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ABSTRACT OF THE DISSERTATION 
 
 

Ecological and evolutionary processes contributing to the emergence of bacterial populations 
 

by 
 

Alexander Bennett Chase 
 

Doctor of Philosophy in Biological Sciences 
 

University of California, Irvine, 2018 
 

Professor Jennifer B.H. Martiny, Chair 
 

 

Despite our ability to characterize diverse microbial communities, we currently lack the 

capability to identify the mechanisms affecting a given taxon’s response to environmental 

conditions and its functional consequence. This problem partly stems from the common 

practice of characterizing microbial communities using conserved marker genes, such as the 

16S rRNA region, which mask ecologically-relevant genetic and phenotypic variation. For 

example, most microbial studies that target the 16S rRNA region, cluster similar sequences into 

operational taxonomic units (OTUs) that represents millions of years of evolutionary history. 

My work has explored how much genetic variation may exist within these OTU designations and 

identified how genetic variation corresponds to phenotypic variation (overview in Chapter 1). 

Overall, I have focused on the ecological and evolutionary mechanisms driving environmental 

niche partitioning and speciation within a bacterial taxon to link genotypic variation to 

functional roles. 

 



 xiii 

Utilizing an abundant soil bacterium, Curtobacterium, I have demonstrated that isolates 

within this Actinobacteria genus harbored extensive genomic diversity within a single OTU 

(Chapter 2) that reflected large phenotypic variation even within a single field site. Using 

extensive isolation efforts with the integration of genomic and metagenomic data, I have 

identified distinct genomic clusters that would otherwise be masked by traditional microbial 

analyses (Chapter 3). Further, this vast genomic diversity corresponded to distinct phenotypes 

denoting fine-scale niche partitioning and the emergence of bacterial ecological populations 

along a regional climate gradient (Chapter 4). And while ecological variation may drive large-

scale geographic distributions, the evolutionary mechanisms contributing to microbial 

speciation and diversity are less understood. As such, I analyzed the genetic diversity within a 

single ecotype to identify could identify distinct populations (groups of individuals recombining 

more with one another than among groups) in a heterogeneous soil system (Chapter 5). In 

conclusion, my research has provided evidence that ecological and evolutionary processes both 

contribute to the response of bacteria to environmental conditions. 
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CHAPTER 1 
 

The importance of resolving biogeographic patterns of microbial microdiversity 
 

 

For centuries, ecologists have used biogeographic patterns to test the processes 

governing the assembly and maintenance of plant and animal communities (Lomolino et al., 

2006). Similarly, evolutionary biologists have used historical biogeography (e.g., 

phylogeography) to understand the importance of geological events as barriers to dispersal that 

shape species distributions (Avise, 2000). As the field of microbial biogeography initially 

developed, the utilization of highly conserved marker genes, such as the 16S ribosomal RNA 

gene, stimulated investigations into the biogeographic patterns of the microbial community as 

a whole. Here, we propose that we should now consider the biogeographic patterns of 

microdiversity, the fine-scale genetic diversity observed within a traditional ribosomal-based 

taxonomic unit. 

Biogeography investigates how ecological and evolutionary processes influence the 

distribution of biodiversity and the structure of contemporary communities (Wiens and 

Donoghue, 2004). Historically, biogeographic patterns of plants and animals are studied at the 

species level and describe large-scale patterns of species’ distributions. In contrast, the vast 

majority of microbial biogeographic studies investigate patterns by sampling the entire 

community at broad taxonomic designations. Typically, these studies define operational 

taxonomic units (OTUs) using a highly conserved ribosomal marker gene, usually the 16S rRNA 

gene for bacteria and archaea. However, the decision of which genetic region to target, and in 

particular the genetic resolution of that region, can influence the biogeographic patterns 
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observed (Cho and Tiedje, 2000). While these conserved regions can capture a large breadth of 

the microbial community, these regions, by their very nature, limit the detection of finer-scale 

genetic variation. By resolving diversity within the OTU designation, we can detect ecological 

and evolutionary processes occurring at this fine taxonomic scale that might otherwise be 

overlooked. 

 What OTU-based biogeography can and can’t tell us 

It is now well established that microbial communities assayed by traditional OTU 

designations display distinct biogeographic patterns over space and time. These patterns have 

been identified in environments ranging from marine (Giovannoni et al., 1996; Garcia-Martinez 

and Rodriguez-Valera, 2000), to terrestrial (Fierer and Jackson, 2006), and to human-associated 

systems (Consortium, 2012). Combined with abiotic and biotic data from the sampled 

environment, such patterns can provide initial hypotheses about the ecological processes 

shaping microbial community assemblages (Hanson et al., 2012). Thousands of microbial 

studies now demonstrate that OTU-based patterns primarily reflect the importance of selection 

of environmental conditions based on correlations between microbial composition and the 

environment (Figure 1A). These patterns indicate that OTUs comprising each microbial 

community vary in their ability to tolerate various abiotic and biotic conditions, suggesting 

partitioning of environmental resources and niche spaces among taxa in the community. 

While environmental variables explain much of the variation in microbial composition, 

many studies also find that some variation is correlated to the geographic distances between 

communities (Dumbrell et al., 2009; Hanson et al., 2012). This observation can be illustrated 

with a distance-decay curve, or a negative correlation between the similarity in microbial 
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composition with geographic distance between pairwise samples (J. B. H. Martiny et al., 2006) 

(Figure 1B). If this negative relationship holds after accounting for environmental variation, 

then the pattern suggests that ecological drift, caused by stochastic fluctuations in demographic 

patterns, contributes to variation in community composition (Hubbell, 2001; McGill, Maurer, et 

al., 2006). Further, since ecological drift depends on restricted dispersal, the pattern gives 

insight into the degree of dispersal limitation between the sampled communities. A caveat to 

such studies is that it is impossible to completely account for environmental variation, and the 

environment is spatially autocorrelated. However, such OTU-based studies suggest that the 

ecological processes of both environmental selection and ecological drift contribute to 

biogeographic patterns at this broad genetic resolution (J. B. H. Martiny et al., 2006). 

In contrast to ecological processes, biogeographic patterns of OTU-based analyses are 

unlikely to detect patterns shaped by evolutionary processes. This limitation is due to the broad 

resolution of conserved marker genes. Variation in these genetic regions capture relatively 

distant evolutionary divergences, especially when clustered at 97% sequence similarity. Indeed, 

a 3% sequence divergence in the 16S rRNA gene, the most common level of OTU clustering, 

represents roughly 150 million years of evolutionary history (Ochman et al., 1999), or before 

the origin of modern birds (Pereira and Baker, 2006). In other words, biogeographic patterns 

for birds at this taxonomic level would mask all diversification within the group. Similarly, the 

use of such conserved marker genes for microbes will generally preclude detecting 

biogeographic patterns emerging from evolutionary processes, such as endemism and niche 

conservatism, as observed for macroorganisms assessed at the species or population level.  
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What is microbial microdiversity 

Studies based on 16S sequences have been instrumental in identifying ecological 

patterns and their underlying processes at relatively broad genetic resolutions. However, it is 

increasingly clear that there is extensive genetic diversity within 16S-based OTUs, so-called 

microdiversity, in environmental habitats (Moore et al., 1998; Acinas et al., 2004; Jaspers and 

Overmann, 2004). For example, a natural population of the bacterioplankton Vibrio splendidus 

contained >1000 distinct genotypes, even when clustered at >99% 16S rRNA sequence 

similarity (Thompson et al., 2005). Based on their very nature, conserved marker genes lack the 

variability to resolve fine-scale diversity within an OTU. Even with the implementation of exact 

sequence variants (ESVs), the 16S rRNA gene simply cannot resolve the fine-scale variation 

among closely related microbial lineages (Lan et al., 2016). Thus, different approaches are 

needed to investigate the biogeographic patterns of this vast genetic diversity. 

Beyond identifying genetic microdiversity, a key question is whether this genetic 

variation is phenotypically relevant (Larkin and Martiny, 2017). Investigations into microdiverse 

marine bacterial taxa suggest that they vary in physiological traits including preferences for 

particular abiotic conditions (Jaspers and Overmann, 2004; Johnson, Zinser, Coe, Mcnulty, et 

al., 2006). Further, some of this trait variation within OTU-based taxa appears to be 

phylogenetically conserved within microdiverse clades (Martiny et al., 2009, 2015), although 

resolving the phylogeny of such closely related strains is often difficult with 16S sequences 

(Figure 2A). Instead, taxon-specific marker genes or, ideally full genome sequences, can often 

resolve microdiverse clades and reveal which traits are shared among particular phylogenetic 

clades (Figure 2B). For example, an analysis of strain diversity of an abundant leaf litter 
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bacterium, Curtobacterium, exhibited extensive variation in the degree of polymeric 

carbohydrate degradation and temperature preference among microdiverse clades (Chase et 

al., 2017). Thus, more resolved genetic and physiological studies can help to establish the 

phylogenetic distribution of traits. 

What biogeographic patterns of microdiversity can tell us 

The presence of trait variation among microdiverse clades suggests that microdiversity 

will exhibit distinctive biogeographic patterns. If this trait variation corresponds to different 

ecological preferences, then the environment should select for specific clades under variable 

conditions. Indeed, different bacterial ecotypes, or ecological populations (Cohan, 2001), have 

repeatedly been shown to vary in their spatial distribution. Thus, closely-related clades appear 

to partition niche space in the environment that would normally be masked at the OTU level 

(Figure 2C). For example, at the OTU level, the globally distributed cyanobacterium, 

Prochlorococcus, shows a broad preference for low-nutrient and warmer waters (Flombaum et 

al., 2013). However, microdiverse clades of Prochlorococcus exhibit distinct spatial distribution 

patterns shaped by additional environmental factors, including light availability and 

temperature (Moore et al., 1998; A. C. Martiny et al., 2006; Johnson, Zinser, Coe, Mcnulty, et 

al., 2006). Thus, biogeographic patterns of microdiversity can elucidate the importance of key 

environmental parameters governing niche differentiation that may not be identifiable at the 

OTU designation. 

Perhaps even more importantly, a focus on microdiversity can reveal evolutionary 

processes that would otherwise be masked at a broader genetic resolution. Thus far, few 

environmental studies have targeted microbial diversity at a fine enough scale to investigate 
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how evolutionary mechanisms, such as mutation and genetic drift, can lead to differential 

biogeographic patterns (Martiny et al., 2009; Andam et al., 2016). Those examples that do exist 

find evidence for evolutionary processes contributing to spatial patterns. In one such example, 

reduced dispersal between hot spring populations of the archaeon thermophile Sulfolobus, 

restricted gene flow to allow diversification to occur among geographic regions (Whitaker et al., 

2003; Cadillo-Quiroz et al., 2012). Similarly in terrestrial soils, dispersal limitation at regional 

spatial scales structures bacterial populations of Streptomyces along a latitudinal gradient 

(Choudoir et al., 2016). With the increased availability of computational tools to study 

population genomics (Shapiro et al., 2012) and the incorporation of gene flow networks 

(Hehemann et al., 2016), we expect that more studies will consider the spatial distribution of 

microdiversity. Such studies are likely to illuminate the effects of evolutionary processes on 

microbial diversity in the environment, including the presence of biogeographic barriers and 

the degree of microbial endemism (Polz et al., 2013) (Figure 2D).  

Conclusions 

Future progress in microbial biogeography necessitates moving beyond the OTU 

designation. While OTU-based studies will continue to play an important role in microbial 

biogeography, an intensified focus on finer-genetic diversity will uncover thus-far unidentified 

ecological and evolutionary patterns. However, these studies will require targeted sampling of 

particular microbial taxa rather than the entire community. Generally, this effort will require 

moving beyond targeting the 16S rRNA gene; even ESVs of this region will not be able to 

distinguish microbial populations at a fine enough genetic scale. And while extensive shotgun 

metagenomic and targeted amplicon sampling can reveal co-occurrence of novel microdiversity 
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associated with distinct environmental conditions (Woebken et al., 2008; Brown et al., 2012; 

Malmstrom et al., 2013), these studies are dependent on the interpretation of genomic 

potential for ecological diversity. Therefore, there is still a need to link the genomic variation to 

functional traits that will define ecotypes. The return to isolation-based studies to gather 

relevant genetic and physiological information will better inform environmental metagenomic 

studies investigating microbial microdiversity. By expanding the focus to microbial 

microdiversity and implementing targeted environmental studies, we can better understand 

the ecological and evolutionary processes generating microbial biogeographic patterns as 

macroecologists have done for decades. 
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Figures 
 

 
 
Figure 1.1 Hypothetical community analyses from OTU-based studies. A) An ordination plot 
depicting community composition across three environments with the main environmental 
factors driving compositional differences indicated with dashed arrows. Each point represents a 
sampled microbial community, with points closer to one another indicating higher similarity in 
community composition. B) Community similarity among a collection of samples is often 
positively correlated to environmental similarity (grey line) and negatively correlated with 
geographic distance (black dashed line, also called a distance-decay curve). The influence of 
strong environmental selection on the community is reflected in the positive correlation with 
increasing environmental similarity, while the influence of ecological drift is reflected in the 
negative correlation with increasing geographic distance between samples. 
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Figure 1.2 Detection of ecological and evolutionary processes within OTU A with microdiverse 
Clades I (green), II (blue), and III (pink). A) The 16S rRNA gene often cannot resolve phylogenetic 
relationships within a 16S-based OTU and, subsequently, the distribution of traits among 
clades. B) Genomic sequences or multi-locus sequence analyses (MLSA) of marker genes can 
resolve phylogenetic relationships at a finer-scale revealing, in this hypothetical example, that 
strains within clades share more similar traits. C) Trait variation within microdiverse taxa can 
promote resource partitioning in the environment leading to fine-scale niche differentiation 
among clades (represented in colored dashed lines) that would otherwise be masked at the 
OTU level (black line represents the total niche for OTU A). D) Investigating genetic 
differentiation within OTUs is more likely to reveal dispersal limitation (measured by gene flow 
between clade populations) and the presence of biogeographic barriers that contribute to 
microbial diversification. In this hypothetical example, black arrows represent gene flow 
between populations of microdiverse clades, where limited gene flow (no arrows connecting 
green with the blue and pink populations) suggests the presence of biogeographic barriers. 
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CHAPTER 2 
 

Evidence for ecological flexibility in the cosmopolitan genus Curtobacterium 
 
 

ABSTRACT 
 

Assigning ecological roles to bacterial taxa remains imperative to understanding how 

microbial communities will respond to changing environmental conditions. Here we analyze the 

genus Curtobacterium as it was found to be the most abundant taxon in a leaf litter community 

in southern California. Traditional characterization of this taxon predominantly associates it as 

the causal pathogen in the agricultural crops of dry beans. Therefore, we seek to conduct a 

broad investigation into this genus to ask whether its high abundance in our soil system is in 

accordance with its role as a plant pathogen or if alternative ecological roles are needed. By 

collating >24,000 16S rRNA sequences with 120 genomes across the Microbacteriaceae family, 

we show that Curtobacterium has a global distribution with a predominant presence in soil 

ecosystems globally. Moreover, this genus harbors a high diversity of genomic potential for the 

degradation of carbohydrates, specifically with regards to structural polysaccharides. We 

conclude that Curtobacterium may be responsible for the degradation of organic matter within 

litter communities.  
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INTRODUCTION 

Traditional ecological characterization of microorganisms often narrowly defines their 

roles in terms of interspecies interactions. Such limited classification of interactions ignores the 

dynamic alterations of life cycles indicative of microorganisms in changing environmental 

conditions (Redman et al., 2001; Kogel et al., 2006; Newton et al., 2010). Depending on the 

environment, microbes can transition from symbiont to pathogen (Johnson et al., 1997) or 

drastically alter their life history strategy altogether. For instance, endophytic fungi transition to 

decomposers after the leaves fall off its host plant (Osono, 2006; Korkama-Rajala et al., 2008). 

Such flexibility in ecological roles may also explain why Curtobacterium, a bacterial genus 

traditionally viewed as a plant pathogen (Hsieh et al., 2005), was recently found to be the 

dominant bacterium in the leaf litter of a Mediterranean-like grassland community (Matulich et 

al., 2015). 

Members of the Curtobacterium genus are Gram-positive, obligately aerobic 

chemoorganotrophs in the family Microbacteriaceae, phylum Actinobacteria (Evtushenko and 

Takeuchi, 2006). The habitat of Curtobacterium is described mainly in association with plants 

and especially, the phyllosphere (Komagata et al., 1965; Behrendt, Ulrich, Schumann, 

Naumann, and K.-I. Suzuki, 2002). Indeed, most studies investigating Curtobacterium focus on 

its role as an economically important plant pathogen (Huang et al., 2009; Osdaghi, Taghavi, et 

al., 2015). The best-studied pathovar, C. flaccumfaciens pv. flaccumfaciens, is the causal agent 

of bacterial wilt in dry beans worldwide with reports on five continents (Wood and Easdown, 

1990; Harveson et al., 2006; Soares et al., 2013; Osdaghi, Pakdaman Sardrood, et al., 2015). The 
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disease harbors a high degree of genetic and phenotypic diversity (Hedges, 1926; Conner et al., 

2008) even within a single host (Agarkova et al., 2012). 

Although economically important, C. flaccumfaciens is the only species of 

Curtobacterium associated with plant pathogenesis (Young et al., 1996), and there is evidence 

the other Curtobacterium species perform other ecological roles. For instance, isolates have 

been identified as endophytic symbionts (Sturz et al., 1997, 1999; Elbeltagy et al., 2000; Araújo 

et al., 2001; Bulgari et al., 2009). Similar to other beneficial endophytes (Benhamou et al., 2000; 

Taghavi et al., 2009), Curtobacterium can elicit plant defense responses (Bulgari et al., 2011) 

and reduce disease symptoms (Lacava et al., 2007). The genus has also been found to associate 

with roots and promote plant growth (Sturz et al., 1997). Even the presence of C. 

flaccumfaciens in the rhizosphere induced a systematic resistance in cucumber plants to 

pathogens (Raupach and Kloepper, 1998) and promoted plant growth (Raupach and Kloepper, 

2000). Curtobacterium can also be found in soil (Ohya et al., 1986; Aizawa et al., 2007; Kim et 

al., 2008) with an ability to persist on plant debris (Júnior Silva et al., 2012), although as a non-

spore forming bacterium, the genus might be assumed to be a poor survivor in soil (Vidaver, 

1982). 

Our previous work in a Mediterranean-like grassland community revealed that a 

Curtobacterium taxon (defined by ³ 97% similarity in 16S rRNA sequence) was the most 

abundant bacterium in leaf litter, the top layer of soil. The leaf litter community at this site is 

dominated by bacteria with a bacteria to fungi biomass ratio up to 30:1 (Alster et al., 2013). The 

community is highly diverse, but uneven; three phyla (Actinobacteria, Bacteroidetes, and 

Proteobacteria) made up 95% of total bacterial abundance (Matulich et al., 2015). Further 
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analysis revealed that Curtobacterium constituted ~18% of 16S rRNA sequences amplified 

directly from 177 litter samples over a two-year period (Matulich et al., 2015). This high 

abundance was further supported by sequenced metagenomes from the same grassland. These 

samples suggested that >8% of the reads fall within Microbacteriaceae (Berlemont et al., 2014), 

most likely an underestimate due to lack of representation of Curtobacterium in genomic 

databases.  

Given its dominance in grassland litter, this current study investigates the potential for 

Curtobacterium to play ecological roles other than a plant pathogen, and in particular, as a 

decomposer. We asked: 1) What is the geographic and habitat distribution of the genus? 2) Is 

the phylogenetic diversity of Curtobacterium related to its habitat distribution? and 3) What is 

the genus’ genomic potential to degrade recalcitrant carbohydrates? To address these 

questions, we isolated and sequenced 14 Curtobacterium strains from grassland litter. Then, we 

combined our genome sequences with publicly-available sequences from a variety of habitats 

and locations, collating >24,000 Microbacteriaceae 16S rRNA sequences. Finally, we 

investigated the genomic diversity of Curtobacterium with regards to its ability to degrade 

carbohydrates, an important attribute for litter decomposition.  We searched for glycoside 

hydrolases (GHs), enzymes that target specific glycosidic bonds of carbohydrates (including 

cellulose and xylan in plant cell walls). We conclude that the genus Curtobacterium is 

cosmopolitan in terrestrial ecosystems and may be, at an intrageneric level, involved in a 

variety of ecological roles including decomposition of organic matter.  
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MATERIALS AND METHODS 

Geographic Distribution 

To investigate the geographic extent of Curtobacterium, we searched for 

Curtobacterium sequences within the open reference dataset of the Earth Microbiome Project 

(EMP) (Gilbert et al., 2014). We obtained 41 unique Curtobacterium OTUs with metadata from 

14,096 uploaded samples. 

To gather additional Curtobacterium sequences, we used BLAST to search for sequences 

similar to eight Curtobacterium 16S rRNA gene sequences from the GreenGenes “Core Set” 

database (DeSantis et al., 2006) against the GenBank nr database (Benson et al., 2008). 

Additional sequences were identified using the keyword search: "Microbacteriaceae 

Curtobacterium 16S ribosomal RNA gene". After removing redundant entries and 16S rRNA 

sequences that could not be identified to the genus level, 11,484 unique sequences remained. 

We extracted metadata from either corresponding GenBank files, the EMP 10k merged 

mapping file, or manually reviewed the published literature to identify the isolation source and 

location of all retrieved Curtobacterium sequences. Each sequence was assigned to one of 

seven ecosystems: animal microbiome, aquatic, artificial, atmosphere, human microbiome, ice, 

or terrestrial. Terrestrial samples were further divided into six categories: plant, plant roots, 

plant seeds, rock, sediment, and soil.  

The geographic distribution of the EMP and GenBank sequences were plotted using the 

R library ‘rworldmap’ (South, 2011). For samples with minimal location data (mainly from the 

GenBank dataset), we used a publicly available dataset from Google Developers1 to assign 

                                                        
1 https://developers.google.com/public-data/docs/canonical/countries_csv 
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approximate longitude and latitude coordinates based on the state, providence, and/or country 

of origin. 

Phylogenetic Diversity 

To establish a robust phylogenetic distribution, we downloaded 16S rRNA gene 

sequences from the SILVA SSU r123 database (Pruesse et al., 2007) on August 6, 2015. 

Sequences were obtained using SILVA’s assigned taxonomy, yielding 1,519 Curtobacterium 

sequences and 24,835 Microbacteriaceae sequences. Due to variability in taxonomic 

nomenclature by various databases, we confirmed all taxonomic assignments of all downloaded 

sequences. First, we assigned taxonomy with QIIME v1.6 (Caporaso et al., 2010) using the 

UCLUST consensus taxonomy assigner (Edgar, 2010) against the GreenGenes reference 

database (May 2013 revision; (DeSantis et al., 2006)). Next, we compared these taxonomic 

assignments to those assigned using the RDP Classifier (Wang et al., 2007). After removing 

sequences incorrectly assigned to Curtobacterium and/or Microbacteriaceae and other low 

quality sequences (<80% identity, <700 bp), 12,469 sequences remained.   

To select a subset of this sequence diversity for phylogenetic analysis, we clustered the 

filtered sequences and the sequences of our litter isolates (see below) using QIIME v1.9. We 

defined OTUs at 97% identity with UCLUST using the optimal flag for OTU picking, and selected 

representative sequences for each OTU. The representative sequences were assigned a 

taxonomic designation at the genus level using a combination of UCLUST, BLAST, and the RDP 

Classifier. Specifically, genera designations for the representative sequences were only assigned 

when at least two of the aforementioned taxonomic designations matched at the genus level. 

We aligned the sequences using the Infernal Alignment Tool (Nawrocki et al., 2009). Gaps 
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common in >90% of aligned sequences were manually removed, resulting in a 1900 bp 

alignment. OTU representative sequences that contained >25% gap regions were also removed. 

As a result, the sequences obtained from the EMP database were too short (~100-250 bp; mean 

size=134 bp) to integrate in the phylogeny with the full 16S rRNA gene obtained from other 

datasets. A maximum likelihood tree with 100 bootstrap replications was constructed with 

RAxML v8.0, using the GTR + Gamma distribution model (Stamatakis, 2014). The tree was 

visualized using the Interactive Tree of Life (iTOL; (Letunic and Bork, 2006)). 

The pipeline above was modified slightly to investigate the phylogenetic diversity within 

the Curtobacterium genus. This analysis incorporated all available 16S rRNA genes (n=1532) 

from GenBank, SILVA, and litter isolates assigned to Curtobacterium. OTUs were clustered at 

99% similarity to provide finer taxonomic resolution and included a sister genus, 

Frigoribacterium, as an outgroup.  

Genomic Analysis of Litter Isolates 

Isolation and Identification of Litter Isolates 

Bacteria from litter were isolated from two grassland global change experiments. 

Isolates from the Loma Ridge Global Change Experiment (LRGCE) (in Irvine, California, USA [33° 

44ʹ N, 117° 42ʹ W]; (Potts et al., 2012)) were previously identified and presented in (Mouginot 

et al., 2014). Briefly, leaf litter particles were suspended in saline and inoculated onto nutrient-

limited media plates made from Loma Ridge litter leachate and incubated at room 

temperature. For this study, additional strains were isolated from the Boston-Area Climate 

Experiment (BACE) [42° 23ʹ N, 71° 12ʹ W] (Tharayil et al., 2011) using the same protocol on 
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Boston litter leachate media. Individual colonies were streaked onto LB plates three times to 

ensure clonal isolation.  

To identify Curtobacterium isolates, the 16S rRNA gene was PCR amplified and 

sequenced. Individual colonies were boiled for 1 min in 50 µL of sterile dH2O prior to PCR 

amplification. Next, 3.0 µL of the boiled bacterial colony was added to the PCR cocktail 

containing 0.3 µL of Taq polymerase (5 units/µL), 15.0 µL of Premix F (Epicentre, Madison, WI), 

and 50 µM of each primer in a final volume of 30 µL. We amplified 1500 bp of the 16S rRNA 

gene using the pA (5'-AGAGTTTGATCCTGGCTCAG-3') and pH (5'-AAGGAGGTGATCCAGCCGCA-3') 

primers (Edwards et al., 1989). Forward and reverse strands were trimmed and merged using 

Geneious v6.1 (Drummond et al., 2011) under the default parameters. Isolate identity was 

tentatively assigned using the best-identified match with the blastn alignment (Altschul et al., 

1997) within GenBank. In total, 34 Microbacteriaceae isolates were identified, including 17 

Curtobacterium isolates. 

Whole Genome Analysis 

This Whole Genome Shotgun project including the genome sequences of 14 

Curtobacterium, 1 Frigoribacterium, and 1 Plantibacter isolates deposited at GenBank under 

BioProject PRJNA342146 with accessions MJGI00000000-MJGX00000000. Paired-end 100 bp x 

100 bp whole genome sequencing libraries with a mean gap size of 400 bp were prepared from 

genomic DNA using the Nextera DNA Library Preparation Kit (Illumina Inc., San Diego, CA, USA). 

Genomes were sequenced on an Illumina HiSeq 2500 apparatus (Illumina Inc., San Diego, CA, 

USA) at the Whitehead Institute Genome Technology Core (Cambridge, MA). After quality 
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trimming and removal of short (<30 bp) reads, an initial de novo assembly was performed in 

CLC Genomics Workbench (CLC Bio, Cambridge, MA, USA) using the default parameters. 

Genomes (fully assembled and whole genome shotgun assembly) belonging to the 

Microbacteriaceae were retrieved from the Pathosystems Resource Integration Center (PATRIC) 

database (Wattam et al., 2014). To annotate these downloaded genomes and our isolate 

genomes, we first assigned open reading frames (ORFs) sequences as called by Prodigal v2.6 

(Hyatt et al., 2010). Genomic ORFs were searched against the Pfam database (Finn et al., 2016) 

for the presence of protein families using HMMer (Johnson et al., 2010). We identified the GH 

families as in (Berlemont and Martiny, 2013) and compiled the number of occurrences of each 

GH family in each genome. To create a phylogeny of the whole genome sequences, the 16S 

rRNA region of each genome was predicted using Barrnap2. The resulting sequences were used 

for phylogenetic reconstruction as described above. 

RESULTS 

Geographic Distribution of Curtobacterium 

We isolated 17 Curtobacterium strains from two invasive grassland sites. Although 

similar in their vegetation, LRGCE and BACE sites are 4130 km apart across the North American 

continent. Yet, from these sites, Curtobacterium strains comprised 10% and 15% of culturable 

isolates in LRGCE and BACE, respectively. Beyond these two terrestrial sites, data collected from 

a wide array of studies and isolation sources reveal that Curtobacterium is an abundant and 

globally distributed taxon. In total, we obtained 3360 16S rRNA sequences with corresponding 

metadata from GenBank and the EMP databases. The genus was found on all continents, 

                                                        
2 http://www.vicbioinformatics.com/software.barrnap.shtml 
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ranging from the Arctic to the Antarctic (Figure 1). The majority of sequences were isolated 

from North America (61.6%), while there was a lack of representation in the Southern 

hemisphere, most likely due to sampling effort. Australia, South America, Africa, and Antarctica 

accounted for only 15.3% of all sequences. 

Curtobacterium has been identified in all designated ecosystems, including animal 

microbiome, aquatic, artificial, atmosphere, human microbiome, ice, and terrestrial 

(Supplementary Table 1). The human and animal microbiome comprised 26.9% and 12.9% of all 

obtained Curtobacterium sequences, respectively. Curtobacterium sequences from humans 

were comprised almost exclusively of samples originating from skin, while those from animals 

were primarily collected from the gut. Most Curtobacterium sequences (32.6%) from the EMP 

dataset were from human microbiome samples, reflecting the emphasis on humans in this 

dataset. In contrast, only 10.8% of Curtobacterium sequences retrieved from GenBank were 

associated with the human microbiome. After excluding human microbiome samples, over 63% 

of all sequences originated from terrestrial ecosystems. Specifically, 14% of all sequences were 

extracted from a plant source and 21% from soil. Sequences from the GenBank database 

revealed a stronger association with 70.1% of sequences being classified into a terrestrial 

ecosystem (Supplementary Table 1). Terrestrial samples from the GenBank database included 

58.9% from plants and 28.4% from soil.  

Phylogenetic Diversity 

The Microbacteriaceae sequences clustered into 971 OTUs at a 97% similarity level. 

Considering only OTUs with more than 10 sequence representatives, the remaining 183 OTUs 

represented 19 genera (Figure 2). The 10 Curtobacterium OTUs form a well-supported 
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(bootstrap support of 89%) monophyletic clade. Their closest relatives belong to the 

Rathayibacter and Pseudoclavibacter genera. The 17 Curtobacterium litter isolates from the 

Loma Ridge and Boston sites clustered together into five OTUs. Two Curtobacterium OTUs 

contained only one litter isolate despite being in the top 25 of the most abundant OTUs in the 

SILVA database.  

To examine Curtobacterium diversity at a finer genetic resolution, we clustered the 1074 

total sequences retrieved from GenBank and SILVA with our 22 isolates at a 99% similarity level. 

This yielded 100 Curtobacterium and 7 Frigoribacterium OTUs, a sister genus. Excluding 

singletons, the remaining 52 OTUs represented 1014 Curtobacterium sequences with 764 of 

those sequences containing metadata originating from GenBank entries. Of these sequences, 

582 (74%) sequences were isolated from a terrestrial ecosystem. Due to some OTUs containing 

sequence with low metadata, distribution of ecosystem preference across phylogeny was not 

possible. However, there were OTUs detected solely in one ecosystem (e.g., OTU 25 was only 

found in terrestrial ecosystems), while others OTUs were detected in a variety of ecosystems 

(e.g., OTU 38 contained all seven assigned ecosystems). At the level of 99% sequence similarity, 

most (10 out of 18) of the litter isolates clustered into one abundant OTU (86). This abundantly 

universal OTU contains over 202 sequences isolated from all seven assigned ecosystems.  

Genomic Potential for Carbohydrate Degradation 

Full genomes were used to compare the genomic diversity of glycoside hydrolases 

within Microbacteriaceae. We included 14 Curtobacterium, 1 Frigoribacterium, and 1 

Plantibacter isolates from our leaf litter sites at LRGCE and BACE. The Curtobacterium 
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assemblies produced an average genome size of 3.76 Mbp in an average of 78 contigs (mean 

maximum contig length of 582,567 bp), with an average GC content of 70.47% (Table 1).  

Combining these genomes with the 104 publicly available genomes retrieved from the 

PATRIC database reveal that strains within Microbacteriaceae contain many diverse GH 

families. Across the 120 genomes, we identified 7,355 potential glycoside hydrolases (GHs) and 

carbohydrate binding modules (CBMs) representing 63 GH/CBM families (Supplementary Table 

2). The most common and ubiquitous families belonged to those targeting starch (GH13, 

CBM48) and oligosaccharides (GH1, 2, and 3). These GH families were present in most genomes 

with 92.5% of the genomes containing at least one copy of GH13. GHs that targeted more 

recalcitrant carbohydrates such as fructan, dextran, mixed polysaccharides, animal 

polysaccharides, plant polysaccharides, cellulose, chitin, and xylan were also detected in a 

variety of genomes across Microbacteriaceae, albeit at a lower frequency (Table 2). 

GH content is highly variable across genera. Some genera were not able to process any 

structural polysaccharides (cellulose, chitin, or xylan) and were constrained to the targeting of 

oligosaccharides and starch (see Table 2). Others, like Pseudoclavibacter, lack any of the 

identified GH families that process simpler substrates such as starch, and, presumably, are only 

capable of processing more complex carbohydrates. A few genera have the genomic potential 

to digest all identified substrates. Specifically, Curtobacterium can digest all identified 

substrates at a frequency almost double the family average, particularly with regard to 

structural polysaccharides. Individual strains with the potential to breakdown and digest all 

three structural polysaccharides appear to be restricted within the genera Curtobacterium 
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(N=11 genomes; including 8 litter isolates), Clavibacter (N=6 genomes), and Microbacterium 

(N=6 genomes).  

The average richness of GH families present in a Microbacteriaceae genome was 19.3 

GH/CBM families (Table 2). However, GH/CBM richness varied widely across genomes; a 

Leucobacter genome contained only 1 GH family while one Microbacterium species, 

Microbacterium sp. SUBG005 (accession number JNNT00000000), had 35 GH families. The litter 

isolates belonging to Curtobacterium had an above average richness of 27.2 GH families with a 

range of 19 to 31 GH families. Further, most genomes harbored multiple copies of each protein 

family. For example, a Microbacterium genome had as many as 24 copies of the GH13 family. 

Due to the multiple GH copies, genomes varied in the total number of GHs present (mean 

number of GHs=61.3), ranging from 3 GH proteins in a Leucobacter strain to 135 GH proteins in 

an Agromyces strain. On average, the Curtobacterium litter isolates encoded 82.1 GH proteins, 

almost 1.5 times the family average (Figure 4).  

We examined the potential for each individual genome to target multiple 

polysaccharides. Almost all genomes within the family have the potential to process 

oligosaccharides or starch with the exception of 2 genomes, a Leucobacter and 

Pseudoclavibacter strain. Further, a majority of the genomes (103 genomes or 85.8%) within 

Microbacteriaceae are capable of processing at least one structural polysaccharide. Specifically, 

the frequency to be able to target cellulose, chitin, and xylan occurred in 64.2, 64.2, and 29.2% 

of the genomes, respectively.  
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DISCUSSION 

In this study, we present the first global survey of Curtobacterium and show that it is 

ubiquitous in a variety of ecosystems (Figure 1) although it is most abundant in terrestrial 

ecosystems, and a majority of sequences are associated with plants and soil. This observation is 

in accordance with past studies of Curtobacterium that attribute its habitat to plants and the 

related phyllosphere (Komagata et al., 1965; Behrendt, Ulrich, Schumann, Naumann, and K. I. 

Suzuki, 2002). However, Curtobacterium is primarily known as a plant pathogen and yet, the 

highest proportion of Curtobacterium strains resided in soil systems, suggesting that this genus 

may be capable of reproducing in soil.  

We also provide a well-supported phylogeny of all known Microbacteriaceae genera. 

We built upon previous Microbacteriaceae phylogenetic analyses (see (Evtushenko and 

Takeuchi, 2006)) to incorporate all available Microbacteriaceae 16S rRNA sequences, providing 

the most comprehensive phylogenetic analysis of Microbacteriaceae to date (Figure 2). To 

explore diversity within Curtobacterium, we constructed a genus-specific tree to investigate the 

possibility of clade-specific habitat preference. Due to differences in sequencing platforms and 

targeted regions of the 16S rRNA gene, there may be habitat specialization at finer clade levels 

than we are able to differentiate here. In particular, the shorter sequenced reads (e.g., from the 

EMP dataset) are limited in their phylogenetic resolution and cannot resolve intrageneric 

patterns. Further, many GenBank sequences lacked metadata altogether or were limited in 

their details to allow for finer habitat designations (e.g., which part of the plant or the layer of 

soil from which a strain was isolated). Although, we did not detect any clade-specific patterns of 
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habitat preferences, most clades contained a majority of plant and soil isolated sequences 

(Figure 3), indicating that the genus as a whole may be adapted to plant or soil habitats. 

Curtobacterium falls within the Actinobacteria phylum, which is known to play a crucial 

role in the recycling of organic material by decomposition and humus formation (Goodfellow 

and Williams, 1983). This characterization is supported by a comprehensive analysis into the 

distribution of GHs across all bacteria, which showed that Actinobacteria has the highest 

genomic potential for being cellulose degraders (Berlemont and Martiny, 2015). Therefore, we 

concentrated on these GH proteins, as they are responsible for the breakdown of large 

carbohydrates that may prove advantageous in decomposition of plant debris. For instance, an 

increase in diversity and abundance of GHs with the potential for cellulose utilization generally 

corresponds to better cellulose degradation (Fontes and Gilbert, 2010; Wilson, 2011; Berlemont 

and Martiny, 2015). Previously, Curtobacterium isolates collected from a neutral garden soil 

were shown to rapidly degrade cellulose fibers (Lednická et al., 2000). Indeed, our results 

provide a genomic underpin for Curtobacterium to be a degrader. The genus has an elevated 

richness and abundance of GHs relative to other Microbacteriaceae genera. While there is large 

variation within the family with respect to GH richness and substrate degradation, 

Curtobacterium is one of only three genera with the potential ability to target all identified 

carbohydrate substrates. Moreover, out of these three genera, Curtobacterium has the highest 

abundance of GHs, suggesting an increased ability to utilize and degrade a wide range of 

carbohydrates. This variability in carbon usage within Curtobacterium suggests that alternative, 

intrageneric ecological roles have yet to be identified. 
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We conclude that Curtobacterium may be a dominant player in the functional 

breakdown of dead organic material in leaf litter communities based on its dominance in two 

grassland litter microbial communities, its high representation in soils, and its genomic 

potential for being a degrader. This work supports previous studies that show that 

Curtobacterium has the capability to survive on litter (Júnior Silva et al., 2012) and thrive as a 

cellulytic bacterium (Lednická et al., 2000). The conclusion also aligns with culture work that 

finds that coryneform bacterium, such as Curtobacterium, are in high abundance on grasses 

(Behrendt, Ulrich, Schumann, Naumann, and K. I. Suzuki, 2002). Despite the focus in the 

literature on its role as a crop plant pathogen, future research into the contribution of 

Curtobacterium to the recycling of nutrients in terrestrial ecosystems warrants further 

attention. 
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Tables and Figures 

Table 2.1 General characteristics of the litter isolates. Strains originating from LRGCE are 
labeled as MMLR, while strains from BACE labeled as MCBA. 
 

Genome ID Taxonomy # of contigs Length (bp) % GC # of ORFs 
Richness of 
GH Families 

# of 
GHs 

MCBA15_001 Curtobacterium 137 3808678 70.12 3940 28 81 
MMLR14_002 Curtobacterium 40 3634776 71.39 4013 28 79 
MCBA15_003 Curtobacterium 75 3648432 71.07 3743 29 90 
MCBA15_004 Curtobacterium 91 3772244 69.38 3633 19 62 
MCBA15_005 Curtobacterium 26 3601746 72.01 3941 27 77 
MMLR14_006 Curtobacterium 87 3768639 69.80 3742 29 90 
MCBA15_007 Curtobacterium 75 4023578 70.40 3888 28 77 
MCBA15_008 Curtobacterium 41 3649950 71.44 4198 31 103 
MCBA15_009 Curtobacterium 23 3476500 70.57 3759 29 90 
MMLR14_010 Curtobacterium 112 3902159 70.56 4034 31 93 
MMLR14_011 Plantibacter 104 4089281 69.16 4422 25 105 
MCBA15_012 Curtobacterium 83 3616790 71.04 3638 19 62 
MCBA15_013 Curtobacterium 86 3948212 69.88 4167 28 83 
MMLR14_014 Curtobacterium 139 3822836 69.91 4017 27 78 
MCBA15_016 Curtobacterium 77 3947873 69.07 4103 28 84 
MCBA15_019 Frigoribacterium 27 3783004 70.04 3633 24 60 
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Table 2.2 Breakdown by genus of the distribution of GHs by targeted substrate. 
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Figure 2.1 Geographic distribution of Curtobacterium compiled from various isolation sources. 
Colors indicate the different ecosystems from which the sequence was isolated. The symbol 
indicates the dataset from which the sequence originated. Sequences obtained from GenBank 
(indicated by the triangle symbol on the map) were mostly approximations as detailed GPS 
coordinates were not available. 
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Figure 2.2 Phylogeny of Microbacteriaceae constructed from the 16S rRNA gene (maximum 
likelihood tree with 100 bootstraps and a GTR + GAMMA distribution). The tree is color-coded 
by genus using the taxonomic designation assigned from a combination of SILVA, BLAST, and 
RDP. The circles represent nodes with at least 70% support and the diameter of the circle 
represents the support level.  * = 1 litter isolate within the OTU; * = >4 litter isolates in OTU. 
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Figure 2.3 Phylogenetic tree of the genus Curtobacterium with 16S rRNA gene (maximum 
likelihood tree with 100 bootstraps and a GTR + GAMMA distribution). The numbers represent 
the support level of each node with at least 50% support. Bar graphs are color coded to show 
the percentages of the OTUs with sequences isolated from various ecosystems. Numbers in the 
columns represent the number of sequences incorporated into each branch for its respective 
OTU. * = 1-4 litter isolates within the OTU; ** = 5 isolates; *** = 10 isolates. 
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Figure 2.4 Abundance of GH and CBM families grouped and colored by substrate category 
across downloaded Microbacteriaceae genomes from the PATRIC database. Phylogenetic tree 
constructed from the 16S rRNA gene sequence (maximum likelihood tree with 100 bootstraps 
and a GTR + GAMMA distribution). The circles represent nodes with at least 50% support and 
the diameter of each circle represents the support level. Genera with more than 5 strains are 
denoted on the right. 
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CHAPTER 3 
 

Microdiversity of an abundant terrestrial bacterium encompasses extensive variation in 
ecologically-relevant traits 

 
 

ABSTRACT 

Much genetic diversity within a bacterial community is likely obscured by microdiversity 

within OTUs (operational taxonomic units) defined by 16S rRNA gene sequences. However, it is 

unclear how variation within this microdiversity influences ecologically-relevant traits. Here, we 

employ a multi-faceted approach to investigate microdiversity within the dominant leaf litter 

bacterium, Curtobacterium, which comprises 7.8% of the bacterial community at a grassland 

site undergoing global change manipulations. We use cultured bacterial isolates to interpret 

metagenomic data, collected in situ over two years, together with lab-based physiological 

assays to determine the extent of trait variation within this abundant OTU. The response of 

Curtobacterium to seasonal variability and the global change manipulations, specifically an 

increase in relative abundance under decreased water availability, appeared to be conserved 

across six Curtobacterium lineages identified at this site. Genomic and physiological analyses in 

the lab revealed that degradation of abundant polymeric carbohydrates within leaf litter, 

cellulose and xylan, is nearly universal across the genus, which may contribute to its high 

abundance in grassland leaf litter. However, the degree of carbohydrate utilization and 

temperature preference for this degradation varied greatly among clades. Overall, we find that 

traits within Curtobacterium are conserved at varying phylogenetic depths. Similar to bacteria 

in marine systems, we speculate that microdiversity within this taxon may be structured into 

distinct ecotypes that are key to understanding Curtobacterium abundance and distribution in 
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the environment. 

IMPORTANCE  

Despite the plummeting costs of sequencing, characterizing the fine-scale genetic 

diversity of a microbial community – and interpreting its functional importance – remains a 

challenge. Indeed, most studies, particularly in soil, assess community composition at a broad 

genetic level by classifying diversity into taxa (OTUs) defined by 16S rRNA sequence similarity. 

However, these classifications potentially obscure variation in traits that result in fine-scale 

ecological differentiation among closely-related strains. Here, we investigated “microdiversity” 

in a highly diverse and poorly-characterized soil system (leaf litter in a southern Californian 

grassland). We focused on the most abundant bacterium, Curtobacterium, which by standard 

methods is grouped into only one OTU. We find that the degree of carbohydrate usage and 

temperature preference varies within the OTU, whereas its response to changes in precipitation 

are relatively uniform. These results suggest that microdiversity may be key to understanding 

how soil bacterial diversity is linked to ecosystem functioning. 
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INTRODUCTION 

Currently, most studies assessing the response of bacterial communities to 

environmental change rely on broad taxonomic designations, for instance, by using operational 

taxonomic units (OTUs) based on the nucleotide sequence similarity of the 16S rRNA gene 

(Poretsky et al., 2014). While this classification of bacterial diversity can capture broad 

taxonomic shifts, it provides limited genetic resolution at this loosely-defined species level 

(Konstantinidis and Tiedje, 2005; Cole et al., 2010; Eren, Morrison, et al., 2015) by obscuring 

important genetic diversity within the OTU (Acinas et al., 2004; Thompson et al., 2005; 

Konstantinidis and Tiedje, 2007) – so-called microdiversity (Moore et al., 1998; Jaspers and 

Overmann, 2004). Given that most studies investigate microbial composition using 16S-defined 

OTUs (specifically, at the 97% level), a large gap in our understanding is the extent of 

microdiversity in natural communities and its relationship to variation in bacterial traits.  

Growing evidence indicates that the genetic variation encompassed by bacterial 

microdiversity corresponds to variation in a wide range of functional traits (Larkin and Martiny, 

2017). At fine genetic scales (Polz et al., 2006; Eren, Sogin, et al., 2015), microbes with distinct 

physiological traits may partition niche space within the environment (J. B. H. Martiny et al., 

2006; Martiny et al., 2009). For example, extensive work in marine systems has demonstrated 

that microdiversity within a 16S-defined taxon encompasses distinct ecotypes, or lineages that 

respond differentially to variation in the environment over space and time (Johnson, Zinser, 

Coe, Mcnulty, et al., 2006; Hunt et al., 2008; Martiny et al., 2009; Becraft et al., 2011). 

However, our ability to characterize ecotypes at fine taxonomic levels is still largely dependent 

on cultured organisms because of the need to link genomic to phenotypic variation (Choi et al., 
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2016). And while metagenomic sequencing has advanced the identification of uncultivated 

organisms (Simmons et al., 2008), the functional role of microdiversity has rarely been 

considered in soils as we lack the cultured representatives of their abundant members. 

Diverse bacterial and fungal communities on leaf litter, the top layer of soil, play a key 

role in the carbon cycle. Litter decomposition mediates the loss of carbon through respiration 

to the atmosphere or its storage as organic matter in soil (Adair et al., 2008). The Loma Ridge 

Global Climate Experiment (LRGCE) in southern California was established to test how future 

changes in precipitation and nitrogen availability may alter semi-arid grassland and coastal sage 

scrub ecosystems. In grasslands at the LRGCE, the litter microbial community is dominated by 

bacteria (Alster et al., 2013), suggesting that bacteria perform the bulk of grassland litter 

decomposition. Over a two-year period, the leaf litter community responded weakly, but 

significantly to treatment manipulations (Allison et al., 2013; Matulich et al., 2015). At the 97% 

OTU level, a Curtobacterium OTU (phylum: Actinobacteria, family: Microbacteriaceae) was the 

most abundant taxon within the bacterial community (Matulich et al., 2015). An analysis of 

Curtobacterium sequences from around the globe revealed the genus to be a cosmopolitan 

terrestrial taxon, with isolates primarily derived from plant and soil habitats (Chase et al., 

2016). Further, genomic sequencing of Curtobacterium strains isolated from leaf litter indicated 

that the genus has a high genomic potential to decompose polymeric carbohydrates such as 

starch, cellulose, and xylan that are abundant in leaf litter (Chase et al., 2016). 

Our previous work demonstrated that isolates belonging to Curtobacterium harbored 

extensive genomic diversity despite being clustered within a single OTU as defined by 16S rRNA 

(Chase et al., 2016). Here, we ask 1) What is the extent of Curtobacterium microdiversity in a 



 36 

natural leaf litter bacterial community? and 2) Does this microdiversity encompass genetic and 

physiological variation in ecologically-relevant traits? To address these questions, we used a 

combination of environmental field data and physiological lab assays to assess the distribution 

of traits within Curtobacterium and their phylogenetic conservatism. First, we examined the 

response of Curtobacterium microdiversity to manipulations of precipitation and nitrogen 

availability by using cultured isolates to inform metagenomic data. Moisture limitation, in 

particular, is likely a major stressor on litter bacteria in Southern California, which experiences 

long dry seasons with little to no rainfall. Second, we assayed both the genomic potential and 

metabolic capacity of isolates to depolymerize cellulose and xylan. As leaf litter is primarily 

composed of these polysaccharides, access to this primary carbon supply in this environment 

may be a highly advantageous trait. 

RESULTS 

Curtobacterium Abundance and Microdiversity 

We characterized Curtobacterium abundance and its microdiversity at the LRGCE using 

48 metagenomic sequence libraries from litter samples collected over a two-year period. To 

estimate its relative abundance within the bacterial community, we created a custom pipeline 

using a curated reference database of 3,019 genomes representing 1,464 bacterial genera 

including 16 Curtobacterium genomes (Fig. S1). We calculated taxonomic abundance by using a 

phylogenetic classification of the metagenomic reads against the reference phylogeny, which 

we constructed using single-copy marker genes (Wu et al., 2013). Using our pipeline, we 

identified Actinobacteria and Microbacteriaceae as the most abundant phylum (46.3%) and 

family (28.2%), respectively. We detected similar relative abundances using MG-RAST 



 37 

annotations of the marker genes (see Supplementary Information; Table S1), but this approach 

did not detect any Curtobacterium. Therefore, we used the new pipeline to investigate finer 

taxonomic levels. This analysis revealed that Curtobacterium was the most abundant genus 

observed over the two-year period within the leaf litter community, comprising an average of 

7.8% of the bacterial community. However, even with our pipeline, we were unable to 

characterize 31.2% of the marker genes at or below the genus level. 

Based on the full-length 16S rRNA gene, the Curtobacterium genomes (14 of which were 

cultured isolates from leaf litter (Chase et al., 2016) and two other publicly available genomes), 

clustered into the same OTU defined at the 97% sequence identity level. We therefore 

identified genomic clusters within the Curtobacterium OTU using a phylogenetic analysis of 29 

single-copy marker genes and designated the isolates into six well-supported clades (Fig. 1A). 

These clades were supported by nucleotide (ANI) and amino acid (AAI) similarity (Table S2). 

Specifically, isolates shared >97% AAI within clades for the 29 marker genes. Across the whole 

genome, isolates within clades were more similar in ANI and AAI than with isolates between 

clades, which had a minimum pairwise similarity of 83.2% ANI and 78.9% AAI across all 

Curtobacterium isolates. 

We then classified the metagenomic marker gene reads assigned to Curtobacterium in 

the taxonomic analysis onto the six identified clades. Only a tiny fraction (0.27% of the total 

bacterial community) identified as Curtobacterium but failed to classify into one of the six 

clades, suggesting that our isolates encompassed most of the genomic diversity of 

Curtobacterium at the LRGCE. Across all samples, Curtobacterium was dominated by two clades 

(Table S1); Clades IA and III averaged 3.0% and 2.4% of the marker gene sequences, respectively 
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(Fig. 2C). Together, the remaining Curtobacterium clades (Clades IB, IC, IIA, and IIB) composed 

>2% of the bacterial community, but, separately, each of the four clades represented <0.6% of 

the bacterial community (Table S1). 

Response to the Global Change Treatments 

Within the global change experiment, the composition of the microbial community 

varied seasonally by sampling date such that some bacterial phyla, including Actinobacteria, 

were strongly correlated with background precipitation (Fig. S2A) as previously reported 

(Berlemont et al., 2014). Indeed, at the phylum level (Fig. 2A), bacterial composition varied 

significantly with time (Bray-Curtis similarity; PERMANOVA: p<0.002) and responded marginally 

to the global change treatments of reduced precipitation (drought) and added nitrogen 

(p=0.061), with no significant interaction between the two factors. However, the global change 

treatments explained only 1.9% of the variation in phylum composition, whereas time (date of 

collection over a two-year period) explained 65.1%. In particular, during a prolonged hot, dry 

season in year two (Fig. 2B), the bacterial community became dominated by Actinobacteria (Fig. 

2A). 

Much of the response of Actinobacteria to the global change treatments was due to 

Curtobacterium. The relative abundance of all Curtobacterium increased by 20.2% in the 

drought treatment and decreased by 17.2% in the nitrogen treatment relative to the control 

plots (PERMANOVA: p<0.05; Table S3). Similar to the phylum-level response, time of sampling 

explained the greatest amount of variation in Curtobacterium abundance, accounting for 

52.6%, while treatment contributed only 5.0%. Curtobacterium abundance was strongly 

associated with seasonal precipitation (Fig. S3A), increasing in relative abundance during the 
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dry seasons and accounting for over 10% of all leaf litter bacteria in the second, drier year of 

the study (Figs. 2B and 2C). Curtobacterium abundance, however, was not correlated with the 

mean temperature in the field two weeks prior to sampling (Fig. S3B). 

We next tested whether microdiversity within Curtobacterium (and in particular, the six 

identified clades) varied in its response to the global change treatments. All Curtobacterium 

clades responded similarly to drought, increasing in abundance relative to the control and, with 

the exception of Clade IC, responded negatively to the increased nitrogen treatment (Table S3). 

Furthermore, Curtobacterium clade composition varied significantly over time (PERMANOVA: 

p<0.001; Fig. S2B), with Clades IA and III increasing in relative abundance during the drier, 

second year of the study (Fig. 2C). 

Carbohydrate Degradation Traits within Curtobacterium  

Genomic Characterization 

To analyze the genomic potential for carbohydrate degradation, we characterized the 

glycoside hydrolase (GH) and carbohydrate binding module (CBM) protein families within and 

among Curtobacterium clades. The abundance of total GH/CBM genes varied among all 

genomes, ranging from 58-98 GH/CBM copies. The total distribution of GH/CBM genes varied 

significantly with phylogenetic distance such that more closely related genomes carried more 

similar copy numbers (RELATE; ρ=0.45, p<0.05; Fig. S4). Clades IA, IIB, and III encoded the 

highest abundance of GH/CBM genes (an average of 86, 87.7, and 84.5 genes), which differed 

significantly (ANOVA, F(5,10)=5.3027; p<0.05) from Clade IIA (65 genes), whereas Clades IB and IC 

encoded an intermediate number (76.5 and 78.3, respectively; Fig. 1B). 
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Next, we considered the GH/CBM gene diversity that is thought to be responsible for 

degradation of the most abundant carbohydrates in the leaf litter at the LRGCE, cellulose and 

hemicellulose (specifically, xylan) (Allison et al., 2013). Overall, the number of both cellulose- 

and xylan-related GH/CBMs were significantly correlated with phylogenetic distance (RELATE; 

ρ=0.57, p<0.01 and ρ=0.26, p<0.05, respectively). All Curtobacterium genomes contained at 

least one copy of a GH or CBM protein family that targeted either cellulose or xylan. However, 

some strains (e.g. MCBA15013 and MCBA15016, both from Clade IIB) had an elevated 

abundance of GH/CBM genes targeting cellulose, with an apparent absence of genes targeting 

xylan. Clades IA and IB were the only clades to contain both GH and CBM genes targeting each 

substrate (Fig. 1B). 

Phenotypic Characterization 

The presence of GH/CBM genes within a genome only suggests the potential for 

substrate utilization. Therefore, we conducted substrate assays in the lab to confirm each 

isolate’s ability to degrade cellulose and xylan at 22°C. We performed these assays at this 

temperature as the optimum growth for the genus is thought to range from 20-26°C 

(Evtushenko and Takeuchi, 2006; Whitman et al., 2012). All but one of the strains (MCBA15001) 

degraded both cellulose and xylan over a four-day period, including the four isolates that did 

not encode known xylan-targeting genes (Fig. 1B). Indeed, the size of an isolate’s zone of 

depolymerization was not correlated with the abundance of either cellulose- (independent 

phylogenetic contrasts: PIC, F(1,14) = 1.24; p>0.05) or xylan- (PIC, F(1,14) = 0.15; p>0.05) targeting 

genes.  
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The degradation patterns of the Curtobacterium strains also depended greatly on the 

temperature of the assay. When isolates were assayed at 37°C, the expected maximum 

temperature for growth in Curtobacterium (Evtushenko and Takeuchi, 2006), four strains saw 

an increase in degradation capability, including two strains from Clade IA, while three strains 

were unable to degrade either substrate at 37°C (Fig. 1B). The total area of the zone of 

depolymerization varied significantly by temperature (ANCOVA, F(1,43) = 4.67; p<0.05) and clade 

(F(5,43) = 4.74; p<0.01), with a significant interaction between them (F(5,43) = 2.46; p<0.05), 

whereas the substrate of the assay had no effect on depolymerization area (F(1,43) = 0.95; 

p>0.05). When averaged across Curtobacterium clades, only Clade IA saw an average increase in 

depolymerization area when strains were grown at 37°C when compared to 22°C (Fig. 1C). Most 

clades maintained some level of degradation capability at the higher temperature except for 

Clade III, which failed to depolymerize either cellulose or xylan at 37°C (Fig. 1C). 

DISCUSSION 

In this study, we investigated the extent of genomic microdiversity of Curtobacterium in 

the field and the relationship between this diversity and the bacterium’s functional traits. To 

our knowledge, this study is the first to do so in a dominant soil bacterium. As in aquatic and 

host-associated ecosystems (Moore et al., 1998; Thompson et al., 2005; Martiny et al., 2009; 

Frese et al., 2011; Morrison et al., 2012; Williams et al., 2014), microdiversity within this 

abundant bacterium is extensive. Co-occurring strains within the same Curtobacterium OTU 

share as low as an 83% average nucleotide identity (ANI), far below the traditional species 

boundary (Richter and Rosselló-Móra, 2009). Our results support the growing understanding 

that traditional taxonomic assignments (i.e. OTUs) are insufficient to resolve ecologically 
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distinct microorganisms into their correct taxonomic assignments (Rodriguez-R and 

Konstantinidis, 2014; Varghese et al., 2015). Indeed, extensive Curtobacterium microdiversity 

persists in grassland leaf litter and encompasses variation in several ecologically-relevant traits, 

including its ability to degrade abundant carbohydrates as well as temperature preferences for 

this degradation. Thus, binning of 16S rRNA sequences obscures detection and interpretation of 

ecologically important trait variance. 

Trait variability within soil bacterial OTUs has been described previously, suggesting that 

local adaptation and coexistence are probable among closely related strains (Schloter et al., 

2000; Wielbo et al., 2007; Choudhary and Johri, 2011; Schlatter and Kinkel, 2014). However, the 

combination of lab assays on cultured representative isolates in conjunction with metagenomic 

data allowed us to compare the physiological findings to their representation in the 

environment, as well as test the response to environmental change in the context of the whole 

community. Further, this combination enabled us to quantify and interpret metagenomic data 

of ecologically-relevant microdiversity that would otherwise be undetectable (Table S1) due to 

lack of genomic representation in public databases. Indeed, particularly for terrestrial soil 

systems, the genomic reference databases often lack the resolution to detect fine-scale 

taxonomic groups, as defined as >95% ANI (Nayfach et al., 2016), or result in 

mischaracterization of taxonomic groups altogether (Gonzalez et al., 2016).  

The results of this study are also consistent with the idea that bacterial traits are often 

conserved at varying phylogenetic depths (Martiny et al., 2009, 2015). Complex quantitative 

traits like an organism’s response to drought have been proposed to be more phylogenetically 

conserved (Martiny et al., 2015; Larkin and Martiny, 2017). Here, we observed that a response 
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to dry conditions (both in the drought treatment and the dry seasons) appears to be generally 

consistent among Curtobacterium clades, suggesting that biological and physiological traits 

responsible for moisture response are ecologically cohesive (Philippot et al., 2010) within this 

taxon. Thus, the response of Curtobacterium to future drought would likely be apparent at the 

OTU level, although certain clades may be more abundant than others. However, given that 

some of the clades were relatively rare within the community, further investigation is still 

needed to confirm this interpretation.  

In contrast, traits that rely on one or a couple genes such as carbon utilization are 

thought to be more shallowly conserved (Martiny et al., 2013) as they may be more prone to 

horizontal gene transfer. Using physiological assays, we confirmed the genomic potential for 

Curtobacterium to degrade polymeric carbohydrates, which are likely central to their success 

within the leaf litter community. Although all Curtobacterium clades could depolymerize both 

xylan and cellulose, the degree of carbohydrate utilization varied among and within clades, 

suggesting the carbohydrate utilization is finely conserved. Such intricate differences in 

carbohydrate degradation traits among Curtobacterium may contribute to the persistence of 

this microdiversity within the leaf litter community. However, the genomic potential for 

carbohydrate utilization (number and composition of GH/CBMs) did not predict observed 

phenotypic variation in the lab, highlighting the difficulty in using gene annotations to predict 

ecological roles. 

Carbohydrate degradation was also temperature dependent, regardless of the 

substrate. Further, this dependency varied among clades, revealing that Curtobacterium 

microdiversity also incorporates variation in temperature preference. Broadly, this result 
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supports the idea that bacterial temperature preference can be relatively finely conserved 

(Martiny et al., 2015), despite typically being viewed as an adaptive response (Bennett et al., 

1992). More specifically, it suggests differential physiological tradeoffs between temperature 

and carbohydrate utilization (Schimel et al., 2007) among clades. Such variation in this tradeoff 

might explain the coexistence of these closely-related clades, particularly for the two most 

abundant clades, Clades IA and III. Despite similar environmental responses to drought and 

seasonal fluctuations, these clades exhibited opposite responses to temperature with respect 

to carbohydrate utilization (Fig. 1C). While temperature preference has previously been shown 

to drive shifts in ecotype abundance within marine systems (Johnson, Zinser, Coe, Mcnulty, et 

al., 2006), we did not observe a correlation between clade abundance and temperature at this 

one site. However, further investigation is needed across a wider temperature range to test 

whether temperature drives the geographic distribution of Curtobacterium clades.  

In conclusion, the microdiversity within a single Curtobacterium OTU in this grassland 

leaf litter encompasses variation in traits involved in carbon degradation and temperature 

preference. Classic ecological theory would suggest that this trait variation allows 

microdiversity to occupy distinct ecological niches (Chase and Leibold, 2003), although further 

work is needed to identify distinct Curtobacterium ecotypes in the environment. At the same 

time, Curtobacterium appears to be consistent in its response to changes in precipitation, 

suggesting that variability in moisture conditions are unlikely to explain the maintenance of this 

microdiversity. Thus, similar to marine bacteria (Moore et al., 1998; Jaspers and Overmann, 

2004), our work highlights that the depth of trait conservatism (Martiny et al., 2009) may help 

to understand the response of soil bacteria to changing environments. 
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METHODS AND MATERIALS 

Field Site 

The Loma Ridge Global Change Experiment (in Irvine, California, USA [33° 44ʹ N, 117° 42ʹ 

W]; (Potts et al., 2012)) was established in 2007 with precipitation and nitrogen manipulations 

in areas of deciduous shrubland (coastal sage scrub) and annual grasses. For this study, we 

sampled only in the grassland plots, which are dominated by Avena, Bromus, and Lolium 

(Allison et al., 2013). We used a subset of the plots that included reduced precipitation 

treatment (-50% reduction in annual precipitation), added N treatment (20-40 kg N/ha), and a 

control treatment, as previously described (Allison et al., 2013). 

We collected leaf litter from these plots by sampling each season from May 2010 – 

March 2012 across three treatments: control, reduced precipitation (drought), and added 

nitrogen (8 time points x 3 treatments x 2 replicates). As described previously, metagenomic 

libraries were created from these samples by extracting DNA from ground litter, prepared using 

a TruSeq library kit (Illumina, San Diego, CA, USA), and sequenced on an Illumina HiSeq2000. 

Samples were pooled from 8 plots from each treatment to form the 2 replicate libraries at each 

time point (for more information, see (Berlemont et al., 2014)). The sequences libraries are 

available on MG-RAST under the project IDs 4511045-4511050, 4511060-4511065, 4511111-

4511116, 4511134-4511153, 4511178-4511193. We excluded two libraries (Drought April 2010 

and Nitrogen August 2010) due to low sequence count. Temperature and precipitation data 

was recorded at a nearby weather tower (Allison et al., 2013). 

Curated Marker Gene Reference Database 
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We developed a reference genomic database to characterize phylogenetic marker genes 

from the metagenomic sequences of the microbial community. This approach is similar to 

PhyloSift (Darling et al., 2014), except we performed a more robust search to compensate for 

the lack of genomic references to characterize soil microbial communities. We downloaded 

79,838 genomes from the PATRIC database (Wattam et al., 2014) with RAST (Aziz et al., 2008) 

annotations on December 9th, 2016. We screened all genomes for annotations of 29 conserved, 

single-copy phylogenetic marker genes (Wu et al., 2013) and discarded failed genomes, most of 

which were draft genomes with >1000 contigs. Remaining genomes were manually curated by 

assigned nomenclature to include two genomes per genus. When available, we prioritized 

complete genomes and genomes isolated from soil ecosystems. The 3,159 resulting genomes 

were combined with 14 Curtobacterium genome sequences isolated from two grassland leaf 

litter sites (Chase et al., 2016), including four strains isolated during the time of metagenomic 

sampling from the LRGCE.  

We curated the downloaded genomes to ensure all genomes were properly assigned to 

the correct taxonomy. Individual marker genes from each genome were aligned using ClustalO 

v1.2.0 (Sievers et al., 2011) and used to construct a 15,963 bp concatenated alignment for 

phylogenetic analysis using FastTree2 (Price et al., 2010). The resulting reference phylogeny 

guided the construction of each individual marker gene tree to maintain relative node structure 

across trees. For each marker gene tree, we performed a maximum likelihood bootstrap 

analyses using RAxML v8.0.0 (Stamatakis, 2014) under the PROTGAMMAWAGF model for 100 

replicates. If a genome was named incorrectly or showed a problematic alignment for any of 
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the individual marker gene trees (i.e. genome terminal branch length was >5), the entire 

genome was removed (total of 154 genomes were removed) and all trees were re-generated.  

The NCBI taxonomy database (Federhen, 2012) was downloaded on June 17, 2016. The 

taxonomic information of the remaining 3,019 genomes were added locally to the NCBI 

database using the PATRIC genome IDs. The individual marker gene trees and taxonomic 

information were all used to generate reference packages for the program PPlacer v1.1.alpha17 

(Matsen et al., 2010). Reference packages were subsequently used to characterize the 

microbial community (available at https://github.com/alex-b-chase/LRGCE). 

Metagenomic Analyses 

To evaluate the taxonomic diversity of the bacterial community as well as finer-scale 

diversity within Curtobacterium at the LRGCE, we re-analyzed the metagenomic libraries 

previously described (Berlemont et al., 2014). Metagenomes were retrieved from the 

metagenomics analysis server (MG-RAST) (Meyer et al., 2008) after sequences had been 

processed for quality control and coding regions were predicted by FragGeneScan (Rho et al., 

2010). We performed an initial filter using BLASTP (Altschul et al., 1997) against our custom 

database with an e-value of 1x10-5. We applied a secondary filter using HMMer v3.1b2 (Finn et 

al., 2011) with an e-value of 1x10-10 to achieve a higher specificity. We grouped the filtered 

reads for each library by each marker gene and aligned them using ClustalO v1.2.0 (Sievers et 

al., 2011) to the corresponding marker gene reference package (see above). Aligned 

metagenomic reads were “placed” onto the reference phylogeny using PPlacer v1.1.alpha17 

(Matsen et al., 2010), keeping at most 20 placements, and a posterior probability for final 

placement on the reference tree was calculated. Finally, we created single branch abundance 
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matrices yielding an abundance distribution ranging from phyla to individual genomes. All 

abundances were normalized by the total number of marker genes present. 

Comparison of Curated Pipeline to other Methods 

To validate the taxonomic results generated by our custom pipeline (see Supplementary 

Information), we compared our taxonomic abundances using two alternative approaches: 1) 

the MG-RAST pipeline using a read-based analysis and 2) a de novo co-assembly of all 

metagenomic libraries using the paired-end reads.  

First, to generate the MG-RAST taxonomic profiles, we downloaded the KEGG database 

annotations for each library from the MG-RAST API (Meyer et al., 2008) and calculated relative 

abundances across all annotated reads. Next, we standardized the MG-RAST output by filtering 

the MD5 IDs corresponding to the 29 marker genes and regenerated standardized taxonomic 

abundance profiles. All gene sequences retrieved from MG-RAST were assigned to the closest 

hit genus in the MG-RAST database using an e-value of 1x10-5. 

Second, we conducted a genome-centric analysis by performing a de novo co-assembly 

of all of the paired-end shotgun metagenomic libraries using MEGAHIT (Li et al., 2014). We used 

an iterative k-step ranging from k=27-111 and discarded all assembled contigs <3000bp. Read 

coverage for each assembled contig was calculated using bbwrap.sh within the suite of tools 

available via BBMap v35.66 (Bushnell, 2016). Taxonomic assignments for all assembled contigs 

were generated using MegaBLAST against the NCBI nt database (January 2015 version) with an 

e-value of 1x10-5. 

Genomic Comparisons of the Isolates 
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To validate that all Curtobacterium genomes, including two publically available 

Curtobacterium genomes, clustered within the same OTU, we used Barrnap 

(http://www.vicbioinformatics.com/software.barrnap.shtml) to predict rRNA genes and 

clustered the 16S rRNA gene using UCLUST (Edgar, 2010). We then examined the relationship 

among all 16 Curtobacterium genomes using 29 single-copy phylogenetic marker genes (Wu et 

al., 2013). Each conserved gene was independently aligned using ClustalO v1.2.0 (Sievers et al., 

2011) and used to create a concatenated alignment for phylogenetic analyses. We constructed 

a maximum likelihood phylogenetic tree using RAxML v8.0.0 (Stamatakis, 2014) under the 

PROTGAMMAWAGF model for 100 replicates. For convenience, we designated six 

monophyletic clades based on the results from the phylogenetic analyses. To confirm these 

designations, we calculated pairwise average amino acid identity (AAI) across the 29 marker 

genes across all genomes. 

Next, we confirmed that our clade designations were in accordance with additional 

genomic characterizations. Specifically, we calculated pairwise whole genome average 

nucleotide identity (ANI) and AAI (Rodriguez-R and Konstantinidis, 2016), and computed the 

core genome for within each clade by generating groups of orthologous proteins with MCL 

(Enright et al., 2002). Genes identified as orthologous groups within clades were subsequently 

used to calculate AAI of all clade-specific core genes. All genomic analyses were performed 

using the suite of tools available in the Microbial Genomes Atlas (MiGA; 

https://github.com/bio-miga/miga). 

To analyze each genome for its potential to degrade carbohydrates, genomic ORFs were 

generated by the RAST annotation pipeline (Aziz et al., 2008) and searched using HMMer 
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against the Pfam-A v30.0 database (Finn et al., 2016). We then used a subset of identified 

protein families, representing glycoside hydrolase (GH) and carbohydrate-binding module 

(CBM) proteins to identify the genomic potential to degrade carbohydrates of each isolate 

(Berlemont and Martiny, 2013; Chase et al., 2016). GH/CBM gene composition profiles for each 

isolate were subsequently used to generate a Bray-Curtis similarity matrix to produce a non-

metric multi-dimensional scaling (MDS) ordination plot. 

Physiological Analyses of the Isolates 

In the laboratory, we characterized the 14 Curtobacterium isolates for their ability to 

utilize two polysaccharides, cellulose and xylan, at two temperatures. All isolates were grown 

from -80°C freezer stocks for 24-48 h in LB liquid media at room temperature (22°C). Isolates 

were spun down at 13,500 RCF for 4 minutes with LB supernatant being discarded. Pelleted 

cultures were washed with 0.9% saline solution three times and re-suspended in 10 mL of M63 

minimal media with 0.5% w/v dextrose and allowed to grow for 24 h. All cultures were then 

diluted to OD600 = 0.1 to ensure equal cell density across isolates. We used 10 µL of grown 

cultures (in triplicates) to inoculate onto solid M63 media containing 0.5% w/v carboxymethyl 

cellulose (CMC; MPBio 150560) or xylan (Sigma X0502) and were placed at 22°C (optimum 

temperature for growth (Evtushenko and Takeuchi, 2006; Whitman et al., 2012)) and 37°C 

(maximum temperature for growth (Evtushenko and Takeuchi, 2006)). Depolymerization of 

each substrate was classified after 4 days by measuring the zones of transparent growth around 

the inoculum as previously described (Pold et al., 2016) with Gram’s iodine stain (Kasana et al., 

2008). We analyzed the zones of depolymerization around inoculated colonies on ImageJ 
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(https://imagej.nih.gov/ij/) to calculate the total area of carbohydrate degradation. An E. coli 

strain was included as a negative control for all physiological assays. 

Statistical Analyses 

To test the effects of environmental treatment manipulations on the distribution of 

bacterial communities and Curtobacterium clade composition, we used a permutational 

multivariate analysis of variance (PERMANOVA) (Clarke, 1993). The statistical model included 

plot treatment (control, drought, or N addition) and date of collection as fixed effects. We 

tested the effects of time and treatment by generating Bray-Curtis similarity matrices at the 

phyla and clade taxonomic levels. Subsequent PERMANOVA analyses used a type III partial sum 

of squares for 999 permutations of residuals under a reduced model. Similarity matrices were 

also used to generate non-metric multi-dimensional scaling (MDS) ordination plots. All 

multivariate statistical analyses were conducted using PRIMER6 with the PERMANOVA+ 

function (Primer-E Ltd, Ivybridge, UK). 

We analyzed the distribution of GH/CBM genes within and among Curtobacterium 

clades. To test for differences in the total abundance of GH/CBM proteins across clades, we 

used a one-way analysis of variance (ANOVA). For the ANOVA analysis, we used a Tukey 

“Honest Significance Difference” to detect the difference in total abundance of GH/CBM genes 

across clades. To test for correlations between the abundance of GH/CBM proteins, with 

respect to cellulose and xylan, and phylogenetic distance, we calculated a Spearman’s rank 

correlation coefficient using a RELATE test. Further, we performed a phylogenetic independent 

contrast (PIC) analysis to test whether the abundance of GH/CBM genes related to an isolate’s 

phenotypic ability to degrade cellulose or xylan in the laboratory. Finally, to determine the 
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factors driving degradation, we used a multiple regression model including the following 

variables: temperature, clade designation, and carbon substrate. Starting with a three-way 

ANCOVA, we implemented a backward selection process (Mac Nally, 2002). If the model 

returned non-significant interactions, the interaction was removed and the model was 

regenerated to decrease the chance of spurious relationships (Harrell, 2015). All analyses were 

performed in the R software environment. 
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Figures 

 

Figure 3.1 Phylogeny and traits of Curtobacterium strains. A) Multilocus phylogenetic analysis 
using a concatenated alignment of 29 single-copy marker genes. B) Genomic and physiological 
metrics of carbohydrate utilization. The total number of GH/CBM families targeting all potential 
carbohydrate substrates is shown in the first column. Physiological ability to degrade cellulose 
and xylan is shown in blue/red while the genomic potential (presence of GH/CBM families) to 
degrade either cellulose or xylan are represented in grey/black. Strains designated as “NA” 
were not assayed for carbon degradation. C) The average degradation area (± 1 SD) of the 
substrates by Curtobacterium clade at each temperature. 
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Figure 3.2 Bacterial community composition in Loma Ridge field site over two years. A) Relative 
abundances of the six most abundant phyla; replicates were averaged by each treatment (N = 
+nitrogen, R = reduced precipitation, C = control) and time point. B) Temperature and 
precipitation at Loma Ridge collected from May 2010 to March 2012. C) Relative abundance of 
total Curtobacterium (green line) and each individual clade over time and by treatment. 
Smoothed averages were calculated from locally weighted smoothing (LOESS) with confidence 
intervals. 
  



 55 

Supporting Information 
 
This chapter contains supporting information that can be found online at 
https://mbio.asm.org/content/8/6/e01809-17.full (DOI: 10.1128/mBio.01809-17). 
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CHAPTER 4 
 

Emergence of soil bacterial ecotypes along a climate gradient 
 
 

ORIGINALITY-SIGNIFICANCE STATEMENT 

Microbial community analyses typically rely on delineating operational taxonomic units; 

however, a great deal of genomic and phenotypic diversity occurs within these taxonomic 

groupings. Previous work in closely-related marine bacteria demonstrates that fine-scale 

genetic variation is linked to variation in ecological niches. In this study, we present similar 

evidence for soil bacteria. We find that an abundant and widespread soil taxon encompasses 

distinct ecological populations, or ecotypes, as defined by their phenotypic traits. We further 

validated that differences in these soil ecotypes correspond to variation in their distribution 

across a regional climate gradient. Thus, there exists genomic and phenotypic diversity within 

this soil taxon that contributes to niche differentiation. The study further highlights the need to 

link fine-scale genomic diversity with trait variation to investigate the ecological and 

evolutionary processes governing bacterial diversity. 

SUMMARY   

The high diversity of soil bacteria is attributed to the spatial complexity of soil systems, 

where habitat heterogeneity promotes niche partitioning among bacterial taxa. This premise 

remains challenging to test, however, as it requires quantifying the traits of closely-related soil 

bacteria and relating these traits to bacterial abundances and geographic distributions. Here, 

we sought to investigate whether the widespread soil taxon Curtobacterium consists of multiple 

coexisting ecotypes with differential geographic distributions. We isolated Curtobacterium 

strains from six sites along a climate gradient and assayed four functional traits that may 
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contribute to niche partitioning in leaf litter, the top layer of soil. Our results revealed that 

cultured isolates separated into fine-scale genetic clusters that reflected distinct suites of 

phenotypic traits, denoting the existence of multiple ecotypes. We then quantified the 

distribution of Curtobacterium by analyzing metagenomic data collected across the gradient 

over 18 months. Six abundant ecotypes were observed with differential abundances along the 

gradient, suggesting fine-scale niche partitioning. However, we could not clearly explain 

observed geographic distributions of ecotypes by relating their traits to environmental 

variables. Thus, while we can resolve soil bacterial ecotypes, the traits delineating their distinct 

niches in the environment remains unclear. 
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INTRODUCTION 

A focus on traits can provide a mechanistic understanding of an organism’s geographic 

distribution (McGill, Enquist, et al., 2006; Litchman and Klausmeier, 2008; Allison, 2012; 

Edwards et al., 2013) as traits underlie an organism’s response to abiotic and biotic conditions 

(Lavorel and Garnier, 2002). In microbial communities, the link between traits and the 

distribution of microbial taxa remains poorly understood (Green et al., 2008; Litchman et al., 

2015). While whole-genome and metagenomic data provide a sense for the potential types of 

traits of the microorganisms within an environmental sample (Raes et al., 2011), it is unclear 

how well this potential translates to actual phenotypic differences (Chase and Martiny, 2018). 

However, as in macroorganisms, the functional assessment of an ecosystem’s abundant taxa is 

important to developing trait-based approaches to predict community and ecosystem dynamics 

(Lavorel and Garnier, 2002; Enquist et al., 2015). 

Soil systems harbor incredible microbial diversity where high habitat heterogeneity 

promotes niche partitioning among bacterial taxa (Ranjard and Richaume, 2001; Nannipieri et 

al., 2003). Indeed, the biogeographic distributions of soil bacterial communities are correlated 

with environmental variables (e.g. pH (Fierer and Jackson, 2006; Yao et al., 2011) and nutrients 

(Leff et al., 2015)) suggesting that traits related to the response of to these variables underlie 

bacterial distributions. However, most studies consider these patterns at a fairly broad genetic 

resolution, lumping taxa based on the sequence similarity of a highly conserved 16S rRNA 

region, and, subsequently, mask a high degree of trait variation among distinct bacterial taxa 

(Chase et al., 2017; Larkin and Martiny, 2017). Such variation may be important for explaining 

the distribution of bacterial diversity in soil. In particular, some ecologically relevant traits, 
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including a response to drought conditions may be shared at broad taxonomic levels (Amend et 

al., 2016), while others, such as temperature preference (Martiny et al., 2015), might be more 

variable. Thus, the ability to resolve the degree of trait variation requires linking genetic 

information with relevant phenotypic variation (McLaren and Callahan, 2018) to distinguish 

fine-scale niche partitioning contributing to the distribution and diversity of soil bacteria.  

To illustrate the importance of trait variation among very closely related bacterial 

strains, we can consider the distribution of the abundant marine phototroph, Prochlorococcus. 

Strains of Prochlorococcus cluster into genetically distinct clades that share physiological traits, 

including light preference and nutrient utilization (Moore and Chisholm, 1999; Moore et al., 

2002). Distinct fine-scale genetic clusters corresponding to ecologically relevant phenotypes 

have been defined as ecotypes (Rocap et al., 2003), where all strains within an ecotype occupy 

the same ecological niche (Cohan, 2001). Co-existing, but distinct Prochlorococcus ecotypes 

exhibit differential geographic distributions that are highly correlated with environmental 

variables, suggesting fine-scale niche partitioning (Moore et al., 1998; Johnson, Zinser, Coe, 

McNulty, et al., 2006). Further, the traits that underlie these correlations are relatively clear; for 

instance, the optimal temperature of an ecotype’s growth in the laboratory corresponds to its 

distribution across oceanic temperature gradients (Johnson, Zinser, Coe, McNulty, et al., 2006). 

Thus, coexisting individuals can be clustered based on genotypic and phenotypic information to 

provide a functional basis in driving ecotype differentiation and niche partitioning (Kent et al., 

2016; Delmont and Eren, 2018). 

Here, we sought to determine whether soil bacteria – like marine bacteria – form 

distinct ecotypes that are differentially distributed. To test this idea, we focused on the 
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widespread soil taxon Curtobacterium (Chase et al., 2016). In a southern California grassland, 

Curtobacterium is highly abundant in leaf litter, the top layer of soil, suggesting a potential 

functional role in plant decomposition and, therefore, the carbon cycle (Matulich et al., 2015). 

In previous work, we identified the co-occurrence of multiple Curtobacterium clades in leaf 

litter, and we hypothesized that thermal adaptation might be contributing to ecological 

differences of co-occurring clades (Chase et al., 2017). Indeed, a recent study found that 

northern and southern Streptomyces lineages differed in their thermal tolerance across a 

latitudinal gradient (Choudoir and Buckley, 2018). However, it remains unclear what traits 

differentiate Curtobacterium clades and if this diversity is associated with niche partitioning in 

the environment. Therefore, in this study, we isolated Curtobacterium strains from leaf litter 

across six locations spanning a climate gradient and assayed four functional traits (growth, 

biofilm formation, and depolymerization of xylan and cellulose). We further investigated the 

biogeographic distributions of Curtobacterium clades using metagenomic data collected from 

leaf litter across the gradient over 18 months. We hypothesized that (i) genetically-distinct 

Curtobacterium lineages share functional traits, forming distinct ecotypes; (ii) these ecotypes 

have differential geographic distributions across the gradient; and (iii) the distribution of 

ecotypes is correlated with environmental variation (e.g. soil temperature). 

RESULTS 

Identification of Curtobacterium Ecotypes 

We established six sites along an elevation gradient that co-varied in precipitation and 

temperature (Supporting Information Table S1). We isolated Curtobacterium strains from leaf 

litter (decaying leaves that make up the topmost layer of soil) at all sites along this climate 
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gradient except at the coldest and wettest Subalpine site. We sequenced 56 new 

Curtobacterium genomes with an average size of 3.6 Mbp and 70.7% GC content (Supporting 

Information Table S2). Incorporating all known Curtobacterium genomic diversity into a 

phylogenetic analysis, we established five major clades (I – V) delineating the genus (Fig. 1). 

These genomes were highly diverse, sharing as low as 79.2% average nucleotide identity (ANI) 

and 68.9% average amino acid identity (AAI). Most (93%) of the isolates from our sites fell 

within Clades I, IV, and V. The major clades further diverged into finer genomic clusters 

(assigned to subclade designation at ≥90% AAI; Fig. 1). Each site along the gradient exhibited 

vast genomic diversity, with most of the subclades including isolates from multiple sites. For 

instance, 25 of the isolates from 4 of the sites (excluding the higher elevation sites, Pine-Oak 

and Subalpine) fell into Subclade IB/C. In contrast, Subclade VA was only isolated from the 

Desert site.  

Our analyses revealed extensive genomic diversity that would otherwise be masked 

using traditional genetic characterizations (i.e. 16S rRNA gene similarity) of bacterial 

operational taxonomic units (OTUs). Analyzing the hypervariable V4/V5 region of the 16S rRNA 

region at 100% sequence similarity, we identified only four OTUs. All eight isolates from 

Subclade VA grouped together, while the majority of strains (45 of the 56 climate gradient 

strains), irrespective of phylogenetic relatedness, shared identical V4/V5 regions. An alignment 

of the full-length 16S rRNA gene region revealed some congruence between subclade diversity, 

but clustering into OTUs at 99% similarity (as recommended for full length sequences (Schloss, 

2010; Edgar, 2018)), still revealed only two OTUs (Supporting Information Fig. S1). 
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We next asked whether this genomic variation corresponded to phenotypic diversity by 

assaying a subset of isolates for four functional traits (growth, biofilm formation, and 

depolymerization of xylan and cellulose). Given the stark gradient in temperature across our 

sites, we measured each trait at a range of temperatures to consider the response of traits to 

environmental variation (McGill, Enquist, et al., 2006). Indeed, across all assays, temperature 

explained 15-20% of the trait variation observed in the lab assays (linear regressions; all p < 

0.0001; reporting adjusted R2). Isolates depolymerized both cellulose and xylan at varying 

efficiencies but strains did not discriminate between carbon substrate utilization (linear 

regression; p > 0.05). Additionally, the ability to depolymerize specific carbon substrates was 

not a simple product of increased growth across temperatures (Supporting Information Fig. S2), 

underlining the differences in carbon utilization ability across strains. Total carbon 

depolymerization (combining cellulose and xylan assays) varied significantly by subclade 

designation (analysis of covariance (ANCOVA); F5,195 = 175.7, p < 0.0001) with a significant 

interaction between temperature (F15,195 = 13.6, p < 0.0001; Fig. 2). Maximum growth rate 

(µmax) and biofilm formation followed similar statistical trends (Supporting Information Table 

S3) with subclade and temperature significantly explaining trait performance (Supporting 

Information Fig. S3A and S3B, respectively). However, temperature affected traits differently; 

for example, carbon depolymerization and maximum growth rate peaked at 28°C while biofilm 

formation decreased linearly with increasing temperature (Fig. 2). Across all assays, trait 

performance was strongly influenced by temperature amplifying the degree of phenotypic 

variation among Curtobacterium isolates. 
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Together, the trait assays indicated that despite highly differential trait responses within 

Curtobacterium, isolates within the same subclade reflected similar phenotypic traits. By 

combining all observed trait variation, isolates clustered significantly by subclade, such that 

strains within the same genetic subclade shared more similar traits (analysis of similarities 

(ANOSIM); R = 0.69, p < 0.001; Fig. 3). Carbon depolymerization abilities and growth parameters 

(maximum absorbance (Amax), µmax, and lag phase) across temperatures best distinguish these 

strains while biofilm formation remained highly variable (Fig. 3). All isolates could depolymerize 

carbon, but the efficiency of carbon depolymerization, especially at higher temperatures, 

strongly differentiated subclades. For example, Subclade IVA was unable to degrade either 

cellulose or xylan at high temperatures, whereas Subclade IVB was generally the best degrader 

(Fig. 2). In contrast, the broader genetic clades (i.e. Clades I – V) were indistinguishable by the 

measured traits at varying temperatures (ANOSIM; R = 0.14, p > 0.05; Fig. 3). Thus, the degree 

of trait variation within subclades was highly correlated with fine-scale genetic clusters within 

Curtobacterium, denoting the existence of distinct Curtobacterium ecotypes. 

To consider whether there was evidence for adaptation to the site from which the 

strains were isolated, we also tested whether the isolation site influenced trait performance. 

When we considered both subclade designation and the site of isolation along with the 

temperature of the assay, we accounted for 52% and 87% of the variation in maximum growth 

rate and carbon depolymerization, respectively (ANCOVA; all p < 0.01; reporting adjusted R2; 

Supporting Information Table S3). However, subclade designation explained more trait 

variation than site effects for both carbon depolymerization (ANCOVA; Ω2 = 0.50 vs. 0.02, 

respectively) and µmax (ANCOVA; Ω2 = 0.14 vs. 0.06, respectively) across the temperature 
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gradient (Fig. 2; Supporting Information Table S3). Biofilm formation, conversely, was only 

related to subclade and temperature (ANCOVA; adjusted R2 = 0.29, p < 0.001) despite being 

highly variable across strains. For example, strains from both Subclades IA and IB/C were among 

the best biofilm producers at lower temperatures, while other strains from the same subclade 

and site of isolation produced minimal biofilms (Supporting Information Fig. S3B). Although site 

effects contributed to observed trait variation among isolates, site effects explained little 

additional variation beyond subclade designations to accurately distinguish ecotypes.  

Biogeography of Curtobacterium and its Ecotypes 

To evaluate the biogeographic distribution of Curtobacterium ecotypes, we 

characterized the litter bacterial community across the climate gradient using 91 metagenomic 

libraries collected over 18 months. Total bacterial composition varied across the climate 

gradient, with Desert, Grassland, and Scrubland communities more similar in composition to 

one another than to Pine and Subalpine communities (Supporting Information Fig. S4A). 

Notably, Acidobacteria were common in the colder, wetter sites (Pine-Oak and Subalpine), 

while Actinobacteria dominated in the hotter, drier sites (Supporting Information Fig. S4B). 

Salton Sea bacterial composition was distinct from all other sites being dominated by 

Proteobacteria and the genus Halomonas (Supporting Information Fig. S4C). Curtobacterium 

(phylum: Actinobacteria) was the 6th most abundant genus across all sites and time points with 

an average relative abundance of 1.6% (Supporting Information Fig. S4C). Total Curtobacterium 

abundance was highest in the Grassland and decreased towards the extreme ends of the 

climate gradient (top line in Fig. 4A). 
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The geographic distribution of subclades within Curtobacterium – the genetic resolution 

at which we could distinguish ecotypes – also varied along the climate gradient (Fig. 4A). To 

identify subclade sequences in the metagenomic data, we extracted 830 orthologous protein 

groups belonging to Curtobacterium and Frigoribacterium (a sister genus) identified from the 

full genome sequences (see Experimental Procedures). The overall abundance of 

Curtobacterium was represented by multiple subclades, comprised primarily of six abundant 

ecotypes spanning the climate gradient (Fig. 4A). Nevertheless, subclade composition varied 

significantly by site (permutational multivariate analysis of variance (PERMANOVA; p < 0.001) 

such that some subclades were strongly correlated with site location (Fig. 4B). For example, 

Subclade IVB was the dominant Curtobacterium ecotype in the hot, dry Desert site and the cold, 

wet Pine-Oak and Subalpine sites; whereas, at the intermediate climate sites, Scrubland and 

Grassland, Subclade IB/C was the dominant ecotype (Fig. 4A). The less abundant ecotypes also 

exhibited differential distributions with Subclades IVB and IVC being more pronounced in the 

Desert and Subclade IA peaking in the Grassland (Fig. 4A,B). Along the climate gradient, we 

identified six abundant ecotypes co-occurring at each site with each ecotype exhibiting 

preferential distributions. 

The relative abundance of the ecotypes remained relatively constant over the year and 

a half (Supporting Information Fig. S5A). Overall, the temporal effects were less pronounced 

than the site effects (PERMANOVA; p > 0.05), and accounted for only 0.8% of the observed 

variation in subclade composition across sites (as compared to 54.2% attributed to site effects). 

Therefore, Curtobacterium composition along the climate gradient was temporally stable over 

the course of the study. 
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Ecotype – Environmental Relationships 

Since Curtobacterium ecotypes clearly differed in their geographic distributions, we next 

asked how their abundances were correlated with environmental variation. Ecotype 

composition varied over time, but this shift in composition was minimal relative to the site 

effects (Fig. 5). Indeed, the environmental factors measured at each site (leaf litter chemistry 

and abiotic parameters) largely explained the observed ecotype composition (distance based 

linear model (distLM); adjusted R2 = 0.91). In particular, the proportion of hemicelluloses (e.g., 

xylan) in the leaf litter explained 41.5% of the variation in ecotype composition (distLM; p < 

0.05; Supporting Information Table S4). The measured abiotic factors (precipitation and soil 

surface day- and night-time temperatures; Supporting Information Fig. S5B,C) explained an 

additional 38% of ecotype variation between sites and across seasons.  

Despite identifying environmental factors related to ecotype composition, we were 

unable to link these patterns to the trait measurements. For instance, leaf litter from the 

Grassland and Scrubland sites contained the highest proportion of polymeric carbohydrates 

(cellulose and hemicelluloses; Supporting Information Fig. S5D). However, Subclade IVB, the 

most efficient degrader of cellulose and xylan (Fig. 2), was not the dominant ecotype at these 

sites; instead, Subclade IB/C was nearly twice as abundant as Subclade IVB (Fig. 4A). Further, 

subclades whose trait performance peaked at warmer temperatures in the lab assays (e.g., 

Subclade IA in carbon depolymerization and Subclade VA in growth parameters; Fig. 2) were 

more abundant at the Grassland site rather than the warmer Desert site. Thus, while the 

phenotypic trait measurements strongly differentiated strains into ecotypes, these traits did 

not explain ecotype distribution across the sites. 
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Finally, given the variability in litter chemistry among sites (Supporting Information Fig. 

S4D), we considered whether the genetic potential to utilize a range of carbohydrates might be 

correlated with the distribution of Curtobacterium ecotypes. Specifically, we targeted the 

genomic diversity of glycoside hydrolase (GH) and carbohydrate binding module (CBM) proteins 

that potentially contribute to degradation of various carbon substrates in leaf litter. Overall, the 

composition of GH and CBM genes was correlated with phylogenetic distance between 

Curtobacterium strains (RELATE test; r = 0.43, p < 0.0001) such that more phylogenetically 

similar genomes encoded similar GH-CBM profiles. Further, the genomic potential to degrade 

complex polymeric carbohydrates common in leaf litter (i.e. cellulose, chitin, and xylan) differed 

significantly between subclades (Kruskal-Wallis test, p < 0.0001; Supporting Information Fig. 

S6A). However, the total abundance of polymeric GH/CBM did not clearly predict ecotype 

distribution along the gradient. We predicted that ecotypes with higher numbers of polymeric 

GH-CBMs would be more abundant on leaf litter; however, two of the rarer ecotypes, 

Subclades IA and IVA, contained the highest total number of polymeric GH-CBMs (Supporting 

Information Fig. S6A). Similarly, total GH and CBM composition also varied significantly by 

subclade (PERMANOVA; p < 0.001; Supporting Information Fig. S6B), but ecotypes with highly 

similar GH-CBM compositions, such as Subclades IVA and IVB, differed strikingly in their 

association with different sites (Fig. 4B). Therefore, while the abundance and composition of 

GH-CBMs in Curtobacterium genomes supported our ecotype designations (Supporting 

Information Fig. S6B), variation in these functional genes did not elucidate ecotype distributions 

along the climate gradient. 
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DISCUSSION 

In this study, we applied a trait-based framework (Diaz et al., 1998; Dıaz and Cabido, 

2001; Cadotte et al., 2015) to identify ecological populations, or ecotypes, in a terrestrial 

bacterium and investigated the drivers of their biogeographic distribution. By sampling across a 

climate gradient varying in temperature and precipitation, we identified highly similar genomic 

clusters within Curtobacterium that corresponded to distinct phenotypes denoting the 

existence of bacterial ecotypes. These results contribute to the growing understanding that 

traditional taxonomic assignments (i.e. OTUs) mask bacterial “microdiversity” that contributes 

to ecological differentiation (Jaspers and Overmann, 2004; Larkin and Martiny, 2017). More 

broadly, our study highlights the application of a trait-based approach to microbial systems to 

assess the ecological and evolutionary mechanisms contributing to community assembly 

(McGill, Enquist, et al., 2006; Nemergut et al., 2013; Enquist et al., 2015). 

A growing number of studies demonstrate that the fine-scale genomic structure of 

bacterial diversity reflects diverged populations (Polz et al., 2006; Connor et al., 2010) 

occupying separate ecological niches (Johnson, Zinser, Coe, McNulty, et al., 2006; Hunt et al., 

2008). Indeed, it appears that the total abundance of typically-defined taxa (i.e. OTUs based on 

16S rRNA sequence similarity) may often be comprised of distinct ecological populations that 

vary over a range of environments (Moore et al., 1998; Thompson et al., 2005). This emerging 

pattern has implications for how we interpret biogeographic patterns of bacterial diversity. In 

particular, phenotypic differences among ecotypes can permit the coexistence of fine-scale 

genetic diversity within an environment. In this study, we identified and observed six abundant 

Curtobacterium ecotypes at all sites along our gradient, suggesting fine-scale niche partitioning 
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of environmental resources. In addition, ecotypic diversity may allow a taxon to persist in a 

broader range of environments than would be expected based on the phenotype of a single 

representative (Moore et al., 1998; Partensky et al., 1999). Therefore, the biogeographic 

distribution of a typical OTU or a representative strain may be not be indicative of the range of 

genetic and phenotypic diversity encoded at finer taxonomic levels. 

Whether an isolate is representative of its broader taxon will depend on the particular 

trait of interest (McLaren and Callahan, 2018), as different traits vary in the degree to which 

they are phylogenetically conserved (Martiny et al., 2013). Many traits are conserved across all 

Curtobacterium diversity including those contributing to its dominance as a leaf litter bacterium 

(Chase et al., 2016). For instance, all strains in this study shared the ability to degrade polymeric 

carbohydrates common in leaf litter, cellulose and xylan, and, relative to other genera in the 

Microbacteriaceae family, Curtobacterium has a high genomic potential for carbohydrate 

degradation (as assessed by the total number of GH-CBM genes) (Chase et al., 2016). 

Additionally, the taxon generally appears to prefer relatively dry surface soil conditions (Lennon 

et al., 2012) as the relative abundance of Curtobacterium as a whole tends to increase in drier 

seasons (Chase et al., 2017). In contrast, traits that vary within the genus will contribute to 

ecological differences amongst ecotypes. Such fine scale trait variation may often result in 

quantitative rather that qualitative differences. For example, Curtobacterium ecotypes varied in 

their growth rates at different temperatures. And while all Curtobacterium ecotypes could 

degrade cellulose and xylan, the degree to which they degraded these compounds in the lab 

varied significantly.  
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Although we were able to identify correlations between ecotype composition and 

environmental factors across the sites, it was not clear which traits underlie Curtobacterium 

ecotype distributions as has been resolved for marine bacteria (Johnson, Zinser, Coe, McNulty, 

et al., 2006; Martiny et al., 2009). There are several possible reasons for this disconnect. One 

possibility is that we did not measure the correct traits. For example, we hypothesized that the 

ability to form biofilms might be important because biofilms can protect bacteria from 

desiccation and fluctuations in water potential (Hartel and Alexander, 1986; Roberson and 

Firestone, 1992) and are correlated with soil moisture adaptation (Lennon et al., 2012). Thus, 

we expected biofilm formation to be prevalent across all Curtobacterium strains, especially with 

higher production in strains abundant at drier sites. However, biofilm formation was highly 

variable among strains, so much so that subclade differences explained little observed variation 

and there was no effect from the site of isolation. Of course, biofilm formation is just one trait 

that might contribute to moisture adaptation (Potts, 1994) and other traits related to moisture 

preference might be more predictive for assessing fine-scale niche partitioning. We also did not 

measure a variety of traits that known to be important to soil bacteria including nutrient uptake 

abilities and pH preferences (Fierer and Jackson, 2006; Leff et al., 2015). Environmental 

constraints clearly contribute to the distribution of soil bacterial taxon, however, the traits 

delineating these biogeographic patterns requires further investigation. 

A second reason that we may have missed ecotype-environment correlations is that we 

are not measuring the environment at the correct spatiotemporal scale. Soils are highly 

heterogeneous and differences in soil microhabitats are thought to contribute to the 

maintenance of soil diversity (Ranjard and Richaume, 2001; Nannipieri et al., 2003). 
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Consequently, soil ecotypes are likely to respond to environmental variation at very small 

spatial scales. The existence of multiple Curtobacterium ecotypes co-occurring within a given 

site suggest that fine-scale environmental variation is contributing to niche partitioning in leaf 

litter. Indeed, even in the marine water column, which is thought to be more homogeneous 

than soil, strains of Vibrio splendidus partition resources to differentiate between particle-

associated or free-living habitats (Hunt et al., 2008). On a similar spatial scale, variation in 

hemicellulose availability or temperature within a decomposing leaf may explain the 

coexistence of multiple Curtobacterium ecotypes. Thus, by sampling across a regional climate 

gradient, we may have masked much of the within-site environmental variation that 

contributes to soil ecotype distributions. A further possibility is that Curtobacterium diversity is 

not at equilibrium in the sampled communities. Maladapted strains may be present and even 

abundant if environmental selection is weak and/or dispersal is high (Lenormand, 2002). Much 

more work is needed to understand the spatiotemporal scales of these mechanisms for soil 

bacterial diversity.  

In sum, our study presents evidence that the genomic diversity within an abundant 

terrestrial bacterial taxon can be classified into ecotypes that vary in their biogeographic 

distribution across a climate gradient. Especially for terrestrial soil communities, we lack an 

understanding of the ecological and evolutionary processes governing the distribution and 

functioning of bacterial diversity. The results presented here are consistent with the growing 

understanding that fine-scale genomic diversity, and the traits encoded by this variation, is key 

to microbial biogeography. However, identifying and measuring relevant traits remains a 

distinct challenge for the application of trait-based frameworks to microbial communities. 
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EXPERIMENTAL PROCEDURES 

Field Sites 

We characterized the microbial community on leaf litter by establishing four replicate 

plots (1 m2) at six sites across a climate gradient in southern California from October 2015 to 

April 2017 (Glassman et al. In prep.). The five sites (from lowest to highest elevation) include 

the Sonoran desert (33.652 N, 116.372 W), pinyon-juniper scrubland (33.605 N, 116.455 W), 

coastal grassland (33.737 N, 117.695 W), pine-oak forest (33.808 N, 116.772 W), and subalpine 

forest (33.824 N, 116.755 W) as previously described in (Baker and Allison, 2017). In addition, 

we sampled leaf litter near the highly-saline Salton Sea (33.518 N, 115.938 W) to extend the 

climate gradient further (Supporting Information Table S1). Sites are hereafter referred to as 

Desert, Scrubland, Grassland, Pine-Oak, Subalpine, and Salton Sea, respectively. All sites 

experience Mediterranean climate patterns with a hot, dry summer and a cool, wet winter. The 

sites range in mean annual air temperature (MAT) from 10.3-24.6°C and precipitation (MAP) 

from 80-400mm. To characterize climate at the sites during the experiment, we collated 

precipitation data from nearby weather stations and collected surface soil temperature at 90 

min intervals using two iButton temperature sensors (Maxim Integrated) from April 4th, 2016 to 

April 20th, 2017 at five of the sites (excluding Salton Sea) (Glassman et al. In prep.). In addition 

to changes in temperature and precipitation, the sites differed greatly in the plant communities 

present and, therefore, the litter chemistry. Leaf litter chemistry was determined from samples 

in both the dry (June) and wet (December) seasons in 2015 using near-IR spectroscopy, as 

previously described (Baker and Allison, 2017). 

Isolation and Genomic Characterization of Curtobacterium  
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To isolate Curtobacterium strains, we collected fresh leaf litter from the perimeter of 

the four plots at each site on June 14th, 2016 to create a homogenized batch of litter from each 

site. We ground the litter in a sterile coffee grinder and vortexed 0.2 g of homogenized litter in 

5 mL of 0.9% saline (NaCl) solution for 5 min. Samples were serially diluted and plated on 

grassland leaf litter leachate media (Chase et al., 2016). Colonies were visually screened for 

phenotypic characteristics ascribed to Curtobacterium (Evtushenko and Takeuchi, 2006), 

streaked on Luria Broth (LB) media agar plates, transferred three times, and stored in glycerol 

solution at -80°C. We identified each cultured isolate by PCR amplification and Sanger 

sequencing of a 1500 bp region of the 16S rRNA region. For each isolate, we used DNA 

extracted from a single colony that we added to a PCR cocktail containing 0.3 µL HotMaster Taq 

polymerase (5 units/µL), 15 µL 2x Premix F (Epicentre; Madison, WI), and 0.2 µL of 50 µM of 

each primer, pA (5ʹ-AGAGTTTGATCCTGGCTCAG-3ʹ) and pH’ (5ʹ-AAGGAGGTGATCCAGCCGCA-3ʹ), 

under identical PCR conditions (Chase et al., 2016). The 16S rRNA sequence of each isolate was 

used to identify taxonomy using the Ribosomal Database Project (RDP) database (Wang et al., 

2007).  

Identified Curtobacterium isolates were selected for whole-genome sequencing and 

grown on LB plates for 48-72 hrs. A single colony from each plate was transferred to 10 mL 

liquid LB media to grow for an additional 48 hrs. Genomic DNA extraction was performed using 

the Wizard Genomic DNA Purification Kit (Promega; Madison, WI) with the additional step of 

adding lysozyme for Gram-positive bacteria. Extracted DNA was quantified on the Qubit 

(BioTek; Winooski, VT), quality assessed on the Nanodrop (Thermo Fisher; Waltham, MA), and 

diluted to 0.5 ng/µL for library preparation. Next, we followed the protocol for the Nextera XT 
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Library Preparation kit (Illumina Inc., San Diego, CA, USA). Samples were pooled in equimolar 

portions and assessed using the High Sensitivity Bioanalyzer. The pooled library was sequenced 

using an Illumina HiSeq4000 instrument (Illumina Inc., San Diego, CA, USA) with 150 bp paired-

end reads. Demultiplexed sequence data were assembled using the SPAdes genome assembler 

(Bankevich et al., 2012) with a “careful” iterative k-step ranging from k=31 to 111. We assessed 

the quality of the assemblies by creating taxon-annotated-GC-coverage (TAGC) plots. 

Specifically, we calculated coverage for each contig by mapping back the raw sequence data to 

assembled contigs using Bowtie2 (Langmead and Salzberg, 2012) and taxonomic assignments 

were assigned using MegaBLAST against the NCBI nucleotide database (Federhen, 2012) with 

an E value of 1 x 10-5. Based on the results from the TAGC-plots, we discarded all contigs with 

coverage <30, length <500 bp, and GC% <55%. In total, we identified 56 high-quality 

Curtobacterium genomes to be included in this study, which are deposited at GenBank under 

BioProject PRJNA391502 with biosamples SAMN09009025 – SAMN09009080. 

We created a Curtobacterium phylogeny using a multi-locus sequence alignment (MLSA) 

of 21 single-copy marker genes (Wu et al., 2013). For comparison of the climate gradient 

genomes (N=56), we downloaded all publicly available Curtobacterium genomes (N=30) and a 

Frigoribacterium genome (to serve as an outgroup), which included 14 previously identified 

Curtobacterium isolates from our previous work in leaf litter (Chase et al., 2016, 2017). Each of 

the 87 genomes were translated using Prodigal (Hyatt et al., 2010) and screened for the 

presence of the 21 marker genes using HMMER v3.1b2 (Finn et al., 2011) with an E value of 1 x 

10-10. Each marker gene was independently aligned using ClustalO v1.2.0 (Sievers et al., 2011) 

to create a concatenated protein alignment consisting of 3947 amino acids for phylogenetic 
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analysis using RAxML v8.0.0 (Stamatakis, 2014) under the PROTGAMMAWAG model for 100 

replicates. We designated the major branching points in the resulting phylogeny into five 

distinct clades. To identify finer taxonomic groupings, we calculated pairwise average amino 

acid identity (AAI) and nucleotide identity (ANI) across all 87 genomes using the enveomics 

package (Rodriguez-R and Konstantinidis, 2016). Genomes that clustered at ≥90% AAI at the 

whole genome level, the suggested boundaries for bacterial species groupings (Richter and 

Rosselló-Móra, 2009), were further designated into subclades. Subclade designations were also 

supported by the phylogeny. 

To cluster genomes into operational taxonomic units (OTUs), we extracted 16S rRNA 

gene sequences from the full genomes using Barrnap 

(http://www.vicbioinformatics.com/software.barrnap.shtml) and conducted two analyses 

recommended for optimal assessment of taxnomomic units (Edgar, 2018). First, we extracted 

the hypervariable V4/V5 region of the 16S rRNA gene and defined OTUs at 100% gene similarity 

with UCLUST (Edgar, 2010), also termed zero-radius OTUs (zOTUs) or exact sequence variants 

(ESVs). To include effects of alignment quality (Schloss, 2010), we aligned the full-length 16S 

rRNA gene region with SINA (Pruesse et al., 2012) then clustered at 99% gene similarity with 

mother (Schloss et al., 2009). We conducted a phylogenetic analysis of the full-length, aligned 

16S rRNA gene region using RAxML v8.0.0 (Stamatakis, 2014) under the GTRGAMMA model for 

100 replicates. 

We characterized the functional potential to degrade carbohydrates (glycoside 

hydrolase (GH) and carbohydrate binding module (CBM) proteins) within all Curtobacterium 

genomes. The predicted open reading frames generated from Prodigal were searched using 
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HMMER against the Pfam-A v30.0 database (Finn et al., 2016). GH and CBM genes and their 

targeted substrate were identified according to the Pfam identifiers as stated in (Chase et al., 

2016). Total GH and CBM gene composition profiles for each genome were normalized and 

used to construct a Euclidean distance matrix for producing an ordination plot.  

Characterization of Curtobacterium Traits 

In the laboratory, we characterized the traits of a subset of the Curtobacterium isolates 

spanning across the climate gradient and phylogenetic clades. Specifically, we sought to 

measure four functional traits (growth, biofilm formation, and depolymerization of cellulose 

and xylan) across a temperature range (15-42°C) experienced along the climate gradient. We 

selected these traits because we speculated that they would influence competitive dynamics in 

the leaf litter community. The ability to degrade polymeric carbohydrates and, specifically, an 

increased degradation efficiency should provide a competitive advantage as the primary carbon 

supply in leaf litter is in the form of celluloses and hemicelluloses (e.g. xylan) (Baker and Allison, 

2017). Our sites experience long periods without precipitation and, therefore, the ability to 

form biofilms may prevent desiccation from water stress (Lennon et al., 2012). Increased 

growth, both in response (lag phase) and rate (µmax), could allow for competitive exclusion of 

other organisms. Traits were assayed along the temperature gradient to simulate abiotic 

conditions from the climate gradient. 

For all assays, a subset of Curtobacterium strains and one Escherichia coli strain (as a 

control) were grown from -80°C freezer stocks for 48 hrs in liquid LB media at 22°C. Isolates 

were pelleted by spinning down at 4500 RPM for 10 min, washed three times with 0.9% saline 

solution to remove residual media, and resuspended in 10 mL of M63 minimal media 
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(supplemented with 0.1% peptone and 1 µg/mL thiamine) with 0.5% (wt/vol) dextrose as the 

sole carbon source. After 24 hrs, isolates were washed again under identical conditions and 

diluted to an optical density of 0.1 OD600 to ensure equal cell density across all isolates. 

For the growth rate and biofilm assays, we inoculated 10 µL of diluted isolates (N=29 

Curtobacterium isolates) into 96-well plates containing 190 µL of M63 media with 0.5% (wt/vol) 

dextrose. Each strain was grown in triplicate on each plate for each assay. The inoculated plates 

for the growth rate assays were shaken at 200 RPM at four temperatures (15, 25, 28, and 37°C) 

with OD600 being measured every 1-2 hrs for the first 48 hrs and every 4 hrs thereafter. 

Sampling was terminated if any of the six negative controls in any plate increased in OD600 

measurements over the course of the experiment. To estimate growth parameters (max 

absorbance (Amax), max growth rate (µmax), and lag phase), we fit OD600 measurements to either 

a logistic, gompertz, or a locally weighted scatterplot (LOESS) regression model using the 

“growthcurve” package in the R software environment (Pinheiro et al., 2011). For biofilm 

assays, inoculated plates were sealed and placed in incubators at six temperatures (15, 22, 25, 

28, 34, and 37°C) without shaking. After 4 days, we removed residual cells and media by 

submerging the microplates in deionized water. We then added 125 µL of 0.1% crystal violet 

solution to each well and incubated the plates for 15 min at room temperature. Plates were re-

submerged in water and vigorously shaken to remove residual liquid (repeated 4x). We dried 

each plate for 2 hrs and added 125 µL of 30% acetic acid to solubilize the crystal violet. Plates 

were incubated for 15 min and absorbance was measured at OD550 for biofilm production 

(O’Toole, 2011). 
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We selected a subset of Curtobacterium isolates (N=18) from various sites along the 

climate gradient to assess their ability to depolymerize cellulose and xylan as previously 

described (Chase et al., 2017). Briefly, we inoculated 10 µL of washed 0.1 OD600 cultures, in 

triplicate, onto solid M63 media with 0.5% (wt/vol) of either carboxymethyl cellulose (CMC) 

(catalog no. 150560; MP Biomedicals) or xylan (catalog no. X0502; Sigma) and placed inoculated 

plates in incubators at seven temperatures (15, 22, 25, 28, 34, 37, and 42°C). We classified the 

zones of depolymerization after 4 days using ImageJ (https://imagej.nih.gov/ij/) by subtracting 

the original colony area from the total area of carbohydrate degradation. An E. coli strain was 

included as a negative control and did not depolymerize either substrate at any temperature. 

No strains could depolymerize either substrate at 42°C and, therefore, were removed from 

statistical analyses. 

Metagenomic Sequencing and Analysis 

Metagenomic Samples 

We sampled leaf litter from the 4 replicate plots at each site every 6 months until April 

20th, 2017 (6 sites x 4 time points x 4 replicate plots). We extracted DNA from 0.05 g of ground 

leaf litter using the FastDNA SPIN Kit for Soil (Mo Bio; Carlsbad, CA) and cleaned the DNA with 

the Genomic DNA Clean and Concentrator kit (Zymo Research; Irvine, CA). Cleaned samples 

were diluted to 0.5 ng/µL and 1 ng of DNA was used for input for the Nextera XT library Prep kit 

for sequencing on the Illumina HiSeq 4000 instrument with 150 bp paired end reads. Due to low 

quality sequence data, we excluded 5 libraries and, in total, analyzed 91 metagenomic libraries. 

The raw data is deposited on the metagenomics analysis server (MG-RAST) (Meyer et al., 2008) 

under the project ID mgp17355. 
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Bacterial Community Analysis 

To characterize the bacterial litter community, we built upon our previous pipeline 

(Chase et al., 2017) using phylogenetic inference to characterize conserved single-copy marker 

genes (Wu et al., 2013) within the metagenomic data. To compensate for the lack of genomic 

representation of soil microbes, we downloaded 7,392 publicly available genomes that are 

designated as “representative” genomes by the PATRIC database (Wattam et al., 2014) and 

included representative Curtobacterium genomes from the climate gradient (see above). We 

translated all genomes using Prodigal (Hyatt et al., 2010) and searched for the presence of 21 

single-copy marker genes using HMMER v3.1b2 (Finn et al., 2011) with an E value of 1 x 10-10. 

Each protein was individually aligned with ClustalO v.1.2.0 (Sievers et al., 2011) and used to 

create a 12,271 amino acid concatenated alignment for phylogenetic analysis using FastTree2 

(Price et al., 2010). The reference tree was manually curated for the misplacement of genomes 

based on assigned nomenclature, and a genome was removed if it did not group within its 

assigned family designation. This highly curated tree served as a reference tree to guide 

construction of each individual marker gene tree using RAxML v.8.0.0 (Stamatakis, 2014) under 

the PROTGAMMAWAG model for 100 replicates. The remaining 5,433 genomes were used to 

construct BLASTp (Altschul et al., 1997) databases, HMMER profiles, and pplacer (Matsen et al., 

2010) reference packages (all databases available at https://github.com/alex-b-

chase/elevation-community). 

Metagenomic libraries were quality trimmed using BBMap (Bushnell, 2016) and filtered 

to remove eukaryotic DNA. Specifically, we mapped all reads to a reference genome using BWA 

(Li and Durbin, 2009) from both an abundant grass (Lolium perenne; Accession: 
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MEHO01000000) and fungus (Pyrenophora teres; Accession: NZ_AEEY00000000) found at the 

grassland site. All filtered reads were then merged using BBMap (Bushnell, 2016) to form 

paired-end reads. If a read could not be merged with its counterpart, we included only the 

forward read in further analyses. Reads were then translated using Prodigal (Hyatt et al., 2010) 

with the metagenomic flag and searched against the reference marker gene databases, as 

previously described (Chase et al., 2017). Briefly, we imposed a primary filter against the 

reference BLASTp database with an E value of 1 x 10-5 and a secondary filter against the 

reference HMMER profiles with an E value ranging from 1 x 10-10 to 1 x 10-25 depending on the 

individual marker gene. Passed reads were aligned using ClustalO v.1.2.0 (Sievers et al., 2011) 

to the corresponding reference package and placed onto the reference phylogenies using 

pplacer v.1.1.alpha17 (Matsen et al., 2010). Relative abundances were calculated by generating 

single branch abundance matrices and normalizing to the total number of marker genes 

present in each library. 

Curtobacterium Ecotype Abundances 

The above analyses provided an estimate of the total abundance of Curtobacterium and 

other taxa in the metagenomic libraries. However, to investigate the distribution of diversity 

within Curtobacterium, we first characterized Curtobacterium orthologous protein groups 

(orthologs) from the Curtobacterium genomes isolated from leaf litter. Publicly available 

Frigoribacterium genomes (N=5) were also included to serve as outgroups. Orthologs were 

identified using Roary (Page et al., 2015) with coding regions predicted by Prokka (Seemann, 

2014). Due to the diversity of these genomes, we decreased the percentage sequence identity 

to 50% to encompass all possible orthologs. The resulting 1075 orthologs were used to create a 
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core-genome tree, using RAxML v8.0.0 (Stamatakis, 2014) under the PROTGAMMAWAG model 

for 100 replicates, that was nearly identical to the reference tree derived from the genomic 

MLSA analysis. We built individual ortholog trees, using identical model parameters, with the 

core-genome tree as the guiding reference tree, to generate a Curtobacterium reference 

database (reference database can be found here: https://github.com/alex-b-chase/elevation-

curto). We then removed orthologs that lacked a robust phylogenetic signal yielding a final set 

of 830 orthologs. We parsed the filtered metagenomic reads for the presence of each ortholog 

with a BLASTp E value of 1 x 10-20 and a secondary filter against the reference HMMER profiles 

with an E value of 1 x 10-40. Each filtered metagenomic read was then placed onto the 

corresponding ortholog tree with pplacer v.1.1.alpha17 (Matsen et al., 2010) and classified to 

each clade and subclade. Clade and subclade relative abundances were normalized by the total 

abundance of Curtobacterium calculated from the community analyses above. For the 

remainder of the subclade compositional analyses, subclades were treated as the proportion to 

all Curtobacterium, not the entire community, to limit compositional biases. 

Statistical Analyses 

Ecotype Identification – Linking Traits to Phylogeny 

To tease apart the relative importance of isolation source (where the Curtobacterium 

strain was isolated from along the climate gradient) and phylogenetic relatedness (subclade 

designation) for each of our physiological assays, we implemented a statistical model with site 

of isolation and subclade designation as dependent variables with temperature as a covariate. 

To start, we examined various regression models to test the best model fit using Bayesian 

information criterion (BIC) to confirm that temperature covaried with the other variables across 
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all assays. For each assay, we then determined whether our regression models should be either 

linear or polynomial by comparing both BIC and residual values for each model. We constructed 

a linear regression model for biofilm formation and polynomial regression models for carbon 

degradation and growth rate. Finally, we used an analysis of covariance (ANCOVA) to test the 

effects of our main fixed factors, site and subclade, while controlling for the effects of the 

covariate, temperature. Within each ANCOVA design, we implemented a backward selection 

process (Mac Nally, 2002) to eliminate spurious relationships (Harrell, 2015) for each assay. 

To further examine the physiological differences between Curtobacterium subclades, we 

constructed a nonmetric multidimensional scales (NMDS) ordination plot of each strain using 

the physiological measurements. Specifically, we included biofilm formation (at 6 

temperatures), cellulose degradation (6 temps.), xylan degradation (6 temps.), Amax (4 temps.), 

µmax (4 temps.), and lag phase (4 temps.). All variables were normalized by subtracting the 

mean from each measurement and dividing by the standard deviation. Before performing the 

NMDS analysis, we generated Spearman’s correlation coefficients (ρ2) for each physiological 

assay and clustered variables into groups when ρ2 > 0.6. We kept one representative trait for 

each Spearman-defined cluster and generated a Euclidean similarity matrix across strains. Next, 

we fitted each physiological variable onto the ordination plot and calculated the significance of 

each variable over 9,999 permutations. Finally, we removed nonsignificant variables to reduce 

spurious relationships (Harrell, 2015) and reran all analyses. We report only the ordination plot 

generated from the remaining significant variables for each strain. The significance of strain 

groupings was assessed using an analysis of similarities (ANOSIM) for subclade or clade 
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designation and site of isolation for 9,999 permutations. All analyses were performed in the R 

software environment. 

Ecotype Distributions Along the Climate Gradient 

To test the effects of site on the distribution of Curtobacterium subclade composition, 

we used a permutational multivariate analysis of variance (PERMANOVA) (Clarke, 1993). The 

statistical model included the site along the climate gradient and season (wet or dry) as fixed 

effects. We generated a Bray-Curtis similarity matrix to run a type III partial sum of squares for 

9,999 permutations of residuals under a reduced PERMANOVA model. The Bray-Curtis matrix 

was also used to generate principal coordinates analysis (PCO) ordination plot. To assess the 

effects of the abiotic environment (surface soil day- and night-time temperature and total 

precipitation) and leaf litter chemistry (i.e. cellulose and hemicellulose) on subclade 

composition, we applied a distance based linear model (distLM). Again, the Bray-Curtis matrix 

for subclade composition was analyzed using a step-wise forward procedure with adjusted R2 as 

the model selection criterion. All multivariate statistical analyses were conducted using 

PRIMER6 with the PERMANOVA+ function (Primer-E Ltd., Ivybridge, UK). 
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Figures 
 

 
 
Figure 4.1 Phylogeny of Curtobacterium clades and subclades constructed from a multilocus 
phylogenetic analysis of 21 single-copy marker genes. Subclade designations are assigned if all 
genomes within subclade share ≥ 90% average amino acid identity. Strains with assigned 
nomenclature beginning with “Curtobacterium” are publicly available genomes, while the other 
labels designate the site of isolation along the climate gradient. 
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Figure 4.2 Physiological response curves plotting functional traits (carbon depolymerization, 
biofilm formation, and maximum growth rate, µmax) versus temperature. The colors distinguish 
clade or subclade designation. The symbols represent the isolation site of each strain. 
Smoothed averages (lines) were calculated from locally weighted smoothing (LOESS) using 
either a polynomial (carbon and µmax) or linear regression (biofilm). 
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Figure 4.3 Non-metric multidimensional scaling (NMDS) plot (Euclidean distance) depicting 
physiological variables correlated with variation in Curtobacterium isolates. Variables assigned 
as “carbon” are collapsed to include both cellulose and xylan degradation. Each point 
represents an individual strain colored by subclade. Insert is a cladogram of Curtobacterium 
clades and subclades. 
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Figure 4.4 The composition of Curtobacterium ecotypes along the climate gradient. (A) Log10 of 
the mean relative abundances of Curtobacterium and its subclades (± 1 SD) with respect to the 
entire bacterial community by site. (B) Principal coordinates (PCO) ordination plot depicting the 
ecotype composition in each metagenomic sample, colored by site. Spearman correlation 
vectors illustrate the contribution of each subclade to compositional differences along the two 
PCO axes.  
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Figure 4.5 Results of a distance-based redundancy analysis (dbRDA) showing ecotype 
composition of a sample by site (symbols) and season (colors). Ecotype compositions were 
averaged across seasons with abiotic environmental variables averaged over the entire month 
of sampling. Vectors represent the direction and strength of correlations with environmental 
variables. 
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CHAPTER 5 
 

Gene flow delineates population structure in a terrestrial bacterium 
 
 

INTRODUCTION 

Evolutionary biologists study the genetic variation within and among populations to 

investigate the processes contributing to diversification. In eukaryotes, populations are typically 

defined as groups of interbreeding individuals within a species residing in the same geographic 

area (Mayr, 2001). Geographically-distinct populations are also often genetically distinct 

because of reduced gene flow, or the exchange of genetic variation, between populations. In 

microorganisms, specifically free-living bacteria and archaea, the equivalent of the biological 

species concept does not exist, which has created several barriers to the study of the fine-scale 

genetic structure within and between microbial populations (Shapiro et al., 2016; Chase and 

Martiny, 2018).  

One obstacle is that the genetic resolution delineating a microbial population is unclear. 

In eukaryotes, populations are, by definition, genetic units belonging to the same species. Of 

course, the definition of a prokaryotic species has its own unresolved challenges (Ward et al., 

2008). Nonetheless, there is evidence for geographically-distinct, genetically-diverged groups of 

bacteria and archaea. For instance, several studies have shown that the genetic similarity of 

closely-related microbial individuals are negatively correlated with geographic distance across 

continental and global scales (Whitaker et al., 2003; Johnson, Zinser, Coe, Mcnulty, et al., 2006; 

Andam et al., 2016; Choudoir et al., 2016). This pattern is consistent with isolation-by-distance, 

whereby dispersal limitation contributes to reproductive isolation over geographic distances 

(Wright, 1943). Further, in some cases, these geographically-localized genetic clades appear to 
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be adapted to local environmental conditions, as individuals within these clades differ in their 

temperature (Choudoir and Buckley, 2018) or habitat preferences (VanInsberghe et al., 2015). 

However, the degree of divergence between genetic clades in such studies is quite high (<90% 

whole-genome ANI), indicating they may not account for intra-species relationships (Jain et al., 

2017). Therefore, these genetic units would seem to be much broader than the idea of a 

eukaryotic population, defined as a group of individuals with the potential for ecological 

interaction and exchange of genetic material (Cordero and Polz, 2014). 

A second, related problem to studying microbial populations is assessing the genetic 

diversity of many microbial individuals of the same species, however defined. Indeed, 

population genetics in eukaryotes typically characterize the genetic diversity among many 

individuals from a variety of geographic locations. This sampling design for microbes would 

require reliable isolation of closely-related strains (but see (Kashtan et al., 2014)), which can be 

difficult in highly diverse microbial communities (e.g. soil). Studies that do sample many 

microbial individuals from the same geographic location have found several co-occurring, but 

distinct genetic clades (Cohan, 2001; Whitaker et al., 2005; Hunt et al., 2008; Chase et al., 

2017). For instance, the thermophilic archaeon, Sulfolobus, demonstrated lower levels of 

recombination between sympatric clades within a hotspring (Cadillo-Quiroz et al., 2012). 

Likewise, the marine bacterium, Vibrio, showed gradual separation of gene pools with 

increased habitat specificity between free-living and particle-associated microenvironments 

(Shapiro et al., 2012; Yawata et al., 2014). Such evidence suggests that the genetic structure of 

microbial populations is not only a function of geographic distance, but that ecological 

differentiation at microscales within a location may also be important (Polz et al., 2013). Thus, 
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to investigate recent diversification among microorganisms, we might need to abandon the 

idea of defining populations a priori based on geography and, instead, focus first on the 

emerging genetic structure among closely-related individuals. 

This possibility highlights a third barrier to investigating microbial populations: 

quantifying the exchange of genetic variation (i.e. gene flow). For prokaryotes, the exchange of 

genetic material is mediated through genetic recombination, whether homologous 

recombination or the transfer of entirely new genes. However, the asexual nature of 

prokaryotes makes it a challenge to quantify recombination, particularly among closely-related 

individuals. For instance, the more closely-related two genomes are, the harder it is to 

distinguish between differences caused by vertical inheritance and recombination. As such, 

many microbial studies infer gene flow from genetic divergence of sampled isolates, not 

necessarily considering whether isolates are from the same environment and/or represent 

interacting genotypes (Cordero and Polz, 2014). One approach to identify emerging genetic 

structure delineating populations is to examine gene-exchange networks between co-occurring 

strains to identify key ecological associations and barriers to recombination (Arevalo et al., 

2018). 

To try and overcome the aforementioned obstacles, we focused on the abundant 

surface soil taxon, Curtobacterium (Chase et al., 2016). Previously, we demonstrated that 

Curtobacterium encompasses multiple ecotypes, or fine-scale genetic clades that correspond to 

ecologically relevant phenotypes (Chase et al., 2018). Thus, here we concentrate on the genetic 

diversity within a single ecotype, a unit that might be considered somewhat parallel to a species 

(Cohan, 2001). Curtobacterium is also relatively easy to culture from the leaf litter layer of soil; 
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therefore, we could isolate and sequence many individuals from a variety of geographic 

locations. Finally, we used three separate approaches to estimate the degree of genetic 

exchange among individuals: (1) a traditional admixture analysis to identify patterns of genetic 

similarity, (2) a network analysis to estimate the degree to which homologous recombination 

contributed to genetic structure, and (3) an analysis of the flexible genome to identify unique 

genes shared among individuals. We hypothesized that we could identify distinct populations 

(groups of individuals recombining more with one another than among groups) within the 

ecotype. Further, we hypothesized that sympatric populations may exist within geographic 

locations, while also varying in their geographic distribution. Such a pattern would indicate that 

the genetic structure within this bacterium is due to both adaptation among localized 

microenvironments as well as dispersal limitation between geographic locations.  

RESULTS 

Phylogenetic and Admixture Analysis 

We identified 28 strains from the Curtobacterium ecotype, subclade IB/C (Chase et al., 

2018). These strains were previously isolated from leaf litter, the top layer of soil, at five 

geographic locations, including four from a regional climate gradient in southern California and 

from Boston, MA (Supplementary Table 1). All analyzed strains from the climate gradient have 

identical full-length 16S rRNA regions and share high sequence identity with ≥94.5% genome 

average nucleotide identity and ≥90% genome average amino acid identity, congruent with 

sequence similarity thresholds for defining sequence-discrete populations (Rodriguez-R and 

Konstantinidis, 2014). We reconstructed the phylogenetic history among all strains using the 

core genome (Fig. 1), revealing finer-scale genetic structure within the ecotype.  
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We then inferred population structure by computing ancestry coefficients for each 

strain (Fig. 1). The proportion of an individual genome originating from multiple ancestry gene 

pools (K=4) was congruent with the phylogenetic analysis. As expected, an outgroup strain 

originating from Boston, MA formed its own population (Population 1) and exhibited little 

evidence for recent mixing with the other strains (Fig. 1). After removing ‘admixed’ individuals 

(q-value < 0.75), we identified three potential populations across the climate gradient, 

Populations 2 (N = 4 individuals), 3 (N = 10), and 4 (N = 6). One population appeared to be 

restricted to one site (i.e. Population 3 was only found in the grassland location); however, the 

other two populations included strains from multiple sites along the climate gradient. For 

example, Population 4 contained strains from the grassland, scrubland, and Salton Sea litter 

communities. 

Recombination Networks 

While the admixture analysis identified overall patterns of genetic structure, it assumes 

that populations diverge and differentiate (via genetic drift) followed by a mixture phase. 

Therefore, we estimated the effect of recombination in structuring the core genome phylogeny 

using ClonalFrameML. The relative effect of recombination was similar to that of mutations 

(ratio of 0.94), signifying that the strains were not clonal, and that recombination accounted for 

as much nucleotide diversity as point mutations. Consequently, we next estimated the degree 

of homologous recombination among the individual genomes (defined as ³99% nucleotide 

similarity for ³500 bp) to create a gene-exchange network. The total pairwise recombination 

events between a pair of strains revealed a structured network of genome clusters that were 

congruent with the populations identified by the admixture analysis (Fig. 2). As we might 
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expect, total recombination events within populations were more frequent than between 

populations (Welsh two-sample t-test, p < 0.0001). The analysis also suggested even finer 

population subclusters (Supplementary Figure S1A vs. S1B); for example, it divided population 4 

into two distinct subclusters, separating two strains (MMLR14002/014) that were isolated from 

the grassland site five years before the rest of the strains (Supplementary Figure S1B). 

Estimations of homologous recombination can often be overestimated as the ability to 

distinguish between homologous recombination and vertically transmitted regions of the 

genome is reduced when genomic signatures are similar (Ravenhall et al., 2015). To address this 

limitation, we employed a novel method that attempts to detect only recent recombination 

events between pairs of strains. Using this approach, we were able to mirror the results from 

the previous approach with the one exception of splitting Population 4 into finer subclusters 

(Supplementary Figure S1C). Further, this approach reduced all strains belonging to ‘admixed’ 

population groups (Admixed A-D) to individual subcluster nodes, suggesting that no recent 

recombination events connect ‘admixed’ individuals to the main populations observed along 

the climate gradient. 

Both methods to characterize recombination networks displayed similar results and 

were also congruent with the admixture analysis. In addition, the frequency of recombination 

between strains was strongly related to phylogenetic distance (Mantel Test, p < 0.01), 

especially when we considered whether two strains were from the same population assignment 

(Fig. 3A). At the same time, total recombination was negatively correlated with geographic 

distance between strains (Fig. 3B; RELATE Test, r = 0.58, p = 0.01). Specifically, the average 

pairwise distance between every sampled member of the same population was constrained to 
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19.2 ± 49.4 km (Supplemental Figure S2A); while the population subclusters, were constrained 

to 29.5 ± 57.4 km (Supplemental Figure S2B). By combining the results from the admixture 

analysis with our gene-exchange network, we identified populations and finer population 

subclusters that were geographically constrained. 

Composition of the Flexible Genome 

Based on the recombination networks, we expected individuals within population 

assignments to exchange more genes with individuals of the same population than between. 

Therefore, we looked at flexible gene (genes not present in all strains) content similarity across 

all strains. Indeed, flexible gene content across strains generally recapitulated our population 

and subcluster designations (Fig. 4) such that strains within a population (analysis of similarities 

(ANOSIM); R = 0.83, p = 0.001) and within subclusters (ANOSIM; R = 0.79, p = 0.001) shared 

more similar flexible genes than expected by chance. Together, all three analyses (admixture, 

recombination, flexible gene content) indicate that the distinct genetic lineages observed 

across the climate gradient represent discrete microbial populations. We also observed a 

significant nonlinear relationship between flexible gene content with recombination 

(Supplementary Figure S3A) and phylogenetic distance (Supplementary Figure S3B), such that 

individuals within the same population consistently clustered together (Mantel Test, both p < 

0.01). 

Genomic Signatures of Ecological Association 

Population Statistics of the Core Genome 

After identifying distinct populations, we characterized the genetic variation within 

populations. Specifically, we compared genome-wide population genetic summary statistics for 
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all population assignments excluding ‘admixed’ individuals. Populations 3 and 4 had relatively 

high nucleotide diversity across the core genome (p = 10.6 ± 8.0 and 11.3 ± 9.1, respectively) 

indicating large, intermixing populations. Conversely, Population 2 had relatively low nucleotide 

diversity (p = 4.1 ± 4.7), suggesting a small, isolated population (Supplementary Figure S4A). 

However, when we evaluate other population metrics (i.e. Tajima’s D) we observed different 

patterns. For example, Population 3 demonstrated evidence for recent population expansion 

(Tajima’s D = -0.16); whereas, Population 4 appears to have undergone population contraction 

(Tajima’s D = +0.18; Supplementary Figure S4B). These biological interpretations are further 

supported by the recombination networks, particularly if we only consider recent 

recombination (Supplementary Figure S1C). For example, the recent population expansion 

suggests a proliferation of rare variants, which is evidenced by the breakdown of Population 3 

into four distinct population subclusters. On the other hand, Population 4 contained two strains 

isolated from five years prior (MMLR14002/014), enabling detection of the “ancestral” 

population shifting to higher frequency alleles and undergoing balancing selection. 

Population Differentiation of the Flexible Genome 

The flexible genome can provide insights into ecological genetics where traits related to 

fitness could proliferate through all members of a population via recombination. Therefore, we 

searched for flexible genes that were only present in all individuals within a population. To link 

flexible gene content to recombination, we searched for population-specific genes that were 

also localized on the genome. We concentrated on population subclusters as these assignments 

provided the best evidence for recombination delineating independent gene flow units 

(Supplementary Figure S1C). We observed two population subclusters, Subclusters 2 and 4.2, 
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with nearly identical genetic architectures shared among every member of the population in 

regions containing population-specific genes (Fig. 5). These regions did not contain phage or 

integrative and conjugative elements (ICEs) but did contain other mobile elements such as 

insertion sequences and clustered regularly interspaced short palindromic repeats (CRISPRs). 

Further, these genomic regions were littered with pseudogenic exons, suggesting interruption 

of functional proteins due to recombining genomic segments. 

These population-specific genes were consistently flanked by highly conserved genes 

(present in >85% of all Curtobacterium strains) in nearly identical orientation, suggesting a 

mechanism related to increased homologous recombination. For example, Population 

Subcluster 4.2 contained a total of 6 population-specific genes, with 4 of those being highly 

localized (Fig. 5A) and were always flanked by conserved genomic regions. We observed similar 

patterns in Population Subcluster 2 as well, which contained high localization of the 16/48 

population-specific genes (Fig. 5B). We did not detect any localization of population-specific 

genes in Subclusters 3.1 and 3.2, most likely due to its recent population expansion 

(Supplementary Figure S4B). In both subclusters where we did observe high gene localization, 

conserved flanking regions exhibited highly consistent phylogenetic relationships within 

population subclusters (Fig. 5C), indicating these genes are not an artifact of measurement but 

represent evidence for increased homologous recombination within subclusters. Further, 

conserved genes that did not provide robust phylogenetic signals typically flanked variable 

regions with genes shared across population boundaries or singleton genes (genes 3 and 4 in 

Fig. 5C). 
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Together, our results indicate that population subclusters represent cohesive genetic 

clusters sharing highly conserved genomic backbones with population-specific gene cassettes. 

The most compelling evidence for this observation is the population-specific genes contained in 

these backbones (Fig. 5) have nearly swept to fixation in the populations. For instance, 

population-specific genes from both Subcluster 4.2 (N=4) and Subcluster 2 (N=16) had low 

nucleotide diversity (pMEAN = 2.2 and 3.9, respectively) and high nucleotide percent identity 

(94.1% and 99.3%, respectively) across all individuals within a population subcluster. The 

presence of selective sweeps within individuals of the same population subcluster indicates 

strong positive selection of beneficial genes. 

Due to these population-specific genes becoming nearly fixed within population 

subclusters, these genomic backbones are most likely attributing to differential ecological 

associations. The population-specific genes, themselves, did not provide any indication of 

ecological differentiation (all annotate as hypothetical protein), but flanking regions and 

singleton genes suggest these genomic backbones are related to small fitness differences in 

environmental resources. For example, we observed high occurrences of metal uptake and 

transport proteins, along with glycoside hydrolase (GH) enzymes for the breakdown of 

carbohydrates in leaf litter. Likewise, when we assayed each strain for genomic traits within 

population subclusters for indications of ecological differentiation, we observed some trait 

differences between population subclusters in minimum generation time, optimal temperature, 

and GH composition (Supplementary Figure S5). Collectively, our analyses indicate that the 

correlations between core and flexible genes, specifically population-specific gene cassettes, 

suggests these subclusters are in the early stages of ecological differentiation.  
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DISCUSSION 

Our study highlights the growing understanding that the origin and maintenance of 

microbial populations is governed by the same ecological and evolutionary processes shaping 

macroorganisms. Utilizing population genetics and gene exchange networks, we observed 

distinct genetic lineages that recombined more with individuals of the same population than 

between, suggesting limited gene flow between populations. Together, our results indicate 

biogeographic barriers (via dispersal limitation) as well as genetic isolation (via ecological 

differentiation) contribute to population structure in microbes as one would typically observe in 

geographically-distinct eukaryotic populations. More broadly, our study highlights the 

importance of both dispersal limitation and local adaptation in governing the processes 

contributing to the divergence among closely-related bacteria.  

Previously, only two instances in soil bacteria, Streptomyces and Bradyrhizobium, have 

shown that dispersal limitation at continental scales and distant evolutionary events (e.g., free-

living v symbiont) are consistent with allopatric speciation (VanInsberghe et al., 2015; Andam et 

al., 2016; Choudoir et al., 2016). None, to our knowledge have investigated the ecological and 

evolutionary processes driving initial population divergence between interacting genotypes in 

soil systems. Here, using strains within a cohesive ecological unit (akin to a eukaryotic species 

(Cohan, 2001)), we demonstrated population differentiation within this Curtobacterium 

ecotype (Fig. 1). However, teasing apart the relative contributions of biogeographic barriers and 

ecological differentiation was complex. Based on previous work in soil fungal populations 

conducted at similar regional spatial scales, we expected that populations might be structured 

geographically and genomic differences would reflect local site adaptation along the gradient 
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(Amend et al., 2010; Branco et al., 2015). While we observed a geographic signal constraining 

population intermixing (Fig. 3B), we also observed the co-occurrence of multiple, genetically 

distinct populations within and across sites. 

One possible explanation for the appearance of multiple Curtobacterium populations is 

that populations were once separated by a biogeographic barrier and have yet to genetically 

homogenize across spatial scales between ecologically-similar populations. Moreover, the 

measured geographic distance may not be indicative of contemporary population dynamics as 

we cannot account for the frequency or abundance of populations at each site. However, once 

we incorporated gene flow (i.e. the exchange of genetic variation) in our analysis, we observed 

distinct and independent gene flow units, suggesting that barriers to recombination were highly 

constrained by both population boundaries and geography. Our results suggest that the 

observed populations were not explicitly delineated by geography. Rather, sympatric microbial 

populations must be subjected to some isolating mechanism that protects the integrity of 

cohesive genotypes (Mayr, 2001). Indeed, our results suggest that populations are genetically 

isolated from one another most likely due to ecological differentiation, as others have noted in 

marine microbial populations (Shapiro and Polz, 2014). 

Evidence for ecological differentiation between populations is evidenced in the flexible 

genome, which can provide insights into potential habitat-specific associations. While the 

flexible genome can enable sharing of genes for habitat-specific adaptation between distantly-

related organisms (Tettelin et al., 2008), our results indicate that the putative exchange of 

adaptive genes are, for the most part, restricted by population boundaries (Fig. 4A). These 

flexible genes are thought to contribute to differences in niche exploitation (Rodriguez-Valera 
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and Ussery, 2012) and could contribute to small fitness differences between populations that 

enable ecological differentiation even among sympatric populations (Cordero and Polz, 2014). 

For example, in the marine bacterium Vibrio, sympatric populations encoded habitat-specific 

genes (Shapiro et al., 2012) to ecologically differentiate at a microscale between free-living and 

particle-associated populations (Yawata et al., 2014). Along similar spatial scales, 

Curtobacterium populations may differentiate between microhabitats on leaf litter due to 

variation in environmental resources, such as metals and carbohydrate availability. To that end, 

we also observed differences in growth strategies and carbohydrate degradation potential 

(Supplementary Figure S5) that may contribute to ecological differentiation among populations. 

Differences in ecological associations between populations is also leading to decreased 

gene flow and a separation of gene pools, a mechanism which has previously been shown to 

lead to the early stages of speciation in archaea (Cadillo-Quiroz et al., 2012). Moreover, the 

presence of highly conserved genomic backbones shared across members within a population 

suggest that the mechanism reinforcing differentiation is primarily homologous recombination 

(Fig. 5). Within these population-specific genomic backbones, we observed gene-specific 

selective sweeps localized in large genomic islands that proliferate in a population-specific 

manner. Indeed, gene-specific sweeps have been identified in marine populations in Vibrio 

(Shapiro et al., 2012) and Prochlorococcus (Kashtan et al., 2014), where sweeps were linked to 

small fitness differences contributing to the coexistence of sympatric populations. Similarly, 

increased homologous recombination within strains of Curtobacterium populations could 

enable the rapid exchange of niche-adaptive genes for differential microhabitat specialization 

on leaf litter. 
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Collectively, our results suggest a model for differentiating populations within a 

Curtobacterium ecotype through a combination of sympatric and allopatric processes. 

Populations along the regional climate gradient represent genetically-isolated lineages that are 

ecologically differentiating by partitioning of microhabitat resources. As in Prochlorococcus 

(Kashtan et al., 2014), the exchange of flexible genes and the homologous recombination of 

population-specific genomic backbones (Fig. 5) may contribute to new a dimension of niche 

differentiation. At the same time, these populations also are able to disperse and intermix 

across sites along the regional gradient with other subpopulations that specialize on similar 

microhabitats. The presence of geographically-distinct strains within a population sharing 

nearly identical genomic backbones suggests that the acquisition of a beneficial flexible gene 

cassette can proliferate in a population-specific manner across geographic distances. Our 

results, therefore, suggest that microbial populations may differ in the degree of granularity in 

microhabitat preference while at the same time being connected via dispersal. 

A major gap in our understanding of microbial diversity are the mechanisms 

contributing to the origin and maintenance of microbial speciation. Most of our estimates 

related to evolutionary adaptation are restricted to laboratory measurements or concentrated 

on pathogenic strains (Ingle et al., 2016; Lemieux et al., 2016). And while insights into 

community-wide approaches using metagenomics can reveal evidence for genome 

recombination (Denef and Banfield, 2012), these approaches are limited in the ability to detect 

the proliferation of population-specific genes (Bendall et al., 2016), which are indicative of the 

early stages of ecological differentiation (Polz et al., 2013; Takeuchi et al., 2015). Our results, 

and others, demonstrate that free-living bacterial populations are delineated by barriers to 
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recombination that enable the proliferation of advantageous genes in a population-specific 

manner (Whitaker et al., 2005; Fraser et al., 2007; Cadillo-Quiroz et al., 2012; Shapiro et al., 

2012). Finally, by sampling across a regional climate gradient, we can identify the sympatric and 

allopatric mechanisms contributing to population divergence.  

MATERIALS AND METHODS 

Field Sites and Curtobacterium Strains 

We downloaded 28 Curtobacterium genomes (Supplementary Table 1) from the 

National Center for Biotechnology Information (NCBI) [https://www.ncbi.nlm.nih.gov/] 

database that were previously isolated from leaf litter (Chase et al., 2016), including a robust 

genomic dataset consisting of 24 strains from a climate gradient in southern California (Chase et 

al., 2018). We included two additional strains within the same ecotype from outside Boston, 

MA to provide varying spatial scales for population comparisons. Protein-coding regions and 

gene annotations were derived from the NCBI prokaryotic genome annotation pipeline 

(Tatusova et al., 2016). Genomes were screened for the presence of mobile elements by 

identifying integrating and conjugative elements (ICEs) with the ICEberg database (Bi et al., 

2011), prophage sequences using PhiSpy (Akhter et al., 2012), insertion sequences (IS) with 

ISfinder (Siguier et al., 2006), and CRISPR with CRISPRCasFinder (Couvin et al., 2018). 

Core Genome Population Structure 

We aligned all genomes using progressiveMauve (Darling et al., 2010) to identify locally 

collinear blocks (LCBs) of genomic data. We identified 49,610 LCBs >1500 bp found across all 28 

genomes that represented 1.28 Mbp of the core genome. This core genome alignment was 

used to perform a maximum likelihood bootstrap analysis using RAxML v8.2.10 (Stamatakis, 
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2014) under the general time reversal model with a gamma distribution for 100 replicates. 

Using the core genome, we performed an initial analysis to infer the relative effects of 

recombination and mutation rates using ClonalFrameML v1.11 (Didelot and Wilson, 2015). 

Specifically, we attempted to reconstruct phylogenetic relationships by detecting regions of 

recombination across the phylogeny to provide an initial estimate for clonal genealogy.  

Due to the weak clonal structure among strains, we sought to infer population structure 

from multilocus genotype data. First, we converted the core genome sequence data to a 

genotype matrix reflecting the distance between polymorphic sites of all individuals 

(https://github.com/xavierdidelot). We then used this genotype matrix to compute ancestry 

coefficients to delineate genetic clusters. Specifically, we employed sparse non-negative matrix 

factorization algorithms to estimate the cross-entropy parameter (Frichot et al., 2014). Based 

on the cross-entropy criterion which best fit the statistical model, we designated the number of 

ancestral populations to K=4 to estimate individual admixture coefficients using the LEA 

package (Frichot and François, 2015) in the R software environment (Pinheiro et al., 2011). 

Finally, individual membership values to each population (q-value) were used to classify isolates 

to Populations 1-4 (q-value > 0.75) and ‘admixed’ groups (q-value < 0.75). Admixed groups were 

further divided by phylogenetic clusters at a 0.075 phylogenetic distance. 

Gene Flow Subclusters and Recombination 

We employed two separate analyses to estimate genetic exchange by 1) investigating all 

potential recombination events and 2) accounting for only recent recombination between pairs 

of strains.  
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As a proxy for total recombination, we compared all protein coding genes that shared 

sequence similarity ≥99% of at least 500 bp, as defined in (Bonham et al., 2017). Identified 

neighboring candidate genes were further grouped into recombination blocks if they were 

separated by ≤5000 bp. Due to the high genomic similarity among strains, we needed to verify 

each designated recombinant block in a pairwise manner. Therefore, we built a local BLAST 

database containing all protein-coding regions of all strains and searched all identified 

candidate recombining genes with blastn v2.6.0+ (Camacho et al., 2009). Consequently, we only 

defined recombination events if the query and subject gene matched genome block 

designation, were ≥99% sequence similarity, and ≥90% query coverage to avoid spurious hits. 

Finally, pairwise recombining genes were used to construct a gene exchange network analysis 

and were normalized by the total number of genes found within a recombination block. To 

assign population subclusters using only recombination, we aggregated the pairwise analyses to 

reflect the total recombination events between each pairs of strains. Each strain was then 

normalized by subtracting the mean recombination events from all other strains and dividing by 

the standard deviation. Finally, we computed a Euclidean distance matrix and conducted a 

hierarchical clustering analysis to delineate subclusters. To test for correlations between total 

recombination with phylogenetic and geographic distance, we used a Mantel and RELATE test. 

To differentiate between vertical transmission and recent homologous recombination, 

we identified identical genomic regions (100%) between each pair of strains. To correct for the 

influence of vertical inheritance, we created a null model of expected mutational divergence 

and looked for enriched genomic regions that deviated from the null model. To do so, we 

implemented a decay rate constant to identify large genomic regions that remained identical 
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across strains despite the null expectation that larger regions will be less identical over time 

due to divergence and mutation accumulation. We then extrapolated a length measurement 

bias to generate an average genome wide measurement to create gene networks between 

strains. This process allows us to focus on recent recombination transfer events that should 

correspond to population units. 

Population Genetic Analyses 

To perform population genetic summary analyses, we identified all orthologous protein-

coding genes (orthologs) shared across all strains. Orthologs were initially predicted using 

ROARY (Page et al., 2015) with a minimum sequence identity of 90% to ensure all possible 

orthologs were included across populations (Supplementary Figure 6A). The resulting 2193 

orthologs shared across all strains were individually aligned with ClustalO v1.2.3 (Sievers et al., 

2011) and used to create a 2.14 Mbp concatenated nucleotide alignment. Note, the size of this 

alignment differs from the core genome alignment since genes do not necessarily need to be 

located on LCBs. To verify the effects of using a gene x gene approach on the core genome, we 

reconstructed the phylogenetic relationship of the concatenated alignment of all orthologous 

protein-coding genes, using RAxML v8.2.10 (Stamatakis, 2014) under the general time reversal 

model with a gamma distribution for 100 replicates, and compared to phylogeny derived from 

the Mauve core genome alignment (Supplementary Figure 6B). Next, all individual ortholog 

alignments were screened for complete codon reading frames (i.e. multiple of 3 bp) and the 

resulting 2137 genes were individually used to calculate population genetic summary statistics. 

Specifically, we calculated nucleotide diversity and neutrality statistics within populations using 

the PopGenome package (Pfeifer et al., 2014) in R, as outlined in (Lemieux et al., 2016). 
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Predicted orthologs that were not shared across all strains represent the flexible 

genome (Supplementary Figure 6A). Using all identified orthologs, we computed a Jaccard 

distance between pairs of strains to estimate shared gene content. The distance matrix was 

used to generate a neighbor-joining tree based on 1000 re-samplings and to create a heatmap 

showing gene content similarity across strains. We tested the significance of gene content using 

an analysis of similarities (ANOSIM) for population or subcluster designations and site of 

isolation for 9999 permutations. In addition, we looked for orthologs that were unique to our 

populations. Specifically, we identified orthologs that were encoded by every member within a 

population subcluster (N ≥ 3 individuals) and were not found in any member outside of the 

subcluster designation. To reduce this list even further, we identified population-specific 

orthologs that were localized in genomic space (<10 kbp separation). 

Analysis of Genomic Traits 

We analyzed all genomic sequences for specific ecological traits that may contribute to 

population divergence. We concentrated on genomic traits related to growth strategies and 

substrate (i.e. carbohydrate) utilization that may be advantageous on leaf litter.  

To infer growth strategies, we estimated minimum generation times (MGT) and optimal 

growth temperature (OGT). We predicted MGT by comparing codon-usage biases between 

highly expressed ribosomal proteins and all other encoded genes following a linear regression 

model (Vieira-Silva and Rocha, 2010)[equation 1]. 

[1] Δ"#$	 = 	 '()*++,'()-./0102*+	3-045.61
'()*++

 

where ENC is the effective number of codons given %GC (Subramanian, 2008) 
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We analyzed each strain for the genomic potential to degrade various carbohydrates by 

searching the predicted coding-regions against the Pfam-A v30.0 database (Finn et al., 2016) 

using HMMer (Finn et al., 2011). Identified protein families were reduced to only known protein 

families that encode for glycoside hydrolase (GH) and carbohydrate binding module (CBM) 

proteins as described in (Chase et al., 2016). 
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Figures and Tables 
 
 

 
 
Figure 5.1 Phylogeny of the Curtobacterium ecotype, subclade IB/C, and its underlying 
populations constructed from a core genome alignment. Bar plots reflect the proportion of an 
individual genome that originate from estimated ancestral gene pools (K = 4). Genome names 
designate the site of isolation along the climate gradient except for MCBA = Boston and MMLR 
= Grassland isolate from 2010. 
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Figure 5.2 Gene-exchange network across all pairwise strains with nodes colored by population 
assignments from admixture analysis (Fig. 1) and edge widths normalized by the percent of 
genes within identified recombinant blocks.  
D = Desert, Sc = Scrubland, G/MMLR = Grassland, SS = Salton Sea, MCBA = Boston. 
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Figure 5.3 Total recombination by (A) phylogenetic and (B) geographic distance. Each point 
represents a pairwise genome comparison and colored by population assignment. Total 
regression line is colored in black. 
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Figure 5.4 Flexible gene content similarity between strains. (A) Tree is derived from a consensus 
neighbor-joining analysis showing only nodes with ≥750 support. Strains are colored by both 
population and population subcluster assignments. (B) Multidimensional scaling (MDS) plot 
depicting total gene composition for Curtobacterium strains. Each point represents an 
individual strain and is colored based on the assigned population subcluster with the symbol 
denoting the site of isolation. 
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Figure 5.5 Highly structured genomic backbones across strains. Population-specific genomic 
backbones within (A) Population Subcluster 4.2 and (B) Population Subcluster 2. Population-
specific genes (colored in blue) are flanked by highly conserved regions (in white). Putative 
mobile elements are also designated in boxes along the chromosome. (C) Phylogenies of a 
subset of conserved genes flanking the population-specific regions colored by each respective 
population subcluster. 
 
  



 116 

Supplementary Table 5.1 Genomic and geographic characteristics of isolates. 
 

Genome Name Location Lat-Long 
Isolation 

Year 
Total 

Contigs 
Genome 

Length (bp) %GC Reference 

MCBA15005 Boston, MA, USA 42.38, -71.21 2015 91 3772244 69 AB Chase et al. Frontiers in 
Microbiology. 2016 

MCBA15007 Boston, MA, USA 42.38, -71.21 2015 87 3768639 69 AB Chase et al. Frontiers in 
Microbiology. 2016 

MMLR14002 Loma Ridge, CA, USA 33.74, -117.69 2011 137 3808678 70 AB Chase et al. Frontiers in 
Microbiology. 2016 

MMLR14014 Loma Ridge, CA, USA 33.74, -117.69 2011 139 3822836 69 AB Chase et al. Frontiers in 
Microbiology. 2016 

DESERT-26 Deep Canyon, CA, USA 33.65, -116.37 2016 40 3645388 70 AB Chase et al. Environmental 
Microbiology. 2018 

GRASS-31 Loma Ridge, CA, USA 33.74, -117.69 2016 51 3777956 71 AB Chase et al. Environmental 
Microbiology. 2018 

GRASS-34 Loma Ridge, CA, USA 33.74, -117.69 2016 35 3820963 70 AB Chase et al. Environmental 
Microbiology. 2018 

GRASS-39 Loma Ridge, CA, USA 33.74, -117.69 2016 37 3819069 70 AB Chase et al. Environmental 
Microbiology. 2018 

GRASS-40 Loma Ridge, CA, USA 33.74, -117.69 2016 39 3761440 71 AB Chase et al. Environmental 
Microbiology. 2018 

GRASS-42 Loma Ridge, CA, USA 33.74, -117.69 2016 37 3838097 71 AB Chase et al. Environmental 
Microbiology. 2018 

GRASS-43 Loma Ridge, CA, USA 33.74, -117.69 2016 30 3695116 71 AB Chase et al. Environmental 
Microbiology. 2018 

GRASS-44 Loma Ridge, CA, USA 33.74, -117.69 2016 47 3789494 71 AB Chase et al. Environmental 
Microbiology. 2018 

GRASS-45 Loma Ridge, CA, USA 33.74, -117.69 2016 57 3764851 70 AB Chase et al. Environmental 
Microbiology. 2018 

GRASS-51 Loma Ridge, CA, USA 33.74, -117.69 2016 41 3785722 71 AB Chase et al. Environmental 
Microbiology. 2018 

GRASS-53 Loma Ridge, CA, USA 33.74, -117.69 2016 42 3786104 71 AB Chase et al. Environmental 
Microbiology. 2018 

GRASS-54 Loma Ridge, CA, USA 33.74, -117.69 2016 52 3927711 70 AB Chase et al. Environmental 
Microbiology. 2018 

GRASS-55 Loma Ridge, CA, USA 33.74, -117.69 2016 34 3752819 71 AB Chase et al. Environmental 
Microbiology. 2018 

GRASS-57 Loma Ridge, CA, USA 33.74, -117.69 2016 47 3728355 71 AB Chase et al. Environmental 
Microbiology. 2018 

GRASS-58 Loma Ridge, CA, USA 33.74, -117.69 2016 42 3800007 71 AB Chase et al. Environmental 
Microbiology. 2018 

GRASS-59 Loma Ridge, CA, USA 33.74, -117.69 2016 25 3729778 71 AB Chase et al. Environmental 
Microbiology. 2018 

SALT-11 Salton Sea, CA, USA 33.33, -115.84 2016 63 3632003 70 AB Chase et al. Environmental 
Microbiology. 2018 

SALT-16 Salton Sea, CA, USA 33.33, -115.84 2016 58 4357272 70 AB Chase et al. Environmental 
Microbiology. 2018 

SALT-5 Salton Sea, CA, USA 33.33, -115.84 2016 32 3744522 70 AB Chase et al. Environmental 
Microbiology. 2018 

SALT-6 Salton Sea, CA, USA 33.33, -115.84 2016 29 3739706 70 AB Chase et al. Environmental 
Microbiology. 2018 

SCRUBLAND-18 Pinon Flats, CA, USA 33.61, -116.46 2016 30 3658022 70 AB Chase et al. Environmental 
Microbiology. 2018 

SCRUBLAND-21 Pinon Flats, CA, USA 33.61, -116.46 2016 54 3833068 70 AB Chase et al. Environmental 
Microbiology. 2018 

SCRUBLAND-3 Pinon Flats, CA, USA 33.61, -116.46 2016 34 3695248 70 AB Chase et al. Environmental 
Microbiology. 2018 

SCRUBLAND-51 Pinon Flats, CA, USA 33.61, -116.46 2016 36 3558624 71 AB Chase et al. Environmental 
Microbiology. 2018 
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Supplementary Figure 5.1 Comparison of recombination network analyses and derived 
population subcluster designations. All panels show identical recombination networks but have 
individual strains (nodes) colored based on separate analyses. (A) Population assignments 
derived from admixture analysis (same as Figure 2). (B) Total recombination between strains 
separating populations subclusters. (C) Recent recombination delineating subclusters. 
D = Desert, Sc = Scrubland, G/MMLR = Grassland, SS = Salton Sea, MCBA = Boston.  
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Supplementary Figure 5.2 Total recombination within and between populations in relation to 
geographic distance between strains. Each point represents a pairwise genome comparison and 
colored by whether the comparison is from (A) populations (N ³ 4 strains) or (B) population 
subclusters (N ³ 3 strains). 
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Supplementary Figure 5.3 Flexible gene content similarity in relation to (A) total recombination 
and (B) phylogenetic distance. Each point represents a pairwise genome comparison and 
colored by population assignment. Total regression line is colored in black. 
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Supplementary Figure 5.4 Genome-wide population genetic summary analyses. (A) Pairwise 
nucleotide diversity (π) in 25 kbp sliding windows by population. (B) Tajima’s D statistic in 50 
kbp sliding windows by population. Each point represents the average value in the sliding 
window and dashed line shows total genome average. Genomic position is to reference strain 
MMLR14002. 
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Supplementary Figure 5.5 Distributions of predicted genomic traits in strains belonging to 
population subclusters. Traits include: (A) minimum generation time (hrs), (B) optimal growth 
temperature (°C), and (C) total abundance of glycoside hydrolase (GH) and carbohydrate 
binding module (CBM) proteins. 
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Supplementary Figure 5.6 Breakdown of orthologous protein groups derived from all strains. 
(A) Number of identified orthologous protein groups in both the core and flexible genome 
based on initial clustering of proteins. (B) Cladogram comparison of core genes (N=2193 
orthologous proteins) and core genome alignment (defined as locally collinear blocks). Terminal 
branches are colored by geographic location with lines connecting identical strains in each 
respective cladogram. 
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