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Abstract

Conventional theories of visual object recognition treat objects
effectively as abstract, arbitrary patterns of image features.
They do not explicitly represent objects as physical entities in
the world, with physical properties such as three-dimensional
shape, mass, stiffness, elasticity, surface friction, and so on.
However, for many purposes, an object’s physical existence is
central to our ability to recognize it and think about it. This
is certainly true for recognition via haptic perception, i.e., per-
ceiving objects by touch, but even in the visual domain an ob-
ject’s physical properties may directly determine how it looks
and thereby how we recognize it. Here we show how a physi-
cal object representation can allow the solution of visual prob-
lems, like perceiving an object under a cloth, that are other-
wise difficult to accomplish without extensive experience, and
we provide behavioral and computational evidence that people
can use such a representation.
Keywords: physical object representations; analysis-by-
synthesis; object perception; occlusion; psychophysics

The common and almost despairing feeling . . . was that
practically anything could happen in an image and
furthermore that practically everything did.

David Marr, Vision

Introduction
Object perception is notoriously difficult, in part because the
appearance of an object can vary in almost any way. The
problem has been studied in neuroscience, cognitive psychol-
ogy, and artificial intelligence, leading to a loose consen-
sus that object perception can be solved by the brain (or a
computer) learning to “untangle” or become “invariant to”
sources of variation in the image (DiCarlo, Zoccolan, & Rust,
2012; LeCun, Bengio, & Hinton, 2015). On this account, sen-
sory input is repeatedly transformed, ideally leading to a (bio-
logical or artificial) neural code that is diagnostic for a partic-
ular object regardless of variation in the image (Riesenhuber
& Poggio, 1999).

We study an alternative solution to the object perception
problem, which is enabled by a different representation for
objects and a different attitude towards variation. The ba-
sic idea is to model the causal processes that lead to an ob-
served image, explaining and reproducing image variation
rather than attempting to ignore it. More specifically, we take
an object to be represented (at least in part) by a set of phys-
ical attributes necessary for supporting physical interaction

1indicates equal contribution.

Figure 1: Two objects occluded by cloths.

and image generation. We posit that objects are represented,
at a minimum, by attributes including three-dimensional ge-
ometry; rigidity; mechanical material properties; and optical
material properties.

Consider the covered objects displayed in Figure 1. Both
objects are completely occluded, but it is easy to say which of
them might be a chair. These images were generated by using
a physics simulator to drop a simulated cloth onto two sepa-
rate 3D models (one a chair), then using a rendering engine
to produce images from the resulting scene.

This describes a process for generating the image, but the
same process can also be used to interpret an image. When
asked which image has a chair in it, we can simulate drop-
ping cloths onto a chair mesh, and compare the rendered re-
sults with each candidate (this is an intuitive sketch of a pro-
cedure; it can be made precise with Bayes’ theorem, which
specifies how to turn a forward model into an inverse model.
See also (Battaglia, Hamrick, & Tenenbaum, 2013)).

There are several notable differences between the latter
approach (which we will call analysis-by-synthesis) and the
”consensus” approach (which we will call the invariant fea-
tures approach). First and most notably, invariant features ap-
proaches must learn each kind of scene transformation inde-
pendently. We explained above how knowledge about chairs
and cloths can be combined, in the analysis-by-synthesis ap-
proach, to recognize a chair underneath a cloth. By contrast,
invariant features approaches cannot directly leverage exist-
ing knowledge to recognize the compound object. They must
be trained, separately, to discount the cloth in order to recog-
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nize the chair2. Second, while invariant features approaches
are mostly agnostic to the kinds of image transformations that
might exist, analysis-by-synthesis implicitly handles a wide
variety of transformations without being explicitly trained or
taught to do so.

Analysis-by-synthesis in vision has a long history (Yuille
& Kersten, 2006; Tu, Chen, Yuille, & Zhu, 2005), and has
recently seen increased attention (Kulkarni, Kohli, Tenen-
baum, & Mansinghka, 2015; Yildirim, Kulkarni, Freiwald, &
Tenenbaum, 2015; Erdogan, Yildirim, & Jacobs, 2015). Our
work focuses primarily on two less-studied aspects: First,
while most work in object perception studies unoccluded or
partially occluded objects, we are interested in objects that
are fully occluded, so that the only perceptible effect of the
object is on its occluder. Said another way, perceiving ob-
jects through cloths requires an observer to do without most
or all of the visual information that one normally uses. Sec-
ond, unlike most previous work, we are interested primarily
in how the object representation enables this kind of percep-
tion. If objects are represented geometrically in a way that
can interact with physics, then the procedure outlined above
shows how to solve the cloth task without more training.

The object-under-cloth task is most interesting in the case
of novel cloth-object pairs (such as an airplane under a cloth).
We predict that both people and analysis-by-synthesis models
will perform well on this task, but invariant features models
will not without further training. We ran a large scale study
to assess how well people can perform the object-under-cloth
task. After describing the task and the results of the study,
we will evaluate the performance of each of the candidate
models, and discuss the implications of our findings.

Experiments
We performed two experiments where participants needed to
generalize from a single view of 3D object shown at a canon-
ical view to either a novel view of that object (Experiment 1)
or to a fully occluded image of that object again at a novel
view (Experiment 2).

Participants
58 participants were recruited from Amazon’s crowdsourcing
web-service Mechanical Turk. The experiment took about 20
minutes to complete. Each participant was paid $1.50.

Stimuli
The stimuli were generated using a subset of the meshes from
the ShapeNet (Chang et al., 2015) database using Blender
(Blender Online Community, 2015), a 3D modeling and ren-
dering program. The meshes we used represented objects
from five different categories: guns, cars/buses, bicycles, lap-
tops and pillows.

We rendered each mesh in three ways: (1) unoccluded,
with texture, and from a canonical viewpoint, (2) unoccluded,

2Alternatively, models might be ”retrained” or similar; these
methods also require more training.

without texture, and at a random viewing angle, and (3) fully
occluded with a cloth draped over it, and with the mesh ran-
domly rotated.

For (2) and (3), the rotation was sampled from the full
sphere with a slight preference around the canonical view-
point – viewpoint of (1). More specifically, a rotation angle
of ±35◦ of the canonical viewpoint on all three axes was 1.5
more likely than the rest of the sphere. For (3), we simulated
a cotton-like cloth draped over the rotated mesh for a total of
100 simulation steps, and obtained a rendering of the very last
step of the simulation.

We used a total of 197 meshes to generate 100 five-tuples
of one study item of unoccluded object rendered at a canon-
ical viewpoint with texture, and four test items consisting of
two unoccluded objects without texture each rendered after
randomly rotating the meshes, and two objects rendered af-
ter randomly rotating each and then occluding with a cloth.
The unoccluded study items were never seen twice, but the
test items were repeated multiple times, each at a different
rotation or viewing angle. On 57 of the 100 tuples, the dis-
tractors were of the same category, and 43 of the 100 tuples,
the distractors were of different category. Example pairs of
unoccluded study items and occluded test items are shown in
Figure 2a.

Procedure
Both experiments were match-to-sample tasks where both the
study and the test items were presented simultaneously and
all stayed on the screen until the participants responded. In
Experiment 1 (N = 27), the study item was an unoccluded
image of an object from a canonical viewpoint; the test items
were images of two unoccluded objects after randomly rotat-
ing each. Participants had to choose which of the test items
contained the study item (Figure 2b).

In Experiment 2 (N = 31), the study item was also an un-
occluded image of an object; but the test items were images
of two objects rotated randomly and occluded with a cloth.
Again, participants had to choose which of the test images
contained the study item (Figure 2b).

In each of the experiments, participants completed 10 prac-
tice trials before moving onto 90 experimental trials. Partici-
pants were provided with their running average performance
at every 5th trial throughout the experiment.

Results
Results of the experiments are shown in Figure 3a. Partici-
pants performance on Experiment 1 (with the unoccluded test
items) were high overall (93%).

Participants performance was surprisingly high in Experi-
ment 2 with the occluded test items at 80% (Figure 3a), and
as expected, their performance was lower when compared to
Experiment 1.

The type of the distractor (whether it is of the same cat-
egory as the study item or different category) introduced a
much stronger decline in performance in Experiment 2 than
in Experiment 1 (Figure 3b).
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Figure 2: (A) Pairs of images of meshes and simulation results after rotating the mesh randomly and draping a cloth over it. (B)
Screenshot of an example trial in the unoccluded experiment. (C) Screenshot of an example trial in the occluded experiment.

Models
We considered two models as potential accounts of our sub-
ject’s performance: a physics-based analysis-by-synthesis
model, and a model derived from features learned by a deep
convolutional neural network trained to classify millions of
unoccluded images.

Physics-based analysis-by-synthesis

We developed a Bayesian computational model that uses
knowledge of the causal processes underlying image forma-
tion to interpret new images. Aspects of (synthetic) image
formation may be divided into two categories: physics-based

object factors (e.g., 3D shape, mass, friction, soft-body dy-
namics, soft-body and rigid-body interaction); and graphics
(e.g. rotation and lighting direction). When each of these
factors are specified, we end up with a likelihood function
that gives the probability of an image given latent parameters,
P(I|Ψ).

The model maps input images to the underlying scene pa-
rameters using Bayesian inference. Bayes’ rule enables us to
use the (forward model) likelihood along with a prior distri-
bution (here taken to be uniform) to get the posterior distribu-
tion of the parameters given the image. The posterior, which
includes beliefs about the underlying mesh, is the object of
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Figure 3: (A) Average performace of the participants in the
two experiments. (B) Performance of the subjects divided by
whether the distractor is of the same or different category as
the study item. Error bars indicate standard error of the mean.

interest for inference tasks.
Bayes’ rule states that the posterior is proportional to the

likelihood times the prior, that is,

P(Ψ|I) ∝ P(I|Is,Ψ)δp(·)δg(·) (1)

where Ψ are the latent variables (e.g. 3D shape, mass,
friction, soft-body dynamics, rotation, lighting) that drive the
physics and graphics engines; δp(·) denotes a physics engine
and δg(·) denotes a graphics engine (here, we used Blender
for both engines); P(Ψ|I) denotes the posterior distribution
over physical object representations; Is denotes the gener-
ated image given Ψ,g(·), and p(·); and P(I|Is,Ψ) denotes
the image log-likelihood for a given set of physical object
parameters (we assumed a Gaussian likelihood function with
sigma = 0.01; N(I|Is,σ).

In our implementation, we deterministically assigned the
cloth properties such as stiffness, mass and friction to their
true values, but assumed uncertainty for the exact 3d shape,
S, of the study item and the rotation, R, of the test items.
We approximated shape uncertainty as a uniform distribution
over the most similar five shapes given a study item, I and its
underlying shape, SI , from the ShapeNet dataset. Similarity
between a pair of meshes from the ShapeNet was determined
by correlating the concatenated images of each mesh with-
out any texture at four view points – the canonical viewpoint
where each mesh is already aligned at in the dataset, and the
three orthogonal viewpoints (top, right, front).

The uncertainty about the rotation or pose, R (a vector
of length three of Euler angles), was taken to be higher
for occluded test scenes than for unoccluded test scenes.
For unoccluded test images, we modeled rotation as R ∼
N(Rtrue,0.025), whereas for occluded test images, we mod-
eled it as R ∼ N(Rtrue,0.1), where Rtrue is the true rotation
of the test items. We approximated the rotation uncertainty
using five randomly chosen samples from the normal distri-
bution.

We took a sampling-based approach to simulate partici-
pants from our experiments. For a given simulated partici-
pant and trial number, we took one joint sample of shape and
rotation from a pool of 25 samples (5 possible shapes × 5
rotations). Also using the true cloth parameters for occluded
trials (i.e., rest of the parameters in Ψ), the model generated
a sampled image, Is, compared it to each of the test images
using correlation as its similarity metric, and returned the test
image that was more similar to Is. We simulated 40 subjects in
each of the occluded and unoccluded experiments. We report
the average performance of these 40 simulated participants.

Deep convolutional network
We also evaluated a pre-trained deep convolutional neural
network, which has been shown to succeed at a number of
challenging visual recognition tasks (Jia et al., 2014). The
network, like all convolutional neural networks, is a feed-
forward hierarchical model that performs a series of con-
volutions and nonlinearities; such models can contain (as
does the model we evaluate) millions of learnable parame-
ters. The model was trained to classify objects using the Im-
agenet (Deng et al., 2009) dataset; it is representative of a
wide class of neural network models that find application in
computer vision.

Results
Figure 4 show the performance of the two models. The
pre-trained network performs worse than human participants
(Figure 4, left). Furthermore, unlike the human participants,
the decline in the performance from by the type of the distrac-
tor category is similar for both the occluded and unoccluded
stimuli sets. The network performs at chance in the most dif-
ficult condition of occluded and same-category distractor tri-
als.

The physics-based analysis-by-synthesis model captures
the average performance of the participants across the two ex-
periments accurately (Figure 4, right). Moreover, our model
captures the details of the subjects performance when broken
down by the distractor type.

Discussion
Can humans recognize objects even when they are fully oc-
cluded? The behavioral study presented here indicates that
the answer is yes, at least when the candidates are known
(we suspect that people can often do so otherwise, as in the
chair example in the introduction). What underlies our par-
ticipants’ performance? We think that this ability reflects the
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Figure 4: (Left) Average performance of the physics-based analysis-by-synthesis model on the unoccluded and occluded stimuli
sets, and the breakdown of its performance by the tyep of the distractor category. Error bars indicate standard error of the mean.
(Right) Average performance of the pre-trained network on the unoccluded and occluded stimuli sets, and the breakdown of its
performance by the type of the distractor category. Dashed line shows the chance-level performance

presence of causal theories in human perception - in this case,
theories about how soft and rigid objects bodies interact, and
about how the resultant shape gets rendered into a visual per-
cept. This approach is different from the standard model of
visual perception. Most accounts of visual object recognition
assert that the brain maps images to identity or class labels via
increasingly more abstract feature hierarchies (DiCarlo et al.,
2012; Krizhevsky, Sutskever, & Hinton, 2012; Riesenhuber
& Poggio, 1999). In this approach, objects are not explic-
itly represented – they do not have physical properties such
as mass and friction or 3D shape. The cost of not having ex-
plicit and causal representations of the scenes is an inability
of composition – or in other words, requirement for data (lots
of data) in the face of every new scene setting such as the
setting presented here: objects fully occluded under cloths.

These issues are not just theoretical: we found that a state-
of-the-art neural network (albeit trained only on unoccluded
images) had trouble with our behavioral task. In particular, it
could not approach human performance. We believe that any
similar architecture (supervised learning) will have similar
problems, because such approaches do not attempt to model
the causal structure that gives rise to percepts.

We suggested an alternative solution. Instead of relying
on the environment to teach us about variation, we proposed

using basic knowledge about the world to derive and under-
stand how the world can influence our percepts. We consid-
ered the problem of perceiving objects under cloths. Invariant
features theories of perception face a problem in this domain,
because cloth-draped objects differ dramatically in appear-
ance from their unoccluded states. Treating perception as an
inverse compositional process provides a solution.

There are a number of future directions that we wish to
explore. First, our match-to-sample task is only one way of
getting at people’s abilities to perceive objects under heavy
occlusion and in physical settings. We plan to build upon
this paradigm for future experiments. In the Introduction we
posed a question without answering - “which of these oc-
cluded objects is a chair?”. This is perhaps the most inter-
esting future direction to pursue; it requires accessing and
manipulating the concept of a chair, instead of imagining ob-
ject transformations as we studied here. Second, we plan to
build hybrid architectures that involve fast and feedforward
neural network pipelines for broad stroke comprehension of
the scene and top-down physics-based architectures for in
depth physical interpretation (Wu, Yildirim, Lim, Freeman,
& Tenenbaum, 2015).
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