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Abstract

Three Essays on Market Imperfections and Inequality

by

Benjamin S. Griffy

My dissertation focuses on margins that may disproportionally impact impoverished indi-

viduals. I primarily focus on two imperfections that I show contribute to inequality: frictional

labor markets, and imperfect credit markets. Understanding the consequences of each, as well

as how they interact, is central to better understanding the sources of inequality.

My first chapter quantifies the impact of borrowing constraints on consumption and earn-

ings inequality using a life-cycle model. I first show that following an unemployment spell,

likely-constrained workers in the Survey of Income and Program Participation match to jobs

that pay more per quarter when they receive an increase in their unemployment insurance. I

then construct a life-cycle model with risk averse workers who face borrowing constraints,

accumulate human capital endogenously, and search both on and off the job. I use indirect

inference to estimate the model parameters, and show that wealth inequality causes both place-

ment into lower-paying jobs as well as slower human capital accumulation when workers face

borrowing constraints. Unemployment risk is partially responsible for this change in human

capital accumulation. I compare changes in initial conditions and find that a standard deviation

decrease in initial wealth causes a larger decline in life-cycle consumption than a standard

deviation decrease in initial human capital.

My second chapter deals with the appropriate approach to modeling frictional labor markets,

and is joint work with Christine Braun, Bryan Engelhardt, and Peter Rupert. In it, we address

whether the arrival rate of a job independent of the wage that it pays. To do this we address how,

and to what extent, unemployment insurance changes the hazard rate of leaving unemployment
viii



across the wage distribution using a Mixed Proportional Hazard Competing Risk Model and data

from the 1997 National Longitudinal Survey of Youth. Controlling for worker characteristics

we reject that job arrival rates are independent of the wages offered. We apply the results to

several prominent job-search models and interpret how our findings are key to determining the

efficacy of unemployment insurance.

My final chapter addresses whether public education plays a role in decreasing intergener-

ational persistence of income. Intuitively, impoverished families face constraints when their

children are young: either in moving to better school districts, or in buying adequate supplies for

their children. I explore empirically the extent to which increases in public education spending

can decrease the importance of a parent’s income in determining their child’s. I expand on

the previous literature by using an instrument for government spending in order to assess the

effect of public spending on public education in changing income persistence. I find that an

increase in government spending on education significantly decreases persistence of income

across generations.
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Chapter 1

Introduction

A father of the modern study of frictional labor markets, Dale Mortensen, begins his book on

the topic by posing a question: “Why are Similar Workers Paid Differently?” The sources

of economic inequality have been central to politics, conflict, and intellectual curiousity for

generations. And while economics has made substantial progress in addressing the nature of

inequality, many questions remain.

Inequality is a topic that is inherently difficult to study. We know that people are different,

but determining how much of differences in outcomes is caused by skill, and how much is

caused by luck is an empirically challenging question. Both are unobservable, and correlated

with a host of other confounding factors. To better understand the mechanisms, economists

often turn to theory to provide a structure in which to interpret inequality.

Nearly all theory in economics builds from the idea that individuals in the economy interact

in markets that are perfectly competitive. This approach is appealing for many reasons, and

provides an internally consistent view of the world that can be missing from other approaches

to studying inequality. And in many circumstances, the assumption of perfectly competitive

markets is innocuous, and yields clean analytic and computationally tractable results. How-

ever, realistic departures from perfect competition can imply radically different outcomes for
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Introduction Chapter 1

impoverished households.

One of many ways to interpret the standard theory of asset markets is that individuals are

able to use future income to insure against any idiosyncratic risk they may face in the present.

An individual would like to maintain a roughly constant level of consumption throughout their

life, so when presented with a negative income shock today, they are able to use future income or

their accumulated wealth to smooth their consumption. For wealthy individuals, this is sensible:

if there is no need to borrow, these individuals can easily draw down their savings until their

income returns to its baseline. However, for poor individuals, a departure from this assumption

has large consequences: if individuals are unable to borrow, they will change their decisions

to mitigate consumption risk both now and in the future. Among others, these decisions could

include the types of jobs they take, the amount of education that they receive, and the types of

assets in which they invest. My work considers instances in which asset markets are imperfect,

meaning that individuals can only borrow a limited fraction of their future lifetime income.

The standard approach to modeling the labor market is to assume that workers earn their

marginal product. This means that for every hour worked, an individual is compensated for

precisely what they produce. In accounting for inequality, this theory predicts that the bulk

of income differences must be due to differences in human capital, or productivity, because

workers are compensated solely on the basis of their output. Departing from this theory again

yields very different predictions about inequality. When labor markets are frictional, meaning

that it takes time and effort to find employment, workers are not paid their marginal product.

Workers and firms share the rents created by their production; this share is of key importance for

understanding inequality. If a worker receives a relatively small share of the surplus, they could

be immensely productive and yet would appear to have minimal human capital if accounting

for inequality in a model with perfectly competitive labor markets.

In isolation, these imperfections are important for inequality; together, they can play a

consequential role in determining differences in earnings, welfare, and long-term outcomes.

2
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Labor market frictions pose a very specific type of income and consumption risk: losing a job

involves a discrete drop in earnings, which is highly persistent (though it may ultimately be

transitory). When faced with borrowing constraints, labor market risk can amplify differences

in earnings for poor individuals, further distorting their decisions and leading to larger degrees

of inequality. Understanding the size of these effects, the consequences of these frictions, and

the policies that can ameliorate these distortions are central to this dissertation.
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Chapter 2

Borrowing Constraints, Search, and

Life-Cycle Inequality

2.1 Introduction

Households accumulate substantial amounts of debt by the time they enter the labor market.

A worker at their first full-time job spends 18% of their income on debt payments, and of

those workers more than 40% report denial of requested additional credit (Survey of Consumer

Finances, 2013). This paper argues that borrowing constraints affect job placement, earnings,

and on-the-job human capital growth. I construct a quantitative life-cycle model that considers

risk-averse workers who face incomplete asset markets, must search for jobs, and can choose

their rate of human capital accumulation. After estimating the model, I find that constrained in-

dividuals apply for lower-paying, more easily obtainable jobs than their wealthier unconstrained

peers, and then choose to substitute future human capital growth for precautionary savings. The

first effect is due to unemployment risk, while the second is due to both differences in perma-

nent income and insurance against unemployment risk. Quantitatively, I show that a standard

deviation decrease in wealth at age 23 decreases consumption and earnings growth by more

4
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than a standard deviation decrease in human capital.

I build a model to decompose the contribution of initial conditions to inequality when

workers face borrowing constraints. I start with a life-cycle model of on-the-job directed search

with wage posting, building off the work done by Menzio et al. (2016) and Herkenhoff (2014). I

consider risk averse households, a natural borrowing constraint, and Ben-Porath (1967) human

capital accumulation. Incomplete asset markets limit the ability of workers to directly substitute

future income in order to smooth consumption. Directed search allows workers to choose the

degree of income (and consumption) risk that they face by directing their search to jobs with

an inverse relationship between wages and probability of employment in equilibrium. Human

capital accumulation lets employed workers choose to allocate productive time between working

and accumulating human capital.1 The model considers initial heterogeneity in wealth, human

capital, and learning, and quantifies the impact of each on life-cycle inequality.

To motivate the theory, I use the Survey of Income and Program Participation (SIPP) to

show evidence that borrowing constraints alter earnings following an unemployment spell. I

exploit differences in replacement rates across states to estimate the differential effect that

unemployment insurance replacement rates have on constrained and unconstrained households.

I find that workers from the first quintile of the liquid wealth (liquid assets net of unsecured debt)

distribution match to 6.3% higher paying jobs when given a 10% increase in unemployment

insurance, despite nearly identical pre-spell earnings, tenure, and education.2 Over longer

horizons, I find that the effects on wages appear to persist.

I estimate the model using indirect inference. Indirect inference creates a straightforward

connection to the data by matching parameters from reduced-form specifications that approx-

imate equilibrium outcomes of the model. I use findings from the SIPP as well as life-cycle
1To my knowledge, this is the first paper to incorporate Ben-Porath (1967) into an environment with risk

aversion and incomplete markets, but not the first among search models. Bowlus and Liu (2013) do the same for
a model with linear preferences and explore the contributions of search and human capital to wage growth.

2Herkenhoff et al. (2016) find evidence that access to additional credit improves labor market outcomes
following an unemployment spell.
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earnings and job transition statistics from the Panel Study of Income Dynamics (PSID) and the

National Longitudinal Study of Youth 1979 (NLSY) to discipline key features that determine

the behavior of workers in my model. The moments from the SIPP yield inference on borrowing

constraints, while moments from the PSID and NLSY provide inference on the correlations

between wealth, human capital growth, and earnings over the life-cycle. I test the fit of the

estimated model and find that the model fits the data well.

I find that constrained workers decrease their consumption risk by applying to jobs that

offer shorter expected unemployment durations, but lower wages. Wealthy workers can smooth

consumption and experience extended unemployment spells, while finding better employment.

Though the estimation suggests that poor and wealthy individuals have similar productivities,

wealth inequality causes large differences in first job placement. While the effect on initial

job placement is transitory, differences in earnings persist. Unable to borrow against future

income, constrained workers substitute intertemporally by allocating time to production, rather

than human capital accumulation. They do this to smooth consumption, and to insure against

potential unemployment spells. The placement effect causes earnings inequality for 5 years,

while the human capital effect persists for the life-cycle.

My findings suggest that borrowing constraints amplify inequality when workers face fric-

tional labor markets. Differences in wealth among similarly productive individuals can lead to

long-term differences in earnings and substantial lifetime consumption inequality. For the aver-

age individual, a standard deviation decrease in initial wealth depresses lifetime consumption

by more than a standard deviation decrease in initial human capital. The difference in wealth

causes consumption to decrease −10.5%, while the change in human capital causes consump-

tion to change by −7.6%. Wealth operates primarily by changing the application strategy of

workers (−2.2%), but also decreases earnings by changing average human capital (−1.1%). Of

the change in human capital, I find that insurance against unemployment accounts for about

1/3rd of the total change. I also find that the average individual at the 10th percentile of the

6
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wealth distribution experiences a lifetime earnings increase of 3.5% when given the median

wealth in the sample.

The paper is organized as follows: in section 2.2 I review the literature and describe how

previous work differs from mine. In section 2.3 I document liquidity effects on re-employment

wages for constrained groups. In section 2.4, I construct a model that incorporates these

findings, and show the equilibrium. In section 2.5, I explain the functional form and parameter

assumptions, and my construction of targets for indirect inference. In section 2.6, I decompose

the implications for life-cycle inequality, and compare my findings to the existing literature.

Lastly, in section 2.7 I summarize my contributions and discuss routes for future work.

2.2 Related Literature

This paper addresses a question that relates to the literatures on labor market search, human

capital, and inequality. Here, I summarize many of the most closely related papers.

Graber and Lise (2015) investigates facts about the age-profile of consumption and earnings

variance within a model that features borrowing constraints, search, and human capital accu-

mulation. They argue that such a model is required to match life-cycle facts about the variance

in earnings and consumption (they increase roughly linearly) and the negative skewness of

earnings changes. While both papers focus on inequality, I focus on inequality that results from

initial conditions, while they focus on inequality in response to shocks over the life-cycle.3 Our

models also differ in that I endogenize human capital accumulation as well as the match rate

between workers and firms. They employ a “learning-by-doing” human capital accumulation

technology4, which allows for an exogenous productivity drift while employed, and assume that
3Their work is a follow-up to Lise (2013), which was similar, but without human capital accumulation.
4Recent evidence suggests that Ben-Porath (1967) human capital production accounts for life-cycle earnings

growth 2-3 times better than learning-by-doing (Blandin, 2016). It’s unclear if these results would generalize to a
frictional setting.
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workers receive draws from a wage distribution at an exogenous rate, both for tractability. As my

findings indicate, endogenous human capital accumulation plays an important role in lifetime

inequality in models with borrowing constraints. To my knowledge, Bowlus and Liu (2013) is

the only other paper to include a model with both search and Ben-Porath (1967) human capital

accumulation. They focus on the decomposition of earnings growth between search frictions

and human capital accumulation. Agents in their model are risk-neutral, while my paper shows

that risk aversion has a consequential effect on both search and human capital. Two more

papers, Bagger et al. (2014) and Yamaguchi (2010) explore life-cycle wage dynamics in search

models that feature human capital (through learning-by-doing). Both papers primarily focus on

decomposing the contributions of wage bargaining and human capital growth to wage growth,

and neither feature risk aversion. Ji (2017) primarily studies the impact that student debt has on

aggregate outcomes, but also considers the effect on life-cycle profiles. He estimates a search

model with borrowing constraints, risk-aversion, and a college entry decision, and analyzes the

general equilibrium effects of two college debt repayment plans. He finds that individuals with

student debt experience lower pay and shorter unemployment durations than non-borrowing

peers for roughly 15 years. His model does not consider the dynamic effects through human

capital accumulation.

There is also a growing literature primarily focused on identifying the short-term effects of

student debt on labor market outcomes. Gervais and Ziebarth (2017) uses the Baccalaureate

and Beyond 1993 Longitudinal Study and exploit a kink in subsidized stafford loan eligibility to

show that an extra $1, 000 in student loan debt at graduation decreases earnings by 2.5%. Luo

and Mongey (2017) and Rothstein and Rouse (2011) use variation in the ratio of grants to total

loans across cohorts, but within institutions. Surprisingly, both papers find that debt increases

earnings after graduation (1.21% in Luo and Mongey and $978 in Rothstein and Rouse). My

paper focuses on broader definitions of employment and debt because constrained individuals

might be willing to take part-time employment to smooth consumption, and repayment of

8
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certain college loans only begin following employment.

One notable feature that distinguishes my model from much of the previous work is that

my model allows both a distribution of human capital and a distribution of wealth that are

determined endogenously. Burdett and Coles (2010) introduces risk averse agents and learning-

by-doing human capital accumulation into the Mortensen and Pissarides (1994) model, but

restricts agents to face credit markets characterized by autarky in order to recover the structure

of optimal contracts. They show that firms optimally backload contracts in order to retain

workers, which generates the prediction that initially low-wage workers will achieve faster

rates of earnings growth as they age. In my model, this negative relationship between initial

earnings and growth rates is decoupled as a result of low-wage workers substituting future

earnings growth for precautionary savings. Others who have introduced risk-aversion into the

Mortensen and Pissarides (1994) model include Lentz and Tranaes (2005), Krusell et al. (2010),

and Costain and Reiter (2008). These papers feature distributions of wealth, but do not include

human capital.

My model extends the block recursive search frameworks Menzio and Shi (2010) and

Menzio et al. (2016). These are search frameworks that allow for endogenously determined

distributions of agents. Follow-up work by Herkenhoff (2014), introduced directed search with

risk aversion into a life-cycle version of the block recursive search model, focused on the effects

of credit access on the business cycle.5 Another paper, Herkenhoff et al. (2016), introduced

human capital accumulation into this framework, but did so through learning-by-doing, and

again restrict their exploration to aggregate fluctuations. Chaumont and Shi (2017) uses a

closely related model with infinitely-lived agents to highlight the effects of unemployment

risk on precautionary savings. They focus on cross-sectional dispersion, rather than life-cycle

effects, and do not include human capital accumulation. They find that wealth effects alone

play a small role in determining wage dispersion.
5Herkenhoff (2012) was the first to consider risk averse workers facing borrowing constraints in this framework.
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My paper also relates to the literature focused on identifying the causes of inequality.

Broadly, the literature on life-cycle inequality focuses on assigning importance to initial con-

ditions relative to shocks experienced in determining earnings or consumption variance. The

most closely related, Huggett et al. (2011), studies both the relative importance of shocks

and initial conditions, and decomposes the contribution of life-cycle inequality among initial

conditions. Similary to my work, their model features heterogeneity in wealth, human capital,

and learning, and allows earnings to grow through a Ben-Porath production function. They

find that initial conditions (age 23) determine more than 60 percent of variation in lifetime

utility, but that the bulk of this results from human capital inequality. Similarly, Heathcote et al.

(2014) use a model with heterogeneity in preferences and productivity to decompose sources

of inequality. They reach a similar conclusion as Huggett et al.: productivity is the primary

driver of earnings inequality. I find the opposite: that initial wealth plays a more important

role in determining life-cycle inequality than heterogeneity in human capital. The difference is

caused by my inclusion of frictional labor markets, which makes wealth have a first order effect

on earnings.6

2.3 Empirical Regularities

Three key empirical regularities motivate the construction of my model. First, constrained

individuals who receive more generous unemployment insurance replacement rates match to

higher-paying jobs following an unemployment spell.7 Second, among the full-time employed,

initially wealthy individuals consistently receive more training throughout the life-cycle, sug-
6Two more papers, Keane and Wolpin (1997), and Heckman et al. (1998) development dynamic models of

schooling, work and occupational choice, as well as human capital accumulation. They both focus on decisions
prior to the period analyzed by this paper and are complementary in that they find that initial heterogeneity play
substantial roles in determining long-term outcomes.

7While there is previous evidence for the effect of borrowing constraints (also known as liquidity effects in the
literature) on unemployment outcomes, (Herkenhoff et al. (2016) on earnings, Chetty (2008) on durations, among
others) the effects on re-employment earnings is sparse.
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gesting a link between initial wealth and human capital accumulation. Third, I find that there

are large, persistent differences in earnings among individuals with below median wealth and

above median wealth. I use these findings as motivation as well as estimation targets for my

model in section 2.5.

2.3.1 Re-Employment Elasticities

To explore the effects of borrowing constraints on labor market outcomes, I estimate the

responsiveness of constrained (using liquid wealth as a proxy) individuals to changes in their

unemployment insurance replacement rates. I Find that the elasticity of the re-employment

wage with respect to unemployment insurance amount is substantial for constrained individuals,

but has no effect for unconstrained individuals. As a robustness check, I perform a similar

exercise on employment-to-employment job transitions and find no effect. I use Survey of

Income and Program Participation (SIPP) panels from 1990-2008, as well as data from state

unemployment insurance laws provided by the Employment and Training Administration. I

restrict my sample to 23 and older males who take up UI within one month of unemployment.

More details on the construction of this data is available in subsection A.1.1.

Empirical Strategy

I do not have a direct measure of the degree to which each household is constrained, so I

compare the labor market outcomes of individuals by quintiles of net liquid wealth (defined as

liquid assets net of unsecured debt) in response to changes in unemployment insurance. This

proxy has been used extensively in to quantify the effects of UI on labor market outcomes

(Browning and Crossley (2001), Bloemen and Stancanelli (2005), Sullivan (2008), and Chetty

(2008), among others). These papers find that unemployment insurance is used as a substitute

for income during unemployment spells among illiquid households, which motivates the use of
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net liquidity as a proxy for borrowing constraints.

Individuals frequently misreport their level of unemployment benefits; therefore, I proxy

for unemployment insurance by using the average weekly benefit over an unemployment spell

at the state-month level and frequency. This provides a credible source of exogenous variation

that has been used extensively in the literature: unemployment insurance replacement rates

vary within a state over time as a result of changes in legislation. I include potential UI duration,

defined as the average number of weeks a cohort of unemployed individuals could receive UI,

at a state-by-quarter level and frequency to capture any correlation between replacement rates

and duration generosity for a state unemployment insurance system. Table A.2.1 summarizes

key employment and demographic characterics by liquidity quintile and UI generosity. The

table shows that individuals vary across the liquid wealth distribution, but do not vary by state

UI generosity for characteristics that would be potential sources of concern. The first quintile

shows no difference in previous wage, previous tenure, education or age, which would be areas

of concern for the validity of the comparison.8

My approach to measure the effect of unemployment insurance on re-employment wages is

to use a standard Mincer equation and bin the sample of unemployed individuals into quintiles

of liquid wealth. I also use a linear spline of the previous annual wage to control for changes

in behavior across the income distribution as well as for endogeneity with respect to ability, to

the extent possible. I also include state fixed effects to control for endogeneity with respect to

location choice. In other words, I exploit variation in unemployment insurance over time that

is not the result of previous income, UI duration, or choice of location. Similar identification

strategies are employed by Engen and Gruber (2001), Chetty (2008), among others. In each

of the following equations, I include age, race, marital status, education, tenure, as well as
8Selecting on unemployment insurance recipients may cause bias in my estimates; however, per Table A.2.1,

the rates of UI takeup do not vary across wealth quintiles, which suggest that endogenous takeup is not driving the
following results that I find for individuals from the first quintile. Within the first quintile takeup in below median
UI states is lower than in states above the median, counter to what we would expect if the recipients selected along
liquidity needs.

12
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state and year fixed effects. I also include interactions between net liquidity quantiles and each

of industry, occupation (2-digit) and the log-wage spline. My main test uses the following

specification:

ln(Yi,j+1,s,t) = α0 +
5∑
q=1

δq0 × ln(UIs,t) +
5∑
q=1

δq1 × UIDurs,t (2.3.1)

+ δs + δt +Xi,j,tβ + ϵi,j+1,s,t (2.3.2)

where j is the previous job and j + 1, the next job, reported by individual i at time t in net

liquidity quintile q. δq0 and δq1 are the effect of UI replacement rates and potential UI duration

for an individual in net liquid wealth quintile q at the start of a spell. A positive δq0 indicates

that more generous unemployment insurance is associated with better employment outcomes

for quintile q. A negative δq1 indicates that longer unemployment insurance durations result in

worse re-employment outcomes.

Findings

My results show that constrained workers alter their search behavior when presented with

additional unemployment insurance. Individuals from the first quintile of liquid wealth find jobs

offering 6.34% higher pay the month after unemployment when they receive a 10% increase in UI

(column 1 of Table 2.3.1). Column 2 shows that the effect is the same magnitude (6.28%) during

the quarter following unemployment. The estimate is significant at the 5-percent level, using

Taylor Linearized standard errors, (the suggested variance estimator for the SIPP’s complex

survey design) but only for the first quintile. I also find that longer potential UI is associated

with a decline in wages, though only for the wealthiest population.

Given that employment is highly persistent, while the average unemployment spell in my

sample is less than 25 weeks, an elasticity of 0.63 suggests that an additional source of income
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Re-Employment Labor Income Regressions (by Net Liquidity)
(1) (2)

VARIABLES Log of Next Weekly Earnings Log of Next Quarterly Earnings

Net Liq. Quintile 1 X Log of Avg. UI 0.634** 0.628**
(0.262) (0.260)

Net Liq. Quintile 2 X Log of Avg. UI 0.223 0.303
(0.258) (0.273)

Net Liq. Quintile 3 X Log of Avg. UI 0.00351 -0.0310
(0.351) (0.279)

Net Liq. Quintile 4 X Log of Avg. UI 0.132 0.0194
(0.205) (0.214)

Net Liq. Quintile 5 X Log of Avg. UI 0.174 0.109
(0.256) (0.272)

Net Liq. Quintile 1 X Potential UI Weeks -0.00102 0.0160
(0.00985) (0.0112)

Net Liq. Quintile 2 X Potential UI Weeks -0.00946 -0.00847
(0.00836) (0.00701)

Net Liq. Quintile 3 X Potential UI Weeks 0.0155 0.0113
(0.0174) (0.0172)

Net Liq. Quintile 4 X Potential UI Weeks 0.0117 0.00507
(0.0112) (0.00983)

Net Liq. Quintile 5 X Potential UI Weeks -0.0225** -0.0217***
(0.00977) (0.00777)

Observations 2172 2311
R2 0.359 0.381
State FE X X
Year FE X X
Qtile FE + Qtile X Wage Spline X X
Ind + Ind X Qtile FEs X X
Occ + Occ X Qtile FEs X X

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 2.3.1: Elasticities by net liquidity quintile. Column 1 reports employment outcomes
during the first month following an unemployment spell. Column 2 reports employment
outcomes for wages over the first quarter following an unemployment spell. Liquid wealth
quintile refers to liquid assets net of unsecured credit.

alters job search behavior. Prior to separation, these individuals had nearly identical labor market

characteristics (Table A.2.1). Results clustered at the state level yield similar significance levels,

and are reported in the online appendix. As a check on the credibility of my findings, I explore

whether unemployment insurance generosity is predictive of job-to-job (J2J) wage changes. If
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there were some underlying state trend over time driving my results, it would be reasonable to

expect to find a similar pattern among job-to-job wage changes. I use the same specification as

Equation 2.3.1, and include UI interacted with liquid wealth quintiles. This yields insignificant

results for all coefficients of interest, and is reported in the online appendix.

2.3.2 Life-Cycle Profiles

To examine the correlation between initial wealth and lifetime earnings, I use the Panel

Study of Income Dynamics (PSID) and National Longitudinal Survey of Youth 1979 (NLSY),

and partition individuals into their wealth quantiles before entering the labor force. I detail the

sample selection as well as the construction of these profiles in section A.1. I first use the NLSY

to explore the correlation between initial wealth and training hours over the life-cycle. Then I

use the PSID to explore differences in earnings for individuals from different wealth quantiles.

For both results, I use the following specification:

Yi,a,s,t = α0 +
5∑
q=1

(δq0 × Age) + δs + δt +Xi,a,tβ + ϵi,a,s,t (2.3.3)

where Yi,a,s,t is the outcome of interest (either training hours or log-earnings) for individual i,

at age a, in area s, in year t. Both regressions control for education level, race, marital status,

state (or region in the NLSY), year, as well as the hours worked by individual. In each case, I

weight the results by the provided sample weights.

Human Capital Accumulation

I use the NLSY79 to show a correlation between initial wealth (prior to entering the labor

market), and training over the duration of this study (ages 25-54). The sample is restricted to

individuals employed full-time, and wealth quintiles are permanent and defined before entering

the labor market. Details of the sample selection are available in subsection A.1.3. The
15
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profiles show a clear correlation between initial wealth and time training (Figure 2.3.1). These
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Figure 2.3.1: Training Hours Per Week by Wealth Quintile.

measures include training outside of work as well as training sponsored by employers. These

profiles suggest that there is a correlation between wealth and human capital accumulation

while working.

Earnings

There appear to be permanent earnings differences between individuals from different

wealth strata. Figure 2.3.2 shows the average earnings profiles individuals by their liquid wealth

prior to entering the labor market. The left panel shows high school educated individuals, and

the right panel shows college educated individuals. Both show that individuals from the bottom

of the wealth distribution experience persistently different earnings profiles from their wealthier

peers. Details of the sample selection are available in subsection A.1.2.
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Figure 2.3.2: Earnings Profiles by Initial Wealth and Education.

2.4 The Model

2.4.1 Environment

Time is discrete and continues forever, while each agent lives deterministically for T ≥ 2

periods. There is a continuum of both firms and workers, each of which discounts future

value at the identical rate β. Each worker is born unemployed without benefits, and receives

a draw from a correlated trivariate log-normal distribution Ψ ∼ LN(ψ,Σ) of wealth, human

capital, and learning ability (a0, h0, ℓ). Over the life-cycle, a worker may be in one of three

employment states: employed, unemployed with unemployment insurance, and unemployed

without unemployment insurance. Workers in each employment state are allowed to direct their

search to contracts posted by firms.

Each worker is endowed with one indivisible unit of labor that they can enjoy as leisure

during unemployment or supply inelastically while employed. Leisure utility ν is assumed to

be additively separable, u(c) + (1 − e)ν, where e denotes employment status. Workers are

risk-averse, with utility u′(c) ≥ 0, u′(0) = ∞, and are allowed to smooth consumption over

the life-cycle by borrowing and saving at rate rF . They face a borrowing limit at each age,
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a′, and are not allowed to default on any debt obligations, nor exit the terminal period T with

negative asset holdings. While employed, workers are allowed to devote productive time τ to

accumulating human capital through a Ben-Porath production function, H(h, ℓ, τ, L), which is

increasing in its first 3 arguments. L denotes the labor market status E or U . All workers face

an iid human capital shock between periods, ϵ′ ∼ N(µϵ, σϵ), that permanently alters human

capital. This is modeled as h′ = eϵ
′
(h+H(h, ℓ, τ, E)).

Workers transition from employment to unemployment in one of two ways: with probability

δ, they receive a separation shock and enter unemployment, and with probability λE ≤ 1, they

are allowed to search while employed for a new job. Employed workers receive µ(1−τ)f(h) as

income each period, whereµ is their piecerate wage, (1−τ) the time left over after human capital

decisions, and f(h) is their productivity given their current human capital. If they receive an

unemployment shock, workers receive unemployment benefits bUI = min{bµ(1− τ)f(h), b̄},

where b is the replacement rate, and b̄ is the maximum benefit allowed per quarter. I assume

that unemployment benefits are drawn from a distribution b ∼ N(µb, σb). Both the distribution

of replacement rates and benefit cap are important for my identification strategy. Agents

stochastically lose benefits with probability γ, and receive bL ≤ bUI , which reflects opportunities

to earn money outside the labor force.

Firms post vacancies at cost κ. These vacancies are one-firm-one worker contracts that spec-

ify the piecerate of output paid as earnings, µ. These contracts are assumed to be renegotiation-

proof, and firms are not allowed to respond to outside offers, thus µ is fixed for the duration

of the contract. Worker characteristics are assumed to be observable, and thus firms open

vacancies into specific submarkets that are indexed by the observables of the worker. Thus,

submarkets are identified by the following tuple: (µ, a, h, ℓ, t) ∈ R+ × R × R+ × R+ × R+.

In equilibrium, each submarket has a known probability of employment. Once matched, a firm

receives (1 − µ)(1 − τ)f(h) in profits each period. They continue until the match dissolves,

either through exogenous separation or on-the-job search.
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Following Pissarides (1985), I refer to submarket tightness as θt(µ, a, h, ℓ) = v(µ,a,h,ℓ)
u(µ,a,h,ℓ)

.

The rate at which firms and workers match in each submarket is characterized by a constant

returns to scale matching function, M(u, v), where u is the number of unemployed searchers

in the submarket and v is the number of firms posting vacancies in the submarket. I define

the probability at which firms meet workers as M(u,v)
v

= q(θt(µ, a, h, ℓ)), and the rate at which

workers meet firms as M(u,v)
u

= p(θt(µ, a, h, ℓ)), both of which I assume to be invertible. I

assume that within each submarket the free entry condition holds, meaning that firms compete

away any expected profits within a submarket by opening additional vacancies.

The aggregate state of the economy is summarized by the following tuple: ψ = (z, u, e, ρ).

The first component is the current level of output in terms of the numeraire for a job in the

economy, independent of human capital. The second component is a function that tracks the

measure of workers with assets a, human capital h, learning ability ℓ, at age t, u(a, h, ℓ, t). The

third determines the measure of employment for each of these same types. The last component

is the stochastic process that determines newly born workers in each period. By restricting the

equilibrium to be block recursive, decision rules do not depend on the distribution of workers

or firms. I demonstrate this in subsection A.3.1. The aggregate state z is suppressed because

the model is stationary.

2.4.2 Worker’s Problem

Production, Savings, and Human Capital Accumulation

Each period is divided into two subperiods: job search, and production. During the

production subperiod agents choose consumption and savings allocations (c and a′), and the

employed workers choose the proportion of time to spend accumulating human capital, τ . All

agents are subject to a borrowing constraint a′, which changes with age. Following these
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decisions, age advances. Employed workers solve the problem given in Equation 2.4.1.

Wt(µ, a, h, ℓ) = max
c,a′≥a′,τ∈[0,1]

u(c) + βE[(1− δ)RE
t+1(µ, a

′, h′, ℓ) + δRU
t+1(bUI , a

′, h′, ℓ)]

(2.4.1)

s.t. c+ a′ ≤ (1 + rF )a+ µ(1− τ)f(h) (2.4.2)

h′ = eϵ
′
(h+H(h, ℓ, τ, E)) (2.4.3)

ϵ′ ∼ N(µϵ, σϵ) (2.4.4)

bUI = min{b(1− τ)µf(h), b̄} (2.4.5)

b ∼ N(µb, σb) (2.4.6)

Human capital evolves according to eϵ′(h + H(h, ℓ, τ, E)), where ϵ′ is the human capital

depreciation shock experienced at the start of the following period. The functionH determines

the accumulation of human capital and is a non-decreasing function of τ , H(h, ℓ, τ, E)τ ≥ 0,

H2(h, ℓ, τ, E)τ 2 ≤ 0. Human capital accumulation is realized before separation shocks, so

any time spent accumulating human capital affects bUI . Employed agents face a probability

δ of separating from their current employer. Newly unemployed agents are assumed to have

unemployment benefits for at least one period. Following period T + 1, employed utility is

zero:

WT+1(µ, a, h, ℓ) = 0 (2.4.7)

Unemployed agents choose consumption and savings and receive benefit and human capital
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shocks ϵ′ once age advances. Their problem is given in Equation 2.4.8.

Ut(bUI , a, h, ℓ) = max
c,a′≥a′

u(c) + ν + βE[(1− γ)RU
t+1(bUI , a

′, h′, ℓ) + γRU
t+1(bL, a

′, h′, ℓ)]

(2.4.8)

s.t. c+ a′ ≤ (1 + rF )a+ bUI (2.4.9)

h′ = eϵ
′
(h+H(h, ℓ, τ, U)) (2.4.10)

ϵ′ ∼ N(µϵ, σϵ) (2.4.11)

where bUI is their unemployment benefit. Unemployed agents face shocks to their bene-

fits, which they lose with probability γ, and their human capital, which evolves according to

eϵ
′
(h+H(h, ℓ, τ, U)). Note that H(h, ℓ, τ, U) is assumed to be zero for all unemployed agents.

Following these decisions, age advances and unemployed workers receive benefits and human

capital shocks. Unemployed agents without UI face a problem described by Equation 2.4.12.

Ut(bL, a, h, ℓ) = max
c,a′≥a′

u(c) + ν + βE[RU
t+1(bL, a

′, h′, ℓ)] (2.4.12)

s.t. c+ a′ ≤ (1 + rF )a+ bL (2.4.13)

h′ = eϵ
′
(h+H(h, ℓ, τ, U)) (2.4.14)

ϵ′ ∼ N(µϵ, σϵ) (2.4.15)

where bL ≤ bUI . Without benefits, these workers have no probability of receiving benefits

again without first becoming employed. Unemployed agents of both types die after T periods

with certainty and thus their unemployment utility in period T + 1 is zero:

UT+1(UI, a, h, ℓ) = 0 ∀ UI ∈ {bUI , bL} (2.4.16)
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Job Search

Age advances and shocks are realized following the production period. Unemployed agents

in the job search period solve the problem given by Equation 2.4.17.

RU
t (bUI , a, h, ℓ) = max

µ′
P (θt(µ

′, a, h, ℓ))Wt(µ
′, a, h, ℓ)

+ (1− P (θt(µ
′, a, h, ℓ)))Ut(bUI , a, h, ℓ) (2.4.17)

where bUI denotes their current level of UI andµ′ denotes the application strategyµ′(w, a, h, ℓ, t).

For agents without unemployment insurance, bUI = bL. Employed workers are allowed to search

on the job, and solve the problem given by Equation 2.4.18.

RE
t (µ, a, h, ℓ) = max

µ′
λEP (θt(µ

′, a, h, ℓ))Wt(µ
′, a, h, ℓ)

+ (1− λEP (θt(µ
′, a, h, ℓ)))Wt(µ, a, h, ℓ) (2.4.18)

2.4.3 Firm’s Problem

Firms produce using a single worker as an input. New firms post piece-rate wage contracts in

submarkets characterized by (µ, a, h, ℓ, t), each of which is assumed to be observable to the firm.

Contracts dictate the share of revenue to be received by each side in the match. Wage contracts

are assumed to be renegotiation-proof. A firm with a filled vacancy produces using technology

y = (1 − τ)f(h), where τ is the time spent accumulating human capital by the worker that

cannot be used in production. The firm retains a fraction (1−µ) of this output as profits and pays

the rest out in wages. Matches continue with probability (1− δ)(1− λEP ((θt+1(µ
′, a′, h′, ℓ))),

the probability that the match does not separate exogenously and the worker does not find a new

employer. Firms discount at the same rate as workers, β. The value function of a firm matched

22



Borrowing Constraints, Search, and Life-Cycle Inequality Chapter 2

with a worker is given in Equation 2.4.19.

Jt(µ, a, h, ℓ) = (1− µ)(1− τ)f(h) + βE[(1− δ)(1− λEP ((θt+1(µ
′, a′, h′, ℓ)))Jt+1(µ, a

′, h′, ℓ)]

(2.4.19)

h′ = eϵ
′
(h+H(h, ℓ, τ, E)) (2.4.20)

where a′ = ga(µ, a, h, ℓ) and τ = gτ (µ, a, h, ℓ) are the worker policy decisions over wealth

and human capital accumulation. µ′ = gµ(µ, a
′, h′, ℓ) is the application strategy of the worker

conditional upon his asset and human capital policy rule. Profits from a filled vacancy at age

T + 1 are zero:

JT+1(µ, a, h, ℓ) = 0 (2.4.21)

New firms have the option of posting a vacancy at cost κ in any submarket. Each submarket

offers a probability of matching with a worker given by q(θt(µ, a, h, ℓ)). In expectation, the

value of opening a vacancy in submarket (µ, a, h, ℓ) is given by Equation 2.4.22.

Vt(µ, a, h, ℓ) = −κ+ q(θt(µ, a, h, ℓ))Jt(µ, a, h, ℓ) (2.4.22)

I assume that the free entry condition holds for every open submarket. Firms enter until

the expected profits of a vacancy, Vt(µ, a, h, ℓ) = 0. This means that Equation 2.4.22 can be

rewritten as Equation 2.4.23.

κ = q(θt(µ, a, h, ℓ))Jt(µ, a, h, ℓ) (2.4.23)
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In equilibrium, this yields the following:

q(θt(µ, a, h, ℓ)) =
κ

Jt(µ, a, h, ℓ)
(2.4.24)

θt(µ, a, h, ℓ) = q−1(
κ

Jt(µ, a, h, ℓ)
) (2.4.25)

Using the definition of the matching function, M(u,v)
u

= p(θt(µ, a, h, ℓ)) and M(u,v)
v

=

q(θt(µ, a, h, ℓ)), the equilibrium job-finding rate for workers and firms in a submarket can be

expressed as p(θt(µ, a, h, ℓ)) = θq(θt(µ, a, h, ℓ)).

2.4.4 Timing

The timing in the model is as follows:

1. Firms open vacancies in submarkets (µ, a, h, ℓ, t).

2. Employed and unemployed workers search for vacancies in submarkets (µ, a, h, ℓ, t).

3. Agents who receive job offers transition employment states. Agents who are not offered

a job remain unemployed.

4. All agents make consumption and savings decisions. Employed agents allocate time

between production and human capital accumulation.

5. Age advances. Agents receive human capital shocks, benefits shocks, and unemployment

shocks in that order.

2.4.5 Equilibrium

A Block Recursive Equilibrium (BRE) in this model economy is a set of policy functions

for workers, {c, µ′, a′, τ}, value functions for workers Wt, Ut, value functions for firms with

24



Borrowing Constraints, Search, and Life-Cycle Inequality Chapter 2

filled jobs, Jt, and unfilled jobs, Vt, as well as a market tightness function θt(µ, a, h, ℓ).9 These

functions satisfy the following:

1. The policy functions {c, µ′, a′, τ} solve the workers problems, Wt, Ut, R
E
t , R

U
t .

2. θt(µ, a, h, ℓ) satisfies the free entry condition for all submarkets (µ, a, h, ℓ, t).

3. The aggregate law of motion is consistent with all policy functions.

2.5 Estimation

I use indirect inference to estimate the model. Indirect inference is a moment-matching

approach based on targeting parameters from reduced-form models that make up an “auxiliary

model” and capture important aspects of the underlying structural model. I select reduced-

form equations in my auxiliary model to identify borrowing constraints and heterogeneity in

earnings growth, the key mechanisms in my structural model. This approach is popular among

papers estimating household response to risk (Guvenen and Smith, 2014), as well as those

estimating search behavior over the life-cycle (Lise (2013), Bowlus and Liu (2013)). I discuss

this methodology further in section 2.5.2. In subsection 2.5.5, I use decision rules from the

estimated model to demonstrate the sources of identification.

To implement indirect inference, I preset functional forms and parameters that are ubiquitous

throughout the related literature. These choices are detailed in subsection 2.5.1. The remaining

parameters are estimated by indirect inference by matching moments from the auxiliary model

presented in subsection 2.5.2.
9A Block Recursive Equilibrium is one in which the first two “blocks” of the equilibrium, i.e. the individual

decision rules, can be solved without conditioning upon the aggregate distribution of agents across states, i.e.
the third block of the equilibrium. The aggregate state can then be recovered by simulation. For an extended
discussion see subsection A.3.2.
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2.5.1 Empirical Preliminaries

Functional Form and Distributional Assumptions

I set the functional forms to those commonly used in the literatures on search and on

inequality. I choose a power utility function of the following form:

u(c) =


c1−σ−1
1−σ if σ > 0, σ��=1

ln(c) if σ = 1

(2.5.1)

When agents are unemployed, I assume that they receive linear leisure utility, u(c) + ν. I

use the matching function from Schaal (2011), which is constant returns to scale and generates

well-defined probabilities:

M(u, v) =
uv

(uη + vη)
1
η

(2.5.2)

I assume the following functional form for production:

y = f(h) (2.5.3)

f(h) = zh (2.5.4)

where z is a scale factor. Linear production is a common restriction in the search literature

when models do not consider physical capital. I assume that all workers face shocks to their

human capital each period, eϵ′ with ϵ′ ∼ N(µϵ, σϵ). Employed workers accumulate human

capital using Ben-Porath (1967) technology:

h′ = eϵ
′
(h+H(h, ℓ, τ, E)) (2.5.5)

H(h, ℓ, τ, E) = ℓ(hτ)αH (2.5.6)
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where ℓ is the learning ability of an individual endowed at the beginning of the life-cycle and

can be thought of as a fixed effect (it is constant). τ is the fraction of productive time that an

employed worker spends accumulating human capital. The fractional exponent reflects the fact

that my model is quarterly, while previous work incorporating human capital is generally at an

annual frequency.

Ben-Porath is widely employed among papers on human capital and inequality, which allows

for more straightforward comparisons between my findings and the findings of other papers

on inequality. However, this assumption is a departure from much of the previous work in the

search literature that incorporates human capital. With the exception of Bowlus and Liu (2013),

models of search with human capital have assumed that human capital is accumulated through

“learning-by-doing,” which means that human capital grows exogenously while employed. The

learning-by-doing approach yields tractability, which papers like Bagger et al. (2014) and

Carillo-Tudela (2012) exploit in order to decompose the variance of wage growth over the

life-cycle. The empirical evidence is divided on which approach best fits the data. Recent

evidence from Blandin (2016), who nests learning-by-doing and Ben-Porath within a single

model and tests their predictions about life-cycle earnings finds that Ben-Porath fits the data

roughly 4 times better than learning-by-doing. It is unclear if those results generalize to a model

with labor market frictions. Within the context of my model, learning-by-doing causes trouble

matching the downturn in earnings growth without other assumptions.

For unemployed workers, I assume that they are unable to invest in human capital and face

only the i.i.d. human capital depreciation process.

h′ = eϵ
′
(h+H(h, ℓ, τ, U)) (2.5.7)

= eϵ
′
h (2.5.8)
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I assume that agents are subject to a natural borrowing constraint each period:

a′ =
T∑
j=t

bL
(1 + rF )j

(2.5.9)

In each period t, a′ is the amount that any agent could repay if he were in the worst income

state (bL) in every period until the terminal date. Modeling borrowing constraints in this way

is appealing because it never fully binds and is the least restrictive borrowing constraint in a

model without the option to default. While natural borrowing constraints are common in the

heterogeneous agent literature (Huggett (1993), and Aiyagari (1994) among many others), it

is not ubiquitous. One commonly used alternative is Kehoe and Levine (1993), which allows

default under penalty of future autarky. In most cases, adopting an alternate approach like these

would yield tighter borrowing constraints in my model. Specifically, for agents approaching the

borrowing constraint, this would yield larger borrowing premiums and a tighter debt limit.

Lastly, I assume that initial conditions (a0, h0, ℓ) are drawn from a multivariate log-normal

distribution, Ψ ∼ LN(ψ,Σ), with mean ψ and variance-covariance Σ, so that human capital

and learning ability are both positive and each marginal distribution can be characterized by

a shape and scale parameter. The initial distribution of wealth is shifted by −a′(t = 0), the

borrowing constraint in period 0. These are common assumptions when modeling inequality.

I use a Gaussian copula with correlations ρAH , ρAL, ρHL (the pairwise correlations between

wealth, human capital, and learning, respectively) to generate correlated draws from this initial

distribution. The preset functional forms and initial conditions are summarized in Table 2.5.1.

Preset Parameter Values

I select a subset of the parameters to be set to common values from the relevant literature.

Agents in the model live for T = 128 quarters, covering the post-schooling and prime working

ages, 25-54. I set the exogenous separation rate to match the average quarterly flows from
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Table 2.5.1: Preset Functional Forms and Distributions

Category Symbol Value or Function Source

Model Parameters

Utility Function U(c) c1−σ−1
1−σ + (1− e)ν Power Utility

Production Function f(h) zh
Human Capital Production H(h, ℓ, τ, E) ℓ(hτ)αH Ben-Porath (1967)
Human Capital Evolution h′ eϵ

′
(h+H(h, l, τ, E))

Matching Function M(u, v) uv

(uη+vη)
1
η

Schaal (2012)

Borrowing Constraint a′
∑j=T

j=t
bL

(1+rF )j
Natural Borrowing Limit at time t

Distributional Parameters
Depreciation ϵ′ ϵ′ ∼ N(µϵ, σϵ)
Initial Conditions Ψ Ψ ∼ LN(ψ,Σ)

Mean ψ
[
µA µH µL

]′
Variance diag(Σ) (σA, σH , σL)
Correlation (ρAH , ρAL, ρHL)

employment to unemployment (Shimer, 2012), δ = 0.030. An exogenous interest rate is

required to for the equilibrium concept used to solve the model, so I set the risk-free rate to a

quarterly rF = 0.012, which generates an annual risk-free rate of about 5%. I set β = 1
1+rF

,

so that agents smooth consumption in expectation. The elasticity parameter of the matching

function, η is set so that the elasticity of the job-finding probability of unemployed workers

with respect to submarket tightness is on average 0.5, consistent with the empirical exploration

in Shi (2016). The cost of opening a vacancy, κ, is also set at 0.2 using the results from Shi

(2016). I use a scale factor, z, equal to the average quarterly income in the PSID at age 25.

I assume that the unemployment insurance replacement rate distribution has meanµb = 0.42,

and σb = 0.053, which is a normal distributed approximation to the distribution of replacement

rates allowed under most state UI systems in my data. I discretize this distribution and restrict

draws to be two standard deviations or less to ensure that negative replacement rates are not

possible, meaning that the range of possible replacement rates is [32%, 53%]. I also cap

unemployment insurance at a weekly maximum of $450, which is the average cap in my data.

Both of these considerations are required for identification in my estimation procedure. I

assume that unemployment insurance does not fluctuate with human capital depreciation, but
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can be lost with probability γ. I set γ = 0.54, which matches the expected max duration of UI

in my data (≈ 24.1 weeks).

There are 15 parameters remaining to be estimated (shown in Table 2.5.3). The preset

parameters are summarized in Table 2.5.2.

Table 2.5.2: Preset Parameter Values

Category Symbol Value or Function Source

Model Parameters
Discount Factor β 0.9882 1

1+rF

Risk Aversion σ 2.0 Standard
Quarters T 128 Standard
Elasticity of Matching Function η 0.5 Shi (2016)
Vacancy Creation Cost κ 0.2 Shi (2016)
Separation Rate δ 0.030 Quarterly average 1968-2013
Scale Factor z 18 165 Mean quarterly earnings (Age 25, PSID)
Quarterly Max UI (unscaled) γ 1.29 Average UI cap
UI Loss Probability γ 0.54 Sample max UI duration average
Risk Free Rate rF 0.0120 Annual rate of ≈ 5%

Distributional Parameters
UI Replacement Rate Distribution (µb, σb) (0.42, 0.053) Approx. sample distribution

2.5.2 Indirect Inference and Auxiliary Model

I estimate the remaining structural parameters of the model using indirect inference (Gourier-

oux et al., 1993). Indirect inference is a generalized method of moments (GMM) estimation

technique in which the user selects a set of coefficients from a parsimonious “auxiliary model”

composed of one or many reduced-form equations. Rather than matching unconditional mo-

ments, indirect inference minimizes the distance between parameters from the auxiliary model

and identical reduced-form estimations run on simulated data. It has also been widely applied

in papers that analyze inequality through the lens of search models (Bowlus and Liu (2013),

Lise (2013), Graber and Lise (2015), among others).

The primary advantage for my application is that I can select a set of reduced-form equa-

tions as an auxiliary model, whose relation to the data is clear, and then provide a structural
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interpretation using my model. If the auxiliary model yields inference on a mechanism in the

data, then the model is replicating the data generating process by matching the conditional

density. The resulting structural parameters are consistent with that mechanism, provided that

the auxiliary models identify all the structural parameters. The technique allows me to easily

deal with flaws in my estimation sample by inserting the same flaws into the model generated

data. This allows me to deal with missing observations by sampling the simulated data at the

same frequency.

My model has initial heterogeneity from three sources: differences in wealth, differences

in initial human capital, and differences in learning ability, which are jointly distributed at the

beginning of the life-cycle. I pick a set of reduced-form moments and estimate an auxiliary

model in order to discipline this initial heterogeneity. In each specification, I denote the set of

parameters to be matched through indirect inference with βi, where i indexes the parameter or

set of parameters. In my empirical specifications, I use an extensive set of controls that have

no analog in my model. I denote these “nuisance” parameters δ.

With the exception of moments characterizing the borrowing constraint and initial wealth

and earnings, I estimate my model on agents ages 25 to 54, two years after I start agents in the

model (age 23). This is because I observe earnings at first jobs for very few agents, particularly

for whom I also observe either wealth or proxies for human capital or learning ability. By

matching my model to data on agents who are already employed, I allow for wage growth while

still retaining inference on the structural parameters of interest.

Model Parameters

To identify and estimate the set of borrowing constraints in my model, I match the re-

employment wage elasticities with respect to changes in unemployment insurance for individu-

als from each of the liquid wealth quintiles. Ex ante identification requires that conditional on

observables, each individual’s borrowing constraint is identical. This is not an unreasonable
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assumption: a lender is likely to condition credit offered to a worker on their previous employ-

ment history and demographic characteristics. This regression largely follows my approach in

section 2.3, with two modifications. I drop potential UI duration, as this is identical for all

agents in my model, and I use an interaction between liquid wealth quintile and log of last wage

rather than a spline. The specification that I use in both the SIPP and the simulated data is given

in Equation 2.5.10.

ln(Wi,j+1) = β0 +
5∑
q=1

βq1 × 1qln(UIi) +
5∑
q=1

βq2 × 1qln(Wj) + β3 × Age (2.5.10)

+X1,iδ1 + ϵi,j+1 (2.5.11)

where j indexes the job of a worker. I match the set of auxiliary parameters β0, βq1 , β
q
2 , β3, and

treat the set of data controls δ as nuisance parameters. The set of controls, X1,i is identical to

those in section 2.3. These moments directly connect the degree to which an individual is capa-

ble of smoothing consumption during an unemployment spell to their subsequent employment

outcome, which yields inference on the degree to which a borrowing constraint is binding for

individuals across the asset distribution.

For inference on the human capital evolution parameters, αH and (µϵ, σϵ), I use six age bins

of five years each (25-29, 30-34, 35-39, 40-44, 45-49, 50-54), and match within job earnings

growth from the NLSY using Equation 2.5.12. I use the estimate of the standard deviation from

this regression to match the standard deviation of earnings growth, σL.

∆ln(Wi,j,a) =
6∑

a=1

βa41Age∈[a,a+1) +∆X2,iδ2 +∆ϵi,j,a (2.5.12)

In my model, human capital accumulation is the only source of earnings growth for indi-

viduals who stay with the same job, making this the appropriate analog to estimate αH and
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(µϵ, σϵ).10 I use a similar strategy to estimate the on-the-job search efficiency parameter, λE .

I bin individuals using the same age categories and estimate a linear probability model whose

dependent variable is whether an individual changed employers during the period, following

Equation 2.5.13.

SameJobi,j,a =
6∑

a=1

βa51Age∈[a,a+1) + δs + δt +X3,iδ3 + ϵi,j,a (2.5.13)

λE changes the rate at which individuals transition jobs, satisfying the requirement for ex-ante

identification.

To identify leisure, I use a workers employment status at the time of interview to match the

sample unemployment rate in the PSID. As in section 2.3, I restrict this sample to ages 25-54,

to focus on prime age male workers. This takes the following form:

URate =
1

NT

N∑
i=1

54∑
t=25

1Unemp. (2.5.14)

where N is the number of individuals in the PSID and T is the number of years for which I record

their observations (30). The panel is not balanced, but I drop individuals in my estimation at

the same frequency as in the data.

Marginal Distribution Parameters

Having identified the borrowing limit at age t = 0 (23 in my model), the marginal dis-

tribution of wealth (µA, σA) can be estimated from the data by using the income profiles of

individuals from different wealth quantiles. I use the distribution of the last observation of

liquid wealth in the PSID for men prior to entering the labor market and divide the sample into
10The use of this equation to identify αH is identical to the approach taken by Bowlus and Liu (2013); this

approach to human capital depreciation is similar to the approach used by Huggett et al. (2011), who restrict their
sample to ages in which individuals are unlikely to accumulate human capital.
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deciles. I include the mean of each decile as auxiliary parameters in the model.

Likewise, the borrowing constraint and parameters characterizing the marginal distribution

of wealth identified, the marginal distribution of human capital (µH , σH) can be identified by

matching the distribution of initial earnings in the data. In the model, jobs are determined by

a worker’s application strategy, which is characterized upon first entering the labor market by

a workers wealth and human capital (learning plays a small role in initial placement, but is

separately identified below). Thus, I use the distribution of earnings at the first job observed in

the PSID. I use the same sample restrictions as in construction the liquid wealth deciles, and

match deciles of the initial earnings distribution.

The marginal distribution of learning ability, (µL, σL) are identified from the variance of

earnings growth rates by age (Equation 2.5.12), and the average growth rate over the life-cycle,

estimated using Equation 2.5.15. σL influences the variability of earnings growth over the

life-cycle by changing the dispersion of human capital growth, while µL alters the average rate

of human capital growth.

Correlations

The final three parameters to estimate are the correlations between initial wealth, human

capital, and learning ability, ρAH , ρAL, ρHL. To identify these parameters, as well as average

learning ability µL, I estimate two Mincer equations on panel data and stratify individuals by

their initial wealth in the PSID and AFQT scores in the NLSY79 (a proxy for learning ability).

In both cases, I use specification Equation 2.5.15 on individuals ages 25 to 54.

ln(Yi) = β6 +
5∑
q=2

1qβ
q
7 + β8Agei +

5∑
q=2

βq9 × 1qAgei +X4,iδ4 + ϵi (2.5.15)

where q refers to either the quintile of initial wealth or AFQT scores. I add N(0, 0.15)

measurement error in my model-generated analog to avoid singularity.
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Relating wealth to the slope and intercept of earnings profiles allows me to discipline

the correlations between wealth and human capital as well as learning ability (ρAH and ρAL).

This, in conjunction with the liquidity effects estimated from the re-employment elasticities,

disciplines the correlation between initial wealth and intial human capital. Intuitively, liquidity

effects serve to depress initial earnings for low-wealth individuals, meaning that the variance

in human capital is likely to be lower than previously estimated. The slope for individuals from

different liquid wealth quintiles allow me to discipline the correlation between initial wealth

and learning ability.

Using the same Mincer equation stratified by AFQT scores, I discipline the correlation

between initial human capital and learning ability, ρHL, as well as the average learning ability

in my sample, µL. The NLSY79 records Armed Force Qualifying Test (AFQT) scores, a

standardized test that is often used as a proxy for ability. Here, it serves as a proxy for

learning ability. I classify individuals into quintiles by their percentile scores using the national

distribution and assess the average growth rate of their earnings. I discuss my sample restrictions

and data construction in subsection A.1.3. Because learning ability acts as the dominant factor

characterizing the slope for life-cycle profiles between ages 25 and 54, this yields inference on

the correlation between human capital and learning ability, σHL as well as µL.

Implementation

Indirect inference can be implemented as either maximum likelihood, by minimizing a

Gaussian objective function, or generalized method of moments. Because I use multiple

datasets, the generalized method of moments approach is a more natural fit. This makes my

estimation analogous to a seemingly unrelated regression (SUR) estimation. Indirect inference

proceeds by first specifying an auxiliary model, (here, the specifications in: section 2.5.2,

section 2.5.2, section 2.5.2), and minimizing the distance between auxiliary parameters from

the data and model simulations. Let T denote the number of observations, who need not be
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observed for every moment included in the auxiliary model. I largely follow the notation from

DeJong and Dave (2011) in the following explanation of the procedure. I estimate the following:

β(Z) = argmax
δ

∆(Z, δ) (2.5.16)

β(Y, θ) = argmax
δ

∆(Y, δ) (2.5.17)

where Z = [z1, ..., zM ] and Y = [y1, ..., yM ] are observed data and model generated data for

observations 1,...,M, respectively. ∆ are specifications (Equation 2.5.10 - Equation 2.5.15)

characterizing the auxiliary model, θ the structural parameters of the model, and β the auxiliary

parameters estimated from the auxiliary model.

βS(Y, θ) =
1

S

S∑
j=1

β(Y j, θ) (2.5.18)

where j is the jth simulation of the model. The goal is to minimize the distance between the

model generated auxiliary parameters and their empirical counterparts. I follow DeJong and

Dave (2011) and minimize the following objective function:

minθΓ(θ) = g(Z, θ)′ × Ω× g(Z, θ) (2.5.19)

g(Z, θ) = β(Z)− βS(Y, δ) (2.5.20)

where Ω is a positive-definite weighting matrix and g(Z, θ) the moments constructed from the

binding functions. For the weighting matrix, I choose the inverse of the variance of the sample

moments var(β(Z))−1. Like Bowlus and Liu (2013), I estimate the variance-covariance matrix

using the following:

V ar(θ̂) = (1 +
1

S
)[gθ′Ω−1gθ]−1 (2.5.21)
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where the jacobian matrix, gθ, is approximated using forward differences. For the model

generated data, I average over S = 100 simulations for each iteration, and impose identical

sample restrictions and attrition rates as in the observed data. I treat simulated data precisely

the same as in my empirical analysis: I impose identical sample restrictions (where applicable)

in my simulations, and force each sample to contain an identical number of observations as

its empirical counterpart. To deal with missing data in the PSID and NLSY, I randomly drop

observations at the same frequency as in the data by age. I do this by wealth and AFQT quantiles

so that the data generating process from the structural model is as close as possible to that in the

data. I simulate separate sets of data for each dataset used in the auxiliary model. I start agents

at age 23 with no labor market experience (i.e., unemployed without unemployment insurance)

and a random draw from the joint distribution of initial conditions.

2.5.3 Estimation Results

I use simulated annealing to estimate the model. This allows me to solve for a global

minimum distance by sampling from the parameter space and comparing objective function

values. With some positive probability, it accepts a new point at which the objective function is

higher than previous, and then searches nearby points. This allows the algorithm to test areas of

the parameter space that other approaches would have ruled out, giving credibility to the global

solution. This solution method is commonly used in search papers that are estimated using

indirect inference, like Lise (2013) and Bowlus and Liu (2013). The parameter estimates are

reported in Table 2.5.3. Notably, the standard errors fit tightly around the estimated values, with

the exception of leisure utility. Because of the differences in scales, some of the parameters are

not directly comparable with Huggett et al. (2011). However, the mean and standard deviation of

human capital shocks are both within the 95% confidence intervals of Huggett et al.’s estimates.

The human capital curvature is higher than estimated in previous search papers, but falls just

37



Borrowing Constraints, Search, and Life-Cycle Inequality Chapter 2

Table 2.5.3: Estimation Results

Category Symbol Model Value Comment

Model Parameters
Subsistence Benefits bL 0.0108

[0.0075,0.0141]
Borrowing Constraint at Qtrly Period-0 Value (2011$): $2939
On-the-job Search Efficiency λE 0.3775

[0.3765,0.3785]
Human Capital Curvature αH 0.4977 BHH: [0.5, 0.99]

[0.4251,0.5704]
Leisure Utility ν 0.0065

[−0.0742,0.0873]
Distributional Parameters

Dist. of ϵ′ (µϵ, σϵ) µϵ = −0.0175 σϵ = 0.1350 HVY: (0.029, 0.111)
[−0.0239,−0.0111] [0.0975,0.1724]

Marg. Dist. of a0 (µA, σA) µA = 0.8458 σA = 1.7556 Mean: $35 011
[0.6811,1.0106] [1.7548,1.7563]

Marg. Dist. of h0 (µH , σH) µH = −0.4278 σH = 0.1928 Mean: $3655
[0.1919,0.1936]

Marg. Dist. of ℓ (µL, σL) µL = −3.7251 σL = 0.2885
[−3.7253,−3.7249] [0.0363,0.5408]

Correlations ρAH , ρAL, ρHL ρAH = 0.4691 ρAL = 0.5811 ρHL = 0.4697 HVY: ρHL = 0.655
[0.4620,0.4762] [0.5783,0.5839] [0.4696,0.4698]

Notes: BHH refers to Browning et al. (1999), and HVY refers to Huggett et al. (2011).

below the bottom of the estimates from Browning et al. (1999), who put the range at [0.5, 0.99],

for models without search frictions.

2.5.4 Fit

The fit for each of the auxiliary parameters is presented in Table A.2.3. There are 74 auxiliary

parameters and 15 structural parameters, so the model should not be expected to perfectly fit

each of the moments. It does fit a number of the auxiliary parameters well, matching the

direction of the SIPP elasticities (though smaller in magnitude), and almost precisely matching

the growth rates by initial conditions. Because the simulations are structured to precisely

mirror the data generating processes of the auxiliary model specifications, I am able to test

to see which simulated auxiliary parameters are statistically different from their empirical

counterparts. These are also presented in Table A.2.3. I show plots comparing the initial

distributions of wealth and earnings in Figure A.2.1. While the initial distributions visually fit
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well, the model predicts earnings more left skewed than the data and wealth more right skewed

than the data. A comparison between the average earnings profile in the PSID and the average

earnings profile generated by the model (a non-targeted moment) is shown in Figure 2.6.6a.

2.5.5 Identification

I show that the auxiliary model draws inference from the intended mechanisms. The left

panel in Figure 2.5.1 shows that application strategies exhibit strong wealth effects as individuals

approach the borrowing constraint. Additionally, individuals who enter unemployment with

identical wages, but different UI replacement rates behave as predicted by Equation 2.5.10. The

dashed blue line and solid red line are two sets of identically productive workers, with the same

previous wages. However, the dashed blue workers receive a replacement rate on their previous

wage of (54%), while the red line workers receive a replacement rate of (32%). The dashed

brown line represents workers who are nearly at the UI cap, and solid yellow workers who are

at the UI cap. The right panel shows that low wealth workers are the only workers affected by

changes in UI replacement rates.
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Figure 2.5.1: Application Strategy by UI and Wealth, Age 25.

Figure 2.5.2 shows the human capital mechanism identified by the auxiliary model. The left
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panel shows that learning ability is associated with large differences in human capital growth,

while the right panel shows that wealth is only weakly associated with human capital growth

by age 25, consistent with the specifications in section 2.5.2. In the data, AFQT differences are

associated with large growth rate differences, while wealth is weakly associated with growth

rates after age 25, indicating that the auxiliary model identifies human capital growth correctly.

The bottom panel shows that as workers age, they spend less time accumulating human capital,

which suggests that using growth rates by age bins correctly identifies characteristics of human

capital growth and depreciation (Equation 2.5.12).
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Figure 2.5.2: Human capital decision rules.
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2.6 Findings

I now use the estimated model to address the central question posed in this paper: how do

borrowing constraints interact with search frictions and human capital to alter life-cycle inequal-

ity? I start by exploring the key mechanisms in the model: worker application strategies and

time allocations. I do this in subsection 2.6.1. Then I explore the contribution of each of these

mechanisms contribute to earnings growth and dispersion over the life-cycle in subsection 2.6.2

through model simulations.

In subsection 2.6.3, I quantify how changes in initial wealth, human capital, and learning

ability impact inequality. I do this two ways: first, in section 2.6.3 I compare the baseline

simulation of the model from subsection 2.6.2 to simulations in which one of the initial

conditions is either increased or decreased in isolation by a standard deviation. I extend this test

by comparing these outcomes to simulations in which two of the initial conditions are altered

by one standard deviation, in either the same or opposite directions. The interaction shows

how the impact of changes in one initial condition can be magnified or mollified by changes

in the others. Then, in section 2.6.3, I explore outcomes for individuals from bottom quintile

of each marginal distribution. With this as the baseline, I give each a “helicopter drop” of

wealth, human capital, or learning ability, and compare outcomes. In both cases, I show that

unemployment risk plays an important role in human capital accumulation, that would not be

captured in models of perfectly competitive labor markets.

2.6.1 Decision Rules

Savings

Age 25 agents in the model increase their savings approximately linearly as their wealth

increases. Figure 2.6.1 shows the contour sets from savings policy functions for agents who
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are employed or unemployed with UI. The top left figure shows savings rates for high learning

ability employed individuals (Figure 2.6.1a). The top right panel, Figure 2.6.1b, shows the

savings decisions of unemployed individuals with different replacement rates, zoomed in on

low-wealth agents. Like Figure 2.5.1a, this shows that borrowing constraints can cause wealth

effects for poor enough agents.
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Figure 2.6.1: Savings rules by employment status.

Labor Market

In the labor market, low wage and low wealth agents respond in predictable ways. Fig-

ure 2.6.2 shows contour plots for agents application rules. The left panel depicts the application

strategy in different wealth and human capital states for workers employed at different piece-rate.

There is a strong wealth effect at low wages: for the same level of human capital, low wealth

agents apply for much more readily available jobs. This is seen by comparing the solid red

and dashed green lines. The right panel shows the application strategy of unemployed agents

without UI, for both low and high learning agents.

In equilibrium, submarket tightness is decreasing across the wage distribution. Figure 2.6.3

shows that each agent type faces a decreasing probability of finding a job as they apply for
42



Borrowing Constraints, Search, and Life-Cycle Inequality Chapter 2

0 0.2 0.4 0.6 0.8 1

Wage

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
p
p
lic

a
ti
o
n
 S

tr
a
te

g
y

Low Wealth/HC

High Wealth/HC

Low Wealth/High HC

High Wealth/Low HC

(a) Employed.

0 20 40 60 80

Wealth

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
p

p
lic

a
ti
o

n
 S

tr
a

te
g

y

Low HC/Learn

High HC/Learn

Low HC/High Learn

High HC/Low Learn

(b) Unemployed without UI.

Figure 2.6.2: Application strategies by employment status for high ability agents.

higher paid positions for both low learning and high learning agents (left and right panel).
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Figure 2.6.3: Employment probability by wage and learning ability.

Human Capital

The next figure (Figure 2.6.4) shows contour sets for time allocation decisions for different

ages and state vectors. The top two panels show time allocation decisions for low and high

learning ability agents at age 25. These show clear evidence of the effect that wealth has on
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time allocation decisions: the dashed green line shows that a low human capital agent spends

in excess of half his time accumulating human capital when he is wealthy, while an equally

productive but poor agent spends less than 10% of his time accumulating human capital (the

solid red line). Likewise, a low wealth, but highly productive agent (the blue line) spends

virtually none of his time accumulating human capital, while a wealthy and productive agent

(the dashed purple line) spends a larger fraction of his time, unless employed in very lucrative

careers. Note that while there are some high wealth (green line), there are relatively few by the

end of the life-cycle, contributing to the overall decline in accumulation time (Figure A.2.1b).
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Figure 2.6.4: Time Accumulating Human Capital.

Some of the difference in human capital accumulation is due to a consumption smoothing

motive, rather than a precautionary motive against unemployment shocks. A consumption

smoothing motive would be present in a Huggett (1993), or Aiyagari (1994) heterogeneous

agenst model; a precautionary motive against unemployment shocks would not. In Figure 2.6.5,

I vary unemployment risk of an age 30 worker by changing δ to δ = 0.01 and δ = 0.05. The

figure shows that when unemployment risk decreases, the gap in human capital accumulation

between a low wealth and medium wealth agent declines for the entire wage distribution.

This shows that unemployment risk has an important role in human capital accumulation.
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The reason is that for unemployed workers, wealth has a first-order effect on application

strategies (Figure 2.5.1) as a worker approaches the borrowing limit. To minimize the cost of

a possible unemployment spell, low-wealth workers substitute intertemporally by decreasing

human capital accumulation.
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Figure 2.6.5: Human Capital Responses to Unemployment Risk.

2.6.2 Sources of Life-Cycle Earnings Growth

Agents in the economy experience substantial earnings growth during the first ten years of

their working career, before remaining relatively flat until retirement (Figure 2.6.6a). Consis-

tent with previous work on inequality, earnings profiles begin to decline as agents approach

retirement. Because the model has no intensive margin, this could be due to either hours or

wages, consistent with Rupert and Zanella (2015) who note that much of the decline in earnings

in the PSID is due to hours. Consumption and wealth profiles roughly follow the same pattern,

though agents decumulate and consumption their savings rapidly at the end of the life-cycle

(Figure 2.6.6b).

Over the life-cycle, the model predicts that growth comes from two sources in two distinct

time periods. Agents initially move to jobs with higher piece-rates to increase their earnings,
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Figure 2.6.6: Profiles of key state and outcomes variables.

Figure 2.6.7a, and then devote substantial time during the middle of their careers to accumulating

human capital, Figure A.2.1b. By the middle of their careers, they spend just enough time

learning to maintain their human capital stocks.

Agents respond in substantively different ways based on their employment status. Fig-

ure 2.6.7a shows that unemployed agents apply for low-paying jobs (relative to those employed),

while their peers without unemployment insurance apply for even lower paying jobs. It would be

easy to conclude that this is the result of differences in human capital, and indeed Figure 2.6.8a

shows substantial differences in human capital among each of these groups. But, unemployed
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Figure 2.6.7: Decision rules by employment status.
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Figure 2.6.8: Human capital and job-finding rates by employment status.

agents without UI simultaneously apply for jobs that offer the highest likelihood of employ-

ment, despite the lower human capital. (Figure 2.6.8b). This is a direct result of borrowing

constraints. Unemployed agents with no UI also have disproportionately lower wealth than their

peers. Rather than face additional consumption risk, they take low-paying jobs that offer high

probabilities of employment.
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2.6.3 Initial Conditions and Life-Cycle Inequality

I run two tests to assess the effects of initial conditions on life-cycle iunequality. Test

1 compares outcomes of agents in the baseline simulation to agents who receive identical

shocks, but whose initial conditions are changed by one standard deviation. After considering

these results, I consider the outcomes of individuals for whom two of the initial conditions

change simultaneously. Test 2 considers the impact of altering a 10th percentile agent’s initial

conditions. In test 2, each agent starts at the 10th percentile of the tested initial condition (with

a correlated draw from the other two), and is compared with an individual at the median of the

tested initial condition (the other two unchanged). The baseline as well as the counterfactuals

for the tests are detailed in Table 2.6.1.

What is unclear is the role of unemployment risk relative to permanent income in human

capital accumulation. To explore this, I alter the labor market so that wages are determined

competitively (µ = 1, w = h ∀ t), and eliminate unemployment risk. This Bewley-style

heterogeneous agent model is nested by my model in section 2.4. I expand on this further in

section 2.6.3.

Test 1: Average Worker

For the average household a standard deviation change in any of the initial conditions is

important. I find that a standard deviation decrease in initial wealth plays a larger role in

determining both lifetime consumption and lifetime wealth than a standard deviation change in

human capital, shown in Table 2.6.2. The reason is that here wealth and human capital have

similar effects: both human capital and wealth improve initial placement and lead to faster

human capital growth. The relatively tight distribution of human capital needed to match the

data makes a change in human capital relatively unimportant compared with changes in wealth.

I also find that learning ability is the primary driver of inequality: a decrease in learning ability
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Table 2.6.1: Initial Conditions

Test 1 Test 2
Variable Value 10th Wealth 10th Human Capital 10th Learning

Wealth
Baseline 35 010.8 −2127.9 8750.2 3989.6
Median 7546.5
+1 St. Dev. 116 503.4
-1 St. Dev. 5062.5

Human Capital
Baseline 3014.0 2671.9 2313.0 2657.1
Median 2962.2
+1 St. Dev. 3654.8
-1 St. Dev. 2485.9

Learning Ability
Baseline 0.025 0.020 0.021 0.017
Median 0.024
+1 St. Dev. 0.034
-1 St. Dev. 0.019

Notes: The table presents the initial conditions associated with the baseline as well as the
comparison group for tests 1 and 2.

leads to little or no human capital growth throughout the life-cycle. This is because earnings

growth is driven by both human capital accumulation and search frictions, making the average

learning ability in the economy lower than in previous papers.11

Wealth plays a role through two channels: first, agents who start poor are rushed to find a

job, consistent with the regularities that I found in the SIPP (section 2.3). Then, they accumulate

less human capital while employed. Figure 2.6.9b shows this effect for the average individual

in the economy. An increase in wealth plays a small role early in the life-cycle, but has little

dynamic effect as the average individual in the economy is not constrained. However, moving

closer to the borrowing constraint has a tangible and dynamic effect on earnings. Until late in

the life-cycle, these individuals have lower earnings than their wealthier counterparts. Human
11In Huggett et al. (2011), they find that average learning ability is 0.321. They need such a large value to match

earnings profiles, but here earnings growth is driven by search frictions. A model without search frictions would
not be consistent with the empirical regularities from the SIPP.
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Table 2.6.2: Test 1 Results

∆ Consumption ∆ Earnings ∆ h ∆ τ ∆ µ′

Change (%) HVY (%) (%) (%) (%) (%)

Wealth
+1 St. Dev. +23.9 +7.1 +2.7 +1.8 +31.1 +1.0
-1 St. Dev. −10.5 −1.6 −2.3 −1.1 −13.8 −1.1

Human Capital
+1 St. Dev. +9.7 +39.3 +10.0 +9.5 +0.8 +0.3
-1 St. Dev. −7.6 −28.3 −7.8 −7.5 −0.8 −0.3

Learning Ability
+1 St. Dev. +24.7 +5.7 +29.7 +29.1 +32.3 +0.5
-1 St. Dev. −15.0 −2.6 −17.9 −17.5 −27.8 −0.3

Notes: The table presents the change in lifetime utility (equivalent variation) for a one standard
deviation change in each of the listed variables. When a variable is changed, the other variables
are left unchanged.

capital has a relatively small effect in both directions, and learning ability plays a big role in

both directions (Figure 2.6.10b and Figure 2.6.11b respectively). While the initial wealth effect
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Figure 2.6.9: Decision rules after wealth change (Test 1).

is important, wealth continues to have an effect by dynamically altering the accumulation of

human capital. A single standard deviation change in wealth alters the accumulation of human
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Figure 2.6.10: Decision rules after human capital change (Test 1).

20 25 30 35 40 45 50 55

Age

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

A
p
p
lic

a
ti
o
n
 S

u
b
m

a
rk

e
t

(a) Application strategy.

20 25 30 35 40 45 50 55

Age

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

P
e

rc
e

n
t

Baseline + Std. Learn

Baseline - Std. Learn

Baseline.

(b) Learning time.

Figure 2.6.11: Decision rules after learning change (Test 1).

capital drastically over the first 20 quarters of work, as shown in Figure 2.6.9b. A change in

human capital does little to alter acquisition over the lifetime, as shown in Figure 2.6.10b. The

interaction between wealth and human capital accumulation is substantial, causing a continued

difference even late into the life-cycle. I consider the role of interactions in Table A.2.2. Among

the notable results are that decreasing wealth and increasing learning ability, which could be

thought of as roughly attending college, increase earnings substantially, but by less than a
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simple increase in learning ability (a 3%) difference). Increasing human capital and learning

simultaneously has a larger effect on earnings than the two changes added together.

Test 2: 10th Percentile Worker

I now assess the impact of changing initial conditions for individuals at the bottom of

the distribution. I test how the outcomes of an individual from the 10th percentile of one

initial condition and the corresponding values of the other two initial conditions changes when

they shift from the 10th percentile to the median for that initial condition (leaving the other

two unchanged). The initial conditions as well as their counterfactuals are summarized in

Table 2.6.1. The outcomes are summarized in Table 2.6.3. Table 2.6.3 indicates that wealth

Table 2.6.3: Test 2 Results

Percent Change
Counterfactual ∆ Consumption ∆ Earnings ∆ h ∆ τ ∆ µ′

Wealth : 10th→ 50th +6.9 +3.5 +0.6 +4.7 +2.1
Human Capital : 10th→ 50th +12.7 +11.8 +11.2 +4.1 +0.4
Learning : 10th→ 50th +25.6 +27.4 +26.5 +59.7 +0.5

Notes: The rows represent comparisons between an individual from the 10th percentile of each
initial condition (with correlated draws from the other two initial conditions), with an individual
at the median of the tested initial condition.

inequality is an important driver of earnings inequality among poor households. While the

impact of an increase in human capital is large, wealth increases lifetime earnings by 3.5%.

For low wealth households, the human capital channel is less active, increasing by 0.6% over

the life-cycle, compared with the estimates for the average household in section 2.6.3 of 1.8%

for a standard deviation increase. Human capital is more important in determining earnings,

though again much of this is from a direct change in their productivity. As before, an increase

in learning ability plays the largest role in both consumption and earnings inequality (25.6%

and 27.4%).
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Figure 2.6.12, Figure 2.6.13 and Figure 2.6.14 explore the mechanisms through which

outcomes change. Figure 2.6.12b and Figure 2.6.14b shows that increases in wealth and

learning ability cause large increases in time devoted to human capital accumulation, while

changes in human capital (Figure 2.6.13b) plays little role on human capital accumulation over

the life-cycle.
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Figure 2.6.12: Changes in response to an increase in wealth.
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Figure 2.6.13: Changes in response to an increase in human capital.
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Figure 2.6.14: Changes in response to an increase in learning ability.

This shows that the effect of a change in human capital is largely direct: productivity

increases directly translate into higher wages, but do not substantially alter decision rules.

On the other hand, wealth and learning do alter decision rules. This is shown more clearly

in Figure 2.6.12a, Figure 2.6.13a, and Figure 2.6.14a, each of which shows the change in

application strategy for unemployed individuals. For these agents, wealth plays a substantial

role in determining the jobs to which a household applies. A 10th percentile household initially

applies for a job that offers a piece-rate of around 40%. After a change in their initial wealth,

they find jobs that offer nearly a 70% piece-rate. At the same time, they accumulate more

human capital, leading to higher income and more productivity overall. These tests are strongly

indicative of the importance of wealth in determining inequality, suggesting that decreasing the

debt of a 10th percentile household may be enough to increase their productivity and decrease

inequality in earnings or consumption.

Human Capital and Unemployment Risk

There are two primary reasons human capital accumulation changes when wealth is altered:

Workers intertemporally substitute in the model to smooth consumption (the permanent income
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effect), and to mitigate the earnings risk from potential unemployment spells in the immediate

future (the unemployment risk effect). To disentangle the two, I make the following changes

to the model presented in section 2.4: agents are paid competitively (µ = 1, w = h ∀ t), and

they are continuously employed at every stage of the life-cycle. Because the model only allows

employed workers to accumulate human capital, I include a probability δ (same as the calibrated

value) that a worker is unable to spend time learning during any period. All parameter values

remain the same. The problem is given in Equation 2.6.1.

Vt(a, h, ℓ, E) = max
c,a′≥a′,τ

u(c) + βE[(1− δ)Vt+1(a
′, h′, ℓ,H) + δVt+1(a

′, h′, ℓ,D)] (2.6.1)

s.t. c+ a′ ≤ (1 + rF )a+ (1− τ)f(h) (2.6.2)

τ ∈


0 if E = D

[0, 1] if E = H

(2.6.3)

h′ = eϵ
′
(h+H(h, ℓ, τ, E)) (2.6.4)

ϵ′ ∼ N(µϵ, σϵ) (2.6.5)

where H means that the worker is able to accumulate human capital and D means the worker

is unable to accumulate human capital. I repeat the same exercise as in tests 1 and 2 and

report the results for changes in wealth in Table 2.6.4. The same exercise for human capital

and learning is shown in Table A.2.4. The table shows that unemployment risk plays a role in

human capital determination. A standard deviation decrease in wealth decreases human capital

by 0.3 percentage points, and time accumulating human capital by 3.8 percentage points, more

than in the perfectly competitive case. In Test 2, moving from the 10th to the 50th percentile

of the wealth distribution causes an additional 0.3 percentage point increase in human capital,

indicating that unemployment risk decreases accumulation. In Test 2, time spent accumulating

human capital increases when the market is perfectly competitive; this is because overall human
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Table 2.6.4: Test 1 Results

∆ Earnings ∆ h ∆ τ
Wealth Change Base No Unemp. Base No Unemp. Base No Unemp.

Test 1
+1 St. Dev. +2.7 +1.0 +1.8 +1.5 +31.1 +19.8
-1 St. Dev. −2.3 −0.6 −1.1 −0.8 −13.8 −10.0

Test 2
10th→50th +3.5 +0.2 +0.6 +0.3 +4.7 +5.8

capital increases for both the 10th and 50th percentile workers, and human capital production

exhibits decreasing returns.

2.7 Conclusion

In this paper, I develop a quantitative model of labor market search to study inequality. The

model considers risk averses workers who borrowing constraints and frictional labor markets,

and accumulate human capital using Ben-Porath production. I estimate this model and use

it to quantify the impact that wealth inequality has on earnings and consumption. I find that

borrowing constraints cause low wealth workers to accept lower-paying jobs, and accumulate

human capital at a slower pace than their wealthier peers. Both effects are important. The model

predicts that a standard deviation decrease in wealth decreases consumption and earnings growth

by more than a standard deviation decrease in human capital. Among poor workers, I find that

increasing wealth can lead to large increases in earnings.

Using the SIPP, I show that borrowing constraints affect labor market outcomes following

an unemployment spell. Constrained workers in the SIPP match to higher paying jobs when

given more generous unemployment insurance replacement rates. I also find evidence that

this effect persists. These results help to discipline borrowing constraints when I estimate the

model.
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I use indirect inference to estimate the model. To do this, I pick reduced-form models that

identify key aspects of my structural model in the data. I target re-employment elasticities

from the SIPP to gain inference on borrowing constraints, as well as life-cycle moments from

the NLSY and PSID to identify the effects of wealth and human capital on growth, as well

as their correlations. By matching these moments and treating the data in the same way, the

model is asked to match the data generating process of the relevant mechanisms in the data.

Despite substantially more moments than estimated parameters, the model fits the reduced-form

moments well, indicating that the model can explain the key mechanisms in the data.

Quantitatively, I find that initial wealth has a larger effect on consumption inequality and

earnings growth than initial human capital. A standard deviation decrease in initial wealth

causes a −10.5% change in lifetime consumption, while a standard deviation decrease in

human capital causes a change of −7.6%. Wealth has an important effect on earnings through

both a worker’s initial placement (−2.2%), as well as his human capital accumulation (−1.1%).

For a worker at the 10th percentile of the initial wealth distribution, an increase to the median

causes an increase in earnings of 3.5%.

My findings suggest that the importance of wealth inequality has previously been under-

stated. I show that when workers face borrowing constraints and frictional labor markets, wealth

occupies a similar role as human capital, and can alter productivity over the life-cycle. In terms

of productivity growth, my counterfactual exercises suggest that increases in wealth lead to

more productivity growth than increases in human capital. Policy and aggregate considerations

are left out of this paper, but these findings suggest that policies aimed at helping constrained

workers, both employed and unemployed, could decrease inequality. Furthermore, the effect of

wealth on productivity indicates that they may increase aggregate productivity in the economy.

Both questions of worthy of further research.
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Chapter 3

Testing the Independence of Job Arrival

Rates and Wage Offers in Models of Job

Search

3.1 Introduction

Is the arrival rate of a job independent of the wage that it pays? The random search model of

Pissarides (2000) assumes a worker’s search intensity determines the number of job offers they

receive, but productivity of the job is drawn randomly, and therefore wages are independent of

arrival rates. Alternatively, the competitive search model of Moen (1997) assumes the existence

of submarkets characterized by job arrival rates and wages. In this paper, we test the defining

feature between these types of models. Specifically, we test the assumption that job finding

rates and the wages offered are independent, conditional on a set of worker characteristics.

We show that a testable implication of the independence of job arrival rates and wages is that

the semi-elasticity of the hazard rate with respect to unemployment insurance (UI) is constant

across the wage distribution. We test this using a mixed proportional hazards competing risks

(MPHCR) model with data from the National Longitudinal Survey of Youth 1997 (NLSY97).
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We find that the semi-elasticity of the hazard with respect to UI and other worker characteristics

is not constant across the wage distribution. Therefore, we reject the null hypothesis that the

arrival rate of a job is independent of the wage that it pays.

We find that an increase in UI decreases the hazard rate more for low wages than for high

wages. Specifically, if UI is collected in the first nine weeks of unemployment, the hazard rate

decreases by 32% for wages above the 75th percentile and by 63% for wages between the 25th

and 75th percentiles. The differences are robust to specifications of the baseline hazard rate

and is particularly prominent for those with only a high school degree.

Beyond testing for independence, we analyze three prominent job-search models and show

how they map into our testable implication. We show that in search models of random matching

and bargaining with match-specific productivity, and on-the-job search, as described in Roger-

son et al. (2005), job arrival rates and wage offers are independent while in competitive search

they are not. Our results are in line with a competitive search environment but inconsistent

with many models of random search and matching. Given how our results are applicable in

differentiating types of job-search models, our work is similar to other work comparing random

and competitive search such as Engelhardt and Rupert (2017) and Moen and Godøy (2011).

Distinguishing between random and competitive search has implications for labor market poli-

cies. In models of random search, workers may inefficiently reject jobs in equilibrium. For

this reason, labor market policies that reduce this inefficiency may be welfare improving in this

class of models. Under competitive search, workers do not reject jobs in equilibrium. Absent

additional frictions, labor market policies are not welfare improving in models of competitive

search.

Aside from how our results map into prominent job-search models, we help shed some

light onto the matching process. We show that conditional on observable characteristics and

unobservable heterogeneity, the job arrival rate is correlated with the wage of a job. The

presence of this correlation may have ramifications for empirical studies of frictional wage

dispersion, as these studies rely on the independence of job offers and wages to quantify the

degree to which wage dispersion is caused by search frictions, see for example Burdett et al.

(2016) and Hornstein et al. (2011). Similarly, such a correlation has implications for modeling
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the way in which workers match to jobs and the degree of mismatch within the labor market.

Recent studies of sorting and mismatch again fail to incorporate such a correlation by specifying

a matching function that is independent of job productivity, see for example Gautier et al. (2010),

Gautier and Teulings (2015), and Lise et al. (2016).

3.2 Independence of Wages and Job Arrival Rates

In this section, we present a theoretical framework in which the arrival rate of jobs is or

is not independent of the wage offered conditional on worker characteristics. All of the tests

will be conditional on worker characteristics and we will refer to this simply as independence.

Assume that there exists J different wages, where J = |J | and J = {w1, w2, . . . , wJ}, and

the probability of drawing each wage wj is P (Xi(t), w = wj, t) where t is time, and Xi(t) is

worker i’s characteristics at time t. The job arrival rate at time t for wage wj > wiR, where wiR
is the reservation wage of worker i, is composed of the probability the worker receives a job

arrival, µ(Xi(t), t), times the probability of drawing wage wj . The hazard rate for transitioning

to a particular wage, when job arrival rates are independent of the wages offered is

h(Xi(t), wj, t) = µ(Xi(t), t)P (Xi(t), w = wj, t), (3.2.1)

a common assumption in many standard job-search models. The total hazard rate of transition-

ing to employment at time t is

h(Xi(t), t) =
J∑

wj≥wi
R

µ(Xi(t), t)P (Xi(t), w = wj, t)

= µ(Xi(t), t)P (Xi(t), w ≥ wR, t). (3.2.2)
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Alternatively, if job arrival rates are dependent on the wage offered the hazard rate is

h(Xi(t), wj, t) = µj(Xi(t), t)P (Xi(t), w = wj, t) (3.2.3)

= µj(Xi(t), t). (3.2.4)

where the job arrival rate, µj(Xi(t), t), is specific to the wage wj and therefore P (Xi(t), w =

wj, t) = 1. If the job arrival rate is wage specific, the total hazard of leaving unemployment to

any wage above the reservation wage is

h(Xi(t), t) =
J∑

wj≥wi
R

h(Xi(t), wj, t).

Assume there exists a factor X̄ that has no effect on the distribution of wages offered, i.e.,

∂P (Xi, wj)/∂X̄ = 0, but has an effect on the job arrival rate, ∂µj(Xi, t)/∂X̄ ̸= 0. Then if job

arrival rates are independent of the wage offered, the semi-elasticity of the hazard with respect

to X̄ is
∂h(Xi,wi,t)

∂X

h(Xi, wi, t)
=

∂µ(Xi,t)
∂X

P (Xi, wj)

µ(Xi, t)P (Xi, wj)
=

∂µ(Xi,t)
∂X

µ(Xi, t)
for all wj > wiR. (3.2.5)

Factors that do not affect the wage offered should affect the hazard rate uniformly across the

distribution of wages; the semi-elasticity with respect to X̄ does not differ across wages.

We test for independence by examining how changes in unemployment insurance (UI)

affects the hazard rate across the wage distribution. In the case of independence, if UI rises, the

hazard rate changes uniformly across the wage distribution. Alternatively, if the job arrival rate

and the wage offered are dependent, then the semi-elasticity of the hazard rate with respect to

UI differs across the wage distribution.

3.3 Data

To test the independence assumption, we use data from the National Longitudinal Survey

of Youth (1997), conducted by the U.S. Bureau of Labor Statistics, for the years 1997 through
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2009. The survey tracks men and women in the United States over time who were between 12

and 16 in 1997. We use the individual-level panel data set information on gender, education,

race, age, urban status, hourly wage, unemployment insurance collection status, searching for

a job, and labor force status over time. With the information on labor force status, we are able

to determine whether an individual is employed, not employed and searching for work, or not

employed and not searching for work.

We use a flow sampling approach to construct the data set that we use in our analysis. This

means that we record the beginning of each duration when an individual transitions into a new

labor force state as defined by employed or not employed. We limit the number of observations

per individual starting each state to ten and begin tracking an individual’s weekly labor force

status after an individual has completed his or her most recently obtained level of education.

Our starting point follows Bowlus et al. (1995), Eckstein and Wolpin (1995) and Engelhardt

(2010) among others. When a respondent transitions into a new labor force state, the duration

is recorded as well as why the state ended. We cut the data in two ways and refer to each as

the standard and inclusive data sets. In what we define as the “standard,” we record the time

the unemployed is in the unemployed state and capture whether he or she became employed.

If an individual transitions out of the labor force during a spell, then the spell is excluded

from the standard data set following van den Berg and Ridder (1998), Bontemps et al. (2000),

among many others. We analyze this less inclusive cut of the data because it is effectively the

standard as it aligns with most theoretical search models focused on those strictly in the labor

force. Alternatively, the second “inclusive” data set estimates the model where unemployment

is redefined as not employed. As a result, the number of spells greatly increases. To account for

whether an individual is searching, we include a time varying covariate that records whether an

individual is searching for a job. We do not estimate two states, unemployed and outside the

labor force, because many individuals transition from outside the labor force to employment

in our data (a standard empirical fact). To keep the notation and terminology of the empirical

model simple, we will define the unemployed and those outside the labor force as not employed

for both data sets. Estimation using the standard and inclusive data sets is effectively identical

with this rewording.
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In terms of notation, we account for how an individual spell ends. Our notation for

individuals who are hired while not employed (or unemployed) is d = 1 and zero otherwise.

The duration of time spent not employed is represented by t. Some of the durations are

censored as seen by the fact that the mean number of individuals transition to employment

is not one. The model we estimate assumes censoring occurs randomly and the estimation

is adjusted accordingly. In these cases, d = 0. We cut the data into three submarkets at the

25th and 75th percentiles, as required by our empirical specification; therefore if a duration

ends with a low, medium, or high wage draw, then we represent the event as dL = 1, dM = 1,

and dH = 1, respectively. If a duration ends and the wage offer is missing, then di = 0 for

i ∈ {L,M,H} and the missing observations are assumed to occur randomly and the probability

is excluded. The covariates used in the analysis are the respondent’s gender, years of schooling

completed, race, urban status, age, wage at the time of transition to employment, and a dummy

for whether the individual is collecting unemployment insurance. When using the inclusive

data set, a dummy for whether an individual is searching for employment is incorporated into

the covariates. We define X(t) as the baseline covariates for the not employed, which includes

unemployment insurance, and in the case of the inclusive data set, job searching. Due to the

non-parametric baseline, computational weight of the model, and known measurement issues,

the unemployment insurance (UI) collection status is a dummy variable equal to one if the

individual collected UI in any particular 10 week interval. Similarly, whether a worker is

searching for employment is averaged over 10 week intervals. Intervals are collected for the

first 50 weeks and one final variable for all the time after 50 weeks.

The descriptive statistics of the not employed for each data set are in Table B.1.1.

3.4 Empirical Specification

We build our test on the duration literature and specifically the MPHCR model. If there

exist J different wages, where J = |J | and J is the set of all wages, then the observed failure

time T is the minimum of the failure time at each wage, that is, T = mini∈J (Ti) and the cause

of failure, I , is the argument minimum. In terms of a competitive search model, the cause of
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failure is observed by the wage, that is, if an individual leaves unemployment to a wage j ∈ J ,

then failure is caused by matching atwj . Thus, we observed the joint distribution (T,W ) where

W identifies the argument minimum I .

It is well known that without further assumptions the latent distribution of failure times is not

identified from the observed distribution (T,W ) (Cox, 1959). We impose a mixed proportional

hazard structure so that latent failure times depend multiplicatively on the observed regressors,

duration length and unobserved heterogeneity. Heckman and Honoré (1989) show identification

of such models relies on variation in latent failure times with the regressors. Abbring and

van den Berg (2003) relax this assumption and show that less variation is needed with multiple

independent draws from an individual’s observed distribution, that is, multiple spells.

We rely on the MPHCR model to identify a baseline hazard across time for each wage, λwj
(t),

that is constant for all individuals, an unobservable component, V n
wj

, that is individual specific

that varies across wages, and an individualized observable component e
∑K

k=1 β
k
jX

k
i (t) = eβjXi(t),

for wage j, individual i, and covariates k = 1, ..., K. The functional form is described in detail

in Abbring and van den Berg (2003) including the notation we are using such as the matrix

notationXi(t) and βi. This results in three types of heterogeneity: matching rates across wages

are heterogeneous in terms of matching time, and individuals are heterogeneous with respect

unobservable and observable factors (e.g., value of leisure and age, respectively). We assume

three wage categories, a low wage (wL), a medium wage (wM ), and a high wage (wH), in

which individuals can find jobs; and three unobservable components, or n = {0, 1, 2}. For

example, V 0
wL

can imply low search intensity of an individual of type “0” in finding a low wage

job and V 1
wM

can imply high search intensity of an individual of type “1” in finding a medium

wage job. Since we only use two continuous covariates, we are restricted to estimating three

different wages due to identification restrictions. Furthermore, we do not include more than

three individual unobservable factors because the fit does not improve significantly after three.

Given the unobservable components, number of markets, and non-parametric approach, we

are left to identify a discrete distribution of agents with 33 points of support. For example,

individual of type Xi(t) with an unobservable type n = 0 across all wages will match at rate

λwL
(t)eβLXi(t)V 0

wL
for wL, at rate λwM

(t)eβMXi(t)V 0
wM

for wM and at rate λwH
(t)eβHXi(t)V 0

wH
for
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wH making the worker’s total hazard rate:

λ(t) = λwL
(t)eβLXi(t)V 0

wL
+ λwM

(t)eβMXi(t)V 0
wM

+ λwH
(t)eβHXi(t)V 0

wH
. (3.4.1)

The probability of observing an unemployment spell of length t ending with a wage w for the

individual described above is:

f(t, w,Xi(t)) = λ(t)e−λ(t)
(
λwL

(t)eβLXi(t)V 0
wL

λ(t)

)dL
(
λwM

(t)eβMXi(t)V 0
wM

λ(t)

)dM
(
λwH

(t)eβHXi(t)V 0
wH

λ(t)

)dH

(3.4.2)

= e−λ(t)(λwL
(t)eβLXi(t)V 0

wL
)dL(λwM

(t)eβMXi(t)V 0
wM

)dM (λwH
(t)eβHXi(t)V 0

wH
)dH

(3.4.3)

where dj is a dummy that takes on the value 1 if w = wj is observed for j ∈ {L,M,H} and 0

otherwise.

3.4.1 Likelihood Function

Since we allow for three types of unobserved heterogeneity in each wage hazard the support

for the mixing distribution has 27 points. Denote pk, k = 1, . . . , 27 as the probability associated

with each point in the support andV = {(V 0
wL
, V 0

wM
, V 0

wH
), (V 1

wL
, V 0

wM
, V 0

wH
), . . . , (V 2

wL
, V 2

wM
, V 2

wH
)}

as the set of points in the support. Following the identification restrictions in Heckman and

Honoré (1989) and Abbring and van den Berg (2003), we normalize the mixing distribution in

each market such that V 0
wL

= V 0
wM

= V 0
wH

= 1.

An individual’s contribution to the likelihood function is:

li =
27∑
k=1

pk

10∏
s=1

f(ts, ws|Xi(t), V ) (3.4.4)

where ts is the length of unemployment spell, and s = 1, 2, . . . 10 is the maximum number of

possible spells per individual. Note the multiple spells for each individual, or stratum, provides
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both power and dependence between the covariates and unobservables. The total log likelihood

function is:

L({pk}27k=1, {λwj
(t), βj}j∈{L,M,H}, {V n

wj
}(j∈{L,M,H},n=1,2)|X, t, w) =

N∑
i=1

log(li) (3.4.5)

We estimate the likelihood function for two specifications for the baseline hazard: Weibull,

λwj
(t) =

kj
aj

(
t
aj

)kj−1 where aj is the scale parameter and kj is the shape parameter in market

j and piecewise exponential, λwj
(t) = λqwj

, where q = 1 . . . , 6 is allowed to vary at 10 week

intervals and is constant after the first 50 weeks.

3.4.2 Likelihood Ratio Tests

We construct and estimate the MPHCR model to test for the independence between wage

offers and job arrival rates, i.e., (3.2.2). We test for independence using (3.2.5), i.e., semi-

elasticities are constant across wages. We test for a constant semi-elasticity by restricting

the coefficients on individual characteristics and the mixing distribution. Since changes in

individual characteristics such as age or education can change the reservation wage, we focus

on changes across the medium and high wage hazards.

The semi-elasticities, such as those described in (3.2.5), for the MPHCR model with respect

to unobserved heterogeneity at the medium and high wages are

∂h(Xi(t),wM ,t)
∂V n

wM

h(Xi(t), wM , t)
=

λwM
(t)eβMXi(t)

λwM
(t)eβMXi(t)V n

wM

=
1

V n
wM

, and similarly

∂h(Xi(t),wH ,t)
∂V n

wH

h(Xi(t), wH , t)
=

1

V n
wH

. (3.4.6)

The semi-elasticitiies of the MPHCR model with respect to a specific individual characteristic
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k in the medium and high wage markets are

∂h(Xi(t),wM ,t)

∂Xk
i (t)

h(Xi(t), wM , t)
=

λwM
(t)βkMe

βMXi(t)V n
wM

λwM
(t)eβMXi(t)V n

wM

= βkM , and similarly
∂h(Xi(t),wH ,t)

∂Xi(t)

h(Xi(t), wH , t)
= βkH . (3.4.7)

Therefore, if the independence assumption holds, or (3.2.2) and (3.2.5), then

V n
wM

= V n
wH
, and (3.4.8)

βkM = βkH (3.4.9)

forβs of factors that do not effect the distribution of wages, i.e. ∂P (Xi(t), w = wj, t)/∂Xi(t)
k =

0. In other words, the the independence assumption implies a series of linear restrictions in the

MPHCR model.

We test the linear restrictions using a likelihood ratio test. To explore the series of restric-

tions, we group them in several different ways to get an understanding of what might be the

specific factor rejecting the null hypothesis of independence. Furthermore, the test requires

∂P (Xi(t), w = wj, t)/∂Xi(t)
k = 0. Therefore, we articulate a variety of restrictions in case

the assumption does not hold for certain group of factors.

In what we call group 1, or restriction 1, we test all the restrictions we’ll examine. Specif-

ically, we test whether unobserved heterogeneity, unemployment insurance, search, and urban

status affects the hazard rate differently for the high and medium wage market. If we fail to reject

these restrictions, then we cannot reject that semi-elasticities for these variables are constant

across the medium and high wage hazards. In other words, we will fail to reject the indepen-

dence assumption under the assumption these variables do not affect the wage distribution. In

terms of the parameters, we are testing

Restriction 1:
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H
(1)
0 : V 1

wM
= V 1

wH

V 2
wM

= V 2
wH

βUIwM
= βUIwH

βUrbanwM
= βUrbanwH

βSearchwM
= βSearchwH

As some of the variables might not satisfy the assumption that they do not affect wage offers,

we introduce several other groupings/restrictions. In restriction 2, we test for whether we can

reject the null using only unobserved heterogeneity, or

Restriction 2: H
(2)
0 : V 1

wM
= V 1

wH

V 2
wM

= V 2
wH

In restriction 3, we test whether the semi-elasticities of the hazard rate with respect to UI,

urban status, and job search varies across the wage distribution:

Restriction 3: H
(3)
0 : βUIwM

= βUIwH

βUrbanwM
= βUrbanwH

βSearchwM
= βSearchwH

Finally, we estimate our least strict restriction in which we assume only UI does not affect

the underlying wage distribution and thus restrict its semi-elasticity across wage hazards to

Restriction 4: H
(4)
0 : βUIwM

= βUIwH

To reiterate, Restriction 4 allows all other factors to affect the wage offer except UI. Also, the

results related to this restriction is a key application to testing for the independence assumption.
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In particular, as discussed in Acemoglu and Shimer (2000a) among others, UI could allow for

workers to search for more productive jobs. If we fail to reject the independence assumption,

then we will be putting such an analysis in doubt.

Given the restricted groupings, we refer to the unrestricted estimation of the model, as found

in (3.4.5), as the baseline and use the unrestricted version to evaluate the restricted versions

using likelihood ratio tests.

3.5 Estimation Results

The estimation results regarding the effect of demographic variables on the arrival rates of

jobs, as well as the baseline time dependent hazard, line up with past studies. For references,

Devine and Kiefer (1991) and Eckstein and Van den Berg (2007) provide in depth surveys on

the empirical search literature with the former more closely related to our work given its focus

on reduced form approaches. Tables B.1.2, B.1.4, B.1.6, and B.1.9 provide a summary of our

results including the results from Restrictions 1-4 for the Weibull hazard with standard data,

Weibull hazard with the inclusive data, the piecewise exponential hazard with the standard data,

and the piecewise exponential with the inclusive data, respectively. Tables B.1.3, B.1.5, B.1.8,

and B.1.11 provide the estimates from the demographic effects including UI for the Weibull

hazard with standard data, Weibull hazard with the inclusive data, the piecewise exponential

hazard with the standard data, and the piecewise exponential with the inclusive data, respectively.

Finally, Tables B.1.7 and B.1.10 provide estimates for the piecewise exponential baseline using

the standard and inclusive data sets, respectively. The estimated probabilities pk for k = 1, .., 27

have been suppressed for brevity, but can be provided upon request.

In terms of race and gender, our estimates are in line with the broader wage literature as

surveyed in Darity and Mason (1998) and many other places. Specifically, we estimate males

are more likely to transition to high wage jobs and less likely to transition to low wage jobs

across all the specifications and restrictions. Hispanics are relatively equally less likely to

transition to any wage job while blacks are less likely to transition to high wage jobs with little

or no effect for low wage jobs. Bowlus (1997) and Bowlus and Eckstein (2002) are two similar
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examples to ours that empirically analyze gender and racial discrimination, respectively.

In terms of education and experience, our results are in line with the classic Mincerian

earning equations as pioneered in Mincer (1974a) and more generally surveyed in Card (1999).

Specifically, we find the level of schooling as well as a high school diploma increases the rate of

transition to employment and more so for high wage jobs. Individuals with a college diploma

are less likely to transition to low and medium wage jobs while more likely to transition to high

wage jobs. Similarly, experience, as proxied by age, generally increases transition to high wage

jobs and reduces transitions to low wage jobs although note the low dispersion in our data’s age

distribution.

In terms of the baseline hazard, the Weibull and piecewise exponential estimates show

duration dependence to be effectively constant in the standard data set. The estimates for the

inclusive data set provide evidence for the theoretically intuitive result of negative duration

dependence. Given the nature of each data set, the difference in the results under each data set

suggests the ability to transition from outside the labor force decreases over time. Intuitively,

job offers are less likely to arrive the longer you’ve been unemployed when you aren’t searching.

However, if searching, duration dependence is less of a factor, if at all. These estimates are in

line with other empirical studies as surveyed in Devine and Kiefer (1991).

A critical insight of our work is to expand the literature regarding the effects of UI on job

finding rates, such as in Meyer (1990a) and others. Our findings are consistent with those

studies in that UI reduces job finding rates. However, we extend the work by showing the

negative impact of UI on job finding rates falls for higher wage jobs. Specifically, individuals

are much less likely to transition to low wage jobs when collecting UI. However, this effect is

less pronounced at higher wages. Put differently, UI reduces the transition rate for medium wage

jobs more than for higher wage jobs. Restriction 1, 3 and 4, or where the coefficients on UI are

equal across the wage types, is rejected at the 1% level in both types of baseline specifications

and data sets. As UI discourages search, the results strongly suggest UI discourages search

at the low end of the wage distribution more and less so at the upper end. We note this was

predicted by Moen (1997) and others assuming UI affects the value of leisure when unemployed.

Put differently, the competitive search assumption is critical in the analysis of UI as shown in
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Acemoglu and Shimer (2000a) and others. Given our empirical results, the assumption of

changing job finding rates across the wage offer distribution should be used when considering

the efficacy of UI.

In terms of Restrictions 1 & 3, urban status was also considered and constrained with the

assumption it is affecting job search specifically. The estimates are relatively consistent and

show those in urban areas are more likely to transition to high wage jobs and less likely to

transition to low wage jobs. However, the estimates are small relative to the effect of UI as well

as its standard errors. The estimates are in line with the empirical work such as that surveyed

in Holzer (1991). Refer to Wasmer and Zenou (2002) for modeling the dynamics in a search

environment.

Under the inclusive data set, we estimate the effect of job search on the arrival rate of jobs.

Furthermore, we include it in the Restriction 1 & 3 tests. We find it increases the transition rate

for the low and medium wage hazards as the search literature suggests and more so for the low

wages. Its impact on high wage jobs appears ambiguous and is an interesting fact for further

study. Note, the standard errors are relatively large.

Finally, we test for variation in the unobservable factors. Historically, the literature has

suggested search costs, which are unobservable, can explain the fact that individuals with low

wages spend more time unemployed ((Eckstein and Wolpin, 1995)). As a result, these factors

can be interpreted as search intensity. Given this view, we reject that search intensity is constant

across wages at the 1% level in Restrictions 1 and 2 in all our results: the Weibull and piecewise

exponential baseline and the standard and inclusive data sets. In effect, unobservable search

intensity is variable after controlling for the reservation wage. Our results along this line, as

well as those testing urban status’s semi-elasticity, should be interpreted with caution as these

unobservable factors could be affecting the likelihood of accepting an offer and not simply

finding an opportunity.
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3.6 Test Results

As noted above in Section 3.5, we nearly uniformly reject at the 5% level the restrictions

imposed by (3.2.2), or more specifically, (3.2.5) for either of the different specifications of

the data or baseline hazard. In particular, the effects of all the variables considered affect the

medium and high wage differently! In other words, we reject the idea that the wage offer and

job arrival rate are independent even after controlling for worker characteristics.

We run two different types of robustness checks of our results. In particular, what happens

when the low, medium, and high wage thresholds are dependent upon an individuals education.

Furthermore, how does the functional form of the MPHCR model compare to a standard search

model.

3.6.1 Test Results with Education Based Wage Thresholds

In terms of controlling for years of schooling and graduation status, we vary the duration

of unemployment by these factors. However, education is not being used to determine the

definition of low, medium, and high wage thresholds. As a check of our results given this

restrictive assumption required by the MPHCR model, we re-estimate the model by education

group, that is, we assume there are separate markets by level of education, and given the separate

markets, we redefine low, medium, and high wages by education type.

The descriptive statics of wages by education and accompanying thresholds are provided

in Table B.1.12. The results from the likelihood ratio tests are provided in Tables B.1.13 and

B.1.14 for the Weibull and piecewise exponential specifications, respectively. In the separated

case, we continue to reject all the restrictions at roughly the 5% significance level when looking

at those with a High School education or less. We fail to reject the restrictions in the case of the

College educated. However, the difference may be arising from the fact that we observe very

few unemployment spells for the college educated relative to the number of parameters being

estimated. However, it would be interesting to analyze the education component further if the

identification strategy allowed it.
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3.6.2 Applicability of Reduced-Form Estimates

We take a flexible reduced form approach to test the assumptions used in labor market

search models. Therefore, our results can arguably be applied to the literature as a whole.

However, the reduced form approach we take still contains some structure. In particular, we

use a proportional hazard function. As a result, the identification strategy we employ may not

be flexible enough to fit the entire class of search models. To investigate the issue, we simulate

data using the model and parameter estimates from Eckstein and Wolpin (1995) and estimate

our reduced from model using the simulated data. We then estimate the Kullback-Leibler (KL)

divergence of our model to the true data generating model of Eckstein and Wolpin (1995).

Define q as the probability distribution of duration times produced from our reduced from

estimates, and p as the probability distribution of duration times from the true model. The KL

distance is defined as

DKL(p||q) =
∫ ∞

0

p(t) ln

(
p(t)

q(t)

)
dt

where t represents time. As we note below, in our interpretation, DKL is relative to the entropy

of the true distribution, given by

H(p) =

∫ ∞

0

p(t) ln[p(t)]dt,

and measures the additional data required to capture the true model using the incorrect one.

The entropy of the true distribution, H(p), measures the uncertainty of duration times, which

can be interpreted as how informative a draw from the distribution is for understanding the

underlying random variable, unemployment duration. The KL distance is the relative entropy

between the true distribution of duration times and the distribution of duration times estimated

by our reduced form approach. The entropy of our reduced form model is H(p) +DKL(p||q).

If DKL = 0 then a draw from our reduced form model is exactly as informative about the

duration of unemployment as a draw from the true distribution; therefore, we use the KL

distance as a measure of how informative our reduced form model it about the true distribution
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of unemployment duration times.

The Kullback-Leibler divergence values are in Table B.1.15 where we give the KL values

for the different sub-markets estimated in Eckstein and Wolpin (1995). Although the Eckstein

and Wolpin (1995) estimates have enormous flexibility by re-estimating the parameters for

each sub-market, we estimate all the markets simultaneously. Therefore, our unobservable

heterogeneity in particular is not as flexible as that found in what we assume to be the true

model.

Given the interpretation of KL, we require between 1.65% and 5.37% additional bits of

information to describe the distribution of unemployment duration using our reduced form

version depending upon the sub-market one’s considering. Given the limited amount of infor-

mation required to describe the Eckstein and Wolpin (1995) versus our reduced form estimates,

we argue the reduced form estimation can adequately capture more specific search models.

3.7 Application to Common Models

In this section, we discuss two sets of models our results reject. Due to the large and varied

literature on labor market search models, we discuss two classic examples in which the hazard

rate of unemployment does and does not respond as we have shown. Let λ(w,X) equal the

rate at which an individual transitions from not employed to employed with a wage w where X

is observable and unobservable factors affecting an individual’s transition rate. Finally, let wR
represent an individual’s reservation wage. Specifically, if wi < wR, then λ(wi, X) = 0. To

reiterate, for a model’s hazard rate to be consistent with the data it must satisfy the following

criterion:

∂h(Xi,wi,t)
∂X

h(Xi, wi, t)
̸=

∂h(Xi,wj ,t)

∂X

h(Xi, wj, t)
(3.7.1)

for any wi ̸= wj , the semi-elasticity of the hazard rate with respect to some observable or

unobservable factor that affects the offer rate cannot be constant across wages. To show how

this applies to common search models of the labor market, we discuss the hazard rate of two
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well cited search models.

Example 1: Random Matching and Bargaining with Match-Specific Productivity

We are defining this example using the terminology described in Rogerson et al. (2005),

which surveys a large group of search models found in Section 4.4 of their paper. The model

describes a wide variety of models in the literature. Following the notation and description in

Rogerson et al. (2005), one can determine the model’s equilibrium with two conditions,

yR = b+
αωθk

αe(1− θ)
, and (3.7.2)

(r + λ)k = αe(1− θ)

∫ ∞

yR

(y − yR)dF (y), (3.7.3)

where y is productivity, yR the reservation wage, b is unemployment utility, θ is a bargaining

parameter, k is the vacancy cost for a firm to hold a job open until filled, r is the discount rate,

αe is the rate a firm matches with a worker and αω is the rate a worker matches with a firm, and

λ the job destruction rate.

Given the standard equilibrium conditions,

λ(w, b) = αωf

(
w − (1− θ)yR(b)

θ

)
(3.7.4)

because w = yR + θ(y − yR). Notice that the underlying unobservable characteristic that

determines the reservation wage is the unemployment utility b. Therefore, the only observable

or unobservable factor X that could change the hazard rate is b. Below we suppress the

reservation wage’s dependence on b, i.e. yR = yR(b), for ease of notation. If one assumed that

b is a function of unobservables and an observable unemployment insurance (UI) component,

then the result would be

∂λ(w,b)
∂b

λ(w, b)
=

∂αω

∂b
f
(
w−(1−θ)yR

θ

)
+ αω

∂f
(

w−(1−θ)yR
θ

)
∂yR

∂yR
∂b

αωf
(
w−(1−θ)yR

θ

) , (3.7.5)
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and the criterion
∂λ(wi,b)

∂b

λ(wi, b)
̸=

∂λ(wj ,b)

∂b

λ(wj, b)
in this model would simplify from

∂αω

∂b
f
(
wi−(1−θ)yR

θ

)
+ αω

∂f
(

wi−(1−θ)yR
θ

)
∂y

∂yR
∂b

αωf
(
wi−(1−θ)yR

θ

) −
∂αω

∂b
f
(
wj−(1−θ)yR

θ

)
+ αω

∂f

(
wj−(1−θ)yR

θ

)
∂y

∂yR
∂b

αωf
(
wj−(1−θ)yR

θ

) ̸= 0

(3.7.6)

to
∂f

(
wi−(1−θ)yR

θ

)
∂y

f
(
wi−(1−θ)yR

θ

) −

∂f

(
wj−(1−θ)yR

θ

)
∂y

f
(
wj−(1−θ)yR

θ

) ̸= 0. (3.7.7)

Given the simplified model and interpretation of b and UI, the criterion is satisfied and our results

do not reject this model. Our criterion does not reject this model because the distribution f(y)

is not discrete or flat and bargaining exists. To put it differently, if the surplus was split evenly

irrespective of the reservation wage, or drawing a particular wage is uniformly distributed, then

the model would fail our criterion test.

However, the naive interpretation of b as being a function of UI is not correct. In particular,

UI is only collected when an individual is laid off due to lack of work. Therefore, the workers

outside option used during the bargaining does not include UI. As a result, the standard model

must be rewritten. Following the notation of Rogerson et al. (2005), the flow utility for

unemployed workers is either

rU = b+ αω

∫ ∞

yR

(Wy[w(y)]− U)dF (y), or (3.7.8)

rUUI = b+ bUI + αω

∫ ∞

yR

(Wy[w(y)]− U)dF (y) (3.7.9)

where the latter is the asset value of unemployment for those laid off collecting UI, i.e., those

who lose their jobs, and the former equation determines the asset value used as the threat point
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in the Nash bargaining process. As a result, the wage equation becomes

w = rU + θ(y − rU), (3.7.10)

and the hazard rate becomes

λ(w, b) = αωf

(
w − (1− θ)rU(b)

θ

)
. (3.7.11)

As U is not a function of whether an individual is collecting UI, our empirical results reject this

more accurate representation of the model. Specifically,

∂λ(w, b)

∂bUI
= 0, (3.7.12)

for all w > yR and as a result the elasticity is constant across w.

To summarize, our criterion for this class of models rejects them when UI does not change

the bargaining position of the workers. However, in the naive case, we fail to reject these models

due to bargaining.

Although we will not prove it here, it may be of interest that one could extend the model to

include search intensity. In such a case, ∂αω

∂b
̸= 0. As it is equal across wage draws, we reject

these predictions using our empirical estimates.

Example 2: On-the-Job Search via Burdett and Mortensen (1998)

Again following the notation in Rogerson et al. (2005), for the simplest case where the

arrival rates of job offers while unemployed (α0) and employed (α1) are equal, α0 = α1 = α

and the interest rate is approximately zero, r ≈ 0, the wage offer distribution is

F (w) =
λ∗ + α

α

(
1−

√
y − w

y − b

)
(3.7.13)

where λ∗ is the separation rate, y is the productivity of the job, and b is the worker’s flow value

of unemployment. The support of F is [b, w̄] for some w̄ < y where the upper bound can be

found using F (w̄) = 1. It can be shown that (3.7.13) is continuous on its support; therefore,
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the derivative exists and the p.d.f. is:

f(w) =
λ∗ + α

2α

√
y − b

y − w
. (3.7.14)

Given the p.d.f of the wage distribution, the hazard rate of matching at wage w is,

λ(w, b) = αf(w) (3.7.15)

=
α(λ∗ + α)

2

√
1

(y − w)(y − b)
(3.7.16)

and the elasticity of the hazard rate with respect to b is,

∂λ(w,b)
∂b

λ(w, b)
=

1

2(y − b)
(3.7.17)

Since the elasticity of the matching function with respect to the workers unemployment insur-

ance as defined by b is independent of the wage at which they match, the model fails to satisfy

our empirical results.

Example 3: Competitive Search via Moen (1997)

Following notation from Moen (1997)1, the probability a worker receives a job offer from

sub market i is

p(θi) =
rU − b

wi − rU
(r + s). (3.7.18)

The hazard rate to matching to wage wi is given by

λ(wi, b) = p(θi)prob(w = wi) (3.7.19)

=
rU − b

wi − rU
(r + s) (3.7.20)

since prob(w = wi) = 1 if matching in submarket i.
1We have changed the flow value of unemployment from z to b for consistency across examples.
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The semi-elasticity of the hazard rate with respect to b is,

∂λ(w,b)
∂b

λ(w, b)
=

∂rU
∂b

w − rU
+

∂rU
∂b

− 1

rU − b
. (3.7.21)

Since the value of searchU must be the same across submarkets it is clear that the semi-elasticity

of the hazard rate with respect to b is not constant across wages.

To summarize, our rejection of the independence assumption has the implication of rejecting

two canonical job-search models: Random matching and Bargaining with Match-Specific

Productivity, and On-the-Job Search. However, in a model of competitive search in which

workers are identical, job arrival rates and wage offers are not independent.

3.8 Conclusion

Using a multi-spell mixed proportional hazards competing risks model with National Lon-

gitudinal Survey of Youth (1997) data, we reject the assumption that the semi-elasticity of the

hazard rate is constant for factors which do not change the wage distribution. We show that

this assumption can be rejected if these factors include unemployment insurance, urban status,

and unobservable characteristics. In other words, after controlling for worker characteristics,

we reject an assumption that the wage and job arrival rates are independent.

The implications are important in interpreting the effect of UI as well as job-search models

in general. In particular, we have shown our results reject two well used models in the job-search

literature. Furthermore, we provide empirical support for the hypothesis that UI affects job

hiring rates differently across the wage offer distribution.

Given the importance of unemployment insurance and the use of search in modeling the

duration of unemployment, our results are an important step in defining the future trajectory

of the search literature. In particular, our results point heavily toward a world where workers

search in a market where wage offers and the rate of job arrivals are not independent.
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Chapter 4

The Effect of Public Education

Expenditures on Intergenerational

Mobility

4.1 Introduction

Does public education act as a vehicle for decreasing income persistence? This is an age-old

question, contentious both in political and economic circles, for which there is no conclusive

answer. The focus of this paper is intergenerational mobility, or income persistence across

generations. Intergenerational mobility is a special branch of inequality studies that deals with

the persistence of income across generations. It attempts to quantify the extent to which a

parents’ income explains their children’s income in the future, thus establishing a generational

link in poverty or economic status. While many studies have quantified the degree to which

a parents’ income is related to their child’s income, few have explored the mechanisms. In

particular, there are few papers that focus on the interplay between government programs and

inequality. The papers that have sought to understand the role of education expenditures on

intergenerational mobility have lacked identification, and thus either constructed a model or
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made descriptive claims. Here, I use court-mandated school finance reforms as exogenous

shifters of per-pupil spending at the state level, following Jackson et al. (2015). I that a

ten-percent increase in per-pupil spending implies between a 2 and 3.5 percent decrease in

persistence of parental income. Given my research design, I believe these results strongly

endorse the belief that government spending on public education has a persistent and causal

effect in increasing intergenerational mobility.

My work follows in the footsteps of two papers that considered the role of government

expenditures on intergenerational mobility. The first of these was Mayer and Lopoo (2008),

which studied the effect of aggregate government spending at the state level. While they did

not have a natural experiment with which to work, they showed that spending in the least

wealthy states increased mobility. More recently, Chetty et al. (2014a) studied the determinants

of mobility geographically as a small subsection of their tome on intergenerational mobility

across the United States. Likewise, they were unable to come to any causal conclusions about

spending, but noted that spending on education was strongly correlated with decreasing income

persistence. What both of these papers suggest is that an instrument is necessary to isolate the

effects of spending on education.

I use court-mandated school-finance reforms to obtain causal estimates of the impact that

changing school spending has on intergenerational mobility. This identification strategy, as

well as the set of court cases, were first employed by Jackson et al. (2015), though I change

the research design to better suit my empirical goals. Because 45 states experienced court

mandated school finance reform between 1960 and now, I have a great deal of variation in both

time and space.

As a number of authors have done before, I employ the PSID to study these intergenerational

links. The PSID is a panel of families that stretches from 1968 to now, and surveys individuals

on a number of relevant characteristics. I then control for potentially competing explanations,

as well as propose mechanisms for the decrease in persistence over time. I merge this with a

number of state-specific, time-varying controls, including per-pupil spending by state over the

same time period. This allows us to employ a two-stage estimation, in which I project spending

per pupil in the first stage and then estimate how much this changes mobility in the second
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stage.

I conclude that a one percent increase in spending on public education will increase mo-

bility by roughly 0.3 percent, which is significant at common statistical levels depending upon

specification. In particular, my results show that gains are restricted to upward mobility among

the least-wealthy, while there are no losses associated to those in the upper income percentiles.

Given that my first stage would be stronger if I were using smaller areas of geographic observa-

tion, I believe that this strongly endorses the idea that public spending on education can improve

intergenerational outcomes for lower-income families1.

In the second section, I briefly discuss the papers most closely related to my empirical

targets and identification strategy. Following this, I will further discuss the empirical strategy

as well as the validity of my empirical design in the third section. In the fourth section of the

paper, I will detail the sources of my data as well as provide descriptive statistics. In the fifth

section, I describe the results of both the first-stage regression and the regression of interest. I

preform robustness checks in section six, and finally conclude in section seven.

4.2 Related Literature

There is a very large empirical literature on the transmission of income status across

generations. The most prominent measures of mobility are an intergenerational elasticity (IGE)

specification (Solon, 1992) and an intergenerational rank association (IRA) (Dahl and DeLeire,

2008), which relates a parents peercentile rank within the income distribution to their child’s.

Among the first to study the intergenerational mobility using the IGE specification was Solon

(1992), who noted that using single year measures of permanent income attenuates estimates of

intergenerational mobility generated classical measurement error and biased estimates toward

less income persistence. Since Solon’s seminal work, authors have explored a number of

topics relating to intergenerational mobility using the same IGE framework. Papers have

explored mobility in other countries (Bjorklund and Jantti, 1997), mobility among daughters
1This is a novel conclusion in the literature: to my knowledge, I am the first to show that public spending on

education increases intergenerational mobility
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(Chadwick and Solon, 2002), as well as how this measure has evolved over time within the

United States (Lee and Solon, 2009). Many papers have explored the extent to which education

explains intergenerational mobility,2 like Ueda (2013) who explores education and mobility in

Asia. Few papers, however, have considered the role of government spending in changing the

persistence of income. To my knowledge, there are two papers that have explored these issues

in depth within the United States, and while both are well worth the read, each lacks strong

identification and is thus unable to say anything causal about government spending’s role in

mobility.3

4.2.1 Intergenerational Mobility Background - Chetty et al. (2014a) and

Mayer and Lopoo (2008)

The first paper that explicitly considers government spending in intergenerational mobility

is Mayer and Lopoo (2008), which uses the log-log framework to describe how government

spending might impact intergenerational mobility. They write an econometric model in the

following way:

ln(Yst) = β0 + β1ln(X̄st) + β2ln(Ḡst) + β3(ln(X̄st) ∗ ln(Ḡst)) + ϵst (4.2.1)

Government spending is defined to be the all government expenditures (i.e., every government

expenditure at the local, state and federal levels) that occur while a son is between 15 and 17

per child. Note that this framework is state-level spending, as they do not have observations of

government spending at smaller geographic regions. They note that this framework can allow

elasticity of son’s income with respect to father’s income to be written as:
2see Chusseau and Hellier (2012) for a more extensive discussion of the literature, as well as a discussion of

some theoretical models relating human capital to intergenerational mobility.
3A third paper Liu et al. (n.d.), considers the impact of government spending in China on intergenerational

mobility. They find a much higher degree of intergenerational persistence in income (β1 = 0.830), and again are
unable to say that β3 is significantly negative. They attribute much of the persistence to differences in spending
on education at the university level, for which there is very little governmental funding. To my knowledge, these
are the only three papers to incorporate government spending in the literature.
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∂ln(Yst)

∂ln(X̄st)
= β1 + β3ln(Ḡst) (4.2.2)

Under this specification, if β3 < 0, then government spending decreases intergenerational

transmission of income. That is, government spending will make the outcomes of children

less dependent upon their parents’ incomes. They estimate three separate models: a baseline

model, a model with state fixed effects, and a model controlling for individual characteristics

as well as fixed effects. They find the sign of β3 to be consistent under the hypothesis, showing

that government spending decreases intergenerational elasticity. However, the coefficient is

insignificant under any specification. Using an F-Test, they do find that government spending

plays a significant role in explaining mobility. They interpret to mean that government spending

is strongly correlated with income so that the individual effect is difficult to determine, but

should still be considered when constructing a model. They reconsider the question by dividing

the sample into three categories of state spending: high, medium, and low. They find that

the differences between low and high-spending states turns out to be positive and significant.

These results are not ideal when interpreting the relationship between government spending

and mobility, as they only indicate that lower spending states have lower mobility.

The second paper, Chetty et al. (2014a), uses more than 40 million tax records of parent-

child pairs and use the intergenerational rank association (IRA) specification first employed

by Dahl and DeLeire (2008).4 This relates a child’s income percentile in the national income

distribution to their parents’ income percentile in the national distribution while they were

children. That is, they estimate the following equation:

pix = β0 + β1piy + ϵi (4.2.3)

while also including a number of controls. The authors analyze mobility across regions within

the United States to explore whether different areas of the United States experience different

degrees of mobility. They define the areas of study to be "commuting zones," areas that are
4The IRA specification has been shown to be more robust to a number of the concerns associated with the IGE

specification. I choose to still employ the IGE specification for reasons that I detail below. See Dahl and DeLeire
(2008) for a better discussion of the reasons one might use IRA instead of IGE
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similar to metro areas, but designed to include rural communities as well. These commuting

zones can generally be thought of as about the size of four counties. They find a great deal of

differences in outcomes across these commuting zones, with regions accounting for as much

as a 10 percent difference in expected outcomes within the national income distribution among

children. They estimate model given in equation Equation 4.2.3 for each of the 709 commuting

zones in the United States. In order to assess mobility within a region, they consider two

measures of mobility:

• Relative mobility: a comparison of how unequal outcomes will be across generations

within the region. They measure this by using β from equation Equation 4.2.3, which

describes how much better off (in percentile ranks) a wealthy individual’s child can expect

to be than a poor individual’s.

• Absolute mobility: a measure of the expected outcomes for children born to a family in

the 25th percentile of the national income distribution within a region. This is given by

α + 25β, and measures where in the national income distribution a child can expect to

end up having been born to a family in the 25th income percentile within a region.

A region could have low relative mobility, but high absolute mobility if everyone within

a region improves over a generation, given by α. Using these measures of local mobility, the

authors find a very large difference across commuting zones: a family at the 25th percentile

living in Charlotte, North Carolina, (the least absolutely mobile location in the sample) can

expect their children to end up 10 percentile ranks lower than an equally wealthy family living

in Salt Lake City, Utah (the most mobile location in the sample). Differences are found in

relative mobility as well: a family from the 100th percentile in Cincinnati, Ohio, have expected

outcomes 42.4% higher than a family from the lowest percentile. Conversely, the wealthiest

families in San Jose can only expect 23.5% better outcomes than the least wealthy in the same

commuting zone.

They further explore the causes of local variation in mobility. They take each of the 709

absolute mobility values and regress plausible causes of different mobility against them. For

example, consider the case of segregation as a cause for differences in mobility:
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(α + 25βCZ) = δ0 + δ1SegregationCZ + ϵCZ (4.2.4)

Using this structure, they explore the impact of the following upon intergenerational mobility:

racial makeup of the CZ, the level of segregation within a CZ, the degree of income inequality,

public good provision and tax policies, school quality, access to higher education, labor market

structure, migration rates, social capital, and family structure. They find three measures of

government involvement to be significant: the local tax rate, government expenditures per

capita and the level of earned-income tax credit provision. They find each measure of K-12

education to be significant in explaining differences in intergenerational mobility, with the rate

of high school dropouts being the most strongly linked to intergenerational mobility. However,

as with Mayer and Lopoo (2008), they do not have a good source of exogenous variation and

are therefore unable to make causal claims about the sources of inequality across mobility,

explicitly describing their results as "descriptive." For this reason, I explore an alternative

research designs.

4.2.2 Educational Attainment Background - Jackson et al. (2015) and

Johnson (2011)

My paper employs an identification strategy following the work of Jackson et al. (2015)

and Johnson (2011). In these papers, the authors use exogenous variation in school spending

generated by court rulings to assess the effect of per-pupil expenditures on a variety of long-run

outcomes.

The first of these papers, Johnson (2011), addresses the differences in outcomes for minority

students brought about by changes in school quality and funding. He uses court-ordered

desegregation, which took place within specific school districts in the United States in the

decades that followed the Brown v. Board of Education (1954) decision. This provides a great

deal of within and across state variation in ways that he describes as "quasirandom." In other

words, many school districts were exogenously ordered to desegregate, which he uses as a source

of variation. In particular, his first stage focuses on changes following the announcement of
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desegregation decisions, because as he notes implementation times might be endogenous. He

includes a very diverse set of school district, state, county and family characteristics in both his

first and second stage estimations and finds that all the long-run outcomes in the study increase

positively for treated minorities, while remaining constant for white students in schools that

desegregated. He employs the restricted PSID matched to the child’s school district, allowing

for a great deal of variation in both the first and second stage. He first estimates the effect of

desegregation on school finances using the following event study framework:

Yc,t =
−1∑
y=−5

πy1(t− T ∗
c = y) +

6∑
y=1

τy1(t− T ∗
c = y) (4.2.5)

+X ′
ctβ + Z ′

ctγ + (W1960c ∗ t)′ϕ+ ηc + λt + ψg ∗ t+ ϵct

The πy parameters act as a placebo test, showing the increase in school spending in each

of the five years prior to court implementation. The τ set of parameters track the change in

spending during the six years following the date of the court ruling, mapping dynamic changes.

His set of controls is quite robust, including a number of alternative war on poverty programs,

local characteristics of school districts, census tract time trends and school district and time

fixed effects. He finds a significant increase in spending for lower income districts. While I will

be doing something similar and then using a projection of school spending in the first stage in

order to assess the effect of spending on long-run outcomes, he embeds these court decisions

in his second-stage event study using the following specification:

Yicb =
−2∑

t−T=−20

αrt−T1(ticb − T ∗
c = t− T ) +

12∑
t−T=0

θrt−T1(ticb − T ∗
c = t− T ) (4.2.6)

+
20∑

t−T=13

δrt−T1(ticb − T ∗
c = t− T ) +Xicbβ + Zcbγ

+ (W1960c ∗ t)ϕr + ηrc + λrt + ψrg ∗ b+ ϵicb
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The variable T is the year in which the individual is 17. This means that t−T is the number

of years until 17, which means that each of the indicator variables will take on the value 1

when a court case takes place ticb − T ∗
c number of years Thus, the θ coefficients map the value

of having additional exogenous spending for each year of schooling 5 through 17. This also

includes placebo tests, by allowing for people who turned 17 before court financed reform took

place (the α coefficients), and for additional years beyond their school age years from the set of

δ coefficients.

In the first stage, he finds that school desegregation is associated with an increase of nearly

$1000, which corresponds to almost a 33 percent change. He performs a number of robustness

checks, all of which conclude that this increase is significant. In the second stage, he finds that

each additional year of exposure to court-ordered reform increases adult wages by 1.2 percent.

He further constructs a set of families in which one child was exposed to reforms, while another

was not, and estimates the effect again. This placebo test produces the same results.

More pertinent to this study is Jackson et al. (2015). They use court-mandated school

finance reforms in order to identify exogenous changes in school spending in much the same

manner that I will in this study. In order to do so, they construct a list of school finance-relevant

court cases, the timing of these cases, and the type of reform that was implemented.5 They

include a detailed history of school reform litigation in the United States:They first note that

court mandated school finance reform took on two distinct legal philosophies separated in time.

The earliest cases (1960s - 1970s) were argued on the basis of "equity," that many school

districts were underfunded relative to their wealthier counterparts. Because school districts

have historically been financed largely by local taxes, poorer neighborhoods had systematically

lower levels of school funding, which litigants argued was unconstitutional (most states have

equal protection clauses that have been interpreted to include a fundamental right to education).

They show that these cases led to a lower variance of funding across states, but not necessarily

an increase in funding. Later cases argued that school districts across the state simply did

not have enough funding to provide "adequate" levels of schooling, thus receiving the moniker

"adequacy cases." These cases were associated with a large increase in funding for lower income
5I have included their list of cases in the Appendix
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schools districts across states, while showing no appreciable decrease in funding for wealthier

districts. I replicate these results at both the state and county level. They further break down

each case into the type of funding reform implemented to address policy questions aimed at

describing the most efficient type of funding scheme.

They follow the same empirical strategy as Johnson (2011) for both the first and second stage,

equations Equation 4.2.5 and Equation 4.2.6. As I will do, they employ the INDFIN dataset

for school finance, which details spending per pupil (among other outcomes) for years 1967 to

now and the PSID for individual characteristics. In the second stage, the authors address long-

run outcomes using the same framework as Johnson (2011) in equation Equation 4.2.6. They

include controls for a number of "War on Poverty" programs, as well as local characteristics

like hospital desegregation, school desegregation and state funding for kindergartens, all at

the county level. Both their event study and 2SLS frameworks imply large increases in long-

run health, education and labor market indicators. In particular, they find that by increasing

spending by 20% for all 12 years of schooling is associated with an additional year of education,

as well as a 52.2 percent increase in income for children from poor families.

4.3 Empirical Strategy

Following previous literature, I will not explicitly model investment in children. Instead, I

will consider what the literature has termed a "intergenerational elasticity" estimate. In essence,

this can be thought of as how much a one percent increase in parents permanent income

would increase their children’s permanent income in percentage terms. I will improve upon the

previous work by using the same court-identification strategy used by Jackson et al. (2015).

4.3.1 Court Rulings as Identification

The prior papers exploring the effect of government spending on intergenerational mobility

lacked strong identification in order to draw causal conclusions from their estimates. Following

Jackson et al. (2015), I have chosen to employ the initial date of school finance reform related
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court rulings as a source of exogenous variation in government spending on public education.

The use of this particular timing is best discussed in Johnson (2011), who argues that it implies

"quasirandom" changes in spending. What this means is that the particular date at which a court

rules on a case is random, while either the implementation or the date at which the lawsuit was

initiated would likely be endogenous.

Of potential importance is that the federal Supreme Court has ruled that there is no funda-

mental right to education. Many states, however, included clauses which have been interpreted

to mean that children have a right to education. This allows a great deal of diversity in the timing

of implementation, and allows for a control group that is apparent in a way that a nationally

mandated standard does not6. There might, however, be some reason to believe that states with

such clauses in their constitutions might have more concern about inequality. While I cannot

explicitly address this concern, many states adopted constitutions written in a similar manner

to the United States Constitution, and all adopted their constitution generations before these

rulings.

Another potential concern is that the fact that such cases have been brought before a court

indicates that there is an unobservable motivation to deal with inequality. I will address this

by using placebo tests on states that heard cases, but did not overturn their previous funding

system in my robustness checks. Presumably, if there was an underlying propensity to decrease

inequality, these other states would see subsequent increases in their funding regardless of

whether the court overruled the finance system or not. I find that this is not the case, and that

states in which school finance was not reformed have higher degrees of persistence over time. In

sum, I believe that these court rulings constitute a valid and strong instrument for identification.

I include a list of the court cases as well as descriptions in Appendix C. The court cases

vary a great deal over time, both in terms of the location of implementation as well as the types

of reform imposed by the court. By the end of my sample, more than 120 cases had been heard

by states regarding school finance. Of these, more than 60 changed their school finance system.

In sum, 29 states changed their school finance system at least once as a result of a court decision.

This gives us a great deal of variation over time, and my empirical specification will allow even
6See Figure Figure 4.4.2 for Court Implementation
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more flexibility.

4.3.2 First-Stage Estimation

I improve upon the work of Jackson et al. (2015) by using classifications of rulings (equity

and adequacy) in my first stage. I also control for the resulting potential endoneity with a time

trend. The reason this is necessary is that the types of rulings correspond to different funding

methods, meaning that later cases would necessarily correspond to more spending. I believe

that this presents less biased estimates of the coefficients upon both the adequacy ruling and

equity ruling variable than simply including a indicator for whether a ruling had occurred in

the past as Jackson et al. (2015) did when estimating their first-stage.

Gst = β0 + β1AR{t≥Tst} + β2ER{t≥Tst} +W ′
stγ + δs ∗ Y ear + δs + νst (4.3.1)

The variables AR{t≥Tst} and ER{t≥Tst} take on the value one if an adequacy or equity

ruling has already taken place in a state. I consider two specifications for time fixed effects:

first, I simply use year fixed effects; second, I use a linear trend for each state in my sample.

It is my belief that linear trends is the appropriate specification, because it seems likely that

each state experiences its own trends in public spending on education based upon economic

considerations. I use only the first ruling, as I believe this is less likely to be determined as a

result of previous rulings. I also separate the rulings into those whose decisions are based on

adequacy, and those based on equity. As a robustness check, I also estimate this only using

the timing of the first ruling in my and the results still indicate a strongly positive coefficient,

though the result is no longer significant. I also estimate two sets of event studies (at the state

level and at the county level) in the following way:

Gst = β0 +
i=−1∑
i=−5

πARt 1t−TAR=i +
t=5∑
t=1

αARt 1t−TAR=i +
i=5∑
i=−5

ωERt 1t−TER=i +W ′
stγ + δt + δs + νst

(4.3.2)
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The omitted category here is states that had an adequacy ruling at time t. I include a set

of state-level covariates, and changes my specification slightly to include state and year fixed

effects. Finally, I repeat this exercise at the county level in order to show the strength of these

results when using a smaller level of geographic variation.

4.3.3 Second-Stage: Intergenerational Elasticity Estimation

Following on the previous literature, I estimate a reduced-form specification of investment

in children. If I believe that parental investment in children increases as income increases,

then it is reasonable to assume that parents with higher income will have children with higher

income. There may be some concern that including government spending may substitute for

some of that spending (decreasing the effect), but because I have no way to deal with private

investment in children, I am unable to address this in my specification. Regardless, this would

only strengthen my results. This second stage equation follows closely from the equation

employed by Mayer and Lopoo (2008), but includes additional state and family covariates, as

well as better government spending data. My specification is given by the following:

ln(Yist) = β0 + β1ln(X̄ist) + β2ln(Ĝst) + β3(ln(X̄ist) ∗ ln(Ĝst)) +Z ′
istα+W ′

stγ + δs+ δtϵist

(4.3.3)

All of my analysis here is at the state level, with fixed effects for each state and each year. I

choose Yist, child’s income, to be recorded between ages 32-34, using the earliest age reported.

This is chosen because lifecycle effects can artificially dampen the estimate of intergenerational

elasticity for ages less than 32 (Haider and Solon, 2006). I average both parents income and

public spending on education over ages 15-17 at the state level. Spending on education is

taken from my first stage predictions. I choose this to maintain a reasonably large sample

size as well as make the results comparable to the previous literature, but I include results

for alternate year specifications below. I include a set of family and individual characteristics

(Zist) and a set of state-level variables (Wst) to control for alternate explanations of my results.

The family and individual characteristics include (depending upon specification) race, gender,
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household size, years of schooling for both parents, as well as the marital status of the family

during childhood. These control for alternate stories of these results based upon different

races, previous educational attainment and family structure. I include state-level measures of

the poverty rate, the unemployment rate, proportion of the population that is black, and Aid

for Dependent Children (AFDC) recipiency rate. Here, I attempt to control for time-varying

state-level variables as well as the compassion for the poor by including the AFDC measure. As

in Mayer and Lopoo (2008), if β3 < 0 I would argue that spending on education significantly

decreases persistence over generations. I would also expect positive values upon β1 and β2, as

I expect that more parental income and government spending will increase children’s income.

4.4 Data

I use the Panel Study of Income Dynamics (PSID) in order to obtain a rich set of covariates

for a set of many birth cohorts. This allows me to include a number of personal and family

characteristics in order to control for alternate interpretations of my results, which will discussed

further in the next section. I measure family income as total family income during the year

and average over the years in which the child is 15-17. A number of papers have shown bias

when single year measures of permanent income are used for parents income (Solon, 1992).

Following the literature, I attempt to control lifecycle effects by measuring child’s income at

age 32, when they are heads of households7.

4.4.1 Public Spending Data

My school finance data was assembled using the school finance dataset maintained by

National Center for Education Statistics (NCES). This data includes measures of per pupil

spending for most states from 1967 until 2011. The years 1967 to 1991 are obtained from the

Census of Government, INDFIN and the Common Core of Data Schol District Finance Survey

(F-33); for these years, this dataset includes administrative data on school spending for every
7See Haider and Solon (2006) to see that these effects disappear after age 32.
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Figure 4.4.1: Spending per-pupil for 1967-2010. Source: NCES

school district in the United States.8 From 1992 onward, data is available at an annual frequency

from the NCES. Spending by different levels of government is shown in Figure 4.4.1.

I also employ state-level covariates including the poverty rate, the unemployment rate,

proportion of the population that is black, and AFDC recipiency rate. The poverty rate is taken

from the 1960 and 1970 censuses, with years following 1980 taken from the St. Louis Federal

Reserve (FRED). The unemployment rate is available at the state level for years 1976-now, also

from FRED. I use the employment to population ratio as well as state fixed effects and a time

trend to project years 1968 to 1975 at the state level in order to make this available for all

years of my study. The proportion of the population that is black is taken from the Survey of

Epidemiology and End Results (SEER) dataset for all the years of my survey, which I include

to control for differing mobility by racial composition of the state. Finally, AFDC measures at

the state level are obtained from the Office of Family Assistance, and include years from 1960

to now. Missing years are linearly interpolated, and then the each variable is averaged over

the years in which the child is age 15-17. I convert all of the school finance variables to 2000

dollars and then take the log of the corresponding average.
8For missing years, I use linear interpolation to fill in data.
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4.4.2 Court Data

I use the list of school finance reform cases assembled by Jackson et al. (2015). Each of

these cases was argued at the state level; that is, upon a school finance system being overturned,

the effects are felt for all school districts within the state. These cases stretch from the 1970s

until present and in total encompass 39 states. Only three states did not implement some type

of finance reform during this time period, though some only implemented legislative measures.

During the timeframe in this study, there are 68 cases in which the state school finance system

was overturned via the court system. There were an additional 60 cases in which state courts

upheld the prevailing school finance system; these are cases that I will employ in my robustness

checks.

They classify court rulings into two types: equity and adequacy. Equity rulings happened

earlier chronologically, and were associated with decreases in the variance of school funding.

That is, the litigants argued that the state constitution mandated an equal quality of education

(via funding) for all students in the state, regardless of income. The second type, adequacy, are

classified to be cases in which the litigants argued that there was a minimum level of education

that the state was required to provide students regardless of income status. While the outcomes

may seem like an exercise in semantics, the results for funding were vastly different.9 In total,

some 25 states experience adequacy reforms, while 14 states undergo reforms via equity rulings.

Here, I present the timings of these reforms:

9See first-stage section in results, or the event studies by county in the Appendix.
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(a) Total number of adequacy rulings 1967-2010. (b) Total number of equity rulings 1967-2010.

Figure 4.4.2: Court Ruling Dates. Source: Jackson et al. (2015)

4.4.3 PSID

Data on children and parents come from the Panel Study of Income Dynamics (PSID)

administered by the Survey Research Center at the University of Michigan. The PSID is

a nationally representative, longitudinal survey of households and individuals in the United

States beginning in 1968. A unique aspect of the PSID is that any member of a household

surveyed in 1968 is surveyed in subsequent years even if they have joined another household or

have started another household. Because of this the PSID is one of the most widely used data

source among studies of intergenerational mobility in the United States. Following Lee and

Solon (2009), I only use the Survey Research Center sample of the PSID.

Information on children’s parents is collected when children respondents are five to seven-

teen years old. Household characteristics collected during these years include the household’s

state of residence, total family income, number of people in the household. Characteristics of

the head of the household include the age, marital status, race, sex, age, employment status,

and education of the household head, the marital status of the household head, the race of the

household head. Information on children adult outcomes is collected when they are aged 32-34.

This includes total family income, and years of schooling, employment status, and marital

status.
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Years of schooling is measured as 0-17 years, with 17 years indicating 17 or more years of

schooling (from pursuit of an advanced degree). Following Lee and Solon (2009), I exclude

families who had incomes of less than $150 or greater than $150,000 1967 dollars. I also exclude

families whose incomes were imputed by major assignment. To calculate the intergenerational

elasticity of income I first convert total family income to 2000 dollars and take the natural log

of these values.

4.5 Results

4.5.1 First-Stage Regressions

Both my regression and my event study framework strongly indicate that at the state level,

spending increased in the years following adequacy rulings. I also include my event study at the

state level that endorses the same position for both ruling types, though none are significantly

different from zero.

(1) (2)
VARIABLES Spending Per Pupil

After First Adequacy Ruling 303.0 381.1**
(290.3) (182.6)

After First Equity Ruling 389.2 -41.86
(408.7) (222.9)

Constant -280,554*** -305,110***
(18,068) (17,567)

Observations 1,698 1,698
R-squared 0.897 0.940
State FE X X
Year FE X
State Time Trends X

Standard errors clustered at the state level
*** p<0.01, ** p<0.05, * p<0.1

Note that the year in which the adequacy ruling took place is excluded. I believe that these
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(a) Per-pupil spending following adequacy ruling (b) Per-pupil spending following equity ruling

Figure 4.5.1: Effect of court ruling on per-pupil spending

results would indicate significance if a smaller geographic region were analyzed. Indeed, when

I run a county-level regression and segment by per-pupil spending strata within a state, I see that

adequacy rulings are associated with a large increase in spending for the lowest 75 percentiles,

with no appreciable difference for the top 25 percentiles.10 I also consider using an aggregate

rulings variable instead of breaking the rulings down into categories in my robustness checks,

but find similar results.

4.5.2 Intergenerational Elasticity Estimation Results

Using the constructed instrument from the first stage, I find that for nearly all specifications

increased expenditure on public education causes an increase in mobility.

I include the first two specifications to show the results when I do not instrument for spending

on education. As might be expected, the coefficient is negative and close to significant at the 10

percent level. Once I include the instrument under the same specification, I see that this becomes

significant at the one percent level. I include alternate specifications for comparison: regression

(5) includes a smaller subset of the family characteristics (race, gender) that are available in most

years for most individuals. When I include the full set of covariates (equations (7) and (8)), I see
10See Appendix for these results.
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(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES Child’s Inc

Ave Fam Inc 2.463* 2.545* 3.403*** 2.703** 2.135** 2.790** 2.627 2.130
(1.388) (1.327) (1.034) (1.020) (1.036) (1.053) (1.748) (1.747)

Ed Spend 2.783 2.706
(1.773) (1.768)

Cross Term -0.238 -0.253
(0.163) (0.156)

Ed Spend IV 4.112*** 3.292** 2.771* 3.473** 3.102 2.547
(1.337) (1.388) (1.420) (1.459) (2.202) (2.200)

Cross Term IV -0.355*** -0.277** -0.219* -0.288** -0.296 -0.243
(0.121) (0.119) (0.122) (0.123) (0.203) (0.202)

Constant -17.79 -16.93 -28.47** -21.36* -15.42 -22.48* -17.74 -12.79
(15.15) (15.03) (11.40) (11.66) (11.75) (12.17) (18.85) (18.81)

Observations 1,382 1,382 1,166 1,166 1,157 1,166 789 789
R-squared 0.120 0.191 0.123 0.190 0.217 0.191 0.304 0.309
State FE No Yes No Yes Yes Yes Yes Yes
Year FE No Yes No Yes Yes Yes Yes Yes
State Covariates No No No No Yes Yes Yes Yes
Characteristics No No No No Yes No Yes Yes

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

that the cross term is still negative and large, but no longer significant at typical statistical levels.

Overall, I interpret these results to strongly endorse the position that government spending on

education can make a positive and meaningful impact on intergenerational mobility.

4.6 Robustness

4.6.1 Averaging over Different Years

A number of studies have noted that education policies are most effective at a young age.

Ideally, I would use years that are formative for the child’s education; however, using these

earlier years comes at a cost: my sample size gets smaller and smaller, making inference more

difficult. It’s important to note that having such strong results from ages 15 to 17, a time

period in which many believe education does not play a long-run role in improving outcomes

only strengthens my results that public spending on education can play a role in decreasing
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persistence. To address this concern, I average over all ages 5-17 in three year intervals:11

(1) (2) (3) (4) (5)
VARIABLES Child’s Income

Family Income 0.271 1.651 0.546 0.309 1.715
(1.142) (1.369) (1.190) (0.942) (1.393)

Ed Spending 0.437 1.844 0.412 -0.486 1.850
(1.530) (1.369) (1.514) (1.211) (1.731)

Cross Term -0.0122 -0.175 -0.0529 -0.0257 -0.195
(0.135) (0.162) (0.140) (0.113) (0.164)

Constant 3.784 -8.651 3.613 12.20 -6.437
(12.86) (14.71) (12.87) (10.05) (14.63)

Observations 657 814 913 928 839
R-squared 0.314 0.327 0.319 0.303 0.302
State FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes

Standard errors clustered at the state level
*** p<0.01, ** p<0.05, * p<0.1

Each specification, starting with (1), refers to three year intervals from 6 to 8, up to 14 to

16. I have included all of the same covariates as in my specification (8) from the results section.

While none of the coefficients are significant, the coefficient is negative in every subset. In fact,

any three year window that I choose results in a negative coefficient, except oddly a three-year

timeframe from ages 5 to 7. I believe that the sample size is causing some problem for this age

group.

4.6.2 States with Failed Rulings

One might be lead to argue that states in which lawsuits took place are more likely to be

concerned with mobility. The argument is roughly that for a group of individuals to undertake

a lawsuit, there must be a large groundswell of support. If this were true, perhaps the state is

already more concerned with mobility, which would indicate that these children would exhibit

the same levels of mobility even if they had not received an increase in education spending. To
11Additional specifications in Appendix.
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address this concern, I construct a variable that takes on the value 1 if a state experienced a

failed lawsuit (i.e. the state finance system was upheld in court) when a child was between ages

5 and 17. I choose this timeframe because of the potential lag in funding increases, so I cannot

simply look at ruling during ages 15 to 17. For individuals who lived in a state with a ruling,

I encode this variable with a 0, to make interpretation easy. I then include this variable in the

regression. The results are as follows:

(1)
VARIABLES Child’s Income

Average Family Income 2.354
(1.750)

Ed Spending 2.837
(2.220)

Cross Term -0.268
(0.203)

Ruling Upheld -0.152
(0.129)

Constant -14.93
(19.17)

Observations 767
R-squared 0.315
State FE Yes
Year FE Yes
State Covariates Yes
Characteristics Yes

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

I see that having a school finance system upheld during childhood is associated with lower

income in adulthood (p-value 0.11). I believe this is a strong result, as it is likely that states in

which school finance systems were upheld already had better systems in place than others. This

suggests that education spending and not a state’s propensity to be concerned with mobility is

producing my results.

101



The Effect of Public Education Expenditures on Intergenerational Mobility Chapter 4

4.6.3 Differentiating by Ruling Type

It may also be the case that I made a mistake in separating adequacy rulings and equity

rulings. While I do not believe this to be the case, I show that a first ruling is associated

with positive amounts of spending in the future, though the estimate is no longer significantly

positive. I have included the original two specifications for comparisons sake:

(1) (2) (3) (4)
VARIABLES Spending Per Pupil

After First Adequacy Ruling 303.0 381.1**
(290.3) (182.6)

After First Equity Ruling 389.2 -41.86
(408.7) (222.9)

After First Ruling 267.2 236.0
(232.3) (174.1)

Constant -280,554*** -305,110*** -285,903*** -317,776***
(18,068) (17,567) (18,014) (16,627)

Observations 1,698 1,698 1,698 1,698
R-squared 0.897 0.940 0.896 0.940
State FE X X X X
Year FE X X
State Time Trends X X

Standard errors clustered at the state level
*** p<0.01, ** p<0.05, * p<0.1

4.7 Concluding Remarks

Intergenerational mobility has been studied in a number of contexts, but very few papers

have attempted to understand the interplay between government programs and mobility. In

particular almost none have explored the extent to which spending on public education might

change the intergenerational dependence in income. My study does this, while simultaneously

using an instrument for government spending, which lends credence to the interpretation of my

results as causal.
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I employ court-mandated school finance reform as an exogenous source of identification.

This allows us to construct a first-stage in which I predict per-pupil spending on education based

upon a number of factors, including the timing of these reforms. I use these predictions to

describe the extent to which government spending on public education might change intergener-

ational mobility in the second stage, constructing an intergenerational elasticity estimator. This

is the first paper to employ this type of identification strategy in the context of intergenerational

mobility.

My results indicate that government spending on education plays an importance role in de-

termining intergenerational mobility. I find that a ten-percent increase in government spending

is associated with around a 3 percent decrease in intergenerational persistence, and that for my

specifications that allow for a large sample size this results is significant. I perform further

robustness checks to determine if my assumptions are the driving force behind my results, and

find the result of these checks to be consistent with my main findings.

This paper is one of few papers to address the issue of government spending’s ability to

decrease income persistence over time, which has applications to policy and understanding

inequality. Unlike previous papers attempting to address the same topic, I employ a robust

method of identification that gives us a causal interpretation to my coefficients. Given that

I find significance under all except very restrictive specifications (in terms of the size of the

remaining sample), this suggests that government spending on education can play an important

role in increasing mobility for the least fortunate in the economy.
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Appendix A

Appendix for Borrowing Constraints,

Search, and Life-Cycle Inequality

A.1 Data Construction

A.1.1 Survey of Income and Program Participation (SIPP)

I use the SIPP to assess the effect that liquidity has on labor market outcomes. The SIPP is

a panel dataset with separate surveys conducted annually from 1984 to 1993, and then during

1996, 2001, 2004, and 2008. Each survey follows a household for 16 to 36 months, with

interviews every four months for each “wave” of respondents. Each interview includes detailed

information on the employment, income, and unemployment insurance recipiency. Employment

variables are coded down to a weekly frequency, which yields an extremely precise picture of

a worker’s unemployment spells for the duration of the panel. In addition, each wave includes

detailed information on special topics in “topical modules.” Although information on wealth is

not available in the core questionnaire, it is included in some of the topical modules, averaging

twice per panel.
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My selection criteria is similar to the previous literature on the liquidity effects of unem-

ployment insurance1. I first pool SIPP panels from 1990 to 2008. From these panels, I restrict

my sample to unemployment spells for males age 23 and older with at least 3 months work

experience, who took up UI within one month of job loss, and who are not on a temporary

layoff2. For each individual, I observe race, marital status, age, years of education, as well

as tenure, industry, occupation, and wage at their previous job. Demographic characteristics

are shown in Table A.2.1. This allows me to link 2,311 unemployment spells to a variety of

measures of their wealth upon entering an unemployment spell. The selection of individuals

who experience unemployment spells but do not report wealth is random, because questions on

wealth are only asked during some waves of the panel.

The SIPP employs a stratified sample design whose primary sampling units changed in

1992, 1996, and 2004. I make use of this complex survey structure to obtain accurate estimates

of subsample variance, while accounting for design change by specifying the primary sampling

units during each design regime (1990-1991,1992-1993,etc.) with a unique identifier. That is,

an individual from the first PSU in 1990 would not be assigned to the same variance strata as

an individual from the first PSU in 2001. I weight all of my results using person weights for

individuals at the start of their unemployment spells.

A.1.2 Panel Study of Income Dynamics (PSID)

The PSID is a panel that follows a group of households from the United States that ran

yearly from 1968 to 1997, and in alternating years through the present. Because the PSID

spans nearly 50 years, it has been frequently employed for researchers interested in exploring

life-cycle effects within the United States (Storesletten et al. (2004) and Rupert and Zanella
1See Chetty (2008) and Meyer (1990b) for two examples using the same selection criteria.
2Selecting on an endogenous variable, like unemployment insurance, may lead to biased estimates (Anderson

and Meyer, 1997). I discuss this in section 2.3.1
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(2015), among others), as well as researchers interested in inequality (Huggett et al. (2011),

Guvenen (2009), among others). In addition to this, the PSID began recording information

on household wealth holdings in their “wealth supplements,” in 1984 repeated these questions

in 1989, 1994, and 1999, and then in each subsequent interview. In the United States, this is

the only publicly available dataset that contains multiple cohorts, long-term observations on

earnings, and measures of household wealth at ages close to or before labor market entry3. In

addition to these variables, the PSID includes rich observations on demographics, labor market

experience, as well as family history and behavioral characteristics.

I employ sample restrictions similar to Huggett et al. (2011). First, I require that each

individual be head of their household, male, and between the ages of 25 and 54. For constructing

the distribution of wealth and earnings at first employment (moments 1 and 4), I require that

the individual either be observed before entering employment, or that they report they entered

employment during the previous year and the job is their first. I also require that these individuals

be no younger than 23 and no older than 27. Over the life-cycle, I require that the individuals

in my sample be strongly attached to the labor market: any individual in my sample must work

at least 520 hours during the year and earn at least $9, 500 in 2011 dollars if they are 31 or

older. If they are younger than 30, I lower this requirement to $4, 750, and 260 hours, to capture

individuals who might choose part-time employment in order to have a steady income stream.

I use the same sample restrictions when constructing profiles by initial liquid wealth quantile.

A.1.3 National Longitudinal Survey of Youth, 1979 (NLSY79)

The National Longitudinal Survey of Youth follows cohorts who were ages 14-22 in 1979

through the present. It was conducted annually from 1979-1994 and bi-annually from 1994

until now, and includes detailed information on labor market status, including current employer,
3The NLSY79 contains information on wealth, but for few individuals before labor market entry.
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weeks employed, unemployed, and out of the labor force, as well as any training received by

the individual since the last interview. Earnings are recorded annually as well as hours worked.

In addition, the NLSY recorded a standardized test score, the Armed Forces Qualification Test

(AFQT) for every individual in the sample. This allows me to link individuals by their AFQT

scores to their outcomes late in the life-cycle. In 1985, the NLSY began recording information

on the wealth of individuals. Unfortunately, a large fraction of the sample had already become

employed, making its usage challenging in my analysis. I use identical sample restrictions as

subsection A.1.2.

Wealth Quantile Construction

I use net liquid wealth as a measure of liquidity in the PSID. I define this to be any liquid

assets, including checking, savings, stocks, bonds, etc. net of any unsecured obligations,

including credit cards and student debt. I define earnings to be exclusively labor earnings at

an annual frequency, and always in 2011 dollars, identical to the definition that I use in my

exploration of the SIPP. Unfortunately, prior to 2011, the PSID did not report the specific

composition of the debt held by households other than a few aggregated categories.

To assign individuals to initial quintiles in the wealth distribution, I first exclude observations

who do not meet the following characteristics: first, agents must be the head of their household

when I observe their assets; second, they must be age 30 or younger during a year in which I

observe their assets; third, they must have no labor market experience, having earned no more

than $9, 750 dollars (2011 dollars) or worked more than 520 hours (one standard deviation less

than the sample average) during the previous year4. This subsample faces limitations, as few

individuals have both observations on their assets at an age younger than 30 and simultaneously

have observations on earnings at later ages. I also scale wealth before entering the labor market

by the number of individuals in the household. I pool all individuals for whom I observe assets
4Huggett et al. (2011) use a similar sample selection method.
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and adjust for growth over time.

Having run this regression, I assign individuals to quantiles within the distribution based

on their observed liquid wealth. I assign individuals to the nearest quintile (in terms of their

rank) within the distribution. Because the wealth data contains few observations on earnings

for individuals, while simultaneously observing their wealth before age 30, I employ a strategy

similar to a synthetic control method. I classify individuals into five quintiles as described

above, and then using these generated quintiles, I run an ordered logit to classify individuals

for whom I do not have observations on wealth, based on their observables. Qualitatively, this

technique generates earnings profiles that exhibit the same correlations in earnings for the ages

for which I have wealth observations, but allows me to match my model to earnings at ages

greater than 50.

A.2 Tables and Figures

(a) Income (logs). (b) Liquid Wealth.

Figure A.2.1: Initial Distributions of Earnings and Wealth.
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Table A.2.1: Summary Statistics by Liquidity Quintile and UI Generosity

Avg. State UI
< Med > Med P-Val

White
Q1 0.700 0.790 0.0593
Q2 0.552 0.684 0.00718
Q3 0.589 0.683 0.166
Q4 0.810 0.835 0.553
Q5 0.896 0.891 0.873

HS Degree
Q1 0.353 0.378 0.606
Q2 0.332 0.452 0.0117
Q3 0.405 0.415 0.875
Q4 0.314 0.352 0.465
Q5 0.332 0.263 0.193

Coll. Degree
Q1 0.112 0.0798 0.275
Q2 0.0317 0.0456 0.391
Q3 0.0536 0.0650 0.664
Q4 0.170 0.127 0.253
Q5 0.154 0.210 0.171

Age
Q1 36.62 37.14 0.609
Q2 37.26 36.81 0.641
Q3 37.37 36.13 0.234
Q4 40.54 38.89 0.113
Q5 43.92 43.93 0.996

Observations 1210 1144 2354

Avg. State UI
< Med > Med P-Val

Duration
Q1 17.27 19.59 0.0939
Q2 18.66 20.16 0.215
Q3 17.52 19.90 0.146
Q4 18.48 19.78 0.385
Q5 17.66 19.31 0.285

UI Reported
Q1 250.3 329.5 1.62e-90
Q2 246.7 324.1 3.20e-95
Q3 249.6 327.5 4.33e-72
Q4 253.1 332.2 5.47e-83
Q5 251.7 336.0 7.81e-95

Prev. Ann. Wage
Q1 36391.3 36471.7 0.967
Q2 28051.0 31679.2 0.0357
Q3 31155.4 33229.5 0.323
Q4 44891.5 46128.4 0.701
Q5 62213.4 55497.1 0.197

Prev. Tenure (wks)
Q1 44.08 43.94 0.969
Q2 36.82 43.52 0.0338
Q3 41.80 48.97 0.0955
Q4 48.73 41.02 0.0329
Q5 47.67 50.08 0.512

Observations 1210 1144 2354

Notes: Means are weighted and variance is corrected for the survey design. Number of
observations is unweighted.
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Table A.2.2: Test 1 Interaction Results

Change Consumption Earnings

Wealth Human Capital Learning Ability
↑ ↑ 32.9 12.7
↑ ↓ 16.9 −5.2
↑ ↑ 49.0 33.3
↑ ↓ 8.8 −15.8
↓ ↑ −0.7 7.6
↓ ↓ −18.2 −10.2
↓ ↑ 14.0 26.8
↓ ↓ −25.4 −19.9

↑ ↑ 35.7 41.4
↑ ↓ −6.5 −9.3
↓ ↑ 15.9 20.3
↓ ↓ −21.5 −24.5

Notes: This table presents the change in earnings and consumption as two of the initial
conditions are varied by one standard deviation.
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Table A.2.3: Estimated Auxiliary Parameters

Slopes and Intercepts by Wealth (PSID) Slopes and Intercepts by AFQT (NLSY) Re-Employment Elasticities (SIPP)
Var. Data Model P-Val Var. Data Model P-Val Var. Data Model P-Val
Age 0.0219 0.0262 0.3320 Age 0.0206 0.0244 0.4145 Q1 x Ln(UI) 0.6974 0.5581 0.2912

(0.0030) (0.0007) (0.0047) (0.0016) (0.2492) (0.0529)
Wealth Q2 x Age 0.0002 0.0020 0.3797 AFQT Q2 x Age 0.0003 −0.0006 0.2611 Q2 x Ln(UI) 0.3819 0.4965 0.3429

(0.0053) (0.0013) (0.0012) (0.0020) (0.2637) (0.0540)
Wealth Q3 x Age −0.0069 0.0014 0.0178 AFQT Q3 x Age 0.0013 0.0013 0.4118 Q3 x Ln(UI) −0.0550 0.4835 0.0224

(0.0036) (0.0012) (0.0016) (0.0019) (0.2733) (0.0524)
Wealth Q4 x Age −0.0079 0.0010 0.0072 AFQT Q4 x Age 0.0054 0.0041 0.3039 Q4 x Ln(UI) 0.0724 0.4498 0.0308

(0.0032) (0.0011) (0.0010) (0.0019) (0.2046) (0.0508)
Wealth Q5 x Age −0.0082 0.0040 0.0002 AFQT Q5 x Age 0.0118 0.0131 0.4391 Q5 x Ln(UI) 0.1509 0.2417 0.3301

(0.0031) (0.0008) (0.0027) (0.0018) (0.2660) (0.0428)
Wealth Q2 0.0072 0.0588 0.3852 AFQT Q2 0.0649 0.1594 0.1404 Q2 2.0829 −0.2161 0.1428

(0.1616) (0.0452) (0.0757) (0.0671) (2.1167) (0.2981)
Wealth Q3 0.2564 0.1767 0.2616 AFQT Q3 0.1354 0.2138 0.1721 Q3 5.5140 −0.7378 0.0040

(0.1139) (0.0430) (0.0550) (0.0659) (2.3008) (0.2803)
Wealth Q4 0.3759 0.2930 0.2563 AFQT Q4 −0.0016 0.2420 0.0011 Q4 5.6164 −1.2227 0.0010

(0.0972) (0.0381) (0.0367) (0.0641) (2.5393) (0.2348)
Wealth Q5 0.4578 0.3524 0.1647 AFQT Q5 −0.1798 0.1923 0.0004 Q5 6.6118 −2.1769 0.0003

(0.0945) (0.0305) (0.0916) (0.0637) (2.5393) (0.2348)
Cons. 9.6977 9.7336 0.2619 Cons. 9.5107 9.7462 0.0339 Cons. −1.1684 0.7406 0.1802

(0.1375) (0.0254) (0.1491) (0.0524) (2.1378) (0.1956)
Within Job Wage Growth (NLSY) Job-Stay Rate (NLSY) Age −0.0009 −0.0051 0.0067

Var. Data Model P-Val Var. Data Model P-Val (0.0018) (0.0006)
Cons. 0.0654 0.0711 0.4022 Age 25 - 29 0.7790 0.7572 0.0169 Wealth 0.0000 0.0000 0.0344

(0.0030) (0.0007) (0.0080) (0.0043) (0.0000) (0.0000)
Age 30 - 34 −0.0328 −0.0339 0.4769 Age 30 - 34 0.8277 0.8134 0.0957 Q1 x Ln(LstWg) 0.3296 0.3472 0.4396

(0.0029) (0.0013) (0.0091) (0.0046) (0.2492) (0.0551)
Age 35 - 39 −0.0318 −0.0456 0.0288 Age 35 - 39 0.8524 0.8271 0.4118 Q2 x Ln(LstWg) 0.4540 0.4246 0.3657

(0.0035) (0.0053) (0.0039) (0.0055) (0.0744) (0.0563)
Age 40 - 44 −0.0430 −0.0510 0.2030 Age 40 - 44 0.8710 0.8324 0.0187 Q3 x Ln(LstWg) 0.3806 0.4909 0.1998

(0.0038) (0.0056) (0.0158) (0.0060) (0.0762) (0.0536)
Age 45 - 49 −0.0571 −0.0570 0.2589 Age 45 - 49 0.8853 0.8312 0.0073 Q4 x Ln(LstWg) 0.3693 0.5664 0.0167

(0.0042) (0.0061) (0.0190) (0.0068) (0.0641) (0.0499)
Age 50 - 54 −0.0589 −0.0642 0.4819 Age 50 - 54 0.8971 0.8536 0.0033 Q5 x Ln(LstWg) 0.3738 0.8182 0.0000

(0.0043) (0.0079) (0.0107) (0.0098) (0.0629) (0.0364)
Within Job Wage Growth Variance (NLSY) Unemployment Rate (PSID)

Var. Data Model P-Val Var. Data Model P-Val
Cons. 0.0168 0.0672 0.4955 Age 25 - 29 0.0311 0.0562 0.4545

(4.0856) (1.7467) (0.0013) (0.2331)

111



Appendix for Borrowing Constraints, Search, and Life-Cycle Inequality Chapter A

Table A.2.4: Unemployment Risk Results

∆ Earnings ∆ h ∆ τ
Change Base No Unemp. Base No Unemp. Base No Unemp.

Test 1 : Human Capital
+1 St. Dev. +10.0 +9.6 +9.5 +9.6 +0.8 +0.2
-1 St. Dev. −7.8 −7.8 −7.5 −7.8 −0.8 −0.7

Test 2 : Human Capital
10th→50th +11.8 +11.8 +11.2 +11.9 +4.1 +5.6

Test 1 : Learning Ability
+1 St. Dev. +29.7 +27.9 +29.1 +28.9 +32.3 +29.3
-1 St. Dev. −17.9 −17.8 −17.5 −18.4 −27.8 −26.4

Test 2 : Learinig Ability
10th→50th +27.4 +26.3 +26.5 +27.5 +59.7 +57.6
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A.3 Proofs

A.3.1 Existence of a Block Recursive Equilibrium

The existence proof of a block recursive equilibrium is shown by using backwards induction

and at each stage of the life-cycle showing that agents decisions are not conditional on the

distribution of workers across states. Throughout, I include aggregate productivity z in the

aggregate state, though this is stationary in the model.

Because the value in T+1 for all agents is 0, the three worker value functions Equation 2.4.8,

Equation 2.4.12, and Equation 2.4.1 respectively, satisfy the following in period T .

UT (bUI , a, h, ℓ;ψ) = u((1 + rF )a+ bUI) (A.3.1)

UT (bL, a, h, ℓ;ψ) = u((1 + rF )a+ bL) (A.3.2)

WT (µ, a, h, ℓ;ψ) = u(µf(h) + (1 + rF )a) (A.3.3)

The optimal policy policy for the terminal period is known: agents will use all accumulated

savings to purchase consumption, and spend no time accumulating human capital, because the

gains would not be realized until the following period. Because the interest rate is assumed

to be the world interest rate and taken as given, each of the value functions do not depend on

the distribution of workers across states. Therefore, the distributions, ψ can be dropped from

the state space and the value functions rewritten as UT (bUI , a, h, ℓ;ψ) = UT (bUI , a, h, ℓ; z),

UT (b, a, h, ℓ;ψ) = UT (bUI , a, h, ℓ; z), and WT (µ, a, h, ℓ;ψ) = WT (µ, a, h, ℓ; z). Since there

is no new employment activity for workers of age T, the decision rules of these agents do not

depend upon the distribution of agents in the economy. Now, consider the market tightness

function for firms posting vacancies for workers who will be age T when they are first employed

(i.e., are currently in the search subperiod of age T). Since the continuation value to the firm in
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period T + 1 is zero, the period T value of a vacancy is given by

JT (µ, a, h, ℓ;ψ) = (1− µ)f(h) (A.3.4)

where again, I impose the optimal learning time of age T agents. The vacancy creation

conditions can then be solved explicity for every worker state:

V (µ, a, h, ℓ;ψ) = −κ+ q(θT (µ, a, h, ℓ;ψ))(1− µ)f(h) (A.3.5)

Free entry of firms yields the following:

κ = q(θT (µ, a, h, ℓ;ψ))(1− µ)f(h) (A.3.6)

By assumption, q is invertible, and this is imposed in the calibration. Therefore, submarket

tightness can be solved for any worker state:

θT (µ, a, h, ℓ;ψ) =

 q−1( κ
(1−µ)f(h)) : if (1− µ)f(h) ≥ κ

0 : else

This again does not depend upon the distribution of workers; thus, θT (µ, a, h, ℓ;ψ) = θT (µ, a, h, ℓ; z).

This means that the vacancy creation condition is known to workers without knowing the dis-

tribution of workers across the state space in the rest of the economy. Now, consider the search

and matching decision of unemployed workers of age T :

RU
T (bUI , a, h, ℓ;ψ) = max

µ′
P (θT (µ

′, a, h, ℓ;ψ))WT (µ
′, a, h, ℓ;ψ)

+ (1− P (θT (µ
′, a, h, ℓ;ψ)))UT (bUI , a, h, ℓ;ψ) (A.3.7)
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RU
T (bL, a, h, ℓ;ψ) = max

µ′
P (θT (µ

′, a, h, ℓ;ψ))WT (µ
′, a, h, ℓ;ψ)

+ (1− P (θT (µ
′, a, h, ℓ;ψ)))[γUT (bL, a, h, ℓ;ψ) (A.3.8)

Imposing the conditions for θT , as well as the value functions in the terminal production and

consumption period yields the following

RU
T (bUI , a, h, ℓ;ψ) = max

µ′
P (θT (µ

′, a, h, ℓ; z))WT (µ
′, a, h, ℓ; z)

+ (1− P (θT (µ
′, a, h, ℓ; z)))UT (bUI , a, h, ℓ; z) (A.3.9)

RU
T (bL, a, h, ℓ;ψ) = max

µ′
P (θT (µ

′, a, h, ℓ; z))WT (µ
′, a, h, ℓ; z)

+ (1− P (θT (µ
′, a, h, ℓ; z)))[γUT (bL, a, h, ℓ; z) (A.3.10)

Note that neither the probabilities within each submarket, nor the continuation value depend

on the distribution of workers across states. Therefore, the job search value functions are

independent of the aggregate state and can be written RU
t (bUI , a, h, ℓ;ψ) = RU

t (bUI , a, h, ℓ; z),

and RU
t (bL, a, h, ℓ;ψ) = RU

t (bL, a, h, ℓ; z), and the optimal application strategy is independent

of the aggregate distribution of workers. Performing the same exercise for employed workers

similarly yields

RE
T (µ, a, h, ℓ;ψ) = max

µ′
P (θT (µ

′, a, h, ℓ;ψ))WT (µ
′, a, h, ℓ;ψ)

+ (1− P (θT (µ
′, a, h, ℓ;ψ)))WT (µ, a, h, ℓ;ψ) (A.3.11)
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RE
T (µ, a, h, ℓ;ψ) = max

µ′
P (θT (µ

′, a, h, ℓ; z))WT (µ
′, a, h, ℓ; z)

+ (1− P (θT (µ
′, a, h, ℓ; z)))WT (µ, a, h, ℓ; z) (A.3.12)

which again shows that the employed job searcher’s value function does not depend on the

aggregate distribution nor does the optimal application strategy, meaning RE
T (µ, a, h, ℓ;ψ) =

RE
T (µ, a, h, ℓ; z). Now consider the consumption, savings, and human capital decisions of age

T − 1 unemployed workers:

Note that in this economy, the aggregate state is assumed to be zt = z∀t. To prove that this

exhibits a block recursive equilibrium, it must be the case that the value of an employed agent

in the same time period is also independent of the distribution of agents across types. Consider

the problem of an employed agent at time T - 1:

UT−1(
¯
UI, a, h, ℓ;ψ) = max

c,a′
u(c) + ν + βE[(1− γ)RU

T (bUI , a
′, h′, ℓ;ψ) + γRU

T (bL, a
′, h′, ℓ;ψ)]

(A.3.13)

s.t. c+ a′ ≤ (1 + rF )a+ bUI (A.3.14)

a′ ≥ a′ (A.3.15)

h′ = eϵ
′
(h+H(h, ℓ, τ, U)) (A.3.16)

UT−1(bL, a, h, ℓ;ψ) = max
c,a′

u(c) + ν + βE[RU
T (bL, a

′, h′, ℓ;ψ)] (A.3.17)

s.t. c+ a′ ≤ (1 + rF )a+ bL (A.3.18)

a′ ≥ a′ (A.3.19)

h′ = eϵ
′
(h+H(h, ℓ, τ, U)) (A.3.20)
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Substituting in the age T value functions yields the following:

UT−1(bUI , a, h, ℓ;ψ) = max
c,a′

u(c) + ν + βE[(1− γ)RU
T (bUI , a

′, h′, ℓ; z) + γRU
T (bL, a

′, h′, ℓ; z)]

(A.3.21)

s.t. c+ a′ ≤ (1 + rF )a+ bUI (A.3.22)

a′ ≥ a′ (A.3.23)

h′ = eϵ
′
(h+H(h, ℓ, τ, U)) (A.3.24)

UT−1(bL, a, h, ℓ;ψ) = max
c,a′

u(c) + ν + βE[RU
T (bL, a

′, h′, ℓ; z)] (A.3.25)

s.t. c+ a′ ≤ (1 + rF )a+ bL (A.3.26)

a′ ≥ a′ (A.3.27)

h′ = eϵ
′
(h+H(h, ℓ, τ, U)) (A.3.28)

Note that the neither the continuation values nor the prices depend on the aggregate distri-

bution of workers, as debt is priced individually (in this case, with one price). This means that

the consumption and savings rules of unemployed workers are independent of the distribution

of workers, and the value functions can be written UT−1(µ, a, h, ℓ;ψ) = UT−1(µ, a, h, ℓ; z)

and UT−1(bL, a, h, ℓ;ψ) = UT−1(bL, a, h, ℓ; z). By essentially the same argument, the value
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function during the consumptiono and savings period of an employed worker can be written as

WT−1(µ, a, h, ℓ;ψ) = max
c,a′,τ

u(c) + βE[(1− δ)RE
T (µ, a, h

′, ℓ;ψ′) + δRU
T (bUI , a

′, h′, ℓ;ψ′)]

(A.3.29)

s.t. c+ a′ ≤ (1 + rF )a+ µ(1− τ)f(h) (A.3.30)

a′ ≥ a (A.3.31)

h′ = eϵ
′
(h+H(h, ℓ, τ, E;ψ)) (A.3.32)

bUI = b(1− τ)µf(h) (A.3.33)

b ∼ N(µb, σb) (A.3.34)

τ ∈ [0, 1] (A.3.35)

WT−1(µ, a, h, ℓ;ψ) = max
c,a′,τ

u(c) + βE[(1− δ)RE
T (µ, a, h

′, ℓ; z) + δRU
T (bUI , a

′, h′, ℓ; z)]

(A.3.36)

s.t. c+ a′ ≤ (1 + rF )a+ µ(1− τ)f(h) (A.3.37)

a′ ≥ a (A.3.38)

h′ = eϵ
′
(h+H(h, ℓ, τ, E; z)) (A.3.39)

bUI = b(1− τ)µf(h) (A.3.40)

b ∼ N(µb, σb) (A.3.41)

τ ∈ [0, 1] (A.3.42)

Again, neither the consumption, nor savings decisions depend on the distribution of workers

across states. Furthermore, because human capital and learning are assumed to be observable,

each worker state vector maps to a wage offer by the firm, independent of the distribution
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of human capital, learning, or wealth and wage. Thus, the human capital accumulation de-

cision is independent of the distribution of workers, and the value function can be written

WT−1(µ, a, h, ℓ;ψ) = WT−1(µ, a, h, ℓ; z), and each of the decision rules are independent of the

distribution of workers across states.

It’s similarly easy to show that the value of a filled vacancy of a worker age T − 1 does

not depend on the distribution of workers across states. The value function of the firm may be

written

JT−1(µ, a, h, ℓ;ψ) = (1− µ)(1− τ)f(h)

+ βE[(1− δ)(1− P ((θT (µ
′, a′, h′, ℓ;ψ′)))JT (µ, a

′, h′, ℓ;ψ′)] (A.3.43)

h′ = eϵ
′
(h+H(h, ℓ, τ, E;ψ)) (A.3.44)

τ = gτ (µ, a, h, ℓ;ψ) (A.3.45)

a′ = ga(µ, a, h, ℓ;ψ) (A.3.46)

µ′ = gµ(µ, a
′, h′, ℓ;ψ) (A.3.47)

Each of the employed worker decision rules do not depend on the distribution of workers

across states. In addition, ΘT , and JT do not depend on the distribution as shown earlier. Thus,

JT−1(µ, a, h, ℓ;ψ) = (1− µ)(1− τ)f(h)

+ βE[(1− δ)(1− P ((θT (µ
′, a′, h′, ℓ; z)))JT (µ, a

′, h′, ℓ; z)] (A.3.48)

h′ = eϵ
′
(h+H(h, ℓ, τ, E; z)) (A.3.49)

τ = gτ (µ, a, h, ℓ; z) (A.3.50)

a′ = ga(µ, a, h, ℓ; z) (A.3.51)

µ′ = gµ(µ, a
′, h′, ℓ; z) (A.3.52)

119



Appendix for Borrowing Constraints, Search, and Life-Cycle Inequality Chapter A

Therefore, the value function of a filled vacancy for a worker age T − 1 does not depend

on the distribution of workers across states, JT−1(µ, a, h, ℓ;ψ) = JT−1(µ, a, h, ℓ; z). From the

free entry condition and the invertibility of q(θ), this yields

θT−1(µ, a, h, ℓ;ψ) =

 q−1( κ
JT−1(µ,a,h,ℓ;ψ)

: if JT−1(µ, a, h, ℓ;ψ) ≥ κ

0 : else

and furthermore, θT−1(µ, a, h, ℓ;ψ) = θT−1(µ, a, h, ℓ; z).

Finally, it remains to be shown that a worker who is searching during age T − 1 does not

make decisions conditional on the distribution of workers. Similar to before, the value functions

of unemployed searchers can be written

RU
T−1(bUI , a, h, ℓ;ψ) = max

µ′
P (θT−1(µ

′, a, h, ℓ;ψ))WT−1(µ
′, a, h, ℓ;ψ)

+ (1− P (θT−1(µ
′, a, h, ℓ;ψ)))UT−1(µ, a, h, ℓ;ψ) (A.3.53)

RU
T−1(bL, a, h, ℓ;ψ) = max

µ′
P (θT−1(µ

′, a, h, ℓ;ψ))WT−1(µ
′, a, h, ℓ;ψ)

+ (1− P (θT−1(µ
′, a, h, ℓ;ψ)))UT−1(bL, a, h, ℓ;ψ) (A.3.54)

Again, because the continuation values as well as the set of submarket tightnesses do not

depend on the distribution, this can be written

RU
T−1(bUI , a, h, ℓ;ψ) = max

µ′
P (θT−1(µ

′, a, h, ℓ; z))WT−1(µ
′, a, h, ℓ; z)

+ (1− P (θT−1(µ
′, a, h, ℓ; z)))UT−1(µ, a, h, ℓ; z) (A.3.55)
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RU
T−1(bL, a, h, ℓ;ψ) = max

µ′
P (θT−1(µ

′, a, h, ℓ; z))WT−1(µ
′, a, h, ℓ; z)

+ (1− P (θT−1(µ
′, a, h, ℓ; z)))UT−1(bL, a, h, ℓ; z) (A.3.56)

where once again, the application strategy is independent of the distribution of workers across

states, and therefore RU
T−1(bL, a, h, ℓ;ψ) = RU

T−1(bL, a, h, ℓ; z). Lastly, the same can be shown

of employed searchers of age T − 1:

RE
T−1(µ, a, h, ℓ;ψ) = max

µ′
P (θT−1(µ

′, a, h, ℓ;ψ))WT−1(µ
′, a, h, ℓ;ψ)

+ (1− P (θT−1(µ
′, a, h, ℓ;ψ)))WT−1(µ, a, h, ℓ;ψ) (A.3.57)

RE
T−1(µ, a, h, ℓ;ψ) = max

µ′
P (θT−1(µ

′, a, h, ℓ; z))WT−1(µ
′, a, h, ℓ; z)

+ (1− P (θT−1(µ
′, a, h, ℓ; z)))WT−1(µ, a, h, ℓ; z) (A.3.58)

where again, RE
T−1(µ, a, h, ℓ;ψ) = RE

T−1(µ, a, h, ℓ; z); thus, all decision rules for actors in

the model in period T − 1 do not depend on distributions. The proof can be repeated for

ages {T − 2, ..., 1}, and by the same logic as above, these value and policy functions will not

depend upon the aggregate distribution of agents across states. Thus, the model exhibits a block

recursive equilibrium.

A.3.2 BRE Discussion

A block recursive equilibrium in this economy is possible because of a few assumptions:

first, the interest rate cannot depend on the distribution of assets. With this, firms and workers

do not have to condition on the distribution of assets in their policy functions. Second, workers

must be able to direct their search to submarkets, and in these submarket workers characteristics
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must either be observable, or be implied by sorting. This assumption allows firms to know

the expected profits from opening a vacancy within a submarket, causing policy functions to

no longer have to depend upon the distribution of workers across types. Third, the matching

function must be constant returns to scale. This implies that the probability of a firm matching

with a worker is a function only of the ratio of vacancies to unemployed searchers, which causes

policy functions to no longer depend upon the distribution of workers within types. Finally,

the probability that firms meet with workers must be invertible, which allows the recovery of

the probability a worker meets with a firm in a submarket. With this, workers can select a

submarket and know the wage offered and probability of employment.
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Table B.1.1: Descriptive Statistics of Unemployed

Standard Data Set Inclusive Data Set
Mean Std. Dev. Mean Std. Dev.

Hired (d = 1) 0.92 0.27 0.9 0.31
Duration unemployed (t) 11.15 14.2 24.34 44.06
Wage 12.81 24.24 16.56 131.04
Low wage (dL = 1) 0.22 0.41 0.21 0.41
Medium wage (dM = 1) 0.42 0.49 0.41 0.49
High wage (dH = 1) 0.21 0.41 0.21 0.41
Male 0.61 0.49 0.52 0.5
Black 0.31 0.46 0.29 0.45
Hispanic 0.19 0.4 0.21 0.41
Education, years completed 11.75 2.25 11.79 2.31
High School, completed 0.82 0.38 0.81 0.39
College, completed 0.09 0.28 0.09 0.29
Urban 0.89 0.31 0.89 0.31
Age 22.99 3.04 22.89 2.99
UI Collected, weeks 1-9 0.12 0.32 0.05 0.22
Searched for Employment, weeks 1-9 1 0 0.39 0.45
Observations 5308 17593
Note: Observations are based on each spell not employed and not on each individual
who could be not employed one or more times. Durations are weekly. Transitions
do not sum to one due to right censoring. Wage bins do not sum to one due to
missing values. Missing data on wages, education, and urban status is assumed to
occur randomly and observations are excluded from the estimation.
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Table B.1.2: Summary of Results: Weibull Hazard with Standard Data

Restriction
(1) (2) (3) (4) unrestricted

V 1
wL

0.2139 0.2119 4.0578 0.2478 4.0918

V 2
wL

4.7575 0.0472 18.3742 4.5099 18.5591

V 1
wM

0.1954 0.1900 0.2360 0.0990 0.2338

V 2
wM

3.6357 3.5354 2.4196 0.4169 2.4549

V 1
wH

0.1954 0.1900 0.0215 0.1905 0.0262

V 2
wH

3.6357 3.5354 0.1914 0.0213 0.2036

UI-low -1.4427 -1.4670 -1.4382 -1.4384 -1.4656
(-1.82,-1.09) (-1.86,-1.11) (-1.82,-1.08) (-1.82,-1.09) (-1.87,-1.11)

UI-medium -0.8398 -1.0468 -0.8542 -0.8551 -1.0393
(-1.01,-0.68) (-1.25,-0.83) (-1.03,-0.69) (-1.03,-0.69) (-1.23,-0.83)

UI-high -0.8398 -0.4607 -0.8542 -0.8551 -0.5169
(-1.01,-0.68) (-0.76,-0.24) (-1.03,-0.69) (-1.03,-0.69) (-0.80,-0.27)

Urban-low -0.0873 -0.0910 -0.0968 -0.1017 -0.1017
(-0.31,0.18) (-0.31,0.18) (-0.32,0.16) (-0.32,0.17) (-0.32,0.15)

Urban-medium 0.2249 -0.0487 0.2159 -0.0511 0.1872
(0.03,0.41) (-0.07,-0.03) (0.04,0.40) (-0.07,-0.03) (-0.01,0.38)

Urban-high 0.2249 0.2557 0.2159 0.3122 0.3099
(0.03,0.41) (-0.06,0.63) (0.04,0.40) (-0.06,0.72) (-0.05,0.69)

aL 0.0657 0.0143 0.2356 0.0597 0.2441
(0.03,0.15) (0.01,0.04) (0.11,0.66) (0.03,0.15) (0.11,0.65)

aM 9.2550 10.0264 9.6728 4.1466 10.4067
(5.09,26.69) (5.82,29.89) (5.78,24.71) (2.08,8.66) (6.24,25.88)

aH 1313.2464 1006.1187 182.1945 186.3248 175.2755
(570.04,3745.22) (440.75,3068.80) (61.38,635.00) (62.66,710.94) (60.57,631.72)

kL 1.0219 1.0217 1.0209 1.0211 1.0217
(0.98,1.08) (0.98,1.08) (0.97,1.08) (0.98,1.09) (0.97,1.08)

kM 1.0537 1.0643 1.0415 1.0413 1.0502
(1.00,1.10) (1.02,1.12) (1.01,1.09) (1.01,1.09) (1.01,1.10)

kH 1.0745 1.0555 1.1076 1.1084 1.0861
(1.02,1.15) (1.01,1.13) (1.05,1.20) (1.05,1.20) (1.03,1.17)

lnL -19347.7622 -19339.3965 -19340.2380 -19340.0085 -19333.1813

LR test 29.1618 12.4303 14.1133 13.6544

p-value 0.0000 0.0020 0.0009 0.0002

Note:The number of degrees of freedom used in the likelihood ratio test for Restriction 1,2,3, and 4 are
4,2,2, and 1, respectively. 95% bootstrap intervals in parenthesis.
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Table B.1.3: Coefficient Estimates: Weibull Hazard with Standard Data

Restriction
(1) (2) (3) (4) unrestricted

wL market
Male -0.6463 -0.6447 -0.6410 -0.6411 -0.6423

(-0.81,-0.47) (-0.81,-0.47) (-0.80,-0.48) (-0.80,-0.47) (-0.80,-0.48)
Black -0.0394 -0.0364 -0.0195 -0.0188 -0.0229

(-0.24,0.18) (-0.24,0.17) (-0.21,0.18) (-0.23,0.18) (-0.21,0.17)
Hispanic -0.2974 -0.3010 -0.2985 -0.2972 -0.2984

(-0.53,-0.04) (-0.53,-0.06) (-0.54,-0.07) (-0.53,-0.06) (-0.54,-0.08)
Education -0.0553 -0.0552 -0.0559 -0.0560 -0.0559

(-0.10,0.00) (-0.10,0.00) (-0.10,0.00) (-0.10,0.00) (-0.10,0.00)
High School 0.0580 0.0596 0.0730 0.0735 0.0731

(-0.18,0.30) (-0.19,0.29) (-0.15,0.29) (-0.19,0.30) (-0.15,0.30)
College -0.4867 -0.4812 -0.4722 -0.4709 -0.4723

(-1.02,-0.03) (-1.03,-0.02) (-1.01,-0.02) (-1.02,-0.03) (-1.03,-0.01)
Urban -0.0873 -0.0910 -0.0968 -0.1017 -0.1017

(-0.31,0.18) (-0.31,0.18) (-0.32,0.16) (-0.32,0.17) (-0.32,0.15)
Age -0.2530 -0.2523 -0.2539 -0.2538 -0.2527

(-0.29,-0.22) (-0.29,-0.22) (-0.29,-0.22) (-0.29,-0.22) (-0.29,-0.22)
UI -1.4427 -1.4670 -1.4382 -1.4384 -1.4656

(-1.82,-1.09) (-1.86,-1.11) (-1.82,-1.08) (-1.82,-1.09) (-1.87,-1.11)
wM market
Male 0.0304 0.0316 0.0136 0.0130 0.0135

(-0.13,0.15) (-0.13,0.15) (-0.11,0.14) (-0.11,0.14) (-0.12,0.14)
Black -0.4741 -0.4899 -0.4549 -0.4537 -0.4668

(-0.60,-0.32) (-0.62,-0.34) (-0.59,-0.31) (-0.59,-0.31) (-0.60,-0.33)
Hispanic -0.1905 -0.1959 -0.1787 -0.1759 -0.1779

(-0.34,-0.02) (-0.35,-0.03) (-0.33,-0.01) (-0.33,-0.01) (-0.33,-0.02)
Education 0.0429 0.0432 0.0386 0.0386 0.0398

(-0.00,0.09) (-0.00,0.10) (-0.00,0.09) (-0.00,0.09) (0.00,0.09)
High School 0.2407 0.2431 0.2693 0.2708 0.2706

(0.05,0.48) (0.05,0.51) (0.07,0.49) (0.08,0.49) (0.07,0.49)
College -0.4962 -0.5014 -0.4656 -0.4636 -0.4751

(-0.84,-0.20) (-0.85,-0.20) (-0.80,-0.17) (-0.80,-0.17) (-0.80,-0.20)
Urban 0.2249 0.2194 0.2159 0.1883 0.1872

(0.03,0.41) (0.00,0.42) (0.04,0.40) (0.01,0.39) (-0.01,0.38)
Age -0.0534 -0.0487 -0.0517 -0.0511 -0.0472

(-0.07,-0.03) (-0.07,-0.03) (-0.07,-0.03) (-0.07,-0.03) (-0.07,-0.03)
UI -0.8398 -1.0468 -0.8542 -0.8551 -1.0393

(-1.01,-0.68) (-1.25,-0.83) (-1.03,-0.69) (-1.03,-0.69) (-1.23,-0.83)
wH market
Male 0.3740 0.3735 0.3691 0.3693 0.3758

(0.19,0.59) (0.18,0.58) (0.15,0.61) (0.14,0.61) (0.13,0.60)
Black -1.0700 -1.0383 -1.1103 -1.1127 -1.0666

(-1.33,-0.83) (-1.30,-0.81) (-1.38,-0.86) (-1.39,-0.86) (-1.34,-0.81)
Hispanic -0.1253 -0.1461 -0.1778 -0.1867 -0.1693

(-0.39,0.14) (-0.40,0.13) (-0.41,0.13) (-0.42,0.11) (-0.42,0.13)
Education 0.1994 0.1958 0.1955 0.1943 0.1941

(0.14,0.28) (0.14,0.27) (0.13,0.27) (0.12,0.28) (0.13,0.27)
High School 0.4156 0.3850 0.4685 0.4734 0.4335

(0.05,0.80) (0.06,0.76) (0.10,0.82) (0.09,0.83) (0.08,0.75)
College 0.1770 0.2103 0.2636 0.2624 0.2671

(-0.18,0.54) (-0.15,0.54) (-0.19,0.63) (-0.20,0.63) (-0.14,0.59)
Urban 0.2249 0.2557 0.2159 0.3122 0.3099

(0.03,0.41) (-0.06,0.63) (0.04,0.40) (-0.06,0.72) (-0.05,0.69)
Age 0.0553 0.0440 0.0619 0.0601 0.0461

(0.02,0.09) (0.01,0.08) (0.02,0.10) (0.02,0.10) (0.01,0.08)
UI -0.8398 -0.4607 -0.8542 -0.8551 -0.5169

(-1.01,-0.68) (-0.76,-0.24) (-1.03,-0.69) (-1.03,-0.69) (-0.80,-0.27)
Note: 95% bootstrap intervals in parenthesis.
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Table B.1.4: Summary of Results: Weibull Hazard with Inclusive Data

Restriction
(1) (2) (3) (4) unrestricted

V 1
wL

0.0299 0.0301 3.5387 0.0307 0.0308

V 2
wL

0.2829 0.2836 0.1053 0.2845 0.2846

V 1
wM

0.1036 0.0942 0.0545 0.0588 0.0590

V 2
wM

3.6067 3.6119 0.3203 0.3262 0.3253

V 1
wH

0.1036 0.0942 0.0956 0.0851 0.0857

V 2
wH

3.6067 3.6119 5.1366 4.8292 4.7895

UI-low -1.0486 -1.0498 -1.0491 -1.0467 -1.0499
(-1.31,-0.82) (-1.30,-0.82) (-1.30,-0.82) (-1.30,-0.82) (-1.31,-0.82)

UI-medium -0.7563 -0.7945 -0.7647 -0.7201 -0.7901
(-0.86,-0.65) (-0.94,-0.67) (-0.87,-0.65) (-0.83,-0.62) (-0.93,-0.66)

UI-high -0.7563 -0.5763 -0.7647 -0.7201 -0.5914
(-0.86,-0.65) (-0.76,-0.38) (-0.87,-0.65) (-0.83,-0.62) (-0.78,-0.38)

Search-low 0.6342 0.6464 0.6350 0.6468 0.6474
(0.54,0.73) (0.55,0.75) (0.54,0.74) (0.55,0.75) (0.55,0.75)

Search-medium 0.2651 0.4617 0.2727 0.4574 0.4657
(0.20,0.32) (0.39,0.54) (0.20,0.33) (0.38,0.54) (0.39,0.54)

Search-high 0.2651 -0.2322 0.2727 -0.2075 -0.2343
(0.20,0.32) (-0.35,-0.12) (0.20,0.33) (-0.32,-0.07) (-0.35,-0.09)

Urban-low -0.1189 -0.1203 -0.1164 -0.1190 -0.1192
(-0.24,0.02) (-0.25,0.02) (-0.24,0.02) (-0.25,0.02) (-0.25,0.02)

Urban-medium 0.1202 0.1062 0.1177 0.1008 0.0998
(0.01,0.22) (-0.00,0.21) (0.01,0.21) (-0.01,0.20) (-0.01,0.20)

Urban-high 0.1202 0.1790 0.1177 0.1932 0.1955
(0.01,0.22) (-0.08,0.38) (0.01,0.21) (-0.06,0.41) (-0.06,0.42)

aL 0.1318 0.1316 0.6396 0.1326 0.1326
(0.05,0.31) (0.05,0.22) (0.20,1.14) (0.04,0.29) (0.04,0.22)

aM 542.9676 565.4240 102.8465 102.5173 104.3179
(330.95,881.33) (356.80,888.65) (56.65,157.13) (52.30,327.17) (54.08,163.32)

aH 49855.9353 49854.7140 49853.9882 49854.3001 49854.1379
(49854.80,49875.31) (49853.49,49859.27) (49853.92,59498.28) (49854.28,56203.36) (49854.09,83603.59)

kL 0.8039 0.8036 0.8041 0.8038 0.8038
(0.79,0.82) (0.78,0.82) (0.78,0.83) (0.78,0.82) (0.78,0.82)

kM 0.7956 0.7999 0.7934 0.7971 0.7981
(0.78,0.81) (0.78,0.82) (0.78,0.81) (0.78,0.81) (0.78,0.81)

kH 0.8337 0.8316 0.8468 0.8485 0.8459
(0.81,0.86) (0.81,0.86) (0.82,0.87) (0.82,0.87) (0.82,0.87)

lnL -70434.2613 -70370.9237 -70420.6155 -70360.0084 -70358.2940

LR test 151.9346 25.2594 1013.3394 3.4290

p-value 0.0000 0.0000 0.0000 0.0641

Note:The number of degrees of freedom used in the likelihood ratio test for Restriction 1,2,3,
and 4 are 5,2,3, and 1 respectively. 95% bootstrap intervals in parenthesis.
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Table B.1.5: Coefficient Estimates: Weibull Hazard with Inclusive Data

Restriction
(1) (2) (3) (4) unrestricted

wL market
Male -0.2933 -0.2927 -0.2932 -0.2929 -0.2929

(-0.40,-0.20) (-0.42,-0.20) (-0.42,-0.20) (-0.42,-0.20) (-0.42,-0.20)
Black -0.0255 -0.0254 -0.0204 -0.0217 -0.0222

(-0.18,0.07) (-0.16,0.07) (-0.16,0.07) (-0.16,0.07) (-0.16,0.07)
Hispanic -0.1854 -0.1865 -0.1833 -0.1861 -0.1868

(-0.35,-0.07) (-0.35,-0.06) (-0.35,-0.06) (-0.36,-0.07) (-0.34,-0.07)
Education 0.0140 0.0138 0.0143 0.0142 0.0141

(-0.03,0.05) (-0.03,0.05) (-0.03,0.05) (-0.03,0.05) (-0.03,0.05)
High School 0.1115 0.1114 0.1081 0.1093 0.1091

(-0.03,0.26) (-0.02,0.26) (-0.04,0.25) (-0.03,0.25) (-0.03,0.25)
College -0.1578 -0.1441 -0.1564 -0.1462 -0.1467

(-0.43,0.17) (-0.47,0.18) (-0.48,0.18) (-0.45,0.18) (-0.46,0.19)
Urban -0.1189 -0.1203 -0.1164 -0.1190 -0.1192

(-0.24,0.02) (-0.25,0.02) (-0.24,0.02) (-0.25,0.02) (-0.25,0.02)
Age -0.2174 -0.2173 -0.2174 -0.2173 -0.2173

(-0.24,-0.20) (-0.24,-0.20) (-0.24,-0.20) (-0.24,-0.20) (-0.24,-0.20)
UI -1.0486 -1.0498 -1.0491 -1.0467 -1.0499

(-1.31,-0.82) (-1.30,-0.82) (-1.30,-0.82) (-1.30,-0.82) (-1.31,-0.82)
Searching 0.6342 0.6464 0.6350 0.6468 0.6474

(0.54,0.73) (0.55,0.75) (0.54,0.74) (0.55,0.75) (0.55,0.75)
wM market
Male 0.2055 0.1704 0.2090 0.1746 0.1752

(0.13,0.29) (0.10,0.25) (0.14,0.29) (0.10,0.26) (0.11,0.26)
Black -0.3691 -0.3766 -0.3671 -0.3727 -0.3748

(-0.46,-0.27) (-0.46,-0.28) (-0.46,-0.28) (-0.46,-0.28) (-0.47,-0.28)
Hispanic -0.1568 -0.1508 -0.1625 -0.1558 -0.1562

(-0.26,-0.06) (-0.25,-0.05) (-0.26,-0.06) (-0.25,-0.06) (-0.26,-0.06)
Education 0.1009 0.1012 0.1004 0.1003 0.1007

(0.07,0.13) (0.07,0.13) (0.08,0.13) (0.07,0.13) (0.07,0.13)
High School 0.3064 0.3003 0.3073 0.3021 0.3029

(0.17,0.42) (0.18,0.43) (0.18,0.44) (0.18,0.43) (0.18,0.43)
College -0.4377 -0.4504 -0.4342 -0.4459 -0.4490

(-0.64,-0.26) (-0.63,-0.27) (-0.61,-0.25) (-0.63,-0.26) (-0.63,-0.26)
Urban 0.1202 0.1062 0.1177 0.1008 0.0998

(0.01,0.22) (-0.00,0.21) (0.01,0.21) (-0.01,0.20) (-0.01,0.20)
Age -0.0013 -0.0016 -0.0019 -0.0034 -0.0027

(-0.01,0.01) (-0.01,0.01) (-0.01,0.01) (-0.01,0.01) (-0.01,0.01)
UI -0.7563 -0.7945 -0.7647 -0.7201 -0.7901

(-0.86,-0.65) (-0.94,-0.67) (-0.87,-0.65) (-0.83,-0.62) (-0.93,-0.66)
Searching 0.2651 0.4617 0.2727 0.4574 0.4657

(0.20,0.32) (0.39,0.54) (0.20,0.33) (0.38,0.54) (0.39,0.54)
wH market
Male 0.6730 0.6928 0.6901 0.7110 0.7097

(0.51,0.83) (0.56,0.87) (0.52,0.86) (0.58,0.89) (0.57,0.89)
Black -1.0501 -1.0267 -1.1085 -1.0789 -1.0677

(-1.22,-0.87) (-1.20,-0.85) (-1.27,-0.86) (-1.25,-0.84) (-1.25,-0.84)
Hispanic -0.1828 -0.1653 -0.2375 -0.2047 -0.1946

(-0.35,0.02) (-0.34,-0.00) (-0.40,0.01) (-0.38,0.03) (-0.39,0.03)
Education 0.1947 0.1943 0.1929 0.1942 0.1942

(0.16,0.23) (0.16,0.23) (0.15,0.24) (0.15,0.23) (0.15,0.24)
High School 0.4333 0.4265 0.5088 0.4707 0.4666

(0.19,0.71) (0.18,0.73) (0.21,0.79) (0.21,0.78) (0.21,0.79)
College 0.3867 0.3067 0.3811 0.3198 0.3284

(0.07,0.69) (0.09,0.65) (0.06,0.77) (0.07,0.67) (0.05,0.67)
Urban 0.1202 0.1790 0.1177 0.1932 0.1955

(0.01,0.22) (-0.08,0.38) (0.01,0.21) (-0.06,0.41) (-0.06,0.42)
Age 0.1222 0.1208 0.1245 0.1228 0.1211

(0.10,0.14) (0.10,0.14) (0.10,0.14) (0.10,0.14) (0.10,0.14)
UI -0.7563 -0.5763 -0.7647 -0.7201 -0.5914

(-0.86,-0.65) (-0.76,-0.38) (-0.87,-0.65) (-0.83,-0.62) (-0.78,-0.38)
Searching 0.2651 -0.2322 0.2727 -0.2075 -0.2343

(0.20,0.32) (-0.35,-0.12) (0.20,0.33) (-0.32,-0.07) (-0.35,-0.09)
Note: 95% bootstrap intervals in parenthesis.
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Table B.1.6: Summary of Results: Piecewise Exponential with Standard Data

Restriction
(1) (2) (3) (4) unrestricted

V 1
wL

0.2396 0.2388 0.2402 0.2411 0.2414

V 2
wL

0.0729 0.0714 0.0748 0.0756 0.0751

V 1
wM

0.2597 0.2689 0.5213 0.5293 0.5364

V 2
wM

0.0684 0.0632 0.1461 0.1488 0.1493

V 1
wH

0.2597 0.2689 0.1590 0.1585 0.1796

V 2
wH

0.0684 0.0632 3.9545 3.9680 3.8295

UI-low -1.3166 -1.3446 -1.3189 -1.3188 -1.3454
(-1.71,-0.98) (-1.72,-1.01) (-1.70,-0.98) (-1.70,-0.98) (-1.71,-1.01)

UI-medium -0.7534 -0.9995 -0.7609 -0.7613 -0.9957
(-0.88,-0.63) (-1.17,-0.81) (-0.89,-0.63) (-0.89,-0.63) (-1.17,-0.81)

UI-high -0.7534 -0.3487 -0.7609 -0.7613 -0.3841
(-0.88,-0.63) (-0.59,-0.17) (-0.89,-0.63) (-0.89,-0.63) (-0.59,-0.18)

Urban-low -0.1057 -0.1024 -0.1023 -0.1062 -0.1058
(-0.31,0.14) (-0.31,0.14) (-0.31,0.14) (-0.31,0.14) (-0.31,0.14)

Urban-medium 0.2027 0.1940 0.2009 0.1817 0.1788
(0.06,0.36) (0.03,0.37) (0.07,0.36) (0.02,0.35) (0.02,0.36)

Urban-high 0.2027 0.2574 0.2009 0.2636 -0.9957
(0.06,0.36) (-0.02,0.60) (0.07,0.36) (-0.04,0.61) (-1.17,-0.81)

lnL -19290.6370 -19279.2253 -19286.6209 -19286.5107 -19276.1730
LR test 28.9280 6.1047 20.8959 20.6754
p-value 0.0000 0.0472 0.0001 0.0000
Note: The number of degrees of freedom used in the likelihood ratio test for Restriction 1,2,
and 3 are 28,26, and 2, respectively. 95% bootstrap intervals in parenthesis.
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Table B.1.7: Baseline Hazard Rate Estimates: Piecewise Exponential with Standard Data

Restriction
(1) (2) (3) (4) unrestricted

λ1
L 66.9170 65.3203 68.1360 67.9360 66.3688

(33.23,70.00) (31.76,70.00) (32.99,70.00) (33.27,70.00) (32.22,70.00)
λ2
L 49.0532 47.9645 50.0648 49.9075 48.8300

(24.92,59.91) (24.00,59.66) (24.49,59.92) (24.56,59.92) (23.94,60.12)
λ3
L 46.8569 45.8900 47.8259 47.6626 46.6878

(22.18,60.32) (21.86,60.54) (21.62,60.02) (22.72,60.17) (21.23,60.26)
λ4
L 51.8568 50.9190 52.9481 52.7805 51.6902

(26.19,70.00) (24.95,70.00) (24.65,70.00) (25.71,70.00) (24.87,70.00)
λ5
L 42.8708 41.9775 43.4805 43.3459 42.4506

(18.68,65.68) (18.05,65.64) (18.45,66.61) (18.45,66.45) (17.88,66.68)
λ6
L 38.1520 37.5770 38.4766 38.3071 37.5366

(14.78,70.00) (14.56,69.71) (15.00,69.96) (16.00,69.30) (14.70,70.00)
λ1
M 0.4893 0.4150 0.2231 0.2206 0.1930

(0.20,1.05) (0.18,0.97) (0.10,0.55) (0.10,0.55) (0.09,0.48)
λ2
M 0.3255 0.2820 0.1493 0.1477 0.1318

(0.14,0.67) (0.12,0.63) (0.07,0.37) (0.07,0.36) (0.06,0.33)
λ3
M 0.3214 0.2820 0.1472 0.1455 0.1310

(0.12,0.74) (0.12,0.67) (0.07,0.37) (0.07,0.36) (0.06,0.33)
λ4
M 0.3919 0.3500 0.1783 0.1762 0.1596

(0.15,0.90) (0.13,0.89) (0.08,0.45) (0.08,0.44) (0.07,0.41)
λ5
M 0.3741 0.3381 0.1686 0.1667 0.1512

(0.13,0.85) (0.11,0.89) (0.07,0.47) (0.07,0.43) (0.07,0.40)
λ6
M 0.2148 0.1990 0.0956 0.0945 0.0856

(0.08,0.55) (0.07,0.57) (0.04,0.27) (0.04,0.27) (0.03,0.23)
λ1
H 0.0020 0.0042 0.0010 0.0010 0.0013

(0.00,0.01) (0.00,0.01) (0.00,0.00) (0.00,0.00) (0.00,0.00)
λ2
H 0.0015 0.0030 0.0008 0.0008 0.0010

(0.00,0.01) (0.00,0.01) (0.00,0.00) (0.00,0.00) (0.00,0.00)
λ3
H 0.0011 0.0022 0.0006 0.0006 0.0007

(0.00,0.00) (0.00,0.01) (0.00,0.00) (0.00,0.00) (0.00,0.00)
λ4
H 0.0014 0.0027 0.0007 0.0007 0.0009

(0.00,0.01) (0.00,0.01) (0.00,0.00) (0.00,0.00) (0.00,0.00)
λ5
H 0.0010 0.0019 0.0005 0.0005 0.0006

(0.00,0.00) (0.00,0.01) (0.00,0.00) (0.00,0.00) (0.00,0.00)
λ6
H 0.0010 0.0021 0.0006 0.0006 0.0007

(0.00,0.00) (0.00,0.01) (0.00,0.00) (0.00,0.00) (0.00,0.00)
Note: 95% bootstrap intervals in parenthesis.
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Table B.1.8: Coefficient Estimates: Piecewise Exponential with Standard Data

Restriction
(1) (2) (3) (4) unrestricted

wL market
Male -0.5981 -0.5936 -0.5897 -0.5893 -0.5909

(-0.74,-0.43) (-0.74,-0.44) (-0.74,-0.44) (-0.74,-0.43) (-0.75,-0.44)
Black 0.0352 0.0291 0.0296 0.0298 0.0276

(-0.15,0.21) (-0.15,0.21) (-0.15,0.20) (-0.15,0.20) (-0.15,0.20)
Hispanic -0.2638 -0.2623 -0.2617 -0.2611 -0.2610

(-0.49,-0.04) (-0.48,-0.04) (-0.49,-0.04) (-0.49,-0.04) (-0.48,-0.04)
Education -0.0496 -0.0498 -0.0496 -0.0495 -0.0493

(-0.09,0.00) (-0.09,0.00) (-0.08,0.00) (-0.08,0.00) (-0.08,0.00)
High School 0.0219 0.0255 0.0249 0.0246 0.0252

(-0.19,0.22) (-0.19,0.22) (-0.19,0.22) (-0.19,0.22) (-0.19,0.22)
College -0.5022 -0.5101 -0.5140 -0.5142 -0.5156

(-1.05,-0.07) (-1.08,-0.08) (-1.14,-0.08) (-1.14,-0.08) (-1.11,-0.08)
Urban -0.1057 -0.1024 -0.1023 -0.1062 -0.1058

(-0.31,0.14) (-0.31,0.14) (-0.31,0.14) (-0.31,0.14) (-0.31,0.14)
Age -0.2387 -0.2377 -0.2391 -0.2390 -0.2380

(-0.27,-0.21) (-0.27,-0.21) (-0.27,-0.21) (-0.27,-0.21) (-0.27,-0.21)
UI -1.3166 -1.3446 -1.3189 -1.3188 -1.3454

(-1.71,-0.98) (-1.72,-1.01) (-1.70,-0.98) (-1.70,-0.98) (-1.71,-1.01)
wM market
Male 0.0270 0.0298 0.0277 0.0277 0.0258

(-0.08,0.14) (-0.09,0.14) (-0.09,0.14) (-0.09,0.14) (-0.09,0.13)
Black -0.3919 -0.4127 -0.3912 -0.3903 -0.4042

(-0.51,-0.27) (-0.53,-0.28) (-0.51,-0.27) (-0.50,-0.27) (-0.52,-0.28)
Hispanic -0.1699 -0.1743 -0.1675 -0.1655 -0.1680

(-0.31,-0.03) (-0.32,-0.03) (-0.31,-0.02) (-0.31,-0.02) (-0.31,-0.02)
Education 0.0366 0.0394 0.0398 0.0399 0.0415

(-0.00,0.08) (-0.00,0.08) (0.00,0.08) (0.00,0.08) (0.00,0.08)
High School 0.2215 0.2111 0.2150 0.2153 0.2167

(0.04,0.41) (0.04,0.41) (0.04,0.40) (0.04,0.40) (0.04,0.41)
College -0.4773 -0.4932 -0.4842 -0.4834 -0.4963

(-0.79,-0.21) (-0.80,-0.22) (-0.79,-0.23) (-0.79,-0.23) (-0.79,-0.24)
Urban 0.2027 0.1940 0.2009 0.1817 0.1788

(0.06,0.36) (0.03,0.37) (0.07,0.36) (0.02,0.35) (0.02,0.36)
Age -0.0456 -0.0405 -0.0452 -0.0448 -0.0394

(-0.06,-0.03) (-0.06,-0.02) (-0.06,-0.03) (-0.06,-0.03) (-0.06,-0.02)
UI -0.7534 -0.9995 -0.7609 -0.7613 -0.9957

(-0.88,-0.63) (-1.17,-0.81) (-0.89,-0.63) (-0.89,-0.63) (-1.17,-0.81)
wH market
Male 0.3913 0.3781 0.3724 0.3725 0.3660

(0.21,0.57) (0.19,0.56) (0.18,0.58) (0.18,0.58) (0.17,0.58)
Black -0.9528 -0.9379 -0.9809 -0.9828 -0.9348

(-1.20,-0.74) (-1.17,-0.69) (-1.24,-0.74) (-1.24,-0.74) (-1.18,-0.70)
Hispanic -0.1105 -0.1449 -0.1595 -0.1658 -0.1470

(-0.37,0.13) (-0.37,0.10) (-0.38,0.10) (-0.40,0.10) (-0.39,0.11)
Education 0.1948 0.1854 0.1870 0.1862 0.1833

(0.13,0.25) (0.13,0.25) (0.13,0.25) (0.13,0.25) (0.13,0.25)
High School 0.3282 0.3313 0.3894 0.3919 0.3659

(0.01,0.68) (-0.00,0.65) (0.05,0.72) (0.04,0.72) (0.05,0.67)
College 0.2121 0.2531 0.2579 0.2571 0.2808

(-0.10,0.55) (-0.07,0.56) (-0.10,0.58) (-0.11,0.58) (-0.09,0.61)
Urban 0.2027 0.2574 0.2009 0.2636 0.2608

(0.06,0.36) (-0.02,0.60) (0.07,0.36) (-0.04,0.61) (-0.02,0.60)
Age 0.0604 0.0431 0.0626 0.0615 0.0463

(0.03,0.09) (0.01,0.08) (0.03,0.09) (0.03,0.09) (0.01,0.08)
UI -0.7534 -0.3487 -0.7609 -0.7613 -0.3841

(-0.88,-0.63) (-0.59,-0.17) (-0.89,-0.63) (-0.89,-0.63) (-0.59,-0.18)
Note: 95% bootstrap intervals in parenthesis.
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Table B.1.9: Summary of Results: Piecewise Exponential with Inclusive Data

Restriction
(1) (2) (3) (4) unrestricted

V 1
wL

0.0168 0.0173 0.0171 0.0180 0.0180

V 2
wL

0.2924 0.2939 0.2938 0.2950 0.2950

V 1
wM

0.1245 0.1236 0.1549 0.1614 6.4302

V 2
wM

3.3067 3.2538 2.9993 2.9250 19.0479

V 1
wH

0.1245 0.1236 46.3672 46.2589 43.9762

V 2
wH

3.3067 3.2538 8.6475 8.9545 8.7443

UI-low -1.0611 -1.0619 -1.0614 -1.0600 -1.0620
(-1.32,-0.82) (-1.32,-0.82) (-1.32,-0.82) (-1.32,-0.81) (-1.32,-0.82)

UI-medium -0.7301 -0.8037 -0.7312 -0.7042 -0.7945
(-0.83,-0.64) (-0.93,-0.68) (-0.84,-0.63) (-0.80,-0.60) (-0.92,-0.68)

UI-high -0.7301 -0.5135 -0.7312 -0.7042 -0.5288
(-0.83,-0.64) (-0.70,-0.33) (-0.84,-0.63) (-0.80,-0.60) (-0.74,-0.33)

Search-low 0.4115 0.4203 0.4118 0.4199 0.4201
(0.31,0.51) (0.32,0.52) (0.31,0.51) (0.32,0.52) (0.32,0.52)

Search-medium 0.0189 0.2053 0.0266 0.1989 0.2080
(-0.04,0.08) (0.13,0.27) (-0.03,0.08) (0.13,0.27) (0.14,0.28)

Search-high 0.0189 -0.4354 0.0266 -0.3902 -0.4224
(-0.04,0.08) (-0.55,-0.32) (-0.03,0.08) (-0.51,-0.28) (-0.54,-0.31)

Urban-low -0.1303 -0.1311 -0.1277 -0.1287 -0.1294
(-0.25,0.01) (-0.25,0.00) (-0.24,0.01) (-0.24,0.01) (-0.24,0.01)

Urban-medium 0.1255 0.1115 0.1295 0.1034 0.1039
(0.04,0.22) (-0.00,0.21) (0.04,0.22) (-0.01,0.20) (-0.01,0.20)

Urban-high 0.1255 0.1581 0.1295 0.1834 0.1798
(0.04,0.22) (-0.05,0.41) (0.04,0.22) (-0.01,0.45) (-0.01,0.44)

lnL -70061.1868 -70005.3872 -70048.1990 -69997.4836 -69993.9136
LR test 134.5463 22.9473 108.5708 7.1401
p-value 0.0000 0.0000 0.0000 0.0075
Note:The number of degrees of freedom used in the likelihood ratio test for Restriction 1,2,3,
and 4 are 5,2,3 and 1, respectively. 95% bootstrap intervals in parenthesis.
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Table B.1.10: Baseline Hazard Rate Estimates: Piecewise Exponential with Inclusive Data

Restriction
(1) (2) (3) (4) unrestricted

λ1L 3.7085 3.7136 3.5854 3.6268 3.7308
(2.58,6.24) (2.56,6.33) (2.57,6.50) (2.56,6.67) (2.55,6.67)

λ2L 2.1442 2.1454 2.0712 2.0952 2.1552
(1.43,3.72) (1.44,3.72) (1.46,3.74) (1.45,3.82) (1.46,3.88)

λ3L 1.7842 1.7840 1.7232 1.7419 1.7917
(1.22,3.10) (1.22,3.14) (1.21,3.28) (1.22,3.16) (1.23,3.25)

λ4L 1.7721 1.7713 1.7071 1.7287 1.7787
(1.23,3.22) (1.22,3.19) (1.24,3.19) (1.20,3.23) (1.21,3.21)

λ5L 1.7042 1.7029 1.6421 1.6618 1.7099
(1.16,3.16) (1.14,3.12) (1.15,3.07) (1.16,3.22) (1.14,3.24)

λ6L 1.1105 1.1073 1.0723 1.0812 1.1120
(0.77,2.01) (0.76,2.00) (0.76,2.03) (0.77,2.03) (0.76,2.03)

λ1M 0.0065 0.0063 0.0072 0.0073 0.0011
(0.00,0.01) (0.00,0.01) (0.01,0.01) (0.01,0.01) (0.00,0.00)

λ2M 0.0034 0.0033 0.0037 0.0038 0.0006
(0.00,0.01) (0.00,0.01) (0.00,0.01) (0.00,0.01) (0.00,0.00)

λ3M 0.0029 0.0028 0.0031 0.0032 0.0005
(0.00,0.00) (0.00,0.00) (0.00,0.01) (0.00,0.01) (0.00,0.00)

λ4M 0.0030 0.0029 0.0033 0.0034 0.0005
(0.00,0.00) (0.00,0.00) (0.00,0.01) (0.00,0.01) (0.00,0.00)

λ5M 0.0027 0.0027 0.0030 0.0030 0.0005
(0.00,0.00) (0.00,0.00) (0.00,0.01) (0.00,0.01) (0.00,0.00)

λ6M 0.0017 0.0016 0.0018 0.0019 0.0003
(0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00)

λ1H 0.0001 0.0001 0.0000 0.0000 0.0000
(0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00)

λ2H 0.0001 0.0001 0.0000 0.0000 0.0000
(0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00)

λ3H 0.0001 0.0001 0.0000 0.0000 0.0000
(0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00)

λ4H 0.0001 0.0001 0.0000 0.0000 0.0000
(0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00)

λ5H 0.0000 0.0000 0.0000 0.0000 0.0000
(0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00)

λ6H 0.0000 0.0000 0.0000 0.0000 0.0000
(0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00)

Note: 95% bootstrap intervals in parenthesis.
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Table B.1.11: Coefficient Estimates: Piecewise Exponential with Inclusive Data

Restriction
(1) (2) (3) (4) unrestricted

wL market
Male -0.2668 -0.2670 -0.2658 -0.2678 -0.2689

(-0.38,-0.17) (-0.38,-0.17) (-0.38,-0.17) (-0.38,-0.17) (-0.38,-0.17)
Black -0.0031 -0.0025 0.0029 0.0016 0.0002

(-0.13,0.09) (-0.12,0.09) (-0.12,0.09) (-0.12,0.09) (-0.12,0.09)
Hispanic -0.1927 -0.1933 -0.1875 -0.1898 -0.1903

(-0.33,-0.07) (-0.33,-0.07) (-0.33,-0.07) (-0.33,-0.07) (-0.33,-0.07)
Education 0.0074 0.0072 0.0092 0.0089 0.0075

(-0.03,0.04) (-0.03,0.04) (-0.03,0.04) (-0.03,0.04) (-0.03,0.04)
High School 0.1034 0.1030 0.0945 0.0929 0.0948

(-0.02,0.24) (-0.02,0.24) (-0.03,0.23) (-0.03,0.24) (-0.03,0.24)
College -0.1896 -0.1839 -0.1958 -0.1901 -0.1843

(-0.48,0.14) (-0.48,0.14) (-0.48,0.12) (-0.48,0.14) (-0.48,0.15)
Urban -0.1303 -0.1311 -0.1277 -0.1287 -0.1294

(-0.25,0.01) (-0.25,0.00) (-0.24,0.01) (-0.24,0.01) (-0.24,0.01)
Age -0.2090 -0.2089 -0.2083 -0.2086 -0.2090

(-0.23,-0.19) (-0.23,-0.19) (-0.23,-0.19) (-0.23,-0.19) (-0.23,-0.19)
UI -1.0611 -1.0619 -1.0614 -1.0600 -1.0620

(-1.32,-0.82) (-1.32,-0.82) (-1.32,-0.82) (-1.32,-0.81) (-1.32,-0.82)
Searching 0.4115 0.4203 0.4118 0.4199 0.4201

(0.31,0.51) (0.32,0.52) (0.31,0.51) (0.32,0.52) (0.32,0.52)
wM market
Male 0.2444 0.2145 0.2425 0.2120 0.2127

(0.18,0.32) (0.15,0.29) (0.18,0.32) (0.15,0.29) (0.15,0.29)
Black -0.3397 -0.3486 -0.3341 -0.3406 -0.3432

(-0.43,-0.25) (-0.43,-0.25) (-0.43,-0.25) (-0.43,-0.25) (-0.43,-0.25)
Hispanic -0.1420 -0.1383 -0.1515 -0.1469 -0.1466

(-0.25,-0.04) (-0.24,-0.04) (-0.25,-0.05) (-0.25,-0.05) (-0.24,-0.05)
Education 0.0920 0.0915 0.0920 0.0913 0.0920

(0.07,0.12) (0.07,0.12) (0.07,0.12) (0.07,0.12) (0.07,0.12)
High School 0.3058 0.3032 0.3021 0.2953 0.2965

(0.18,0.43) (0.18,0.43) (0.18,0.43) (0.17,0.42) (0.17,0.42)
College -0.4170 -0.4210 -0.4152 -0.4183 -0.4215

(-0.59,-0.24) (-0.59,-0.25) (-0.59,-0.24) (-0.59,-0.24) (-0.59,-0.24)
Urban 0.1255 0.1115 0.1295 0.1034 0.1039

(0.04,0.22) (-0.00,0.21) (0.04,0.22) (-0.01,0.20) (-0.01,0.20)
Age 0.0013 0.0017 0.0008 0.0003 0.0012

(-0.01,0.01) (-0.01,0.01) (-0.01,0.01) (-0.01,0.01) (-0.01,0.01)
UI -0.7301 -0.8037 -0.7312 -0.7042 -0.7945

(-0.83,-0.64) (-0.93,-0.68) (-0.84,-0.63) (-0.80,-0.60) (-0.92,-0.68)
Searching 0.0189 0.2053 0.0266 0.1989 0.2080

(-0.04,0.08) (0.13,0.27) (-0.03,0.08) (0.13,0.27) (0.14,0.28)
wH market
Male 0.7198 0.7680 0.7363 0.7955 0.7942

(0.57,0.85) (0.63,0.90) (0.59,0.89) (0.65,0.94) (0.65,0.94)
Black -0.9742 -0.9468 -1.0099 -0.9761 -0.9638

(-1.13,-0.80) (-1.11,-0.78) (-1.17,-0.81) (-1.14,-0.79) (-1.13,-0.78)
Hispanic -0.1737 -0.1641 -0.2175 -0.2006 -0.1954

(-0.33,0.01) (-0.34,0.01) (-0.36,0.03) (-0.37,0.02) (-0.38,0.03)
Education 0.1875 0.1926 0.1901 0.1917 0.1955

(0.15,0.24) (0.15,0.24) (0.15,0.25) (0.15,0.25) (0.15,0.25)
High School 0.4109 0.4014 0.5206 0.5168 0.5063

(0.15,0.66) (0.15,0.66) (0.20,0.75) (0.21,0.75) (0.21,0.75)
College 0.5449 0.5331 0.4983 0.5116 0.5101

(0.02,0.81) (0.05,0.82) (0.02,0.81) (0.04,0.79) (0.04,0.81)
Urban 0.1255 0.1581 0.1295 0.1834 0.1798

(0.04,0.22) (-0.05,0.41) (0.04,0.22) (-0.01,0.45) (-0.01,0.44)
Age 0.1251 0.1243 0.1284 0.1293 0.1273

(0.11,0.14) (0.10,0.14) (0.11,0.15) (0.11,0.15) (0.11,0.15)
UI -0.7301 -0.5135 -0.7312 -0.7042 -0.5288

(-0.83,-0.64) (-0.70,-0.33) (-0.84,-0.63) (-0.80,-0.60) (-0.74,-0.33)
Searching 0.0189 -0.4354 0.0266 -0.3902 -0.4224

(-0.04,0.08) (-0.55,-0.32) (-0.03,0.08) (-0.51,-0.28) (-0.54,-0.31)
Note: 95% bootstrap intervals in parenthesis.
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Table B.1.12: Wage Distributions by Eduction

Standard Data Inclusive Data
High School College High School College

Mean 12.59 17.22 16.45 20.00

Std. Dev. 24.43 15.50 142.83 37.46

25th Percentile 7.33 10.00 7.5 10.7

75th Percentile 12.36 19.17 13.24 21.63

Observations 3,343 384 10,617 1,362

Table B.1.13: Likelihood Ratio Tests by Education: Weibull Hazard

Specification

(1) (2) (3) (4) unrestricted
Standard data: Highschool
lnL -14254.8164 -14248.9368 -14250.9355 -14249.8313 -14245.6054
LR test 18.4221 6.6628 10.6602 8.4517
p-value 0.0010 0.0357 0.0048 0.0036

Standard data: College
lnL -1572.5371 -1571.9408 -1572.7105 -1571.8639 -1571.8331
LR test 1.4081 0.2156 1.7548 0.0617
p-value 0.8428 0.8978 0.4159 0.8038

Inclusive data: Highschool
lnL -51367.6426 -51318.8019 -51356.6103 -51310.4165 51308.9126
LR test 117.4601 19.7785 95.3954 3.0078
p-value 0.0000 0.0001 0.0000 0.0829

Inclusive data: College
lnL -5680.1866 -5675.2052 -5673.9313 -5669.8700 -5669.7648
LR test 20.8437 10.8809 8.3330 0.2104
p-value 0.0009 0.0043 0.0396 0.6465
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Table B.1.14: Likelihood Ratio Tests by Education: Piecewise Exponential Hazard

Specification

(1) (2) (3) (4) unrestricted
Standard data: Highschool
lnL -14209.8386 -14204.9645 -14208.4759 -14207.8358 -14201.4364
LR test 16.8043 7.0560 14.0789 12.7986
p-value 0.0021 0.0294 0.0009 0.0003

Standard data: College
lnL -1584.1900 -1583.1533 -1584.1869 -1583.2134 -1583.1533
LR test 2.0733 0.0001 2.0673 0.1201
p-value 0.7223 1.0000 0.3557 0.7289

Inclusive data: Highschool
lnL -51109.3769 -51070.3267 -51098.9918 -51063.9213 -51062.2604
LR test 94.2329 16.1327 73.4629 3.3218
p-value 0.0000 0.0003 0.0000 0.0684

Inclusive data: College
lnL -5626.4299 -5621.3700 -5626.3282 -5621.3424 -5621.3360
LR test 10.1878 0.0680 9.9844 0.0127
p-value 0.0701 0.9666 0.0187 0.9102

Table B.1.15: Kullback-Leibler Divergence

Sub-Market DKL(p||q) H(p)

Black High-School Non-completers 0.0589 3.5677

Black High-School Graduates 0.0764 2.9850

Black College Non-completers 0.0597 2.3401

White High-School Non-completers 0.0657 3.0358

White High-School Graduates 0.0626 2.4240

White College Non-completers 0.046 1.7345

White College Graduates 0.0905 1.6845
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Appendix C

Appendix for The Effect of Public

Education Expenditures on

Intergenerational Mobility

(a) Spending Per-Pupil for all counties (b) Spending Per-Pupil for Counties with previously
below mean spending

Figure C.0.1: Event study for court reform at county level
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(1) (2) (3) (4)
VARIABLES All Counties Bottom 50 Percent Top 25 Percent Bottom 25 Percent
L.a_r 231.7* 249.9** 44.66 259.5**

(119.8) (104.2) (223.0) (108.9)
L2.a_r 263.9* 327.2*** 123.2 326.0**

(145.1) (120.5) (251.9) (137.2)
L3.a_r 376.5* 358.3*** 494.8 306.5**

(187.9) (124.8) (362.4) (117.9)
L4.a_r 157.0 190.8* 198.1 181.8*

(107.7) (99.50) (172.9) (93.68)
L5.a_r 8.478 29.77 49.75 35.78

(92.86) (92.33) (153.0) (91.10)
F.a_r -2.905 2.616 -82.42 11.07

(94.76) (61.61) (240.7) (60.52)
F2.a_r 99.16 94.23 19.03 90.56

(102.4) (98.73) (177.7) (105.6)
F3.a_r 59.16 104.1 -181.2 96.63

(64.39) (73.45) (201.0) (73.54)
F4.a_r -30.51 80.95 -469.8 78.93

(107.5) (78.75) (427.8) (77.38)
F5.a_r 24.71 101.6 -356.8 91.72

(120.0) (108.2) (381.6) (118.5)
L.e_r -1,303*** -924.0*** -2,361*** -822.7***

(182.1) (148.0) (219.9) (184.4)
L2.e_r -1,065*** -822.3*** -1,620*** -752.2**

(354.0) (257.0) (220.5) (373.4)
L3.e_r -687.8** -522.5** -1,260*** -500.7

(282.9) (254.4) (177.8) (310.1)
L4.e_r -487.3*** -353.2*** -1,300*** -397.1***

(88.40) (90.07) (447.4) (145.3)
L5.e_r 105.7 43.39 267.1 17.00

(127.3) (116.9) (345.3) (135.9)
F3.e_r -390.4*** -238.8*** -832.9*** -278.5***

(73.40) (55.59) (170.7) (52.04)
F4.e_r -238.0*** -157.4*** -433.2*** -185.4***

(53.34) (45.37) (101.8) (48.99)
F5.e_r 64.22 38.79 176.6* 42.31

(71.03) (64.56) (101.7) (60.53)
Constant 6,005*** 5,765*** 7,580*** 5,945***

(33.88) (22.59) (57.68) (29.14)

Observations 18,749 11,524 4,560 4,793
R-squared 0.918 0.953 0.913 0.967
County FE X X X X
Year FE X X X X

Standard Errors Clustered at the State Level
*** p<0.01, ** p<0.05, * p<0.1
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(a) Spending per-pupil for counties in bottom 25
percent

(b) Spending per-pupil for counties in bottom 25
percent

Figure C.0.2: Event study for court reform at county level
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Table C.0.1: School Finance Cases and Litigation

State Year Constitutionality of finance system Type of Reform

Alabama 1993 Overturned Adequacy
Alaska 1999 Overturned Adequacy

Arizona 1994 Overturned Adequacy
Arizona 1997 Overturned Adequacy
Arizona 1998 Overturned Adequacy
Arizona 2007 Overturned Adequacy
Arizona 1973 Upheld
Arizona 1980 Legislative

Arkansas 2002 Overturned Adequacy
Arkansas 2005 Overturned Adequacy
Arkansas 1983 Overturned Equity
Arkansas 1994 Overturned Equity

California 1971 Overturned Equity
California 1977 Overturned Equity
California 1986 Upheld
California 1988 Legislative
Colorado 1982 Upheld
Colorado 1994 Legislative

Connecticut 1995 Overturned Adequacy
Connecticut 2010 Overturned Adequacy
Connecticut 1978 Overturned Equity
Connecticut 1982 Overturned Equity
Connecticut 1985 Upheld

Delaware
Florida 1996 Upheld
Florida 2006 Upheld
Florida 2009 Upheld
Florida 1973 Legislative

Georgia 1981 Upheld
Georgia 1986 Legislative
Hawaii
Idaho 1998 Overturned Adequacy
Idaho 2005 Overturned
Idaho 1975 Upheld
Idaho 1990 Upheld
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State Year Constitutionality of finance system Type of Reform

Iowa 1972 Legislative
Iowa 1992 Legislative

Kansas 2005 Overturned Adequacy
Kansas 1972 Overturned Equity
Kansas 1981 Upheld
Kansas 1994 Upheld
Kansas 1992 Legislative

Kentucky 1989 Overturned Adequacy
Kentucky 2007 Upheld
Louisiana 1976 Upheld
Louisiana 1987 Upheld
Louisiana 1998 Upheld
Louisiana 1992 Legislative

Maine 1995 Upheld
Maine 1978 Legislative
Maine 1985 Legislative
Maine 1996 Legislative
Maine 2004 Legislative
Illinois 1973 Upheld
Illinois 1976 Upheld
Illinois 1996 Upheld
Illinois 1973 Legislative
Illinois 1980 Legislative
Illinois 1999 Legislative
Indiana 1993 Legislative
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State Year Constitutionality of finance system Type of Reform

Maryland 2005 Overturned Adequacy
Maryland 1972 Upheld
Maryland 1983 Upheld
Maryland 1996 Upheld
Maryland 2002 Upheld
Maryland 1987 Legislative
Maryland 2002 Legislative

Massachuset ts 1993 Overturned
Massachuset ts 2005 Upheld
Massachuset ts 1978 Legislative
Massachuset ts 1985 Legislative

Michigan 1997 Overturned Adequacy
Michigan 1973 Upheld
Michigan 1984 Upheld
Michigan 1973 Legislative
Michigan 1994 Legislative

Minnesota 1971 Upheld
Minnesota 1993 Upheld
Minnesota 1973 Legislative
Minnesota 1989 Legislative

Mississippi 1997 Legislative
Missouri 1993 Overturned Adequacy
Missouri 1977 Legislative
Montana 2005 Overturned Adequacy
Montana 2008 Overturned Adequacy
Montana 1989 Overturned Equity
Montana 1993 Overturned Equity
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State Year Constitutionality of finance system Type of Reform

Nebraska 1993 Upheld
Nebraska 2007 Upheld
Nebraska 1967 Legislative
Nebraska 1990 Legislative
Nebraska 1997 Legislative

Nevada
New Hampshire 1993 Overturned Adequacy
New Hampshire 1997 Overturned Adequacy
New Hampshire 1999 Overturned Adequacy
New Hampshire 2002 Overturned Adequacy
New Hampshire 2006 Overturned Adequacy
New Hampshire 1985 Legislative

New Jersey 1990 Overturned Adequacy
New Jersey 1991 Overturned Adequacy
New Jersey 1994 Overturned Adequacy
New Jersey 1973 Overturned Equity
New Jersey 1976 Overturned Equity

New Mexico 1998 Overturned Equity
New Mexico 1974 Legislative

New York 2003 Overturned Adequacy
New York 2006 Overturned Adequacy
New York 1972 Upheld
New York 1982 Upheld
New York 1987 Upheld
New York 1993 Upheld
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State Year Constitutionality of finance system Type of Reform

North Carolina 1997 Overturned Adequacy
North Carolina 2004 Overturned Adequacy
North Carolina 1987 Upheld
North Carolina 1994 Upheld

North Dakota 1993 Upheld
North Dakota 2007 Legislative
North Dakota

Ohio 1997 Overturned Adequacy
Ohio 2000 Overturned Adequacy
Ohio 2002 Overturned Adequacy
Ohio 1979 Upheld
Ohio 1991 Upheld
Ohio 1975 Legislative
Ohio 2010

Oklahoma 1987 Upheld
Oklahoma 1981 Legislative

Oregon 2009 Overturned Adequacy
Oregon 1991 Upheld Legislative
Oregon 1976 Upheld
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State Year Constitutionality of finance system Type of Reform

Oregon 1991 Upheld
Oregon 1995 Upheld
Oregon 1999 Upheld
Oregon 1978 Legislative

Pennsylvania 1975 Upheld
Pennsylvania 1979 Upheld
Pennsylvania 1987 Upheld
Pennsylvania 1991 Upheld
Pennsylvania 1991 Legislative
Pennsylvania 2008 Legislative
Rhode Island 1995 Upheld
Rhode Island 1985 Legislative
Rhode Island 1996 Legislative

South Carolina 2005 Overturned Adequacy
South Carolina 1988 Upheld
South Carolina 1993 Upheld
South Carolina 1977 Legislative
South Carolina 1984 Legislative

Tennessee 1995 Overturned Adequacy
Tennessee 2002 Overturned Adequacy
Tennessee 1993 Overturned Equity
Tennessee 1977 Legislative
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State Year Constitutionality of finance system Type of Reform

Texas 2004 Overturned Adequacy
Texas 1989 Overturned Equity
Texas 1991 Overturned Equity
Texas 1992 Overturned Equity
Texas 1973 Upheld
Texas 1995 Upheld
Texas 1986 Legislative
Utah 1973 Legislative
Utah 1993 Legislative

Vermont 1997 Overturned Equity
Vermont 1994 Upheld
Vermont 1969 Legislative
Vermont 1982 Legislative
Vermont 1987 Legislative
Vermont 2003 Legislative
Virginia 1994 Upheld
Virginia 1972 Legislative
Virginia 1975 Legislative
Virginia 1989 Legislative

Washington 1977 Overturned Adequacy
Washington 1991 Overturned Adequacy
Washington 2007 Overturned Equity
Washington 1974 Upheld

West Virginia 1979 Overturned Adequacy
West Virginia 1995 Overturned Adequacy
West Virginia 1984 Overturned Equity
West Virginia 1998 Legislative

Wisconsin 1976 Overturned Equity
Wisconsin 1989 Upheld
Wisconsin 2000 Upheld
Wisconsin 1973 Legislative
Wyoming 1995 Overturned Adequacy
Wyoming 2001 Overturned Adequacy
Wyoming 1980 Overturned Equity

Table C.0.2: Source: Jackson et al. (2015)
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