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ABSTRACT Biological nitrogen fixation can be an important source of nitrogen in trop-
ical forests that serve as a major CO2 sink. Extensive deforestation of the Amazon is
known to influence microbial communities and the biogeochemical cycles they mediate.
However, it is unknown how diazotrophs (nitrogen-fixing microorganisms) respond to
deforestation and subsequent ecosystem conversion to agriculture, as well as whether
they can recover in secondary forests that are established after agriculture is abandoned.
To address these knowledge gaps, we combined a spatially explicit sampling approach
with high-throughput sequencing of nifH genes. The main objectives were to assess the
functional distance decay relationship of the diazotrophic bacterial community in a trop-
ical forest ecosystem and to quantify the roles of various factors that drive the observed
changes in the diazotrophic community structure. We observed an increase in local di-
azotrophic diversity (�-diversity) with a decrease in community turnover (�-diversity), as-
sociated with a shift in diazotrophic community structure as a result of the forest-to-
pasture conversion. Both diazotrophic community turnover and structure showed signs
of recovery in secondary forests. Changes in the diazotrophic community were primarily
driven by the change in land use rather than differences in geochemical characteristics
or geographic distances. The diazotroph communities in secondary forests resembled
those in primary forests, suggesting that at least partial recovery of diazotrophs is possi-
ble following agricultural abandonment.

IMPORTANCE The Amazon region is a major tropical forest region that is being
deforested at an alarming rate to create space for cattle ranching and agricul-
ture. Diazotrophs (nitrogen-fixing microorganisms) play an important role in sup-
plying soil N for plant growth in tropical forests. It is unknown how diazotrophs
respond to deforestation and whether they can recover in secondary forests that
establish after agriculture is abandoned. Using high-throughput sequencing of
nifH genes, we characterized the response of diazotrophs’ �-diversity and identi-
fied major drivers of changes in diazotrophs from forest-to-pasture and pasture-
to-secondary-forest conversions. Studying the impact of land use change on di-
azotrophs is important for a better understanding of the impact of deforestation
on tropical forest ecosystem functioning, and our results on the potential recov-
ery of diazotrophs in secondary forests imply the possible restoration of ecosys-
tem functions in secondary forests.

KEYWORDS diazotrophs, functional distance decay, recovery of diazotrophs in
secondary forest
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The Amazon rain forest acts as a major sink of CO2 by absorbing 0.4 to 0.6 Pg C
annually, which represents a quarter of the absorption by all forests globally (1–4).

Global emission of the greenhouse gas carbon dioxide (CO2) is a serious environmental
concern. The uptake of CO2 requires significant input of nitrogen, which comes from
the mineralization of organic material, atmospheric deposition, and biological nitrogen
fixation (BNF). In terrestrial nonmanaged ecosystems, 97% of natural nitrogen input
comes from biological nitrogen fixation (5, 6) carried out by diazotrophs (N2-fixing
Bacteria and Archaea) (7, 8). To assess variations in the diazotrophic species, the marker
gene nifH has been widely used as a target gene (9–17), and alterations in its
composition and abundance have been directly correlated with nitrogen fixation rates
(18–22).

The Amazon is the largest equatorial forest in the world, and it controls vital
biogeochemical cycles. Changes in its land use can significantly influence a wide range
of ecosystem processes (23, 24), such as the N cycle, in which decreases in mineraliza-
tion, nitrification, and denitrification processes have been observed in response to
deforestation (25–27). Currently, Amazon forests are being cleared for cattle ranching
and soybean fields at an alarming rate, and about 20% of the area of the Brazilian
Amazon rain forest was cleared between 1970 and 2015 (28). Ramankutty et al. (29)
estimated that most of the deforested area is being used for pasture (62%) and crop
production (6%), with the remaining area being secondary forests (32%) that were
established after pasture abandonment. Owing to the extent of deforested area
(7,418,000 ha) (30) that is currently pasture and secondary forest, it is important to
assess how changes in land use have influenced microbial functional groups and
whether restoration of microbial communities in secondary forests occurs. Previous
studies, primarily focused on plants and animals, have demonstrated that secondary
forests invariably have much lower biodiversity than undisturbed primary forests (31,
32) and that the effects of losing primary forests are irreparable (32). So far, detailed
information on the recovery of microbial communities in general and those responsible
for specific ecological functions (e.g., diazotrophs) is limited.

Previous molecular microbial studies in the Amazon region have mainly focused on
the effect of deforestation on bacterial communities as a whole (33, 34), with a limited
number of studies focused on specific functional groups (35–37). These studies have
generally been limited in terms of both the number of soil samples collected across
different land use systems and depth of sequencing (i.e., the number of DNA sequences
per sample using Sanger DNA sequencing) (14, 38–40). Previously, Mirza et al. (14)
reported alterations of diazotrophic community structure in the Amazon following
deforestation and land use change, but they did not include large-scale spatial analyses.
Therefore, in the present study, we used a spatially explicit, nested-sampling approach
to understand the spatial variation in diazotrophic community structure and the factors
that influence it over a wide geographical area (up to 10 km2). Second, we investigated
the extent of their recovery in secondary forests that were established after the
abandonment of pasture. High-throughput sequencing was used to generate 443,600
nifH gene sequences across 89 soil samples for the detailed comparison of diazotrophic
community structure across three different land use types.

The specific objectives of the current study were (i) to evaluate a functional distance
decay relationship of the diazotrophic bacterial community in a tropical forest ecosys-
tem and (ii) to quantify the roles of various factors that drive the changes in the
diazotrophic community structure and play a major role in the recovery of diazotrophs
in secondary-forest ecosystems.

RESULTS AND DISCUSSION
Diazotrophic �-diversity and spatial turnover or �-diversity. There was a sig-

nificant increase in the diazotrophic �-diversity (for both taxonomic and phylogenetic
metrics), based on the nifH gene sequences, in response to the forest-to-pasture
conversion (Fig. 1; also, see Fig. S1 in the supplemental material) (P � 0.01). The
increase in diazotrophic �-diversity at the pasture sites established after the defores-
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tation of the primary forests can be due to the enhanced availability of slowly released
labile carbon (41) or an enhanced supply of easily degradable C sources in the form of
root exudates of fast-growing grass species (Urochloa brizantha and Panicum maxi-
mum) in the pastures (42). On average, we observed higher soil C content in the pasture
sites (mean � 95% confidence interval [CI], 2.93 � 0.65 g kg of soil�1) than in the forest
sites (1.52 � 0.42 g kg of soil�1), which suggests that higher soil C content might have
selectively favored a diverse diazotrophic community. Consistent with our observation,
Cenciani et al. (43) also reported an increase in soil C content in pasture soil compared
to primary-forest sites in the Amazon region.

Previous studies (44–46) have suggested that the presence of high plant diversity
supports the growth of diverse microbial populations in soil mainly because of the
differences in the nature organic material produced by different plants. In contrast,
several microbial studies have also observed that despite the presence of high plant
diversity, bacterial �-diversity was low in soil (47–50) and it increased after deforesta-
tion (33, 34, 48). Here, we observed a similar trend for the diazotrophic community,
which we assessed using a genetic marker for nitrogen fixation. Furthermore, we also
observed a decrease in the diazotrophic �-diversity at the secondary-forest sites, which
had higher plant diversity than the pasture sites (Fig. 1; also, see Fig. S1) (P � 0.05) (51).

We also examined patterns of �-diversity by comparing the degree of community
turnover between samples using both taxonomic and phylogenetic data. We found
that the diazotrophic rate of turnover based on taxonomic diversity was the lowest in
the pastures (slope � 0.22 � 0.01 [95% bootstrap CI]; R2 � 0.04) (Fig. 2), intermediate
in the secondary-forest sites (slope � 0.34 � 0.02; R2 � 0.22), and highest in the
primary-forest sites (slope � 0.45 � 0.03; R2 � 0.55). This indicates that the pasture
diazotrophic community was more homogenous, whereas the communities in the
forested sites displayed greater patchiness. This trend was consistent at the different
DNA and protein similarity levels (see Fig. S2A to C) as well as for the phylogenetic
analysis (Fig. 2). A conceivable justification of the observed spatial patterns of di-
azotrophic species can be the presence of unique ecological niches or patchiness in the
primary forests. Similar outcomes for general bacterial community turnover rates have
been noticed in response to the deforestation of primary forest for pasture (34, 52). The
present study not only extends this observation to a specific functional group but also
shows that the spatial turnover rates partially recovered in secondary forest (Fig. 2).

The driver of changes in the diazotrophic community structure. Overall, there
was a significant shift in the diazotrophic microbial community composition at 97%
DNA similarity across three different land use systems for both complete data sets (Fig.
3) (PERMANOVA, F(2,87) � 11.81; P � 0.001) and subsampled data sets (see Fig. S3 and
S4) (PERMANOVA, F(2,87) � 6.92; P � 0.001). Similarly, an increase in abundance of the
diazotrophic community, quantified through quantitative PCR (qPCR), was also signif-
icantly altered as a result of forest-to-pasture conversion (see Fig. S5) (P � 0.001).

FIG 1 Differences in the taxonomic (black) and phylogenetic (gray) �-diversity of the nifH genes at 97%
DNA identity in response to land use change in the Amazon. Taxonomic diversity was calculated as the
number of unique genes, and phylogenetic diversity was calculated as Faith’s phylogenetic diversity (66).
Error bars represent 95% CI.
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However, this abundance was not different between primary and secondary forests (see
Fig. S5) (P � 0.05).

To further explore the question of what factors would have caused this variation in
the diazotrophic community structure, we performed variance-partitioning analysis, in
which three matrices of explanatory variables (the factors land use, physicochemical
characteristics, and geographic distance) were evaluated. Using this approach, we were

FIG 2 Diazotrophic community �-diversity turnover at 97% DNA identity, representing a distance decay relationship in response to land use change in the
Amazon. Differences in the slopes across different land use systems were compared by a power model. The top row shows the variations in the taxonomic
�-diversity and the bottom row shows the phylogenetic �-diversity across different land use systems.

−2 −1 0 1 2

−2
−1

0
1

2

NMDS1

N
M
D
S2

.

FIG 3 Ordination based on a dissimilarity matrix of the nifH gene sequences comparing three different
land use systems in the Amazon. The nonmetric multidimensional scaling representation was based on
97% DNA identity. The complete data set contains a total of 443,600 nifH gene sequences, with the
following abundance distribution of sequences retrieved from different treatments: primary-forest
samples, 158,261; pasture samples, 143,700; secondary-forest samples, 131,640.
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able to assess the influence of each factor while controlling the confounding influence
of the other two factors. Results of variation partitioning analysis showed that about
46% of the total variation in the diazotrophic community structure was explained by
these three matrices (Fig. 4). Land use or plant species was the primary driver of
the observed changes in the diazotrophic community and explained about 29% of the
variation through its individual influence (16.3%) and shared influences with the
geographic distance (9.5%) and soil characteristics (2.3%). Geographic distance and soil
properties had similar individual fractions of explained variation (approximately 10%),
and their effects were much smaller than the effect of land use.

This change in the diazotrophic community in response to land use change could be
due to the direct influence of plant species across different systems, i.e., plant root
exudates and/or their detritus controlling diazotrophic community rather than their
indirect effect by altering geochemical characteristics. Soil characteristics explained
only about 7% of the variation in the diazotrophic community (Fig. 4). In contrast, Jesus
et al. (33) found in the western part of the Amazon that soil attributes explained about
31% of the variation observed in general microbial communities from forest-to-pasture
conversion, and the influence of land use was not significant. In our study, geographic
distance explained only about 8% of variations in the diazotrophic community (Fig. 4).
The geochemical characteristics, including organic matter content, pH, potential acidity
(H�Al), potential cation exchange capacity (T), N, P, K, S, Ca, Mg, Al, Zn, Fe, Mn, Cu, and
B (see Table S2), were measured in both studies. Most of the soil characteristics
measured in this study were same as those measured by Jesus et al. (33), with a few
exceptions, such as soil texture, base saturation, Al saturation, and equilibrium phos-
phorus. Other differences between these two studies were as follows: (i) the sampling
depth in our study was 0 to 10 cm, whereas in the study by Jesus et al. (33), it was 0
to 20 cm, and (ii) we analyzed 108 individual soil samples, whereas Jesus et al. (33)
analyzed 26 soil samples, and each was a composite of 12 individual soil samples. It is
not possible to point out a factor or factors that contributed to the differences between
the study results. One possible explanation for our results could be that several other
factors as mentioned above (33), along with the available iron (53), light, and other
variables (54) that were not measured in this study, might have contributed to the
observed variations in the diazotrophic community. In contrast, several previous studies
suggested that soil characteristics are the main driver of the changes in general
microbial community compositions (33, 48, 55, 56).

7.3
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8.1
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RRDAadj
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Soil Characteristics
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FIG 4 Variance partitioning analysis to determine how land use, geochemical characteristics, and
geographic distance explain the variation in the diazotrophic community. Each circle represents the
portion of variation accounted for by each of the three factors.
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The changes in the plant composition predominantly caused significant changes in
the diazotrophic community structure. The most diverse forest sites may contain up to
300 different plant species per hectare (57), secondary forests exhibited an intermedi-
ate level of plant diversity, up to 15 to 18% of woody plant species (51), and pasture
sites were least diverse, with only two fast-growing grass species. Previously, higher
plant diversity has often been associated with higher N mineralization rates, which lead
to a higher net N supply (58, 59), and significantly higher N mineralization rates have
been observed upon forest-to-pasture conversion in this region (25). This was also
consistent with the lower diazotrophic community abundance quantified in the pri-
mary forest in comparison to pasture (see Fig. S5). About 80% of the N requirements of
the primary forests is fulfilled by the mineralization of diverse plant materials (60), and
a small amount of N in forest soil is also contributed by atmospheric N depositions (61).
Hence, tropical forests seem less dependent on the diazotrophic community to fulfill
their N requirements. In contrast, pastures containing two fast-growing grass species
(Urochloa brizantha and Panicum maximum) obtain about 40% of their N requirements
through biological N2 fixation (42). N deficiency caused by continued depletion due to
grazing of aboveground biomass and the presence of high-C resources supplied by the
grass species in the form of root exudates may provide selectively favorable conditions
for the diazotrophic community and enhance BNF. Future in situ estimates of BNF in the
Amazon rain forest could help to improve our understanding of N flux in this terrestrial
ecosystem and also indicate that high nifH gene abundance truly represents high N
fixation rates, as were reported previously (21).

Recovery of diazotrophs in the secondary forest. Diazotrophic communities in
approximately 12- to 17-year-old secondary forests showed signs of partial recovery in
terms of �-diversity, turnover rates, and community structure (Fig. 1 to 3). First, as we
described above, there was a decrease in the diazotrophic �-diversity at the secondary-
forest sites (Fig. 1; also, see Fig. S1) (P � 0.05) (51). Second, we observed an interme-
diate level of turnover in the secondary forest (i.e., a lower level than in primary forests
and higher than in pasture), which indicates the onset of potential restoration of
confined ecological niches in the secondary forests that might have been lost in the
pasture lands due to biotic homogenization (34). Third, the distributions of diazotrophic
community composition of primary and secondary forests were significantly different
(P � 0.05) at 97% DNA similarity. Nevertheless, the secondary-forest diazotrophic com-
munity composition was more closely related to that of the primary forest than that of
pastures (Fig. 3). At other DNA (95% and 90%) and amino acid (99%, 97%, and 95%)
base similarity levels, the differences in diazotrophic community composition between
the primary and secondary forests were nonsignificant (see Fig. S4) (P � 0.05), while
both sites were significantly different from pastures. Similarly, nifH gene abundance
was also similar between primary forests and secondary forests (see Fig. S5) (P � 0.05).
Lastly, phylogenetic analysis (Fig. S6) also indicated a high similarity in the diazotrophic
groups at the primary- and secondary-forest sites, which were different from those
detected in the pasture sites. Likewise, the overall diversity estimated by the accumu-
lation of taxa with the number of soil samples also suggested a similarity between
primary- and secondary-forest ecosystems compared to pasture sites (see Fig. S7).

It was evident from these results that the diazotrophic community was influenced
by changes in land use. However, we observed potential recovery of the diazotrophic
community in 12- to 17-year-old secondary forests, indicating their high resilience. This
suggests that changes in land use from forest to pasture did not cause permanent loss
of most of the diazotrophic species (extinction); rather, it caused a shift in their relative
abundance in the pasture lands. These results highlight the need for more compre-
hensive spatial-scale studies to understand the true impact of land use on functional
microbial communities and have improved our understanding of the effect of the
transition from forest to pasture lands and from pasture to secondary forest on the
diazotrophic community. Overall, this outcome is very encouraging; it indicates that, in
parallel to the recovery of a few plant species, unique ecological niches for diazotrophic
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community can be restored and may eventually lead to the recovery of functions. To
verify the complete recovery of function in the secondary forests, studies focused on
the in situ estimates of BNF in the Amazon rain forest, pasture lands, and secondary
forest would improve our understanding of this process and of the extent to which the
recovery of diazotrophs translates into a function. This is a detailed study in this region
that indicates the recovery of diazotrophic species in 12- to 17-year-old secondary
forests in tropical regions.

Overall, we observed a decrease in �-diversity in response to the forest-to-pasture
conversion. Land use was the single most important driver of changes in community
structure (composition and abundance) relative to differences in geography and soil.
We also observed the recovery in the diazotrophic �-diversity and community structure
in the 12- to 17-year-old secondary forests, which has important ecological implications
about the possible restoration of ecosystem function in secondary forests. Future in situ
estimates of BNF in the Amazon rain forest could help to improve our understanding
of N flux in this terrestrial ecosystem and of the extent to which the recovery of
diazotrophs translates into a function.

MATERIALS AND METHODS
Sampling design and total soil DNA extraction. Soil samples were collected from the state of

Rondônia (10°10=5�S, 62°49=27�W), Brazil, in 2010. This site was selected because it was one of the three
states (Rondônia, Mato Grosso, and Pará) which accounted for more than 85% of all Amazon defores-
tation from 1996 to 2005 (62). Primary forest had been cleared by removing large trees for timber and
burning the remaining vegetation to create pasture lands that were vegetated with two fast-growing
grasses (Urochloa brizantha and Panicum maximum). Once pastures became unproductive, they were
abandoned, allowing secondary vegetation to grow. These secondary forests have much lower plant
diversity than the primary forests (51, 63).

A spatially explicit sampling design was established for three plots within each of the primary-forest,
adjacent pasture (38 years old), and secondary-forest (12 to 17 years old) areas (see Fig. S8). Totals of nine
sites, three per land use system, and 12 samples per site were used. The nested-quadrat sampling design
established 0.01-, 0.1-, 1.0-, and 10-m2 quadrats (shown as a series of squares in Fig. S8) nested within
a 100-m2 quadrat, and 12 samples were collected within each 100-m2 plot. Overall, three 100-m2

quadrats were established 0, 1, and 10 km apart within both primary-forest and pasture sites (36 samples
per land use system). No secondary-forest site was available at exactly a 1-km distance, so the second
100-m2 sampling plot for secondary forest was at about 3 km (0, 3, and 10 km). Soil cores (5-cm diameter)
collected at a 10-cm depth were used for DNA extraction and physicochemical analysis as described
previously (34).

Amplification and sequencing of a functional gene. The nifH gene was amplified using the PCR
primers PolF and PolR, developed by Poly et al. (64), and products were sequenced using the 454 GS FLX
Sequencer (Michigan State University Genomics Facility, East Lansing, MI). We used the primers PolF and
PolR because these are the most widely used primers to assess the diversity of diazotrophs in terrestrial
ecosystems. Previously (14), we tested three other nifH gene-specific PCR primer sets (Ueda19F-
Ueda470R, PicenoF-PicenolR, and Z-primer) along with PolF and PolR on 15 soil samples from the
Amazon. Only PolF and PolR resulted in successful amplification of the nifH gene from all soil samples
along with a single band of the appropriate size. Therefore, in this study, we used PolF and PolR. It is
important to mention that like any other PCR primers, PolF and PolR may have some biases toward
certain specific diazotrophic groups, such as Alpha-, Beta-, and Gammaproteobacteria, Firmicutes, and
Actinobacteria (64).

Raw DNA sequences (456,211) were initially processed for quality control using the functional gene
pipeline of the Ribosomal Database Project II (RDP) (65) (http://rdp.cme.msu.edu). Chimeric sequences
were identified and removed using the USEARCH 6 chimera check. Frameshift errors were adjusted by
running FrameBot, and protein sequences were aligned through the hidden Markov model HMMER3
aligner. After initial filtering, high-quality sequences (443,600), both DNA and translated proteins, were
aligned and clustered into operation taxonomic units (OTUs) at 99, 97, 95, and 90% for DNA and
operational protein units at 99, 97, and 95% for translated proteins by complete linkage clustering using
RDP’s mcClust tool. Identification of the nifH gene sequences was carried out by running NCBI local
BLAST and comparing against a nifH gene reference database of about 1,100 sequences obtained from
Wang et al. (16). A total of 19 soil samples resulted in �1,500 nifH gene sequences that were not included
in this study. The details of these 19 samples are provided in the supplemental material (Table S2).

Diversity metrics. Because analyses of �- and �-diversities can be influenced by differences in the
number of DNA sequences retrieved per sample, we subsampled the data set with a total of 1,500 nifH
gene sequences per sample (45,000 per land use type) to evaluate differences in the diazotrophic
diversity in response to land use change. Subsamples were generated by randomly selecting 1,500 DNA
sequences per sample, based on the sample with the fewest DNA sequences, using a Python script
developed in-house. Differences in the �-diversity across the three different land use systems were
compared by calculating both taxonomic and phylogenetic diversity. Taxonomic diversity was calculated
as total species richness, Shannon diversity, and Margalef species richness using OTU abundance data
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(97%). Phylogenetic diversity was calculated as Faith’s phylogenetic diversity (66) by constructing a
phylogenetic tree of representative nifH gene sequences using FastTree 2.15 (67). The significance of the
differences was assessed through one-way analysis of variance (ANOVA).

Species turnover and variance partitioning. We examined spatial variation in diazotrophic com-
munity turnover using three distinct approaches: (i) distance decay analysis (68) to compare the patterns
and rates of decay in diazotrophic community similarity across the three land uses, (ii) nonmetric
multidimensional scaling (NMDS) (69) to explore variability in taxonomic composition across all three
land uses simultaneously, and (iii) variation partitioning (70) to estimate the individual and shared
components of variation in species turnover due to land use, geography, and soil physicochemistry. For
NMDS and variation partitioning analyses, we used both the complete data set (containing 443,600 nifH
gene sequences) and a subsampled data set (135,000 nifH gene sequences) to assess the changes in the
diazotrophic community composition. We used the abundance-based Bray-Curtis metric as a measure of
taxonomic similarity, which was calculated using the function vegdist in the R package vegan (71). For
phylogenetic similarity, the Fast Uni-Frac distance metric was used (72).

We computed the distance decay relationship (DDR) separately for each type of land use by
estimating the rate of change in taxonomic and phylogenetic community similarity as a function of
geographic distance. To estimate the rate of distance decay, we fitted the two most common models of
the DDR: the exponential and power models (73). To test the differences between distance decay slopes,
we compared the 95% bootstrapped confidence intervals for the slope parameters using 10,000
bootstrap iterations, which avoids distributional assumptions about the test statistic (i.e., the slope). If the
confidence intervals did not overlap, the slopes were considered significantly different. We computed the
DDR for 97, 95, and 90% cutoffs for defining OTUs (see the supplemental material). We tested whether
the sample centroids were located in significantly different locations of multidimensional space via
PERMANOVA (74) using the function adonis in R (71). We carried out the variation partitioning analysis
using the varpart function in R (71).

Data availability. The nifH sequences were deposited in the NCBI Sequence Read Archive (SRA)
under BioProject no. PRJNA329012.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 4.5 MB.
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