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ABSTRACT OF THE DISSERTATION
Image Segmentation and Contextual Modeling for Object Recognition
by

Andrew Rabinovich

Doctor of Philosophy in Computer Science and Engineering
University of California, San Diego, 2008

Professor Serge Belongie, Chair

Recognizing objects is an essential part of navigating through the visual
world. Identifying objects and finding boundaries between them provides us with
some of the richest sensory information. Similarly, image segmentation and ob-
ject recognition are among the most fundamental problems in computer vision
and machine intelligence. The potential interaction between these processes has
been discussed for many years. The usefulness of recognition for segmentation
was demonstrated with various top-down segmentation algorithms; however, the
impact of bottom-up image segmentation for object recognition is not well under-
stood. One impeding factor is the unsatisfactory quality of image segmentation
algorithms. In this work, we take advantage of a recently proposed method for
computing multiple stable segmentations and illustrate the application of bottom-
up image segmentation as a preprocessing step for object recognition.

In parallel to segmentation, the task of visual object recognition is often

greatly facilitated by the objects’ surroundings. Contextual information can play

XVvil



the very important role of reducing ambiguity in objects’ visual appearance. In
this dissertation, we propose a new model for object recognition that incorporates
two types of context — co-occurrence and relative location — with local appearance-
based features, thus named CoLA (for Co-occurrence, Location and Appearance).

Since a number of contextual models for recognition have been proposed
in the recent history, it is necessary to compare the newly proposed model to the
existing ones. Over the years, two general kinds of such models have emerged:
those with contextual inference based on the statistical summary of the scene, and
models representing the context in terms of relationships among objects in the
image. Understanding the theoretical and practical properties of such approaches
is essential in designing object recognition systems. We provide an analytical

analysis of these models and evaluate them empirically.
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Chapter 1.

Introduction

Object recognition and categorization have been active topics of research
in psychology and computer vision for decades. Initially, vision scientists and
psychologists formulated hypotheses about models of object categorization and
recognition, see [28, 29, 89]. Subsequently, in the past 10 years or so, object
recognition and categorization have become very popular areas of research in com-
puter vision. With two general models emerging, generative and discriminative,
the newly developed algorithms aim to adhere to the original modeling constraints
proposed by vision scientists. For example, the hypothesis put forth by Biederman
et al. [7], suggests five classes of relations between an object and its setting that
can characterize the organization of objects into real-world scenes. These are: (i)
interposition (objects interrupt their background), (ii) support (objects tend to
rest on surfaces), (iii) probability (objects tend to be found in some contexts but
not others), (iv) position (given an object is probable in a scene, it often is found
in some positions and not others), and (v) familiar size (objects have a limited set
of size relations with other objects).

Classes (i, ii, iv, and v) have been addressed fairly well in the models
proposed by the computer vision community, as shown in [11, 20, 87]. Class (iii),

referring to the contextual interactions between objects in the scene, however, has



received comparatively little attention.

A large body of evidence in the literature on vision science, for exam-
ple [8, 14, 22, 26, 34, 70|, computer vision [23, 33, 76, 75, 92, 94] and cognitive
neuroscience [1, 2, 3, 27, 67], has shown that contextual information affects the
efficiency and accuracy of object recognition by humans and machines. There is
a general consensus that objects appearing in a consistent or familiar background
are detected more accurately and processed more quickly than objects appearing
in variable scenes. Researchers in computer vision have recognized the importance
of context and advocated its use for object recognition for many years [21, 88].

Existing context based methods for object recognition and classification
consider global image features to be the source of context, thus trying to capture
object class specific features. In [31, 60, 91, 102], the relationship between context
and object properties is based on the correlation between the statistics of low-
level features across the image that contains the object, or even the whole object
category.

Semantic context! among objects has not been explicitly incorporated into
existing object categorization models until very recentry. Semantic context requires
access to the referential meaning of the object [7]. In other words, when performing
the task of object categorization, objects’ category labels must be assigned with
respect to other objects in the scene, assuming there is more than one object
present. To illustrate this further, consider the example in Figure 1.1. In the scene
of a tennis match, four objects are detected and categorized: “Tennis court”,
“Person”, “Tennis Racket”, and “Lemon”. Using a categorization system without
a semantic context module, these labels would be final; however, in context, one
of these labels is not satisfactory. Namely, the object labeled “Lemon”, with an
appearance very similar to a “Tennis Ball” is probably mis-labeled, due to the
ambiguity in visual appearance. By enforcing semantic contextual constraints,

provided by an oracle, the label of the yellow blob changes to “Tennis Ball”, as

'We will use context and semantic context interchangeably from now on.
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Figure 1.1: A possible idealized model for object recognition. An original image is
segmented into objects; each object is categorized; and object labels are adjusted
with respect to semantic context in the image. As a result, the label of the yellow
blob changes from “Lemon” to “Tennis Ball”.

this label fits in context with other labels more precisely. Note that, to achieve high
recognition accuracy, this model heavily relies on correct segmentation of objects
in images. Conventionally, it has been thought and argued that identifying object
boundaries is rather impossible without top-down processing, i.e., must know the
object identity prior to segmentation.

In this work we take advantage of a recently proposed method for com-
puting multiple stable segmentations and illustrate the application of bottom-up
image segmentation as a preprocessing step for object recognition and categoriza-
tion. In Chapter 2, we extend a popular bag-of-features (BOF) recognition model
to provide multiple class categorization and localization of objects in images. As
post-processing, we propose to use contextual relations between objects’ labels
to help satisfy semantic constraints. With object categorization in hand, a con-
ditional random field (CRF) formulation is used to maximize the objects’ labels

contextual agreement in Chapter 3. Chapter 4 provides an analytical and empirical



comparison of two main classes of contextual models for object recognition. We
conclude with the discussion of the proposed methods and more general remarks

about object recognition, image segmentation and contextual modeling in Chapter

d.



Chapter 2.

Image Segmentation for Object

Recognition

The interplay between image segmentation and object recognition has been
an active area of research for several decades, both in computer vision and cognitive
psychology. The benefits of object recognition have been exploited in top-down
image segmentation approaches. Combining object model knowledge and the ini-
tial low level segmentation has been shown to improve segmentation accuracy [10].
[48] introduced a principled way to improve top-down segmentations with low
level features. However, the effects of image segmentation on object recognition
and categorization are still not clear.

Discovering global structure is at the heart of most approaches to image
segmentation. For example, image segmentation methods based on spectral clus-
tering proceed by computing local measurements around each pixel followed by a
partitioning step that aims to minimize a global cost function defined on pairwise
affinities over these measurements [6, 62, 84]. In this setting, the global structure
is represented concretely by a set of partition vectors indicating group member-
ship. Many leading recognition engines, however, are solely based on local feature

descriptors [13, 19]. Yet in contrast, the principle of global precedence suggests



that global image structure and configurations dominate local feature processing
in human pattern perception and recognition [35, 61].

Recently, there have been efforts that leverage manually segmented fore-
ground objects from the cluttered background to improve categorization. In [63],
for example, flowers are segmented from the background to increase recognition
accuracy. By segmenting the objects of interest, the noise introduced by the back-
ground around the object is minimized. Yet, methods of unsupervised image seg-
mentation have not been popular as pre-processing for recognition and catego-
rization. One reason for this, is the unsatisfactory quality of image segmentation
algorithms. It is generally hard to find segmentations that capture all correct
object boundaries in images of real world scenes. If the segments were satisfac-
tory, an ideal segmentation based recognition system would resemble the sketch
in Figure 2.1. After perfect segmentation, each segment (representing an object)
is labeled by the recognition engine. Segment boundaries are used for localization

and the scene category label is inferred from the individual object labels.

OBJECT RECOGNITION
BLACK BOX

Figure 2.1: Ilustration of a segmentation-based object recognition system. Top
Left: Original image with four objects: soccer ball, goal, grass and sky. Top
Right: Ideal image segments. Bottom Right: Discriminative object recognition
system, e.g. “Bag of Features”. Bottom Left: Multi-class object recognition
with localization.

Existing recognition algorithms that advocate the use of segmentation ap-



pear to work well if strong initial object hypotheses are built into the segmentation
engine [47, 103]. For the task of detecting and recognizing objects in still images
without object knowledge, however, the recognition capability is still very weak,
perhaps due to the segmentation performance. For example, the approach of Mar-
tin et al. [54] attempts to integrate all necessary visual cues together to produce
one “best” segmentation. The work of Mori et al. [59] acknowledges that an er-
roneous segment boundary will degrade recognition accuracy, and thus proposes
to oversegment an image into super-pixels to increase the potential quality of a
particular merged segmentation. Alternatively, works such as [99] and recently
by [42], suggest that attempts to calculate a segmentation for an input image are
likely to introduce more harm than good, and that a bounding box, at every pos-
sible location and scale in the image, must be considered as an object outline for
satisfactory object recognition and categorization performance. Thus, rather than
partitioning an image into semantically meaningful parts, it may be possible to
capture some global statistics of the image with bounding boxes of various scales.
We will return to global image statistics and scene identification in Chapter 4.

A reason for the inadequate performance of image segmentation is the ambi-
guity of the image representation, the model parameterization, and the task itself.
As described in [74], in general there does not exist a single correct segmentation
of an image, but rather there exists a shortlist of meaningful image partitionings.
Thus, unlike the above mentioned approaches of using a single segmentation or
all possible bounding boxes, the idea of using several segmentations has recently
emerged [23, 53, 74, 76, 78, 79]. A handful of segmentations is chosen in hope that
a collection of all segments from these few segmentations will result in adequate
object boundaries. Russell et al. [79] rely on a collection of hundreds of random
segments to perform object detection, while we advocate the use of stability as
a predictor of “goodness” of a particular set of parameters, cue weightings and
model order, as done in [44, 74] to perform object recognition and categorization.

Only the few most stable segmentations that depict various aspects of the image



are chosen to describe object boundaries. In this regard, the segmentations we
use go beyond what is available via a simple oversegmentation or superpixel rep-
resentation in terms of capturing salient image structure. The notion of stability,
although defined quite differently, has been used in computer vision before. Matas
et al. [55] introduced the maximally stable extremal region (MSER), which is a
connected set of pixels obtained by intensity thresholding, the area of which is
stable with respect to perturbations in the threshold value.

Partitioning images into segments has been proposed for learning the joint
distribution of image regions and words for image region annotation [4]. Recently
[78] suggested using multiple segmentations for object recognition. They build a
segmentation based recognition system and report competitive results. However,
they do not show the performance of their system without segmentation. Thus the
effects of segmentation on object categorization remain unclear. Also they do not
leverage segmentation for object localization and multi-class object recognition.

In this chapter we show that preprocessing a query image by representing
it as a shortlist of segmentations increases the accuracy of object recognition.
Having classified each of the segments we infer the following from the shortlist of
segmentations: (a) a label for each segment, (b) object localization via the segment
boundary, and finally (c) a label for the entire image. We evaluate the benefits
of image segmentation, as pre-processing, for object categorization on the Caltech
and PASCAL databases. In investigating the importance of image segmentation

for object categorization by answer the following questions:
1. Can segmenting an image improve object recognition?
2. How does the number of segments affect recognition accuracy?
3. Does the quality of segmentation affect recognition accuracy?

4. Is it beneficial to perform localization using segmentation?



2.1 Stability based Clustering

Image segmentation is an instance of a clustering problem. In the domain
of images, pixels that are similar, according to some criterion, should be clustered
together; pixels that belong do different objects should be in different groups.
Here we review the fundamentals of stability based clustering and its application
to image segmentation.

The goal of clustering (or segmentation, or grouping) is to partition n ob-
jects into k groups so as to optimize an objective function. One way of think-
ing of the objective function is that it imposes a ranking on the set of all parti-
tions. While this is a convenient tool for intuition, when k is unknown, the size of
this set — the Bell number B(n) — grows super-exponentially in n. For example,
B(100) ~ 4.8 x 10"°. Compounding the problem is the fact that most clustering
algorithms possess a variety of parameters on the objective function that weight
different features (or cues) of the objects. In the case of image segmentation, these
features include position, color, texture, motion, and so on. As such, the problems
of choosing k (model order selection) and the relative parameter weightings (cue
combination) are difficult open problems.

Fortunately, the various domains in which clustering is applied often enjoy
properties that can be leveraged against the above problems. In this work, our
domain of interest is visual grouping. In this setting, k is often fairly small, e.g.,
10 (i.e., representing the objects in the image), and the various parameters can be
restricted into narrow valid ranges. Nonetheless, depending on the number of cues
employed and the granularity of their variation, this can still present substantial
problems both in the sense of computation and of usability.

This chapter addresses both of these problems. We begin with the obser-
vation that no single value of k is correct in general. The literature on model
order selection is perhaps surprisingly focused on selecting one ‘best’ value of

k [5, 15, 44, 49, 90]. A similar situation exists in the scale selection litera-
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ture [38, 50]. We stop short of exhaustively searching the space of parameter values,
however, by observing that this space has implicit structure, and that structure
allows one to characterize the space via an efficient sampling scheme. The pro-
posed clustering algorithm frees the user from the hassles of parameter tuning and
model order selection: the input is a set of points, the output is a ranked shortlist
of clusterings. The lingua franca we adopt in pursuit of this framework is a quan-
tification of a stable clustering, corresponding to the intuition that a clustering is
good if it is repeatable in the face of perturbations.

As a preview of this idea, consider the dataset shown in Figure 2.2. This

Figure 2.2: (a) Original stimulus of four clumps of points with varying density.
Stable clusterings for k& = 2,4 are shown in shown in (b-d); (b) based on point
density (simplest form on texture description), & = 2; (c) based on Euclidean
distances between data points, £ = 2; (d) based on Euclidean distances between
data points, k = 4. There are two other trivial stable solutions for £k = 1 and N,
where N is the cardinality of the set. Note, no stable clustering exists for £ = 3
with the given cues.

stimulus consists of four clumps of points, each drawn from a symmetric Gaussian
distribution of different variance. For simplicity, we consider two cues: proximity

and density, where the latter is measured by counting the number of points that
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fall inside a box centered on each point.! We show three representative stable
clusterings, two for £ = 2 and one for k£ = 4. Depending on the relative cue
weighting, one can obtain two very different stable clusterings for & = 2. For
k = 4, however, there is only one stable clustering. Associated with each case is
a range of parameter values (cue weighting and box width) that lead to the same
result. The myriad other unstable segmentations are not of interest to us. Here
we aim to select only meaningful clusterings for a given dataset. In particular we
hope to select all stable clustering solutions.

Stability based clustering is a relatively new approach to model order selec-
tion. In late 1980s Jain and Dubes [36] discussed the validity of a given clustering
structure based on hypothesis testing. The boom of work on finite mixture mod-
els in the 1990s gave rise to numerous approaches based on information theoretic
criteria such as MDL, AIC, and BIC, see [9]. More recently a class of approaches
based on stability have shown great promise. Our work falls into this category; we

provide a brief review of it next.

2.1.1 Model Order Selection

The framework of stability based model order selection (from [44]) is as
follows. Given a dataset, the data points are split into two disjoint subsets .4 and
B. Using some clustering method, cluster A into k groups. Once the clustering for
a given k is done and all the points in A are labeled, a classifier ¢ is chosen and
is trained using the labels from the clustering algorithm. Once the classifier (the
predictor) is trained, the subset B is considered. The data in B is clustered into
k groups and independently labeled using ¢. Then the labels from the clustering
and classification are compared to determine the stability. Care must be taken
here since the labeling is arbitrary up to a permutation. To address this, one

can perform pairwise comparison between points (i.e., are the two points in the

!This measure of local density is a simplified instance of a texture descriptor; it generalizes
to a local texton histogram [52]
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same group or not) or find an optimal label permutation, e.g., using the Hungarian
method, [39]. Finally, the number of points with the same label provide a stability
measure for that value of k. This procedure is repeated for a range of k’s.

This approach is well motivated and we adopt it with the following modi-
fications.
1. Firstly, instead of splitting the data into two subsets, cluster the entire data
with a given k. The clustering engine can be a central method such as k-means if
the clusters are spherical, or a pairwise method such as NCut if not; for generality
assume that data is not spherical and always use a pairwise method. Note that
NCut is a spectral clustering method, which may be considered as a pre-processing
step for k-means. Also, NCut incorporates a compactness criterion, thus NCut can
be reduced to k-means in an embedded space.
2. Once the data is clustered and the data points are labeled, add noise (propor-
tional to the variance of the data (discussed in Section 2.1.3)) to slightly perturb
the pairwise distances.? Once the data is perturbed, perform clustering for the
same number of groups and assign new labels to the data. Such a labeling scheme
avoids the use of a classifier, and reduces the algorithmic complexity. This pertur-
bation is performed T times; here we re-clustered the data 50 times, yielding 50
different labelings for the data points.
3. Given all of the labellings, permute all but one of them to best match the hold-

out set (anchor) and compute the stability according to the following definition:

(k) = i . (ZZ(SU - %) . (2.1)

Here n is the number of data points and d;; is equal to % if the i-th point is
mapped to the same cluster in the j-th perturbed grouping and zero otherwise.

Fraction 7 prevents from a bias to a particular value of & (this is an average cluster

size for a given k); n — % is the normalization coefficient. Thus ® is a properly

20ne could instead perturb the positions of each data point.
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normalized® measure of the probability of a data point to change label due to a
perturbation of the data set. Since any given anchor could be suboptimal, we try
all possible anchors, and pick the one that yields highest stability. Clusterings
with high stability scores are considered meaningful and are retained. Note that

in general, there may exist several stable groupings.

2.1.2 Visual Cue Combination

Stability based model order selection is a method of choosing the appropri-
ate number of groups, k, for the given clustering problem. Although this approach
is native to learning theory, we apply it to computer vision and address the problem
of cue combination (feature selection in machine learning).

Visual grouping is an instance of a clustering problem based on features
such as color and texture. Similarly to the problem in clustering, the number of
segments, or groups, is also unknown. We use stability based model order selection
to determine the number of segments for a given segmentation instance. Unlike the
case of point sets, where FEuclidean distance may be used to assess the similarity
between data points, image segmentation is best performed using multiple visual
cues [52, 71, 95]. How to choose which cues to consider for a given segmentation
problem and how to weigh their importance is unclear. This is known as the
cue combination problem in computer vision. Traditionally, supervised learning
approaches are used to address cue combination in a given application. Based on
labeled data, a classifier is trained to choose the appropriate weighting for each
cue, see [54, 56]. Since we do not assume human labeled examples are available, we
propose to use the stability based approach to identify all possible combinations
of cues and number of groups that lead to a stable segmentation.The stability
calculation process remains unchanged; however, with every new combination of

cues, the grouping criterion changes.

3In particular, ® € [0, 1] and it is not biased towards a particular value of k.
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One possible approach to combining cues is to construct a similarity, or
dissimilarity, matrix for each cue and combine them into a single affinity using a

convex combination:

F
Wi = e—Zle(prfj), subject to pr =1, (2.2)

f=1
where W;; is the overall affinity between points 7 and j, C’ifj is the similarity between
the i-th and j-th point (pixel) according to some cue f, F' is the number of cues,
and p; € [0,1] specifies the cue weighting. Each of the similarity matrices C7
and affinity W have an internal scaling parameter, o, that is used to maximally
separate the dissimilar and group the similar entries in the matrix. We discuss the

selection of this parameter next.

2.1.3 o Estimation and Re-Sampling using Non-Parametric

Density Estimates

In this section we estimate the scaling parameter for each cue individually
and propose a re-sampling scheme for data perturbation. We assume that sim-
ilarities Cy; correspond to squared Fuclidean distances ||x; — x;||* in a suitable
(embedding) space and that we have access to a vectorial representation of the
data (one for each cue). If only similarities between data points are available, vec-
torial representation in R%, d < n — 1 may be generated given that the similarity
matrix fulfills the Mercer’s condition, i.e., if we have a kernel matrix. Then, the ap-
plication of Kernel Principal Component Analysis (kPCA) results in an isometric
embedding of the corresponding distances into an n — 1 dimensional space (after
centering the kernel matrix).

o Estimation. For each cue we obtain a set of n realizations xi,...,x, € R?
of the random variable X with unknown density p(x). The guiding principle of
the stability approach is to require segmentations to be robust with respect to

fluctuations in the source, i.e., in p(x). If the density was known, this condition
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would be easily checked for by drawing multiple samples from p. However, in
practice, we do not have access to p. Thus, we adopt the following strategy.
Instead of using the true (unknown) density p, we construct a non-parametric
density estimate ¢, the latter being used for the re-sampling and the subsequent
stability assessment.

A standard technique to obtain a non-parametric estimate of the density
p(x) is to use a Parzen window estimator: In essence, the density is approximated
by a super-position of basis functions, the latter being centered around the real-
izations x;, @ € {1,...,n}. One possible choice for the underlying kernel (~ basis)

function is a Gaussian kernel; the kernel centered at x; reads:

1 1% — x|
kixi o (x) = (2ro)ir2 P (—T‘Q : (2.3)

The density estimate g, is then a super-positon of the individual density estimates:

P(X) ~ ¢, (x) ;:% D ho(x). (2.4)

1<i<n
The estimate depends on a smoothness (i.e., bandwidth) parameter, o, whose
choice greatly influences the shape of the density estimate ¢,. It is well known,
that applying negative log-likelihood cross-validation (asymptotically) leads to a

consistent estimate of o, see [30] for more details. In essence, we wish to minimize:

argmin ( — Z log qa(x(t))) (2.5)

7 x(eT

for different choices of ¢ and a set of “test” points T'. Finally, a o is picked, for
which this test quantity becomes minimal.

Re-sampling. ky, ,(x) is a Gaussian density with variance o2 and the correspond-
ing density estimate ¢, is a mixture of Gaussians with n modes, each having weight
1 and the common variance d-dimensional covariance matrix diag(o%, . .., 07). This
Gaussian mixture is used to get “noisy” versions of x; by sampling from it. In par-

ticular, we get a noisy version Xx; of each original point x; by sampling a substitute
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from the Gaussian ky, ,. Note that, in contrast to the original stability approach
by Lange et al., the point correspondence problem is automatically resolved in this
case, as one can identify x; sampled from ky, , with x;.

Just Noticeable Difference. Besides the scaling parameter, some cues have an-
other internal parameter, w. For example the density cue has a window in which
the density is computed. The size of such a window is an internal parameter of the
density cue (other cues such as proximity do not have such internal parameters
and simply use some properties of points to determine similarity). Varying the
values of such internal parameters has a particular effect on the overall stability of
the clustering. If for example the window size w of the descriptive texture element
is changed by a small fraction to w + €, the stability of a given grouping will not
change, as texture is captured equally with windows of similar sizes. This is related
to the phenomenon of the Just Noticeable Difference and Weber’s Law [69]. Slight
variations of the texture element window do not result in perceptually distinctive
textures [32, 37, 43, 72]. Unfortunately, such a rule does not apply to the varia-
tion of number of groups. If the stability of segmentations with all possible cue
combinations is known for k£ groups, in general there can be nothing said about
the stability behavior of grouping with k£ 4+ 1 groups. In the example in Figure 2.2
there are stable solutions for £ = 2 and k£ = 4 groups, however, no clustering with

k = 3 is stable.

2.1.4 All Possible Clustering Solutions for a Set of Cues

As discussed earlier, there may be more than one stable clustering for a
given data set. Points may be grouped using different cue combinations and/or
model orders. To identify all parameter settings for which a clustering is stable,
it is intuitive to consider all such parameter values: different numbers of groups,
different contributions of each cue, and finally the internal parameters for each of

the cues. For example, again consider the point set in Figure 2.2. We would like
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to find all stable solution based on two cues: pairwise proximity and point density
within a window. Even if we restrict the range of parameters, e.g. 10 different
values for k, 20 values for window size, and 10 for cue combination, there are still

2,000 clusterings to consider, as shown in Figure 2.3. Although such a representa-
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Figure 2.3: Slices of the cube of all possible segmentations for the 4 clumps stimulus
(shown in Figure 2.2); the number of groups is indicated on top of every slice. All
the stability values are in the range of [0, 1]. p is the cue combination axis in [0, 1],
w is the window radius, an internal texture parameter, € [1,55]. As expected,
there are stable solutions for a range of cue parameters when grouping into k = 2
and k = 4 groups. It is important to note that although the slices for k = 2 and
k = 4 show high stability, the slice for & = 3 is unstable. This underlines the
decoupled behavior of the order in model selection.

tion of the space of possible solutions is very thorough and potentially useful, the
brute force computation of these groupings and stability values associated with
them becomes computationally inefficient. Instead, we propose a sampling based
approach for approximating the space of clustering stabilities.

Since the behaviors of solutions for different k’s are decoupled, we must
sample a set of parameter values of cue combination for every desired k. Once the
sample stability values are computed, in the space of all possible parameters (cube
of all clusterings), we construct a dense matrix A by interpolating the sampled

values for each k.
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To be able to analyze the behavior of the parameters independently, as
was discussed in Section 2.1.3, the overall stability of a given solution is modeled
as a product of stabilities of each individual cue. With A, a matrix of cluster-
ing stabilities constructed, we use Non-negative Matrix Factorization (NMF) to
decompose the overall clustering stability values into clustering stabilities of in-
dividual cue parameters. NMF, see [46, 68], is a recently introduced method for
finding non negative basis functions (vectors) that represent the data. Using an
iterative approach with non-negativity constaints, a data mixture A is factored
into constituent components S and the weights B for each component. Repeated
iteration of the update rules is guaranteed to converge to only a locally optimal
matrix factorization, however, practical applications of NMF indicate suitability
of the approach. In its usual form, this decomposition is an additive one in terms
of the learned components. Here, we set up the problem as multiplicative and
consider B and S to be the two basis functions. In doing the NMF, there is a
constraint on non-negativity, yet there is no upper bound on the individual entries
of the basis functions. Since the basis functions that we extract correspond to the
stability value for individual cues for a given k, the entries in vectors B an S must
be constrained between [0, 1]. To enforce the bounds on the values, we introduce
an extension to the general NMF. In the presence of more than two cues, the use

of NMF is generalized to Non-negative Tensor Factorization [83, 101]

2.1.5 Bounded Non-negative Matrix Factorizations

To achieve the desired bounds on the elements of B and S, the following
procedure is based on a rank-1 decomposition; however, it is possible to achieve
rank K decompositions of A with K rank-1 consecutive decompositions.

Given A = BS, subject to 0 < B;; <1, 0 < S;; < 1, the decomposition
is an outer product of B and S assuming rank(A) = 1. To constrain the upper

bound of elements of B and S, we wish to re-write A = BS in terms of a function
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that is restricted on the interval [0,1]. For example e~ if X > 0, is constrained
in [0,1]. Let A" = —log(A), B’ = —log(B), 5" = —log(S), thus A’ = B’ + 5" is an
instance of a least squares problem.? In particular, let V = A’(:) (concatenated),

b=[B'(:,1);5(1,:)], and let

X is mn x (m+mn), where m and n are the lengths of B and S. Thus, A" = B'+ 5"
becomes:

V = Xb (2.6)

In order to satisfy initial constraint of 0 < B;; <1, 0 < 5;; < 1, this least squares
problem must be solved with the constraint that b; > 0 (1sqnonneg in Matlab).
By performing the above substitutions in reverse, B’ and S’ are recovered. Finally,

we exponentiate A’ = B’ 4+ S’ to obtain the bounded decomposition into B and S.

6_14' = e_B/(:71)e_S,(1’:) (27)

A = BS (2.8)

This is Bounded Non-negative Matrix Factorization with Rank-1 assumption.

Projection onto the subspace of the approximation. Rank-1 approxima-
tion of the stability matrix may not be sufficient to represent the structure of A
accurately; a higher order approximation may be required. Thus, it is necessary

to quantify the performance of such an approximation.

4Since A’ is m x n and both B’ and S’ are vectors, the entries of B’ and S’ are repeated to
achieve the m x n dimensions.
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The subspace spanned by the original full rank matrix A is projected onto
the subspace spanned by the eigenvectors of the approximated matrix (). In the
case of rank-1 approximation, A is projected onto a line — ’s only eigenvector.
More formally, we would like to find a combination of ) x;¢; = a;, where each a;,
a column of A, is projected onto the subspace spanned by eigenvectors of (). Let

the set of eigenvectors spanning ()’s subspace be Q.. In matrix form?®:

RX = A (2.9
QI(A-Q.X) = 0 (2.10
Q.Q.X = QA (2.11

X = (Q/Q.)'QIA (2.12

X is the projection matrix of A onto the eigenspace of ). Thus, the projection
of A onto @Q’s eigenspace is P = QX and the residual of the projection P and
original matrix A is £ = A — P. Figure 2.5 illustrates the rank-1 and rank-
2 approximations of the original matrix A and the residuals between A and the
approximations. With a rank-1 approximation the residual error is 31.7%, while
the residual error of rank-2 approximation is only 4.26%.

Cue interpolation and overall approximation accuracy. Unlike k, a cue
parameter such as point density within a window is not independent of its “neigh-
bors”. In particular, visual cues may have a piecewise constant or monotonically
changing behaviors and may be modeled as such. By having only a few stability
values along the discrete interval of values for a given cue, it is possible to use a
simple model to interpolate to the rest of the desired values for a particular cue.
Since the actual cue combination is modeled as a convex combination, the behav-
ior of that “axis” is continuous and smooth, and was fit using a simple bicubic

interpolation. The behavior of stability as a function of box size for point density

> QJ (A - Q.X) = 0 comes from the diagram (the dotted line goes from a; to the nearest
point Qz; in the subspace as shown in Figure 2.4. This error vector (a; — Qx;) is perpendicular
to the subspace and it makes a right triangle with all the vectors ge;...ge,; QJ Q. is invertible
since the ¢.’s are orthogonal.
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Figure 2.4: Rank-k error estimation. Columns of the original matrix A are pro-
jected onto the subspace spanned by the eigenvectors of the approximated matrix

Q.

original rank 1 approximation rank 1 approximation error rank 2 approximation rank 2 approximation error

Figure 2.5: Accuracy of bNMF approximation of the stability matrix A from Figure
1 for k = 4. (a) Original; (b) Rank-1 approximation of A using bNMF; (c) Error
of rank-1 approximation; (d) Two successive rank-1 approximations; (e) Error of
rank-2 approximation.

was modeled as piecewise constant. Once the vectors B and S are filled, their
outer product will fill the entire space of stability values for all segmentations for a
given number of groups. To measure the quality of such a sampled approximation,
we compare the approximated cube of segmentation to the actual one, where each
stability value is computed according to our definition of stability. The approxi-
mation evaluation was carried out using the stimulus in Figure 2.2. As shown in
Figure 2.6, with less than 20% of all possible combination of parameters for each

k, an approximation of 90% accuracy is achieved. Accuracy was calculated via a
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Figure 2.6: Evaluation of the accuracy of sampling the cube of stabilities to ap-
proximate its dense representation. The curve illustrates the agreement between
two dense cubes of stability values, where the entries in the rst cube are all ex-
plicitly computed and the entries in the second are the result of sampling and
interpolating. By sampling less than 20% (out of 200 points in each plane of the

cube) of the full cube, the sampling approach is able to achieve an accuracy of
90%.

projection procedure in Section 2.1.5.

2.2 Shortlist of Stable Segmentations

Having introduced the stability heuristic for unsupervised learning, we now
describe how to define and compute stable image segmentations. For each choice of
cue combination p and number of segments k£ one obtains different segmentations
of the image. Of all possible segmentations arising in this way, one or more can
be considered “meaningful.” For a choice of the parameters p and k, the image
is segmented using Normalized Cuts [52, 84] using the implementation of [6]. Im-
ages are segmented using brightness and texture cues (F' = 2). The segmentation

is considered stable if small perturbations of the image do not yield substantial
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changes in the segmentation. Segmentations with high stability score are consid-
ered meaningful and are retained. The stability heuristic may be used to select
both the cue combination parameter p and the model order k. For the task of ob-
ject recognition, we use stability to only resolve the cue combination problem. 11
values from p are chosen uniformly to compute the corresponding stability scores.
The model order corresponds to the number of identifiable objects in the scene,
and is sampled between 1 < k < 11. In particular, the most stable segmentation
for each value of k is demanded. In a sense, k£ not only represents the model order,
but also the scale, as the model order increases, the individual segment size usually
decreases.

In general, however, the set of stability values provides valuable information
about the associated segmentations, but such a representation still requires manual
sifting of the stable segmentations from the ones with low stability. Our aim is to
output only a small set of parameter values that lead to stable segmentations. To
identify stable solutions, we adopt a hysteresis based thresholding approach. Due
to the continuous nature of the behavior of visual cues, we only consider regions
of high stability values rather than individual points of high stability in this space
of segmentations, to avoid noise. We begin pruning the cube by choosing a point
of high stability with an assumption that every image has at least one stable
segmentation; the stability values in the neighborhood are grouped into plateaux
(each plateau represents a unique segmentation) by region growing, see [25]. We
enforce that at least 2 neighboring positions have a high value to consider this
region to be stable and result in a plateau. Sequentially, another point of high
stability, outside of the explored plateau, is considered, and the region exploration
is repeated. Such a process is repeated until all values of high stability (above
a certain threshold) have been considered. Currently we set the upper, 7, , and
lower, 7; , thresholds manually. In the ropes stimulus in Figure 2.7, for example,
we set 7, = 0.974 and 7; = 0.691. Finally a set of parameters for cue combination,

texture window size, and model order are output as a shortlist. This is the list of
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all possible parameters that provide stable segmentations. With images presented
in Figure 2.7, the shortlist of all possible stable segmentations reduced the size
of the entire space of possible parameter combinations by more than 95%. The
shortlist is a highly compact summary of the entire space of all segmentations.
Some combinations of parameters may result in redundant segmentations and some
segmentations may be stable but meaningless. Removing the parameters that yield
incorrect and redundant segmentation is a subject of ongoing and future work.
There are a number of domains where the existence of multiple segmen-
tations for a given image is natural; biomedical imaging is one of them. Due to
the hierarchical nature of biological structures, segmentations with various num-
bers of groups are natural. Also, it is desirable to be able to identify segments
based on different features (cues), e.g., DNA content, protein expression and brain
activity. Here we present examples of multiple stable segmentations of images of
tissue biopsy samples. To explore the generality of our framework, we apply it to
images from the Berkeley Segmentation Database (BSD) as well. In Figure 2.7 are
segmentations of three images from BSD and three images of tissue samples. In
all six examples the different segmentations are the results of varying the number
of groups and the cue weightings (using texture and color). Averaged segment
boundaries, in the 4th column of the rst 3 rows, from multiple subjects from BSD
(darker boundaries indicate higher probability for a given set of human segmenta-
tions) further illustrate the presence of multiple stable segmentations and exhibit
a high correlation with segmentations produced by our method. Table 2.2 shows
the segmentation statistics of our method for the images from Figure 2.7.
Similarity of texture was measured using texton histograms with an inter-
nal parameter of texture window radius [16]. Similarity of color was based on
the Euclidean distance of the hue channel in HSV color space. Binning kernel
density estimates of the color distribution in CIELAB color space using a Gaus-
sian kernel, and comparing histograms with the x? difference may be perceptually

more meaningful; however, the choice of color description is not central here. We
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Table 2.1: Multiple stable segmentations statistics. The percent of stable solutions
is computed assuming that each of the plateaux of stable parameter combinations
represents only 1 segmentation. In reality there could be more than 1, however,
even if there are a few different segmentations per plateau, the fraction of stable
ones will still be less than 5%.

stimulus | max | total total # | % stable | mean # of pa-
k possible stable segmen- rameter com-
param. plateaux | tations binations per
comb. out of all | plateau
possible

ropes 20 5500 19 0.31% 294

clouds 20 5500 14 0.25% 45.7

flowers 50 13750 86 0.62% 8.1

tissue 1 100 27500 218 0.79% 11.6

tissue 2 100 27500 109 0.39% 38.9

tissue 3 100 27500 236 0.86% 12.2

chose the HSV representation for its simplicity [96]. Given the similarities for each
cue, the overall pairwise pixel affinity was computed according to Equation 2.2.
Once the combined affinity matrix W is constructed, using the proposed rank-1
sampling approach twice, its entries are treated as edge weights of an undirected
graph. A number of graph based approaches cut such a graph based on some cri-
terion [62, 84, 100]. In this work, we use Normalized Cuts implementation of [6],
where the number of leading eigenvectors were set to k and were further thresh-
olded using k-means clustering. The current algorithm is implemented in Matlab
and on average takes 2.51 seconds of processing for each stability value on a dual
3.2 GHz processor with 2 GB of RAM. For example, the ropes image is 256 x 255
pixels and the full process took 0.76 hours (46 minutes) (without sampling it takes
3.83 hours). Note that current algorithm is highly parallelizable; this is exploited
in Chapters 3 and 4.

In this chapter we proposed a framework that frees the user from the burden
of manual parameter tuning and model order selection in the task of image segmen-
tation. We leverage the observation that the number of possible segmentations of

a dataset is signicantly smaller than the number of parameter combinations of the
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Figure 2.7: Examples of stable segmentations. Each is a result of a different
cue combination and model order. Only two and three stable solutions are shown
for the BSD and tissue examples, respectively. In all examples, over 95% of all
possible segmentations have low stability and are discarded. In column 4 of the
first 3 rows, we show averaged segment boundaries from multiple human subjects
from the BSD (darker boundaries indicate higher probability for a given set of
human segmentations).
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segmentation algorithm; furthermore the number of stable segmentation is much
smaller than the total number of possible segmentations. With an image as input,
our method generates a shortlist of stable segmentations. The proposed approach
performs well on medical images and examples from the Berkeley Segmentation
Database. After sampling a small fraction of the possible cue weightings and inter-
nal parameters, the sparsely populated space of segmentation stabilities is filled in
using a novel extension to NMF that constrains both the upper and lower bounds
of the elements of the extracted basis functions. Stabilities for individual cues
and the weights are interpolated to the desired resolution and the full space of
segmentation stabilities is reconstructed. Finally, only parameters (k, cue weights
and cue internal parameters) that result in stable segmentations are returned. The
selected segmentations are stable, but not all may be unique. In future work we
will address the problem of only including highly stable segmentations that are not

redundant.

2.3 Integrating Bag of Features and Segmenta-
tion

With stable segmentations at hand, we now describe how image segmen-
tation may be used as a pre-processing step for object recognition. In this work
we utilize the Bag of Features (BoF) object recognition framework [13, 65] due
to its popularity and simplicity. This method consists of four steps: (i) images
are decomposed into a collection of “features” (image patches); (ii) features are
mapped to a finite vocabulary of “visual words” based on their appearance; (iii)
a statistic, or signature, of such visual words is computed; (iv) the signatures are
fed into a classifier for labeling. All four steps can be implemented in a variety of
ways. Here we adopt the implementation and default parameter settings provided

by [97].
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While a more sophisticated version of bags-of-features is likely to improve
the categorization accuracy, we prefer to work with a simple implementation to bet-
ter emphasize the effect of segmentation on the performance of the algorithm.We
integrate segmentation with BoF as follows. Each segment is regarded as a stand-
alone image by masking and zero padding the original image. Then the signature
of the segment is computed as in regular BoF, but any features that fall entirely
outside its boundary are discarded. Eventually, the image is represented by the
ensemble of the signatures of its segments.

This simple idea has a number of effects: (i) by clustering features into
segments we incorporate coarse spatial information; (ii) masking often enhances
the contrast of segment boundaries, making features along the boundaries more
shape-informative; (iii) computing signatures on homogeneous segments improves
their signal-to-noise ratio.

Next we discuss how segments and their signatures are used to classify

segments and whole images and to localize objects in them.
Labeling Segments. Let I be a test image and S, its ¢-th segment, with
being the image index and ¢ the category index, such that [;. is the i-th training
image of the c-th category. Let ¢(I) (or ¢(S)) be the signature of image I (or
segment S) and Q(7) (or ©(5)) the number of features extracted from an image
I (or segment S). Each image is partitioned into 9 different stable segmentations
(k = 2...10), resulting in a soup of 2 + 3 + --- 4+ 10 = 54 different segments.
Methods of [79, 53] also construct a so-called “soup” of segmentations, but those
are random segmentations and typically thousands of segments are needed.

Segments are classified based on a simple nearest neighbor rule. Define the

un-normalized distance of the test segment S, to class c as:
A(Sy.¢) = mind(S,, 1) = min[6(S,) — 6()] (213)

So d(Sy, ¢) is the minimum /; distance of the test segment S, to all the training
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images ;. of category c. We assign the segment S, to its closest category c¢;(.S,):

c1(S,) = argmind(Sy, ¢). (2.14)

(&
In order to combine segment labels into a unique image label it is useful to
rank segments by classification reliability. To this end we introduce the following

confidence measure.

Labeling Confidence. Define the second best labeling of segment S, as the quan-
tity:

c2(S,) = argmin d(S,, ¢). (2.15)
c#c1(Sq)

In order to characterize the ambiguity of the labeling ¢;(.S,) we compare the dis-

tance of S, to ¢1(9;) and ¢2(S,), defining:

d (Sy, c1(Sy))

Plar(Sa)lSe) = (1=7) +9/C, - where v = e =ty

(2.16)

and C' is the number of categories. This is the belief that S, has class ¢;(.S,); for
other labels, ¢ # ¢1(.S,):

1 —p(e1(Sy)]Sy) .

plels,) = —L512 (217)

So p(c|S,) is a probability distribution over labels and it is uniform when

d (S, c1(5;)) = d (S, c2(S,)) and peaked at ¢;(S,;) when

d(Sg,c1(8,)) < d(Sy,¢2(Sy)). When p(c|S,) is indeed uniform, segment S, is
discarded to avoid a forced choice label. Empirically, we assume p(c|S,) is uniform

iff ¢1(S,) is within 10% c2(S,).

Labeling Whole Images. Let {S, ..., Sk} be all the segments of a test image I.
We let the segments vote for the image label as follows. Each segment S, votes for
class ¢ proportionally to its confidence p(c|S,) and has an amount of votes w(.S,)

to use. The label of the image I is then given by:

c(I) = argmax Zp(c\Sq)w(Sq). (2.18)

g=1
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The weights w(.S,) encode both the importance and the reliability of the segment
Sy, irrespective of the class label. As both of these factors are roughly proportional
to the number of features of the segment, we define w(S,) = Q2(S,)/2(Smax) Where

Shax 18 the largest segment (in terms of number of features).

Localization. In many approaches to object localization, the bounding box that
yields highest recognition accuracy is used to describe objects’ location [57, 99].
Here we use the segment boundaries instead.

Given the labels of each segment, ¢1(S,), and the overall image label, ¢(1),
we look for segments whose labels match the image label, i.e., ¢(I) = ¢1(S,).
Among these, we check for overlapping segments and we return the first £ unique
segment boundaries. Note that this method is not limited to BoF and could be
used to add localization capabilities to other recognition methods.

To recognize and localize objects of classes other than the image class, all
segments S, are ranked with respect to their label confidence p(c;(5,)|S,) and the

first k segment boundaries are returned irrespective of the whole image label.

2.4 Effects of Image Segmentation on Object
Recogntion

To answer the above formulated questions empirically, we performed cat-
egorization experiments on images from the standard datasets Caltech-101 and
PASCAL. For the Caltech-101 database we picked the twenty most difficult cate-
gories, as reported by [104]. For both databases, we used 30 images per category
for training. The implementation details of [97] for the BoF model are the fol-
lowing. 5000 random patches at multiple scales (from 12 pixels to the image size)
are extracted from each image such that larger patches are sampled less frequently
(as these would be redundant). The feature appearance is represented by SIFT

descriptors [51] and the visual words are obtaining by quantizing the feature space
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using hierarchical K-means with K = 10 at three levels [64]. The image signature
is an histogram of such hierarchical visual words, L; normalized and TFXIDF re-
weighed [64]. In an unoptimized MATLAB/C implementation, the computation
of SIFT and the relevant signatures, takes on average 1 second for each segment
in the image on on a Pentium 3.2 GHz. Finally, the signatures are fed to a k-
nearest-neighbor classification algorithm. Implemented in MATLAB, training the
classifier and constructing the vocabulary takes under 1 hour for 20 categories with
30 training images in each category. Classification of test images, however, is done
in just a few seconds.

To understand the importance of image segmentation quality for object
categorization accuracy we consider the following two segmentation methods. The
first is the stability based segmentation described earlier. Implemented in MAT-
LAB, each segmentation takes between 10-20 seconds per image with 7" = 100
restarts, on a Pentium 3.2 GHz , depending on the image size. Typical images in
the Caltech database are at least 600 x 400 pixels. We'll refer to this method as
“Stable Segmentations” (Sseg). The second segmentation method is a simple grid-
like image partitioning method, similar to that of [45]. In real time, an image is
broken into k = 4,9, 16, 25 equal sub-images, which together results in 54 segments
(449 + 16 + 25). We refer to this method as “Block Segmentations” (Bseg).

2.4.1 Average Recognition Accuracy

We compare the categorization results of the BoF with and without segmen-
tation pre-processing to quantify the effects of image segmentation on the accuracy
of object categorization. Figure 3.2 shows the confusion matrices of 20 most diffi-
cult categories from the Caltech-101 and PASCAL databases simply using the BoF
model. Confusion matrices of average recognition with no pre-processing, with
“Block Segmentations”, and with “Stable Segmentations” are shown in columns

(a), (b), and (c) respectively. The results of average recognition accuracy are sum-
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Figure 2.8: Confusion matrices of object categorization accuracy using the BoF
model. Top row: 20 hardest categories of Caltech101. Bottom row: PASCAL
dataset. (a) BoF model with no preprocessing. (b) BoF model with test images
represented by “Block Segmentations”. (¢) BoF recognition model with test images
represented by “Stable Segmentations”.

marized in Table 3.2.2. The reported results are based on 54 segments per image.
In the case of “Stable Segmentations” segments are taken from 9 segmentations,

and for “Block Segmentations” from 4.

Table 2.2: Average object categorization accuracy for both the Caltech and PAS-
CAL datasets. No Seg: Bag-of-Features model applied to the whole image.
Bseg: Bag-of-Features model applied to the individual block segments of the
image. Sseg: Bag-of-Features model applied to the individual stable segments of
the whole image.

No Seg | Bseg | Sseg
Caltech | 44.9% | 50.6% | 75.5%
PASCAL | 38.5% | 43.5% | 61.8%
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2.4.2 Localization

The quality of object localization, whether for single or multi-class recog-
nition, can be evaluated in a number of ways. Some compare object centroid
location, while others attempt to maximize the overlap between predicted bound-
ing box around the object and the ground truth one [57]. However, objects are
generally not rectangular and should be localized by their boundary contour, which
we do here. To quantify the accuracy of object localization, we adopt a method

from the PASCAL Challenge [16] and consider the overlap, p, between ground

truth localization, GT', and the retrieved localization, R, is p = g;gg Note that
p is misleading in cases where the objects’ contour area is smaller than that of
its bounding box (Figure 2.11). In Table 2.3 we report the average localization
accuracy for each category in both the Caltech and PASCAL datasets. For each
image, the segment R, which is more likely to have a given label, is compared to
the ground truth bounding box GT'.

We have also explored the relationship between number of segmentations
per image and object localization accuracy. Generally, categories of objects with
complex boundaries are localized more accurately as the number of segments in-
crease, while blob-like objects do not benefit as much from an increase in the

number of segments. Figures 2.10 and 2.11 show examples of objects localized by

our method.

2.4.3 Quality of Image Segmentation

Due to the principle of global precedence and the importance of the shape
cue, it is expected that the object categorization accuracy based on “Stable Seg-
mentation” should outperform that of the trivial “Block Segmentations”. Indeed,
the results in Table 3.2.2 indicate that the improvement with “Stable Segmenta-
tions” is significant.

The localization based on “Stable Segmentations” is also superior to that of
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Figure 2.9: Object recognition accuracy vs. length of stable segmentations short-
list. Note the general trend of accuracy improvement as the number of segments
increases. The accuracy improvement saturates at around 35 segments.

“Block Segmentations”. The “Stable Segmentations”, shown in Fig. 2.10 and 2.11,
are capable of identifying objects’ boundaries relatively accurately. Using “Block
Segmentations”, however, localization results are poor: the centroid of a segment
often does not match the object center and segment boundaries truncate the ob-
jects.

Regardless of the particular segmentation algorithm, the size of the shortlist
or the number of segments used to represent a test image can play an important
role in determining object recognition accuracy. On one hand, as the number of
possible segmentations increases, the chance of having a segment perfectly repre-
sent the object increases as well. On the other hand, an increase in the number
of segments also increases the noise, namely, segments with incorrect category as-
signment. Figure 2.9 illustrates the effect of increasing the number of segments to
represent the test images. The recognition accuracy of all categories significantly
increases with the number of segments. However, around the 35 segment mark,

the effect of the more accurate segment boundaries is cancelled out by the noise
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Table 2.3: Average object localization accuracy for Caltech and PASCAL datasets.
Accuracy > 0.5 constitutes a correctly localized object, according to the PASCAL

06 conventions.

’ Caltech Bseg Sseg ‘
ant 0.24 | 047
BG Google 0.25 | 0.84
Beaver 0.23 | 0.65
Cougar body 0.27 | 0.69
Crab 0.27 | 0.51
Crayfish 0.24 | 0.53
Crocodile Head | 0.37 | 0.72
Cup 0.31 | 0.77
Dolphin 0.31 | 0.78
Emu 0.19 | 0.64
Flamingo Head | 0.17 | 0.62
Ibis 0.27 | 0.58
Llama 0.28 | 0.73
Lotus 0.40 | 0.65
Octopus 0.11 | 0.66
Pigeon 0.13 | 0.78
Platypus 0.19 | 0.71
Schooner 0.34 | 0.72
Scorpion 0.12 | 0.56
Sea Horse 0.16 | 0.62

from meaningless segments.

saturates past 35 segments per image (note that the 35 segments are distributed

’ Pascal Bseg Sseg ‘

Bicycle 0.24 | 0.51
Bus 0.34 | 0.70
Car 0.34 | 0.66
Cat 0.26 | 0.62
Cow 0.30 | 0.64
Dog 0.23 | 0.60
Horse 0.26 | 0.52
Motorbike | 0.14 | 0.43
Person 0.22 | 0.59
Sheep 0.19 | 0.67

Thus, for most categories, the recognition accuracy

among 7 different segmentations).

2.5 Discussion

Although a link between image segmentation and object recognition has

been discussed for many years, the effects of low-level global image segmentation on

recognition and categorization have not been convincingly shown. In this work we

demonstrated that image segmentation can in fact improve object recognition and

categorization and it also adds object localization and multi-class categorization

capabilities to an off-the-shelf categorization system.
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Figure 2.10: Object localization using “Stable Segmentations” as pre-processing
for the BoF categorization model. Examples from the Caltech101 dataset. Best
viewed in color.
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Figure 2.11: Object localization using “Stable Segmentations” as pre-processing
for the BoF categorization model. Examples from the PASCAL dataset. Best
viewed n color.
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Often segmentation has not been used in recognition because of the dif-
ficulty of obtaining segments corresponding to the objects of interest. In this
chapter we solve this problem by relying on a shortlist of potentially meaningful
segmentations (identified by a stability criterion), which significantly increase the
chance of extracting suitable segments. Incorporating this segmentation method
with a simple BoF model was shown to bring the recognition accuracy to a level
comparable with the state-of-the-art [104], see Table 3.2.2.

We found that the quality of image segmentation does affect the average
recognition accuracy for the BoF model. However, even the most trivial spatial
grouping of interest points (i.e., Bseg) in the BoF model increases the categoriza-
tion accuracy (but not as much as for Sseg). Localization is greatly affected by
the segmentation quality as well. Segment boundaries from the “Stable Segmenta-
tions” approach often coincide closely with the object boundaries and object’ and
segments’ centroids match, as shown in Figures 2.10 and 2.11. With “Block Seg-
mentations”, on the other hand, segment boundaries represent the object contours
very poorly. The proposed approach of segmenting test images and recognizing
individual segments allows for recognition of individual objects. Traditional ap-
proaches to recognition tend to suffer from multiple objects present in the scene.
However, this model overcomes this issue by treating each segment independently
of others. This method provides for an intuitive framework to explicitly capture
the interactions between various segments and objects in the scene. In the next
chapter, we build upon this framework and develop a contextual object recognition

model.



Chapter 3.

Context

In the real world, objects tend to co-occur with other objects and par-
ticular environments, providing a rich collection of contextual associations to be
exploited by the visual system. To take advantage of these associations, we extend
the above described segmentation based BoF model by incorporating contextual
interactions between objects in the scene. With object categorization in hand, a
conditional random field (CRF) formulation is used as post-processing to maximize
the objects’ labels contextual agreement. It is important to note that contextual
interactions between objects are captured by various statistical relations among
objects instances. In addition to the appearance features described in the last
chapter, this chapter introduces semantic, i.e., object co-occurrences, and spatial,
i.e., geometric arrangement, contextual features into the object recognition model

termed CoLA (Co-occurrence, Location, Appearance).

3.1 Segment Labeling Modified

As before, segments are classified based on a simple nearest neighbor rule.

Define the un-normalized distance of the test segment S, to class c as:

d(Sy,c) = miin d(Sy, Lic) = miin l6(Sq) — o (Lic)]l1- (3.1)

39
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d(Sy, ¢) is the minimum /; distance of the test segment S, to all the training images
I of category c. We assign the segment S, to its closest category ¢1(S,):

c1(S,) = argmind(S,, ¢). (3.2)

C

Similarly, the S, is assigned to the rest of the categories:
¢i(Sy) = sort(d(Sy, ¢;)), V1 < i < n, with sorting in ascending order of distance. In
order to construct a probability distribution over category labels for image query
segment, we introduce the following definition:

p(cilSq) = [1 - %] : (3.3)

This definition of the labeling confidence is similar to the normalized exponen-
tial, or the softmaz activation function. In the case of neural networks, where
softmax was mainly applied, it was convenient to utilize the exponentials to rep-
resent the networks’ scale parameters; however, the behavior of the exponentials
is not suitable here. The labeling confidence is scaled by the segment importance:
p(cilSy) = plcilSy)w(Sy). Thus, p(c;|S,) is a probability distribution over category
labels; it is proportional to the nearest neighbor distance between the query seg-
ment S, and the category: d(S,,c). Given the labels of each segment, ¢;(.S,), all

redundant segments (overlap > 90%) are removed.

3.2 Semantic Context

To incorporate semantic context into the object categorization, we use a
conditional random field (CRF) framework to promote agreement between the
segment labels. CRFs have been widely used in object detection, labeling, and
classification, see [31, 40, 60, 85]. The proposed CRF differs in two significant ways.
First, we use a fully connected graph between segment labels instead of a sparse

one. Second, instead of integrating the context model with the categorization
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model, we train the CRF on simpler problems defined on a relatively small number
of segments.

Context Model. Given an image I and its segments S, ..., Sk, we wish to find
segment labels c¢q,...,c; such that they agree with the segment contents and are
in contextual agreement with each other. We assume the labels come from a finite
set C.

We model this interaction as a probability distribution:

Bley...c) [T, AGi)

pler...cp|St...Sk) = 26,5 ... ) , with (3.4)
A(i) = p(e;|S,) and B .. . ci,) = exp ( > dlency) ) (3.5)

where Z(-) is the partition function. We explicitly separate the marginal terms
p(c|S), which are provided by the recognition system, from the interaction poten-
tials ¢(-).

To incorporate semantic context information into object categorization,
namely into the CRF framework, we construct context matrices. These are sym-
metric, nonnegative matrices that contain the co-occurrence frequency among ob-
ject labels in the training set of the database (note that both MSRC and PASCAL
databases have strongly labeled training data).

Co-occurence Counts. Our first source of data for learning ¢(-) is a collection
of multiply labeled images I, ..., I,. We indicate the presence or absence of label
7 with an indicator function ;. The probability of some labeling is given by the

model

plly . i) = % exp ( > zizj¢(z',j)). (3.6)

We wish to find a ¢(-) that maximizes the log likelihood of the observed label
co-occurences. The likelihood of these images turns out to be a function only of
the number of images, n, and a matrix of label co-occurence counts. An entry j

in this matrix counts the times an object with label 7 appears in a training image



42

with an object with label j. The diagonal entries correspond to the frequency of
the object in the training set. The structure and content of these matrices for
MSRC and PASCAL training datasets is illustrated Figure 3.1(3rd column).

It is intractable to maximize the co-occurence likelihood directly, since we
must evaluate the partition function to do this. Hence, the partition function is ap-
proximated using Monte Carlo integration, as in [77]. Importance sampling is used
where the proposal distribution assumes that the label probabilities are indepen-
dent with probability equal to their observed frequency. Every time the partition
function is estimated, 40,000 points are sampled from the proposal distribution.

We use simple gradient descent to find a ¢(-) that approximately optimizes
the data likelihood. Due to noise in estimating Z, it is hard to check for conver-
gence; instead training is terminated when 10 iterations of gradient descent do not

yield average improved likelihood over the previous 10.

3.2.1 Sources of Semantic Context on Object Recognition

In practice, most image databases do not have a training set with an equal
semantic context prior and/or strongly labeled data. Thus, we would like to be
able to construct ¢(-) from a common knowledge base, obtained from the Internet.
In particular, we wish to generate contextual constraints among object categories
using Google Sets' (GS).

Google Sets generates a list of possibly related items, or objects, from a
few examples. It has been used in linguistics, cell biology and database analysis
to enforce contextual constraints [24, 73, 82]. In order to obtain this information
for object categorization we queried Google Sets using the labeled training data
available in the MSRC and PASCAL databases. We generated a query using
every category label (one example) and then matched the results against all the

categories present in these datasets. This task was performed for each database

thttp://labs.google.com/sets
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Figure 3.1: Context matrices for MSRC and PASCAL datasets. Google Small
Set: Binary context matrix from GSs. Blue pixels indicate a contextual relation-
ship between categories. Google Large and Small Set: Differences between
small and large Google Sets context matrices. ‘-’ signs correspond to relations
present GGSs but not in GSj; ‘+’ correspond to relations present GS; but not in
GSs;. Training Data: Ground Truth, training set label co-occurence, context
matrix.

using the small set, G\S; containing 15 results, and the large set, G.S;, comprised
of upto 60 entries. Figure 3.1 (left column) show binary contexts from GSj, for
MSRC and PASCAL respectively. Intuitively, we expected GSs C GS;, however,
GS, \ GS; # ) as shown in Figure 3.1 (middle column). The larger set implies
broader relations, thus changing the context of the set to be too general. In this
work we retrieve objects labels’ semantic context from GS.

In this case, ¢(i,7) = 7 if GSs marks them as related, or 0 otherwise. We
set v = 1 for our experiments, though v could be chosen using cross-validation on

training data if available.
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Besides Google Sets, we considered other sources of contextual information
such as WordNet [18] and Word Association?. In the task of object categorization
we found that these databases did not offer sufficient semantic context information
for the visual object categories, either due to the limited recall (in Word Associa-

tion) or irrelevant interconnections (in Wordnet).

3.2.2 Effects of Semantic Context

As mentioned earlier, we are interested in a relative performance change
in object categorization accuracy, i.e., with and without post-processing with se-
mantic context. In Table 3.2.2 we summarize the performance of average catego-
rization accuracy for both the MSRC and PASCAL datasets. These results are
competitive with the current state-of-the-art approaches [85, 104]. The confusion
matrices, which describe the results in more details, are shown in Figure 3.2. For
both datasets the categorization results improved considerably with inclusion of
context. For the MSRC dataset, the average categorization accuracy increased by
more than 10% using the semantic context provided by Google Sets, and by over
20% using the ground truth training context. In the case of PASCAL, the average
categorization accuracy improved by about 2% using Google Sets, and by over 10%
using the ground truth. In Figure 3.9 are examples where context improved object
categorization. In examples 1 and 3, semantic context constraints help correct
an entirely wrong appearance based labeling: bicycle — boat, and boat — cow. In
examples, 2,4,5 and 6, mislabeled objects are visually similar to the ones they are
confused with: boat — building, horse — dog, and dog — cow. Thus, it seems that
contextual information may not only help disambiguate between visually similar
objects, but also correct for erroneous appearance representation.

Unfortunately, context constraints can also lower or leave the categoriza-

tion accuracy unchanged. As shown in Figure 3.10, the initially correct labels,

Zhttp:/ /www.wordassociation.org
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“building” in the first image, and “grass” in the second, were relabeled incorrectly
in favor of semantic context relations learned from the co-occurences in the train-
ing data. Most of such mistakes are due to the initial probability distribution
over labels, p(c|S,); the feature description is not very rich as the SIFT descriptor
used in this work is color-blind and segment shapes are only captured implicitly.
In combining our approach with a method of strong feature description, e.g., [85],
many of currently encountered errors will likely be eliminated. As was noted by [7],
there are other types of context. Relative scale, spatial arrangements of objects
and other types of object statistics are also of great importance for object recogni-
tion. Although we do not consider them all, in the next section we include spatial
context and show how to modify the existing recognition model to incorporate a

variety of contextual constraints.

Table 3.1: Average categorization accuracy with and without semantic contextual
constraints. Context dependencies are learned either from Google Sets or from
training data.
’ \ No Context \ Google Sets \ Using Training ‘
MSRC 45.0% 58.1% 68.4%
PASCAL 61.8% 63.4% 74.2%

3.3 Spatial Context

Since semantic context is not the only source of contextual information for
object recognition, it is important to develop a model that is capable of incor-
porating multiple facets of contextual data. Here, we append semantic context
with spatial arrangements among objects and modify the existing model of object
recognition, Equation 3.5, to include a variety of contextual constraints.

As before, given an image I, its corresponding segments S, ..., Sk, and
probabilistic per segment labels p(c;|.S,), we wish to find segment labels ¢y, ..., ¢; €

C such that all agree with the segments’ content and are in contextual agreement
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Figure 3.2: Confusion matrices of average categorization accuracy for MSRC and
PASCAL datasets. First row: MSRC dataset; second row: PASCAL dataset.
(a) Categorization with no contextual constraints. (b) Categorization with Google
Sets context constraints. (c¢) Categorization with Ground Truth context constraints
learning from training data.

with one other. We model this interaction as a probability distribution:

Bcy . ..cx) TTE, pleilS,)

Z(¢07--~¢r751...5k) ’ <37)

p(cl~‘-ck|51...sk> =

with B(cy ...cx) = exp ( i iaT¢T(Ci, c;) ), (3.8)

i,j=1 r=0
where Z(-) is the partition function and ¢ is the number of pairwise spatial rela-
tions. To incorporate both semantic and spatial context information into the CRF
framework, we construct context matrices as described next.
Location. Spatial context is captured by co-ocurrence matrices for each of the
four pairwise relationships (above, below, inside and around), as shown in Fig-
ure 3.4. These high level labels are meant to provide an intuition of geometric
interaction between objects. The actual spatial descriptor simply vector quantizes

the geometric features, as described in the next section.
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Figure 3.3: Source of contextual information. Co-occurrence matrices for spatial
relationships above, below, inside and around for MSRC database. Each entry 7
in a matrix counts the number times an object with label ¢ appears in a training
image with an object with label j according to a given pairwise relationship.

The matrices contain the frequency among objects labels in the four differ-
ent configurations, as they appear in the training data. An entry (7, 7) in matrix
or(ciycj), with 7 = 1,...,4, counts the number of times an object with label i
appears with an object label j for a given relationship r. Figure 3.3 illustrates the
counts over the four different relationships for MSRC and PASCAL. It is worth not-
ing that MSRC matrices exhibit more uniform interactions between objects, while
matrices of PASCAL single out categories of very high activity (e.g., person).
Co-occurrence Counts. While the co-occurrences of category labels are cap-
tured by the spatial context matrices above, the appearance frequency — a pa-
rameter required for the CRF — is not captured explicitly, since these matrices,
Figure 3.3, are hollow. Using the existing context matrices, object appearance fre-
quency can be computed as row sums of all four matrices. Finally, the sum of all
the matrices, including the row sums, will result in a marginal (i.e., without regard
for location) co-occurrence matrix, equivalent to those presented in Figure 3.1. An
entry (4,7) in the semantic context matrix counts the times an object with label
1 appears in a training image with an object with label j. The diagonal entries
correspond to the frequency of the object in the training set:

C|

dolci,¢j) = &' (ciei) + > ¢ (cir ) (3.9)

where ¢/(-) = D7, ¢.(ci, ¢;). Therefore the probability of some labeling is given
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by the model

p(li.. ) = % exp ( Z Z Ll - o - do(ci, cj)), (3.10)

3,7€C r=0

with [; indicating the presence or absence of label 7.

3.3.1 Sources of Spatial Context

[8] proposed that physical and semantic changes in a coherent scene interfere
with and cause delays in object recognition. Conversely, object recognition can be
facilitated by the use of relationships that support the definition of a coherent
scene.

In the area of object recognition and scene understanding, several works
have incorporated the use of spatial relationships as a source of context. The work
of Singhal et al. [87] combines probabilistic spatial context models and material
detectors for scene understanding. These models are based on pre-defined pixel
level relationships between image regions, where spatial context information is rep-
resented as a binary feature of each specified relationship. [41] model interactions
among pixels, regions and objects using a hierarchical CRF. In their model, the
computed regions and objects are a result of the CRF itself. Although it is pos-
sible to capture a variety of different low level pixel groupings in the first level of
their hierarchy, the authors only consider a single equilibrium configuration and
propagate it (along with its uncertainty) to the level of regions and objects.

In contrast, our method employs a decoupled segmentation stage that ex-
tracts a shortlist of stable (and possibly overlapping) segments as input to a subse-
quent context based reasoning stage. As a result, the latter stage — also CRF-based
— has at its disposal a variety of shortlists of possible objects and labels over which
to perform inference based on co-occurrence and spatial relationships. These rela-
tionships, which in our case are unknown a priori, characterize the nature of object

interaction in real world images and reveal important information to disambiguate
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object identity. It is important to note, that object statistics such as location,

scale, and others, should be captured in the relation to the other objects in the

scene, rather than on the absolute scale of the image. Our sources of information

Figure 3.4: Mlustration of four basic spatial relationships that exist among objects
within an MSRC image. Labels in red indicate the object that possesses the
relationship with respect to the object with the white label, e.g, the grass, in red,
is below water, in white.

for learning spatial configurations on pairs of objects are the MSRC and PASCAL
training databases. In particular, these sources provide us a collection of multiply
labeled images I, ..., I,, each containing at least two objects belonging to differ-
ent categories, ¢;,c; € C s.t. 7 # j; an object ¢ is labeled by a bounding box or
pixel mask (3;. We define the following simple pairwise feature to capture a specific

object configuration as a three dimensional spatial context descriptor:

Fij = (135, 045, 05) " Vi, 5 €C, i # ], (3.11)
Bi N B;

O;; = and fi;; = fyi — [byj 3.12

1= B UG § = Hyi = Hyj (3.12)

where 11;; is the difference between the y component of the centroids (in normalized
coordinates) of the objects labeled ¢; and ¢;, and O;; is the overlap percentage of
the object with label ¢; with respect to the object with label ¢;. We omit the x
component of the centroid since relative horizontal position does not carry any

discriminative information for the objects in PASCAL or MSRC. We specifically
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designed the spatial descriptor to be simple for computational efficiency and to be
consistent with motivations in vision science, as discussed in [69].

In order to capture the prevalent spatial arrangements among objects in the
databases, we vector quantize the feature space into 4 groups. Choosing a small
number of groups translates into simpler relations that can explain interactions
that are well represented across many object pairs and scenes. We used the ground
truth segmented regions and bounding boxes labels from MSRC and PASCAL
2007, respectively, to compute the spatial context descriptors. A closer look at the
resultant clusters, shown in Figure 3.5, suggests the pairwise relationships above,
below, inside and around, illustrated for an example image in Figure 3.4 containing
grass, water and cow. Learning the relationships between pairs of objects, rather
than defining them a priori, yields a more generic and robust description of spatial
interactions among objects.

Despite the differences between MSRC and PASCAL datasets, the distri-
butions we observe in Figure 3.5 have comparable overall shapes, and the clusters
representing the spatial relations are found in similar locations in the feature space.
In the case of MSRC, the above and below relationships are predominant, as many
objects remain in vertically consistent locations relative to other objects (e.g., sky,
water, grass). In contrast, PASCAL’s biggest clusters correspond to the spatial re-
lationships inside and around, since most of these objects are found interposed with
respect to one another. Also, as PASCAL object labels are specified by bounding
boxes, rather than pixel-resolution ground truth masks, the average overlap values

are thus greater.

3.3.2 Empirical Effects of Inclusion of Spatial Context

To evaluate categorization accuracy of the proposed model and the relative
importance of spatial context in this task, we consider MSRC and PASCAL 2007

datasets. Table 3.2 summarizes the performance of average categorization per
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category.

Table 3.2: Comparison of recognition accuracy between the models for MSRC and
PASCAL categories. Results in bold explain an increase in performance by our
model. A decrease in performance is shown in italics.

semantic
categories | context |CoLA
building | 0.85 | 0.91
grass | 0.94 [0.95
tree | 0.78 | 0.80
cow | 0.36 |0.41
sheep | 0.55 | 0.55
sky | 0.89 |0.97
aeroplane | 0.73 | 0.73
water | 0.95 0.95
face | 0.80 |0.81
car | 0.57 | 0.57
bike | 0.59 | 0.60
flower | 0.65 0.65
sign | 0.54 | 0.54
bird | 0.54 | 0.52
book | 0.56 | 0.56
chair | 0.42 | 0.42
road | 0.94 | 0.96
cat | 0.42 | 0.42
dog | 0.46 | 0.46
body | 0.75 |0.77
boat | 0.76 | 0.81

semantic
categories | context |CoLLA
aeroplane | 0.63 | 0.63
bicycle | 0.22 | 0.22
bird | 0.18 | 0.14
boat | 0.28 | 0.42
bottle | 0.43 0.43
bus | 0.46 | 0.50
car | 0.62 0.62
cat | 0.32 0.32
chair | 0.37 | 0.37
cow | 0.19 0.19
diningtable | 0.30 | 0.30
dog | 0.32 |0.29
horse | 0.12 |0.15
motorbike | 0.31 0.31
person | 0.43 0.43
pottedplant | 0.33 | 0.33
sheep | 0.41 0.41
sofa | 0.37 | 0.37
train | 0.29 0.29
tvmonitor | 0.62 0.62

These results are at par with current state-of-the-art approaches, [17, 86],
and in some categories exhibit much improved recognition accuracy. In particular,
the average categorization per database, is 68.38% for MSRC and 36.7% for PAS-
CAL. What is of more interest to us, however, is the per category accuracy as a
function of the type of context used. Specifically, we notice that around half of the
21 categories in MSRC benefit from using spatial context: an increase from 1%
up to 8% in recognition accuracy. For the rest of the categories, in turn, spatial
context did not harm the performance, except for a small decrease in accuracy on
category bird.

In the PASCAL database, the availability of spatial context data is less

uniform across categories. An increase is seen in only three categories, though in
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one case (for category boat) this increase was rather significant (14%). As with
MSRC, the other categories are largely unaffected by spatial context, and only one

category (bird) suffers from reduced accuracy.

Figure 3.6 summarizes the relative improvement of categorization accu-

racy with the inclusion of spatial context into the recognition model. Very few
categories’ recognition accuracy is worsened by spatial context; most are either
unchanged or improved. Some examples of affected categories are shown in Fig-
ures 3.7 and 3.8.
Run Time and Implementation Details. All test images were represented by
multiple stable segmentations that were implemented with normalized cuts [84, 12],
using brightness and texture cues, as was originally presented by [74]. We consid-
ered 9 segmentations per test image, where the number of segments per segmen-
tation ranges from k = 2,...,10. The computation time for each segmentation is
between 10-20 seconds per image. As the individual segmentations are indepen-
dent of one another, we computed them all in parallel. As a result, a computation
of all stable segmentations per image requires about 10 minutes.

15 and 30 training images were used for the MSRC and PASCAL databases
respectively. 5000 random patches at multiple scales (from 12 pixels up to the
image size) are extracted from each image. The feature appearance is represented
by SIFT descriptors, [51], and the visual words are obtained by quantizing the
feature space using hierarchical K-means with K = 10 at three levels , [64]. The
image signature is a histogram of such hierarchical visual words, L; normalized
and TEFXIDF re-weighed, [64]. The computation of SIFT and the relevant signa-
ture, implemented in C, takes on average 1.5 seconds per segment. Training and
constructing the vocabulary tree requires less than 40 minutes for 20 categories
with 30 training images in each category, in the case of PASCAL. Classification of
test images is done in just a few seconds. Training the CRF takes 3 minutes for

315 training images for MSRC and 5 minutes for 600 images in PASCAL training
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dataset. Enforcing semantic and spatial constraints on a given segmentation takes
between 4-7 seconds, depending on the number of segments. All the above opera-

tions were performed on a Pentium 3.2 GHz.
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Figure 3.5: Four different groups represent four different spatial relationships:
above, below, inside and around. For MSRC we observe many more pairwise rela-
tionships that belong to vertical arrangements. For PASCAL 2007 we observe com-
paratively more pairwise relationships that belong to overlapping arrangements.
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Figure 3.7: Examples of images from the MSRC database. Spatial constraints
have improved (first four rows) and worsened (last row) the categorization accu-
racy. Full segmentations of highest average categorization accuracy are shown. (a)
Original image. (b) Categorization with co-occurrence contextual constraints. (c)
Categorization with spatial and co-occurence contextual constraints.(d) Ground
Truth.
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Figure 3.8: Examples of images from the PASCAL 07 database. Spatial con-
straints have improved (first four rows) and worsened (last row) the categorization
accuracy. Individual segments of highest categorization accuracy are shown. (a)
Original image. (b) Categorization with co-occurrence contextual constraints. (c)
Categorization with spatial and co-occurence contextual constraints.(d) Ground
Truth.
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Figure 3.9: Examples of MSRC (first 3) and PASCAL (last 3) test images, where
contextual constraints have improved the categorization accuracy. Results are
shown in two different ways, one for each dataset. In MSRC, the consensus seg-
mentation is shown to match the style of the ground truth; in PASCAL individual
segments of highest categorization accuracy are shown since only few segments
have high enough confidence of being a particular category, and thus are shown.
Many object categories that are found in the images (i.e., sky, grass, building) are
not part of the training set in PASCAL, thus labeling of those segments becomes
random. (a) Original Segmented Image. (b) Categorization without contextual
constraints. (c) Categorization with co-occurence contextual constraints derived
from the training data. (d) Ground Truth.
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Figure 3.10: Examples of MSRC test images, where contextual constraints have
reduced the categorization accuracy. (a) Original Segmented Image. (b) Cate-
gorization without contextual constraints. (c) Categorization with co-occurence
contextual constrains derived from training data. (d) Ground Truth Categoriza-
tion.



Chapter 4.

Contextual Modeling in Object

Recognition

In the computer vision community, contextual models for object recognition
were introduced in late 1980’s and early 1990’s [21, 58, 88], and were popularized
by Oliva and Torralba in 2001 [66]. Although with different formulations, most
of the approaches can be classified into two general categories: (i) models with
contextual inference based on the statistical summary of the scene (we will refer
to these as scene based context models, or SBC), and (ii) models representing the
context in terms of relationships among objects in the image (object based context,
or OBC).

The approach of [66], later termed Gist [91], was fundamental among the
SBC models. Since then, variants of the SBC model were presented in [31, 41,
98, 102]. These recent works have shown that a statistical summary of the scene
provides a complementary and effective source of information for contextual infer-
ence, which enables humans to quickly guide their attention to regions of interest
in natural scenes.

SBC models of context, Gist-based approaches in particular, aim to capture

the surrounding information around the object of interest. By incorporating the

60



61

statistics of the clutter or background, context becomes a global feature of the
object category. For example, refrigerators usually appear in a kitchen, thus the
usual background of refrigerators is similar. Having learned such a global feature
of an object category, one can infer a potential object label: if the background
resembles a kitchen, then the patch of interest may be a refrigerator. However,
many objects can have similar backgrounds, e.g., refrigerators, coffee makers, and
stoves all belong in the kitchen. Alternatively, instances of a particular object (a
face or a car), may have very different backgrounds depending on the environment
they are in. Faces, for example, may appear outdoors or inside, at night or during
the day. As illustrated in Figure 4.1(a,c), the background of an object may not
always be indicative of the object itself.

Proceeding with the SBC model, after measuring the global features of the
image, one first infers the scene context of the image, e.g., kitchen, and then with
scene context in hand, the label of the object is inferred, e.g., refrigerator. Notice
that if the scene context is inferred incorrectly, it becomes impossible to identify
the object label accurately.

An alternative approach to Gist and other SBC models is to use a method
based on the OBC model, variant of which was presented in Section 3.2. Rather
than measuring global image statistics, inter-object constraints are imposed on
potential object candidates in the image. With learned category interaction prob-
abilities, either from training data or generic sources on the web, object labels
are given to image regions, such that mutual co-occurrence and spatial constraints
among all the object labels in the image are maximized. In OBC approaches, only
the object category labels must be inferred given the context between categories
and individual object appearance, without regard for scene context. To illustrate
this further, return to the example of an idealized OBC model in Figure 1.1.

In the scene of a tennis match, four objects are detected and categorized:
“Tennis court”, “Person”, “Tennis Racket”, and “Lemon”. Using a categorization

system without a contextual module, these labels would be final; however, in con-
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Figure 4.1: The structure of objects and their backgrounds (taken from [81]). In
this illustration, each image has been created by averaging hundreds of images
containing a particular object in the center (a face, keyboard and fire hydrant) at
a fixed scale and pose. Before averaging, each image is translated and scaled so
that the target object is in the center. The averages can reveal the regularities
existing in the color/brightness patterns across all the images. However, this be-
havior is only visible for the keyboard in (b). In (a), the background of a face is
approximately uniform, since faces appear in a variety of settings. Alternatively
in (c), the background of a fire hydrant, may be identical to that of a bus stop of
a street sign.

text, one of these labels is not satisfactory. Namely, the object labeled “Lemon”,
with an appearance very similar to a “Tennis Ball” is mislabeled due to the ambi-
guity in visual appearance. By modeling context with OBC constraints provided
by an oracle, the label of the yellow blob changes to “Tennis Ball,” as this label
better satisfies the contextual conditions. While the above mentioned formula-
tions of context appear rather different, it is clear that inclusion of context, in
some form, in object recognition is a must. Thus, we are faced with a dilemma:
which contextual model is more suitable in the framework of automated object
recognition or categorization? Furthermore, which model is simpler, and finally,
do the differences in the formulations matter? In the following sections, we formu-
late both SBC and OBC models in a manner most suitable for a direct comparison

and an evaluation.
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4.1 Scene Based Context (SBC) Model

To provide the necessary analysis of SBC models we pick a representative
formulation of Gist. To stay consistent with the original work, we will use the
same notation as in [91].

Consider an image with image statistics represented by some measurement
v. In particular, let v = {v, v}, where v, refers to statistics in the local spatial
neighborhood, at scale o, around some interest point at location x; v, = {0, z}. vo
captures the image statistics from the rest of the image (contextual information);
ve is a low dimensional holistic representation that encodes the structural scene
information. In other words, there is a correlation between low level representation

of the scene and the objects that can be found inside. A typical appearance based

object likelihood function p(Olv) = £ ;(()",‘)’), with O being the object of interest, can
now be re-written as p(O|v) = p(O|vr, v¢). It is important to note that majority of
the existing approaches to recognition simply omit v, and only compute p(O|vy).
To formally include the contextual information into the objective function, we use

Bayes’ rule to re-write (1):

p(O,V) p(VL|O,Vc)p(O|Vc)

p(Olv) = o) = P(vilve) (4.1)
_ pve|O,ve)p(Olve) _ p(vi|O,ve)p(Olve) (4.2)
plo,z|ve) plolz,ve)p(zlve) '

where p(v|O, ve) refers to the spatial relationship between objects: knowing the
object label O, and the context of the scene v, what is the most probable loca-
tion of the object in such an image; p(co|z, ve)p(x|ve) is the normalization term
referring to the distribution of scales and locations for various contexts; and finally
p(O|ve) is the contextual object recognition term.

Let us concentrate on p(O|v¢). The object label O incorporates the scale at
which the object is found, the label, and the location in the image: O = {0, 0, z}.

The function of interest here, p(O|v¢), can thus be factored as:

p(O|Vc) :p(Jlfl?,O, VC>p($’ ‘Oa VC)p<0|VC)’ (4'3)
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where p(o|z,0,ve) is the scale selection component, p(z|o,ve) is the focus of
attention (i.e., the most likely location for the object of interest) and p(o|ve) is
the contextual priming. This function is further evaluated in [91]. Here, however,
by the chain rule of conditional probability, p(O|v¢) can be decomposed in a

number of different ways. For example:

p(Olve) = plolo, z, ve)p(alz, ve)p(zlve), (4.4)

where p(o|o, x,v¢) is the contextual priming given context, object location and
scale, p(o|z, v¢) is the scale parameter, and p(z|ve) determines the most probable
location of the object in the image.

In turn, let’s examine p(o|o,z,ve) in detail. The label of the object is
dependent on its physical properties (¢ and x), and its surroundings (v¢). Fur-
thermore, it is generally true that physical properties of objects are independent of
context: (x,0) L vo. For example, a human face may be of different sizes and may
appear in different locations in the image, independent of the context that it is in.
Therefore, it is reasonable to assume that if scale and position are independent

of context given the object label, then p(o,x,vclo) = p(o, z|o)p(velo). In turn,

p(ola,x)p(olve)

o) , since p(o0) is constant (i.e., same number of training

p(oyaa z, VC’) =

images per category), this term is omitted for clarity. Thus, we can re-write (2) as

follows:
_ pve]O,ve)plolo,x, ve)p(o|z, ve)p(z|ve)
pOl) = plole voplalve) (45)
= p(vi|O,ve)p(olo, z)plo|ve). (4.6)

For the multi object case
k k

plonlve) = Y p(0alCive)p(Cilve) = Y ploaColp(Cilve), (A7)

=1 =1

where k is the number of possible scenes, C; are various scene context categories,

and o, is the label for the nth object. Finally:
k

P(Oulv) = p(VL|On, ve)plonlo,x) Y ploal C)p(Cilve). (4.8)

=1
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In this approach, the statistics of the local neighborhood v and the contextual
information v are both represented using global image features. In particular,
in the scene representation proposed in [66], the image is first decomposed by a
bank of multiscale oriented filters (tuned to eight orientations and four scales).
Then, the output magnitude of each filter is averaged over 16 non-overlapping
windows arranged on a 4 grid. The resulting image representation is a 4 x 8 X 16 =
512 dimensional vector. The final feature vector, used to represent the entire
image, is obtained by projecting the binned filter outputs onto the first 80 principal
components computed on a large dataset of natural images.

Now, as mentioned earlier, another approach to contextual object recogni-
tion is possible. In the next section we discuss such an alternative method based

only on interactions between individual object labels in the image.

4.2 Object Based Context (OBC) Model

To provide the necessary analysis of OBC models we pick a representative
formulation of CoLA. To stay consistent with the original work, we will use the
same notation as in Section 3.3.

At a high level, this representation is built on considering multiple sta-
ble segmentations for the input image, resulting in a large collection of segments,
though variants also exist using, for example, random segmentations or bounding
boxes. Each segment is considered as an individual image and is used as input into
a Bag of Features (BoF) model for recognition. Each segment is assigned a list of
candidate labels, ordered by confidence. The segments are modeled as nodes of
a Conditional Random Field (CRF), where location and object co-occurence con-
straints are imposed. Finally, based on local appearance and contextual agreement,

each segment receives a category label.
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4.2.1 Appearance

As the CoLLA approach relies on segmentation based recognition, segment
appearance is quantified as in Section 3.1. To review, segments are classified based
on a simple nearest neighbor rule with the un-normalized distance of the test

segment S, to class c as:
(S, ¢) = mind(S,. 1) = min [6(S,) — (L) . (49)
Segment S, is assigned to its closest category c¢;(.S,):

c1(S,) = argmin d(S,, ¢). (4.10)

c
Similarly, the S, is assigned to the rest of the categories:

¢;(Sy) = sort(d(S,, ¢;)), V1 < i < n, with sorting in ascending order of distance. In

order to construct a probability distribution over category labels for image query

segment, we introduce the following definition:

p(eilS,) = [1 - %] , (4.11)

and is proportional to the nearest neighbor distance between the query segment

S, and the category: d(S,, ¢).

4.2.2 Location and Co-Occurrences

To incorporate a complete notion of visual context, both spatial and se-
mantic (co-occurrence of labels) contexts must be included into the recognition
system. A CRF is used to learn the conditional distribution over the class labeling
given an image segmentation. Here, the CRF formulation uses a fully connected
graph between segment labels instead of a sparse one, which yields a much simpler
training problem, since the random field is defined over a relatively small number

of segments rather than a huge number of raw pixels or small patches.
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Context Model. Given an image I, its corresponding segments Sy, ..., Sk, and
probabilistic per-segment labels p(¢;|S;) (as in [76]), we wish to find segment labels
1, ..., ¢, € Csuch that all agree with the segments’ content and are in contextual
agreement with one other.

This interaction is modeled as a probability distribution:

B(er - ) [Timy pleilSy)
Z(bo 0051 Sp)

pler ... cxlSt...Sk) = (4.12)

with B(cy ...cx) = exp ( i iarqﬁr(q, c;) ), (4.13)

ij=1 =0
where Z(-) is the partition function, ¢ is the number of pairwise spatial relations,
and «, is the weighting for each relation. The marginal terms p(c|S), which are
provided by the recognition system, are explicitly separated from the interaction
potentials ¢,(-). To incorporate both semantic and spatial context information
into object categorization, namely into the CRF framework, context matrices are
constructed.

Location. Spatial context is captured by co-ocurrence matrices for each of the four
pairwise relationships (above, below, inside and around). The matrices contain the
frequency among objects labels in the four different configurations, as they appear
in the training data. An entry (4, j) in matrix ¢,(c;, ¢;), with r = 1,...,4, counts
the number of times an object with label ¢ appears with an object label 5 for a given
relationship r. Figure 3.3 illustrate the counts over the four different relationships
for the MSRC dataset.

Co-occurrence Counts. The co-occurrences of category labels is computed
directly from the above mentioned spatial co-occurrences matrices as described
in Section 3.3. An entry (4,7) in the co-occurrence matrix counts the times
an object with label ¢ appears in a training image with an object with label

7. The diagonal entries correspond to the frequency of the object in the train-

ing set: ¢o(ci,c;) = ¢ (ci,¢5) + Z'kcll &' (¢iycx), where ¢'(1) = D7 o.(ci,¢5).
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Therefore the probability of some labeling is given by the model: p(ly...l¢|) =

ﬁ exp (Zi,jec Yol o lili-an- o (ci, cj)> , with [; indicating the presence or absence
of label 7. For a detailed description of this example OBC model, refer to Chapter

3.

4.3 SBC vs. OBC: a Comparison

In the previous section we formulated both the SBC and the OBC models in
a manner suitable for a direct comparison. In the following section we show that
both definitions of context extract the same physical and semantic information

from images and training set, yet use it quite differently.

4.3.1 Differences and Similarities
Let us compare

P(On|v) = p(vL|On, ve)p(on|o, x) ZP(OnICi)p(Ci\Vc) (4.14)
to

s Sy S = Blerc) iy p(eilS) (4.15)

Z(Go--- 60 1 - Sp)

term by term.

Spatial Context:

exp ( Zﬁj:l > vy (s j) )
Z(p1...¢p,S1...Sk) ’

where p(vy|O,, ve) refers to estimating the probability of the local patch v con-

p(vp|On, ve) < (4.16)

taining the object of interest O,,, given the scene information v¢. In other words,

assuming the scene context and object identity, where are the probable locations

( Z?,j:l Sope1 ardr(cine))
Z($,51..-5%)

for the object of interest? Similarly, —— , the spatial compo-

nent of 2cL-ck)

T8 estimates approximately the same information. Given all the
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potential objects in the scene, the probability of each spatial arrangement of ob-
jects is calculated. However, instead of estimating the absolute location for each
candidate object individually, the relative pairwise locations of all objects are cho-
sen simultaneously.

Appearance:

plonlo, ) < p(cilS,), (4.17)
where p(o,|o, z) is the likelihood of a particular object being present in a given
region of the image (region is defined by scale and location). In turn, p(¢|S,) is
also the likelihood of a particular object, ¢; being present at a particular region of
the image, yet here the region is defined by segment .S,,.

Semantic (co-occurrence) Context:

i €xp ( Zfﬁfl O‘O¢0(Cz‘a Cj) )
D polCOp(Cilve) o —— gt

=1

(4.18)

Here, Zle p(0,|Ci)p(Ci|ve) captures the semantic context via the scene informa-
tion C;. Once the scene category p(C;|ve) is estimated, the most probable object

label, o,, is chosen from the potential labels in the given scene. Alternatively,

exp( X _y aodolcics))
Z(¢0,51..-Sk)

that the existing segments, 5] ... Sy, may be labeled with. Only pairwise relation-

, provides a likelihood of all possible combinations of objects

ships between object co-occurrences are learned during training.

As shown above, the SBC and OBC models are analogous in terms of
the information and statistics they use to apply contextual reasoning to object
recognition. However, as we show next, there are a number of differences between
the two models that make the OBC model more attractive and empirically more

effective.

4.3.2 Inference

In estimating quantities 4.14 and 4.15, it is crucial to understand the pro-

cesses of inferring the likelihoods, thresholding, and error propagation. In the case
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of Gist, one first estimates the scene context p(C;|v¢), and subsequently the object
label, given the chosen scene p(0,|C;), as illustrated in Figure 4.2(a). In particular,
choosing the scene context is critical since it constrains the possible object labels
in the image. Inferring an incorrect scene from the context reduces the likelihood
of identifying the true object labels, see Figure 4.4 (3 bottom rows in column (b)).
Furthermore, only the scenes that have been predefined or learned in training may
be considered for an input image, however, objects that exist in the training set
may appear in different configurations (scenes) from those in test images. Thus,
the accuracy of identifying the labels of objects that exist in an image is critically
dependent on identifying the correct scene label for the image. In turn, scene in-
formation also requires learning, and is heavily dependent on the training set or
manually defined rules.

Alternatively CoLA, an OBC model, Figure 4.2(b), employs a simple rep-
resentation and an efficient algorithm for extracting information from visual input
without committing to a scene label in a preprocessing stage. Using the traditional
Bayesian likelihood estimation of a particular image region being a given object,
p(cilS,), a graphical model selects the particular object labels based on the object
category co-occurence and spatial relations according to the training data.

Although scene based context is not required for accurate object recognition
with an OBC model, we think that scene-level information is indeed an interesting
notion. Using the CoLLA formulation, this information can available as a byprod-
uct, rather than as an input, as in Gist. Once the probability of a given set of
object labels, Z(¢B(Cl"'ck) L is determined, that set of labels can be mapped to a

o...¢r,Sl...Sk

particular scene.

4.3.3 Training

Training is a crucial part of any classification task, and object recognition in

particular. The two key aspects pertaining to training data are the level of detail in
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Figure 4.2: Inference with Gist (a) and CoLA (b). Inferring the object labels using
Gist requires one first to commit to a scene category and only then infer the object
label; with CoLLA, no such commitment is necessary.

the data labeling and the training set size. Scene based approaches require a large
training set since many examples are needed to capture not only the statistics of
the object category, but also its scene context [81, 93]. Furthermore, training data
must be labeled with the individual object labels, and also with the scene labels. To
our knowledge, the majority of object recognition datasets do not contain scene
definitions and moreover, it is not clear how to define the scene context. For
example, nearly identical scenes may be identified as either beach or coast, or even
as shore. Potentially, word hierarchies such as WordNet may be used to resolve
such ambiguities, but this adds another layer of complexity to the model. Also,
as the number of object categories increases, the number of scenes will likely also
increase as well and ambiguities between scenes will also be greater.

Approaches based on individual object interactions, however, require con-
siderably less training data as only object appearance and object co-occurrence
needs to be learned. In [23, 76] only 30 examples per category were used for train-
ing. Only object labels themselves are necessary for training, rather than scene

context.

4.3.4 Scalability

One drawback of the OBC model, is that the required example interactions

between object labels are rather sparse in the currently available datasets, (see
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Figure 3.3) . Not many object categories co-occur in the same images. However,
with the inclusion of many more object categories, the contextual matrices will only
get richer and importance of contextual constraints will be even more evident. Note
that the complexity of learning co-occurrences is only quadratic in the number of
categories since only pairwise relations are computed.

The approach of Gist type methods, which heavily rely on scene informa-
tion, will perhaps only suffer from an inclusion of additional object categories.
New scenes will have to be defined, and the problem of scene inference given the

semantic context, v will become even more ambiguous.

4.4 Empirical Comparison of Contextual Models

In this section we perform an empirical comparison of the two discussed
approaches. We used the same subset of the LabelMe, [80], dataset for the ex-
perimental comparison as was done by [81]. We trained and tested the CoLA
approach with twelve categories. The training set has 15691 images and 105034
annotations and the test set has 560 images and 2026 annotations. The test set
comprises images of street scenes and indoor office scenes. To avoid overfitting,
street scene images in testing were photographed in a different city from the im-
ages in the training set. Figure 4.4 shows localization and recognition accuracy for
example images taken from the LabelMe dataset using Gist and CoLA. Column
(c) in Figure 4.4 shows the accuracy of localization using the stable segmentations
used by CoLA. Since this database contains many more categories than just twelve
that were chosen by [81], some of the localized regions are not labeled, due to low
recognition accuracy, to avoid a forced choice label. In this experiment we mark
regions as ‘unknown’ if the maximum label probability is less than or equal to
chance. (On average, of 54 segments per image, 1.51 were labeled as ‘unknown’.)
Note that the segmentation based approach not only eschews the step of predicting

the scene first, thus avoiding as possibly incorrect retrieval set, but it also provides
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Figure 4.3: Confusion Matrix for the LabelMe dataset using CoLA.

accurate localization with object boundaries rather than bounding boxes. We refer
the reader to [81] and [23] for implementation details and runtime complexity for
both Gist and CoLA.

The results in Figure 4.4 show qualitative differences between the two com-
pared models; however, we wish to evaluate the models quantitatively. In Ta-
ble 4.4, we report recognition accuracy, true positive rate (TPR), and the false
positive rate (FPR) for both models. The results for Gist were taken directly from
ROC curves in [81]; results for CoLA are computed from the confusion matrix
shown in Figure 4.3

Since [81] formulated the recognition problem as a detection task, they
emphasized the low FPR per bounding box per category, while in recognition
problems the TPR is maximized with less attention to FPR. We show TPR rates

for the FPR suggested in [81], and show corresponding FPR per image per category,

I'TPR corresponds to the diagonal entries of the confusion matrix and the FPR is the hollow
confusion matrix column sum; both refer to the confusion matrix in Figure 4.3
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Table 4.1: Recognition accuracy (true positive rate TPR) and false positive rate
(FPR) per image per category for both Gist and CoLA approaches. Gist (low
FPR): TPR for the FPR per image per category that was suggested in [81]. Gist
(high TPR): FPR (from ROC curves in [81]) per image per category for TPR
that is comparable to that of CoLA. SVM (no context): FPR (also from [81])
per image per category for TPR, without aid of context, that is comparable to one
achieved by CoLLA. CoLA: TPR and FPR per image per category using CoLA.
Note that TPR for CoLA is almost 3 fold greater than for Gist (70.9% vs. 27.2%),
while FPR for CoLA is almost two orders of magnitude lower than that of Gist
(0.02 vs. 1.14) per image per category.

| Gist (low FPR) |[|Gist (high TPR)|[SVM (no context)|| CoLA
| category TPR | FPR || TPR | FPR || TPR | FPR || TPR | FPR
tree 9.59% [ 1.05 [[ 76.0% | 36.1 || 53.1% [ 41.9 [ 78.1% | 0.03

building 7.29% 2.09 85.3% 108 60.2% 111 85.8% 0.04
person 21.1% | 0.78 || 68.5% | 24.8 78.4% 25.1 64.0% | 0.02
sidewalk 7.98% 2.11 70.2% 52.6 66.0% 54.5 74.4% 0.02

car 68.0% 0.03 68.6% | 0.83 44.4% 0.89 69.6% 0.03
road 37.0% 0.86 84.6% | 31.6 64.3% 29.7 84.7% 0.03
sky 34.5% 1.49 89.6% 106 60.1% 107 91.9% 0.01

motorbike 48.6% 0.81 55.6% 1.19 63.9% 2.10 55.4% 0.02
screen 50.0% 1.17 64.2% | 3.81 88.3% 4.57 68.1% | 0.02
bookshelf 13.0% 1.04 61.7% 17.9 46.8% 27.8 59.1% 0.03
keyboard 26.5% 0.61 62.0% 10.3 81.4% 15.2 64.5% 0.01
wall 3.08% 0.88 47.7% 84.6 29.2% 61.7 60.0% 0.02

| mean | 27.2% | 1.14 [63.2% | 39.9 || 61.4% | 40.2 [[70.9% | 0.02 |

shown in hypercolumn “Gist (low FPR)”, rather than per bounding box. TPR and
FPR, per image per category, for CoLA are shown in hypercolumn “CoLLA”. Note
that TPR for CoLA is almost 3 fold greater than for Gist, while FPR for CoLA is
almost two orders of magnitude lower than that of Gist. This comparison, however,
does not isolate the effectiveness of the contextual model itself. In the case of Gist,
the underlying detector or classifier (SVM) may be weak, or in the case of CoLA
the stable segmentations may be useless. Similar to the work of [76], where the
authors show the significant improvement yielded by including of context in the
recognition framework (see Table 3.2.2), we evaluate the relative improvement of

adding context to the Gist method. In Table 4.4, we show the TPR (at competitive
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rates) and FPR for the Gist approach with context “Gist (high TPR)”, and only
the SVM detector module of the “Gist (SVM no context)”. Means of both TPR and
FPR are within one standard deviation of each other, and the difference between
them is not statistically significant. This suggests that recognition rates of the
full Gist approach is hindered by its contextual model rather than the underlying
detector or classifier. A possible avenue for improvement of the Gist approach
could be to entertain multiple scene category hypotheses, rather than committing

to the most probable one.
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Figure 4.4: Recognition results for example from LabelMe dataset. (a) Original
image. (b) Detected objects by Gist. (c) Recognized objects by CoLA. (d) Ground
truth object labeling. Best viewed in color.



Chapter 5.

Conclusion

Object recognition has been of great interest to scientists across many fields,
from psychology to computer vision. With the increasing computing resources in
the last decade, many algorithms for automatic object recognition have been pro-
posed. In the earlier models to automate object recognition, researchers in com-
puter vision attempted to utilize image segmentation as a means of partitioning
the images into a set of regions for one to one correspondence with the actual
objects in the scene. However, unable to produce viable segmentations, this ap-
proach was abandoned at large, and approaches based of scanning windows were
adopted. Often segmentation has not been used in recognition due of the diffi-
culty of obtaining segments corresponding to the objects of interest. However, in
this work we solve this problem by relying on a shortlist of potentially meaningful
segmentations (identified by a stability criterion), which significantly increase the
chance of extracting suitable segments. Incorporating this segmentation method
with a simple BoF model, we showed recognition accuracy at the level comparable
with the state-of-the-art (Table 3.2.2, [104]).

More importantly, image segmentation can not only aid in achieving com-
petitive recognition rates, it in fact improves object recognition and categorization

by adding accurate object localization and multi-class categorization capabilities

7



78

to an off-the-shelf categorization system, as was shown on CALTECH and PAS-
CAL datasets. Representing image regions as segments, rather than bounding
rectangles, offers features otherwise unavailable: object shapes, increased signal to
noise ratio, and other valuable statistics. Also, on an slightly orthogonal note, the
proposed approach of segmenting test images and recognizing individual segments,
provides an intuitive framework for semantic context based object categorization.

Over the past few years, the role of contextual models has become more
prominent in object recognition systems. As the field of contextual object recog-
nition in computer vision evolves;, SBC and OBC models have emerged. In the
approach proposed by [91], an example of SBC model, contextual information is
captured by the statistical summary of the image. This approach may be related
to the contextual processing in the human visual system. The SBC model is very
intuitive and potentially efficient. Yet, an alternative, OBC based, formulation of
context for recognition has recently been proposed. With the OBC model, a rela-
tionship between individual objects is induced, instead of capturing the context of
the scene by its low level holistic representation.

In this work we have compared the two contextual models for object recog-
nition and showed similarities and differences between them. In particular both
models capture analogous physical and semantic information from the image. Yet,
we demonstrated analytically that the OBC model, although computationally more
expensive due to the cost involved in computing the stable segmentations, gives
rise to a simpler inference problem. Using the LabelMe database, we empirically
compared the two models and showed that CoLLA, an approach using an OBC
model, considerably outperformed Gist, a SBC based method. The two major
differences between OBC and SBC models are the use of stable segmentations vs.
sliding windows; and the notion of context: object based vs. scene based.

The significant improvement in performance of the OBC model is due in
part to the use of the stable segmentations. In particular, multiple stable seg-

mentations are able to represent the image in a compact and informative manner
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for the task of object recognition. Without such a compressed representation of
image partitions, it is combinatorially difficult to enforce contextual constraints
between individual objects. Thus, many algorithms tend to settle for scene based
contextual connections, which in turn lead to rather confined and weak contextual
support. With only a single segmentation it is virtually impossible to identify all
the objects or their parts to perform recognition. On the other hand, consider-
ing all possible segmentations would greatly hinder the false positive rates of the
recognition system, as suggested by the experiment using thousands of bounding
boxes. Thus, a compact representation of multiple stable segmentations facili-
tates the construction of object recognition models with low false positive rates of
recognition and contextual constraints strong enough to correct and disambiguate
appearance based pitfalls. We believe that the shortlist of stable segmentations
(aiming for only those segmentations that matter) is the essential substrate for
competitive Object Based Context models for object recognition and categoriza-

tion.
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