface. For instance, hydrophilic coatings such as polyethylene oxide (PEO)-

based hydrogels dramatically increase resistance to natural organic matter. This anti-fouling 

property is hypothesized to originate from the formation of a bound water layer at the 

membrane surface that resists adsorption of hydrophobic molecules; however, the molecular 

basis for this antifouling property is not well understood. 

 This work leverages detailed atomistic molecular simulations to elucidate the 

molecular scale determinants of water properties at aqueous interfaces. First, we implement a 

synergistic computational-experimental approach to unveil the persistent connection between 

water’s collective molecular structure and equilibrium water dynamics in aqueous solutions. 

Then, high-throughput molecular dynamics simulations and a statistical learning workflow 



 ix 

reveal persistent connections between water structure and functional thermophysical 

properties in aqueous environments. Further, unsupervised learning (principal component 

analysis) reveals hidden signatures of water structuring on small (<1 nm) and large length 

scales. Finally, free energetic calculations detail foulant interactions with a model antifouling 

PEO brush surface. Further analysis demonstrates that foulant-surface interactions are driven 

by a combination of direct interaction (energetic) and solution restructuring (entropic) 

contributions.    
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Chapter 1: Introduction 

 Water is a profoundly important constituent of all manner of naturally occurring and 

engineered systems. The near ubiquitous role of water in nature owes partially due to its 

unique molecular properties. Most well-known amongst these properties is expansion of 

water upon freezing due to the existence of a density maximum at 4°C. Water also exhibits a 

several other anomalous trends in thermophysical properties such as the self-diffusivity, 

compressibility, etc., particularly upon supercooling. Much of this strange behavior can be 

attributed to water’s unique collective network structure. Specifically, unlike any other room 

temperature liquid, water adopts a tetrahedral structure driven by the tendency for each water 

molecule to participate in four hydrogen bonds (two accepting and two donating). This 

structural motif has profound implications on both naturally abundant (e.g., proteins) and 

man-made systems. 

 Dating back to the 1970’s(1–4), a large body of research has been dedicated to 

determining the precise modes and mechanisms through which water mediates structure and 

function in the world around us. The earliest approaches to studying aqueous systems—and 

fluids more broadly—leveraged relatively simple thermodynamic equations of state. These 

works employed theoretical approaches such as Scaled Particle Theory (SPT)(1) to describe 

fluid behavior in the vicinity of hard particles. Using these methods, the molecular scale 

details were, by necessity, neglected in favor of assessing qualitative trends in 

thermophysical properties. Modern, simulation-based approaches are required to resolve the 

effect of atomic-level details on water behavior.  
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  Monte Carlo (MC) and Molecular Dynamics (MD) are common simulation methods 

for studying liquid state systems with molecular detail. In brief, MC methods are 

probabilistic in nature and directly sample properties in fluids to estimate the ensemble 

average. However, purely MC-based approaches to molecular simulation have been largely 

supplanted by MD simulation methods, in part, due to widely available simulation 

environments and force field parameters. MD simulations directly integrate Newton’s Second 

Law to deterministically (or quasi-deterministically) produce a time-resolved trajectory of all 

particles in a system. Unlike MCMC, MD yield system dynamics for the calculation of 

equilibrium (e.g., water self-diffusivity) or nonequilibrium (e.g., pressure-driven flux) 

dynamic quantities. However, MC procedures are vital to determining free energetic 

processes such as hydration, binding, and folding processes in proteins. Hence, modern 

approaches of molecular simulation—including the studies detailed in this thesis—embed 

MC procedures within MD workflows. 

 The application of these advanced simulation methods yielded accurate predictions 

and molecular-scale insights on the atomic-level determinants of water properties(5–9). 

Beyond these fundamental areas of inquiry, water plays a prominent role in biophysics(10–

18), polymer physics(19–26), and—unsurprisingly—water purification membrane 

sciences(27–29, 29–33). For instance, shifts in water structure and dynamics near 

biomacromolecules is suggestive of the underlying mechanisms undergirding protein-protein 

interactions(34), protein-ligand interactions(35–38), protein aggregation(39, 40), protein 

folding(14, 14, 41, 42), and many other phenomena. Though fundamental investigations of 

water have long pervaded biophysical research, many fields have yet to fully adopt this 

approach to understanding their systems. Beyond biological systems, water’s molecular 
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behavior has deep implications on the function of engineered aqueous systems. Recent efforts 

leveraging water’s molecular scale properties in conjunction with free energy calculation(35, 

43, 44) and statistical learning(44–46) methods have shed new light on the modes and 

mechanisms through which water mediates properties at engineered heterogeneous 

interfaces. 

 Water purification membranes used in ultrafiltration, nanofiltration (NF), and reverse 

osmosis (RO) operations are prime examples of highly heterogeneous engineered materials. 

The molecular behavior of water is perhaps most germane to RO and NF applications which 

remove small molecule and ionic foulants. Further, current generation water purification 

membranes are ill-equipped to treat high concentration and multicomponent waste streams 

like Produced Water (PW) from oil and gas operations(28, 47). Current production scale 

commercial design strategies for membrane materials rely on three heuristic, macroscale 

design rules(28): (1) mitigate surface roughness, (2) reduce membrane surface charge, and 

(3) maximize surface hydrophilicity. Surface roughness induces accumulation of foulants on 

the micron scale(48). On the other hand, surface charge and hydrophilicity control surface 

fouling at the nanoscale. The presence of a net surface charge tends to drive unfavorable 

condensation of ionic species commonly found in PW(28), but the inclusion of net zero 

charge functionalities (zwitterions) has been demonstrated to improve membrane antifouling 

capacity(49–51). Enhancing membrane hydrophilicity is hypothesized to lead to the 

development of a layer bound water at the membrane surface and hence improve rejection of 

hydrophobic contaminants (e.g., small organic molecules and emulsified oils)(28). However, 

the precise molecular mechanisms underlying this antifouling property is not yet fully 

understood. By directly characterizing water’s molecular properties in relevant systems, the 
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membranes community can discover molecular-scale design rules for next-generation 

purification membranes. 

 We aim to advance the fundamental understanding of the molecular-scale 

determinants of functional properties at aqueous interfaces by leveraging detailed molecular 

simulation in synergy with our experimental collaborators. In pursuit of this goal, we 

hypothesize a profound connection between structure, dynamics, and solvation 

thermodynamics at molecular time and length scales. In particular, we center the 

recurrent—and often predictive—connections between water structure-dynamics and 

structure-thermodynamics. 

 We provide a brief outline of the following five chapters. In Chapter 2, we leverage 

atomistic MD simulations to interpret the water dynamics underlying spectroscopic quantities 

from Overhauser Dynamic Nuclear Polarization (ODNP) measurements1 of glycerol-water 

mixtures. In doing so, we provide a demonstration of the structure-dynamics-

thermodynamics hypothesis. Chapter 3 details a finer investigation of the water structure-

dynamics connection in the membrane-relevant system: PEO-water solutions. We highlight 

the limitations of a continuum mechanics approach, the Stokes-Einstein relationship, in 

predicting water dynamics trends with increasing PEO concentration in a synergistic study 

with Pulsed-Field Gradient NMR (PFG-NMR)2 and ODNP. In Chapter 4, we delve deeper 

into the molecular structure of the hydration shell by interrogating two components of 

hydration waters: waters hydrogen bonded to a cosolvent (“bound” waters) and non-solute 

bound waters (“wrap” waters). We use molecularly detailed structural characterizations from 

 
1 All ODNP experiments were performed by Thomas Webber. 
2 All PFG-NMR experiments were performed by Pete Richardson and Josh Moon. 
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MD simulations to further understand spectroscopic signatures from THz Calorimetry 

experiments3. In Chapter 5, we synthesize simulation-derived structural information from 

the previous three chapters (Chapters 2-4) to quantitatively predict water dynamics and 

solvation thermodynamics in a wide array of cosolvent chemistries and conditions (varying 

concentration and temperature). Using a simple principal component analysis (PCA), we 

uncover hidden structural signatures of water structure at small (<1 nm) and large (>1 nm) 

length scales. Chapter 6 summarizes our efforts to develop molecular-scale intuition for 

interactions between model anti-fouling surfaces and a wide array of PW-relevant uncharged 

small molecules. We close the chapter by utilizing the PCA components from Chapter 5 to 

better understand the molecular structural trends underlying these solute-surface interactions. 

In Chapter 7, we provide commentary on the preceding chapters and offer extensions to the 

current work for predicting hydration water properties at chemically and topologically 

heterogeneous surfaces—namely, protein-water interfaces. 
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Chapter 2: Computation of Overhauser Dynamic 
Nuclear Polarization parameters and their 
correlation with water dynamics, structure, and 
thermodynamics 
 
Dennis C. Robinson Brown, Thomas R. Webber, Thomas M. Casey, John M. Franck, M. 
Scott Shell, Songi Han. Computation of Overhauser Dynamic Nuclear Polarization processes 
reveals fundamental correlation between water dynamics, structure, and solvent 
restructuring entropy. In preparation 

2.1 Introduction 
Local hydropathies near molecular interfaces to water (e.g., proteins and polymers) modulate 

the surface activity for solute binding(1–5), among many other properties(2, 6–19). Locally 

hydrophobic regions of proteins are key to facilitating folding and inter-protein interactions, 

and are often characteristic of active sites(1, 16, 17, 20). Experimentally characterizing the 

structural, dynamical, and thermodynamic properties of water in fully hydrated environments 

at the molecular scale is challenging. Several experimental methods can probe the behavior of 

hydration layer waters,(6, 16, 19, 21, 22) but experimental measurements are often limited to 

detecting average water properties of the entire ensemble(23, 24). There is extensive literature 

on molecular dynamics (MD) simulation studies that probe hydration dynamics of different 

solution systems with heterogeneous water-protein interfaces(7–9, 11, 16, 17, 21, 25–33), but 

relatively few directly compare and validate with experimental techniques,(16, 17, 21, 22) in 

part, due to the difficulty of resolving local water dynamics experimentally. Undoubtedly, it is 

critical to leverage atomistic MD simulations synergistically with experiments to 

comprehensively and robustly characterize the heterogeneous hydration environments on soft 

material and biomolecular surfaces(1, 3, 4, 9, 17, 20). 
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Advanced techniques such as quasi-elastic neutron scattering (QENS)(17, 34, 35), 

Overhauser Dynamic Nuclear Polarization (ODNP)(16, 21, 36), Terahertz (THz) spectroscopy  

and pump-probe infrared (IR) spectroscopy(41) can directly yield surface-specific water 

properties. Among those, only ODNP is sensitive to translational hydration water properties 

around localized sites or surfaces that are fully surrounded by bulk water in biological solution-

state environments. Fundamentally, ODNP is a magnetic resonance technique that quantifies 

electron-1H cross-relaxation by measuring (i) the enhancement of 1H NMR signals induced by 

dynamic nuclear polarization (DNP) via the transfer of polarization from an unpaired electron 

of a nitroxide spin probe to the 1H nucleus of water, and (ii) the longitudinal spin lattice 

relaxation time, T1, reporting on all 1H relaxation mechanisms induced by the dipolar coupling 

between the 1H nuclear spin and the electron spin of the nearby spin probe. The so derived 

electron-1H cross-relaxivity at a magnetic field of 0.35 Tesla and electron Larmor frequency 

of 9.8 GHz is sensitive to translational movement of hydration waters near the electron spin 

probe on instantaneous timescales ranging from about 10 picoseconds to nanoseconds and 

within 8 to 15 angstroms of nitroxide-based spin probes that can be tethered to specific surface 

sites.  

ODNP is sensitive to chemically or topologically distinct local environments in highly 

heterogeneous surfaces immersed in bulk water, demonstrating that the diversity in these 

environments is reflected in a diversity of local water dynamics and structure. A recent 

synergistic ODNP-MD simulation study of sites with varying hydropathy on a CheY protein 

surface displayed a positive correlation between site-specific hydrophobicity and translation 

water dynamics43. This study demonstrated a connection between the ODNP spectroscopic 

quantities and computed thermodynamic properties of water. However, no study has directedly 
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computed ODNP parameters for the purpose of deriving hydration water dynamical 

information and coupling to molecular dynamical, structural, and thermodynamic properties 

of hydration water near surfaces or solutes. 

 In the present work, we leverage molecular dynamics simulations to characterize the 

dynamical, structural, and thermodynamic properties of water in water-glycerol mixtures with 

increasing glycerol content [Figure 2.1]. Water-glycerol mixtures allow us to probe the 

complex interrelationship between water properties at the molecular scale while varying 

solution viscosity by a known quantity. Moreover, glycerol is of fundamental interest due to 

its ubiquity in biological studies for its role in cryopreservation of proteins and has been 

recently shown to alter not only the dynamical, but also structural and thermodynamic 

properties of water(43). Regardless of the system, the study of molecular determinants of 

surface hydration requires dual experimental and computational insight. Experimental 

techniques like ODNP offer valuable, but incomplete, insight on the molecular scale properties 

of hydration waters. Synergistic fully-atomistic simulations can aide in elucidating the 

molecular details that are often inaccessible to experimental methods. 

In this study, we perform atomistic MD simulations of glycerol-water to test the ability 

of MD simulations to reproduce ODNP spectroscopic quantities and to connect ODNP 

spectroscopic and MD-derived translational, rotational, and hydrogen bonding dynamical 

quantities. We furthermore exploit the atomistic information content of MD simulations to 

quantify the relationship between hydration water dynamics, structure, and thermodynamics 

in glycerol-water mixtures across a wide range of compositions. 
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2.2. Molecular Dynamics Methods4 
We perform molecular dynamics simulations using the OPC 4-site water model(44), the 

Blieck-Chelli (BC) model for glycerol(45–47) and a 4-Hydroxy-TEMPO nitroxide spin probe. 

Both the OPC water model and the BC model for glycerol accurately reproduce the diffusivities 

of pure water(44) and pure glycerol(45, 47) under ambient conditions (298.15 K and 1-bar). 

For the spin probe, its partial charges are obtained using the AMBER18 Antechamber 

package(48) informed by quantum chemical calculations using the Gaussian 16 software(49). 

All other inter- and intramolecular parameters derive from the second-generation generalized 

Amber forcefield (GAFF2)(50, 51). The results of this parametrization scheme yield similar 

parameters to those obtained in previous publications(52). All Coulombic interactions are 

modeled with the particle-mesh Ewald summation scheme (PME)(53).  

We simulate glycerol-water-spin probe systems with glycerol mole fractions (𝑥!"#$) of 

0, 0.01, 0.033, 0.05, 0.075, 0.1, 0.15, 0.2 and 0.3 using the GPU-optimized OpenMM molecular 

simulation software(54). We first energy minimize each system, then equilibrate in the NPT 

ensemble using a Langevin thermostat(54) paired with a Monte Carlo barostat(54) at 290 K 

and 1 atm. Following equilibration, the NPT run continues for 250 ns with system 

configurations saved every 10 ns. Each saved configuration serves as the starting point for an 

independent 1 nanosecond NVE simulation for dynamic properties, with system coordinates 

saved every 0.1 ps. To calculate hydration water dynamics timescales and ODNP spectroscopic 

 
4 ODNP experimental methods will be detailed in the upcoming publication from which this chapter was 
derived. 
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quantities, we compute 95% confidence intervals by bootstrapping the results obtained from 

20 independent MD simulations. 

We characterize the effect of glycerol on solvation thermodynamics via the solvation 

free energy Δ𝐺%&"' of methane—an ideal small hydrophobic solute—in glycerol-water. To 

estimate Δ𝐺%&"' for this series of mixtures, we implement an expanded ensemble simulation 

procedure in which we gradually scale intermolecular interaction parameters between the 

methane molecule and the glycerol-water mixture. We smoothly scale Lennard Jones (LJ) and 

Columbic interaction parameters via a scalar parameter 𝜆 from 𝜆 = 0 (non-interacting, or ideal 

gas molecule) [panels (1) and (3) in Figure 2.11(a)] to 1 (fully interacting methane) [panels 

(2) and (4) in Figure 2.11(a)]. To estimate the Gibbs free energy of solvation Δ𝐺%&"' [Figure 

2.11(b)], we then apply the multistate Bennett acceptance ratio (MBAR) method distributed 

via the pymbar(55) Python library. 

 

Figure 2.1 Snapshots of simulation boxes for a range of glycerol-water compositions. Here, OPC water 
molecules are represented as VDW spheres and glycerol is shown in green (licorice representation). 4-OH-
TEMPO is not visible amidst the densely packed glycerol mixture. 
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2.3 Theory 

2.3.1 Computing Spectroscopic Quantities 
Dipolar autocorrelation functions. ODNP is an NMR technique that quantifies pairwise 

magnetic dipolar cross-relaxation between an electron spin on a free radical spin probe 

molecule (here of 4-Hydroxy-TEMPO) and the nuclear spin of the water proton. The spin-spin 

dipolar coupling energy between the radical electron and a water proton that are dynamically 

diffusing in solution state is governed by the following semi-classical Hamiltonian(56) 

𝐻)*𝑟(𝑡). = /0 (
√*
𝐼2+𝑆2+ −

,
(√*

𝐼2-𝑆2. −
,
(√*

𝐼2.𝑆2-5𝐹(
(0)*𝒓(𝑡).8 𝑐2 + /0−

,
(
𝐼2+𝑆2. −

,
(
𝐼2.𝑆2+5𝐹(

(,)*𝒓(𝑡). + 0,
(
𝐼2+𝑆2- +

,
(
𝐼2-𝑆2+5𝐹(

(,)*𝒓(𝑡).∗8 𝑐2 + /
,
(
𝐼2.𝑆2.𝐹(

(()*𝒓(𝑡). +

,
(
𝐼2.𝑆2-𝐹(

(()*𝒓(𝑡).∗8 	𝑐2,  (2.1) 

where 𝐹(
(4)*𝒓(𝑡). (and 𝐹(

(4)*𝒓(𝑡).∗) are spherical harmonic functions (and their complex 

conjugates) [Section 2.6.1] that are dependent on the displacement vector between the electron 

spin and the proton nuclear spin, 𝒓(𝑡).  𝐼25 and 𝑆25 are the quantum mechanical spin operators 

for the proton nuclear spin and electron spin, respectively. The constant 𝑐2 = 𝜇0ℏ𝛾6𝛾7/4𝜋 

appears in Equation 2.1 where 𝜇0 = 4𝜋 × 10-8 9
:!
	, 𝛾7 = 4.26 × 108 ;+

<
	, and 𝛾6	 =

𝛾7/1.52 × 10-> are the vacuum permeability, gyromagnetic ratio of the proton spin, and the 

gyromagnetic ratio of the electron spin, respectively. 

 Using this semi-classical framework, we compute the equilibrium translational 

diffusion of water molecules by constructing the time-autocorrelation functions (ACFs), 

𝐶?@9A
(4) (𝑡), that depend purely on the relative positions of water hydrogen and the unpaired 

electron of a spin probe via the classical spherical harmonic functions included in Equation 

2.1 
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 𝐶?@9A
(4) (𝑡) = ∑ 𝐹(

(4)∗ 0𝑟?"-;#,5(𝑡)5 𝐹(
(4) 0�⃗�?"-;#,5(0)55    

 (2.2) 

where 𝑟?"-;#,5(𝑡) is the displacement vector between the water hydrogen 𝑖 and the oxygen 

radical of the spin probe and 𝑚 = 0, 1, 2 the order, indicating the number of spin quanta 

undergoing flip-flop transition of the coupled 𝐼-𝑆 spin system. The 𝐶?@9A
(4) (𝑡) functions decay 

with time as water molecules diffuse from their initial position relative to the spin probe, just 

as the dipolar coupling between the proton and electron spin weakens with increased spatial 

separation. The 𝐶?@9A
(4) (𝑡) functions are complex-valued, but the complex part is negligible for 

isotropic systems(57) and thus ignored in this study [more detailed description in Section 

2.6.1]. Further, the system isotropy ensures that 𝐶?@9A
(4) (𝑡) = 𝐶?@9A

(C) (𝑡) for all 𝑛 and 𝑚. Hence, 

we refer to only a single ACF for computing ODNP properties, 𝐶?@9A(𝑡), for the remainder of 

the discussion. For the present work, we find that all measured  𝐶?@9A(𝑡) are well-described 

by a tri-exponential fit: 

𝐶?@9A,D5E(𝑡) = 𝑎,𝑒-E/G$ + 𝑎(𝑒-E/G! + 𝑎>𝑒-E/G%  (2.3) 

 where 𝜏, > 𝜏( > 𝜏> and the coefficients, 𝑎5 	(𝑖 = 1,2,3), sum to unity. Note, that the fitting 

parameters are independently determined for each glycerol-water mixture. 

 

Spectral density function. With analytical models for 𝐶?@9A(𝑡) at hand [Equation 2.3], we 

next derive the spectral density function, 𝐽(𝜔), required to compute ODNP spectroscopic 

quantities for a given glycerol-water mixture. Specifically, we define the three spectral 

densities via the real part of the Fourier transform of 𝐶?@9A,D5E(𝑡) that contains three decay 

terms, and hence three � values. 
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𝐽(𝜔; {𝜏5}5H,,(,>) = 𝑅𝑒ℱ[𝐶?@9A,D5E(𝑡)\ = 𝑅𝑒ℱ[∑ 𝑎5𝑒-E/G&>
5H, \ = ∑ I&G&

,.(JG&)!
>
5H,  

 (2.4) 

Here, the three terms in the sum account for the contribution of long (𝜏,), intermediate (𝜏() 

and short (𝜏>) timescales to local water diffusion. In the low-frequency regime (𝜔 ≪ 𝜔6), the 

spectral densities are more affected by the long timescale contribution (collective motion). On 

the other hand, the short timescale contribution (instantaneous motion) dominates the spectral 

densities at high frequency (𝜔 ≫ 𝜔7). To computationally derive the spectroscopic quantities 

measured by ODNP, we determine the transition rate via the amplitude of the spectral density, 

𝐽(𝜔), for an electron spin-proton spin (e-n) transition that occurs at a given electron spin 

resonance (ESR) frequency, 𝜔. Alternatively, 𝐽(𝜔) may be predicted using a theoretical 

continuum model(58)—the force-free hard sphere (FFHS) model—for water diffusion relative 

to the spin probe’s radical electron. While previous work has demonstrated that the FFHS 

approach yields experimental water dynamics in qualitative agreement with simulation 

results(21, 59), the approach presented in Equation 2.4 more directly determines the spectral 

density from e-n dipolar correlations with molecular detail and in dynamic systems that cannot 

be modeled by the FFHS model. 

 Figure 2.2(a) illustrates the dynamic spin-spin dipolar interaction between the unpaired 

electron of 4-OH-TEMPO and water protons underpinning the calculation of 𝐶?@9A,D5E(𝑡). In 

Figure 2.2(b), we depict 𝐶?@9A(𝑡) for a representative model system, a water-glycerol mixture 

with 𝑥!"#$ = 0.1. We find that 𝐶?@9A(𝑡) and its model fit, 𝐶?@9A,D5E(𝑡), are nearly 

indistinguishable with 𝑅( = 0.99. In Table 2.1, we summarize the tri-exponential fitting 

parameters for each glycerol-water mixture. In Figure 2.2(c), we apply Equation 2.4 to 
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compute the spectral density function 𝐽(𝜔) from 𝐶?@9A(𝑡) for the same mixture with 𝑥!"#$ =

0.1. Here, the amplitude of the spectral density values at frequencies 𝜔7 and 𝜔6 

[𝐽(𝜔7 = 14.8	𝑀𝐻𝑧) and 𝐽(𝜔6 = 9.8	𝐺𝐻𝑧)] are sensitive to translational dynamics on 

nanosecond and picosecond timescales, respectively.  

 

ODNP spectroscopic probes. From the amplitudes of the spectral density function, we directly 

compute several spectroscopic quantities derived from ODNP experiments. One such quantity 

is the cross-relaxivity 𝑘K—the rate of transitions for the mutual flip of electron and proton 

spins in opposite directions—that strongly depends on the translational mobility of water on 

instantaneous timescales and within 8-15 angstroms of the spin probe(16, 36, 58). As defined 

in prior work(58, 60, 61), 𝑘K originates from the zero and double quantum transition of the 

dipolar coupled electron and proton spin pairs (expressed in the Hamiltonian of Equation 2.1), 

as given by 

𝑘K =
$'
!

,(L()
[	6𝐽(𝜔% + 𝜔7) − 𝐽(𝜔6 − 𝜔7)]    (2.5) 

where 𝐶6M, 𝜔6 = 𝛾6𝐵0, and  𝜔7 = 𝛾7𝐵0 are the molar spin label concentration [Table S2.2], 

Larmor precession frequency of the electron spin, and Larmor precession frequency of the 

proton spin, respectively. The ODNP experiments are conducted at a static magnetic field of 

𝐵0 = 0.35	𝑇, which sets 𝜔6 = 9.8	𝐺𝐻𝑧 and 𝜔7 = 14.8	𝑀𝐻𝑧. For the purposes of the present 

study, we determine the 𝑘K values from the simulation-derived spectral densities [Equation 

2.4].  

 To provide an illustration, we depict the theoretical FFHS-derived cross-relaxivity, 

𝑘KNNOP, at 𝐵0 = 0.35	𝑇 as a function of the correlation time in Figure 2.2(d). The 𝑘KNNOP	values 



 

 
 

18 

exhibit non-monotonic behavior with increasing translational correlation time, τQ, of hydration 

waters. Specifically, 𝑘KNNOP increases with correlation times up to τQ ≈ 100ps. Upon further 

retardation of translational dynamics, 𝑘KRR;6 decreases monotonically with increasing τQ. 

Notably, this maximum in 𝑘KRR;6 is found at τQ that is 3 times greater than the expected 

correlation time, τQ ≈ 33ps, for pure water at standard temperature (298.15 K) and pressure (1 

bar) conditions (STP)(22). The precise location of the peak in 𝑘KRR;6 strongly depends on the 

Larmor precession frequencies by way of the applied magnetic field strength, 𝐵0. 

 In systems that exhibit sufficiently slow water diffusion [𝐷;!?,"&$I" <
,
>
𝐷;!?(@𝑆𝑇𝑃)], 

such as water hydrating catalyst support surfaces, hydrophilic materials interfaces(42), or 

protein surfaces and interiors(16), 𝑘K approximately linearly correlates with the diffusivity of 

hydration waters. However, for systems spanning a wide range of translational dynamics that 

includes systems that diffuse faster than pure water [𝐷;!?,"&$I" ≈ 𝐷;!?(@𝑆𝑇𝑃)] or slower by 

up to a factor of three compared to pure water [𝐷;!?,"&$I" <
,
>
𝐷;!?(@𝑆𝑇𝑃)] as found in bulk 

solutions of water and viologens, as in water-glycerol mixtures studied in the present work. 

Another ODNP spectroscopic quantity of interest is the proton self-relaxivity 𝑘S—the 

rate at which water proton polarization returns to thermal equilibrium modulated by the 

electron spin dipolar coupled to the proton nuclear spin, as follows: 

𝑘S =
$'
!

,(L()
[	𝐽(𝜔% − 𝜔7) + 3𝐽(𝜔7) + 6𝐽(𝜔6 + 𝜔7)]   (2.6) 

Unlike 𝑘K, 𝑘S is the rate of transition for all proton nuclear spin flip events induced by dipolar 

coupling to the electron spins, not only the mutual proton-nuclear spin flips, and hence depends 

on the spectral density at the sum and difference of the electron and proton Larmor frequency 

and the proton Larmor frequency alone. The amplitude of the spectral density at the sum and 
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difference frequencies, 𝜔6 ± 𝜔7, is close to simply the electron spin Larmor frequency, 𝜔6	, 

and is sensitive to instantaneous translational dynamics correlation times of sub-nanoseconds, 

while the amplitude of the spectral density at the nuclear Larmor frequency, 𝜔7 , is sensitive to 

longer 1-10-ns timescales for the slower, collective, motion of water. Because both 𝑘K and 𝑘S 

contain the pre-factor $'
!

,(L()
 the coupling factor that is defined by the ratio of 𝑘K and 𝑘S 

eliminates the dependence on 𝐶6M. 

𝜉 = T*
T+
= 	*U(J(.J,)-U(J(-J,)

U(J(-J,).>U(J,).*U(J(.J,)
     (2.7) 

In experimental systems with difficult-to-quantify spin label concentration, the elimination of 

the pre-factor in Equation 2.7 facilitates direct comparison between the experimental and MD-

derived 𝜉.  Conveniently, 𝜉 is readily obtained from ODNP measurements of 1H NMR signal 

enhancements and 1H T1 spin lattice relaxation times(36, 62, 63). As with 𝑘S, 𝜉 depends on 

both instantaneous and collective hydration water dynamics(22). When assuming simple 

diffusion as reflected in the FFHS model to determine the form of the spectral density 

function(22, 58), the value of 𝜉RR;6 monotonically depends on the characteristic correlation 

time for the translational diffusion dynamics of hydration water, simplifying its analysis, and 

as depicted in Figure 2.2(d).  
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Figure 2.2: Schematic of ODNP spectroscopic quantities calculation from classical MD trajectories. (a) The 
snapshot shows 4-OH-TEMPO in a 0.1 mole fraction glycerol mixture at 290K with bulk water represented in 
VMD as a medium and the hydration waters within 3.5 angstroms of the spin probe in VDW sphere representation. 
Glycerol molecules are omitted for clarity. The diagram to the right of the snapshot illustrates the ODNP 
mechanism for the nearest water molecule to the spin probe at some time t. (b) The ODNP time autocorrelation 
function 𝐶-./0(𝑡) at a glycerol mole fraction of 0.1 (red line) is fit to a tri-exponential model [Equation 2.3] 
(black line) as described in the text. (c) The real part of the Fourier transforms of 𝐶-./0,234(𝑡) gives spectral 
density function 𝐽(𝜔). Subsequently, 𝐽(𝜔) values at radical electron 𝐽(𝜔5) and proton Larmor frequencies 𝐽(𝜔6) 
are identified on the plot by the blue and green vertical lines, respectively. Approximate functional forms of 
ODNP spectroscopic quantities 𝑘7 and 𝜉 are in blue and green text, respectively. (d) Based on the Force-Free 
Hard Sphere model(58), we depict the expected trends in 𝑘7/𝑘7,89:; (blue line) and 𝜉/𝜉89:; (green line). Here, 
𝑘7,89:; and 𝜉89:; are the expected bulk values of 𝑘7 and 𝜉  in pure STP water as defined by Franck et al.(22) 

Proton spin-lattice relaxation times. We computationally extract the water proton spin-lattice 

relaxation times 𝑇,0[0], which depend on both the system-average translational and rotational 

dynamics of water. We directly compute 𝑇,0[0] according to the relationship presented by 

Bloembergen, Purcell and Pound(64) which assumes that effects of J-coupling, spin-rotation, 

and chemical shift anisotropy of the 1H NMR signals are negligible, and that 𝑇, only depends 
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on the system-average dynamics of water that is strongly modulated by the viscosity in a 

glycerol-water mixture(64). Because the primary relaxation mechanism involved in 𝑇,0[0] is 

dipolar coupling between water protons modulated by water dynamics, we again compute the 

time autocorrelation functions, this time between the water protons 𝐶<$<
(4)(𝑡) =

∑ 𝐹(
(4)∗ 0𝑟;#-;#,5(𝑡)5 𝐹(

(4) 0𝑟;#-;# , 𝑖(0)55 . The right-hand-side of the equation is identical 

in every way to Equation 2.2, but with the proton-proton displacement vector 𝑟;#-;# 

replacing �⃗�?"-;#. To efficiently compute 𝐶<$<
(4)(𝑡), we only consider displacement 

vectors  𝑟;#-;#,5 between a randomly chosen “probe” water proton and all other nearby water 

protons that the probe water proton encounters. Just as with 𝐶?@9A(𝑡), the 𝐶<$<
(4)(𝑡) decays 

monotonically as water protons diffuse away from the “probe” proton. As in Equation 2.4, we 

fit Equation 2.6 to a multiexponential model and analytically Fourier transform the 

multiexponential 𝐶<$<
(4)(𝑡) functions to obtain the spectral density functions, as follows: 

𝐾(4)(𝜔) = 𝑅𝑒ℱq𝐶<$<
(4)(𝑡)r = 𝑅𝑒ℱ q∑ 𝑏5

(4)𝑒-E/V&
(>)(

5H, r = ∑ W&
(>)V&

(>)

,.XJV&
(>)Y

!
(
5H, 	 

 (2.8) 

where 𝑏,
(4), 𝜏, and 𝜏( (with 𝜏, > 𝜏() are fit parameters and 𝑏(

(4) = 1 − 𝑏,
(4). We apply a bi-

exponential model here because 𝐶<$<
(4)(𝑡) decays much faster than 𝐶?@9A(𝑡), allowing us to fit 

𝐶<$<
(4)(𝑡) with 𝑅( > 0.95 for the entire range of glycerol concentrations with only two 

exponentials, as shown in Table S2.2. Given these analytical spectral densities, we directly 

compute the longitudinal relaxation time using a formula from Bloembergen and 

coworkers(64)  
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Further, we physically interpret the translational and rotational contributions to 𝑇,0[0] via the 

decomposition 𝑇,0-,[0] = (𝑇,0-,)5CEcd + (𝑇,0-,)5CEdI. Here, (𝑇,0-,[0])5CEcd and (𝑇,0-,[0])5CEdI 

refer to the intermolecular and intramolecular contributions to 𝑇,0-,[0], respectively. The 

intramolecular contribution to the relaxation rate, (𝑇,0-,[0])5CEdI, can be ignored when using a 

rigid water model (such as the OPC 4-site model used in this study) that depends only on the 

system-average rotational dynamics of water given that the distance between the two hydrogen 

atoms is fixed. For the intermolecular contribution to (𝑇,0-,[0])5CEcd between water, the 

spherical harmonic functions 𝐹(
(4)∗ 0𝑟;#-;#,5(𝑡)5 strictly depend on the displacement between 

water protons on separate water molecules, and not the re-orientation of the displacement 

vector between protons on the same water molecules. As such, 𝐶<$<
(4)(𝑡) reduces to the same 

functional form as 𝐶?@9A(𝑡) with water protons acting as probes (such as the electron in a 

nitroxide spin probe) for the surrounding water protons. Because water protons are 

indistinguishable from each other, the resulting correlation functions are manifestly system-

average properties of water. The corresponding intermolecular relaxation rate, (𝑇,0-,[0])5CEcd, 

calculated from Equations 2.8 and 2.9 is hence sensitive to the system-average translational 

dynamics of water.  
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2.3.2 Additional probes of water dynamics 
Translational dynamics. We characterize the translational dynamics of water by computing the 

so-called survival probability 𝐶%ed'5'I"(𝑡)(32, 59) ACF that quantifies the timescale for waters 

to remain near the spin probe: 

𝐶%ed'5'I"(𝑡) =
∑ 6&(0)6&(E)
@#
&A$
∑ 6&(0)!
@#
&A$

       

 (2.10) 

where 𝑁g gives the number of water molecules in the simulation box, and 𝑆5(𝑡) an indicator 

function that is 1 if the molecule 𝑖 is inside a cutoff radius of 8-Å from the unpaired electron 

of the spin probe—approximately the width of the first two hydration shells around the 

radical oxygen. We apply absorbing boundary conditions such that only the water molecules 

that remain continuously within the cutoff radius from the initial time 𝑡 = 0  to time 𝑡 

contribute to 𝐶%ed'5'I"(𝑡). We find that neither choosing smaller cutoff radii (for instance, the 

first hydration shell near 5-Å) nor removing the absorbing boundary conditions qualitatively 

affect the trends in any ACF described here [Figure 2.9].  

Rotational dynamics. To quantify the rotational dynamics of hydration waters, we compute the 

orientational ACF (OACFs)(26–28, 30, 65) that measures a characteristic time for water 

reorientation: 

𝐶?:LR
(") (𝑡) = ,

9#
∑ 𝑃"(𝑢v⃗ 5(0) ⋅ 𝑢hvvv⃗ (𝑡))	
9#
5H,      

 (2.11) 

where 𝑁g gives number of waters within the 8-Å cutoff radius at initial time 𝑡 = 0, 𝑃"(⋅) is the 

𝑙-th Legendre polynomial function, and 𝑢v⃗ 5(𝑡) is the unit vector of water dipole 𝑖. For this 
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present work, we only consider the second order OACF 𝐶?:LR
(()  due to its relevance to 

longitudinal spin-relaxation rates.  

Hydrogen bond dynamics. To probe the dynamics of water-water hydrogen bonding, we 

compute the hydrogen bond survival probability(29) 

𝐶;i(𝑡) =
,

9BC
∑ ℎ5(0)ℎ5(𝑡)
9BC
5H,       

 (2.12) 

where 𝑁;i is the number of water-water hydrogen bonds containing waters within the cutoff 

radius at initial time 𝑡 = 0, and ℎ5(𝑡) is a function that assumes a value of 1 if hydrogen bond 

𝑖 is intact at time 𝑡. We define hydrogen bonds via the widely-used geometric criteria of Luzar 

and Chandler(66), namely, distance and angular cutoff values of 3.5 angstroms and 120 

degrees, respectively [see the inset schematic in Figure 2.4(c)]. 

Estimating relaxation time constants. To quantify the shifts in water’s equilibrium dynamics 

with varying 𝑥!"#$, we compute several relaxation time constants: the ODNP derived 

translational diffusion correlation time (𝜏?@9A), survival correlation time due to translational 

diffusion (𝜏%ed'5'I"), rotational diffusion correlation time (𝜏?:LR), and hydrogen bond 

correlation time (𝜏;i). More specifically, we estimate these time constants by integrating the 

multiexponential fits to all ACFs detailed above 

𝜏5 = ∫ 𝐶5(𝑡)𝑑𝑡
j
EH0           (2.13) 

where 𝑖 = 𝑂𝐷𝑁𝑃, 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙, 𝑂𝐴𝐶𝐹,	or 𝐻𝐵. 
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2.4 Results 

2.4.1 Direct comparison of ODNP and MD-derived spectroscopic quantities 
To directly probe the effect of hydration water retardation on the ODNP parameters (including 

𝑇,0[0]), we systematically increase the solution viscosity by adding glycerol to water at mole 

percentages ranging from 𝑥!"#$ = 0 to 0.3. In Figure 2.3(a), we highlight the composition-

dependent amplitude of the spectral density, 𝐽(𝜔), at the Larmor precession frequencies of 

protons (𝜔7 = 𝛾7𝐵0 ≈ 14.8	𝑀𝐻𝑧) and unpaired electrons (𝜔6 = 𝛾6𝐵0 ≈ 9.8	𝐺𝐻𝑧) at 𝐵0 =

0.35	𝑇. The increase in 𝐽(𝜔7) from pure water to 𝑥!"#$ = 0.3 reflects on the increase in the 

relaxation rate of the proton spins, which according to Equation 2.7, leads to a monotonic 

decay of the coupling factor, as depicted in Figure 2.3(b). The inset of Figure 2.3(a) shows 

the approximate spectral density contribution to the cross-relaxation rate of 5𝐽(𝜔6). The 

approximation stems from the limit of 𝜔6 ≫ 𝜔7 and hence—by Equation 2.5—𝑘K goes as 

k$'
!

,(L()
𝐽(𝜔6). 5𝐽(𝜔6) shows the same trend as the direct computation of 𝑘K [Figure 2.3(c)], 

increasing up to a glycerol concentration of 𝑥!"#$ = 0.1 and decreasing at 𝑥!"#$ > 0.1.  

The MD simulation-derived relative coupling factor 𝜉d = 𝜉/𝜉ledc exhibits a similar 

monotonic decrease as the experimental coupling factor with increasing glycerol concentration 

throughout the whole range of the glycerol-water mixture [Figure 2.3(b)]. Here, we normalize 

𝜉 by the coupling factor of pure water to better compare directly to the experimental results. 

Though simulation systematically underestimates the experimental 𝜉d values by 5 to 60%, we 

observe qualitative agreement between both measures of 𝜉d for 𝑥!"#$ < 0.30. Notably, the 95% 

confidence interval (CI) broadens with increasing glycerol concentration. At 𝑥!"#$ = 0.3, MD 

simulations underestimate 𝜉d by 60%, with the experimental value lying outside the 95% 
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confidence interval (CI) of the MD-computed value. While ODNP measurements measure e-n 

dipolar correlations averaged over 1014 spin probes, our simulated systems contain a single 

spin probe molecule. Hence, we observe inherent noise in 𝐶?@9A(𝑡) due to limited sampling 

of the dipolar interactions between the spin probe and the water nuclei. Increasing the 

concentration of glycerol exacerbates this sampling limitation due a systematic decrease in the 

average number of hydration waters. Increasing the NVE simulation length computes 

𝐶?@9A(𝑡) with improved resolution, which we assess by performing 20 additional independent 

3-ns long (versus the original 1-ns) simulations at 𝑥!"#$ = 0.30. While increasing NVE 

simulation time slightly decreases the width of the 95% CI on 𝜉d (approximately by 6%), the 

simulations continue to systematically underestimate 𝜉d at 𝑥!"#$ = 0.3. This suggests that the 

disagreement between experiment and simulation 𝜉d does not solely stem from under sampling 

of long timescale collective water motions.  

Instead, the quantitative disagreement between the experimental and simulation results 

may stem in large part from the use of classical, fixed-charge molecular models. For instance, 

such MD models can only approximate interactions between water and 4-OH-TEMPO, while 

in reality the electron spin is delocalized between the N and O of the nitroxide radical, and the 

water hydrogen may polarize differently compared to bulk water, resulting in different O-H 

bond length and H-O-H angle. Further, OPC is a rigid water model and hence does not contain 

bonded (O-H) or angular (∠H-O-H) interaction terms. In particular, the inability to capture O-

H vibrations with rigid water molecules likely affects the measurement of proton-nitroxide pair 

distances and thus the resulting spectroscopic quantities. Applying flexible(67, 68), or even 

polarizable(69, 70), water models may rectify some of the discrepancy between ODNP 

experiment and MD simulations. 
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Additionally, 𝜉d is sensitive to the motion of bound waters—such as those buried within 

soft materials—on longer timescales (100-ps to 10-ns).  While we do not expect these longer 

timescale dynamics to dramatically impact hydration water dynamics in glycerol-water 

mixtures, the magnitude of the slow time constant 𝜏, exceeds 100-ps for 𝑥!"#$ = 0.3. As the 

timescales for diffusive and viscous relaxation approach the nanosecond regime, accurately 

quantifying spectroscopic quantities becomes more difficult for simulations. For glycerol-

water, we find that precise quantification of 𝜏,  becomes challenging for 𝑥!"#$ > 0.15 [Figure 

2.8]. 

In the inset of Figure 2.3(a), we highlight the spectral density 𝐽(𝜔6) at the Larmor 

precession frequency of the electron spin (𝜔6 = 𝛾6𝐵0 ≈ 9.8	𝐺𝐻𝑧) with increasing glycerol 

concentration. Notably, 𝐽(𝜔6) is non-monotonic, increasing up to a glycerol concentration of 

𝑥!"#$ = 0.1, then decreasing at higher concentrations [Figure 2.3(a) inset]. Accordingly, the 

computed 𝑘K values in Figure 2.3(c) exhibit the same non-monotonic trend as 𝐽(𝜔6) with 

increasing glycerol concentration. Notably, both the experimental and computed values of the 

relative cross-relaxivity 𝑘K,d = 𝑘K/𝑘K,ledc exhibit the non-monotonic trends with increasing 

viscosity, with 𝑘K,d values initially increasing up to a critical glycerol concentration (𝑥!"#$ ≈

0.10) and then decreasing thereafter [Figure 2.3(c)]. In the glycerol-water system with 

compositions from 𝑥!"#$ = 0 to 0.1, the experimental and MD-derived 𝑘K,d are in near 

quantitative agreement. Here, simulation underestimates 𝑘K,d, but the 95% CI of the MD-

derived 𝑘K,d values bracket the experimental results. For glycerol concentrations beyond 

𝑥!"#$ = 0.1, simulations again underestimate the 𝑘K,d,  values, with the experimental 𝑘K,d 
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consistently lying above the 95%-CI of the simulation-derived values. We further note a 

dramatic increase in the relative error in computing 𝑘K,d at high concentrations.  

We attribute the underestimation of 𝑘K,d to the inability of classical MD simulations to 

reproduce spectral density amplitudes at high frequency (𝜔 ≫ 𝜔7). We also note that the 

agreement between ODNP and MD results is much improved for 𝜉d. We believe that this 

improved agreement results from the dominant influence of spectral density amplitudes at the 

lower frequencies [e.g., 𝐽(𝜔7) ≫ 𝐽(𝜔6)] in the denominator of 𝜉 [Equation 2.5]. The 

agreement of MD-derived values of both 𝜉d and 𝑘K,d with experiments for concentrations 

between 𝑥!"#$ = 0 and 0.1 demonstrates that atomistic MD simulations accurately model 

trends in the translational dynamics of hydration waters on timescales of tens to hundreds of 

picoseconds.  

We also verify the ability of MD simulations to reproduce spectroscopic measures of 

glycerol-water bulk dynamics via computation of 𝑇,0[0]. The relative proton longitudinal 

relaxation time, (𝑇,0[0])d = 𝑇,0[0]/𝑇,0[0]ledc, exhibits a similar monotonic decrease as 𝜉d 

with increasing glycerol content [Figure 2.3(d)]. Further, we observe a striking, near-

quantitative agreement between experimental and MD-derived (𝑇,0[0])d for 𝑥!"#$ < 0.10. 

The MD-derived (𝑇,0[0])d data systematically underestimate the experimental value for 

𝑥!"#$ > 0.075 with the experimental data falling outside of the 95% CI of the MD-calculated 

values. For 𝑥!"#$ ≥ 0.1, the computed values underestimate the experimental results by 

between 20 and 50%. In combination with the 𝜉d and 𝑘K,d results, the (𝑇,0[0])d results 

suggest that classical atomistic MD simulations can reliably capture the low-frequency 
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contributions to spectroscopic quantities, but less well the high-frequency contribution from 

instantaneous motion reflected in quantities such as k�. 

 
Figure 2.3: ODNP spectroscopic quantities measured experimentally and computed from classical MD 
simulations. (a) ODNP spectral density functions as a function of glycerol concentration where lighter-colored 
lines correspond to higher glycerol content with the Larmor precession frequency of the proton and radical 
electron indicated by the green and blue vertical lines, respectively. Comparing experimentally and 
computationally determined (b) coupling factor 𝜉, (c) cross-relaxivity 𝑘7, and (d) 𝑇DE[0] as a function of glycerol 
content. ODNP experiments and MD simulations yield spectroscopic quantities with similar trends with 
increasing glycerol concentration.  

2.4.2 Connecting other hydration water dynamics probes to ODNP measurements 
By effectively modeling spectroscopic quantities, we can directly connect ODNP 

measurements to the microscopic dynamics and structural properties of water. MD simulations 

also enable computation of other modes of hydration water dynamics that cannot be measured 

experimentally. For instance, the coupling of these various modes of water dynamics have been 

studied extensively in liquid water(31, 71–73). One such example is the extended jump model 

of Laage and Hynes(26, 27), describing the process of water reorientation as dependent 
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simultaneously on the breaking/forming of hydrogen bonds precipitated by large rotational 

jumps while being rate-limited by translational motion. In this work, we measure characteristic 

time scales for hydration water translation, rotation, and hydrogen bonding in the glycerol-

water mixtures, as summarized in Table S2.3, using computed autocorrelation functions 

(ACFs): 𝐶?@9A
(0) (𝑡), 𝐶%ed'5'I"(𝑡), 𝐶?:LR

(() (𝑡) and 𝐶;i(𝑡). Further, we explicitly characterize 

hydration water dynamics via the different relaxation time constants for ODNP-derived 

diffusion (𝜏?@9A), translational diffusion underlying survival probability (𝜏%ed'5'I"), rotational 

diffusion (𝜏?:LR), and hydrogen bonding (𝜏;i).  

To complement ODNP-derived measurements of water dynamics, we probe the 

translational mobility of hydration waters local to the spin probe via the survival probability 

ACF, 𝐶%ed'5'I"(𝑡) [see Section 2.3.2]. Figure 2.4(a) depicts slower decay of 𝐶%ed'5'I"(𝑡) as 

glycerol concentration increases, indicating the retardation of translational dynamics near the 

spin probe. We quantify this translational retardation via a characteristic time constant of 

translational diffusion 𝜏%ed'5'I" by fitting 𝐶%ed'5'I"(𝑡) to a bi-exponential model 𝑐,𝑒-E/m$ +

(1 − 𝑐,)𝑒-E/m! and integrating over time. Here, 𝑐,, 𝛼,, and 𝛼( are the fitting parameters with 

𝛼, > 𝛼,. In agreement with the visible shift in the decay rate of 𝐶%ed'5'I"(𝑡), 𝜏%ed'5'I" 

monotonically increases with glycerol concentration [Figure 2.4(c)]. There, we illustrate the 

simultaneous increase in 𝜏%ed'5'I" and decrease in 𝜉d with glycerol concentration. This strong 

correlation [𝑅( = 0.96] suggests a correspondence between the ODNP coupling factor and 

measures of the instantaneous translation dynamics of hydration water.  

In addition to the translational mobility, we also examine the hydration water 

orientational dynamics via the orientational autocorrelation functions (OACFs) [see Section 

2.3.2]. While we anticipate strong coupling between the translational and rotational mobility 
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of water molecules in dilute solutions, the degree of translation-rotation coupling in crowded 

glycerol-water mixtures is less intuitive given that the breakdown of orientational-translational 

coupling has been previously observed for water under confinement(72). As seen in Figure 

2.4(b), 𝐶?:LR
(()  decays more slowly with increasing glycerol content, signifying the retardation 

of rotational motion of hydration waters. This systematic slowdown of rotational dynamics is 

further illustrated by the monotonic increase in the characteristic time constants for rotational 

diffusion 𝜏?:LR. As with 𝜏%ed'5'5I" we derive 𝜏?:LR by fitting 𝐶?:LR
(()  to a bi-exponential model. 

The simultaneous increase in characteristic timescales 𝜏%ed'5'5I" and 𝜏?:LR 	 [Figure 2.4(e-f)] 

across the whole range of glycerol concentrations establishes that, even in highly crowded 

glycerol-water mixtures, translational and rotational water diffusion remain strongly coupled. 

The persistent connection between rotational and translational dynamics suggests that—in 

contrast to water under geometric confinement (i.e., micelles)—the effect of glycerol on water 

stems from a distinct physical mechanism such as the development of a collective glycerol-

water hydrogen bond network. 

Glycerol is often assumed to simply decrease water translational dynamics due to 

increased mixture viscosity, but the effect of glycerol on water structural dynamics is typically 

not considered nor well understood. To investigate the relevance of such considerations, we 

probe the dynamics of hydrogen bonding of spin probe hydration waters via the hydrogen bond 

survival probability 𝐶;i(𝑡). Like 𝐶%ed'5'I"(𝑡) and 𝐶?:LR
(() (𝑡), we report slower decay of 𝐶;i(𝑡) 

with rising glycerol content [Figure 2.4(c)]. As with 𝜏%ed'5'I" and 𝜏?:LR, we compute water-

water hydrogen bond lifetimes 𝜏;i by integrating a bi-exponential fit to 𝐶;i(𝑡). The resultant 

𝜏;i values monotonically increase with increasing glycerol concentration, again in a manner 

strongly correlated with the ODNP results. The simultaneous increase in 𝜏?:LR and 𝜏;i 
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suggests that glycerol enhances the lifetime of orientationally-coordinated and hydrogen 

bonded microstructures. Such an enhancement water structure with increasing glycerol content 

was demonstrated in our recently published study (published during preparation of this 

manuscript). In this work, we found that increased glycerol concentration not only slows the 

water diffusivity, but also enhances water orientational structure by increasing the 

tetrahedrality of water(74).  We expand this analysis in Section 2.4.3, discussing connections 

between water tetrahedrality and various characteristic time constants in glycerol-water. 

With these analyses, we elucidate the as-of-yet unknown persistent coupling between 

metrics for water translational, rotational, and hydrogen bonding dynamics in glycerol-water, 

including ODNP-derived and computational translational water diffusivity. We support this 

finding in Figure 2.10 by depicting the connections between the hydration water dynamics 

relaxation times 𝜏%ed'5'I", 𝜏;i, 𝜏?:LR, and 𝜏?@9A with spectroscopic quantities 𝑘K , 𝜉, and 

𝑇,0[0]. Apart from 𝑘K , we observe strong correlation between each of these quantities and the 

others (𝑅( > 0.9). The persistent connection between the characteristic time constants of 

hydration water dynamics suggests that glycerol, even in significant quantities, does not 

decouple the translational and rotational modes of water motion, in contrast to dynamic 

decoupling of water molecules reported under nanoscale confinements(72) and in supercooled 

water(71, 73, 75). In the context of nanoconfinement between silica planar surfaces, Romero-

Vargas Castrillón et. al find that water rotational diffusion is bulk-like near the center of the 

nanochannel while translational diffusion is suppressed relative to bulk(72). The authors 

attribute this rotation-translation decoupling to the strong inverse dependences of translational 

diffusion on density (above bulk near the center channel) and the water-water hydrogen bond 

network (same as the bulk near the center channel). In contrast, increasing glycerol 
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concentration yields simultaneous increases in mixture density and water-water network 

hydrogen bond lifetimes (increasing 𝜏;i), as well as water structuring as measured by 

tetrahedrality, relative to pure water. 

Due to the non-monotonic behavior of 𝑘K [Figure 2.3(c)] with composition, it correlates less 

well (𝑅( < 0.9) with the monotonically varying relaxation times and spectroscopic 

quantities. Traditionally, glycerol is thought to act as a classical viscogen without specifically 

considering its effect on water’s molecular structure. With our simulation studies, we observe 

an increase in the rotational time constant 𝜏?:LR and hydrogen bond lifetimes 𝜏;i that 

suggest tetrahedral enhancement with increasing glycerol concentration. To directly quantify 

tetrahedrality, we require a more direct structural metric, which we pursue next.

 

Figure 2.4: Molecular dynamics probes of hydration water dynamics correlate strongly with ODNP 
coupling factors. (a) The survival probability 𝐶F9GH3HI:(𝑡) is the fraction of hydration shell waters that remain 
continuously within the second hydration shell of the spin probe radical oxygen. (b) The orientational 
autocorrelation function (OACF) 𝐶-JKL(𝑡) measures the rotation of hydration water dipole vectors away from 
their initial position. (c) The hydrogen bonding survival probability 𝐶MN(𝑡) gives a time scale for water-water 
hydrogen bond breaking with a hydrogen bond being defined by cutoff radius 𝑟O94P22 and cutoff angle 𝜃O94P22.  
(d) The ODNP correlation function 𝐶?@9A(𝑡) is used to estimate ODNP spectroscopic quantities. We derive 
characteristic time constants for (e) translational diffusion 𝜏F9GH3HI:, (f) rotational diffusion 𝜏-JKL, (g) hydrogen 
bond lifetimes, and (h) ODNP diffusion 𝜏-./0 by integrating bi-exponential model fits to the ACFs [(a), (b), 
(c), and (d), respectively]. Further, these time constants all correlate strongly with relative coupling factor 𝜉G. 

2.4.3 Glycerol Enhances the Population of Tetrahedral Waters 
A number of order parameters have been used to assess the tetrahedrality of water in simulation 

studies(76–78). Many such parameters are influenced by the fact that water is 
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undercoordinated near surfaces and in confined environments due to geometrical 

constraints(23, 76, 77, 79). For example, the tetrahedral order parameter, 𝑞, from Errington 

and Debenedetti(78) effectively characterizes water’s tetrahedrality in many contexts, but in 

particular in dilute aqueous mixtures. However, the interpretation of 𝑞 is more challenging 

when the average spatial separation between water molecules increases (e.g., concentrated 

glycerol-water mixtures) because it relies on four nearest water neighbors, which in such cases 

can populate non-first shell distances such that they adopt less correlated orientational order 

(decreased tetrahedrality).  

As an alternative to 𝑞, three-body angle distributions avoid this geometric bias by 

consider only nearest neighboring water molecules within a distance cutoff of each central 

water molecule and computing the distribution of neighbor-central-neighbor triplet angles1–

3(76, 77) averaged over all simulation time steps. We can characterize the population of 

tetrahedrally coordinated waters, 𝑝EcE, by integrating 𝑃(𝜃) over the tetrahedral region of the 

distribution 𝑝EcE = ∫ 𝑃(𝜃)𝑑θ,(0∘

,00∘ . In addition to readily accommodating cases when water is 

under-coordinated, three-body angle distributions have been shown to aptly capture changes 

in water structure in response to shifts in thermodynamic properties(76, 77) and solute 

chemistry(79). Furthermore, shifts in three-body angle distribution have also proved to be 

predictive of solvation thermodynamics for a wide range of colloidal particle sizes(76). 

In Figure 2.5(a), we illustrate shifts in the populations of waters in tetrahedral and 

icosahedral (simple fluid) environments at 109.5 degrees and 64 degrees, respectively, that 

report on water’s structural orientational environment. In Figure 2.5(a), we show that the 

increase in glycerol concentration from 𝑥!"#$ = 0.01 to 0.3 is accompanied by an increase of 

2% in the overall 𝑝EcE and an equivalent decrease in the population of icosahedrally-
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coordinated waters. Curiously, prior work by Monroe and Shell demonstrated that increasing 

pure water density tended to decrease tetrahedrality as measured by the three body angle 

distribution,(76) while glycerol-water behaves in the opposite manner: as mixture density 

increases (increasing 𝑥!"#$), 𝑝EcE increases. This finding further supports that glycerol, rather 

than acting as a simple viscogen, enhances water’s structural environment through enhanced 

water-glycerol hydrogen bonding. 

Remarkably, the enhancement of water tetrahedrality strongly correlates with the 

retardation of hydration water dynamics probes. In Figure 2.5(b-e), we discover nearly linear 

relationships (𝑅( > 0.96) between 𝑝EcE and several probes of water dynamics, including 

logarithms of characteristic time constants for translational diffusion 𝜏%ed'5'I", rotational 

diffusion 𝜏?:LR, hydrogen bonding lifetimes 𝜏;i, and the relative ODNP coupling factor 𝜉d. 

This suggests that structural enhancements, driven by the addition of glycerol, impose 

systematic retardation of water dynamics. Moreover, the remarkably strong correlation 

between the dynamic ODNP coupling factor 𝜉d and the structural metric 𝑝EcE suggests that 

ODNP measurements indirectly reports on the effect of mixture properties on tetrahedrality of 

water in bulk solution. The strong correspondence equilibrium water dynamics and water’s 

molecular structure in glycerol-water is in keeping with a previous work by Shell and 

coworkers(74). In that work, we discovered that the system-average water self-diffusivity is 

accurately predicted by only two structural metrics—including 𝑝EcE. In the present work, we 

expand upon this observation finding strong relationships between not only the system-average 

translational dynamics of water, but local dynamics for water rotation and water-water 

hydrogen bonding.  
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Figure 2.5: The three-body-angle distribution shows enhanced water tetrahedrality with increasing 
glycerol concentration. (a) Increasing glycerol concentration in the mixture increases the incidence of 
tetrahedrally-coordinated waters relative to pure water 1𝑃(109.5∘) − 𝑃R9GS(109.5∘)8 while decreasing the 
incidence of icosahedrally-coordinated (simple-fluid like) waters 1𝑃(64∘) − 𝑃R9GS(64∘)8. The increasing 
population of tetrahedral waters with glycerol concentration correlates strongly to the relative diffusivity of pure 
water 𝐷M!-/𝐷M!-,R9GS at a given mixture composition. Characteristic time constants for (b) translational 
diffusion 𝜏F9GH3HI:, (c) rotational diffusion 𝜏T, (d) hydrogen bond lifetimes 𝜏MN, and (e) the relative coupling 
factor 𝜉G = 𝜉/𝜉R9GS correlate strongly with 𝑅T > 0.99 to the population of tetrahedral waters 𝑝4S4 =
∫ 𝑃(𝜃)𝑑𝜃DTE∘

DEE∘ . 

2.4.4 Impact of Glycerol on Solvation Thermodynamics 
We apply this understanding of water dynamics and structure to contextualize the glycerol-

water thermodynamics by characterizing the tendency for a model small hydrophobic molecule 

(methane) to transfer from an ideal gas to a glycerol-water solution phase in the infinite dilution 

limit. We directly quantify this by computing the excess free energy of solvation 𝛥𝐺%&"'cn  as 

discussed in the Section 2.2.  𝛥𝐺%&"'cn < 0 suggests favorable solvation of a solute relative to 

ideal gas phase while the opposite is true for 𝛥𝐺%&"'cn > 0. In Figure 2.11(b), we observe a 

monotonically increasing and positive ΔG%&"'cn  with increasing 𝑥!"#$ for 𝑥!"#$ < 0.1. This 

Simple fluid Tetrahedral fluid

a)

c)b)

d) e)
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increase in Δ𝐺%&"'cn  is in part explained by the enhancement of water structure [Figure 2.5] that 

presumably generates an increase in the entropic penalty for restructuring water-glycerol. 

However, for 𝑥!"#$ > 0.1, 𝛥𝐺%&"'cn  begins to plateau to a constant 𝛥𝐺%&"'cn ≈ 4.25	𝑘i𝑇. Notably, 

none of the structural or dynamic metrics above exhibit such a plateau. 

To better understand the trend depicted in Figure 2.11(b), we apply a free energy 

decomposition 𝛥𝐺%&"'cn = ⟨𝑈⟩%g + 𝑆dc% previously described by Monroe and Shell(76). Here, 

⟨𝑈⟩%g is the mean interaction energy between methane and glycerol-water in the solvated state 

(2) and 𝑆dc% is strictly positive and largely gives the entropic penalty to create a void large 

enough to accommodate the solvation of methane from the gas phase (1) into the solution phase 

(2). We quantify ⟨𝑈⟩%g by directly calculating the interaction energy between methane and 

glycerol-water ⟨𝑈⟩%g while 𝑆dc% follows from 𝑆dc%=𝛥𝐺%&"'cn − ⟨𝑈⟩%g. We observe a monotonic 

decrease in  ⟨𝑈⟩%g with increased glycerol concentration [Figure 2.6(a)], indicating a more 

favorable enthalpy of solvation for methane in glycerol-water. On the other hand, we 

demonstrate that 𝑆dc% increases monotonically with glycerol concentration [Figure 2.6(b)], 

which indicates an increase in restructuring penalty to methane solvation. The entropic penalty 

(𝑆dc% > 0) and enthalpic gain (⟨𝑈⟩%g < 0) for methane solvation in glycerol-water are 

consistent with the long-known hydration behavior of small hydrophobic molecules in aqueous 

environments(80, 81). As 𝛥𝐺%&"'cn  becomes less favorable (more positive) for 𝑥!"#$ < 0.1, 

⟨𝑈⟩%g decreases such that further increases in 𝑆dc% yield constant 𝛥𝐺%&"'cn  for 𝑥!"#$ > 0.1.  

While the excess solvation free energy, 𝛥𝐺%&"'cn , does not show a simple correlation with 

dynamic or structural metrics, the entropic and energetic contributions display striking 

connections to dynamic metrics. Specifically, we note that the increasing penalty for 

restructuring glycerol-water 𝑆dc% displays a strong negative correlation with the MD-computed 
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relative coupling factor 𝜉d  [𝑅( = 0.99; Figure 2.6(c)]. Given that increases in 𝑆dc% are driven 

by an enhancement in the underlying glycerol-water solution structure, the connection between 

𝑆dc% and 𝜉d again suggests a persistent structure-dynamics connection in glycerol-water. 

However, the 𝑆dc% − 𝜉d relationship does not simply indirectly demonstrate what Figure 2.5 

does directly. In fact, this direct relationship between water dynamics and restructuring entropy 

is reminiscent of entropic theories for microscopic dynamics like the viscosity-entropy 

relationship proposed by Adam and Gibbs(82).  

Adam-Gibbs theory proposes that retardation of liquid dynamics (such as liquid 

viscosity, 𝜂, or self-diffusivity, 𝐷) stems from a decrease in the number of available 

configurational states of a liquid via the configurational entropy 𝑆$&CD. Notably, a recent study 

by Handle and Sciorno(83) demonstrated that a persistent ln 𝐷 − *𝑇𝑆$&CD.
-, connection—per 

Adam-Gibbs theory—in simulations of pure TIP4P/2005 water. The observed correlation 

between the probe of water dynamics (𝜉d) and restructuring entropy hints at a theoretical analog 

to Adam-Gibbs relating equilibrium water dynamics to solvation thermodynamics. If such a 

𝑆dc%-dynamics relationship persists for contexts beyond glycerol-water, it may be possible to 

forecast the solvation thermodynamics of small molecules in aqueous mixtures without 

computationally laborious free energy calculations. Probing dynamics-structure-

thermodynamics correspondence at heterogeneous surfaces would be fascinating extensions of 

the present analysis. For instance, one could specifically interrogate how water-glycerol’s 

molecular scale structure and dynamics mediate hydration free energies at protein-water 

interfaces to elucidate the cosolvent-mediated mechanisms of protein cryoprotection84–87.  
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Figure 2.6: Decomposition of the solvation free energy of methane into glycerol-water mixtures. We 
calculate the solvation free energy for a methane molecule via expanded ensemble calculations, decomposing 
the resultant solvation free energy [Figure 2.11(b)] into (a) enthalpic contribution via the direct energy term 
⟨𝑈⟩FU and (b) entropy of solution restructuring 𝑆GSF. (a)  ⟨𝑈⟩FU decreases as more glycerol is added to the 
mixture. (b) 𝑆GSF increases as more glycerol is added to the mixture. (c) We observe a strong correlation (𝑅T =
0.99) between the MD-computed ODNP coupling factor 𝜉G and 𝑆GSF.  

2.5 Conclusions 
In the present study, we reproduce critical ODNP spectroscopic measures of translational 

hydration water dynamics using classical atomistic molecular simulations to model 

equilibrium dynamics in glycerol-water mixtures with semi-quantitative agreement. Further, 

using the molecular scale detail revealed through MD simulations, we discover strong 

correlations between ODNP-measured coupling factors and computational probes of 

translational, rotational, and hydrogen bonding dynamics. The strong relationships found 

between MD-derived measures of water structure and dynamics are exciting for the potential 

of ODNP to serve as a surrogate probe of underlying solution structure. Finally, the clear 

connection between water tetrahedrality, water dynamics, and solvent restructuring entropy 
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suggests a novel framework to describe and quantify the molecular scale mechanisms 

underlying hydrophobic hydration. 

Though the existing literature on local water properties and water-mediated behavior 

is extensive, our analyses are unique because we directly link simulation to experiment and 

develop a dynamics-structure-thermodynamics connection. The generality of the experimental 

and computational methods discussed here will enable further investigations of other systems 

of broad interest such as water-alcohol and multicomponent mixtures used for protein 

stabilization (e.g., water-glycerol-DMSO). Further, the dynamics-structure-thermodynamics 

framework will aide further understanding of the molecular scale mechanisms (e.g., water 

tetrahedrality and diffusivity) underlying hydration properties in a wide range of chemically 

and topologically heterogeneous interfaces such as at protein-water interfaces. 

2.6 Appendix 

2.6.1 Further Details on spectral density calculations 
Mathematical Form of the Spherical Harmonic Functions. As stated in the main text, we 

calculate the spectroscopic quantities 𝜉, 𝑘K and 𝑇,,0[0] via a time autocorrelation function of 

the form 

𝐶(4)(𝑡) =< 𝐹(
(4)∗*𝑟(𝑡).𝐹(

(4)*𝑟(0). >=
∑ RV

(>)∗od⃗&(E)qRV
(>)od⃗&(0)q

@
&

∑ RV
(>)∗od⃗&(0)qRV

(>)od⃗&(0)q@
& 	

  (2.14) 

where spherical harmonic functions 𝐹"
(4)*�⃗�(𝑡). are 

𝐹(
(0)*𝑟(𝑡). = �>

(
od!->dX!q

dY
,  (2.15) 

𝐹(
(,)*𝑟(𝑡). = 3 dXodZ.5d[q

dY
,  (2.16) 

and 
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𝐹(
(()*𝑟(𝑡). = − >

(
odZ-5d[q

!

dY
.  (2.17) 

 

For 𝜉 and 𝑘K, 𝑁 and 𝑟5(𝑡) are the number of water hydrogens in the simulation box and the 

displacement vector between the 4-Hydroxy-TEMPO radical oxygen and the 𝑖-th water 

hydrogen at time 𝑡, respectively.  In the case of 𝑇,,0[0], 𝑁 and 𝑟5(𝑡) are the number of water 

hydrogens in the simulation box (excluding the randomly chosen probe hydrogen) and the 

displacement vector between the probe water hydrogen and the 𝑖-th water hydrogen at time 𝑡, 

respectively.  

 

Concentration dependence of the spectral density amplitudes. As shown indirectly in Figure 

3(a) in the main text, we find that the spectral density functions at the Larmor precession 

frequency of the spin probe radical election 𝐽(4)(𝜔6) exhibits non-monotonic behavior as 

glycerol concentration increases. On the contrary, the spectral density functions at the 

precession frequency of a water proton 𝐽(4)(𝜔7) increases monotonically with glycerol 

concentration.  
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Figure 2.7. Comparing the amplitude of spectral density functions at 𝜔6 (blue) and 𝜔7 
(orange) as a function of glycerol concentration. Amplitudes of the form 𝐽(4)(𝜔7) dominate 
across the entire range of concentrations, reducing the sensitivity of 𝜉 to the non-
monotonicity of amplitudes of the form 𝐽(4)(𝜔6). 

Increase in the relative error of estimating long time behavior of 𝐶?@9A
(4) . As discussed in the 

main text, we fit the ODNP autocorrelation functions to a tri-exponential model function 

𝐶?@9A,D5E
(4) = a,

(4)e-r/G$
(>)

+ a(
(4)e-r/G!

(>)
+ (1 − 𝑎,

(4) − 𝑎(
(4))e-r/G%

(>)
  (2.18) 

where 𝜏,
(4) > 𝜏(

(4) > 𝜏>
(4). 
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Figure 2.8. The relative error in the long timescale fitting parameter 𝜏D
(E) for the 0-th order ODNP correlation 

function 𝐶-./0,234
(E)  increases dramatically for glycerol mole fractions higher than 0.15. 

Table 2.1. Tri-exponential fitting function parameters for 𝐶-./0
(E)  at all simulated mixture compositions. Here, 

the uncertainties are 95% confidence intervals on the fitting parameters resulting from a bootstrapping 
procedure. 

 𝐶-./0
(E)  fitting parameters:  

𝐶-./0,234
(E) = 𝑎D𝑒\4/^# + 𝑎T𝑒\4/^! + 𝑎_𝑒\4/^$ 

𝑥`:aO 𝑎D 𝑎T 𝑎_ 𝜏D/ps 𝜏T/ps 𝜏_/ps 

0.00 0.21\E.DEcE.DT 0.51\E.EdcE.Ed 0.28\E.D_cE.De 25.18\e.DEcDE.eD 5.65\T.T_cD.d_ 0.24\E.DDcE.De 

0.01 0.27\E.DEcE.Ef 0.50\E.EfcE.Ef 0.23\E.DTcE.DE 27.58\g.T_cf.hg 4.90\D._Dc_.eD 0.17\E.EdcE.ef 

0.033 0.24\E.DgcE..DT 0.49\E.DTcE.Ed 0.27\E.DdcE.Dh 36.66\d.dDcTd.ii 7.06\_.EDcg.e_ 0.30\E.TTcD.ET 

0.05 0.29\E.DhcE.Ei 0.49\E.EfcE.Ef 0.22\E.DfcE.DD 32.66\e.EecDd.dg 5.74\D.hTcg.eT 0.15\E.EecE.he 

0.075 0.28\E.DicE.Di 0.46\E.D_cE.TE 0.26\E.TTcE.Tf 50.76\De.Ehcii.df 9.46\g.idcf.Eh 0.15\E.EicE.Td 

0.10 0.29\E.DecE.Dg 0.45\E.DfcE.Di 0.25\E.T_cE.T_ 58.51\Di.ficDd.he 10.39\_.hice.iE 0.29\E.TgcE.e_ 

0.15 0.32\E.D_cE.D_ 0.47\E.DgcE.Dh 0.21\E.DdcE.TE 98.46\_d.eEcfh.Tf 10.04\g.decDE.id 0.09\E.EdcE.ff 

0.20 0.21\E.DTcE.TD 0.55\E.TEcE.Dh 0.24\E.T_cE.Te 114.27\gh._hcDgd.gg 20.54\f.Eecf.hd 0.13\E.DTcE.ge 

0.30 0.47\E.TdcE.De 0.31\E.DfcE.Df 0.21\E._gcE.T_ 139.69\_h.DfcD__.fT 17.42\DD.iecgd.ED 0.11\E.DDcD.ii 
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Table 2.2. Comparing spectroscopic quantities obtained from ODNP experiments and MD simulations. Here, 
the MD uncertainties are 95% confidence intervals on the spectroscopic quantities resulting from a 
bootstrapping procedure. The uncertainties in the experimental values are the result of repeated measurements. 

 MD Simulations ODNP Experiments* 

𝑥`:aO 𝐶5j[𝑚𝑀] 𝑘7/𝑘7,89:; 𝜉/𝜉89:; 𝑇D,E(0)

/𝑇D,E(0)89:; 

𝑘7/𝑘7,89:; 𝜉/𝜉89:; 𝑇D,E(0)

/𝑇D,E(0)89:; 

0.01 26.3 1.03\E.DTcE.DT 0.97\E.D_cE.DT 0.817\E.TTcE.TT 0.37 ± 0.01 0.51 0.87 

0.05 22.8 1.05\E.TEcE.T_ 0.76\E.D_cE.D_ 0.69\E.DecE.Dd 0.40 ± 0.01 0.50 0.73 

0.10 19.1 1.17\E.TDcE.Th 0.59\E.DfcE.Dg 0.46\E.D_cE.Df 0.47 ± 0.01 0.38 0.60 

0.15 16.2 0.93\E.TicE.Td 0.36\E.DTcE.D_ 0.33\E.DEcE.D_ 0.53 ± 0.01 0.28 0.48 

0.20 13.7 0.72\E._DcE._T 0.28\E.DfcE.TT 0.28\E.D_cE.DD 0.59 ± 0.01 0.24 0.40 

0.30 10.1 0.71\E._TcE.gD 0.10\E.EhcE.Ef 0.12\E.EicE.Dg 0.66 ± 0.01 0.12 0.26 

*The experimental spin-label concentration is held constant 200𝜇M for each glycerol-water 
mixture. 

 

2.6.2 Additional information on MD-derived relaxation time constants 
Table 2.3. Relaxation time constants for 𝐶-./0

(E) (𝑡), 𝐶F9GH3HI:(𝑡), 𝐶-JKL
(T) (𝑡) and 𝐶MN(𝑡).  Here, the uncertainties 

are 95% confidence intervals on the fitting parameters resulting from a bootstrapping procedure. 

 Relaxation time scales  

𝜏3/ps 

𝑥`:aO 𝜏-./0
(E)  𝜏F9GH3HI: 𝜏-JKL 𝜏MN 

0.00 8.22\E.hdcE.ef 14.33\E._fcE.gi 2.72\E.DTcE.DT 6.57\E.TTcE.Tg 

0.01 9.90\D.E_cD.ei 15.71\E.iEcE.e_ 3.07\E.TTcE.TD 7.30\E.ggcE.g_ 

0.033 12.02\D.eicT.Dd 17.79\E.ihcE.ii 3.68\E.TDcE.TD 8.82\E._icE._g 

0.05 14.51\T.eic_.hd 20.45\D.T_cD._d 4.54\E.gecE.hf 10.82\D.EgcD.DT 



 

 
 

45 

0.075 18.85\T.edce._e 23.89\T._hcT.iE 5.64\E.eTcE.di 12.19\E.idcD.dg 

0.10 21.65\h.gich.dE 26.98\T.DicT.Te 6.08\E.e_cE.f_ 14.58\T._fcD.fE 

0.15 35.11\DE.ghcDd.TT 41.17\g.fDch.fE 10.17\D._gcD.eE 23.64\T.iTcg.Td 

0.20 49.52\Df.fhcTT.eD 47.10\f.eicDE.gh 12.62\D.fgcT._d 29.05\g.ETcg.h_ 

0.30 72.64\De.DicDd.hD 90.17\De.gdcTe.g_ 24.75\h._Dcg.hE 46.79\f.iecDE.h_ 

 

 

Figure 2.9. Investigating the effect of cutoff volume on the survival probability calculation for 𝑥`:aO = 0.10. 
We observe a systematic increase in the decay time for 𝐶F9GH3HI:(𝑡) as the cutoff radius from the 4-Hydroxy 
TEMPO radical oxygen is increased through values of: 6, 7, 8, and 10 Å. These cutoff radii correspond to 
spherical cutoff volumes of 904.77, 1436.76, 2144.66, and 4188.79 Å3, respectively. In the inset plot, we show 
the monotonic increase in the relaxation timescale 𝜏F9GH3HI: = ∫ 𝐶F9GH3HI:(𝑡)𝑑𝑡

k
E  with increasing cutoff volume. 

 

Cutoff = 10 Å 
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Figure 2.10. A cross-correlation heat map of all relaxation time constants and measurable dynamics probes. There 
is excellent correlation between all quantities (𝑅T > 0.9) except for 𝑘7. 
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2.6.3 Decomposition of excess solvation free energy into solution restructuring and 
direct energetic terms 

 
 
Figure 2.11. Decomposing the solvation free energy of methane into glycerol-water mixtures. (a) We depict 
expanded ensemble calculations schematically for glycerol mole fractions of 0 [panels (1) and (2)] and 0.1 
[panels (3) and (4)]. The methane molecule is smoothly scaled from a non-interacting 𝜆 = 0 [panels (1) and (3)] 
to a fully interacting methane molecule 𝜆 = 1 [panels (2) and (4)]. (b) The solvation free energy, 𝛥𝐺FP:H, for 
bringing a methane from vacuum into solution with a glycerol-water mixture shows a non-monotonic trend with 
increasing glycerol content. The solvation free energy is decomposed into (c) enthalpic contribution via the 
direct energy term < 𝑈 >T and (d) entropy of solvent restructuring (𝑆GSF)D→T. (c) < 𝑈 >T decreases as more 
glycerol is added to the mixture. (d) (𝑆GSF)D→T increases as more glycerol is added to the mixture. 
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Chapter 3: Multi-length scale water dynamics in 
aqueous PEO solutions 
 
Joshua D. Moon5, Thomas R. Webber, Dennis C. Robinson Brown, Pete M. Richardson, 
Thomas M. Casey, Rachel A. Segalman, M. Scott Shell, Songi Han. Nanoscale water-
polymer interactions tune macroscopic diffusivity of water in aqueous poly(ethylene oxide) 
solutions. In Review at Chemical Science 

3.1 Introduction 

 Polymer membrane materials play a critical role in developing energy-efficient water 

purification processes(1). Membranes selectively permeate water over solutes across various 

length scales from ions to microbes. The permeability of water and selectivity for water over 

other solutes in membranes are profoundly affected by the complex interplay of dynamic and 

thermodynamic properties of water in a given membrane (2–6). Macroscale water transport 

through porous filtration technologies like ultra- and nanofiltration is primarily controlled by 

membrane pore morphology (e.g., pore geometry and tortuosity)(7, 8). In non-porous media 

such as in reverse osmosis membranes, water transport has primarily been connected to 

water’s molecular structure in the hydrated membrane. The dependence of non-porous 

membrane performance on molecular scale phenomena is suggested by the success of free 

volume and molecular obstruction models for transport (9–12). 

 Further, previous work has establish that the dynamics of water in polymer solutions 

is mediated by water-polymer surface interactions(13–18). While the connection between 

water-surface interactions and water dynamics is well-established in solution, the molecular 

scale properties of water at polymer surfaces in hydrated membranes are infrequently 

 
5 First-authorship shared between J.D.M., T.R.W., and D.C.R.B 
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considered and poorly understood. Through this chapter, we directly probe structural and 

dynamics water properties in the system-average and at the hydration later (a “molecular 

surface”) of linear poly (ethylene oxide) (OEO) in water. We study linear OEO for practical 

and application-driven reasons. Practically speaking, OEO is miscible with water and 

presents a relatively simple repeat unit structure. Heuristically, OEO-based coatings are 

widely leveraged to imbue materials in the context of water purification membranes, 

consumer products, and biomedicine(19–23) with an antifouling character. Though PEO’s 

chemical structure is nominally simple, even short EO oligomer chains explore a complex 

configurational landscape(24, 25) and eutectic formations over a wide range of water-PEO 

compositions(26). Several PEO-water studies have centered bulk thermodynamics phase 

behavior of PEO using differential scanning calorimetry(26–28) or system-averaged 

measures of water dynamics such as rotational dynamics as measured by dielectric 

spectroscopy(29–33). Fewer efforts have isolated and probed water properties within the 

hydration layer of PEO chains. However, some studies have characterized PEO hydration 

water structural and dynamic features relative to bulk water by leveraging terahertz (Thz) 

spectroscopy(18, 34) and quasi-elastic neutron scattering (QENS)(16, 18, 35, 36), 

respectively. However, considerable gaps in our understanding of hydration water properties 

and the determinants of water diffusion in PEO-water remain. 

 Probing water dynamics at the molecular scale in PEO-water is critical to deciphering 

the connection between membrane surface chemistry and functional membrane properties 

like water permeability. In this chapter, we outline experimental measures of water self-

diffusivity in PEO-water using two techniques: Pulsed-Field Gradient (PFG)-NMR and 

Overhauser Dynamic Nuclear Polarization (ODNP). As described in Chapter 2, ODNP is a 
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combined NMR-EPR technique that utilizes EPR enhancements of water’s EPR signal to 

selectively probe water dynamics in the vicinity (within 1 nm) of an electron spin probe. In 

the case of PEO, the spin probe tethered to a subset of PEO chains rather than freely floating 

in solution. By probing water dynamics with both PFG-NMR and ODNP, we access water 

dynamics at length scales from nanometers to microns and picoseconds to milliseconds 

[Figure 3.1]. Simultaneously, we employ Molecular Dynamics (MD) simulations to gain 

molecular scale insight on the structure and dynamics of water in the hydration shell of PEO. 

In previous works, transport models in hydrated membranes have largely centered the 

macroscale effects of (1) geometric obstructions to diffusion due to polymer configurations, 

(2) hydrodynamic drag resulting from diffusion in a viscous medium (such as PEO-water), or 

(3) free volume configurations(10, 12, 37, 38). On the other extreme, investigations of water 

dynamics at biomolecular surfaces such as proteins and DNA have primarily considered 

dynamics on the molecular scale(15, 39, 40). Few studies have sought to reconcile macroscale 

water transport with molecular scale water diffusivity. Free volume and obstruction-based 

models may suggest the effect of detailed molecular structure on dynamics, but the relationship 

is merely hypothetical without further investigation. We pose the question: “When and under 

which conditions do molecular surface effects impact the diffusion of water in PEO solutions?” 

Further, we leverage our multiscale approach to determine the suitably “molecular” transport 

model to properly describe water diffusion spanning pure water to nearly pure PEO. 
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Figure 3.1 Distinct experimental and computational techniques probe small molecule diffusion processes 
occurring over vastly different length and time scales.(41)  Techniques such as MD simulations and ODNP can 
uncover molecular-scale dynamic behavior of small molecules in polymers or polymer solutions while tools like 
PFG-NMR and membrane permeation experiments reveal macroscopic transport phenomena. 

In the following sections of this chapter, we describe the equilibrium self-diffusivity of 

water in PEO-water by with a free volume model. Specifically, this “mixture fractional free 

volume” model implicitly accounts for the molecular structural details of PEO-water in 

contrast with hydrodynamic and obstruction-based models for water self-diffusivity. By 

leveraging atomistic MD simulations, we directly relate solution structural motifs to shifts in 

system-averaged (measured by PFG-NMR) and PEO hydration layer (measured by ODNP) 

water dynamics. Characterizing and understanding the drivers of local polymeric surface 

properties may be invaluable for tuning water dynamics at complex interfaces present in 

industrial polymer membranes. 
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3.2 Molecular Dynamics Simulations Methods6 
We applied molecular dynamics models composed of the OPC 4-site water model(42), 

a generalized AMBER forcefield (GAFF2) 20,21 parametrized model for PEO(24), and a 

TEMPO spin probe functionalized PEO molecule. Both the OPC water model and the PEO 

model accurately reproduce the thermophysical properties of pure water and PEO under 

ambient conditions (298.15 K and 1 bar). Previous work demonstrated the ability of this 

functionalized PEO model to accurately describe the conformational landscape of PEO in close 

agreement with findings from experimental Double Electron-Electron Resonance (DEER) 

spectroscopy. (24, 45) The partial charges of the spin probe-functionalized PEO were obtained 

using the AMBER18 Antechamber package(46) informed by quantum chemical calculations 

using the Gaussian 16 software(47) as described in our previous work.(24) All other inter- and 

intramolecular parameters came from the second-generation generalized AMBER forcefield 

(GAFF2).(43, 44) The results of this parametrization scheme yielded similar parameters to 

those obtained in previous work.(48) All Coulombic interactions were described with particle-

mesh Ewald summation scheme (PME).(49) 

We considered PEO-water compositions of 0, 0.5, 1.5, 5, 10, 20, 33 and 50 wt% PEO using 

the GPU-optimized OpenMM molecular simulation software.(50) Each system was first 

energy minimized to remove overlapping atom positions in our PACKMOL(51) generated 

initial configurations. Systems were then equilibrated in the NPT ensemble using a Langevin 

Thermostat(52) paired with a Monte Carlo barostat (52) at 290 K and 1 bar. We determine the 

minimum necessary system equilibration period by estimating the time to convergence of for 

the density and temperature (under 1 ns for all systems). Following equilibration, the NPT run 

continued for 200 ns with system configurations saved every 10 ps. NPT-generated trajectories 

were used to calculate structural properties of the PEO-water mixtures such as radial 

 
6 Overhauser Dynamic Nuclear Polarization (ODNP) and Pulsed-Field Gradient-NMR (PFG-NMR) 
experiments are detailed in the upcoming paper from which this chapter is derived. 
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distribution functions, fractional free volumes (FFVs), and 3-body angle distributions. In 

addition to the system configurations, simulation states (atom positions and velocities) were 

saved every 10 ns. Each of these saved states served as the starting point for an independent 1-

ns NVE simulation with system coordinates saved every 0.1 ps. 

System-average water self-diffusivity, 𝐷;!?, values are estimated from the results of the 10 

separate NVE simulations via the slope of the mean-square displacement (MSD) curve at long 

times 

𝐷;!? = lim
E→j

1
6𝑡𝑀𝑆𝐷

(𝑡) = lim
E→j

1
6𝑡
⟨|𝑟(𝑡 + 𝜏) − 𝑟(𝜏)|(⟩	 

where �⃗�, 𝑡, and 𝜏 are the position vector of a water oxygen, the current time step, and the 

initial time step. Here, ⟨⋅⟩ denotes the ensemble average of a quantity across all water 

positions. We carry out the MSD slope determination for PEO heavy atoms to estimate PEO 

self-diffusivity, 𝐷At?. We compute the hydration layer water self-diffusivity, 𝐷"&$I", by 

considering the MSD of waters residing within the first two hydration shells of the PEO spin 

probe (8 Å) rather than all system waters. We estimate the local MSD slope in the diffusive 

region 𝑡 ∈ [10,40] ps to mitigate the effect of the hydration waters leaving the vicinity of the 

spin probe. To estimate the uncertainty in water and PEO diffusivities, 95% confidence 

intervals were computed by bootstrapping the mean-squared displacement (MSD) curves 

obtained from 10 independent MD simulations. 

3.3 Computational/Experimental study of system-average water dynamics 
While PFG-NMR measurements capture time-averaged diffusivities on the millisecond 

and micrometer scale, MD simulations probe water dynamics on the timescale of tens of 

picoseconds with characteristic distances on the order of nanometers.  Solutions with PEO 

concentrations higher than 50 wt% are difficult to well-equilibrate due to the long relaxation 

time scales of polymer-rich systems.  In addition to the system-average water self-diffusivities, 
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we compute the water’s self-diffusivity within an 8 Å radial distance from the spin labelled 

PEO chain, 𝐷"&$I". We discuss the trend in 𝐷"&$I" in detail in Section 3. The details on the 

calculation of these two diffusivities is given in Section 3.2. 

We first detail the system-average water dynamics using atomistic MD simulations and 

drawing comparison to the PFG-NMR results of our collaborators. Figure 3.2(a) depicts water 

self-diffusion coefficients, 𝐷;!?, from MD simulations at PEO concentrations ranging from 0 

to 50 wt% near atmospheric temperature and pressure [further details given in Section 3.2].  

We overlay PFG-NMR results at compositions up to 90 wt% PEO at 294 K and 1 bar 

(commensurate to the MD conditions). For both sets of measurements, the water self-

diffusivities decrease exponentially from the pure water self-diffusivity—2.2 x 10-5 cm2/s and 

1.9 x 10-5 cm2/s from PFG-NMR and MD, respectively—as indicated by prior measurements 

of water diffusivity in PEO solutions(53–57).  Though MD and PFG-NMR yield different 

absolute 𝐷;!? values, the two sets of measurements yield similar scaling with concentration. 

Despite the substantial difference in length and timescales probed by the two techniques, 

computed values of 𝐷;!? exhibit nearly quantitative agreement with PFG-NMR self-

diffusivities in dilute solutions below the overlap concentration 𝑐∗ = 46.4	𝑤𝑡%. 𝑐∗ is defined 

as the polymer concentration at which polymer coil volumes overlap; hence, 𝑐∗ marks the 

dividing line between dilute and concentrated polymer mixtures [see Appendix 3.7.1 for 

details on the determination of 𝑐∗](24, 58, 59). Both PFG-NMR and system-average MD 
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capture the collective behavior of all water molecules in a solution and do not distinguish 

between “bulk” and hydration layer (i.e., near PEO) water dynamics.   

  

Figure 3.2 (A) Comparison of water self-diffusion coefficients in aqueous PEO solutions at room temperature 
(21 °C) from PFG-NMR (filled blue circles) with system-average water diffusivities (𝐷M!-, filled red triangles) 
and local water diffusivities (𝐷:POI:, unfilled red triangles) from MD simulations. (B) Comparison of PFG-NMR 
water diffusivities in aqueous PEO solutions (black circles) with model fits for Stokes-Einstein (blue dashed 
curve), Mackie-Meares (red dotted curve), free volume theory (green solid curve), and Yasuda’s free volume 
approximation (purple dashed/dotted curve).  PEO overlap concentration (c*) is marked in both figures by a 
dashed black line (see Supporting Information for c* derivation). 

3.4 Analytical models of water diffusion in PEO solutions 

3.4.1 Stokes-Einstein hydrodynamic model 
 Often, continuum models—independent of molecular scale detail—are utilized to 

capture diffusion trends in aqueous mixtures. Though water’s molecular properties are highly 

determinative of its unique thermophysical properties, continuum models like the Stokes-

Einstein relation can yield reasonable estimates of water self-diffusion coefficients near 



 

 
 

61 

standard temperature and pressure (STP)(60). The Stokes-Einstein (S-E) relation connects 

water self-diffusivity to the mixture viscosity via the expression 

𝐷;!? =
𝑘i𝑇
6𝜋𝑟𝜇 (3.1) 

where 𝐷;!?, 𝑘i, 𝑇, 𝑟, and 𝜇 are the water self-diffusion coefficient, the Boltzmann constant 

(1.38 x 10-23 J/K), the absolute temperature, the effective radius of a diffusing water molecule, 

and the dynamic viscosity of the solution. To evaluate the veracity of the S-E relation for PEO-

water, we directly compare its output to the direct experimental measurement of water self-

diffusivity from PFG-NMR [Figure 3.2(b)]. We fix the parameter 𝑟 = 0.97	Å based on the 

measured 𝐷;!? (2.2 x 10-6 cm2/s) and literature 𝜇 (1.01 x 10-3 Pa-s) of pure water at 1 bar and 

293 K. We estimate the concentration-dependent PEO-water viscosity from literature data for 

at 293 K(61). The trend predicted from S-E deviates dramatically from the PFG-NMR estimate 

of 𝐷;!? even at low concentration of PEO. The predictive capacity S-E worsens with 

increasing PEO concentration and ultimately underestimates water self-diffusivity by an order 

of magnitude at 90 wt% PEO.  

 Fundamentally, the Stokes-Einstein relation assumes that PEO-water is a homogeneous 

mixture of non-interacting spheres of water and polymer. Particularly at high PEO 

concentrations, it appears that water dynamics become increasingly decoupled from the 

macroscopic properties of the system (e.g., viscosity). In an NMR study of water self-

diffusivity in human serum albumin protein solutions, Lamanna and coworkers observe a 

similar violation of S-E with increasing protein concentration. They attribute this to increasing 

role that solute-solute interactions with protein concentration and a resultant decrease in the 

effective water hydrodynamic radius(62). We hypothesize that—particularly at high PEO 
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concentrations—water dynamics are primarily dictated by water-water and water-PEO 

interactions rather than the macroscopic solution viscosity. Hence, we must consider PEO-

water’s collective molecular structure to properly describe water dynamics. 

3.4.2 Free volume models 
Unlike S-E, free volume models for diffusion treat solutions as a collection of 

molecular volume elements that, in aggregate, dictate dynamics. Hence, we anticipate better 

prediction of water dynamics from free volume models. The FFV is fraction of solution volume 

that is unoccupied by the effective van der Waals molecular (or atomic) volumes constituting 

the mixture. From this model standpoint, the FFV is the effective volume available for 

diffusion by water or polymer. We apply the following fractional free volume model(2) 

𝐷;!? = 𝐷ledc 𝑒𝑥𝑝 �−𝐵 �
1

𝐹𝐹𝑉 −
1

𝐹𝐹𝑉0
�� (3.2) 

where 𝐷ledc, 𝐵, 𝐹𝐹𝑉, and 𝐹𝐹𝑉0 are the self-diffusion coefficient of pure water, an empirical 

fitting parameter, the fractional free volume of a given PEO solution, and the fractional free 

volume of pure water. To apply Equation 3.2 to the PFG-NMR experimental findings, 𝐹𝐹𝑉 is 

estimated from literature solution densities and simple assumptions of the volume occupied by 

PEO and water [further detail in Appendix 3.7.2]. Performing a linear-least squares fitting 

procedure using the PFG-NMR water self-diffusivities, 𝐵 assumes a value of 0.82(63). Per this 

FFV model, water diffusion is an activated process driven by thermal fluctuations in the 

arrangement of water, polymer, and free volume elements(37, 64, 65). Because the FFV 

depends on the spatial arrangement of the individual chemical elements (atoms and molecules) 

composing PEO-water, Equation 3.2 is a fundamentally molecular theory for water diffusion.  
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We demonstrate that Equation 3.2 yields accurate predictions of 𝐷;!? for the entire 

range of PEO concentrations from 0 to 90 wt% in Figure 3.2(b). The reduction in 𝐷;!? with 

concentration is driven by the monotonic decrease in 𝐹𝐹𝑉 from 0.251 at 0 wt% to 0.129 at 90 

wt% PEO. Water self-diffusivity has previously been accurately described by Equation 3.2 in 

polymer hydrogel networks(2, 66). This free volume theory explicitly accounts for the shifts 

in the PEO and water configurations via connection to the measured solution density across 

the entire concentration range. We note that the precise physical description of the 

(unoccupied) free volume of a mixture is nuanced with the 𝐹𝐹𝑉 depending strongly on the 

underlying assumptions regarding the molecular volume of the mixture constituents and the 

lack of water-solute interactions. Though our application free volume theory is simple and 

purely entropic in nature, we predict water diffusion with remarkable fidelity across a wide 

range of PEO-water concentrations. 

To further validate the validity of this FFV model for water diffusion, we directly 

compute FFV values in PEO solutions from MD simulations using an adapted procedure from 

Califano and coworkers.(67)  Rather than approximating FFV from macroscopic 

thermodynamic quantities (i.e., solution densities) as performed above, these simulated FFV 

values are directly derived from atomistic configurational snapshots of PEO-water solutions. 

In brief, we insert a spherical test probe of radius 0.53 Å at the nodes of a grid and check for 

overlaps between the test particle and the atomic coordinates of a given configuration (further 

details are provided in the Supporting Information). Simulated FFV values agree qualitatively 

with experimentally-derived FFVs, while exhibiting ~20% smaller values compared to those 

derived from solution densities [Figure 3.7]. As discussed further in the Supporting 

Information, the magnitude of simulation-predicted FFVs depend on assumed values for the 
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probe size; however, the relationship between the FFV and water self-diffusivity remains 

largely unchanged regardless of the probe size used. Furthermore, identical scaling is found 

between independently determined experimental and simulated sets of water diffusivities and 

FFV values as shown in Figure 3.3 (𝐵 = 0.82 for PFG-NMR data and 𝐵 = 0.83 for MD data).  

These findings reinforce the idea that the nanoscale structural properties of water in PEO 

solution are implicitly accounted for in the description of the free volume parameter, and that 

the varying FFV with increasing PEO concentration governs the water dynamics in PEO-water 

solutions at timescales of both picoseconds and milliseconds. 

 

Figure 3.3 Free volume model for water self-diffusion coefficients in PEO determined by PFG-NMR using 
fractional free volume (FFV) values derived from experimental solution densities (black circles and solid green 
line) compared to free volume model fit for system-average water self-diffusion coefficients determined by MD 
simulations using FFV values derived from MD simulations (black triangles and dashed green line). 
 

We present a further simplification of Equation 3.2—developed by Yasuda—in which 

the mixture 𝐹𝐹𝑉 is assumed to be equivalent to the water volume fraction 𝜙g(9) 

𝐷;!? = 𝐷ledc 𝑒𝑥𝑝 �−𝐵 �
1
𝜙g

− 1�� (3.3) 
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Often used in the context of highly swollen hydrogels, Equation 3.3 assumes that water 

diffusion specifically occurs within the solution volume occupied by water regardless of the 

polymer concentration. This assumption leads to the unphysical conclusion that water is 

immobile as PEO concentration approaches 100 wt%. Instead, PEO is sufficiently mobile to 

accommodate co-solute diffusion even at very high polymer concentration. Hence, Equation 

3.3 performs well at 𝑐 < 𝑐∗ but dramatically underestimates 𝐷;!? for 𝑐 > 𝑐∗. As one final 

point of comparison, we consider another model used in swollen polymer networks known as 

the Mackie-Meares model [see Appendix 3.7.3 for details]. Derived from a lattice polymer 

model, the Mackie-Meares model treats polymers as static physical obstacles to water diffusion 

rather than dynamic participants in diffusion(10). Ultimately, while the Mackie-Meares model 

yields marginally better quantitative agreement with experiment, the predicted 𝐷;!? still 

unphysically approaches zero as PEO concentration goes to 100 wt%. Simply accounting for 

non-zero 𝐹𝐹𝑉 for pure PEO solutions—as is done in Equation 3.2—we predict 𝐷;!? with 

quantitative accuracy at all mixture compositions. 

3.5 Computational/Experimental study of local water dynamics 
 While MD simulations are one route to characterizing water dynamics near the PEO, 

ODNP experiments are a valuable direct experimental probe of these local water dynamics. 

Specifically, ODNP experiments measure translational water diffusion on a 10 ps to 1 ns 

timescale [Figure 3.1] within an approximately ~1 nanometer radial distance from a spin 

labelled PEO chain end. The specific spin probe chemistry is detailed in our previous study on 

the conformational landscape of PEO in solution(68). Previous studies have demonstrated 

ODNP’s ability to selectively characterize water dynamics at a wide variety of macromolecular 



 

 
 

66 

surfaces in the context of proteins, lipid membranes, and silica nanoparticles(69–71). Further, 

local water self-diffusion coefficients, 𝐷?@9A, are obtained by applying a continuum model 

diffusion model known as the force-free hard sphere (FFHS) model(72, 73). Finer details on 

ODNP theory and experimental protocols are described in several previous studies(74–78). For 

the present work, we provide ODNP water self-diffusivities in comparison and contrast to 

diffusion coefficients probed by PFG-NMR and MD simulations. 

 In Figure 3.4(a), we display 𝐷?@9A in contrast to system-average water self-

diffusivities extracted from MD simulations and PFG-NMR [Figure 3.2(a)]. As an additional 

point of comparison to 𝐷?@9A, we present the water self-diffusivity within the hydration layer 

of a spin labelled PEO, 𝐷"&$I" (as described in Section 3.2). We first note that 𝐷?@9A indicates 

slower water dynamics near PEO compared to either of the system-average diffusivities. 

Further, 𝐷?@9A assumes nearly the same dramatically reduced value of 4.7 x 10-6 cm2/s for 

concentrations in the dilute regime (𝑐 < 𝑐∗). Similarly, MD-derived 𝐷"&$I" indicates 20-30% 

decreases in self-diffusivity compared to the system-average [Figure 3.5]. However, unlike the 

ODNP findings, MD suggests an exponential decrease in 𝐷"&$I" for the entire concentration 

range (0 to 50 wt%). 𝐷?@9A approaches a similar monotonic decrease to the PFG-NMR 

measurements for 𝑐 > 𝑐∗.  

The plateau in 𝐷?@9A for 𝑐 < 𝑐∗ suggests that ODNP is insensitive to changes in 

concentration within the dilute regime. This indicates that—from the ODNP reference frame—

hydration waters are isolated from the effects of increasing PEO concentration for 𝑐 < 𝑐∗. 

Upon entering the concentrated regime (𝑐 > 𝑐∗), PEO chain hydration environments begin to 

overlap with one another and hence induce the retardation of hydration water dynamics. The 

shift in 𝐷?@9A scaling at 𝑐∗ implies a molecular crowding effect that is invisible to system-
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average probes of water dynamics from PFG-NMR and MD simulations. However, the MD 

measure of hydration water dynamics, 𝐷"&$I", exhibits a similar mono-exponential decay 

[Figure 3.5] to the system-average trends. 

 

  

Figure 3.4.  (a) Comparison of water diffusion coefficients in PEO solutions determined by PFG-NMR (filled 
blue circles), ODNP with PEO-tethered spin labels (unfilled gold squares), and ODNP with free TEMPO spin 
labels (filled gold squares).  PEO overlap concentration (c*) is marked by a dashed black line. (b) MD 
snapshots illustrating first hydration waters around TEMPO spin label on PEO chain end for 5 and 20 wt% 
aqueous PEO solutions.  Orange molecules represent PEO chains, grey circles represent water molecules 
beyond first hydration layer, and cyan surface represents volume enclosing first hydration shell waters. 
 
 There are several possible explanations for the apparent inconsistency between MD 

and ODNP characterization of PEO hydration waters. For instance, the accuracy of MD-
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derived thermophysical properties like self-diffusivities is model-dependent. While the model 

parameters appear to yield near quantitative agreement with the system-average PFG-NMR 

results, 𝐷"&$I" may be more sensitive to the model assumptions. We use a simplified rigid and 

non-polarizable model for water. The dynamics probed by ODNP may be sensitive to 

intramolecular vibrational degrees freedom ignored by the OPC model; hence, future studies 

should consider flexible water model like TIP4P/2005f(79) or a polarizable model such as MB-

pol(80). Further, ODNP-derived 𝐷?@9A strongly depend on the choice of a spectroscopic 

quantity known as the saturation factor 𝑠4In. Typically, 𝑠4In is set to 1/3 or 1 for free and 

tethered spin probes. The assumption that 𝑠4In = 1/3 for free spin labels stems from direct 

experimental measurement of 𝑠4In for a free ODNP spin label in water(81). For tethered spin 

probes, 𝑠4In is assumed to be unity based lack of direct collisions between spin probes fixed 

to macromolecular surfaces like proteins and lipid bilayers(82, 83). However, it is not entirely 

clear whether 𝑠4In can accurately be set to unity for faster diffusing tethered PEO 

molecuels(77, 84). Future experimental efforts should seek to interrogate the chemistry and 

concentration-dependence of  𝑠4In. 
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3.6 Structural ordering of water revealed by MD simulations 
To further investigate the connection between molecular structure and water dynamics, 

we employ MD simulations to probe the effect of PEO crowding on the structure of hydration 

waters. First, we compute 2-D radial distribution functions (RDFs) to determine how PEO 

concentration affects local water density near PEO chains relative to that of the bulk solution. 

Specifically, we consider the RDFs 𝑔(𝑟?d-?g) between the radical oxygen on the spin probe 

(𝑂d) and all nearby water oxygens (𝑂g), where 𝑟?d-?g is the distance between a radical oxygen 

and water oxygen. Shifts in RDF peak position and amplitude with concentration indicate 

changes in the local environment such as changes in temperature, concentration, and water 

affinity (i.e., hydrophobicity). For the entire concentration range of 0 to 50 wt% PEO, RDFs 

do not exhibit changes in overall peak shape or location [Figure 3.6(a)]. Rather, there is a 

systematic increase in the amplitude of the first peak around 0.28 nm with increased PEO 

concentration, indicating an enhancement in the number density of water near the spin probe 

relative to bulk solution, where we define the bulk region as 𝑟?d-?g > 1.5 nm.  We hypothesize 

that this increased local number density of water relative to bulk solution decreases the local 

free volume, effectively slowing water diffusion in the hydration layer below the bulk value. 
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Figure 3.6 (A) Radial distribution functions of water molecules near PEO chains maintain similar shapes with 
increasing PEO concentration from 0.5 to 50 wt% with a systematic increase in the 1st and 2nd peak heights 
(darker colors correspond to higher concentrations). (B) MD-derived local and system-averaged water self-
diffusivities in PEO solutions generally correlate with the coordination number of the first hydration shell. (C) 
Three-body angle distributions show enhancement in the tetrahedrality of water (109.5°) in the hydration layer 
near PEO chains with increasing PEO concentration from 0.5 to 50 wt% (darker colors correspond to higher 
concentrations). (D) The integral over the tetrahedral region of the three-body angle distributions 𝑃(𝜃), 
indicated by the shaded region in part A, correlates with both local and system-averaged water self-diffusivities 
in PEO solutions derived from MD simulations. 
 

We further quantify local water density correlations by computing the coordination 

number of the first hydration shell, 𝑛,,?d-?g. Values for 𝑛,,?d-?g are estimated by integrating 

𝜌𝑔(𝑟?d-?g) over 𝑟?d-?g 	from 0 to 0.34 nm (i.e., the position of the first RDF minimum), 

where 𝜌 is the number density of water in the bulk. 𝑛,,?d-?g decreases from 2.2 to 1.08 as 

PEO concentration increases from 0 to 50 wt% as neighboring PEO chains begin to crowd out 

water molecules in the first hydration shell. As shown in Figure 3.5(b), we observe a general 
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correlation between both local and system-average water self-diffusivities and 𝑛,,?d-?g 

(R2=0.94), suggesting changes in water structure near PEO chains affect local water dynamics 

that in turn affect dynamics averaged over the bulk. While metrics like the FFV and 𝑛,,?d-?g 

hint at systematic shifts in water structure, these metrics do not directly probe water’s 

tetrahedral network structure.  

To more directly describe changes in the tetrahedral structure of PEO-water, we 

compute three-body angle distributions 𝑃(𝜃), which present a detailed picture of water 

coordination by capturing the effects of small shifts in the solution environment on water 

structure.(85–87)  To construct 3-body angle distributions, we compute and histogram the 

angles between hydration water oxygens (i.e., those within 4.2 Å of PEO heavy atoms) and 

their two nearest neighboring water oxygens.  Peaks in Figure 3.5(c) represent differences 

between water populations of a particular coordination local to PEO chains in solution from 

those in pure water.  We observe peaks at 64° and 109.5°, corresponding to a decrease in the 

population of icosahedrally-coordinated hydration waters near the PEO chains and an increase 

in the population of tetrahedrally-coordinated hydration waters, respectively.  A shift from 

icosahedral to tetrahedral coordination indicates a shift away from simple fluid behavior 

toward orientations typically associated with enhancements in water ordering under 

supercooling(88) and in the hydration layers of small hydrophobic molecules.(89) As PEO 

concentration increases, the hydration layer exhibits a monotonic increase in the population of 

tetrahedrally-coordinated waters and a monotonic decrease in the population of icosahedrally-

coordinated waters [Figure 3.5(c)].  

To directly quantify the increase in hydration water ordering with PEO concentration, 

we approximate the population of tetrahedrally-coordinated waters as 𝑝EcE = ∫ 𝑃(𝜃)𝑑θ,(0∘

,00∘ . 
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For the entire range of PEO concentrations, there is a substantial increase in tetrahedral 

ordering as 𝑝EcE increases by 5% from 0 to 50 wt% PEO solutions, indicating an enhancement 

in the water network structure near PEO chains [Figure 3.5(d)].  Both local and system-

averaged water self-diffusivities in PEO solutions from MD correlate inversely with the 

population of tetrahedral ordered hydration waters [see Figure 3.5(d); R2>0.99]. The 

relationship between equilibrium water dynamics and structure in PEO-water has been 

previously discussed in the computational literature.(16, 17) For instance, Borodin et. al. 

demonstrated that water self-diffusivity in PEO-water can be reconstructed from the portion of 

waters hydrogen-bonded to a PEO ether oxygen. While water-water hydrogen bonding is 

closely related to water’s tetrahedral structure, metrics of tetrahedrality do not directly report 

on hydrogen bonding. We find that 𝑝EcE increases and the average number of water-water 

hydrogen bonds per water molecule decreases with increasing PEO concentration (see 

Supporting Information). This suggests that even as water molecules increasingly favor 

hydrogen bonding with PEO, the tetrahedral network structure of water persists. 

The structure-dynamics connection apparent in Figure 3.5(d) paired with the literature, 

suggests that, in addition to reduced free volume and changes in local water density, enhanced 

tetrahedrality in more concentrated solutions leads to the concentration-dependent retardation 

of hydration water translational dynamics.  Remarkably, water’s network structure appears 

enhanced local to hydrophilic PEO, a phenomenon usually attributed to small hydrophobic 

molecules and moieties(89, 90, 90). This is in keeping with recent computational studies that 

demonstrated a more general enhancement water tetrahedrality in the hydration layer of 

various small length-scale (< 1 nm) chemical moieties irrespective of the chemical identity.(87, 

91) 
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3.6 Conclusions  
We apply a novel computational-experimental approach to reveal the effect of the hydration 

shell structure on water dynamics in PEO-water mixtures. The discrepancy between nanoscale 

water dynamics from Overhauser Dynamic Nuclear Polarization (ODNP) and microscale 

water dynamics from Pulsed-Field Gradient NMR (PFG-NMR) suggests the emergence of a 

molecular-crowding effect within the PEO hydration shell at concentrations above the PEO 

overlap concentration. MD simulations demonstrate strong correlation between hydration shell 

water dynamics and molecular structural metrics probing solution densification and 

enhancement of water’s tetrahedral character with increasing PEO concentration. We faithfully 

capture trends in water self-diffusivity from both MD simulations and PFG-NMR experiments 

by leveraging a solution free volume model for water diffusion. On the other hand, continuum 

models—specifically, Stokes-Einstein—fail to capture essential trends in water dynamics. 

Ultimately, both structural and dynamic feature of water in aqueous polymer solutions must be 

studies to develop molecularly informed design rules for the complex polymeric materials 

(e.g., hydrogels) found in separation membranes. Leveraging these rational design rules may 

enable fine tuning of water polymer chemistry and topology to yield desired water transport 

properties and enable the development of next generation water purification technologies. 

3.7 Appendices 

3.7.1 Calculation of PEO’s polymer overlap concentration 
In our prior study of the configurational landscape of PEO, we demonstrated that the end-to-

end distance of the polymer scales with the molecular weight, 𝑀, as  

𝑅cc = 𝑎𝑀u (3.4) 
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where the critical exponent 𝜈 = 0.59 suggests that PEO behaves as a polymer good solvent 

and 𝑎 = 0.047	𝑛𝑚 is a pre-exponential factor. For a polymer in a good solvent, the radius of 

gyration is related to 𝑅cc via the expression  

𝑅! = £𝑅cc( /6.25 (3.5) 

We determine the overlap concentration from the known equation (58, 59) 

𝑐∗ =
𝑀/𝑁:
4𝜋
3 𝑅!>

 
(3.6) 

where 𝑁: is Avogadro’s number. For the 13-mer PEO considered in this chapter (550 g/mol), 

the overlap concentration is 0.48 g/mL or 46.4 wt%. 

3.7.2 Estimating fractional free volume for PEO and glycerol solutions 

Fractional free volume (FFV) can be defined for an aqueous PEO solution as the fraction of 

solution volume that is unoccupied by the molecular volumes of the solution components: 

𝐹𝐹𝑉 =
𝑉Ddcc

𝑉%&"eE5&C
= 1 −

𝑉?,g + 𝑉?,At?
𝑉%&"eE5&C

 (3.7) 

where 𝑉Ddcc and 𝑉%&"eE5&C are the unoccupied free volume of the solution and the total solution 

volume. 𝑉?,g and 𝑉At?,g are the effective molecular volumes of water and PEO, 

respectively.  Alternatively, Equation 3.7 may be written in a mass specific volume form 

𝐹𝐹𝑉 = 1 −
𝑤g𝑉¤?,g 	 + 𝑤At?𝑉¤?,At?

𝑉%&"eE5&C
 (3.8) 

where 𝑤g and 𝑤At? are water and PEO weight fractions, respectively. Here, 𝑉¤?,g, 𝑉¤?,At?, and 

𝑉¤%&"eE5&C are the mass specific volumes of water, PEO, and the solution, respectively(92–
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94).  Specific occupied volume of a solution component, typically defined as the specific 

volume of the component at 0K, is commonly estimated for polymers as: 

𝑉¤?,5 = 1.3𝑉¤'vg,5 (3.9) 

where 𝑉¤'@g,5 is the van der Waals volume of the polymer, and the 1.3 factor is an approximate 

“universal” packing factor relating the two volume terms.(95, 96)  For polymers, V)wxy,z is often 

approximated using group contribution theory by summing the van der Waals volumes of 

individual polymer functional groups.(97–99)  Using group contribution values given by 

Bondi, V)wxy,{|} for 550 g/mol PEO was estimated to be 0.594 cm3/g, which yields a FFV for 

pure PEO of 0.129.(97)  There is some degree of uncertainty in the literature about the most 

appropriate value to use for V)wxy,y for water.(92, 93, 100–104)  The present study used a value 

of 0.577 cm3/g based on the van der Waals volume of water in ice, which yields a FFV of pure 

water of 0.251.(102)  Aqueous solution densities at 20 °C at varying concentrations of PEO 

with PEO molecular weights near 550 g/mol and at varying concentrations of glycerol were 

found in the literature.(105–107)  Values of FFV for aqueous PEO solutions were calculated 

using Equations. 3.8 and 3.9 and are shown in Figure 3.7.  Non-linear trends of FFV with 

solution concentration are in part driven by a negative excess volume of mixing due to non-

ideal mixing of water and PEO [Figure 3.7]. 

FFV values for aqueous glycerol solutions were likewise determined, where V)0,~��Q���� is 

substituted for V)0,{|} in Eqns. S5 and S6.  V)0,~��Q���� was determined to have a value of 0.724 

cm3/g using group contribution theory, yielding a FFV value for pure glycerol of 0.088.  FFV 

values for glycerol solutions are also shown in Figure 3.7. 
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Figure 3.7. Comparison of fractional free volume (FFV) values derived from experimental solution densities 
(curves) and accessible FFV values simulated using Molecular Dynamics (circles) for PEO and glycerol 
solutions.  Blue solid curve and filled circles are for PEO solutions, and red dotted curve and unfilled circles are 
for glycerol solutions. 
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3.7.3 Fitting water self-diffusion coefficients to fluid mechanics and diffusion models: 
Mackie-Meares model 

The Mackie-Meares equation mentioned in the main text is given by (10) 

𝐷;!? =
𝐷ledc𝜙g(

(2 − 𝜙g)(
 (3.10) 

where 𝐷ledc and 𝜙g are the self-diffusion coefficient of pure water at 293K (2.20 x 10-5 cm2/s) 

and the water volume fraction. The volume fraction of water at a given water weight fraction, 

𝑤g, is given by  

𝜙g(𝑤g) =
𝑤g𝑉¤g(𝑤g)
𝑉¤(𝑤g)

 (3.11) 

where 𝑉¤g(𝑤g) and 𝑉¤(𝑤g) are the mass specific volumes of water and the solution at a given 

𝑤g. 𝑉¤(𝑤g) is simply determined from the inverse of the mass density of the solution density. 

𝑉¤g(𝑤g) is derived from a tangent line construction of 𝑉¤  at a given 𝑤g and the resulting values 

are presented in Figure 3.8. 
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Figure 3.8.  Water partial specific volumes for PEO-water solutions as a function of PEO concentration derived 
from solution densities. 

3.7.4 MD free volume and diffusion simulations 

The Califano method for estimating the accessible FFV relies on first inserting a 0.53 

Å radius probe “molecule” at every node of a 3D grid (with 0.5 Å bin widths) cast over the 

simulation box and checking for overlaps with the VDW radii of atoms in the bin volume.(67) 

The probe size was chosen to match that used by experimental Positron Annihilation Lifetime 

Spectroscopy (PALS) in which polymer FFV is estimated using the lifetime of ortho-

positroniums which have a 0.53 Å radius. If the node has no overlaps with atoms in the bin 

volume, it is considered an unoccupied node. A bin will be assigned a total free volume 

depending on the number of unoccupied nodes it contains. A bin with a single unoccupied node 

has a free volume of 1/8-th the volume of the probe molecule or 0.0779 Å3. Two, three, and 

four unoccupied nodes correspond to free volume elements of 0.1020 Å3, 0.1143 Å3, and 

0.1173 Å3, respectively. These volumes are estimated by subtracting the average probe overlap 

volume from the sum of the probe volumes for the 2, 3, and four unoccupied node cases. If 

there are five or more unoccupied nodes, the entire bin is considered a free volume of size 

0.125 Å3. We note that that, outside of extreme cases (i.e., using a probe of size 0 Å), most 

combinations of bin size and probe size yield qualitatively similar values. For every simulated 

PEO-water composition (from 0 to 50 wt%), we check for probe overlaps with the van der 

Waals radii of any water or polymer molecule atoms (RH = 1.2 Å, RC = 1.7 Å, RO = 1.52 Å).   

We further note that accessible FFV values derived from MD are highly sensitive to the 

choice of probe size and grid spacing. We demonstrate the effect of probe size by inspecting 

the FFV-concentration [Figure 3.9(a)] and FFV-diffusivity [Figure 3.9(b)] scaling 
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relationships. Ultimately, while the probe size impacts the magnitude of the FFV, probe size 

does not fundamentally alter the underlying FFV trends in PEO-water solutions. 

 

 

Figure 3.9. Systematically varying FFV probe size from 0.27 Å to 1.27 Å quantitatively alters the resulting 
FFV estimate while leaving the underlying relationships with (A) PEO concentration and (B) water self-
diffusivity unchanged. Here, we normalize by the pure water fractional free volume  𝑭𝑭𝑽𝟎 to emphasize the 
consistent exponential relationship between 𝑫 and 𝟏

𝑭𝑭𝑽
. The 0.27 Å, 0.53 Å, 0.95 Å, and 1.27 Å probe size 

calculations yield 𝑭𝑭𝑽𝟎 values of 0.332, 0.205, 0.036, and 0.004, respectively. 

At dilute PEO concentrations (c<c*), MD-derived water self-diffusivities show near 

quantitative agreement with the PFG-NMR results, exhibiting less than 20% deviation. Much 

of this difference may be explained by the 4 °C lower simulated temperature. For instance, 

NMR studies have previously demonstrated as much as a 15% increase in water self-diffusivity 

going from 15 to 20°C (108). However, MD simulations give a water self-diffusivity just under 

half of the PFG-NMR measurement at 50 wt%. This more dramatic discrepancy may stem 

from imperfections in the ability of the MD model (see Methods) to reproduce accurate 

(B)(A)
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equilibrium self-diffusivities at high PEO concentration. Though the PEO parameters 

previously yielded accurate conformational landscapes (24) and phase behavior in water,(45) 

it was not validated with equilibrium dynamics in mind.  
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3.7.5 MD simulations of solution structure 

 Though there are several metrics that report on the tetrahedrality of water in molecular 

simulations(85, 86, 88), many of these metrics can underestimate water coordination near 

surfaces(85, 86, 109, 110) due to the requirement of 4 neighboring waters. On the other hand, 

3-body angle distributions do not require a given water molecule to be 4-coordinated, making 

them more robust to the geometric constraints introduced at interfaces.  

 Water’s tetrahedral structure is closely related to its capacity to form approximately 4 

hydrogen bonds per water molecule. In the present study, we note that both the number of 

water-water hydrogen bonds per water molecule, 𝑁;i,gIE-gIE/𝑁g, and 𝑝EcE strongly correlate 

with the FFV of PEO-water mixtures [Figure 3.10(a)-(b)] and with each other [Figure 

3.10(c)]. The overall decrease in 𝑁;i,gIE-gIE/𝑁g with increasing concentration in Figure 

3.10 is driven by the waters that directly hydrogen bond with PEO ether oxygens. The 

remaining hydration waters on the other hand exhibit enhanced tetrahedrality, with the net 

effect of an overall enhancement of the hydration layer tetrahedral structure. 
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Figure 3.10. The MD-computed FFV exhibits strong correlations with water structural metrics such as (A) the 
average number of water-water hydrogen bonds per water molecule, 𝑵𝑯𝑩,𝒘𝒂𝒕\𝒘𝒂𝒕/𝑵𝒘, and (B) the population 
of tetrahedrally coordinated waters, 𝒑𝒕𝒆𝒕. (C) 𝒑𝒕𝒆𝒕 correlates strongly with 𝑵𝑯𝑩,𝒘𝒂𝒕\𝒘𝒂𝒕/𝑵𝒘. 

3.7.6 Correlations between MD and ODNP water diffusivities and tetrahedral water 
population 

 

Figure 3.11. Comparing the correlation between population of tetrahedral waters 𝑝4S4 and three estimates of the 
relative water diffusivity: system-averaged water self-diffusivity from MD 𝐷M!- (filled triangles), water self-
diffusivity for waters within 0.8 nm of the radical oxygen from MD 𝐷:POI: (unfilled triangles), and ODNP-
derived local water self-diffusivity using spin-labeled PEO 𝐷-./0 (unfilled squares). Both MD estimates of 
water diffusivity show strong correlation with 𝑝4S4 (R

2 > 0.99). While the ODNP results show a nominally 
favorable correlation with 𝑝4S4 (R

2 = 0.95), the slope of the relationship is significantly smaller than the former 
two cases. 
 

(A) (B) (C)

Increasing PEO 
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Chapter 4: Local water structures govern the mixing 
dynamics and thermodynamics of cryoprotectant 
mixtures 
 
Adapted with permission from: 
 
1. Debasish D. Mahanta7, Dennis C. Robinson Brown, Simone Pezzotti, Songi Han Gerhard 
Schwaab, M. Scott Shell, Martina Havenith. Local solvation structures govern the mixing 
thermodynamics of glycerol–water solutions. Chem Sci. 2022. DOI: 10.1039/D3SC00517H. 
Copyright 2022 Royal Society of Chemistry 
 
2. Debasish D. Mahanta8, Dennis C. Robinson Brown, Thomas R. Webber, Simone Pezzotti, 
Songi Han Gerhard Schwaab, M. Scott Shell, Martina Havenith. Unraveling the Interplay 
between Structure, Dynamics, and Thermodynamics in Cryoprotectant Aqueous Solutions. In 
Preparation 

4.1 Introduction 
 As noted in Chapter 2, glycerol is a major cryoprotective agent (CPA)(1–4) used to 

promote protein stabilization upon exposure to supercooled temperatures as low as -196 C. 

Aqueous mixtures containing CPAs like glycerol mediate protein stabilization by inducing 

preferential solvation of the protein surface by water rather than glycerol(5). Other CPAs 

enhance protein stability in cryogenic environments via alternative mechanism such as in the 

case of DMSO which preferentially solvates the protein surface in contrast to glycerol. Often, 

heuristically designed multicomponent aqueous “recipes” containing DMSO, glycerol, and 

other additives are used improve the cryoprotective capacity of a CPA mixture. Incidentally, 

some CPA constituents like DMSO are cytotoxic at high concentration; hence, CPA mixtures 

must be tailored to maximize cryoprotection while minimizing toxicity. To date, the precise 

 
7 First-authorship shared between D.D.M. and D.C.R.B 
8 First-authorship shared between D.D.M and D.C.R.B 
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molecular-scale mechanisms underlying cryoprotection are poorly understood outside of mean 

field thermodynamic and kinematic approaches(6–8). 

 As glycerol-containing aqueous are nearly ubiquitous to the stabilization of biological 

materials in vitro, numerous experimental efforts have interrogated the glycerol-water structure 

such as dielectric spectroscopy(9–14), nuclear magnetic resonance (NMR)(15), x-ray 

photoelectron spectroscopy (XPS)(10), and infrared (IR) spectroscopy(4, 10, 16). These 

fundamental studies of glycerol-water mixtures provide insights into glycerol’s influence on 

water’s molecular structure. In one such example, Weeraratna et al. identified three distinct 

populations of water: (I) bulk water, (II) solvation waters hydrating glycerol, and (III) water 

molecules “confined” by glycerol using dielectric spectroscopy(10). Naturally, type I and II 

waters dominated at low glycerol concentration while type III waters dominated as glycerol 

concentration increases.  However, the manner and magnitude by which these distinct 

molecular structural motifs impact the mixing thermodynamics of glycerol-water has not been 

previously investigated. Better understanding this structure-thermodynamics connection is an 

important precursor to interpreting the molecular mechanisms undergirding solute solvation 

thermodynamics in glycerol-water and rationally tailoring CPA mixture compositions for 

biomolecule cryoprotection. 
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Figure 4.1 An idealized representation of a effective molar extinction coefficient spectra in 
DMSO-water is composed of the sum of wrap and bound water contributions. The wrap water 
contribution exhibits a peak in amplitude in the water-water HB-stretching region of the 
spectrum. The bound water contribution displays maximal enhancement in the THz frequency 
region corresponding to water librational modes (corresponding to greater steric hinderance 
owing to water-cosolvent hydrogen bonding). A simulation snapshot of a DMSO molecule 
illustrates the bound waters (in blue) and wrap waters (in red) local to the DMSO.  
 

 Unlike the above-mentioned experimental methods, Terahertz (THz) absorption 

spectroscopy directly probes the collective and solvation shell motions of water in aqueous 

mixtures without the need for model assumptions. The solvation shell of solute molecules were 

previously characterized by analyzing the difference THz spectra(10, 17–21)—subtracting the 

bulk water spectrum from the spectra of the glycerol-water mixtures. In calculating the 

difference spectrum, the prior works identified the spectroscopic features that probe distinct 

water structural motifs local to the hydrophobic and hydrophilic moieties of alcohols(17). I 

illustrate the water populations “wrapped” around hydrophilic moieties (“wrap” waters) and 
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hydrogen bonded to the hydrophilic moiety (“bound” waters) of DMSO [Figure 4.1]. 

Specifically, the wrap and bound waters have THz-signatures in the 100-250 cm-1 and 350-600 

cm-1 spectral regions, respectively. The population of wrap waters is proportional to the redshift 

in the water HB-stretching region (100-250 cm-1) of the THz spectrum relative to bulk water—

owing to weaker water-water hydrogen bonds in wrap waters(17, 19). On the other hand, 

increased water-solute hydrogen bonding—and hence, higher bound water population—leads 

to greater steric hinderance of water and a corresponding blueshift of the librational band of 

water (350-600 cm-1)(19). Notably, the balance of difference THz spectra signatures associated 

with hydration shell of hydrophobic moieties (“wrap” waters) and waters hydrogen bonded to 

hydrophilic moieties (“bound” waters) is predictive of alcohol solvation free energies(17, 19). 

This THz difference spectra data analysis protocol was given the apt name of “THz 

Calorimetry”. 

Terahertz (THz) absorption spectroscopy has the potential to address this challenge, 

especially when it is combined with the detailed molecular characterization offered by 

molecular dynamics (MD) simulations(10, 17). In particular, in a recent study on hydrated 

alcohols, we identified spectroscopic fingerprints in the THz range that directly probe the 

distinct structural motifs of the HB-network around the solute (17). We found that the water 

populations close to hydrophilic and hydrophobic moieties provide THz fingerprints that are 

well distinguishable from that of bulk water: “wrap” water molecules close to hydrophobic 

(CHx) groups have a characteristic THz-signature in the 100-250 cm-1 region, where the 

translational motions of intermolecular stretching modes are active, while “bound” water 

molecules H-bonded to hydrophilic (OH) moieties have their imprint in the 350-600 cm-1 

spectral range of water librations. Using THz-calorimetry to relate spectroscopic to 



 

 
 

94 

thermodynamic quantities and MD simulations to independently quantify the distinct local 

contributions of the two identified populations to solvation entropy and enthalpy, we could 

experimentally show that the wrap population provides an entropic cost for (small) alcohol 

hydration, compensated by an enthalpic gain from the bound population(17, 22). These 

spectroscopic signatures of hydrophilic and hydrophobic hydration water populations are not 

specific of alcohol-water systems but have been recently observed for water hydrating a large 

variety of solutes and biomolecules(23–26). 

 In this chapter, we leverage the THz signatures or bound and wrap water structural 

motifs and atomistic molecular dynamics simulations to reveal the dependence of solvation 

thermodynamics on shifts in water’s molecular structure in both glycerol-water and DMSO-

water mixtures. In doing so, we establish a direct link between macroscopic thermodynamic 

metrics and sub-nanometer molecular structural details. This combined experimental-

computational workflow suggests a path towards rational, physically-motivated design rules 

for CPA (or other stabilizing media) mixture compositions. Specifically, THz spectroscopy 

measurements directly probe the balance of local populations of bound and wrap water 

populations as a function of DMSO and glycerol concentration separately. Using atomistic 

molecular dynamics simulations, we perform detailed analyses of the water-water orientational 

ordering—via the relative population of tetrahedrally-coordinated waters 𝑝EcE–presented in 

different hydration water populations (e.g., bound and wrap waters). Further, both 

experimental and computational methods draw a direct connection between molecular 

structure and excess free energetic properties in glycerol-water and DMSO-water. Finally, we 

explore the relationship between molecular-level probes of water structure and ODNP-
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measured water dynamics to yield a similar structure-dynamics-thermodynamics connection 

to the one presented in Chapter 2.  

4.2 MD Simulation Methodology 

4.2.1 Glycerol-Water Simulation Protocol 
We model glycerol-water mixtures using Bliek-Chelli parameters for glycerol(27, 28) and the 

OPC 4-site water model(29). This combination of models reliably reproduces the equilibrium 

thermophysical properties of glycerol-water under standard temperature and pressure 

conditions(29–31). Coulombic interactions are modelled using the particle-mesh Ewald 

summation scheme (PME)(32). We simulate glycerol-water mixtures with Xgly = 0, 0.012, 

0.033, 0.05, 0.075, 0.10, 0.15, 0.20, 0.30, 0.40, 0.50, and 1.0 at 18°C and 1-bar using the GPU-

optimized OpenMM package(33). All simulations are conducted in the NPT ensemble, with 

temperature and pressure held constant using a Langevin thermostat and Monte Carlo 

barostat(33), respectively. We generate initial configurations containing 729 glycerol 

molecules and vary the numbers of water molecules using Packmol software(34). We first 

minimize the energy of the initial configurations and equilibrate in the NPT ensemble for times 

ranging from 100 to 500 ns depending on the glycerol concentration. We conduct production 

runs for 100 ns with system coordinates saved every 100 ps. Following the simulations, we 

analyze the production run trajectories using the pytraj Python library(35) and in-house python 

code. For each simulation-computed quantity, we estimate the standard error of the mean using 

block averaging. 

4.2.2 DMSO-Water Simulation Protocol 
We model DMSO-water mixtures using the Fox-Kollman parameters(36) for DMSO and the 

TIP4P-EW 4-site water(37) model. Previous research has demonstrated that this specific 
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combination of DMSO and water models reliably replicates standard temperature and pressure 

mixture properties such as density(36, 38). We model Coulombic interactions with the particle-

mesh Ewald summation scheme (PME). To span the entire experimental composition range, 

we study the following exponentially spaced DMSO mole fraction, XDMSO = 0, 0.01, 0.04, 

0.06, 0.10, 0.16, 0.27, 0.45, 0.74, and 1.0 at 18°C and 1-bar using the GPU-optimized 

OpenMM package. Prior to conducting the MD simulations, we generate initial configurations 

containing 2000 water molecules with varying numbers of DMSO molecules using Packmol. 

Following system setup, we minimize energy minimize these initial configurations. Following 

energy minimization, we equilibrate the systems in the NPT ensemble for 100 ns by holding 

the temperature and pressure constant via a Langevin thermostat and Monte Carlo barostat, 

respectively. After setting up each system, we perform production simulations in two different 

ensembles: (1) NPT (using the same thermostat and barostat) and (2) NVE dynamics 

simulations. The NPT production runs are 100 ns long with system configurations recorded 

every 100 ps for later analysis. The NVE production runs are initiated from 5 separate, equally 

spaced NPT production run configurations, temperature equilibrated for 1 ns at 18°C, and 

finally 1 ns production runs. NVE production run coordinates are saved every 1 ps. All the 

analyses are conducted post-simulation using the pytraj.  

4.2.3 MD Hydrogen Bonding Analyses 
We define HBs via the widely-used geometric criteria of Luzar and Chandler(39), namely, O-

H distance and ∠𝑂 − 𝑂𝐻 angular cut-off values of 3.5 Å and 120° degrees, respectively. 

Tracking the waters participating in water-glycerol HBs, we directly quantify the mole fraction 

of bound waters (𝑋W&eCv). We also calculate the mole fraction of wrap waters (𝑋gdIl) by 

defining them as waters lying within the first hydration shell of glycerol molecules (~4.2 Å, as 
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defined by the first minima of the 2D radial distribution function between glycerol heavy atoms 

and water oxygens), but not H-bonded to the glycerol molecule. Non-shell waters are simply 

all waters residing more than 4.2 Å from glycerol heavy atoms. We compute concentration of 

non-shell waters on a molar basis via 𝑋C&C-%�c"" = (1 − 𝑋W&eCv − 𝑋gdIl − 𝑋!"#).  

4.2.4 MD Water Self-Diffusivity Analysis 
Water self-diffusivity, 𝐷;!?, values are estimated from the results of the 5 separate NVE 

simulations via the slope of the mean-square displacement (MSD) curve 

𝐷;!? =
1
6 limE→j

𝑀𝑆𝐷(𝑡)
𝑡 = lim

E→j

⟨|𝑟(𝑡 + 𝜏) − 𝑟(𝜏)|(⟩
6𝑡  (4.1) 

where 𝑟, 𝑡, and 𝜏are the position of a water oxygen, the current time step, and the initial time 

step. Here, ⟨∙⟩	is the ensemble average of a quantity across all water oxygen positions. We 

estimate the uncertainty in 𝐷;!? from the sample standard deviation.  

4.2.5 MD Thermodynamics Analyses 
Using the simulation-averaged molar energy < 𝐸 > and molar volume < 𝑉 > for each 

simulated glycerol-water mixture, we also estimate the molar energy of mixing Δ𝐸45n5C! =<

𝐸 > −𝑋!"# < 𝐸!"#$cd&" > −*1 − 𝑋!"#. < 𝐸gIEcd > and molar volume of mixing Δ𝑉45n5C! =

< 𝑉 > −𝑋!"# < 𝑉!"#$cd&" > −*1 − 𝑋!"#. < 𝑉gIEcd >. Here, < 𝑌gIEcd > and < 𝑌!"#$cd&" > 

correspond to the average molar value of 𝑌 for pure water and glycerol, respectively. The molar 

enthalpy of mixing Δ𝐻45n5C! hence stems from the relation Δ𝐻45n5C! = Δ𝐸45n5C! +

𝑃Δ𝑉45n5C! where 𝑃 is system pressure (1 bar). 
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4.3 Characterizing Glycerol Hydration Layers 

4.3.1 Analyzing THz Spectroscopic Signature of Bound Waters 
The ensuing discussion of experimental results are adapted from our previous 

collaboration with Havenith et al(40); here, further details describing the experimental 

procedures and the theory underlying THz spectroscopy are given. To interrogate the 

spectroscopic signature of the glycerol-water hydration shell, we analyze the effective molar 

extinction coefficient, 𝜀�#vdIE5&C(𝜈) [depicted in Figure 4.1]. This hydration contribution to 

the molar extinction coefficient is given by 

𝜀�#vdIE5&C(𝜈) = 𝜀(𝜈) − 𝑋!"#𝜀!"#(𝜈) − 𝑋gIE𝜀gIE(𝜈) (4.2) 

where 𝜀!"# and 𝜀gIE are the molar extinction coefficients of pure glycerol and water, 

respectively. Therefore, Equation 4.3 is sensitive to the “excess” spectroscopic effect of 

mixing water and glycerol. By construction, 𝜀�#vdIE5&C(𝜈) identically approaches zero as 

𝑋!"# → 1 or 0. We depict the 𝜀�#vdIE5&C(𝜈) spectra for an experimental range from 𝑋!"# =

0.01 to 0.8 in Figure 4.2(a). 
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Figure 4.2 (a) Molar effective extinction coefficient (𝜀�#vdIE5&C) at 20°C as calculated by 
subtracting the bulk water and bulk glycerol spectra from the glycerol-water mixtures spectra 
(equation 4). 𝜀�#vdIE5&C increases with frequency for all the solutions in the 350-450 cm-1 
spectral region (gray shaded area). The dotted black line is the linear fit in that region for 
glycerol mole fraction; Xgly = 0.8, as an example. The slope obtained from such fit is then used 
for interpreting the spectral trends. (b) The slopes derived from experimental 𝜀�#vdIE5&C spectra 
are plotted for all Xgly at three different temperatures (5°C, 20°C and 40°C, respectively). The 
lines are guide to the eye and the error bars are indicated by the shaded regions. (c) The 
populations of various types of water in glycerol-water mixtures as predicted by MD 
simulations. 
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Notably, 𝜀�#vdIE5&C(𝜈) displays no meaningful concentration-dependent enhancement 

in the THz region corresponding to non-hydrogen bonding (“wrap”) water in the ~100-250 cm-

1 spectral region. Further, water librational spectral region (~350-600 cm-1)—corresponding to 

water solute hydrogen bonds—displays a clear concentration dependence. A previous 

computational-THz study demonstrated that the slope of this librational is directly proportional 

to the number of solute-bonding waters per solute molecule, 𝑁W&eCv(19, 41). In conjunction, 

these trends (or lack thereof) in wrap and bound water signatures suggest that glycerol is well-

integrated into the solution hydrogen bonding network with nearly all hydration waters 

participating in glycerol-water hydrogen bonds(11).  

In Figure 4.2(b), we examine the dependence of the librational region slope on glycerol 

mole fraction at three separate temperatures (5°, 20°, and 40° C). For the present discussion, we 

take the magnitude of the slope to be a proxy measurement of 𝑁W&eCv. At all experimental 

temperature, 𝑁W&eCv increases monotonically for 𝑋!"# < 0.4 and decreases monotonically for 

𝑋!"# > 0.4. While 𝑁W&eCv must inevitably go to zero for pure glycerol, the concentration of 

maximum 𝑁W&eCv (𝑋!"#$ = 0.4) is non-obvious. The initial increase in 𝑁W&eCv stems from 

increasing glycerol-water interactions. At 𝑋!"#$ = 0.4, the number of glycerol-water hydrogen 

bonds saturates, and glycerol-glycerol interactions progressively dominate glycerol-water 

interactions for 𝑋!"#$ > 0.4. These findings coincide the previous THz and Dielectric 

spectroscopy studies(10, 11) which demonstrated that, upon increasing 𝑋!"#$, solution 

structure transitions from being dictated by (i) water-water interactions, to (ii) water-glycerol 

interactions (e.g., bound waters), and finally (iii) glycerol-glycerol interactions at 

approximately  𝑋!"#$ = 0.4. 
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 To further characterize these structural transformations, we performed classical MD 

simulations and evaluated the relative mole fractions of wrap and bound water populations, as 

well as of bulk-like water not involved in the hydration of glycerol solutes (denoted hereafter 

non-shell water) as a function of glycerol content. We identify these three populations in the 

simulations based on structural criteria, i.e., on their proximity with respect to OH and 

hydrophobic glycerol moieties and their H-bonding properties. The simulated variations in the 

three populations with Xgly are shown in Figure 4.2c, as obtained by direct counting of water 

molecules belonging to each identified population. Most notably, the bound water population 

follows most closely the trend observed experimentally for the slope, i.e., first increasing with 

Xgly for low glycerol content, saturating at around Xgly = (0.3-0.4), and then decreasing with 

further increasing the glycerol mole fraction. The simulated wrap water population shows a 

similar non-monotonic behavior but reaches saturation for much lower glycerol mole fractions 

(Xgly = 0.1). This is easily understood by considering that wrap water interacts much more 

weakly than bound water with glycerol (since it is not H-bonded), and therefore it is the easiest 

part of the hydration layer that is stripped off as soon as the glycerol molecules in the system 

become too many to be fully hydrated. The small population of wrap water above Xgly > 0.1 

and the near bulk character of the wrap water signature region of the THz spectra [see Figure 

4.2] prevents an unambiguous identification of this population in the THz-spectra. The non-

shell water population shows a straightforward monotonic decrease with Xgly because 

increasing numbers of water molecules are involved in the solvation of glycerol molecules as 

their concentration increases. 
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4.4 Characterizing DMSO Hydration Layers 
We now consider the structural details of DMSO-water mixtures. Unlike glycerol, DMSO 

contains hydrophobic (-CH3) and hydrophilic (-S=O) moieties. Hence, we anticipate a 

substantial wrap water component from THz experiments à la previous investigations of 

hydration layers of alcohol-water mixtures(19,64). The experimental procedures will be 

described in detail in our soon to be submitted article9. For the present discussion, we consider 

principal component analysis (PCA) of the wrap (~100-250 cm-1) and bound (~350-600 cm-1) 

regions of the effective extinction spectra, 𝜀�#vdIE5&C(𝜈), for DMSO-water mixtures ranging 

from 𝑋@�6? = 0.01 to 0.95. In Figure 4.3(a), we depict the projections of extinction 

coefficient regions corresponding to wrap 

𝑃gdIl = 𝑝𝑟𝑜𝑗®𝜀�#vdIE5&C(100 < 𝜈 < 250𝑐𝑚-,), 𝑃𝐶gdIl¯ (4.3) 

and bound 

𝑃W&eCv = 𝑝𝑟𝑜𝑗®𝜀�#vdIE5&C(350 < 𝜈 < 600𝑐𝑚-,), 𝑃𝐶gdIl¯ (4.4) 

waters onto their first principal components 𝑃gdIl and 𝑃W&eCv, respectively. 𝑃gdIl increases 

with DMSO concentration until 𝑋@�6? = 0.35 [Figure 4.3(a)]. Similarly, 𝑃W&eCv exhibits a 

maximum but at a higher DMSO concentration (𝑋@�6? = 0.6). Hence, upon increasing 𝑋@�6? 

from 0 to 1, we fist observe the preferential hydration of the hydrophobic moieties (-CH3) of 

DMSO for 𝑋@�6? < 0.35. For 𝑋@�6? > 0.35, the -CH3 groups de-wet, and water begins to 

preferentially hydrate the hydrophilic moiety (-S=O). The competition between -CH3 and -

S=O hydration suggests a micro-heterogeneous structure of DMSO hydration waters.  

 We directly observe these distinct water structuring regions using analyses from the 

MD simulations [Figure 4.6]. Specifically, 2D radial distribution functions for water relative 

to the CH3 [𝑔*𝑟?g-L;%.] and S=O [𝑔(𝑟?g-6H?)] moieties display distinct signals. 𝑔(𝑟?g-6H?) 

demonstrates the strong water-ODMSO interaction with the first peak centered at ~0.28 nm. With 

its first peak centered at ~0.36 nm, 𝑔*𝑟?g-L;%. suggests that weaker water-CH3 interactions. 

Further, water exists at higher local density near -S=O than -CH3 as indicated by the higher 

 
9 This is manuscript #2 mentioned at the beginning of Chapter 4. 
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first peak amplitude of 𝑔(𝑟?g-6H?) compared to  𝑔*𝑟?g-L;%. (between 25 and 300% higher). 

The magnitude of the first peak amplitude increases with 𝑋@�6? for both RDFs.  

 To complement the THz measurements and accompanying PCA, we leverage classical 

MD simulation to directly compute the bound, wrap, and non-shell water mole fractions in 

water-DMSO as described the Methods section. We summarize the trends in these three mole 

fractions in Figure 4.3(b). We note that the simulation computed wrap and bound water mole 

fractions exhibit qualitative agreement with the bound and wrap water signals indicated by the 

PCA scores of the experimental THz spectra [Figure 4.3(a)]. Specifically, 𝑋gdIl and 𝑋W&eCv 

saturate at DMSO mole fractions of 𝑋@�6? = 0.16 and 0.45, respectively. Notably, the peak 

amplitude of 𝑋gdIl is 46% larger than in water-glycerol from our previous study(40). DMSO 

form fewer HBs with water than glycerol, which explains the relatively higher 𝑋gdIl. The 

wrap to bound water trade-off at 𝑋@�6? = 0.45 stems from the near 1:1 ratio of water:DMSO 

paired with the preferential association of hydration of water near the HB-accepting sulfoxide 

oxygen. Naturally, as 𝑋@�6? increases, larger portions of the water enter the hydration layer of 

DMSO molecules; hence monotonically decreasing the mole fraction of non-shell waters. 

We note the quantitative difference between wrap and bound water signals derived from 

THz 𝜀�#vdIE5&C spectra [Figure 4.3(a)] and MD simulations [Figure 4.3(b)]. This largely 

stems from the fundamental difference between the two measurements. For instance, 

normalizing 𝑋W&eCv and 𝑋gdIl by their sum (e.g., �wxyz{
�wxyz{.�#"|}

) yields the fraction of the 

DMSO hydration shell occupied by bound and wrap waters, respectively. On the other hand, 

there is no obvious method of combining the bound and wrap principal component scores to 

reconstruct the composition of DMSO’s hydration shell. To draw a more quantitative 

comparison between the principal components and MD hydration shell signatures, we rescale 

𝑋W&eCv and 𝑋gdIl to new variables 𝑆W&eCv and 𝑆gdIl 

𝑆5 =
�&

�wxyz{.�#"|}
*𝑃W&eCv + 𝑃gdIl.      (1) 

where 𝑃W&eCv and 𝑃gdIl are the principal component scores corresponding to the bound and 

wrap water shown in Figure 4.3(a). We depict these rescaled variables in Figure 4.3(c). While 

the quantitative agreement between 𝑆5 and 𝑃5 is imperfect for both bound and wrap waters, we 

observe greater agreement between the peak positions of 𝑆5 and 𝑃5 than between 𝑋5 and 𝑃5. 
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Specifically, we illustrate the rightward shift in the MD bound water signature peak location 

from 𝑋@�6? ≈ 0.45 into better agreement with the peak position of 𝑃W&eCv at 𝑋@�6? ≈ 0.60. 

Similarly, the MD wrap water signature peak position moves closer to the peak position of 

𝑃gdIl by shifting from 𝑋@�6? = 0.16 to 0.27. 

Though the rescaled MD variables reproduce the essential trends of the THz principal 

component scores, we observe difference between the two in terms of signal amplitude and 

shape. In part these differences stem from the selected HB geometric criteria and assumed first 

hydration shell size. In Figure 4.7, we demonstrate the systematic effect of varying the 

hydration layer cut-off distance. Here, we find that increasing cut-off radii yields a systematic 

increase in the wrap water mole fraction 𝑋gdIl. On the other hand, 𝑋W&eCv is unaffected by the 

choice of hydration shell cutoff for radii larger than the HB distance criteria (e.g., >3.0 Å). 

Regardless of the chosen cut-off, the essential trends in 𝑋gdIl and 𝑋W&eCv remain unchanged. 

Additionally, while the DMSO force field parameters yield exceptionally accurate mixture 

densities at low concentrations (𝑋@�6? < 0.27), model performance marginally worsens at 

higher concentrations. This behavior is reflected in the indistinguishable model and 

experimental density for 𝑋@�6? < 0.27 and the 2% larger model density for pure DMSO 

[Figure 4.8].  
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Figure 4.3 (a) The scores associated with the principal components of wrap, 𝑃gdIl, (red) and 
bound, 𝑃W&eCv, (blue) water display maxima at 𝑋@�6? ≈ 0.35 and 0.60, respectively. (b) 
Direct calculation of the mole fraction of wrap (𝑋gdIl) and bound (𝑋W&eCv) waters from the 
MD simulations demonstrate wrap and bound maxima at 𝑋@�6? ≈ 0.16 and 0.45, respectively. 
The non-shell waters are all waters not lying within the hydration shell of DMSO molecules. 
Hence, we define water mole fraction of non-shell waters by 𝑋9&C-%�c"" = 𝑋gIE − 𝑋gdIl −
𝑋W&eCv. As 𝑋@�6? increases, 𝑋9&C-%�c"" goes to zero because all waters are considered a part 
of DMSO hydration shells. (c) We rescale the MD computed 𝑋W&eCv and 𝑋gdIl to map to the 
THz-derived principal component scores. Both the peaks of the rescaled wrap, 𝑆gdIl, and 
bound, 𝑆gdIl, water signals shift closer to the respective wrap and bound water spectroscopic 
principal component scores. The rescaling procedure is described in detail in the main text. 
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4.5 Analyzing the Molecular Structure of Bound and Wrap Waters 
Beyond reproducing the hydration structural information from THz experiments, we further 

analyze the MD trajectories to directly characterize the impact of increasing concentration on 

the hydration layer structure about DMSO. As detailed in our previous work(40) and the water 

literature more broadly(42–46), the orientational ordering of water in the vicinity of small 

molecules affects mixture thermodynamics. Specifically, we enumerate the water triplet angle 

configurations and analyze the resulting distribution, 𝑃>W(𝜃). For the present analysis, we 

highlight angles corresponding to shifts in the tetrahedral (𝜃 = 109.5∘) and simple fluid like 

(𝜃 = 64∘) populations. 

 In Figure 4.4(a), we present triplet angle distributions relative to the pure water 

distribution, Δ𝑃>W(𝜃) = 𝑃>W(𝜃) − 𝑃>W,ledc(𝜃), for bound and wrap water populations at 

𝑋@�6? from 0.01 to 0.74. Notably, the bound water tetrahedrality is less than that of pure water, 

Δ𝑃>W,W&eCv(𝜃 = 109.5∘) < 0, while its icosahedrality is greater to compensate, 

Δ𝑃>W,W&eCv(𝜃 = 64∘) > 0, for 𝑋@�6?<0.27. The relative decrease in tetrahedrality for small 

𝑋@�6? stems from the formation of DMSO-water hydrogen bonds and thus decreased water-

water orientational coordination. However, the relative population of tetrahedrally-coordinated 

bound waters increases systematically and eventually supersedes pure water tetrahedrality for 

𝑋@�6?>0.27. On the other hand, wrap waters exhibit enhanced tetrahedrality (and decreased 

icosahedrality) relative to pure water for the entire range of 𝑋@�6?. Further, the tetrahedral 

enhancement of wrap waters residing near hydrophobic CH3 groups coincides with previous 

findings(47–50) for water in the hydration shell of small (<1 nm in radius) hydrophobic 

moieties. We also note the presentation of a Δ𝑃>W(𝜃) enhancement centered at 𝜃 ≈ 130∘ in 

Δ𝑃>W,W&eCv. The enhancement at 𝜃 ≈ 130∘ further distinguishes the structural features of water 

near the hydrophilic moieties of DMSO from the hydrophobic moieties. In Figure 4.9, we 

demonstrate that these high-𝜃 (𝜃 > 120∘) enhancements owe to monotonic increase in 

𝑃>W(𝜃 > 120∘) with increasing 𝑋@�6?. The discrepant signatures of Δ𝑃>W(𝜃) for bound and 

wrap waters further supports the presentation of nanoscopically distinct wetting (=O) and 

dewetting (-CH3) regions of the DMSO hydration shell as 𝑋@�6? increases. 

  

 



 

 
 

107 

 

 

 

 

Figure 4.4 (a) We depict differential triplet angle distributions, Δ𝑃>W,5(𝜃) = 𝑃>W,5(𝜃) −
𝑃ledc(𝜃), for the bound and wrap water populations in DMSO-water. The wrap waters show a 
monotonic increase in tetrahedrality with increasing 𝑋@�6?. On the other hand, bound water 
displays lower tetrahedrality relative to pure water for 𝑋@�6? < 0.27 and higher tetrahedrality 



 

 
 

108 

relative to pure water for all 𝑋@�6? > 0.27. These trends in tetrahedrality are numerically 
reflected by (b) the population of tetrahedrally coordinated waters, 𝑝EcE,5 = ∫ 𝑃>W,5(𝜃)

,(0∘

,00∘ 𝑑𝜃. 
Notably, 𝑝EcE,gdIl	suggests that wrap waters become increasingly more tetrahedral than the 
system average over all water molecules (black) at higher 𝑋@�6?. 𝑝EcE,W&eCv illustrates that 
bound waters are consistently ~10 to 15% less tetrahedrally coordinated than pure water. (c) 
The system averaged population of tetrahedral waters relative to pure water, 𝑝EcE/𝑝EcE,ledc, 
demonstrates remarkable corelation with the log-diffusivity of water in both glycerol-water 
(cyan) and DMSO-water (green) obtained from Overhauser Dynamic Nuclear Polarization 
(ODNP) experiments. The insets are simulation snapshots of the water environment within the 
hydration shell of DMSO (green box) and glycerol (cyan box) molecules at a water mole 
fraction of 𝑋;!? = 0.9. Here, blue and red oxygen atoms correspond to bound and wrap water 
molecules, respectively. Similarly, blue dashed lines illustrate hydrogen bonds between bound 
waters and the solute while red dashed lines illustrate hydrogen bonds between water 
molecules. 
 

We directly quantify shifts in the tetrahedral population for bound and wrap water populations 

by integrating the corresponding distribution, 𝑃>W(𝜃), over the (approximate) tetrahedral 

region, 100∘ < 𝜃 < 120∘, to estimate the population of tetrahedrally coordinated waters, 𝑝EcE 

[Figure 4.4(b)]. At low 𝑋@�6?, we find that the system-average (all water molecules included) 

𝑝EcE is approximately the same magnitude of the wrap water tetrahedral population, 𝑝EcE,gdIl. 

As observed in Figure 4.4(b), the bound water tetrahedral population, 𝑝EcE,W&eCv, lies below 

the system-average for 𝑋@�6? < 0.27. However, 𝑋W&eCv is lower than 𝑋gdIl at low 𝑋@�6?; 

hence, the dramatic reduction in 𝑝EcE,W&eCv does not strongly impact 𝑝EcE for small 𝑋@�6? 

values. For larger values of 𝑋@�6?, 𝑝EcE approaches 𝑝EcE,W&eCv as wrap waters are gradually 

replaced by bound waters [Figure 4.3(b)]. 

 

4.6 Developing the structure-dynamics connection 
The experimental and computational analyses discussed above detail the structural motifs of 

DMSO-water but do not fully describe its molecular properties. Prior studies suggest that 

aqueous systems exhibit strong relationships between water structure and dynamics at the 

nanoscale(51–54). To directly probe water dynamics, we measure water diffusion coefficients, 

𝐷?@9A, in DMSO-water using Overhauser dynamic nuclear polarization (ODNP) experiments. 
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In Figure 4.4(c), we depict the log-normalized ODNP water diffusion coefficient, 

ln	[𝐷?@9A/𝐷?@9A,ledc], against the normalized, MD-computed tetrahedral population, 

𝑝EcE/𝑝EcE,ledc, for 𝑋@�6? =		0.01, 0.06, 0.10, 0.20, and 0.30. Though ODNP and MD yield 

different absolute water self-diffusivities 𝐷;!?, both methods yield the same essential 𝐷;!? 

trend (with 𝑅( ≈ 0.95) [Figure 4.10]. Notably, the log-diffusivity decreases linearly with 

𝑝EcE/𝑝EcE,ledc. Hence, given that 𝑝EcE/𝑝EcE,ledc increases nearly monotonically with 𝑋@�6? 

[Figure 4.4(b)], ln	[𝐷?@9A/𝐷?@9A,ledc] decreases with the 𝑋@�6? as well. By applying a 

linear fit to these data, we discover a remarkably well-defined relationship between molecular 

structure (via 𝑝EcE) and translational water dynamics (via 𝐷?@9A). We coplot results for 

glycerol-water from our previous work,27 finding a similarly strong structure-dynamics 

relationship. We note that the slope of the correlation differs based on the cosolvent, likely an 

effect of glycerol’s three strong hydrogen bond donating groups. These correlations show how 

experimentally measured water diffusivity closely tracks the underlying structural changes in 

water. 

 Structure-dynamics relationships in aqueous environments have previously been 

explored in the context of supercooled water(55–59), hydration waters(25, 51, 53, 54, 60–62), 

and aqueous mixtures(20, 30, 39, 52, 63). In a recent computational study, we detailed 

emergent structure-diffusivity relations across a broad array of binary mixtures of varying 

temperature, composition, and cosolvent chemical identity(52). Further, we demonstrated that 

simple linear regression yields quantitative predictions of water self-diffusivities for 59 distinct 

simulations using only 𝑝EcE and two additional water structural metrics. The structure-

dynamics connection shown in Figure 4.4(c) expand on these prior works by demonstrating 

the persistence of structure and dynamics even when derived computationally and 

experimentally, respectively. Further, the analyses pursued in the present work offer a 
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workflow for co-interpreting experimental probes of molecular structure (e.g., THz) and 

dynamics (e.g., ODNP) by leveraging MD simulation calculations. 

 We performed a similar three-body angle distribution analysis for glycerol-water. The 

details for these calculations are found in recent publication in Chemical Science(40). 

4.7 Developing the structure-dynamics connection 
The structural changes detailed in Section 4.5 are further anticipated to be affect the mixing 

thermodynamics of CPA-water mixtures. In the present discussion, we highlight the case of 

glycerol-water. Naturally, bound water population is connected to the extent of glycerol-water 

interactions and hence the enthalpy of mixing. Further, as previously demonstrated in THz 

calorimetry studies, the balance of wrap and bound THz signatures are suggestive of entropic 

and enthalpic trends, respectively(17, 64). Given that the THz spectrum only resolves trends 

in bound water, we analyze how THz signatures determine the enthalpy of mixing of glycerol-

water in connection to MD simulations. However, for primary alcohols, which are more 

hydrophobic than glycerol, the global thermodynamic properties were found dominated by the 

wrap water population (i.e. by the hydrophobic solvation mechanism)(17, 64). Figure 4.5(a) 

demonstrates that this picture is reversed for water-glycerol mixtures. In the figure, we 

compare the spectroscopically measured slope with available mixing enthalpy (Δ𝐻45n5C!) 

data(65–67), as well as theoretical mixing enthalpy values from the present MD simulations, 

as a function of Xgly. The inverse of the slope is plotted since we expect bound water to 

contribute favorably to the mixing enthalpy (i.e. Δ𝐻W&eCv<0 for each bound water on average). 

Within a 95% confidence interval, the slope and mixing enthalpy data correlate extremely well, 

suggesting that the changes in mixing enthalpy with Xgly can be quantitatively explained by 

considering the enthalpic term due to the variations in the bound water population, only. This 
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is better demonstrated in Figure 4.5(b), where Δ𝐻45n5C! is plotted against the slope, and a 

linear correlation is observed. 

 
Figure 4.5. (a) Correlation of the experimentally determined slope (associated to the bound water population) 
with mixing enthalpies values (DHmixing) as a function of glycerol content. DHmixing values are taken from four 
literature data sets: Ref a; calculated (9), Ref b; extrapolated (9), Ref c (43), Ref d (42), as well as from the present 
MD simulations. The data sets are scaled (from 0 to -1) for better comparison. (b) Linear correlation between 
DHmixing (from Ref a, as an example) and slope. 
 

4.8 Conclusion 
In summary the addition of CPAs to aqueous solutions alters the local molecular structures of 

hydration water and influences mixing thermodynamics and water dynamics. The basic 

understanding provided here on structure-thermodynamics and structure-dynamics relations 

offers a basis for a rational optimization of CPA-water mixture properties by tailoring the 
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mixture composition. Our study highlights the importance of explicit inclusion of CPAs in 

simulation studies of proteins for the purpose of comparing computed conformational 

dynamics and interactions to experimental studies that may require CPAs as solution 

constituents, e.g., in the study of Double Electron-Electron Resonance (DEER) (61). By 

combining THz spectroscopy with classical MD simulations, we characterize way that 

collective molecular structure dictates the thermophysical properties of CPA-water solutions. 

We built our interpretation on the “wrap” and “bound” hydration water spectroscopic 

populations, i.e., well-defined THz markers that allow the direct monitoring of the changes in 

the hydrophobic and hydrophilic solvation mechanisms as a function of mixture composition, 

respectively. We propose that the mixing enthalpy between water and glycerol—a macroscopic 

property—is dominated by local contributions from the (hydrophilic) hydration water 

populations directly bound to glycerol. For glycerol, the bound water and not the wrap water 

population dictates mixing enthalpy since glycerol fits nicely into the water network and vice 

versa. By contrast, amphiphilic molecules like DMSO, present a more prominent entropically 

driven (“wrap”) water population. Further, both DMSO- and glycerol-water mixtures display 

a strong structure-water dynamics connection—specifically between water tetrahedrality/self-

diffusivity—as verified by complementary ODNP experiments. Though each mixture displays 

a distinct structure-dynamics relationship, they both exhibit a monotonic exponential 

relationship. The general picture emerging by combining these results is that the balance 

between local hydrophobic/wrap and hydrophilic/bound contributions dictates global mixture 

properties. The balance depends crucially on the size of the molecules that are mixed with 

water as well as on the number and distributions on polar groups. The findings detailed in this 

chapter offer exciting opportunities to tune in future studies the enthalpy and entropy of CPA-
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water mixtures by rationally modulating the nature of the mixture composition. For example, 

from the present results we can anticipate that the balance between the released water that is 

lost by the cell during freezing and the bound water population H-Bonded to a given 

cryoprotective solution (e.g., glycerol/DMSO/water) and biomolecules—a key parameter for 

cryoprotection—can be tailored by experimentally or computational exploiting the 

bound/wrap water signature and making direct connection to molecular properties of interest.  

4.9 Appendix 

4.9.1 Analysis of Distinct Water Environments Near Hydrophobic (-CH3) and 
Hydrophilic (=O) 
The distinct low (wrap) and high (bound) THz signatures suggest the distinct “micro-

heterogeneous” water structures near the polar (-S=O) and apolar (-CH3) moieties of DMSO. 

We directly probe this “micro-heterogeneity” by analysing the 2D radial distribution functions 

(RDFs) of water near these polar and apolar moieties. At all water-DMSO concentrations, the 

water-(S=O) RDF 𝑔(𝑟?g-6H?) exhibits “liquid-like” structuring. On the other hand, 

𝑔*𝑟?g-L;%. adopts a sigmoidal “de-wetting” behavior for all concentrations. 
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Figure 4.6. We depict the 2D radial distribution functions of water relative to the -CH3 
[𝑔*𝑟?g-L;%.] and -S=O [𝑔(𝑟?g-6H?)] moieties of DMSO. (a) 𝑔*𝑟?g-L;%.] exhibits weaker 
water-CH3 interaction as suggested by the position of the first peak (~0.36 nm) compared to 
(b) the position of 𝑔(𝑟?g-6H?)’s first peak (~0.28 nm). Further, 𝑔(𝑟?g-6H?) presents a higher 
first peak amplitude than 𝑔*𝑟?g-L;%., suggesting persistantly higher local water density near 
-S=O than -CH3. Here, the first peak amplitude difference varies between 25% (𝑥@�6? = 0.01) 
and 300% (𝑥@�6? = 0.74). 
 

4.11.2 Sensitivity of Bound and Wrap Water Mole Fractions to Geometric Cutoffs 
In Figure 4.3 of the main text, we depict wrap and bound water mole fractions for fixed 

hydrogen bond criteria (∠𝑂 − 𝑂𝐻 = 150∘ and donor H-acceptor O distance 3	Å) and DMSO 

hydration layer cutoff distance (4.2	Å). Varying the values of these geometric criteria does not 

change the qualitative trends in bound 𝑥W&eCv and wrap 𝑥gdIl water mole fractions. Fixing the 

hydrogen bond angle criterion (“hbAng”) and DMSO hydration layer cutoff (“cutoff”) values 

of 150∘ and 4.2	Å while varying hydrogen bond distance criterion (“hbDist”) between 3.0 and 
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4.0	Å, we observe a ~7% increase in the maximum 𝑥W&eCv at 𝑥@�6? = 0.45 [Figure 4.7(a)]. 

Simultaneously, the maximum 𝑥gdIl decreases by ~3% [Figure 4.7(d)]. These effects stem 

from the relaxation of the definition of a DMSO-water hydrogen bonding pair upon increasing 

“hbDist”. Fixing “hbDist” and “cutoff” values of 3.0	Å and 4.2	Å while varying “hbAng” 

between 120∘ and 170∘ we observe a ~70% decrease in the maximum 𝑥W&eCv at 𝑥@�6? = 0.45 

[Figure 4.7(b)]. Simultaneously, the maximum 𝑥gdIl increases by ~30% [Figure 4.7(e)]. 

Increasing “hbAng” further constrains the definition of a DMSO-water hydrogen bond and 

hence decreases 𝑥W&eCv and increasing 𝑥gdIl. Neither hydrogen bonding criterion appears to 

shift the peak location of 𝑥W&eCv towards the experimental observation [Figure 4.3(a)]. 

 Fixing “hbDist” and “hbAng” values of 3.0	Å and 150∘ while varying “cutoff” 

between 3.0 and 6.0	Å  we observe a near 2000% increase in the maximum 𝑥gdIl [Figure 

4.7(c)]. 𝑥W&eCv remains unchanged because the hydrogen bonding criteria are fixed [Figure 

4.7(f)]. Increasing “cutoff” relaxation the definition of a wrap water and hence increasing 

𝑥gdIl. Decreasing the “cutoff” does shift the maximum 𝑥gdIl towards the observed 

experimental maximum. However, we do not obtain quantitative agreement between THz-

derived and simulation-derived wrap-bound analyses in the absence of a rescaling like the 

one presented in the main text [Figure 4.3(c)]. 
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Figure 4.7. We depict bound water mole fractions 𝑥W&eCv as a function of DMSO mole fraction 
𝑥@�6? for (a) hydrogen bond angle criterion (“hbAng”) and DMSO hydration layer cutoff 
(“cutoff”) values of 150∘ and 4.2	Å with varying hydrogen bond distance criterion (“hbDist”), 
(b) “hbDist” and “cutoff” values of 3	Å and 4.2	Å with varying “hbAng”, and (c) “hbDist” and 
“hbAng” values of 3	Å and 150∘ with varying “cutoff”. We depict wrap water mole fractions 
𝑥gdIl as a function of DMSO mole fraction 𝑥@�6? for (d) “hbAng” and “cutoff” values of 
150∘ and 4.2	Å with varying “hbDist”, (e) “hbDist” and “cutoff” values of 3	Å and 4.2	Å with 
varying “hbAng”, and (f) “hbDist” and “hbAng” values of 3	Å and 150∘ with varying “cutoff”. 
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4.9.3 DMSO-Water Density Compared to Experimental Literature 

 
Figure 4.8. DMSO force field parameters yield reasonably accurate DMSO-water densities at 
low concentrations (𝑋@�6? < 0.27). Model accuracy decreases at higher concentrations. 
Specifically, experimental and MD densities are nearly indistinguishable for 𝑋@�6? < 0.27. 
Simulations of pure DMSO yield 2% larger density compared to experiment. 
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4.9.4 Further Details on the Three-Body Angle Distributions  

 
Figure 4.9. We depict 2D probability densities of water three body angles (x-axis) and the 
number of water molecules within a 0.34 nm cutoff of central water molecules (y-axis) for 
DMSO mole fractions of (top) 0.01, (middle) 0.16, and (bottom) 0.58. Here, the maximum 
probability density is represented in yellow and the minimum density (zero) is presented in 
dark blue. In each panel, vertical dashed white, grey, and orange lines correspond to 𝜃 = 50∘, 
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𝜃 = ⟨𝜃⟩, and 𝜃 = 130∘, respectively. ⟨𝜃⟩ is the mean three-body angle at the given 
concentration. The horizontal line indicates 4-coordinated waters (𝑁$ = 4). As 𝑋@�6? 
increases, the population shifts to lower 𝑁$ and higher 𝜃. At low concentrations (e.g., 𝑋@�6? =
0.01), there is a small population corresponding to overcoordinated waters centered at 𝜃 ≈ 50∘ 
and 𝑁$ ≈ 5. As 𝑋@�6? increases, the “overcoordinated” population remains centered at 𝜃 ≈
50∘, but 𝑁$ decreases. 
 

4.9.5 Comparison of ODNP and MD Water Self-Diffusivities 

 
Figure 4.10. A direct comparison ODNP and MD-derived estimates of water self-diffusivity 
for glycerol-water(52) and DMSO-water. Here, ODNP (𝐷?@9A) and MD (𝐷�@) estimates are 
normalized by the pure water self-diffusivity from ODNP and MD, respectively. Though the 
two methods are not in perfect quantitative agreement, ODNP and MD yield similar qualitative 
trends for both DMSO-water (𝑅( = 0.96) and glycerol-water (𝑅( = 0.95) 
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Chapter 5: Relationships Between Molecular 
Structural Order Parameters and Equilibrium 
Water Dynamics in Aqueous Mixtures 
 
Reproduced with permission from: 

Dennis C. Robinson Brown, Thomas R. Webber, Sally Jiao, Daniela M. Rivera Mirabal, 
Songi Han, M. Scott Shell. Relationships Between Molecular Structural Order Parameters 
and Equilibrium Water Dynamics in Aqueous Mixtures. JPC B. 2023. DOI: 
10.1021/acs.jpcb.3c00826. Copyright 2023 American Chemical Society 

5.1 Introduction  
The prediction of water transport and thermodynamic properties in solution is vital to an 

enormous range of applications spanning conventional chemical synthesis, water purification 

membranes, protein hydration and biological fouling, and nanotherapeutics, to name a few. 

However, directly estimating macroscopic and underlying molecular scale thermophysical 

properties can be challenging in complex mixtures and at chemically heterogeneous surfaces 

(e.g., proteins). Often the role of water’s unique structure proves particularly important to 

making accurate predictions, in contrast to what is found for simpler liquids.  For example, 

conventional approaches to capture diffusivity often employ continuum-based mechanistic 

models in dilute aqueous mixtures(1), water-polymer mixtures(2–4), and water purification 

membranes(5). However, continuum models cannot fully explicate water diffusivity in a 

wide range of solution environments(6–8); instead, shifts in molecular structure are a more 

precise signature of water mobility(6, 9–13).   

Along these lines, decades of simulation efforts are now converging to a more unified 

view on the connections between water structure and its thermophysical properties(14–18).  

In their seminal work, Errington and Debenedetti(9) showed remarkably how water structure, 
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captured by structural order parameters, is hierarchically connected to thermodynamic and 

dynamic property anomalies relative to simple liquids. More broadly, a wide range of studies 

have suggested manners by which water’s molecular structure is fundamental to 

understanding water properties. Early efforts primarily probed water at interfaces with 

idealized solutes(15, 19, 20) and surfaces(12, 21, 22) that neglect the effects of topological 

and chemical heterogeneity. In one vital example, Lum, Chandler, and Weeks represented 

hydrophobic solutes/surfaces as hard spheres/walls(15). These simplified models provided 

important insight on distinct trends in water structure near small (<1 nm) and large (>1 nm) 

interfaces that persist in systems with greater atomistic detail(19, 23–25); namely, they 

supported the idea that water responds differently to small and large solutes, with unique 

thermodynamic driving forces in these length scale regimes. More recently, major efforts 

have now characterized the role of water density and interface fluctuations in governing 

water properties(26–30). Initial studies established these fluctuations as a key indicator of 

hydropathy at extended, flat surfaces. Remarkably, the works of Patel and coworkers(28, 31–

33) suggest that density fluctuations can even be leveraged to map hydropathy at 

topologically and chemically complex protein-water interfaces(31). 

Further, detailed structural analyses have become important tools for the rational design 

of materials(11, 34–36). In one recent example, Dallin et. al.(36) sought to leverage 

computationally-inexpensive water metrics to predict the hydration free energies at a variety 

of chemically and spatially heterogeneous self-assembled monolayer (SAM) surfaces. They 

found that characterizing only five structural metrics–pertaining to water’s orientational 

order, density, and hydrogen bonding—the hydration free energies could be quite accurately 
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predicted (< 4	𝑘i𝑇). Such workflows may promise to circumvent expensive (or intractable) 

direct free energy calculations for large proteins and protein complexes. 

While there has been substantial progress through simulations in identifying molecular 

order parameters that capture the relevance of water structure to emergent thermophysical 

properties, it has remained challenging to access experimental signatures of molecular-level 

water behavior which do the same.  Water structure can be characterized by techniques like 

Terahertz(16, 37–39), Raman(40–43), IR(44–48), and vibrational sum-frequency generation 

spectroscopies(49–54). However, such efforts involve measurements that average over 

waters potentially experiencing a range of different molecular environments, blurring the 

structure-property relationship. A particularly promising experimental tool for probing local 

water behavior is Overhauser Dynamic Nuclear Polarization (ODNP)(55, 56). ODNP is an 

electron paramagnetic resonance (EPR)-enhanced NMR technique that directly measures the 

dynamic coupling between a radical spin probe molecule and the surrounding water protons 

within an approximate radius of one nanometer. The resultant NMR signal enhancements are 

used to directly measure local water translational self-diffusivity (< 1 nm from the spin 

probe) on the scale of tens of picoseconds to nanoseconds. ODNP enables the measurement 

of equilibrium water dynamics at room temperature in complex environments. Previous 

works have demonstrated that ODNP resolves local water diffusivities at chemically and 

topologically heterogeneous aqueous interfaces(57–61).  These advances are certainly 

exciting, but it remains to be shown how such a locally measured diffusivity reflects 

underlying water structural behavior.   

Statistical learning algorithms in conjunction with molecular simulations provide an 

opportunity to discover such relationships, and more generally to understand how water 
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structure relates to functional thermodynamic and dynamic properties. Given a collection of 

simulations of water in varied environments, statistical learning approaches can identify 

important predictors (e.g., water structural order parameters) of quantities of interest (e.g., 

thermodynamic and dynamic property responses). In a recent example from Rego and 

coworkers, statistical learning algorithms—namely, artificial and convolutional neural 

networks—was leveraged to decipher the complex relationship between chemical patterning 

motifs at surfaces and surface hydropathy(35). 

 To illustrate the potential of these connections between water order parameters and 

properties, we briefly review results from our prior work(10, 62) suggesting a remarkably 

strong relationship between water’s molecular structure—specifically tetrahedrality—and 

dynamics. Figure 5.1 summarizes relationships found for several binary aqueous mixtures: 

(i) glycerol, (ii) poly(ethylene oxide) (PEO), and (iii) peptoids. Here, we characterize water’s 

tetrahedrality by first enumerating the triplet angles, 𝜃, between water oxygens and 

computing three-body angle distributions, 𝑃>W(𝜃). We estimate the relative population of 

tetrahedral angles between triplets of water molecules, 𝑝EcE/𝑝EcE,CcIE, by integrating over the 

tetrahedral region of 𝑃>W(𝜃) (100∘ < 𝜃 < 120∘) and normalizing 𝑝EcE by the tetrahedral 

population of neat water at 298K, 𝑝EcE,CcIE. We probe translational water dynamics via the 

logarithmic water self-diffusivity, ln � @B!~
@B!~,z�|�

�, relative to neat water at 298K. In all three 

systems, we observed a striking exponential 𝐷;!? − 𝑝EcE relationship. Though the structure-

dynamics correlation remains qualitatively similar between systems, the ln 𝐷;!? − 𝑝EcE slope 

is context dependent (i.e., specific to the particular solute or co-solvent). The distinction 

between PEO-water and glycerol-water likely stems from glycerol’s capacity to both donate 
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and accept hydrogen bonds, while PEO only accepts them. The more dramatic ln 𝐷;!? − 𝑝EcE 

slope for the peptoid-water system—compared to PEO-water—is likely at least partially 

related to the fact that both 𝐷;!? and 𝑝EcE were computed for waters within the hydration 

layers of the peptoids as detailed by Jiao et. al(10) (versus throughout the entire mixture).   

The strength of these correlations between tetrahedrality and diffusivity, spanning 

three chemically distinct systems, is particularly exciting as it suggests both the ability to 

predict diffusivity from water structure, but also the potential for ODNP-measurable local 

diffusivities to indirectly report on water structure.  However, further investigation in a 

broader range of systems, and considering other measures of structural information, is clearly 

needed to more broadly understand the relationship between water structure and 

thermophysical properties like self-diffusivity. 

 

Figure 5.1. Water self-diffusivity, 𝐷M!-, strongly correlates with water’s tetrahedrality, 𝑝4S4/𝑝4S4,�SI4, for 
glycerol-water (green), PEO-water (blue), and peptoid-water (yellow) mixtures. Remarkably, an exponential 
relationship between dynamics and molecular structure persists across changes in mixture composition and the 
chemical identity of the additive. Water self-diffusivity, 𝐷M!-, is estimated via the slope of the mean-square 
displacement (MSD) curve. The population of tetrahedral water triplet angles, 𝑝4S4, is derived by integrating the 
triplet angle distribution, 𝑃_8(𝜃), over the tetrahedral region (100∘ < 𝜃 < 120∘). The magnitude of the 𝐷M!- −
𝑝4S4 slope corresponds to the dynamic response to shifts in tetrahedrality. We hypothesize that glycerol-water 
shows the largest response owing to the ability of glycerol to accept and donate hydrogen bonds, while the 
peptoids and PEO only accept hydrogen bonds. 
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In the present work, we study a wide range of simulated aqueous mixtures and 

demonstrate with statistical learning an approach to learn structure-property connections. In 

Section 5.2.3, we highlight several water structural metrics and detail a strategy for drawing 

connections between these and macroscopic properties. Section 5.3.1 describes the form and 

physical behavior of the structural metrics in the context of methanol-water at temperatures 

ranging from 273 to 373K. In Section 5.3.2, we implement principal component analysis 

(PCA) to show how subtle shifts in triplet angle distributions across a wide range of systems 

and conditions are captured by a small number of response degrees of freedom. Section 5.3.3 

then examines and interprets structure-dynamics and structure-thermodynamics correlations. 

In Section 5.3.4, we apply a feature selection procedure to identify relevant order parameters 

that accurately predict water self-diffusivity and excess hard sphere chemical potentials 

across numerous co-solvents and system conditions. Leveraging the particularly strong 

relationship between structure and dynamics, we propose a workflow for predicting the 

structural metrics and mechanisms underlying experimental probes of water properties in 

Section 5.3.5. 
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5.2 Methods 

5.2.1. Molecular Dynamics Simulations 

We consider the following binary aqueous mixtures: (i) glycerol-water at 291K at 

glycerol mole fractions of 0.01, 0.033, 0.05, 0.075, 0.10, 0.15, 0.20, and 0.30; (ii) PEO-water 

at 291K at PEO weight fractions of 0.005, 0.015, 0.05, 0.10, 0.20, 0.33, and 0.50; (iii) 

polypeptoid oligomers with variable hydrophobicity at 300K (see Figure 5.2 for details); (iv) 

primary alcohol-water (methanol, ethanol, 1-propanol, and 1-butanol) at a weight fraction of 

0.1 and temperatures of 273, 280, 291, 298, 309, 329, 350, and 373K; (v) DMSO-water 

mixtures at 291K of mole fractions 0.01, 0.04, 0.06, 0.10, 0.16, 0.27, and 0.45. These specific 

binary mixtures are chosen to span a wide variety of mixture conditions. In systems described 

above, we vary cosolvent chemistry (e.g., very hydrophilic glycerol vs. weakly hydrophilic 

butanol), mixture state (variations in temperature and composition), and cosolvent size (e.g., 

PEO vs. methanol). 
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Figure 5.2. Schematic representation of polypeptoid oligomer chemistries from Jiao et. al.(10) where yellow 
and blue circles correspond to hydrophobic (n-butyl) and hydrophilic (methoxy-ethyl) moieties, respectively. 
The nominal oligomer hydrophobicity is modified by changing the number of hydrophobic monomers and their 
position. 
 

The model parameters for the glycerol-water(62), PEO-water(63), and peptoid-

water(10, 60) systems are described in previous works. Further, the simulations for the peptoid-

water systems were are drawn from our past work(10, 60). We use DMSO force field 

parameters from Fox and Kollman(64) and the TIP4P-EW(65) 4-site water model. Finally, we 

consider methanol-water, ethanol-water, propanol-water, and butanol-water mixtures at 

alcohol weight fractions of 0.10 and at temperatures of 273, 280, 291, 298, 309, 329, 350, and 

373K. As with the DMSO-water mixtures, we use the TIP4P-EW water model for the alcohol-

water simulations. All non-electrostatic parameters for the alcohols are taken from the second-

generation general AMBER force field (GAFF2)(66, 67). We scale partial charges using the 

scheme suggested by Fennell et. al.(68) 
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To prepare the glycerol-water, PEO-water, alcohol-water, and DMSO-water systems 

for simulation, we first generate initial atomic positions using PACKMOL(69) and energy 

minimize configurations using the OpenMM(70) molecular dynamics software. We equilibrate 

each system in the NPT ensemble via a Langevin thermostat(70) and Monte Carlo barostat(70) 

to maintain atmospheric pressure (1 bar). Following the equilibration period (between 50 and 

200 ns dependent on the system), we conduct a production run in NPT for 100 ns, saving the 

atomic coordinates every 10 ps. To compute diffusivities, we draw 10 independent 

configurations from the NPT production run to generate starting configuration for 1 ns NVE 

production runs with coordinates saved every picosecond. 

5.2.2 Water self-diffusivity 
 We compute water self-diffusivity by calculating the mean-squared displacement 

(MSD) of water oxygens as a function of time 𝑡 

    𝑀𝑆𝐷(𝑡) = ⟨|𝑟(𝑡 + 𝜏) − 𝑟(𝜏)|(⟩  (5.1) 

where 𝑟(𝑡) is the 3D position vector of a water oxygen and the brackets ⟨⟩ correspond to the 

ensemble average over several time windows and all water oxygens. We determine the self-

diffusivity of water from the slope of the diffusive (linear) regime (𝑡 > 5𝑝𝑠) of the MSD 

curve. For the present study, we focus specifically on 𝐷;!? due to its ubiquity as a dynamic 

metric in research on aqueous solutions.  Several studies have investigated the structure-

dynamics correspondence using other dynamic metrics for translational(10, 11, 58), 

rotational(13, 71, 72), hydrogen bonding(12, 73), etc.; these are certainly of interest, but 

because translation and other water dynamics are frequently strongly correlated(72, 74–76), 

we focus on translational diffusivity here. 



 

 
 

134 

5.2.3 Water structure order parameters 
While it’s clear from Figure 5.1 that 𝑝EcE displays remarkable correlation with diffusivity 

across several aqueous mixtures, the slope of these relationships varies widely depending on 

the cosolvent. Pursuant of more robust prediction of thermophysical properties from 

molecular structure, we consider a range of additional structural order parameters. Individual 

order parameters fall into one of two categories: orientational and translational. Translational 

order parameters measure the degree of spatial correlation between water molecules (e.g., 

local number densities). On the other hand, orientational order parameters probe angular 

correlations between water molecules (e.g., the population of tetrahedrally coordinated 

waters, 𝑝EcE). A full list of relevant order parameters for the present study are summarized in 

Table 5.1. 

Tetrahedral order parameter. The three-body angle distribution and the related 𝑝EcE are not 

the only probes of tetrahedrality in aqueous environments. In particular, the tetrahedral order 

parameter, 𝑞, first investigated in detail by Errington and Debenedetti(9) has been widely 

studied as a metric of water structure since its introduction(8, 25, 77, 78). 𝑞 is given by 

   𝑞 = 1 − >
]
∑ ∑ 0cos𝜓�T +

,
>
5
(

a
TH�.,

>
�H,   (5.2) 

where 𝜓�T is a three-body angle formed between a central water oxygen atom and two of its 

four nearest neighbors 𝑗 and 𝑘. Here, we sum over all six three-body pairs between the 

central water and its four nearest neighbors. The ensemble average of 𝑞	approaches 0 in 

fluids without interparticle correlations (e.g., an ideal gas) and is 1 for a perfectly tetrahedral 

crystal (e.g., ice at 0 K). For most dilute aqueous mixtures, 𝑞 effectively quantifies the extent 

of a liquid’s tetrahedrality as most waters retain four nearest water neighbors; however, its 

interpretation is more complex in concentrated aqueous mixtures, water under confinement, 
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and in particular for water at surfaces because it requires locating four nearest water 

neighbors, which may not reside in the first coordination shell(79). When one or more of the 

nearest neighbors are outside of the central water’s hydration shell, the more distant 

neighbors adopt more weakly-correlated orientations relative to the central water, hence 

decreasing 𝑞. While some prior efforts have proposed modified versions of 𝑞 to account for 

undercoordination of water hydration shells(77, 80), we do not consider these alternative 

approaches here. 

Specific volume and area. Favorable interactions between water and cosolvents like ethanol 

are known to produce negative volumes of mixing. To more precisely report atomic volumes 

at an individual molecule scale, we compute molecular volumes using the Voronoi approach, 

specifically through the quickhull SciPy implementation(81, 82). With this approach, we 

extract the approximate volume, 𝑣gIE, and surface area, 𝑎gIE, of every water molecule in 

each simulation snapshot for averaging. We also probe the asphericity parameter 𝜂 = I#|�
%

>*b'#|�!  

of water molecules. A perfect spherical Voronoi volume has 𝜂 = 1 (e.g., ideal gas) while a 

polyhedral volume has 𝜂 > 1, noting that a perfect tetrahedron has 𝜂 ≈ 3.3. Voronoi 

polyhedral calculations have been frequently used in a wide range of contexts from complex 

aqueous solutions(83) to supercooled fluids(84) to protein hydration layers(85).   

Radial distribution functions. Local density correlations probed by 2D radial distribution 

functions (RDFs) report on shifts in the coordination environment near small molecules in 

aqueous mixtures. We quantify these shifts by integrating over the first hydration shell—as 

defined by the first minimum in an RDF—to obtain a coordination number. In the present 

work, we consider water-water (𝑛,,?g-?g) and solute-water (𝑛,,6&"-?g) first hydration shell 

coordination numbers.  
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 Via the water-water radial distribution function 𝑔(𝑟?g-?g), we also characterize the 

translational order of water by calculating the Errington-Debenedetti order parameter(9)  

    𝑡 = ,
��
∫ |𝑔(𝜉) − 1|𝑑𝜉��
0   (5.3) 

where 𝜉 = 𝑟?g-?g𝜌?g-?g	
,/> . Here, 𝑟?g-?g and 𝜌?g-?g are the radial distance between water 

molecules and the bulk number density of water molecules, respectively. Further, 𝜉$ =

𝑟$𝜌?g-?g
,/>  is the normalized cutoff distance defined by the first minimum of 𝑔(𝑟?g-?g). In 

the ideal gas limit, 𝑔(𝑟?g-?g) → 1 and hence 𝑡 → 0. As short-range translational order 

develops (e.g., water upon cooling), 𝑡 increases. 𝑡 further increases in crystalline media with 

long-range translational order while the magnitude depends on the lattice structure. 

Hard-sphere chemical potential and density fluctuations. While explicit calculation of 

hydrophobic hydration typically requires detailed and expensive free energy calculations(26, 

28, 30, 31, 36), here we choose a simpler surrogate probe and estimate the excess chemical 

potential, 𝜇;6cn , of solvating a hard sphere with radius 3.3-Å (ideal small hydrophobic 

molecule). We calculate 𝜇;6cn  via Widom insertion(86) in which hard sphere insertions are 

attempted at 10,000 random positions for 100 independent simulation snapshots and 

computing the negative log-probability of overlapping with zero atomic coordinates, 𝜇;6cn =

−𝑘i𝑇𝑙𝑛𝑃(𝑁 = 0). Naturally, lower probability of hard sphere insertion, 𝑃(𝑁 = 0), increases 

𝜇;6cn  and corresponds to a more hydrophilic local environment. 𝜇;6cn  has long been applied as a 

surrogate measurement hydropathy in aqueous environments from extended molecular 

surfaces(11, 23, 26, 27, 87) to protein hydration layers(27, 74, 87). In addition to the hard 

sphere chemical potential, we calculate the mean, ⟨𝑁⟩, second moment, ⟨𝑁(⟩, and variance, 

⟨𝛿𝑁(⟩ = ⟨(𝑁 − ⟨𝑁⟩)(⟩, of the hard sphere overlap distribution. These distribution statistics 
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serve as additional order parameters that report on the local number density and 

corresponding density fluctuations.  

Local structure index (LSI). The LSI is yet another method of quantifying the translational 

order of water. In contrast to 𝑡, the LSI measures fluctuations in the distance between the first 

and second hydration shells of water molecules(13, 88). The LSI for a central water molecule 

is defined as 

    𝐿𝑆𝐼 = ,
C
∑ (Δ5 − Δ¶)(C
5H,    (5.4) 

where 𝑛 is the index corresponding to the furthest nearest neighbor with radial distance  𝑟C <

3.7Å, Δ5 = 𝑟5., − 𝑟5, and  Δ¶ = ,
C
∑ Δ5C
5H, .  Here, nearest neighbor radii are ordered by 

distance from the central atom 𝑟, < 𝑟( < ⋯ < 𝑟C < 3.7	Å. A molecule with randomly 

distributed environment (ideal gas) will have 𝐿𝑆𝐼 ≈ 0	Å(. A tetrahedral solid like ice has 

⟨𝐿𝑆𝐼⟩ ≈ 0.43	Å(. In aqueous solutions, ⟨𝐿𝑆𝐼⟩ is intermediate between these two extremes 

with higher values corresponding to longer-range translational order. ⟨𝐿𝑆𝐼⟩ has the potential 

to describe shifts in translational order due to the chemical identity of a given cosolvent. 

Some previous studies have even applied the LSI to quantify and characterize shifts in 

translational structure in protein hydration layers(89, 90).  

Three-body angle distribution. As mentioned earlier, we construct distributions of triplet 

angles between each water molecule oxygen and its two nearest neighboring water oxygens. 

These three-body angle distributions, 𝑃>W(𝜃), contain detailed information on water’s 

fluctuating network structure. We specifically examine regions corresponding to 

tetrahedrally- (𝜃 = 109.5∘) and icosahedrally structured (𝜃 = 64∘) water populations. We 

then enumerate the population of tetrahedrally-coordinated waters, 𝑝EcE, by integrating over a 
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region of 𝑃>W(𝜃) approximately centered on the characteristic tetrahedral angle 𝜃EcE =

109.5∘, from	100∘ < 𝜃 < 120∘. 

 Beyond estimating the fraction of tetrahedrally-coordinated waters, we also extract 

several statistics from 𝑃>W(𝜃): the mean cos 𝜃, ⟨cos 𝜃⟩, the variance of cos 𝜃, ⟨𝛿 cos( 𝜃⟩ =

⟨(𝑐𝑜𝑠𝜃 − ⟨𝑐𝑜𝑠𝜃⟩)(⟩, and the distribution entropy, 𝑆>W = −∑ 𝑃>W(𝜃5)𝑙𝑛𝑃>W(𝜃5)
9%w
5H, . These 

additional metrics describe trends in 𝑃>W(𝜃) beyond the tetrahedral region. Here, ⟨cos 𝜃⟩ 

describes shifts away from cos(𝜃 ≈ 109.5∘) ≈ 1/3 observed in neat water at room 

temperature. On the other hand, increases in metrics like 𝑆>W and ⟨𝛿( cos 𝜃⟩ indicate higher 

probability of “non-tetrahedral” water configurations.  
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Table 5.1: A summary of the 20 structural order parameters considered in the feature selection procedure for 
predicting 𝐷M!- and 𝜇M5S�  

Relevant 
Distribution 

Order 
Parameter(s) 

Formula Notes 

water-water RDF: 
𝑔(𝑟!"#!") 

water-water 
coordination 
number: 𝑛$,!"#!" 

𝑛$,!"#!"

= ' 4𝜋𝜌"&'𝑟!"#!"( 𝑔(𝑟!"#!"	)
*!

+
𝑑𝑟!"#!" 

• The bulk number 
density of water, 
𝜌"&', is system 
dependent.  

• The cutoff radius, 𝑟,, 
is the first minimum 
of 𝑔(𝑟!"#!"). 

translational order 
parameter: 𝑡 

See Equation 3 for definition of 𝑡 

solute-water RDF 
𝑔(𝑟-./#!") 

solute-water 
coordination 
number: 𝑛$,-./#!" 

𝑛$,-./#!"

= ' 4𝜋𝜌"&'𝑟-./#!"( 𝑔(𝑟-./#!"	)
*!

+
𝑑𝑟-./#!" 

The cutoff radius, 𝑟,, is 
the first minimum of 
𝑔(𝑟-./#!"). 

three-body angle 
distribution: 
𝑃01(𝜃) 

population of 
tetrahedrally-
coordinated waters: 
𝑝'2' 

𝑝'2' = ' 𝑃01(𝜃)𝑑𝜃
$(+∘

$++∘
 

𝑁01 is the total number of 
water triplet angles 

mean of cos 𝜃: 
⟨cos 𝜃⟩ 

expected value of cos 𝜃 from 𝑃01(𝜃) 

variance of cos 𝜃: 
⟨𝛿 cos( 𝜃⟩ 

⟨𝛿 cos( 𝜃⟩ = ⟨(cos 𝜃 − ⟨cos 𝜃⟩)(⟩ 

entropy of 𝑃01(𝜃): 
𝑆01 𝑆01 = −9𝑃01(𝜃3)𝑙𝑛𝑃01(𝜃3)

4#$

35$

 

tetrahedral order 
parameter 

distribution: 𝑃(𝑞) 

mean of 𝑞: ⟨𝑞⟩ expected value of 𝑞 from 𝑃(𝑞) See Equation 5.2 for 
definition of 𝑞 

variance of 𝑞: ⟨𝛿𝑞(⟩ ⟨𝛿𝑞(⟩ = ⟨(𝑞 − ⟨𝑞⟩)(⟩ 

local structure 
index distribution: 

𝑃(𝐿𝑆𝐼) 

mean of 𝐿𝑆𝐼: 
⟨𝐿𝑆𝐼⟩[Å2] 

expected value of 𝐿𝑆𝐼 from 𝑃(𝐿𝑆𝐼) See Equation 5.4 for 
definition of 𝐿𝑆𝐼 

variance of 𝐿𝑆𝐼: 
⟨𝛿(𝐿𝑆𝐼)(⟩ [Å4] 

⟨𝛿(𝐿𝑆𝐼)(⟩ = ⟨(𝐿𝑆𝐼 − ⟨𝐿𝑆𝐼⟩)(⟩ 

water specific 
volume 

distribution: 
𝑃(𝑣"&') 

mean of 𝑣"&': 
⟨𝑣"&'⟩ [Å3] 

expected value of 𝑣"&' from 𝑃(𝑣"&') See Section 5.2.3 for a 
description of these 
calculations variance of 𝑣"&': 

⟨𝛿𝑣"&'( ⟩ [Å6] 
⟨𝛿𝑣"&'( ⟩ = ⟨(𝑣"&' − ⟨𝑣"&'⟩)(⟩ 

water specific area 
distribution: 
𝑃(𝑎"&') 

mean of 𝑎"&': 
⟨𝑎"&'⟩ [Å2] 

expected value of 𝑎"&' from 𝑃(𝑎"&') 

variance of 𝑎"&': 
⟨𝛿𝑎"&'( ⟩ [Å4] 

⟨𝛿𝑎"&'( ⟩ = ⟨(𝑎"&' − ⟨𝑎"&'⟩)(⟩ 

water asphericity 
distribution: 𝑃(𝜂) 

mean of 𝜂: ⟨𝜂⟩ expected value of 𝜂 from 𝑃(𝜂) 
variance of 𝜂: ⟨𝛿𝜂(⟩ ⟨𝛿𝜂(⟩ = ⟨(𝜂 − ⟨𝜂⟩)(⟩ 

Hard-sphere 
insertion 

distribution: 𝑃(𝑁) 

mean of 𝑁: ⟨𝑁⟩ expected value of 𝑁 from 𝑃(𝑁) See Section 5.2.3 for a 
description of these 
calculations 

Squared mean of 𝑁: 
⟨𝑁(⟩ 

expected value of 𝑁( from 𝑃(𝑁) 

variance of 𝑁: 
⟨𝛿𝑁(⟩ 

⟨𝛿𝑁(⟩ = ⟨(𝑁 − ⟨𝑁⟩)(⟩ 
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5.2.4 Feature Selection 
 The evident persistent structure-dynamics relationship shown in Figure 5.1 suggests 

that structure may be predictive of mixture thermophysical properties like 𝐷;!?. However, 

determining the relative importance of the numerous structural metrics described above for 

predicting 𝐷;!? (or other properties) is intractable by hand. For high-dimensionality datasets, 

mitigating the number of independent variables (features) in a statistical learning model is 

necessary to reduce model variance and improve extensibility. In the present study, feature 

selection methods aid in developing a molecular-physical intuition of the structural features 

underpinning shifts in water dynamics (𝐷;!?) and solvation thermodynamics (𝜇;6cn ). We 

primarily consider the sequential feature selection (SFS) procedure implemented via the python 

library MLxtend(91). Generally, SFS procedures search for the descriptive features in a 

“greedy” fashion—iteratively selecting the 𝑁 features that best describe a dependent 

variable—here, diffusivity or chemical potential—for the training dataset. More specifically, 

we apply a forward SFS (fSFS) procedure.  

 We first shuffle and split the 59 data from various mixture compositions, cosolvent 

identity, and temperature into training and test sets composed of random4ly chosen subsets of 

80 and 20% of the data, respectively. We then feed the training set into an N-feature fSFS 

algorithm with the following steps: (i) iterate through each structural metric, applying linear 

ordinary least squares (OLS) to each, (ii) select the feature with the highest 𝑅( for predicting 

the objective dependent variable, (iii) iterate through the remaining features, searching for the 

feature that most improves the 𝑅( for the dependent variable, and (iv) repeat the process (N-
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2) additional times. In Figure 5.1, we demonstrate the linear relationship between l���
l���,CcIE

 

and ln[ @B!~
@B!~,z�|�

]. This suggests that an OLS model simply and reasonably captures structure-

dynamics relationships in binary aqueous mixtures. However, other regression methods such 

as symbolic regression may yield more robust structure-property relationships. 
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5.3 Results and Discussion 

5.3.1 Methanol-water analysis 
 To illustrate the behavior of the order parameters discussed above and their 

relationship to translational water dynamics, we first consider the methanol-water series of 

simulations with variable temperature from 273 to 373 K at a fixed composition of 0.10 

weight fraction of methanol. Similar analyses for aqueous binary mixtures with ethanol, 

propanol, butanol, glycerol, PEO, DMSO, and peptoid oligomers are detailed in Section 

5.5.1.  

Three-body angle distribution. We depict 𝑃>W(𝜃) [Figure 5.3(a)] and the differential three-

body angle distribution, Δ𝑃>W(𝜃) = 𝑃>W(𝜃) − 𝑃>W,CcIE(𝜃), [Figure 5.3(b)] for methanol-

water. Upon cooling methanol-water mixtures, we observe a systematic enhancement of the 

tetrahedral region (𝜃 = 109.5∘) and corresponding reduction of the icosahedral (𝜃 = 64∘) 

regions of 𝑃>W(𝜃) and Δ𝑃>W(𝜃). Further, we depict the degree of correlation between the 

various distribution statistics and water self-diffusivity. Notably, 𝑝EcE exhibits the greatest 

correlation with diffusivity (𝑅( ≈ 1), suggesting that this metric is a particularly predictive 

probe of equilibrium water dynamics in this system. As is discussed in further detail in 

Section 5.3.3, the 𝑝EcE − 𝐷;!? relationship persists upon including simulation results from 

the other systems discussed in Section 5.2.1.  
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Figure 5.3. For methanol-water mixtures with temperatures increasing from 273 to 373 K, the (a) raw three-
body angle distributions, 𝑃_8(𝜃), and (b) differential three-body angle distributions, 𝑃_8(𝜃) − 𝑃_8,�SI4(𝜃) 
exhibit enhancement and attenuation of the icosahedral (𝜃 ≈ 64∘) and tetrahedral (𝜃 ≈ 109.5∘) regions with 
temperature, respectively. (c) The population of tetrahedrally-coordinated waters, 𝑝4S4, strongly correlates with 
the log-diffusivity of water. A linear fit (black) and the corresponding 95% confidence interval (gray bands) are 
shown for the 𝑝4S4-𝐷M!- relationship. Here, the 𝑝4S4 (c) is presented relative to the value of the same order 
parameter in TIP4P-EW water at 298 K. 
 

Other order parameters. To further our understanding of the connection between water 

structure and mixture thermophysical properties, we consider distributions of additional 

structural metrics (Section 5.2.3). Figure 5.4(a) depicts the distribution of the tetrahedral 

order parameter, 𝑃(𝑞), in methanol-water. For all considered temperatures, 𝑃(𝑞) appears 

bimodal, with peaks centered at 𝑞 ≈ 0.45 and 𝑞 ≈ 0.8. The population at 𝑞 ≈ 0.45 

correspond to less tetrahedrally-coordinated, simple-fluid-like, waters while the population at 

𝑞 ≈ 0.8 corresponds to tetrahedrally-coordinated water molecules. The bimodality of 𝑃(𝑞) is 
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consistent with the original analysis of Errington and Debenedetti(9) and later works(78, 92). 

As we decrease the system temperature, 𝑃(𝑞) shifts from 𝑞 = 0.45 to 0.8. Hence, the 

behavior of 𝑃(𝑞) is consistent with our observations of 𝑃>W(𝜃) for methanol-water (Figure 

5.3). Further, we note that 𝑃(𝑞) systematically broadens with increasing temperature. This 

suggests that, while tetrahedrality drops upon heating, water continues to display a 

substantial tetrahedral population. 

Figure 5.4. We depict probability distributions for a subset of structural metrics discussed in Section 5.2.3 for 
methanol-water at temperature of 273, 280, 291, 298, 309, 329, 350, and 373 K. (a) The distributions of the 
tetrahedral order parameter, 𝑃(𝑞), exhibit peaks at 𝑞 ≈ 0.45 (less tetrahedral) and 𝑞 ≈ 0.8 (more tetrahedral). 
The distribution systematically shifts towards 𝑞 = 0.8 upon cooling. (b) The distributions of water specific 
volumes, 𝑃(𝑣UI4), broaden and exhibit larger mean specific volumes, ⟨𝑣UI4⟩, as the temperature of the mixture 
increases. (c) 2D water-water radial distribution function (RDFs), 𝑔(𝑟), show enhanced translational order in 
water with decreasing temperature as demonstrated by the increasing peak and trough amplitudes. (d) The 
negative log-probability of hard sphere insertion distribution, − ln[𝑃(𝑁)], demonstrates the systematic decrease 
in the affinity of an ideal hydrophobic molecule for methanol-water upon cooling. Simultaneously, decreased 
mixture temperature shifts the distribution towards lower mean overlap numbers, ⟨𝑁⟩.     
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 We illustrate the effect of increasing temperature in methanol-water mixtures on the 

distribution of 𝑣gIE in Figure 5.4(b). We note the systematic shift to lower average 𝑣gIE and 

a narrower distribution upon cooling methanol-water. The decrease in the distribution mean, 

⟨𝑣gIE⟩, with temperature is expected given the experimentally observed decrease in 

methanol-water density (and hence higher specific volume) upon heating(93). This decrease 

in molecular size is also reflected in the shift to smaller molecular surface area 𝑎gIE [Figure 

5.11]. Additionally, we observe a systematic decrease in the mean of the 𝑃(𝜂) with increased 

temperature, suggesting that water molecular volumes adopt a more spherical shape as 

expected in ideal mixtures. 

 In Figure 5.4(c), we show the 𝑔(𝑟?g-?g) peak amplitudes increase systematically 

with decreasing temperature, suggesting increasingly long-range translational order. We 

quantify this trend, observing systematic increases in 𝑛,,?g-?g and 𝑡 upon cooling. Thus, we 

observe simultaneous enhancement of translational (e.g., 𝑛,,?g-?g, and 𝑡) and orientational 

(e.g., ⟨𝑞⟩ and 𝑝EcE). This strong coupling between translational and orientational order is 

consistent with the conclusions of the establishing work from Errington and Debenedetti(9) 

and more recent findings for liquid water(92) and other water-like fluids(78). 

 To visualize shifts in 𝑃(𝑁 = 0) with varying temperature, we depict − ln[𝑃(𝑁)]	in 

Figure 5.4(d). We observe a general leftward shift (decreased ⟨𝑁⟩) and broadening 

(increased ⟨𝛿(𝑁⟩) with increasing temperature. 𝑃(𝑁 = 0) monotonically increases and hence 

𝜇;6cn  decreases with increasing temperature. The increased solubility of an ideal hydrophobe 

with increasing temperature is anticipated with the decreasing density and lower cosolvent-

water affinity (higher 𝑣gIE). 
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 Finally, though we omit the 𝐿𝑆𝐼 distribution from Figure 5.4, we observe consistent 

trends with the five distributions depicted above [Figures 5.3(a) and 5.4]. Specifically, as we 

decrease the temperature of methanol-water, the spacing between water molecules decrease 

(higher LSI); hence, 𝑃(𝐿𝑆𝐼) broadens and shifts towards higher ⟨𝐿𝑆𝐼⟩ (more translationally 

structured water). This finding is consistent with the increased water-water coordination 

(increasing 𝑛,,?g-?g) induced by decreased temperature. The distributions not directly 

depicted in Figures 5.3 and 5.4 are shown in Figure 5.11. 

 At a single methanol-water concentration with varying temperature, we observe 

consistency between the above structural metrics and their physical interpretations. For 

example, the metrics derived from 𝑃>W(𝜃) and 𝑃(𝑞) both suggest increasing tetrahedrality 

with decreasing temperature. For other cosolvents, as we vary the water content of a mixture, 

the interpretation of the structural metrics requires a subtler approach. For instance, 𝑝EcE 

monotonically increases while ⟨𝑞⟩ monotonically decreases with increasing glycerol content. 

We discuss these subtleties in greater detail in Section 3.3. 

5.3.2 Principal component analysis of the three-body angle distribution 
In Figure 5.3, we show that the three-body angle distribution varies in predictable ways, 

along remarkably few degrees of freedom. Further, Δ𝑃>W(𝜃) contains signatures of length 

scale-dependent hydration effects as noted in a previous computational study(79). In that 

work, Monroe and Shell applied principal component analysis (PCA) on Δ𝑃>W(𝜃) to 

explicate the major variations in the three body angle distribution for hydration waters near 

colloids of varied size and attraction(79). This study demonstrated that the first (PC1) and 

second (PC2) principal components describe small (<1-nm) and large (>1-nm) length scale 

hydration effects, respectively. Transitions in water behavior from small to large length scales 
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was first formally described by Lum, Chandler, and Weeks (LCW)(15). LCW theory 

describes how water molecules in vicinity of small (<1 nm radius) hydrophobic solutes (e.g., 

methane) exhibit persistent orientational ordering because they maintain the ability to 

hydrogen bond to one another. On the other hand, large (>1 nm radius) hydrophobic 

interfaces (e.g., oil-water interfaces) inhibit hydrogen bonding and induce dewetting of the 

interface. Discrepant water behavior at small and large length scale frequently emerges in 

both theoretical(14, 23, 33, 79, 94) and experimental(95) literature. While the transition from 

small to large length scale hydration behavior has typically considered water’s hydrogen 

bonding capacity, Monroe and Shell’s findings suggest that this behavior also manifests in 

the three body intermolecular water angle correlations(79), which is strongly reinforced by 

the results found here for a much broader range of chemically realistic systems.  

 To quantify the relevance of the three-body angle distribution more generally, we use 

the scikit-learn(96) package to perform PCA on the entire set of 59 differential three body 

angle distributions for all mixtures studied. The analysis reveals that approximately 97% of 

the variance in Δ𝑃>W(𝜃)—across the entire composition-temperature space—is describe by 

the first two principal components (PC1 and PC2) with a nontrivial 3% of the variance 

explained by the third component (PC3). While PCA alone does not reveal the physical 

origin of the PCs, comparing the PC signals to the trends in Δ𝑃>W(𝜃) provides significant 

insight.  

 We note that PC1 exhibits peaks with positive and negative amplitude at 𝜃 ≈ 64∘ 

(icosahedral) and 109.5∘ (tetrahedral), respectively [Figure 5a]. Hence, we interpret PC1 as 

the tradeoff between predominantly water-like (e.g., methanol-water at 273K) to simple 

fluid-like (e.g., methanol-water at 373K) environments. We characterize the tetrahedral-



 

 
 

148 

icosahedral tradeoff by computing projections of PC1 onto Δ𝑃>W(𝜃) for each of the 59 

simulations 𝑝, = 𝑝𝑟𝑜𝑗*𝑃𝐶,, Δ𝑃>W(𝜃).. As 𝑝, measures the balance between tetrahedral and 

icosahedral water configurations, 𝑝, exhibits a nearly perfect correlation (𝑅 ≈ 1.0) with 𝑝EcE 

with positive 𝑝, corresponding to higher tetrahedrality and negative 𝑝, corresponding to 

lower tetrahedrality than neat water [Figure 5b].  

 Notably, PC2 displays positive peaks at 𝜃 ≈ 54∘ and 90∘ and negative peaks at ≈ 60∘ 

and 135∘. While most of these peaks are not easily ascribed to specific populational shifts as 

in the tetrahedral-icosahedral tradeoff of PC1, the PC2 peak at ≈ 90∘ stems from the increase 

in the population of ideal-gas-like water configurations observed at high temperature (e.g., 

methanol-water at 373K) and high cosolvent concentration (e.g. DMSO at 𝑋@�6? = 0.45). 

We demonstrate that the projection of PC2 onto Δ𝑃>W(𝜃), 𝑝(, shows the most significant 

correlation (𝑅 = −0.92) with ⟨cos 𝜃⟩, [Figure 5.5(c)] suggesting that 𝑝(	probes changes in 

the mean of 𝑃>W(𝜃). While it seems that 𝑝( must then correlate strongly with 𝑝EcE as well, 

this relationship breaks down at high concentrations (e.g., 𝑋@�6? = 0.45) where significant 

rightward drift in the entire 𝑃>W(𝜃) manifests (Figure 5.17).   

 In Figure 5.5(a), we observe a pronounced peak in PC3 at 𝜃 ≈ 50∘ that cannot be 

directly attributed to icosahedral or tetrahedral structures. Previous work has suggested that 

features at 𝜃 ≈ 50∘ stem primarily from a small population of 5-coordinated water 

molecules(36, 79). These authors demonstrate higher 𝑃>W(50∘) in 5-coordinated waters 

compared to 4-coordinated waters. Additionally, PC3 presents a diffuse, positive amplitude 

for 𝜃 > 120∘. However, this large-𝜃 region of PC3 is difficult to attribute to specific 

phenomena due overlapping features of both PC1 and PC2. The large-𝜃 effect manifests in 

the variable-concentration simulations in which increasing concentration yields a higher 
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population of waters with 𝜃 > 120∘ and hence increasing 𝑝>. The competition between the 

impact of high water-water coordination and large-𝜃 effects is illustrated in Figure 5.5(d). 

Here, the alcohol-water simulations, with variable temperature and fixed 10% weight 

fraction, exhibit a negative correlation between the increasing water-water coordination and 

decreasing 𝑝EcE with increasing temperature. On the other hand, the variable composition 

mixtures (e.g., DMSO-water) display the simultaneous enhancement of water tetrahedrality 

and high-𝜃 water configurations. 

 We can further explain the PC trends by drawing comparisons to the prior work of 

Monroe and coworkers(34, 61, 79) in it was suggested that PC1 and PC2 correspond to water 

structural changes at small (<1.0 nm) and large length (>1.0 nm) scales, respectively. We 

consider previous Δ𝑃>W(𝜃) results for an ideal small hydrophobic molecule, a methane 

molecule(79), and an ideal large hydrophobic surface, a methylated self-assembled 

monolayer (SAM)(11, 34), in Figure 5.5(a). Notably, Δ𝑃>W(𝜃) for methane resembles a 

superposition of PC1 and PC3 while Δ𝑃>W(𝜃) for the SAM superposes signals from PC2 and 

PC3. Hence, we directly illustrate how PC1 and PC2 correspond to contributions from small 

and large length scale structural shifts in water. Both systems include contributions from PC3 

variations because the probability of observing 5-coordinating waters decreases in the 

hydration layers at both small and large hydrophobic interfaces. 
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Figure 5.5. (a) Principal component analysis on the set of differential three-body angle 
distributions, Δ𝑃>W(𝜃), for the 59 simulations described in Section 5.2.1. Δ𝑃>W(𝜃) results for 
water populations in the first hydration shell of methane in water(79) and the hydration layer 
of a large hydrophobic surface, a methylated self-assembled monolayer (SAM)(34), are 
shown with dashed lines in blue and orange, respectively. The methane Δ𝑃>W(𝜃) resembles a 
convolution of PC1 and PC3 while Δ𝑃>W(𝜃) for the SAM convolves PC2 and PC3. (b) The 
projection of Δ𝑃>W(𝜃) onto PC1 shows a strong positive correlation with the population of 
tetrahedrally coordinated l���

l���,z�|�
 relative to neat water. (c) The projection of Δ𝑃>W(𝜃) onto 

PC2 generally exhibits a negative correlation with ⟨Q�� �⟩
⟨Q�� �⟩z�|�

. (d) The projection of Δ𝑃>W(𝜃) 

onto PC3 shows system-dependent linear trends with l���
l���,z�|�

. Here, 𝑝EcE,CcIE and ⟨cos 𝜃⟩CcIE 

are 𝑝EcE and ⟨cos 𝜃⟩ for neat water at 298K. 

5.3.3. Pearson correlation matrix  
 While the previous discussion of results for methanol-water systems and associated 

structural metrics provides initial interpretability, here we consider the behavior of a broader 
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set of order parameters using the entire 59-system simulation dataset spanning multiple 

cosolvent chemistries, compositions, and temperatures. To understand the general 

relationships, we construct two separate Pearson correlation coefficient, 𝑅, matrices: one 

between the order parameters and 𝐷;!? and the other between the parameters and 𝜇;6cn . For 

the sake of interpretability, we present only a subset of putative structural metrics in Figures 

5.6 and 5.7. Full correlation matrices between all structural metrics water properties, 𝐷;!? 

and 𝜇;6cn , are shown in Figures S5.9 and S5.10. 

 We first note several interesting correlations—or lack thereof—with 𝐷;!? [Figure 

5.6]. As suggested by many findings in the literature(10–12, 58), water’s translational 

mobility (e.g., 𝐷;!?) tends to be correlated (|𝑅| > 0.5) to probes of translational order such 

as  𝑛,,?g-?g, 𝑡, 𝐿𝑆𝐼, and	⟨𝑁⟩. However, probes of the tetrahedral network structure including 

𝑝EcE, 𝑆>W, and 𝑝, exhibit even greater correlation with 𝐷;!? (𝑅 > 0.9) than the translation 

order parameters (apart from 𝑛,,?g-?g). The most strongly-correlated order parameters with 

diffusivity (𝑝EcE, 𝑆EcE, 𝑝,, and 𝑛,,?g-?g) are much more sensitive to the effects of 

temperature than less correlated parameters (𝑡, 𝐿𝑆𝐼, and ⟨𝑁⟩), which exhibit much smaller 

order parameter-diffusivity slopes for the alcohol series of simulations (see Figure 5.19 for 

more details). Unlike the quantities derived from 𝑃(𝜃), 𝑞 shows weaker correlation with 

𝐷;!? when all 59 systems are considered. As mentioned in Section 5.2.3, water molecules 

can only be considered tetrahedral (𝑞 = 1) with all six nearest neighbors triplet angles being 

tetrahedral (𝜓�T = 109.5∘). Further, lower water-water coordination number, 𝑛,,?g-?g, 

accompanies increased additive concentration (e.g., glycerol-water, DMSO-water, and PEO-

water series). Hence, the nearest neighbors outside of the first hydration shell have decreased 
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orientational correlation with the central water molecule and thus lower tetrahedrality per 𝑞. 

On the other hand, we can eliminate the effect of cosolvent crowding by fixing mixture 

composition and decreasing temperature (e.g., alcohol-water series); in these cases, we 

observe a systematic increase in 𝑞 upon cooling [Figure 5.4(a)]. For instance, we directly 

observe the opposite 𝐷;!? − 𝑞 relationships in the methanol-water series (𝑅 < 0) and 

glycerol-water series (𝑅 > 0) [Figure 5.21]. 
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Figure 5.6. The upper off-diagonal tiles of the matrix depict the Pearson correlation between ln c
.%!&

.%!&,()*+
d and a 

subset of relevant structural metrics. Here, linear fits between each pair of properties with 95% confidence 
bands shown in gray. Notably, we observe the largest correlation (𝑅 = −0.91) between ln c

.%!&
.%!&,()*+

d and the 

relative 𝑝4S4 ,
R+)+

R+)+,()*+
. Further, none of the three structural metrics presented ( R+)+

R+)+,()*+
, ⟨/⟩
⟨/⟩()*+

, and 𝑝_) are 

strongly correlated with the others. The diagonal tiles depict histograms of the simulation-observed 𝐷M!-, 𝑝4S4, 
⟨𝑁⟩, and 𝑝_, separately. The lower off-diagonal tiles are estimates of the kernel density estimates (KDEs) of the 
bivariate distribution of each pair of properties in the matrix. The green shaded regions indicate the probability 
density with darker colors corresponding to higher probability density. In all off-diagonal tiles, the data points 
are colored according to the simulation temperature.  
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 We separately consider 𝜇;6cn  as a surrogate measurement of the solvation 

thermodynamic environment for small, methane-like solutes. Unlike 𝐷;!?, 𝜇;6cn  exhibits a 

general lower degree of correlation with all order parameters considered [Figure 5.7]. Apart 

from ⟨𝑣gIE⟩, ⟨𝑎gIE⟩, and 𝑝>, none of the order parameters have |𝑅| > 0.5 correlations with 

𝜇;6cn . The lack of correlation is undoubtedly partially due to the subtle shifts in 𝜇;6cn  with both 

changes in temperature, solute chemistry, and composition. We physically interpret the 

correlation between the average molecular volume of a water molecule ⟨𝑣gIE⟩	 and 𝜇;6cn  as 

follows: increased molecular volume (decreasing mixture density) increases the favorability 

of solvating a hard sphere (lowers 𝜇;6cn ). A similar argument is made for the average 

molecular area of a water molecule ⟨𝑎gIE⟩. The connection between 𝜇;6cn  and 𝑝>, on the other 

hand, is less straightforward. As discussed in Section 5.3.2, we attribute PC3 primarily to the 

effect of a small population of 5-coordinated waters. Further, we note that Dallin et. al. found 

the population of 5-coordinated waters to predictive of solvation energetics—namely, the 

hydration free energy at self-assembled monolayers surfaces (SAMs)(36). The resulting 

projection of PC3 onto a given system’s differential 3-body angle distribution quantifies the 

portion of 3-body angles between corresponding to a 5-coordinated water molecule. Hence, 

water molecules in hotter mixtures have a higher likelihood of 5-coordinating (𝑝> increases) 

due to lower water-cosolvent affinity and simultaneously higher affinity for the small 

hydrophobe (𝜇;6cn  increases). 
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Figure 5.7. The upper off-diagonal tiles of the matrix depict the Pearson correlation between �%,
)-

�%,,()*+
)-  and a 

subset of relevant structural metrics. Here, linear fits between each pair of properties with 95% confidence 
bands shown in gray. Notably, we observe the largest correlation (𝑅 = −0.7) between �%,

)-

�%,,()*+
)-  and 𝑝_. Further, 

none of the three structural metrics presented ( ⟨I.*+⟩
⟨I.*+⟩()*+

, �#,&./&.
�#,&./&.,()*+

and 𝑝_) are strongly Pearson-correlated 

with the others. The diagonal tiles depict histograms of simulation-observed 𝜇M5S� , ⟨𝑎UI4⟩, 𝑛D,-U\-U ,	and 𝑝_, 
separately. The lower off-diagonal tiles are estimates of the kernel density estimates (KDEs) of the bivariate 
distribution of each pair of properties in the matrix. The green shaded regions indicate the probability density 
with darker colors corresponding to higher density. In all off-diagonal tiles, the data points are colored 
according to the simulation temperature.   
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5.3.4. Statistical learning approach to property prediction 
Though atomistic molecular simulations provide the detailed configurational information 

necessary to resolve the numerous water structural metrics described in Section 5.2.3, 

experimental techniques that probe molecular scale features are typically limited to a single 

type of measurement. For example, while an experimental technique like ODNP yields 

spatially resolved water diffusivity measurements, one cannot determine the molecular 

driving forces underlying the dynamic shifts without molecular simulation or other 

experimental methods. The correlations described above offer the opportunity of developing 

a deeper and more general understanding of the structural means and magnitudes through 

which observed dynamic or thermodynamic shifts emerge.  

To quantify the relationship between a collection of water structural metrics and 

observable properties, here we apply statistical learning algorithms to systematically select 

the metrics that best describe and predict changes in equilibrium dynamics (diffusivity) and 

solvation thermodynamics (hard sphere excess chemical potential).  In statistical learning 

applications, researchers frequently seek to reduce redundant or uninformative features from 

models to improve computational efficiency and improve the robustness of predictions(36, 

97, 98). Due to the potentially large numbers of putative features (possibly thousands), these 

efforts tend to leverage low intervention dimensionality-reduction strategies(99–101). Hence, 

dimensionality-reduction algorithms like principal component analysis(16, 79, 102) and 

feature selection strategies(36) are often applied.  

 Due to the high computational cost of direct atomistic simulation, generating large 

datasets for statistical learning methods can be challenging. Fortunately, we have access to 

numerous simulations from our previous works(10, 62) and the additional simulations 
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described in Section 5.2.1. We leverage the structural metrics detailed in Section 5.2.3 paired 

with feature selection to develop a general connection between molecular scale structure, 

dynamics, and solvation thermodynamics. More specifically, using the fSFS procedure 

described in the Section 5.2.4, we systematically rank 20 structural order parameters [Table 

1] and three principal component projections (23 order parameters in total) in order of their 

importance to predicting the log self-diffusivity of water ln � @B!~
@B!~,z�|�

� and, separately, the 

excess hard sphere chemical potential ^B(
�Z

^B(,z�|�
�Z . Here for predictive models, we normalize each 

quantity by its value in “neat” water at 298K and 1bar. 

 Applying fSFS, we find that the three most important features for describing the 

variation in ln � @B!~
@B!~,z�|�

� to be 𝑝EcE, ⟨𝑁⟩, and 𝑝> in order of decreasing importance. Further, 

we develop three multiple linear regression (MLR) models considering increasing numbers 

of independent variables: (1) l���
l���,z�|�

, (2) l���
l���,z�|�

 and ⟨9⟩
⟨9⟩z�|�

, and (3) l���
l���,z�|�

, ⟨9⟩
⟨9⟩z�|�

, 𝑝>. 

Here, l���
l���,z�|�

 is the greatest predictor of 𝐷;!?, with 𝑅 = −0.91 [Figure 5.6].  In Figure 5.8, 

we depict the performance of each of the three models compared to direct measurement of 

𝐷;!?. Remarkably, even for the simplest model, (1), we find high predictive capacity 

(𝑅Ec%E( = 0.83). Here, we observe the poorest model agreement for the systems with variable 

composition (e.g., glycerol-water, DMSO-water, and PEO-water). For example, as suggested 

by Figure 5.1, depending on the solute identity the slope of the diffusivity-tetrahedrality 

relationship changes dramatically. 

 Upon including only one additional feature ⟨𝑁⟩, we find significantly better model 

performance (𝑅Ec%E( = 0.96). We hypothesize that 𝑝EcE captures shifts in orientational 
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structure while ⟨𝑁⟩ corrects the model to account for composition-induced changes in 

translational order. At first glance, Figure 5.19 suggests that  𝑛,,?g-?g is superior to ⟨𝑁⟩ as a 

translational order parameter (𝑅 = 0.9 rather than 𝑅 = −0.8). However, 𝑛,,?g-?g is colinear 

with 𝑝EcE (𝑅 = −0.9). This collinearity results in a similar predictive power for both  

𝑛,,?g-?g and  𝑝EcE. 

 The importance of quantifying both orientational and translational order was 

previously noted by Errington and Debenedetti(9). In this work, they discovered that pair of 

order parameters 𝑞 and 𝑡 signaled the emergence of anomalous thermophysical properties in 

supercooled water. Though here we highlight different structural metrics, the parallel 

suggests that the interplay between orientational and translational order are natural 

descriptors, which here are identified using automated feature selection. Further, adding a 

third feature, 𝑝>, does not dramatically increase the predictive capacity of the MLR model 

(𝑅Ec%E( = 0.99). This may suggest that water mobility is primarily determined by water-water 

translational and orientational correlations even in environments heavily crowded by 

cosolvent molecules. 
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Figure 5.8. From top to bottom, performance of model (1) with dependent variable R+)+
R+)+,()*+

, (2) with dependent 

variables R+)+
R+)+,()*+

 and ⟨/⟩
⟨/⟩()*+

, and (3) with dependent variables R+)+
R+)+,()*+

, ⟨/⟩
⟨/⟩()*+

, and  𝑝_ to predict 𝐷M!-. Model 

(1) does not perfectly capture the different 𝐷M!--𝑝4S4 relationships across distinct systems as shown in Figure 
5.1. Model (2) significantly improves upon the accuracy. Here, the inclusion of a metric for translational order, 
⟨𝑁⟩, largely corrects for the poor performance for high concentration glycerol-water and DMSO-water 
mixtures. While adding the independent variable, 𝑝_, in model (3) marginally increases the accuracy of 𝐷M!- 
prediction, the physical interpretation of this improvement is not entirely clear. Including higher numbers of 
independent variables greater than three does not dramatically improve performance [Figure 5.22]. 

 We also seek the top three features that best describe trends in solvation 

thermodynamics. Implementing the same fSFS procedure that we apply to water self-

diffusivity, we construct the following MLR models (4) 𝑝>, (5) 𝑝> and C$,~#�~#
C$,~#�~#,z�|�

, and (6) 

𝑝>, C$,~#�~#
C$,~#�~#,z�|�

, and ⟨I#|�⟩
⟨I#|�⟩z�|�

 to predict for ^B(
�Z

^B(,z�|�
�Z . In Figure 5.9, we compare the test set 

performance of models (4)-(6) to computed values of 𝜇;6cn . Unlike the results shown in 

Figure 5.8, the single variable model (4) poorly predicts (𝑅( = 0.37) trends in 𝜇;6cn . The 

underperformance of model (4) may initially seem surprising given the high Pearson 

correlation (|𝑅| = 0.7) between 𝜇;6cn  and 𝑝>. However, we note that the 𝑝> − 𝜇;6cn  relationship 
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exhibits trends with opposing slopes for variable concentration and variable temperature 

simulations as further discussed in Section 5.3.3. 

 With the inclusion of 𝑛,,?g-?g, model (5) significantly improves performance on the 

test set (𝑅Ec%E( = 0.67). While model (2) leverages both translational and orientational metrics 

to predict 𝐷;!?, model (5) relies on two metrics that quantify water-water radial correlations 

to predict 𝜇;6cn . Here,  𝑛,,?g-?g improves model performance by mitigating the deviation 

from the linear 𝜇;6cn -structure relationship observed in the variable concentration simulations. 

We improve 𝜇;6cn  prediction in model (6) by accounting for the impact of water’s increasing 

specific molecular area, ⟨𝑎gIE⟩, with decreasing 𝜇;6cn . Upon including ⟨𝑎gIE⟩, we observe 

comparable test set performance (𝑅Ec%E( = 0.88) to models (1) and (2). We also note that 

similar performance to model (6) is attained by swapping ⟨𝑎gIE⟩ for ⟨𝑣gIE⟩. 

  

 

Figure 5.9. Performance of models (4) (with dependent variable 𝑝_), (5) (with dependent variables 𝑝_ and 
�#,&.&.

�#,&.&.,()*+
), and (6) (with dependent variables 𝑝_, �#,&.&.

�#,&.&.,()*+
, and  ⟨I.*+⟩

⟨I.*+⟩()*+
) to predict 𝜇M5S�  on the test data 

set. We observe weak model performance including the single independent variable, 𝑝_, in model (4). Here, the 
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relationship partially owes to the increased likelihood of observing supra-tetrahedral (5-coordinated) water 
coordination environments with increasing temperature in alcohol-water. In model (5), we observe a substantial 
increase in model accuracy by accounting for the mean change in the water-water coordination number, 
𝑛D,-U\-U. Only upon including water’s average molecular surface area, ⟨𝑎UI4⟩, does structure reliably predict 
𝜇M5S� . Including higher numbers of independent variables greater than three does not dramatically improve 
performance [Figure 5.23]. 

 We further validate the fSFS-selected features by applying alternative feature 

selection strategies—namely—LASSO regression. In Figures S5.14 and S5.15, we depict 

the results of a LASSO regression procedure for estimating the relative importance of 

structural features for diffusivity-prediction. LASSO regression indicates that six structural 

metrics are predictive of 𝐷;!?. As with the fSFS results, the LASSO procedure includes 𝑝EcE, 

𝑝>, and ⟨𝑁⟩ among the most descriptive structural metrics. We further note that fSFS is a 

greedy algorithm—choosing only the most descriptive structural metric with each successive 

iteration. Alternatively, even upon tuning the LASSO learning rate with 4-fold cross-

validation, LASSO regression yields a greater number of descriptive structural metrics. 

However, depending on the choice of test and training datasets, LASSO produces different 

feature rankings. Notably, in the first case [Figure 5.24] we observe the highest importance 

score for ⟨𝑁⟩ while in a second case [Figure 5.25] we find that 𝑝EcE is most important. This 

strong dependency on the choice of training data suggests that, even with variable 

standardization, LASSO-based feature selection cannot yield an absolute ranking of features 

in the present case. We provide details on these analyses in the Section 5.5.4. 

5.3.5 Inferring structure metrics from dynamics 
 The diffusivity-structure relationships above provide a potential framework for 

predicting the structural mechanisms driving shifts in dynamics with application in more 

complex mixtures and at chemically heterogeneous surfaces such as proteins-water 

interfaces. While this fSFS-MLR procedure selects the most important structural metrics, it 
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does not inherently quantify the magnitude of these metrics’ effect on dynamics. For 

example, though glycerol-water at mole fraction 0.05 is accurately predicted by model (2), 

we cannot determine the extent to which this agreement is driven by translational and 

orientational structural effects.  

 We consider model (3) for predicting water self-diffusivity using only two order 

parameters: ⟨9⟩
⟨9⟩z�|�

 and l���
l���,z�|�

. As noted in Section 5.3.4, including more than three 

independent parameters in the MLR model does not meaningfully improve performance. 

Further, selecting only one translational ( ⟨9⟩
⟨9⟩z�|�

) and one orientational ( l���
l���,z�|�

) structural 

metric improves the interpretability of the predictions. Invoking this simple two parameter 

model, we employ a Bayesian linear regression framework to estimate the posterior 

distribution of fitting parameter values, 𝑝(𝜷|𝑿, 𝒚) 

𝑝(𝜷|𝑿, 𝒚) ∝ 𝑝(𝜷)𝑝(𝑿, 𝒚|𝜷)  (5.5) 

where 𝜷 is the vector, [𝛽l��� , 𝛽⟨9⟩, 𝛽0]. Here, 𝛽l��� and 𝛽⟨9⟩ are slope parameters 

corresponding to l���
l���,z�|�

 and ⟨9⟩
⟨9⟩z�|�

, respectively, and 𝛽0 is the intercept. 𝑿 is a 59x3 array 

with each row corresponding to a simulation observation, column one corresponds to an 

observation of l���
l���,z�|�

, column two corresponds to ⟨9⟩
⟨9⟩z�|�

, and column three is unity for 

every element to account for the intercept. 𝒚 is a 59-element column vector where each value 

is a simulation estimate of 𝐷;!?. We note that the entire set of dependent and independent 

variables are transformed to unit-variance, zero-mean representation. 𝑝(𝜷) is the prior 

distribution of 𝜷. 𝑝(𝑿, 𝒚|𝜷) is the likelihood of observing 𝑿 and 𝒚 conditioned on 𝜷. Here, 

we take 𝑝(𝜷) to be a bivariate normal distribution, 𝒩(0, 𝚺), with zero-mean and unit 
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covariance 𝚺 = ¿
1 0 0
0 1 0
0 0 1

À. We detail the impact of this prior assumption in further detail in 

the Section 5.5.6. 

 More interestingly, we leverage 𝑝(𝜷|𝑿, 𝒚) to generate new predictions of diffusivity 

via the posterior predictive distribution 

 𝑝(𝑦Ccg|𝒙𝒏𝒆𝒘, 𝑿, 𝒚) ∝ 	∫ 𝑝(𝜷|𝑿, 𝒚)𝑝(𝑦Ccg|𝒙𝒏𝒆𝒘, 𝜷)𝑑𝜷  (5.6) 

where 𝒙𝒏𝒆𝒘  is a proposed new vector of structural metrics, 𝒙𝒏𝒆𝒘 = � l���
z�#

l���,z�|�

⟨9⟩z�#

⟨9⟩z�|�
�. 𝑦Ccg is 

the new 𝐷;!? prediction given 𝒙𝒏𝒆𝒘. With one additional application of Bayes’ Theorem, we 

infer a posterior distribution of structural metrics 

  𝑝(𝒙𝒏𝒆𝒘|𝑦Ccg , 𝑿, 𝒚)	 ∝ 	𝑝(𝒙𝒏𝒆𝒘)𝑝(𝑦Ccg|𝒙𝒏𝒆𝒘, 𝑿, 𝒚)  (5.7) 

where 𝒙𝒏𝒆𝒘 is a predicted observation vector [𝑝EcECcg ⟨𝑁⟩Ccg] given a value of 𝑦Ccg = 𝐷;!?
Ccg. 

We assume the prior distribution, 𝑝(𝒙𝒏𝒆𝒘), is a bivariate normal distribution, 𝒩(0, 𝚺), with 

𝚺 = /1 0
0 18. Further interrogation of this prior assumption is discussed in Section 5.5.6. To 

numerically sample 𝑝(𝒙𝒏𝒆𝒘|𝑦Ccg , 𝑿, 𝒚), we randomly draw a vector of structural metrics, 

𝒙𝒏𝒆𝒘, from 𝑝(𝒙𝒏𝒆𝒘) and draw 20,000 estimates of 𝑦Ccg conditioned on the training data (𝑿 

and 𝒚) and 𝒙𝒏𝒆𝒘. We repeat this sampling procedure 20,000 times. We then estimate the 

posterior distribution, 𝑝(𝒙𝒏𝒆𝒘|𝑦Ccg , 𝑿, 𝒚), as a discrete histogram of 𝑦Ccg and 𝒙𝒏𝒆𝒘. Finally, 

we approximate 𝑝(𝒙𝟏𝒏𝒆𝒘|𝑦Ccg = 𝑦,Ccg , 𝑿, 𝒚) for a given 𝑦Ccg = 𝑦,Ccg by selecting the 𝑦Ccg-

bin value closest to 𝑦,Ccg. 

 As a proof of concept, we test this Bayesian framework for two log-diffusivity values 

corresponding approximately to (i) methanol-water at 298K with methanol weight fraction of 

0.10 and (ii) DMSO-water at 291 K with 𝑋@�6? =0.45. We analyze posterior predict 
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distributions on 𝑝EcE/𝑝EcE,CcIE [Figures 5.10a and b] and ⟨𝑁⟩/⟨𝑁⟩CcIE [Figures 5.10c and d]. 

For 𝑝EcE/𝑝EcE,CcIE, the predicted means are 0.5% larger and 9% smaller than the direct 

simulation observations for systems (i) and (ii), respectively. Simultaneously, the 

⟨𝑁⟩/⟨𝑁⟩CcIE mean predictions are 3% larger and 8% larger than the direct observation for 

systems (i) and (ii), respectively. The decreased accuracy of the prediction for prediction (ii) 

stems from the corresponding poorer performance of MLR model (2) to predict the behavior 

of DMSO at 𝑋@�6? = 0.45 [Figure 5.8]. Though the performance of these structure 

predictions is imperfect, this approach yields the qualitatively correct behavior in both 

structural metrics. 

 

Figure 5.10. In panels (a)-(d), we depict prior (orange) and posterior predictive (blue) distributions generated 
by the Bayesian regression model trained on 𝑝4S4, ⟨𝑁⟩, and 𝑝_ to predict 𝐷M!-. The 𝑝4S4 predictive distributions 
for (a) methanol-water at 298K with methanol weight fraction of 0.10 and (b) DMSO-water with 𝑋.�5- = 0.45 
and 291K yield mean values h R+)+

R+)+,()*+
i
RPF4SG3PG

 (black vertical line). The ⟨𝑁⟩ predictive distributions for (c) 

methanol-water at 298K and (d) DMSO-water at 𝑋.�5- = 0.45 and 291K yield mean values h ⟨/⟩
⟨/⟩()*+

i
RPF4SG3PG

 

(black vertical line). Simulation means are depicted with green vertical lines. Model predictions are closer to the 
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simulation measurement for methanol-water at 298K compared to the DMSO-water case. Predictions of (e) 
R+)+

R+)+,()*+
 and (f) ⟨/⟩

⟨/⟩()*+
 generated from ODNP-derived 𝐷M!- values for a range of DMSO-water mixtures from 

𝑋.�5- = 0 to 0.5 (red) are compared to simulation-derived properties (blue). In panels (e) and (f), the lines 
represent linear least squares fits between the log-diffusivity and a given structure metric. Here, the shaded 
bands corresponding to 95% confidence intervals on the fit.  
 

 We extend this line of reasoning towards inferring water structure from experimental 

measurements of water self-diffusivity. Specifically, we measure 𝐷;!? by performing ODNP 

experiments for DMSO-water at compositions spanning 𝑋@�6? = 0 to 0.5 (see Section 5.2). 

We first note that experimental 𝐷;!? values are not numerically identical to the 

corresponding simulation-estimated diffusivities. This stems partly from the ODNP 

assumptions used to compute 𝐷;!? via the so-called force-free hard sphere model 

(FFHS)(57, 103, 104). Further discrepancies may stem from the DMSO and water model 

force field accuracy. However, experimental and computational estimates of 𝐷;!? exhibit the 

same qualitative behavior for DMSO-water mixtures. 

 With experimental 𝐷;!? measurements in hand, we perform the same structure-

prediction procedure as in case (ii) above to several DMSO-water mixtures. In Figures 5.10e 

and 5.10f, we observe monotonic decreases in both 𝑝EcE/𝑝EcE,CcIE and ⟨𝑁⟩/⟨𝑁⟩CcIE with 

increasing 𝑋@�6? (decreasing 𝐷;!?). The diffusivity-structure relationships predicted from 

experimental results and direct computation are qualitatively similar. Further, just as with 

example case (ii), there is greater disparity between the inferred ⟨9⟩
⟨9⟩z�|�

 and the direct 

simulation estimate than between the inferred l���
l���,CcIE

 and its direct computation. We note 

that the accuracy of the ⟨9⟩
⟨9⟩z�|�

 prediction decreases with increasing 𝑋@�6? . This decreasing 

performance is expected given the decreasing performance of the MLR model with 
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increasing 𝑋@�6? [Figure 5.8]. Though not in quantitative accordance, the qualitative 

agreement between direct calculation and the Bayesian predictions of water structure 

suggests a new, systematic method of understanding the molecular scale modes, magnitudes, 

and mechanisms underlying changes in thermophysical properties like 𝐷;!?.   
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5.4 Conclusions  
 We utilize molecular simulations to probe water’s molecular structure and water 

properties in a broad range of binary mixtures. We generate a library of 23 structural metrics 

for a set of 59 binary aqueous mixtures of varying temperature, composition, and cosolvent 

identity. We leverage PCA to quantify and characterize the subtler trends in water’s triplet 

angle distribution, Δ𝑃>W(𝜃), across temperature-composition space. The vast majority (97%) 

of the variance in Δ𝑃>W(𝜃) is captured by the first two principal components (PC1 and PC2). 

Further, we posit that PC1 and PC2 capture shifts in water’s tetrahedral network structure on 

small (<1 nm) and large (> 1 nm) length scales, respectively. In keeping with several 

previous works(14, 15, 17, 105–107), we observe enhanced water structure in the presence of 

small hydrophobic solutes—in our case hydrophilic solutes as well—and a disruption in 

water’s tetrahedral network in the vicinity of large hydrophobic surfaces. This PCA 

framework enables new methods to characterize shifts in hydration water properties from 

small ideal hydrophobic molecules (e.g., methane) to solutes with intermediate hydropathy 

(e.g., PEO) to macromolecules and molecular surfaces. 

 Aggregating 20 structural metrics and the projections of each Δ𝑃>W(𝜃) onto the 

principal components, we analyze the connections between the combined 23 structural 

metrics, water dynamics (𝐷;!?), and solvation thermodynamics (𝜇;6cn ). Using forward 

sequential feature selection (fSFS), we discover that 𝐷;!? is predicted with remarkably high 

accuracy (𝑅( ≈ 0.96) via multiple linear regression (MLR) with two independent variables: 

𝑝EcE and ⟨𝑁⟩. Here, 𝑝EcE and ⟨𝑁⟩ track water’s tetrahedral and translational ordering, 

respectively. The apparent translation-orientation dependence of 𝐷;!? parallels Errington and 

Debenedetti’s seminal work(9) demonstrating the importance of both orientational (𝑞) and 
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translational (𝑡) order in signaling anomalous properties in supercooled water. The 

compatibility of this prior work and the present work implies the importance of the 

translation-orientation pairing to describe—and potentially predict—thermophysical 

properties in aqueous environments. 𝜇;6cn , on the other hand, is predicted with lower accuracy 

(𝑅( ≈ 0.88) via MLR with three independent variables: 𝑝>, 𝑛,,?g-?g, and ⟨𝑎gIE⟩. Hence, 

solvation thermodynamics, as probed by 𝜇;6cn , appears to depend more so on probes of local 

spatial correlations and water density than water’s tetrahedrality. However, other aqueous 

systems exhibit clear relationships between solvation thermodynamic properties and water’s 

orientational order. For example, previous studies point to significant correlation between 

solvation thermodynamics in colloidal hydration shells81, extended surfaces, and protein 

hydration layers109. 

 This feature selection workflow should be generalizable to additional water properties 

and aqueous environments. As an extension of this procedure, future studies should consider 

local hydration layer properties (e.g., protein-water interfaces) as opposed to system-average 

properties as in the current work. This would offer a more systematic method of 

understanding the structural and dynamic features underpinning hydration layer properties. 

Finally, we propose a method of leveraging relatively inexpensive molecular simulations to 

approximate water’s molecular structure from ODNP-derived diffusivity data. Though the 

predictions are not one-to-one with direct calculations from MD simulations, we capture the 

qualitative structural trends observed in simulations. Hence, this work also offers the 

prospect of informed, but low intervention, forecasting of properties not directly measured by 

experiment. 
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5.5 Appendix 

5.5.1 Further Analysis of Solution Structure 
In Figure 5.11-18, we depict distributions of varied structural metrics for each of the 8 binary 

aqueous mixture types (methanol [Figure 5.11], ethanol [Figure 5.12], propanol [Figure 5.13], 

butanol [Figure 5.14], glycerol [Figure 5.15], PEO [Figure 5.16], DMSO [Figure 5.17], and 

peptoid [Figure 5.18]) and all 59 individual simulations. The first four Figures 5.11-14 are 

color-coded by the simulation temperature with a blue-red color scale where the blue and red 

correspond to cold (e.g., 273.15K) and hot (e.g., 373.15K) temperatures, respectively. In 

Figures 5.15-17, the composition is represented by a yellow-green color scale with yellow 

corresponding to dilute aqueous mixtures and green corresponding to higher cosolvent 

concentrations. The differences the system-average structural distributions between the 

peptoid sequences depicted in Figure 5.2 are not perceptible when plotted in Figure 5.18. 
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Figure 5.11. We depict probability distributions for a subset of structural metrics discussed in Section 5.2 for 
methanol-water at temperature of 273.15, 280.15, 291.15, 298.15, 309.15, 329.15, 350.15, and 373.15K. Here, red 
corresponds to higher temperature and blue to colder temperature. (a) The distributions of the tetrahedral order 
parameter, 𝑃_8(𝜃), exhibit a systematic decreases in the icosahedral, 𝜃 = 64∘,  and increase in the tetrahedral, 𝜃 =
109.5∘, regions with decreasing temperature. (b) The tetrahedral order parameter distribution, 𝑃(𝑞), exhibit peaks at 
𝑞 ≈ 0.4 (less tetrahedral) and 𝑞 ≈ 0.8 (more tetrahedral). The distribution systematically shifts towards 𝑞 = 0.8 
upon cooling. (c) The distributions of water specific volumes, 𝑃(𝑣UI4), broaden and exhibit larger mean specific 
volumes, ⟨𝑣UI4⟩, as the temperature of the mixture increases. (d) The distributions of LSI, 𝑃(𝐿𝑆𝐼), broaden and 
exhibit larger means, ⟨𝐿𝑆𝐼⟩, as the temperature of the mixture decreases. (e) The distributions of water specific areas, 
𝑃(𝑎UI4), broaden and exhibit larger mean specific volumes, ⟨𝑎UI4⟩, as the temperature of the mixture increases. (f) 
2D water-water radial distribution function (RDFs), 𝑔(𝑟), show enhanced translational order in water with 
decreasing temperature as demonstrated by the increasing peak and trough amplitudes. (g) The distributions of water 
asphericity, 𝑃(𝜂), exhibit smaller (more spherical) mean asphericity, ⟨𝜂⟩, as the temperature of the mixture 
increases. (h) The negative log-probability of hard sphere insertion distribution, − ln[𝑃(𝑁)], demonstrates the 
systematic decrease in the affinity of an ideal hydrophobic molecule for methanol-water upon cooling. 
Simultaneously, decreased mixture temperature shifts the distribution towards lower mean overlap numbers, ⟨𝑁⟩. 
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Figure 5.12. We depict probability distributions for a subset of structural metrics discussed in Section 5.2 for 
ethanol-water at temperature of 273.15, 280.15, 291.15, 298.15, 309.15, 329.15, 350.15, and 373.15K. Here, red 
corresponds to higher temperature and blue to colder temperature. (a) The distributions of the tetrahedral order 
parameter, 𝑃_8(𝜃), exhibit a systematic decrease in the icosahedral, 𝜃 = 64∘,  and increase in the tetrahedral, 𝜃 =
109.5∘, regions with decreasing temperature. (b) The tetrahedral order parameter distribution, 𝑃(𝑞), exhibit peaks at 
𝑞 ≈ 0.4 (less tetrahedral) and 𝑞 ≈ 0.8 (more tetrahedral). The distribution systematically shifts towards 𝑞 = 0.8 
upon cooling. (c) The distributions of water specific volumes, 𝑃(𝑣UI4), broaden and exhibit larger mean specific 
volumes, ⟨𝑣UI4⟩, as the temperature of the mixture increases. (d) The distributions of LSI, 𝑃(𝐿𝑆𝐼), broaden and 
exhibit larger means, ⟨𝐿𝑆𝐼⟩, as the temperature of the mixture decreases. (e) The distributions of water specific areas, 
𝑃(𝑎UI4), broaden and exhibit larger mean specific volumes, ⟨𝑎UI4⟩, as the temperature of the mixture increases. (f) 
2D water-water radial distribution function (RDFs), 𝑔(𝑟), show enhanced translational order in water with 
decreasing temperature as demonstrated by the increasing peak and trough amplitudes. (g) The distributions of water 
asphericity, 𝑃(𝜂), exhibit smaller (more spherical) mean asphericity, ⟨𝜂⟩, as the temperature of the mixture 
increases. (h) The negative log-probability of hard sphere insertion distribution, − ln[𝑃(𝑁)], demonstrates the 
systematic decrease in the affinity of an ideal hydrophobic molecule for ethanol-water upon cooling. 
Simultaneously, decreased mixture temperature shifts the distribution towards lower mean overlap numbers, ⟨𝑁⟩. 



 

 
 

172 
 

Figure 5.13. We depict probability distributions for a subset of structural metrics discussed in Section 5.2 for 
propanol-water at temperature of 273.15, 280.15, 291.15, 298.15, 309.15, 329.15, 350.15, and 373.15K. Here, red 
corresponds to higher temperature and blue to colder temperature. (a) The distributions of the tetrahedral order 
parameter, 𝑃_8(𝜃), exhibit a systematic decrease in the icosahedral, 𝜃 = 64∘,  and increase in the tetrahedral, 𝜃 =
109.5∘, regions with decreasing temperature. (b) The tetrahedral order parameter distribution, 𝑃(𝑞), exhibit peaks at 
𝑞 ≈ 0.4 (less tetrahedral) and 𝑞 ≈ 0.8 (more tetrahedral). The distribution systematically shifts towards 𝑞 = 0.8 
upon cooling. (c) The distributions of water specific volumes, 𝑃(𝑣UI4), broaden and exhibit larger mean specific 
volumes, ⟨𝑣UI4⟩, as the temperature of the mixture increases. (d) The distributions of LSI, 𝑃(𝐿𝑆𝐼), broaden and 
exhibit larger means, ⟨𝐿𝑆𝐼⟩, as the temperature of the mixture decreases. (e) The distributions of water specific areas, 
𝑃(𝑎UI4), broaden and exhibit larger mean specific volumes, ⟨𝑎UI4⟩, as the temperature of the mixture increases. (f) 
2D water-water radial distribution function (RDFs), 𝑔(𝑟), show enhanced translational order in water with 
decreasing temperature as demonstrated by the increasing peak and trough amplitudes. (g) The distributions of water 
asphericity, 𝑃(𝜂), exhibit smaller (more spherical) mean asphericity, ⟨𝜂⟩, as the temperature of the mixture 
increases. (h) The negative log-probability of hard sphere insertion distribution, − ln[𝑃(𝑁)], demonstrates the 
systematic decrease in the affinity of an ideal hydrophobic molecule for propanol-water upon cooling. 
Simultaneously, decreased mixture temperature shifts the distribution towards lower mean overlap numbers, ⟨𝑁⟩. 
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Figure 5.14. We depict probability distributions for a subset of structural metrics discussed in Section 5.2 for 
butanol-water at temperature of 273.15, 280.15, 291.15, 298.15, 309.15, 329.15, 350.15, and 373.15K. Here, red 
corresponds to higher temperature and blue to colder temperature. (a) The distributions of the tetrahedral order 
parameter, 𝑃_8(𝜃), exhibit a systematic decrease in the icosahedral, 𝜃 = 64∘,  and increase in the tetrahedral, 𝜃 =
109.5∘, regions with decreasing temperature. (b) The tetrahedral order parameter distribution, 𝑃(𝑞), exhibit peaks at 
𝑞 ≈ 0.4 (less tetrahedral) and 𝑞 ≈ 0.8 (more tetrahedral). The distribution systematically shifts towards 𝑞 = 0.8 
upon cooling. (c) The distributions of water specific volumes, 𝑃(𝑣UI4), broaden and exhibit larger mean specific 
volumes, ⟨𝑣UI4⟩, as the temperature of the mixture increases. (d) The distributions of LSI, 𝑃(𝐿𝑆𝐼), broaden and 
exhibit larger means, ⟨𝐿𝑆𝐼⟩, as the temperature of the mixture decreases. (e) The distributions of water specific areas, 
𝑃(𝑎UI4), broaden and exhibit larger mean specific volumes, ⟨𝑎UI4⟩, as the temperature of the mixture increases. (f) 
2D water-water radial distribution function (RDFs), 𝑔(𝑟), show enhanced translational order in water with 
decreasing temperature as demonstrated by the increasing peak and trough amplitudes. (g) The distributions of water 
asphericity, 𝑃(𝜂), exhibit smaller (more spherical) mean asphericity, ⟨𝜂⟩, as the temperature of the mixture 
increases. (h) The negative log-probability of hard sphere insertion distribution, − ln[𝑃(𝑁)], demonstrates the 
systematic decrease in the affinity of an ideal hydrophobic molecule for butanol-water upon cooling. 
Simultaneously, decreased mixture temperature shifts the distribution towards lower mean overlap numbers, ⟨𝑁⟩. 
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Figure 5.15. We depict probability distributions for a subset of structural metrics discussed in Section 5.2 for 
glycerol-water at 𝑋 :aO  of 0.01, 0.033, 0.05, 0.075, 0.10, 0.15, 0.20, and 0.30. Here, green corresponds to higher 
concentration and yellow to lower concentration. (a) The distributions of the tetrahedral order parameter, 𝑃_8(𝜃), 
exhibit a systematic decrease in the icosahedral, 𝜃 = 64∘,  and increase in the tetrahedral, 𝜃 = 109.5∘, regions with 
decreasing temperature. (b) The tetrahedral order parameter distribution, 𝑃(𝑞), exhibit peaks at 𝑞 ≈ 0.4 (less 
tetrahedral) and 𝑞 ≈ 0.8 (more tetrahedral). The distribution systematically shifts towards 𝑞 = 0.4 upon increasing 
glycerol concentration. (c) The distributions of water specific volumes, 𝑃(𝑣UI4), exhibit slightly larger mean 
specific volumes, ⟨𝑣UI4⟩, as the concentration of the mixture increases. (d) The distributions of LSI, 𝑃(𝐿𝑆𝐼), 
broaden and exhibit larger means, ⟨𝐿𝑆𝐼⟩, as the concentration of the mixture increases. (e) The distributions of water 
specific areas, 𝑃(𝑎UI4), exhibit slightly larger mean specific volumes, ⟨𝑎UI4⟩, as the concentration of the mixture 
increases. (f) 2D water-water radial distribution function (RDFs), 𝑔(𝑟), show enhanced translational order in water 
with increasing concentration as demonstrated by the increasing peak and trough amplitudes. (g) The distributions of 
water asphericity, 𝑃(𝜂), exhibit smaller (more spherical) mean asphericity, ⟨𝜂⟩, as the concentration of the mixture 
increases. (h) The negative log-probability of hard sphere insertion distribution, − ln[𝑃(𝑁)], demonstrates the 
similarity of the affinity of an ideal hydrophobic molecule for glycerol-water upon crowding. Simultaneously, 
decreased mixture concentration shifts the distribution towards lower mean overlap numbers, ⟨𝑁⟩. 
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Figure 5.16. We depict probability distributions for a subset of structural metrics discussed in Section 5.2 for PEO-
water at 𝑊0�- of 0.005, 0.015, 0.05, 0.10, 0.20, 0.33, and 0.50. Here, green corresponds to higher concentration and 
yellow to lower concentration. (a) The distributions of the tetrahedral order parameter, 𝑃_8(𝜃), exhibit a systematic 
decrease in the icosahedral, 𝜃 = 64∘,  and increase in the tetrahedral, 𝜃 = 109.5∘, regions with decreasing 
temperature. (b) The tetrahedral order parameter distribution, 𝑃(𝑞), exhibit peaks at 𝑞 ≈ 0.4 (less tetrahedral) and 
𝑞 ≈ 0.8 (more tetrahedral). The distribution systematically shifts towards 𝑞 = 0.4 upon increasing glycerol 
concentration. (c) The distributions of water specific volumes, 𝑃(𝑣UI4), exhibit larger mean specific volumes, 
⟨𝑣UI4⟩, as the concentration of the mixture increases. (d) The distributions of LSI, 𝑃(𝐿𝑆𝐼), broaden and exhibit 
larger means, ⟨𝐿𝑆𝐼⟩, as the concentration of the mixture increases. (e) The distributions of water specific areas, 
𝑃(𝑎UI4), exhibit larger mean specific volumes, ⟨𝑎UI4⟩, as the concentration of the mixture increases. (f) 2D water-
water radial distribution function (RDFs), 𝑔(𝑟), show enhanced translational order in water with increasing 
concentration as demonstrated by the increasing peak and trough amplitudes. (g) The distributions of water 
asphericity, 𝑃(𝜂), exhibit smaller (more spherical) mean asphericity, ⟨𝜂⟩, as the concentration of the mixture 
increases. (h) The negative log-probability of hard sphere insertion distribution, − ln[𝑃(𝑁)], demonstrates the 
similarity of the affinity of an ideal hydrophobic molecule for PEO-water upon crowding. Simultaneously, decreased 
mixture concentration shifts the distribution towards lower mean overlap numbers, ⟨𝑁⟩. 
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Figure 5.17. We depict probability distributions for a subset of structural metrics discussed in Section 5.2 for 
DMSO-water at 𝑋.�5- of 0.01, 0.04, 0.06, 0.10, 0.16, 0.27, and 0.45. Here, green corresponds to higher 
concentration and yellow to lower concentration. (a) The distributions of the tetrahedral order parameter, 𝑃_8(𝜃), 
exhibit a systematic decrease in the icosahedral, 𝜃 = 64∘,  and increase in the tetrahedral, 𝜃 = 109.5∘, regions with 
decreasing temperature. (b) The tetrahedral order parameter distribution, 𝑃(𝑞), exhibit peaks at 𝑞 ≈ 0.4 (less 
tetrahedral) and 𝑞 ≈ 0.8 (more tetrahedral). The distribution systematically shifts towards 𝑞 = 0.4 upon increasing 
glycerol concentration. (c) The distributions of water specific volumes, 𝑃(𝑣UI4), exhibit larger mean specific 
volumes, ⟨𝑣UI4⟩, as the concentration of the mixture increases. (d) The distributions of LSI, 𝑃(𝐿𝑆𝐼), broaden and 
exhibit larger means, ⟨𝐿𝑆𝐼⟩, as the concentration of the mixture increases. We note that ⟨𝐿𝑆𝐼⟩ at the highest 
concentration 𝑋.�5- = 0.45 approaches 0 due to the increasing space between water molecules and their nearest 
neighbors. (e) The distributions of water specific areas, 𝑃(𝑎UI4), exhibit larger mean specific volumes, ⟨𝑎UI4⟩, as 
the concentration of the mixture increases. (f) 2D water-water radial distribution function (RDFs), 𝑔(𝑟), show 
enhanced translational order in water with increasing concentration as demonstrated by the increasing peak and 
trough amplitudes. (g) The distributions of water asphericity, 𝑃(𝜂), exhibit smaller (more spherical) mean 
asphericity, ⟨𝜂⟩, as the concentration of the mixture increases. (h) The negative log-probability of hard sphere 
insertion distribution, − ln[𝑃(𝑁)], demonstrates the similarity of the affinity of an ideal hydrophobic molecule for 
DMSO-water upon crowding. Simultaneously, decreased mixture concentration shifts the distribution towards lower 
mean overlap numbers, ⟨𝑁⟩. 
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Figure 5.18. We depict probability distributions for a subset of structural metrics discussed in Section 2 for the 
variable-hydropathy peptoids shown in Figure 5.2. Here, each color corresponds to a different peptoids chemistry at 
infinite dilution in water. For the peptoid systems, the differences between distributions are not visible. Here, we 
show (a) 𝑃_8(𝜃), (b) 𝑃(𝑞), (c) 𝑃(𝑣UI4), (d) 𝑃(𝐿𝑆𝐼), (e) 𝑃(𝑎UI4), (f) 𝑔(𝑟), (g) 𝑃(𝜂), and (h) − ln[𝑃(𝑁)]. 
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5.5.2 Structure-dynamics and structure-thermodynamics correlations 
 

 

 

 

Figure 5.19. Pearson correlation matrix of structural metrics and water self-diffusivity (last column/row). 
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Figure 5.20. Pearson correlation matrix of structural metrics and excess hard-sphere chemical potential (last 
column/row). 
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5.5.3 Further details on structure-dynamics correlation 
 In the main text, we depict correlations between a limited subset of structural metrics 

and water self-diffusivity [Figure 5.6]. We note the weaker correlations between translational 

order parameters like 𝑡, ⟨𝑞⟩, and ⟨𝐿𝑆𝐼⟩ compared to those shown in Figure 5.6. This derives 

primarily from the opposite diffusivity-structure relationships for the alcohol-water mixtures 

versus the remaining solutes as depicted in Figure 5.21. For example, the ensemble average 

tetrahedral order parameter, ⟨𝑞⟩, monotonically increases with decreasing water self-

diffusivity, 𝐷;!?, in alcohol-water while ⟨𝑞⟩ monotonically decreases with decreasing 𝐷;!? 

in the variable composition simulations. 
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Figure 5.21: We depict the relatively poor correlation between water self-diffusivity and several structural 
metrics (⟨𝑞⟩, 𝑡, and ⟨𝐿𝑆𝐼⟩). We note the near perfect correlation between the local structure index ⟨𝐿𝑆𝐼⟩, 
translational order parameter, 𝑡, and tetrahedral order parameter, ⟨𝑞⟩. However, we observe opposite 𝐷M!--
structure relationships for the primary alcohol mixtures compared to the other systems. Here, the symbols 
are assigned as in the text.  
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5.5.4 Model performance with an increasing number of features  
 In Figure 5.22, we depict the effect of increasing the number of independent 

structural metrics, 𝑛, on the performance of MLR models to predict 𝐷;!?. Though the 

training set performance (via 𝑅( and 𝑅𝑀𝑆𝐸) increases monotonically—but with diminishing 

returns for more than three features—with increasing feature inclusion, test set performance 

slightly decreases for 𝑛 > 6. 

 Similarly, we show the effect of 𝑛	on the performance of MLR models to predict 𝜇;6cn  

[Figure 5.23]. Unlike predicting 𝐷;!?, the performance of the chemical potential prediction 

models (via 𝑅( and 𝑅𝑀𝑆𝐸) increases monotonically for both test and training sets. However, 

model performance similarly plateaus for 𝑛 > 3.  

Figure 5.22: Training and test set performance of MLR models to predict 𝐷M!- with increasing numbers of 

independent structural variables. We observe diminishing improvement of MLR predictions for greater than three 

features. In fact, test set performance worsens when we include more than six features. Here, the test set is 

composed of a randomly-selected ~20% share of the dataset (12 simulations) and the training set is composed of the 

remaining data (47 simulations). We also perform 4-fold cross-validation on the training set to choose model 

parameters and evaluate the training set performance. 
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Figure 5.23: Training and test set performance of MLR models to predict 𝜇M5S�  with increasing numbers of 

independent structural variables. We observe diminishing improvement of MLR predictions for greater than three 

features. Here, the test set is composed of a randomly-selected ~20% share of the dataset (12 simulations) and the 

training set is composed of the remaining data (47 simulations). We also perform 4-fold cross-validation on the 

training set to choose model parameters and evaluate the training set performance. 
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5.5.5 LASSO REGRESSION 
 As described in Section 5.2.4 of the main text, we develop a LASSO regression 

model on a randomly selected subset of data that is 80% of the size of the entire dataset. We 

implement LASSO feature selection using the tools provided scikit-learn(96). To select the 

learning rate, 𝛼, of the LASSO model, we apply a hyperparameter tuning algorithm built into 

scikit-learn with 4-fold cross-validation.  

 The six features with non-zero LASSO importance are shown in Figure 5.24. Here, 

the top three features selected by forward sequential feature selection (fSFS)—namely, 𝑝EcE, 

⟨𝑁⟩, and 𝑝>—are also predicted to be important by LASSO. However, we note that LASSO 

regression predicts that 𝑆>W and ⟨𝑁⟩ explain the training set 𝐷;!? trend better than 𝑝EcE in 

contrast to the fSFS results presented in the main body. While a linear regression model 

trained only on 𝑆>W yields similar performance to one trained solely on 𝑝EcE, a model trained 

on ⟨𝑁⟩ alone performs much more poorly (see the ⟨𝑁⟩-𝐷;!? relationship in Figure 5.6 with 

𝑅 = −0.78). This apparent inconsistency is in part explained by our manual selection of 𝑝EcE 

as the most important feature. However, this does not necessarily explicate the higher 

LASSO importance of ⟨𝑁⟩ compared to 𝑝EcE. 

 To fully explain this discrepancy, we perform the LASSO feature selection once more 

using a different randomly selected training set. In Figure 5.25, we demonstrate that our 

LASSO procedure now yields 8 important features that still include 𝑝EcE, ⟨𝑁⟩, and 𝑝>. 

However, 𝑝EcE is not the most important structural metric for predicting 𝐷;!?. Hence, 

LASSO feature selection strongly depends on the training set, and Lasso regression alone 

should not be used to rank feature importance. 
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Figure 5.24. First test to determine rank diffusivity-predictive features by importance (larger values 
correspond to higher predictive capacity) using LASSO regression. This set of features includes the top 
three features from sequential feature selection (Figure 5.7). All features not shown have importance values 
of zero. 

Figure 5.25. Second test to determine rank diffusivity-predictive features by importance (larger values 
correspond to higher predictive capacity) using LASSO regression. This set of features includes the top 
three features from sequential feature selection (Figure 5.7).  This test case contains 6 fewer features than 
test case #1 (Figure 5.24). All features not shown have importance values of zero. 
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5.5.6 Bayesian Methods 
 
Structure Inference Methodology. To illustrate the procedure for predicting structure from 

dynamics described in Section 5.3.4, we present a simplified example for the case of a 

simple linear regression model 

𝑦 = ln Ã
𝐷;!?

𝐷;!?,CcIE
Ä = 𝛽 Ã

𝑝EcE
𝑝EcE,CcIE

Ä 	+ 𝛽0 

where 𝛽 and 𝛽0 are the slope and intercept, respectively. We visualize the consequences of 

the standard normal prior distributions 𝑝(𝛽) and 𝑝(𝛽0) by drawing five sample linear 

regression functions (Figure 5.26). In the absence of training data, the five samples are 

completely random and produce a uniform 𝑦 = 0 for all l���
l���,z�|�

 values. Upon including the 

training dataset, we draw an additional five fitting functions from the posterior distribution, 

𝑝(𝜷|𝑿, 𝒚). These new sample functions are indistinguishable. 
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Testing the Effect of Priors on Structure Prediction. To extract meaningful predictions from 

Bayesian inference methods, we must carefully consider the form of the prior. In the main 

text, we propose standard normal distributions (zero-mean and unit variance) for new values 

of the independent variables (e.g., 𝑝(𝑋5Ccg) = 𝒩(0, Σ) with Σ = /1 0
0 18). In Figure 5.10, we 

show qualitative agreement between direct simulation estimates and predictions using 

Figure 5.26. We depict five sample fitting functions from the prior distribution, 𝑝(𝜷) (top) and the posterior 
distribution, 𝑝(𝜷|𝑿, 𝒚) (bottom). In the bottom figure, the red points are the training dataset. Here, the shaded bands 
corresponding to standard deviation of the sample fits.  
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standard normal priors on 𝑝EcE and ⟨𝑁⟩. These predictions are promising, but how will 

changing the prior affect these predictions? 

 We test the robustness of our predictions by instead considering uniform distribution 

priors spanning 𝑋5Ccg = −3 to 3. In other words, we propose that all 𝑋5Ccg values (𝑝EcE or 

⟨𝑁⟩) lie between ±3 standard deviations of the mean value (here, ⟨𝑋5Ccg⟩ = 0). We observe 

the impact of this new assumption inf Figure 5.27. Notably, the behavior of the predictions is 

qualitatively similar to the results shown in Figure 5.10. However, we observe larger 

variance in the predictions of ⟨𝑁⟩ (Figure 5.27(f)).  

 

Figure 5.27. In panels (a)-(d), we depict the posterior predictive (blue) distribution generated by the Bayesian 
regression model trained on 𝑝4S4, ⟨𝑁⟩, and 𝑝_ to predict 𝐷M!-. The 𝑝4S4 predictive distributions for (a) methanol-
water at 298.15K with methanol weight fraction of 0.10 and (b) DMSO-water at 𝑋.�5- = 0.45 and 291.15K 
yield 𝑝4S4/𝑝4S4,�SI4 (black vertical line) predictions. The ⟨𝑁⟩ predictive distributions for (c) methanol-water at 
298.15K with methanol weight fraction of 0.10 and (d) DMSO-water at 𝑋.�5- = 0.45 and 291.15K yield 
⟨𝑁⟩/⟨𝑁⟩�SI4 (black vertical line) predictions. Simulation means are depicted with green vertical lines. Model 
predictions are closer to the simulation measurement for methanol-water at 298.15K compared to the DMSO-
water case. Predictions of (e) R+)+

R+)+,()*+
 and (f) ⟨/⟩

⟨/⟩()*+
 generated from ODNP-derived 𝐷M!- values for a range of 

DMSO-water mixtures from 𝑋.�5- = 0 to 0.5 (red) are compared to direct simulation estimates (blue). In 
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panels (e) and (f), the lines represent linear least squares fits between the log-diffusivity and a given structure 
metric. Here, the shaded bands corresponding to 95% confidence intervals on the fit.  

ASSOCIATED CONTENT  
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Chapter 6: Molecular-scale driving forces of solute-
surface interactions 

6.1 Introduction 
As discussed in Chapter 1, current generation water purification membranes exhibit a nearly 

linear tradeoff between selectivity for desired constituents and water permeability. A key 

plank of next generation membrane material development is to overcome the selectivity-

permeability tradeoff. The design of antifouling membranes is complimentary to overcoming 

this selectivity-permeability tradeoff. Specifically, anti-fouling membranes reduce the 

accumulation of undesired wastewater constituents and hence improve water permeability 

through membranes over time. Heuristically, antifouling membranes are (i) smooth, (ii) 

charge neutral, and (iii) hydrophilic(1–3). A net membrane surface charge induces the 

accumulation of charged foulants driven by electrostatics(3). Microscopically rough 

membrane surfaces yield increased foulant adhesion within the troughs of the rugged 

surface(1, 3). Surface hydrophilization is hypothesized to induce a bound water layer that 

further reduces fouling by organic species(2, 3). A variety of surface chemistry 

modifications(4–9) have been implemented finely tune solute surface interactions to further 

improve membrane antifouling. However, experimental methods and continuum fluid models 

cannot directly probe the molecular mechanisms underpinning the antifouling property. 

Instead, synergistic studies using experiment and detailed atomistic molecular simulations are 

required to understand the fundamental molecular driving forces of antifouling in different 

chemical contexts. 

 Most of the discussion in the previous five chapters pertains to aqueous mixtures 

rather than macromolecular interfaces found in Membrane Science. Still, much of the 
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physical insight and even some of the results highlighted in the previous chapters aide in our 

understanding of water properties at membrane-water interfaces. Specifically, local aqueous 

environments in OEO/water mixtures serve as illustrative proxies for hydrated polymer 

membranes. However, it is necessary to explicitly investigate fouling mechanisms at more 

realistic polymer surfaces. Direct simulation of water purification membranes with atomistic 

resolution is intractable, but it is tractable to construct representative model systems to 

replicate the chemical and spatial arrangement of polymer surfaces inspired by antifouling 

materials utilized in reverse osmosis (RO) and nanofiltration (NF) membranes. 

 Experimentally quantifying and characterizing surface fouling at the molecular level 

remains an open challenge. Though methods like Surface Plasmon Resonance (SPR) can 

directly probe membrane foulants of interest to for water treatment such as proteins(10–13), 

directly measuring the chemical state and composition of the fouling layer remains 

challenging. Ambient-pressure X-ray Photoelectron Spectroscopy (AP-XPS) is an interesting 

alternative approach to probe fouling mechanisms and the surface features imbuing 

antifouling character. Traditional ultra-high vacuum (UHV) XPS spectroscopy probes both 

the atomic composition and the abundance of specific chemical functionalities within the first 

~10 nm of surfaces with compositional accuracy up to ~0.1%. AP-XPS techniques leverage 

the same underlying physics as UHV XPS but near ambient conditions. Hence, AP-XPS 

enables the study of the abundance of specific chemical species sorbed within a hydration 

layer compared to the vapor phase. 

 In this chapter, we explain our efforts to develop an experimental-simulation 

workflow leveraging vacuum solute-surface affinity calculations and ambient-pressure x-ray 

photoelectron spectroscopy (APXPS) measurements. Following this computational-
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experimental study, we describe a representative antifouling OEO brush surface and leverage 

umbrella sampling calculation to characterize solute-surface interactions for a subset of the 

solutes from the vacuum study. Further, we leverage the principal component analysis from 

Chapter 5 to explore the relationship between solution structure sorption thermodynamics.  

6.2 Methodology 

6.2.1 Molecular Dynamics Simulation Preparation 
For the vacuum study, we use the ideal hydrophobic (methyl-terminated) and hydrophilic 

(hydroxyl-terminated) alkylsiloxane SAM surfaces described in the prior works by Monroe 

and coworkers(14, 15). For the hydrated antifouling study, we study oligo (ethylene oxide) 

(OEO) brush surfaces by grafting methyl-terminated ethylene oxide (EO) 6-mers on each 

side of grid of sulfur atoms arranged on a gold hexagonally close-packed (Au-hcp) lattice as 

described by Ismail and coworkers(16). We apply EO parameters developed in our prior 

investigation of the PEO configurational landscape in water(17). Grafting chains with Au-hcp 

spacing and on an 8x9 grid, we obtain a surface with dimensions 3.897	𝑛𝑚	 × 4.000	𝑛𝑚. 

Sulfur atom positions are fixed during simulation. We add OPC waters to the OEO system 

using the Packmol(18) software with an initial box length of 12	𝑛𝑚. To initialize simulations 

with a solute, we place the solute above the OEO surface again using Packmol. 

6.2.2 Molecular Dynamics Simulation Procedure 
We utilize OpenMM package(19) to conduct all simulations described in this chapter. We 

utilized particle-mesh Ewald (PME)(20) to compute electrostatic interactions. Non-bonded 

interactions are treated with nonbonded Lennard Jones (LJ) potentials cut off at 10Å. Per 

standard OpenMM procedure, we constrain all intermolecular hydrogen bonds the 
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SHAKE(21) algorithm and maintain water rigidity using SETTLE(22). For all simulations, 

we maintain a constant temperature of 298 K using a Langevin thermostat(19) with an 

integration timestep of 2 fs, friction coefficient of 0.1 𝑝𝑠-,. For all simulations in the NPT 

ensemble, we utilize a Monte Carlo barostat—described in the OpenMM 

documentation(19)—with Monte Carlo barostat moves every 200 fs and a setpoint pressure 

of 1 bar. Prior to conducting umbrella sampling calculations, we equilibrate the hydrated 

OEO surface for 5-ns in the NVT ensemble at 500 K to relax the OEO chain configurations 

more rapidly. We follow this melting simulation with a 5-ns NPT ensemble simulation at 

298.15 K and 1 bar to cool the system to the desired production temperature. Finally, we run 

a production simulation in the NPT ensemble at 298 K and 1 bar for 100-ns, saving the 

system coordinates every 10-ps. We generate solute-free structural information such as the 

density profile and three-body angle distributions using this trajectory. 

 Using Packmol(18), we insert a solute molecule at a random position 4-nm above the 

sulfur atom z-coordinate of the equilibrated and hydrated OEO system (without a solute). We 

equilibrate the solute at this farthest position for 2-ns in the NVT ensemble followed by 10-ns 

in the NPT ensemble. We apply an umbrella sampling procedure to compute potential of mean 

force (PMF) profiles between a given surface-solute pair. Specifically, we apply a harmonic 

centroid potential between the centroid of the brush sulfur atoms and the centroid of the given 

solute molecule with a force constant of 𝑘 = 1000𝑘𝐽/𝑚𝑜𝑙/𝑛𝑚(. We perform umbrella 

simulations at 30 umbrella states evenly spaced in the interval [1.0𝑛𝑚, 4.0𝑛𝑚]. We briefly 

equilibrate each of these states in the NVT ensemble for 100-ps followed by the NPT ensemble 

for 500-ps. Finally, we perform each umbrella state production run for 12-ns and save the 

system coordinates every 1-ps. The first 2-ns of each state production run is discarded. Using 
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MBAR(23, 24), we compute PMFs in the absence of a solute restraining potential. We estimate 

the uncertainties in the free energies by: (1) computing the PMFs for five independent blocks 

of production data and (2) calculating the standard error from the five block PMFs. 

 The system equilibration and umbrella sampling procedures for the vacuum SAM 

systems are essentially identical to that of the OEO surface described above. The primary 

difference is the shorter equilibration and production times utilized. In Figure 6.1, we depict 

an example of a PMF profile for inserting a methane molecule at a specified solute-surface 

distance from an ideal hydrophobic (methylated) SAM surface in vacuum. The PMF profile 

plateaus to a “bulk” vacuum value at solute-surface distances greater than ~2.5 nm to  

𝑃𝑀𝐹 ≈ 2𝑘i𝑇. PMF values lower than 2𝑘i𝑇 correspond to more favorable methane-surface 

distances than in vacuum. The depth of free energy minimum (~2𝑘i𝑇) at ~1.5 nm determines 

the solute-surface binding affinity. 

 

Figure 6.1 An illustrative example of an umbrella sampling calculation: The potential of mean force (PMF) of a 
single methane molecule as a function of distance from a methylated SAM surface indicates methane’s 
preference for a given solute-surface distance. PMF values less than bulk (PMF lower than about 2𝑘N𝑇) suggest 
greater methane affinity relative to bulk water while the opposite is true for PMF values greater than bulk. The 

~Δ𝐺𝑏𝑖𝑛𝑑𝑚𝑒𝑡ℎ𝑎𝑛𝑒



 

 
 

201 

free energy minimum at ~1.5 nm gives one measure of the binding free energy of methane for the SAM 
𝛥𝐺83���S4�I�S.  

6.3 Characterizing Solute-Surface Interactions in Vacuum 
 While the primary focus of the previous chapters are aqueous systems, the focus of 

the current section lies in the vacuum domain. We elect to probe solute-surface interactions in 

the absence water due to the present lack of an unambiguous complimentary experimental 

probe of solute-surface interactions in the infinite dilution limit. In vacuum, we can draw 

direct connections between atomistic molecular simulations and ambient pressure x-ray 

photoelectron spectroscopy (APXPS). As discussed in the introduction to this chapter, XPS 

enables the study of surface composition with high resolution (at approximately 0.1% atom 

fraction) and surface sensitivity (~10 nm) under ultra-high vacuum (<10-8 Torr) conditions. 

Our collaborators’ APXPS experimental apparatus enables XPS measurements near ambient 

pressure and hence at hydrated surfaces. As an incremental step in developing a 

complimentary simulation-APXPS workflow, we investigate solute-surface interactions for a 

suite of solute chemistries in the absence of water at ideal hydrophilic and hydrophobic SAM 

surfaces previously studied in work by the Shell group(14) and others(25–28). 

6.3.1 Calculation of Solute Affinities in Vacuum 
 For the present discussion, we consider small hydrocarbon solutes due to their 

relevance to wastewater streams from oil and gas production. Further, small molecule solutes 

are more computationally tractable for the free energy calculations that we consider in this 

chapter. Specifically, we study alkanes (methane, ethane, propane, butane) and alcohols 

(methanol, ethanol, propanol, isopropanol, butanol) to systematically investigate the effect of 

solute hydrophobicity. We also consider water (TIP4P-EW) and acetic acid solute-surface 

interactions. Based on water solubility, the solutes with the highest (hypothetical) 
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hydrophilicity contain higher ratios of hydrophilic heavy atoms (e.g., O and N) to 

hydrophobic heavy atoms (e.g., C). For instance, butanol is more hydrophobic than methanol. 

However, a previous work by Monroe and coworkers(14) demonstrated that interactions 

between solutes and hydrated SAM surfaces are poorly predicted by simple solubility 

arguments. Thus, detailed experimental or computational methods are required to properly 

describe solute-surface affinities.  

 In Figure 6.2, we depict the PMF profiles for several of the above-mentioned solutes 

at the ideal hydrophobic (methylated) and hydrophilic (hydroxylated) surfaces described in 

Section 6.2. Here, the plateau values at solute-surface separation—defined as the distance 

between the fixed sulfur atoms and the solute center of mass—greater than 2.0 nm give an 

estimate of solute-surface binding affinity with larger values corresponding to higher affinity. 

Notably, each solute exhibits higher affinity for the hydroxylated surface compared to the 

methylated surface. We find the largest contrast between hydrogen bonding (HB) solutes. 

Each alkane presents ~𝑘i𝑇 higher affinity for the hydroxylated surface compared to the 

methylated surface. On the other hand, hydrogen bonding solutes show considerably higher 

affinity (>7𝑘i𝑇) 

 for the hydroxylated SAM than the methylated SAM. 

 The massive enhancement of sorption of hydrogen bonding solutes at hydroxylated 

surface clearly stems from solute-surface hydrogen bonds. In Figure 6.7(a), we apply that a 

simple linear model: Δ𝐺4&vc"?; = 𝑁;iΔ𝐺;i where 𝑁;i is the average number of solute-

surface hydrogen bonds and Δ𝐺;i is a fitting parameter. This model yields moderate 

agreement with the observed Δ𝐺W5Cv?;  [𝑅( = 0.50]. However, 𝑁;i alone cannot forecast 

solute-surface affinity because neither non-hydrogen bonding (non-HB) solutes nor the 
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hydrophobic surface participate in hydrogen bonds. In addition to solute-surface hydrogen 

bonding, solute molecular weight is a major determinant of surface binding affinity. We 

apply a second linear model: Δ𝐺4&vc"5 = 𝑁�cI'#Δ𝐺�@� where 𝑁�cI'# is the number of solute 

heavy atoms and Δ𝐺�@� is a fitting parameter. This model yields reasonable predictions of 

Δ𝐺W5Cv
L;%  (𝑅( = 0.80) [Figure 6.7(a)] but fails to forecast Δ𝐺W5Cv?;  (𝑅( ≈ 0) [Figure 6.7(b)]. 

𝑁�cI'# fails to capture the underlying trend in Δ𝐺W5Cv?;  due to the large discrepancy in OH-

SAM affinity between non-HB and HB solutes. We interpret the relationship between 𝑁�cI'# 

and Δ𝐺W5Cv as owing to the attractive van der Waals interactions between the solute and 

surface.   

 

 

Figure 6.2 Comparing PMFs for a range of solutes for model hydrophobic and hydrophilic SAMs. The 
(hydrophobic) methylated surface shows a monotonic increase in well-depth with solute molecular weight with 
the lowest and greatest affinities demonstrated by TIP4P-EW water and butanol, respectively. A similar 
molecular weight dependence is observed for the (hydrophilic) hydroxylated surface. However, the alkane 
solutes display a markedly lower solute-surface affinity compared to the nominally hydrophilic solutes 
(alcohols and TIP4P-EW water). 

 

6.3.2 Structural Drivers of Solute-Surface Interactions 
 In Section 6.3.1, we briefly note the solute features that correlate with solute-surface 

binding affinity. Leveraging the two solute properties (𝑁;i and 𝑁�cI'#), we can construct a 

alkanes

alcohols

Methane    Methanol    Ethane Ethanol    Propane Propanol Isopropanol   Butane Butanol    Water
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simple model to predict binding affinity between the OH-SAM and the library of solutes 

considered here. Specifically, we propose a bilinear model to predict the solute binding free 

energy Δ𝐺4&vc" 

Δ𝐺4&vc"?; = 𝑁�cI'#Δ𝐺�@�?; + 𝑁;iΔ𝐺;i?; 

where Δ𝐺�@�?;  and Δ𝐺;i?; are linear least squares fitting parameters corresponding to the van 

der Waals and hydrogen bonding contributions to the binding free energy, respectively. 

Additionally, we consider the simpler model for the CH3-SAM: Δ𝐺4&vc"
L;% = 𝑁�cI'#Δ𝐺�@�

L;% . 

 The resulting model predictions depicted in Figure 6.3 are imperfect but capture the 

underlying trends in Δ𝐺W5Cv for both surfaces. In Figure 6.3(a), we depict semi-quantitative 

prediction of Δ𝐺W5Cv?;  from Δ𝐺4&vc"?; . While the primary alcohols and alkanes follow Δ𝐺4&vc"?; , 

isopropanol and acetic acid (syn- and anti- isomers) stray from the predictions of Δ𝐺4&vc"?; . 

We now detail how these three solutes deviate from Δ𝐺4&vc"?; . Though isopropanol exhibits 

more negative Δ𝐺W5Cv?;  than the other alcohols, it simultaneously has the same 𝑁�cI'# and 

𝑁;i (within error) as 1-propanol. The difference isopropanol’s molecular geometry 

compared to 1-propanol dramatically affects solute-surface interaction. Hence, additional 

solute or surface properties must be considered to predict isopropanol’s affinity for the OH-

SAM more accurately. The two acetic acid (AA) isomers have the same 𝑁�cI'# but present 

substantially different 𝑁;i (~10% larger for anti-AA). The difference between Δ𝐺W5Cv?;  and 

Δ𝐺4&vc"?;  for anti-AA and syn-AA are −5	𝑘i𝑇 and 2.5	𝑘i𝑇, respectively. At the same time, 

the two water models present an even larger difference in 𝑁;i (~13% larger for TIP4P-EW 

compared to OPC) but are nearly quantitatively predicted by the Δ𝐺4&vc"?; . Though both water 

models present relatively distinct solute-surface hydrogen bonding, these poses the same 
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underlying molecular geometry (rigid bonds and angles) and thus similar Δ𝐺W5Cv?;  (less than 

𝑘i𝑇 difference). On the other hand, anti- and syn-AA have the exact opposite dihedral 

configurations. Just as with isopropanol, additional molecular details are required construct a 

robust model for solute-surface affinity.  

 

 

Figure 6.3 Simple two-parameter bilinear models 𝛥𝐺�P�S:3  take the number of solute heavy atoms 𝑁MN and the 
average number of solute-surface hydrogen bonds 𝑁MN as inputs to predict the simulated solute-surface binding 
affinity 𝛥𝐺F3�9:I43P� for both the (a) hydroxylated and (b) methylated SAM surface. The fitting parameters 
𝛥𝐺�SIHa and 𝛥𝐺MN correspond to the free energy components corresponding to van der Waals interactions and 
hydrogen bonding, respectively. (a) Solute-surface affinities at the hydroxylated surface are best captured for 
alkanes and primary alcohols. The syn-acetic acid (AA_syn) and anti-acetic acid (AA_anti) isomers fall far off 
the trend line (orange) in opposite directions. This stems from the dramatic shifts the hydrogen bonding 
potential of acetic acid upon changing its conformation while leaving 𝑁�SIHa unchanged. (b) Solute-surface 
affinities at the methylated surface are broadly captured by 𝛥𝐺�P�S:KM_ . Here, the methylated surface cannot 
hydrogen bond to the solutes and hence 𝑁MN = 0; hence, reducing the model to 𝛥𝐺�P�S:KM_ = 𝑁�SIHa𝛥𝐺�SIHa. 

 

6.3.3 Drawing Connections to APXPS Measurements 
 While our simulation studies provide some insight into the molecular scale drivers of 

solute-surface interactions, experimental methods are ultimately required to verify and 
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contextualize the computational results. To draw a direct experimental connection, we 

consider APXPS measurements by our collaborators at the Advanced Light Source (ALS) at 

Lawrence Berkeley National Lab (LBNL)(29). The APXPS measurements considered 

equivalent methylated and hydroxylated SAM surface to the simulation study discussed 

above. Utilizing DFT simulations under APXPS conditions, one can determine the binding 

energy shifts in XPS spectra induced by adsorption of gaseous species onto a substrate.  

 For the present study, hydroxyl-containing solutes adsorbing to a SAM, the O 1s peak 

of an XPS spectra gives relative concentrations of oxygen-containing species owing to the 

underlying SAM material, vapor, and adsorbed to the surface. Our collaborators’ 

experimental findings for both the methylated and hydroxylated SAM surfaces in the 

presence of water, butanol (BuOH), and acetic acid (AcOH) are depicted in Figure 4-3 of the 

Mikayla Barry’s dissertation(29). Experimentally, no adsorption characteristic peaks emerge 

for the hydrophobic surface and the hydrophilic surface only exhibits acetic acid adsorption. 

On the other hand, the simulation results suggest that every solute adsorbs to both SAM 

surfaces to varying degrees. However, we must consider a major caveat before discarding our 

findings. The magnitude of the hydrophobic SAM-solute binding free energies suggests sub-

monolayer—or even single molecule—surface coverage of the methylated SAM within the 

pressure limits of the APXPS measurements. Therefore, the adsorbed solute layer may not be 

within the detection limits of APXPS. Even the hydrophilic solutes (except for acetic acid) 

may insufficiently adsorb to the hydroxylated SAM to detect with APXPS. Further, the 

observation that the hydroxylated SAM presents (detectable) acetic acid sorption using 

APXPS is in qualitative agreement with the substantially higher acetic acid binding free 

energy compared to the other hydrophilic solutes (~6𝑘i𝑇 higher than butanol).  
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 Ultimately, further iteration on both the experimental and computational methodology 

is required to draw quantitative connections. For example, more appreciable solute sorption 

may be observed at the CH3 SAM surface if a pressure at or above the surface saturation 

pressure (for a given solute) is utilized for APXPS measurements. However, higher 

experimental operating pressures will mandate higher simulated pressures to quantitatively 

connect experiment to simulations; and hence, grand canonical ensemble simulations like 

those briefly mentioned in Section 6.3.1 would provide a more favorable method. 

6.4 Solute-Surface Interactions at a Hydrated Antifouling Surface 
 In this section, we return to the aqueous systems by probing solute-surface 

interactions at hydrated oligo(ethylene) oxide (OEO) brush surfaces to mimic antifouling 

layers in water purification membranes. However, our use of a 2D model system does build 

upon the idealized hydroxylated SAM surface discussed in Section 6.3. Unlike the model 

SAM systems, the OEO present a more molecularly rough surface and water permeable inner 

surface. These features increase the complexity of the simulations and post-production 

analyses but serve as an important building block to leveraging molecular simulations for 

developing realistic design motifs. 

6.4.1 Solute Affinities in Solution 
 In Figure 6.5, we summarize the binding free energetics for a subset of the solutes 

considered in Section 6.3. Specifically, we exclude the alkane solutes for the present case. 

We also add the ideal hydrophilic solute ammonia as a contrast to ideal hydrophobe-surface 

interactions (here represented by methane). In Figure 6.4(a), we depict the position-

dependent affinity of the suite of solutes for the OEO brush surface. Notably, each solute 

displays either a free energy minimum or a weak free energy barrier for the solute at 
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distances greater than the solute-surface interface as determined by the mean z-position of 

the instantaneous water-brush interface at 𝑧 = 𝑧5CE ≈ 1.9	𝑛𝑚. We determine the 

instantaneous interface using a method developed by Willard and Chandler(30, 31). The 

mean instantaneous interface is indicated with a vertical dashed line in Figure 6.4(a).  

 To quantify the solute-surface interactions, we estimate the binding free energy 

Δ𝐺W5Cv from the solute-surface distance at the net PMF minimum. In Figure 6.4(c), we 

display the Δ𝐺W5Cv values of each solute for the OEO brush surface and previous findings for 

ideal hydrophobic and hydrophilic surfaces [top-down surface depictions shown in Figure 

6.4(b)]—the same surfaces that we discuss in Section 6.3—from a study by Monroe and 

Shell(14). In accordance with the heuristic fouling resistance of hydrophilic 

functionalizations (including EO-based coatings), the OEO brush surface exhibits reduced 

solute binding affinity relative to the ideal hydrophobic SAM surface and binding affinities 

within ~𝑘i𝑇 of the ideal hydrophilic SAM. Specifically, the larger organic molecules—

namely, benzene and phenol—display the most favorable (negative) Δ𝐺W5Cv for each surface 

under consideration. On the other hand, molecules ammonia and boric acid are weakly 

attracted to the OEO brush (0 < Δ𝐺W5Cv < 𝑘i𝑇). Physical intuition may aide in the 

interpretation of the binding affinity trends shown in Figure 6.4(c). For instance, one may 

expect hydrophilic surfaces to develop a strong “bound” water layer owing primarily to 

water-surface hydrogen bonding; hence, we encounter an entropic penalty to disrupting the 

surface-water hydrogen bonds to bind any solute to the surface. However, this explanation 

relies on the same heuristic reasoning that we aim to avoid in this study. 
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Figure 6.4 (a) OEO surface-solute PMF profiles suggest solute-surface interactions ranging from strong 
attraction (e.g., phenol) to weak repulsion (e.g., ammonia and boric acid) for the entire range of solutes. (b) Top-
down representations of the OEO brush surface in comparison to ideal hydrophobic (methylated) and 
hydrophilic (hydroxylated) SAM surfaces studied by Monroe and Shell(14). (c) OEO surface-solute binding 
free energies Δ𝐺83�� mimic the behavior of the magnitude and sign of the solute-surface affinities of the ideal 
hydrophilic (hydroxylated) SAM surface for all solutes excluding ammonia and boric acid. 
 

 Instead, we may perform several decompositions of the solute-surface PMFs. For 

instance, Monroe and coworkers demonstrated PMF decomposition schemes to access the 

van der Waals, electrostatic, entropic, and energetic components(14, 32). For the present 

discussion, we consider the following entropy-energetics decomposition scheme: 

Δ𝐺W5Cv = Δ⟨𝑈6�⟩W5Cv + Δ𝑆dc%,W5Cv 															(6.1)	

where Δ⟨𝑈%g⟩W5Cv and Δ𝑆dc%,W5Cv are the direct solute-surface interaction and water-surface 

interface restructuring components of the binding free energy. Δ𝐺W5Cv is defined by the 

minimum of the solute-surface PMF as above. We compute Δ⟨𝑈%g⟩W5Cv from a separate 

solute-surface direct interaction PMF, Δ⟨𝑈%g⟩(𝑧) derived by computing solute-environment 

interactions as a function of position 𝑧 from the surface. We define Δ⟨𝑈%g⟩W5Cv from the 

value of Δ⟨𝑈%g⟩(𝑧) at the solute-surface distance at minimum distance of the net PMF 𝑧W5Cv. 
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We calculate the position dependent entropy of restructuring PMF Δ𝑆dc%(𝑧) from Equation 

6.1 and hence Δ𝑆dc%,W5Cv = Δ𝑆dc%(𝑧 = 𝑧W5Cv). Contrary to the proposed interpretation of the 

binding free energy, the OEO brush surface exhibits favorable restructuring entropy [Figure 

6.5(c)] and unfavorable direct interaction [Figure 6.5(b)] terms in a qualitatively similar 

manner to the model hydrophobic SAM. Specifically, while both the methylated and OEO 

surfaces entropically favor solute sorption, magnitudes of the Δ𝑆dc%,W5Cv and Δ⟨𝑈%g⟩W5Cv 

contributions ensure reduced solute sorption compared to the methylated SAM surface. 

Therefore, we cannot simply predict the thermodynamics driving forces behind solute-

surface interactions using heuristics and intuition. 

 

Figure 6.5 (a) The binding free energies Δ𝐺83�� presented in Figure 6.4c are replicated here as a point of 
reference when interrogating the direct energetic Δ⟨𝑈⟩FU and restructuring entropy Δ𝑆GSF components of 
Δ𝐺83��. (b) The direct energetic component of the binding free energy Δ⟨𝑈⟩FU accounts for the direct solute-
environment interactions at the solute-surface interface. Here, the OEO brush surface free energy displays a 
positive directionality more akin to the ideal hydrophobic (methylated) surface. (c) The entropic component of 
the binding free energy Δ𝑆GSF,83�� accounts for the free energetic cost of restructuring the solution environment 
at the solute-surface interface. Here, the restructuring entropic contribution of the OEO surface more closely 
resembles the negative directionality of the ideal hydrophobic surface. 

6.4.2 Building Structure-Affinity Connections 
 We discover persistent relationships between water properties and solution structure 

in Chapter 5. The three-body angle distribution of water 𝑃>W(𝜃) presents a particularly 
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detailed picture of water structure. Remarkably, by performing a principal component (PC) 

analysis on 𝑃>W(𝜃) for 59—ostensibly simple—binary mixtures we recover signatures of 

water structure near small molecules (with a smallest dimension < 1 nm) but also signatures 

of the water dewetting at an extended hydrophobic surface [see Figure 5.5(a)]. To extend this 

analysis the OEO brush surface, we compute the difference three-body angle distributions  

Δ𝑃>W96(𝜃; Δ𝑧) = 𝑃>W96(𝜃; Δ𝑧) − 𝑃>W,ledc(𝜃) 

where 𝑃>W96(𝜃; Δ𝑧) is the three-body angle distributions of waters (in the absence of a solute) 

within a 5 Å-thick slab of water molecules at a position Δ𝑧 above the water-brush interface. 

Once again, 𝑃>W,ledc(𝜃) is the three-body angle distribution of pure OPC water [see Figure 

6.6(a)]. Inspecting Δ𝑃>W96(𝜃; Δ𝑧) at seven Δ𝑧 (-0.12, 0.13, 0.47, 0.81, 1.15, 1.49, and 1.83 

nm), we observe a simultaneous enhancement of water’s tetrahedral character and attenuation 

of water’s icosahedral (simple fluid) character relative to pure water closer to the brush 

surface (smaller Δ𝑧). The same tetrahedral-icosahedral  tradeoff was noted by Monroe and 

Shell in their investigation of the OH- and CH3-SAM surfaces(15). At distances far enough 

from the OEO-water interface (Δ𝑧 = 1.83 nm), Δ𝑃>W96(𝜃; Δ𝑧) → 0 as water becomes bulk-

like. We also consider a similar difference three-body angle distribution with the additional 

condition that the water molecules lie within a 7 Å radial cutoff of the heavy atoms of a 

phenol molecule centered at the same seven Δ𝑧 values Δ𝑃>W6 (𝜃; Δ𝑧) [see Figure 6.6(b)]. Like 

Δ𝑃>W96(𝜃; Δ𝑧), Δ𝑃>W6 (𝜃; Δ𝑧) presents an increasing tradeoff between water’s tetrahedral and 

icosahedral character as Δ𝑧 decreases. However, Δ𝑃>W6 (𝜃; Δ𝑧) does not approach 0 in the bulk 

(Δ𝑧 = 1.83 nm). However, this is not surprising given that water’s tetrahedral character is 

typically enhanced in the vicinity of small molecules as shown in Chapter 3 and many other 

studies(33–36). 
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 While the apparent linear enhancement of water structure with decreasing Δ𝑧 may 

appear to contradict findings from Section 6.4.1. Namely, that OEO brush-solute affinity is 

driven by a free energetic gain in the solution restructuring entropy Δ𝑆dc%(Δ𝑧 = 0) < 0. 

However, solution restructuring depends also on the molecular structure of the OEO brush as 

the solute approaches the interface. Additionally, solution structure is not solely determined 

by the orientational ordering of water—as measured by three-body angle distributions—but 

translational ordering as well. However, we can extract additional physical intuition from 

these two variants of Δ𝑃>W(𝜃) by considering the three principal components detailed in 

Chapter 5. Specifically, by taking the projections of the Δ𝑃>W(𝜃)’s onto the three most 

important PC components—𝑝5 = 𝑝𝑟𝑜𝑗(Δ𝑃>W(𝜃), 𝑃𝐶5)—we extract position-dependent 

measures of the phenomena underlying the principal components. Recall that PC1 measures 

the tradeoff between tetrahedral and icosahedral waters and resembles Δ𝑃>W(𝜃) for water 

molecules within the hydration layer an ideal small hydrophobic molecule (methane). PC2 

probes the shift in Δ𝑃>W(𝜃) that accompany transitions going from a hydrated small molecule 

to an extended hydrophobic interface; and hence, PC2 strongly resembles the Δ𝑃>W(𝜃) at a 

water-methylated SAM interface. PC3 probes the relative abundance of 5-coordinated water 

molecules as discussed in previous studies(25, 32, 36).  

 In Figure 6.6(c), we overlay the principal component projections for water in the 

absence of a solute 𝑝596 and within the hydration shell of phenol 𝑝56 as a function of Δ𝑧. Both 

𝑝5 increase monotonically with decreasing Δ𝑧 as implied by Figure 6.6(a) and (b). The PC1 

projections exhibit distinct behavior for all but one Δ𝑧 with 𝑝,6 > 𝑝,96. Notably, 𝑝,6 

approaches a finite value in bulk because Δ𝑃>W6 (𝜃; Δ𝑧) ≠ 0 at large Δ𝑧 as expected. Like the 

𝑝, data, both 𝑝( series display a monotonic increase with decreasing Δ𝑧. Δ𝑃>W(𝜃; Δ𝑧) do not 



 

 
 

213 

display obvious signs of a transition to water structure near a hydrophobic surface such as the 

CH3-SAM, but both Δ𝑃>W96(𝜃; Δ𝑧) and Δ𝑃>W6 (𝜃; Δ𝑧) data sets present a small shift in the mean 

with varying  Δ𝑧. Here, both 𝑝(96 and 𝑝(6 approach 0 because the structure water near a 

phenol at Δ𝑧 far from 0 does not closely resemble structure near a hydrophobic surface (such 

as the CH3-SAM). Finally, both 𝑝> series appear identical relative to the magnitude of the 

PC1 and PC2 projections. The 𝑝> decrease as Δ𝑧 decrease because 5-coordinated waters 

become less favorable as density increases near the brush-water interface. We have made 

initial attempts to connect the PC projections more quantitatively to sorption 

thermodynamics (e.g., Δ𝑆dc%), but our efforts suggest that additional structural features may 

be required to develop more predictive models for solute-surface affinity. 
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Figure 6.6 (a) We depict the non-solute (“NS”) difference three body angle distribution Δ𝑃_8/5(𝜃; Δ𝑧) for waters 
within a 5 Å-thick slab of water molecules at a position Δ𝑧 above the water-brush interface. (b) Similarly, we 
show the solute (“S”) difference three body angle distribution Δ𝑃_85 (𝜃; Δ𝑧) for waters within a 7 Å radial cutoff 
of the heavy atoms of a phenol molecule centered at the same Δ𝑧 positions. Here, we consider seven Δ𝑧 values: 
-0.12, 0.13, 0.47, 0.81, 1.15, 1.49, and 1.83 nm. Both populations of water exhibit a monotonic increase in 
tetrahedral coordination and simultaneous decrease in icosahedral coordination. (c) We depict the projection of 
the difference three body angle distributions onto the three principal components (computed in Chapter 5) for 
“NS” 𝑝3/5 = 𝑝𝑟𝑜𝑗(Δ𝑃_8/5(𝜃; Δ𝑧), 𝑃𝐶3) and “S” the: 𝑝3/5 = 𝑝𝑟𝑜𝑗(Δ𝑃_8/5(𝜃; Δ𝑧), 𝑃𝐶3) waters. “NS” and “S” 
projections are differentiated by dashed and solid lines, respectively. 𝑝D/5, 𝑝D5, 𝑝T/5, and 𝑝T5 monotonically 
decrease far from the OEO brush-water interface, but 𝑝D5 approaches a finite bulk value while the other 
approach 0. The trends in 𝑝D/5 and 𝑝D5 quantify the tetrahedral-icosahedral tradeoff implied by the difference 
three body distributions as Δ𝑧 decreases. The increase in 𝑝T/5 and 𝑝T5 as Δ𝑧 decreases suggest the emergence of 
large length scale water structuring nearer to the brush surface. 𝑝_/5 and 𝑝_5 are nearly indistinguishable and 
monotonically increase towards 0 in the bulk as the frequency of 5-coordinated waters increases. 
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6.5 Conclusions  
 In the preceding discussion, we detail our progress in developing molecular intuition 

for anti-fouling at membrane-relevant materials. In Section 6.3, we advance efforts to draw 

connections between experimentally accessible and direct simulation-derived measures of 

foulant sorption in vacuum. We detail our molecular-scale analysis for the determinants of 

the sorption of small molecule solutes of interest for produced water treatment. For a broad 

set of neutral solute chemistries, we demonstrate semi-quantitative prediction of solute-

surface affinity Δ𝐺W5Cv leveraging only the solute molecular weight and its degree of 

hydrogen bonding (average number of hydrogen bonds formed) to a hydroxylated-SAM. We 

attempt to draw a connection between our simulation and AP-XPS measurements from our 

collaborators. The practical limitations of AP-XPS experimental conditions and sensitivity 

may hinder our ability to directly compare methodologies for the time-being. However, there 

is another AP-XPS apparatus at the LBL Advanced Light Source (ALS) that operates at 

higher pressures than the procedure mentioned above. Once personnel are available to 

interrogate this matter further, direct simulation-XPS comparisons may become more 

tractable. 

 In Section 6.4, we highlight computational advances on the study of antifouling at a 

membrane relevant OEO brush system by computing the potential-of-mean-force (PMF) for 

a subset of solutes from the vacuum study. We discover comparable solute-surface binding 

affinities observed at a model hydrophilic surface (OH-SAM) for the entire range of solutes. 

We decompose the PMFs into direct energetic Δ⟨𝑈%g⟩ (solute interactions with its 

environment) and solution restructuring entropy Δ𝑆dc% (entropic penalty to restructure the 

solution). Interestingly, opposite to the ideal hydrophilic surface (OH-SAM), the solute-OEO 



 

 
 

216 

sorption is driven by favorable Δ𝑆dc% < 0 despite the similar solute binding affinities for the 

two surfaces. This discrepancy likely stems from the water-SAM hydrogen bond network 

formed by the OH-SAM and not the OEO brush surface. We then leverage the PCA of the 

three-body angle distributions from Chapter 5 to examine the position dependence of water 

behavior in connection with the binding affinity of phenol. While this is a de novo approach 

to analyzing the structural determinants of local water properties, further study is necessary 

to directly predict properties (as done in Chapter 5) like solute-surface affinities. 

6.6 Appendix 

 

Figure 6.7 (a) Using the model Δ𝐺�P�S:-M = 𝑁MNΔ𝐺MN, we partially capture the variation in solute-OH SAM 
binding affinities. However, the average number of hydrogen bonds 𝑁MN alone does not predict the behavior of 
non-hydrogen bonding (“non-HB”) solutes. (b) Using the model Δ𝐺�P�S:-M = 𝑁�SIHaΔ𝐺�.�, we do not predict 
solute-OH SAM binding affinities. If we separately fit the trends for “non-HB” and hydrogen bonding (“HB”) 
solutes, the two trends would reasonably capture the variation in Δ𝐺83��-M . (c) Using the model Δ𝐺�P�S:

KM$ =
𝑁�SIHaΔ𝐺�.�, we predict solute-CH3 SAM binding affinities much better than the model presented in panel (a). 
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Chapter 7: Conclusions and Outlook 

7.1 Summary 

Here, we briefly summarize the findings presented in Chapters 2-6. In Chapter 2, we 

present a first-of-its-kind quantitative comparison between water dynamic metrics in 

glycerol-water as probed by molecular dynamics simulations and Overhauser Dynamic 

Nuclear Polarization (ODNP) experiments. This molecular-scale investigation appears to 

confirm the structure-dynamics-thermodynamics hypothesis for glycerol-water. Chapter 3 

highlights our further interrogation of the water structure-dynamics relationship in PEO-

water solutions—a system relevant to membrane materials development—in close 

collaboration with experimental water dynamics probes from nanoscopic (ODNP) and 

microscopic (Pulsed-Field Gradient NMR) perspectives. In Chapter 4, we return small 

molecule solutes (DMSO and glycerol) to more closely inspect the hydration layer structure. 

Specifically, we decompose the solute hydration layer into solute hydrogen bonding 

(“bound”) and non-hydrogen bonding (“wrap”) populations and investigate their molecular 

structural features. We synthesize our findings from Chapters 2-4 in Chapter 5 to predict 

functional dynamics and thermodynamics properties from molecular structural metrics. 

Finally, we briefly discuss efforts to provide a molecular-scale picture solute-surface 

interactions at an extended oligoethylene (oxide) surface in Chapter 6. 
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7.2 Conclusions and Future Work 

Through the cumulative efforts presented in Chapters 2-5, we demonstrate that water 

structure is predictive of system properties and function. However, the present efforts center 

highly idealized systems such as binary aqueous mixtures. To directly apply the methods and 

structure-property relationships elucidated above to industrially relevant systems, we must 

substantially extend our efforts to chemically and topographically heterogeneous interfaces 

such as those between proteins and water. For instance, the interrelationship between water 

structure, dynamics, and hydropathy presented at model extended surfaces(1) does not 

simply extend to the protein-water interfaces(2). Instead, the precise 3D-arrangement of 

chemical groups—with variable hydropathy and charge—strongly influences functional 

properties at protein-water interfaces(2–5). The vast and dynamic feature space at hydrated 

protein surfaces makes conventional analysis methods for predicting interfacial properties 

from water structure intractable.  

 In Chapter 5, we achieve a high degree of success leveraging very simple statistical 

learning methodologies to predict functional mixture properties from water molecular 

structural metrics. Our approach is reminiscent of a study by Dallin and coworkers(4) in 

which they apply a simple feature selection procedure and linear regression to accurately 

predict the hydration free energy (HFE)—a measure of hydropathy—at chemically 

heterogeneous self-assembled monolayer (SAM) surfaces. While we do detect structural 

signatures of solute-surface sorption at the OEO brush surface, we cannot simply predict 

sorption free energies from water structure using regression [Chapter 6]. Hence, we will 

likely be unable to predict a property like water self-diffusivity at the more chemically and 

topologically diverse surfaces presented at protein-water interfaces.  
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 We note, however, that the principal component analysis (PCA) detailed in Chapter 5 

contains signatures of collective water network structures at both small (effective hydrated 

radius < 1 nm)—PC1—and large—PC2—hydrophobic interfaces. We hypothesize that these 

signatures may strongly indicate hydrophobic regions at the protein-water interface. For 

instance, a water near a large hydrophobic region of a surface is likely to resemble PC2 more 

closely than PC1. As detailed in numerous previous studies at heterogeneous molecular 

surfaces(4, 6–10), the tendency for a surface (or surface sub-region) to de-wet is highly 

suggestive of function. In the context of protein engineering, active sites typically de-wet 

more readily to promote interactions with ligand molecules(9). A purely structure-based 

probe of local hydration environments is highly desirable due to the high, and potentially 

insurmountable, computational cost of direct HFE calculation. 
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