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Abstract

Numerous brain lesion and fMRI studies have linked individual differences in executive abilities 

and fluid intelligence to brain regions of the fronto-parietal “multiple-demand” (MD) network. 

Yet, fMRI studies have yielded conflicting evidence as to whether better executive abilities are 

associated with stronger or weaker MD activations and whether this relationship is restricted to the 

MD network. Here, in a large-sample (n=216) fMRI investigation, we found that stronger activity 

in MD regions – functionally defined in individual participants – was robustly associated with 

more accurate and faster responses on a spatial working memory task performed in the scanner, as 

well as fluid intelligence measured independently (n=114). In line with some prior claims about a 

relationship between language and fluid intelligence, we also found a weak association between 

activity in the brain regions of the left fronto-temporal language network during an independent 

passive reading task, and performance on the working memory task. However, controlling for the 
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level of MD activity abolished this relationship, whereas the MD activity-behavior association 

remained highly reliable after controlling for the level of activity in the language network. Finally, 

we demonstrate how unreliable MD activity measures, coupled with small sample sizes, could 

falsely lead to the opposite, negative, association that has been reported in some prior studies. 

Taken together, these results demonstrate that a core component of individual differences variance 

in executive abilities and fluid intelligence is selectively and robustly positively associated with the 

level of activity in the MD network, a result that aligns well with lesion studies.

Keywords

Fronto-parietal; executive functions; fluid intelligence; individual differences; multiple-demand; 
language

Introduction

General cognitive abilities, such as fluid intelligence, and the tightly linked executive 

abilities, are among the best predictors of academic achievement and professional success 

(Gottfredson, 2002; Kuncel & Hezlett, 2010; Plomin & Deary, 2015). These abilities are 

thought to rely on a network of bilateral frontal and parietal brain regions. Selective damage 

to these regions is associated with disorganized executive behavior and significant loss of 

fluid intelligence (Duncan, Burgess, & Emslie, 1995; Glascher et al., 2010; Roca et al., 

2010; Warren et al., 2014; Woolgar, Duncan, Manes, & Fedorenko, 2018; Woolgar et al., 

2010). Similar frontal and parietal regions are activated in brain imaging studies during 

diverse demanding tasks, including manipulations of working memory, fluid reasoning, 

selective attention, set shifting, response inhibition, and novel problem solving inter alia 

(Assem, Glasser, Essen, & Duncan, 2020; Michael W. Cole & Schneider, 2007; Dosenbach 

et al., 2006; Duncan, 2000, 2010; Duncan & Owen, 2000; Fedorenko, Duncan, & 

Kanwisher, 2013; Geake & Hansen, 2005; Vakhtin, Ryman, Flores, & Jung, 2014). We refer 

to this set of brain regions as the “multiple-demand” (MD) network (following Duncan, 

2013, 2010) given their sensitivity to multiple task demands. The MD network includes 

lateral and dorsomedial frontal areas, anterior insular areas, and areas along the intra-parietal 

sulcus (Assem et al., 2020; Fedorenko et al., 2013), and these areas form a functionally 

integrated system as evidenced by strong synchronization during naturalistic cognition 

(Assem et al., 2020; Blank, Kanwisher, & Fedorenko, 2014; Paunov, Blank, & Fedorenko, 

2019).

Prior fMRI studies have linked activity in the MD network with individual differences in 

executive abilities and fluid intelligence, but have left open the nature of this relationship. 

First, conflicting claims have been made regarding the direction of brain-behavior 

correlations across individuals. On the one hand, some have found that stronger MD 

activation is associated with worse performance on executive tasks and lower IQ (Basten, 

Hilger, & Fiebach, 2015; Deary, Penke, & Johnson, 2010; Dunst et al., 2014; Haier et al., 

1988; Neubauer & Fink, 2009; Rypma et al., 2006; Rypma & Esposito, 2000; Santarnecchi, 

Galli, Polizzotto, Rossi, & Rossi, 2014; Stern, Gazes, Razlighi, Steffener, & Habeck, 2018). 

Such studies have typically advocated a “neural efficiency” explanation: smarter individuals 
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can use fewer neural resources to achieve the same level of performance. On the other hand, 

others have found the opposite pattern, where stronger MD activation is associated with 

better executive task performance and higher IQ (Basten, Stelzel, & Fiebach, 2013; Burgess, 

Gray, Conway, & Braver, 2011; Choi et al., 2008; M. W. Cole, Yarkoni, Repovs, Anticevic, 

& Braver, 2012; Gray, Chabris, & Braver, 2003; Lee et al., 2006; Tschentscher, Mitchell, & 

Duncan, 2017). In an attempt to reconcile these conflicting findings, some have suggested 

that the direction of the correlation may depend on task difficulty with “neural efficiency” 

(i.e., a negative association between MD activity and performance) observed in easier tasks, 

and positive associations observed during more complex tasks (Neubauer & Fink, 2009; 

Sripada, Angstadt, Rutherford, Taxali, & Shedden, 2020).

Relatedly, superior executive abilities and higher IQ have been reported to correlate with 

stronger synchronization (typically, estimated during rest e.g. Fox et al., 2005) among the 

MD brain regions (M. W. Cole et al., 2012; Dubois, Galdi, Paul, & Adolphs, 2018; 

Ferguson, Anderson, & Spreng, 2017; Finn et al., 2015; Hearne, Mattingley, & Cocchi, 

2016; Smith et al., 2015), although most of these studies have relied on the same resting-

state Human Connectome Project (HCP) dataset (Smith et al., 2013). Fewer studies have 

reported weaker synchronization in such individuals (Santarnecchi et al., 2014; van den 

Heuvel, Stam, Kahn, & Hulshoff Pol, 2009).

A second open question concerns the specificity of this relationship to the MD network. 

Challenging the idea that executive functions are selectively tied to this network, a number 

of fMRI studies have also linked individual differences in executive abilities and fluid 

intelligence with activity in other brain regions/networks, including occipito-temporal areas 

( (Haier, White, & Alkire, 2003; Park, Carp, Hebrank, Park, & Polk, 2010) but see (Assem et 

al., 2020; Sani, McPherson, Stemmann, Pestilli, & Freiwald, 2019) for evidence that these 

regions may belong to an extended MD network), the default mode network (DMN) (Lipp et 

al., 2012; Smith et al., 2015), or the degree of MD-DMN differentiation (Sripada et al., 

2020). A recent study used 7 fMRI tasks from the HCP dataset to demonstrate that task 

activation levels in many brain regions can, to some extent, predict individual differences in 

general intelligence, though critically, MD regions—engaged by executive function tasks—

are the best predictors (Sripada et al., 2020). In contrast, another recent study using the HCP 

resting-state dataset showed that the strength of inter-region correlations in most brain 

networks predicts general intelligence, and to a similar extent (Dubois et al., 2018). A key 

potential limitation of these studies is that, like the above-mentioned studies, they rely 

exclusively on the HCP dataset and are yet to be replicated in independent data.

These apparently discrepant results could reflect the complexity of the brain-behavior 

relationship in the domain of executive abilities, with perhaps multiple underlying cognitive 

constructs (Miyake & Friedman, 2012) and neural mechanisms contributing to their 

implementation. However, a number of methodological limitations plague previous studies 

and may, instead, explain away some of these discrepancies. First, many earlier studies have 

used small numbers of participants (as low as n=8) and/or transformed continuous 

behavioral measures into categorical variables (e.g., high- vs. low-performing participants). 

Both of these factors can produce inflated or spurious relationships (Haier et al., 1988; Lee 

et al., 2006; Rypma et al., 2006; Rypma & Esposito, 2000; Wager et al., 2005). Second, 
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most studies have failed to assess the reliability of the relevant behavioral and/or brain 

measures (e.g., the strength of the BOLD response, or the strength of inter-regional 

synchronization) – a critical prerequisite for relating behavioral and brain individual 

variability (Dubois & Adolphs, 2016). Both behavioral and brain measures have to be stable 

within individuals over time (e.g., across multiple runs of a task, or across tasks) (Mahowald 

& Fedorenko, 2016). This is especially important for studies using BOLD estimates based 

on contrasts of task relative to fixation, or resting-state inter-region synchronization 

measures, which may fail to isolate MD activity from general state variables, like 

motivation, arousal, or caffeine intake (Basten et al., 2013; M. W. Cole et al., 2012; Dubois 

et al., 2018; Dunst et al., 2014; Gray et al., 2003; Rypma et al., 2006; Rypma & Esposito, 

2000; Smith et al., 2015; Stern et al., 2018; Wager et al., 2005). Third, almost all previously 

mentioned studies have failed to take into consideration individual variability in the precise 

locations of the MD regions (see (Assem et al., 2020; Blank, 2020; Fedorenko et al., 2013; 

Shashidhara, Spronkers, & Erez, 2020) for evidence of such variability). This variability 

leads to losses in sensitivity and functional resolution (Brett, Johnsrude, & Owen, 2002; 

Nieto-Castañón & Fedorenko, 2012; Saxe, Brett, & Kanwisher, 2006), and it also affects the 

interpretation of inter-regional functional synchronization findings (Bijsterbosch, Beckmann, 

Woolrich, Smith, & Harrison, 2019; Bijsterbosch et al., 2018). This problem is compounded 

by the proximity of MD areas to functionally distinct areas such as language-selective 

regions (Fedorenko, Duncan, & Kanwisher, 2012), which show no response to any 

demanding task other than language processing (Fedorenko, Behr, & Kanwisher, 2011; 

Fedorenko & Blank, 2020; Fedorenko & Varley, 2016; Monti, Parsons, & Osherson, 2012). 

And fourth, many studies have failed to adequately assess the selectivity of the relationship 

between MD activity and behavior (Choi et al., 2008; M. W. Cole et al., 2012; Dubois & 

Adolphs, 2016; Gray et al., 2003; Rypma et al., 2006). This is important given that trait 

variables (e.g., brain vascularization) are known to affect neural responses (e.g., Ainslie and 

Duffin, 2009; Kazan et al., 2016), so in order to argue that the MD network’s activity relates 

to individual differences in executive functions or fluid intelligence, it is important to 

demonstrate that activity in some other, control, brain region or network does not show a 

similar relationship.

To circumvent these limitations and rigorously test the relationship between MD activity and 

executive abilities and fluid intelligence, we conducted a large-scale fMRI study, where 

participants (n=216) performed a spatial working memory (WM) task that included a harder 

and an easier condition. We first established the reliability of the Hard>Easy (H>E) BOLD 

effect in the MD network (defined functionally in each participant individually (Fedorenko 

et al., 2013)), and then examined the relationship between the size of this effect and a) 

behavioral performance on the task (including in an independent run of data), and b) fluid 

intelligence (in a subset of participants, n=114). We further evaluated the selectivity of this 

MD-behavior relationship by examining fMRI responses in the left fronto-temporal 

language network while the same participants performed a language comprehension task 

(Fedorenko et al., 2010). This network serves as a good control because, on the one hand, 

the language network is robustly functionally distinct from the MD network (Blank et al., 

2014; Diachek, Blank, Siegelman, Affourtit, & Fedorenko, 2020; Fedorenko & Blank, 2020; 

Mineroff, Blank, Mahowald, & Fedorenko, 2018), but on the other hand, language has long 
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been implicated in abstract and flexible thought (e.g., Bickerton, 1995; Carruthers, 2002; 

Dennett, 1997; cf. Fedorenko and Varley, 2016), including some studies that have linked 

damage to the regions of this network to performance on some fluid reasoning tasks (e.g., 

Baldo et al., 2010; cf. Woolgar et al., 2018).

To foreshadow our results, we found that stronger (rather than weaker) MD responses were 

associated with better performance on the spatial WM task as well as higher fluid 

intelligence scores. The strength of activity in another large-scale network – the language 

network – did not explain any additional variability in WM task performance (i.e., it showed 

a weak correlation with behavior, which was eliminated once the level of MD activity was 

taken into account). Finally, we demonstrate how unreliable MD activity measures, coupled 

with small sample sizes, could lead to the opposite (negative) association between MD 

activity level and behavior as has been reported in the literature. These results align well 

with findings from lesion studies that have suggested that a substantial portion of the 

variance in executive abilities and fluid intelligence is strongly and selectively associated 

with frontal and parietal MD brain regions.

Materials and Methods

Participants

216 participants (age 23.6 ± 6.4, 136 males, 190 right handed, 13 left handed, 8 

ambidextrous, 5 with missing handedness data) with normal or corrected-to-normal vision, 

students at Massachusetts Institute of Technology (MIT) and members of the surrounding 

community, participated for payment. All participants gave informed consent in accordance 

with the requirements of the Committee On the Use of Humans as Experimental Subjects 

(COUHES) at MIT. We aimed to use the largest sample size available to us of subjects who 

performed both task paradigms and the IQ test (see below).

Experimental Paradigms

Participants performed a spatial working memory task in a blocked design (Fig. 1). Each 

trial lasted 8 seconds: within a 3x4 grid, a set of locations lit up in blue, one at a time for a 

total of 4 (easy condition) or two at a time for a total of 8 (hard condition). Participants were 

asked to keep track of the locations. At the end of each trial, they were shown two grids with 

some locations lit up and asked to choose the grid that showed the correct, previously shown 

locations by pressing one of two buttons. They received feedback on whether they answered 

correctly. Each participant performed two runs, with each run consisting of six 32-second 

easy condition blocks, six 32-second hard condition blocks, and four 16-second fixation 

blocks, for a total duration of 448s (7min 28s). Condition order was counterbalanced across 

runs.

In addition to the spatial working memory task, all participants performed a language 

localizer task (Fedorenko et al., 2010), used here to test the selectivity of the relationship 

between the MD network’s activity and behavior. The majority of the participants (n=182, 

84.3%) passively read sentences and lists of pronounceable nonwords in a blocked design 

(see Table 1). The Sentences>Nonwords (S>N) contrast targets brain regions sensitive to 
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high-level linguistic processing (Fedorenko et al., 2011, 2010). Each trial started with 100ms 

pre-trial fixation, followed by a 12-word-long sentence or a list of 12 nonwords presented on 

the screen one word/nonword at a time at the rate of 450ms per word/nonword. Then, a line 

drawing of a hand pressing a button appeared for 400ms, and participants were instructed to 

press a button whenever they saw the icon, and finally a blank screen was shown for 100ms, 

for a total trial duration of 6s. The button-press task was included to help participants stay 

alert and focused. Each block consisted of 3 trials and lasted 18s. Each participant 

performed two runs, with each run consisting of sixteen experimental blocks (eight per 

condition), and five fixation blocks (14s each), for a total duration of 358s (5min 58s). 

Condition order was counterbalanced across runs. The remaining 21 participants performed 

similar versions of the language localizer with minor differences in the timing and 

procedure, with one participant performing an auditory version of the localizer (see Table 1 

for exact timings and procedures; we have previously established that the localizer contrast 

is robust to such differences (Fedorenko et al., 2010; Mahowald & Fedorenko, 2016; Scott, 

Gallee, & Fedorenko, 2017).

Finally, most participants completed one or more additional experiments for unrelated 

studies. The entire scanning session lasted approximately 2 hours.

A subset of 114 participants performed the non-verbal component of KBIT (Kaufman & 

Kaufman, 2014) after the scanning session. The test consists of 46 items (of increasing 

difficulty) and includes both meaningful stimuli (people and objects) and abstract ones 

(designs and symbols). All items require understanding the relationships among the stimuli 

and have a multiple-choice format. If a participant answers 4 questions in a row incorrectly, 

the test is terminated, and the remaining items are marked as incorrect. The test is scored 

following the formal guidelines to calculate each participant’s IQ score.

MRI data acquisition

Structural and functional data were collected on the whole-body 3 Tesla Siemens Trio 

scanner with a 32-channel head coil at the Athinoula A. Martinos Imaging Center at the 

McGovern Institute for Brain Research at MIT. Tl-weighted structural images were collected 

in 128 axial slices with 1mm isotropic voxels (TR=2,530ms, TE=3.48ms). Functional, blood 

oxygenation level dependent (BOLD) data were acquired using an EPI sequence (with a 90° 

flip angle and using GRAPPA with an acceleration factor of 2), with the following 

acquisition parameters: thirty-one 4mm thick near-axial slices, acquired in an interleaved 

order with a 10% distance factor; 2.1mm x 2.1mm in-plane resolution; field of view of 

200mm in the phase encoding anterior to posterior (A > P) direction; matrix size of 96mm x 

96mm; TR of 2,000ms; and TE of 30ms. Prospective acquisition correction (Thesen, Heid, 

Mueller, & Schad, 2000) was used to adjust the positions of the gradients based on the 

participant’s motion one TR back. The first 10s of each run were excluded to allow for 

steady-state magnetization.

FMRI data preprocessing and first-level analysis

FMRI data were analyzed using SPM5 and custom MATLAB scripts in volume space. (Note 

that first-level analyses have not changed much in later versions of SPM; we used an older 
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version of the software here due to the use of these data in other projects spanning many 

years and hundreds of subjects; critical second-level analyses were performed using custom 

MATLAB scripts. We also verified using an independent dataset that estimates of neural 

activity extracted with SPM5- vs. SPM12-preprocessed and modeled data were extremely 

similar). Each subject’s data were motion corrected and then normalized into a common 

brain space (the Montreal Neurological Institute (MNI) template) and resampled into 2mm 

isotropic voxels. The data were then smoothed with a 4mm Gaussian filter (FWHM) and 

high-pass filtered (at 200s). The task effects in both the spatial WM task and in the language 

localizer task were estimated using a General Linear Model (GLM) in which each 

experimental condition was modeled with a separate boxcar regressor (with boxcars 

corresponding to blocks). For the working memory task, each run was modelled by one 

regressor for the easy blocks and one regressor for the hard blocks; similarly for the 

language task, each run was modelled by one regressor for sentence blocks and one 

regressor for non-word blocks. Regressors were convolved with the canonical hemodynamic 

response function (HRF). The model also included first-order temporal derivatives of these 

effects, as well as nuisance regressors representing entire experimental runs and offline-

estimated motion parameters.

Fixation blocks in both tasks were not modeled and treated as the implicit baseline.

MD fROIs definition and response estimation

To define the MD and language (see below) functional regions of interest (fROIs), we used 

the Group-constrained Subject-Specific (GSS) approach (Fedorenko et al., 2010). In 

particular, fROIs were constrained to fall within a set of “masks”, areas that corresponded to 

the expected gross locations of activation for the relevant contrast. For the MD fROIs, 

following Fedorenko et al. (Fedorenko et al., 2013) and Blank et al. (Blank et al., 2014), we 

used eighteen anatomical masks (Tzourio-Mazoyer et al., 2002) across the two hemispheres. 

These masks covered the portions of the frontal and parietal cortices where MD activity has 

been previously reported, including bilateral opercular inferior frontal gyrus (L/R IFGop), 

middle frontal gyrus (L/R MFG), orbital MFG (L/R MFGorb), insular cortex (L/R Insula), 

precentral gyrus (L/R PrecG), supplementary and presupplementary motor areas (L/R 

SMA), inferior parietal cortex (L/R ParInf), superior parietal cortex (L/R ParSup), and 

anterior cingulate cortex (L/R ACC) (Fig. 2a). It is worth noting, however, that a whole-

brain GSS analysis (Fedorenko et al., 2010) performed on the Hard>Easy spatial WM 

activation maps of n=197 participants yields a set of functional masks that largely overlap 

with these anatomical parcels (e.g. Diachek et al., 2020). Within each mask, we selected the 

top 10% (as well as the top 20% and 30% for validation analyses, as described below) of 

most responsive voxels in each individual participant based on the t-values for the H>E 

spatial WM contrast. This top n% approach ensures that each fROI can be defined in every 

participant, and that the fROI sizes are identical across participants.

To estimate the fROIs’ responses to the Hard and Easy conditions, we used an across-run 

cross-validation procedure (Nieto-Castañón & Fedorenko, 2012) to ensure that the data used 

to identify the fROIs are independent from the data used to estimate their response 

magnitudes (Kriegeskorte, Simmons, Bellgowan, & Baker, 2009). To do this, the first run 
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was used to define the fROIs and the second run to estimate the responses. This procedure 

was then repeated using the second run to define the fROIs and the first run to estimate the 

responses. Finally, the responses were averaged across the left-out runs to derive a single 

response magnitude estimate for each participant in each fROI for each condition. Finally, 

these estimates were averaged across the 18 fROIs of the MD network to derive one value 

per condition for each participant (see Fig. 2c for evidence of strong inter-region correlations 

in effect sizes, replicating Mineroff et al., 2018). (An alternative approach could have been 

to examine fROI volumes – the number of MD-responsive voxels at a fixed significance 

threshold – instead of effect sizes. However, first, effect sizes and region volumes are 

strongly correlated; and second, effect sizes tend to be more stable within participants than 

region volumes (Mahowald & Fedorenko, 2016)).

Language fROIs definition and response estimation

To define the language fROIs, we used a set of six functional masks that were generated 

based on a group-level representation of data for the Sentences>Nonwords contrast from a 

large set (n=220) of participants (e.g., Paunov et al., 2019). These masks included three 

regions in the left frontal cortex: two located in the inferior frontal gyrus, and one located in 

the middle frontal gyrus; and three regions in the left temporal and parietal cortices spanning 

the entire extent of the lateral temporal lobe and going posteriorly to the angular gyrus. 

Within each masks, we selected the top 10% of most responsive voxels in each individual 

participant based on the t-values for the Sentences>Nonwords contrast. To estimate the 

fROIs’ responses to the Sentences and Nonwords conditions, we used the across-run cross-

validation procedure described above.

Data availability

Stimuli presentation codes, analysis codes and data (behavioral measures, individual and 

group activation beta estimates and volumetric brain maps) are available at https://osf.io/

2tw6j/.

TOP checklist related statements

“No part of the study procedures or analyses was pre-registered prior to the research being 

conducted”

“We report how we determined our sample size, all data exclusions, all inclusion/exclusion 

criteria, whether inclusion/exclusion criteria were established prior to data analysis, all 

manipulations, and all measures in the study”

Results

Reliability of behavioral measures

Behavioral performance on the spatial WM task was as expected: individuals were more 

accurate and faster on the easy trials (accuracy=92.22% ± 7.88%; RT=1.20s ± 0.23s) than 

the hard trials (accuracy=77.47% ± 11.10%, t(215)=−23.23, p<0.0001, Cohen’s d=1.53 

(effect sizes are based on the two-tailed independent samples t-test); RT=1.49s ± 0.25s, 

t(215)=−26.14, p<0.0001, Cohen’s d=−1.23). Behavioral measures were stable within 

Assem et al. Page 8

Cortex. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://osf.io/2tw6j/
https://osf.io/2tw6j/


individuals across runs for overall (averaging across the Hard and Easy conditions) 

accuracies (r=0.66, p<0.0001) and RTs (r=0.81, p<0.0001). In contrast, difference scores 

(Hard > Easy) were less stable for both accuracies (r=0.26, p<0.0001) and RTs (r=0.46, 

p<0.0001) (Fig. 1). To further validate overall scores as a reliable individual measure (i.e., 

stable across runs within an individual), we tested their correlation with IQ scores, a well-

established stable measure, in the subset of subjects (n=114) that performed the IQ KBIT 

test. Indeed, IQ scores correlated with overall but not difference accuracy scores (r(IQ vs. 

overall)=0.35 vs. r(IQ vs. H>E)=0.0033) whereas the correlations were similar for RTs (r(IQ 

vs. overall)=−0.21 vs. r(IQ vs. H>E)=0.22). Thus, in the critical brain-behavior analyses 

below, we used overall accuracies and RTs rather than the H>E measures, because the 

former are more stable within individuals as demonstrated by their high correlation across 

runs and correlation with the well-established stable IQ measure. Furthermore, the H>E 

behavioral measures might contain a non-linearity, such that smaller between-condition 

differences are observed in both high performers (when performance is close to ceiling) and 

low performers (when performance is close to chance).

MD network activity and behavior

As expected (Fedorenko et al., 2013), each of the eighteen MD fROIs individually, as well 

the MD network as a whole (averaging across fROIs), showed a highly robust H>E effect 

across participants separately in each run (ts(215)>11.54, ps<0.0001, Cohen’s d=0.79-1.54). 

Individual differences in the MD H>E effect sizes were also stable across runs for each MD 

fROI individually (rs=0.60–0.80) and when averaging across fROIs (r=0.74, p<0.0001; Fig. 

2d). We used the H>E contrast as it was more stable than task>fixation contrasts (H>fix 

r=0.65 and E>fix r=0.31). This greater stability of the H>E contrast plausibly reflects the 

fact that it factors out variability due to state differences, thus honing in on the relevant 

variability, related to the level of the MD network’s activity. For each participant, we 

averaged the H>E effect size across the 18 MD fROIs to derive a single measure because the 

H>E effect sizes were strongly correlated across the 18 regions (rs=0.45-0.88; Fig. 2c), 

replicating Mineroff et al., 2018, and in line with general evidence of the MD brain regions 

forming a tightly functionally integrated system (Assem et al., 2020; Blank et al., 2014; 

Paunov et al., 2019).

To ensure that the stability of the MD H>E effect size did not depend on the particular 

details of the fROI definition (i.e., top 10% of most responsive voxels within the masks), we 

also extracted the effect sizes from the fROIs defined as the top 20% and top 30% of most 

responsive voxels. The extracted H>E effect sizes were almost perfectly correlated with 

those extracted from the top 10% fROIs (20% vs 10%, r=0.99, p<0.0001; 30% vs 10%, 

r=0.98, p<0.0001). Thus, we proceed to use the H>E effect sizes extracted from the original 

(10%) fROIs.

For each participant, we used behavioral measures from the spatial WM task (overall 

accuracies and RTs), and one brain activation measure (H>E effect sizes averaged across the 

18 MD ROIs). The critical analyses revealed that larger MD H>E effect sizes were 

associated with more accurate (Pearson’s r=0.44, Spearman’s r=0.42, both ps<0.0001) and 

faster (Pearson’s r=−0.29, Spearman’s r=−0.29, both ps<0.0001; Fig. 2e) performance. To 
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further test the predictive power of MD H>E effect sizes, we cross-compared brain-behavior 

relationships across runs (Dubois & Adolphs, 2016) and found that MD H>E effect sizes in 

run 1 correlated with both accuracies (Pearson’s r=0.34, Spearman’s r=0.33, both 

ps<0.0001) and RTs (Pearson’s r=−0.22, Spearman’s r=−0.26, both ps<0.0001) in run 2, and 

MD H>E effect sizes in run 2 correlated with accuracies (Pearson’s r=0.40, Spearman’s 

r=0.38, both ps<0.0001) and RTs (Pearson’s r=−0.27, Spearman’s r=−0.27, both ps<0.0001) 

in Run 1.

Next, to test the generalizability of the relationship between MD activation and behavior, we 

asked whether MD H>E effect sizes explain variance in fluid intelligence, as measured with 

the Kaufman Brief Intelligence Test (KBIT) (Kaufman & Kaufman, 2014) in a subset of 

participants (n=114). Indeed, larger MD H>E effect sizes were associated with higher 

intelligence quotient (IQ) scores (Pearson’s r=0.34, p<0.0002, normalized R2(R2
H>E vs IQ/

R2
H>E reliability)=21%; Spearman’s r=0.41, p<0.0001 Fig. 2e). This relationship was still 

significant after controlling for WM accuracy using a partial correlation analysis (Pearson’s 

r=0.26, p=0.0061; Spearman’s r=0.34, p=0.0003), suggesting that MD activity explains 

unique variance captured by the fluid intelligence test over and above any shared working 

memory component between the test and the task.

These results thus support a positive association between MD activity and fluid cognitive 

abilities. In the next section we assess the selectivity of this MD-behavior relationship.

Language network activity and behavior

Does the strength of brain activity outside of the MD network explain variance in executive 

abilities? We tested the selectivity of the MD-behavior relationship by examining another 

large-scale network implicated in high-level cognition: the frontotemporal language-

selective network in the left hemisphere (Fedorenko et al., 2011).

We extracted the language network’s activity during a reading task (Fedorenko et al., 2010) 

(Sentences>Nonwords (S>N) contrast; Fig. 3a). Similar to MD H>E effect sizes, language 

S>N effect sizes were highly stable across runs for each language fROI individually and 

averaging across fROIs (r=0.83, p<0.0001; Fig. 3b), in line with prior work (Mahowald & 

Fedorenko, 2016; Mineroff et al., 2018).

Larger language S>N effect sizes were weakly associated with more accurate (Pearson’s 

r=0.18, p<0.01; Spearman’s r=0.17, p=0.01) but not faster (Pearson’s r=−0.08, p=0.24; 

Spearman’s r=−0.10, p=0.14) performance on the spatial WM task (Fig. 3c). We also 

observed a weak trend for a relationship between S>N effect sizes and IQ scores (Pearson’s 

r=0.16, p=0.09; Spearman’s r=0.15, p=0.11) (Fig. 3c). Critically, however, controlling for 

the size of the MD H>E effects, in a partial correlation analysis, abolished the associations 

between language S>N effect sizes and the behavioral measures (spatial WM accuracies: 

Pearson’s r=0.11, p=0.10, Spearman’s r=0.18, p=0.09; IQ scores: Pearson’s r=0.14, p=0.14, 

Spearman’s r=0.11, p=0.25; Fig. 3d). In contrast, controlling for the size of the language 

S>N effects did not affect the relationship between MD H>E effect sizes and the behavioral 

measures (spatial WM accuracies: Pearson’s r=0.42 cf. r=0.44; spatial WM RTs: Pearson’s 

r=−0.27 cf. r=−0.29; IQ scores: Pearson’s r=0.34 cf. r=0.35; all ps<0.001).
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In line with findings from brain lesion studies, these results confirm the selective 

relationship between the MD network and executive functions / fluid intelligence.

Effect of sample size and reliability of the fMRI activity on brain-behavior associations

In a further attempt to explain discrepancies in the prior literature (e.g., some studies finding 

that stronger MD activity is associated with better executive abilities, but other studies 

finding the opposite pattern, as discussed in the Introduction), we examined the effects of 

sample size and reliability of the fMRI effect sizes on the brain-behavior relationships 

(Gelman & Carlin, 2014). We used two indices of MD activity that differed in their 

reliability – (1) MD H>E effect size used in the main analysis above (a highly reliable 

measure, with the across-runs correlation of Pearson’s r=0.74) and (2) MD E>Fix effect size 

(a less reliable measure, with the across-runs correlation of Pearson’s r=0.31) – and 

examined their relationship to IQ scores.

Samples of different sizes (ranging from 10 to 110, in increments of 10) were randomly 

selected from our set of 114 participants. For each sample, we computed a correlation 

between each of the two activity measures and IQ scores. This process was repeated 1,000 

times per sample size. The resulting correlations were then examined for their sign, size, and 

significance. The results, shown in Fig. 4 (left), clearly demonstrate that a combination of 

small samples and brain activity measures of low reliability (e.g., MD E>fix effect size), like 

those used in many earlier studies, can produce a significant (p<0.05) correlation of the 

opposite sign to that observed in a larger population (red dots with a negative correlation). 

This problem is diminished, but not eliminated, when a reliable index like the MD H>E 

effect size is used (Fig. 4, right). The results also demonstrate that inflated correlations that 

are often observed in small samples are not eliminated even when a reliable activity measure 

is used.

The results from this analysis also challenge the claim of a negative association between MD 

activity and performance observed in easier tasks. As demonstrated above, at least in this 

paradigm, brain activity during a relatively easy executive task was not reliable within 

individuals across runs. This low reliability could yield correlations of opposite sign. 

However, even with large sample sizes, the MD E>fix effect size shows a weak positive, not 

negative, association with IQ scores (Fig. 4, left).

Discussion

In a large set of participants, we examined the relationship between activity in the fronto-

parietal “multiple-demand (MD)” network (Duncan, 2010, 2013), on the one hand, and 

executive abilities and fluid intelligence, on the other. The brain regions of interest were 

defined in individuals using a functional localizer task (e.g. Fedorenko et al., 2013). We 

observed a robust positive association between the strength of activation in the MD network 

and performance on a spatial working memory (WM) task in the scanner, as well as IQ 

measured independently. We also examined the specificity of this relationship by 

considering another network important for high-level cognition – the fronto-temporal 

language-selective network (Fedorenko et al., 2011). Although the strength of activation in 

this network showed a weak positive association with some of the behavioral measures, 
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these relationships were eliminated once the level of the MD network’s activity was taken 

into account (controlling for the level of the language network’s activity did not affect the 

MD-behavior relationships). Finally, we showed how small sample sizes and/or the use of 

brain activity measures of low reliability, as used in many earlier studies (Dunst et al., 2014; 

Haier et al., 1988; Lipp et al., 2012; Rypma et al., 2006), could produce inflated and/or the 

opposite-sign correlations between brain and behavior. To our knowledge, our relatively 

large sample size, coupled with the participant-specific functional localization approach to 

defining the regions of interest (Nieto-Castañón & Fedorenko, 2012; Saxe et al., 2006), 

provides the strongest evidence to date for a positive association between the MD network’s 

activity and behavioral measures of executive abilities and fluid intelligence. This evidence 

aligns well with findings from lesion studies that have also reported a selective relationship 

between fronto-parietal regions and fluid cognitive abilities (Duncan et al., 1995; Glascher et 

al., 2010; Roca et al., 2010; Warren et al., 2014; Woolgar et al., 2018, 2010).

Constraints on generality

Some limitations for our study are worth noting (Simons, Shoda, & Lindsay, 2017). First, 

some researchers have previously tried to explain the discrepancies in the MD-behavior 

literature by alluding to differences in the age of participants across studies (Reuter-Lorenz 

et al., 2000; Rypma & Esposito, 2000), arguing that the MD-behavior relationship may 

change across the lifespan. These changes may be driven by processes like cognitive reserve 

and brain maintenance in old age (Nyberg & Pudas, 2019; Sala-Llonch, Bartres-Faz, & 

Junque, 2015; Stern, 2017) or reorganization of neurocognitive architecture in adolescents 

(Simpson-Kent et al., 2020). The age range in our sample (25th-75th percentile = 20-25) is 

too narrow to evaluate this hypothesis rigorously. That said, the early studies that had 

motivated this hypothesis a) used small sample sizes (e.g. Rypma and Esposito, 2000), b) 

used task>fixation activation measures that are likely to be unreliable, and c) did not take 

into account inter-individual variability in the locations of the MD regions, which may be 

especially important given the increased variability in the functional architecture of older 

adults (Geerligs, Tsvetanov, Cam-CAN, & Henson, 2017).

Second, as briefly mentioned in the introduction, some researchers have argued that negative 

MD-behavior associations can be observed during some easy tasks. For example, a recent 

study using the HCP n-back task (Barch et al., 2013) demonstrates that whereas MD 

activations during the 2-back condition are positively associated with general intelligence, 

MD activations during the 0-back condition show a negative association (Sripada et al., 

2020). It is plausible that our easy condition is more cognitively demanding than the 0-back 

condition, and that is why we did not observe a negative correlation between the E>Fix 

activations and IQ scores (Fig. 4, left).

More broadly, there are situations where improvement in performance is associated with 

decreases in MD activity e.g. in paradigms with extended motor skills practice (Dayan & 

Cohen, 2011; Steele & Penhune, 2010) or task rules practice (Hampshire et al., 2019; Ruge 

& Wolfensteller, 2010). In such cases, efficient performance is plausibly mediated by re-

configuration of brain processes. Extended practice can be conceived as a shift from a novel 

(hard) task to a routine (easy) task. Shifts from hard to easy tasks are known to be associated 
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with anterior to posterior shifts in peak MD activations (Assem et al., 2020; Badre, 2008; 

Crittenden & Duncan, 2014; Shashidhara, Mitchell, Erez, & Duncan, 2019). Thus, MD 

activation decreases with practice could reflect these hard to easy topographical activation 

shifts.

Third, our study used MD activity estimates during a single task. An estimate derived from 

multiple MD tasks may more accurately capture the variability in the MD network’s 

engagement across individuals. Similarly, our measure of fluid intelligence was derived from 

a single IQ test (KBIT; Kaufman and Kaufman, 2013). A measure of fluid intelligence based 

on a diverse battery of executive function tasks may be more reliable. Nevertheless, we note 

that in our study (a) the size of the correlation we observed (r=~0.35) is within the range of 

correlations reported in recent studies that have used a multi-task-based estimate of fluid 

intelligence (Dubois et al., 2018; Sripada et al., 2020), (b) the relation between MD-IQ 

survived after controlling for the correlation between IQ and WM performance, highlighting 

the unique behavioral variance captured by the KBIT test over and above the WM task.

MD system activation and intelligence

We estimated MD activity using a blocked design experiment, thus averaging across 

multiple cognitive processes (in our case, encoding of information into working memory, 

maintaining and dynamically updating it, and finally, retrieving it from working memory at 

the decision-making step). Temporally finer-grained MD activity estimates at particular 

steps in an executive-function task may more precisely target the core neural computations 

that relate to executive abilities / fluid intelligence. For instance, a recent event-related study 

demonstrated robust MD activity at each of the stages above (Soreq, Leech, & Hampshire, 

2019). Stronger MD activation during more difficult tasks is thought to reflect the increased 

demand on integrating more and/or different kinds of information in a focused attentional 

structure to solve the task at hand (Assem et al., 2020; Duncan, 2013). For example, in a 

recent event-related study, individuals with lower intelligence scores, compared to those with 

higher scores, showed weaker MD activity during the critical step of target detection 

suggesting a failure to correctly integrate task rules in the attentional structure guiding 

successful behavior (Tschentscher et al., 2017). Thus, stronger MD activity across an entire 

block could plausibly reflect less frequent lapses of “attentional focus” – needed for the 

correct binding of information to solve the task at hand – and thus better behavioral 

performance.

A general challenge with individual-level estimates from event-related designs is that they 

are likely to be more noisy / less reliable, although with sufficient data per participant, this 

limitation could be overcome. An early study (Gray et al., 2003) with 60 participants found a 

significant difference between higher and lower IQ individuals in MD activity when it was 

estimated from individual lure trials (in a n-back task) but not when MD activity was 

estimated across an entire block of trials. In our study, we demonstrate that MD activity 

estimated from a block of trials carries meaningful variance about individual differences in 

executive performance and fluid intelligence.
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Relationship of executive abilities with language and other non-MD regions

Studies of brain lesions have demonstrated repeatedly that there is no relation between 

lesions in the language network and executive abilities (Fedorenko and Varley, 2016; 

Woolgar et al., 2018; cf. Baldo et al., 2010). To our knowledge, this is the first study to 

investigate the relationship between brain activity in the language network and executive 

abilities / intelligence employing a large sample size and individual-subject fROIs. In line 

with lesion findings, we show that controlling for MD activity abolishes any relationship 

between activity in the language network and spatial WM performance and IQ scores. The 

weak language-behavior association observed prior to controlling for MD activity is 

plausibly related to a trait factor like vascularization, or a state factor like arousal.

More generally, as we have briefly alluded to in the introduction, several studies have linked 

executive abilities and fluid intelligence to diverse structural and functional brain measures, 

including outside the boundaries of the MD network. For example, a recent large-scale study 

using the UK Biobank dataset (n=~30,000) reported that total brain volume, as well as 

multiple global measures of grey and white matter macro- and microstructure (especially, in 

older participants), explained substantial variance in fluid intelligence (Cox, Ritchie, Fawns-

Ritchie, Tucker-Drob, & Deary, 2019). Another study used the HCP task fMRI dataset to 

show that task-related activations in many brain regions correlates to some extent with 

general intelligence. However, executive tasks engaging MD regions were the best predictors 

of individual differences in general intelligence (Sripada et al., 2020), in line with our 

findings. The relationship among the different neural measures that have been shown to 

predict variation in fluid intelligence, including the one used in the current study (i.e., the 

relative increase in the MD activity for a more difficult compared to an easier version of an 

executive task), is not known. Further studies that assess the reliability of those diverse brain 

measures, extracted with analysis pipelines that respect inter-individual variability in 

structure (Kharabian Masouleh, Eickhoff, Hoffstaedter, & Genon, 2019) and function 

(Coalson, Essen, & Glasser, 2018; Nieto-Castañón & Fedorenko, 2012), and direct 

comparisons among those measures can help clarify their unique and shared contributions to 

explaining variability in executive abilities and intelligence. Given the complexity of human 

reasoning abilities, multiple brain processes likely contribute, but we suggest that the MD 

network is a key player governing individual differences in fluid intelligence and executive 

abilities, in line with the fact that damage to MD structures selectively and robustly predicts 

intelligence losses.

Implications for future studies

There are many long-recognized challenges facing brain-behavior individual-differences 

studies (Dubois & Adolphs, 2016). In the introduction we highlighted the critical role of 

individually defined functional regions to correctly delineate brain-behavior relationships. 

Another challenge concerns small sample sizes. Our results demonstrate that typical sample 

sizes (n=10-30) in neuroimaging studies can produce misleading and highly inflated brain-

behavior correlations. This presents a significant challenge for laboratory-based research, 

clinical studies with difficult to recruit patients and longitudinal studies that opt for multiple 

scanning sessions at the expense of increasing sample size.
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We also demonstrate how unreliable brain or behavioral measures (i.e. not stable within an 

individual across runs/sessions) can result in invalid and inflated correlations. Reliability can 

also be compromised by using tasks that do not generate enough between-individuals 

variance (Hedge, Powell, & Sumner, 2018). This is a general challenge facing integrating 

experimental and individual differences approaches. For example, response inhibition tasks 

(e.g. stroop, Go/No-Go) produce replicable experimental effects yet studies on individual 

differences in performance on these tasks commonly fail to group them in a single construct 

(Hedge et al., 2018; Rey-Mermet, Gade, Souza, von Bastian, & Oberauer, 2019) or relate 

them reliably to common brain mechanisms (Rosenberg et al., 2019; Wager et al., 2005).

Conclusions

Against a backdrop of contradictory prior findings, we demonstrate a robust positive and 

selective association between the MD network’s activity level, on the one hand, and 

executive abilities and fluid intelligence, on the other. Our analyses also help resolve some 

of the prior contradictions in the literature. Given its high reliability, the MD activity 

measure used here, and measures obtained from similarly strong manipulations of cognitive 

demand, can be used as a neural marker to further probe variability in executive abilities 

both in the typical population and among individuals with cognitive and psychiatric 

disorders. This marker can also serve as a promising neural bridge (Braver, Cole, & Yarkoni, 

2010) between behavioral variability and genetic variability associated with differences in 

fluid intelligence (Deary, Spinath, & Bates, 2006; Plomin & Spinath, 2004).
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Figure 1. 
(a) Sample trials of the in-scanner spatial WM task, and (b) the reliability of its behavioral 

measures (averaging across the Easy and Hard conditions) across runs (in the full sample of 

n=216 participants) and with an independent measure of IQ (in a subset of n=114 

participants).
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Figure 2. MD activity and behavior.
(a) Surface projection of the volumetric anatomical masks used to constrain individual-

specific functional activations. (b) Surface projection of the volumetric unthresholded group 

average activation map (beta estimates) for the spatial WM Hard>Easy (H>E) contrast. 

Please note that all analyses were performed in volume space, and surface projections—here 

and in other figures—are for illustrative purposes only and may include slight distortions 

resulting from volume-to-surface transformations. (Surface projection was performed using 

Connectome Workbench (humanconnectome.org/software/connectome-workbench) function 
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“-volume-to-surface-mapping” using trilinear interpolation and a MNI reconstructed mid-

thickness surface and displayed on an inflated HCP surface (https://balsa.wustl.edu/

reference/show/pkXDZ).) (c) Pearson correlation (see text for highly similar Spearman 

values) between MD regions for the H>E contrast, computed across individuals (n = 216). 

(d) Stability of MD H>E effect sizes across runs across individuals (n = 216). (e) MD H>E 

effect sizes and behavior relationship: larger MD H>E effect sizes are associated with better 

accuracy (left) and faster RTs (middle) in the spatial WM task (n = 216), as well as higher 

IQ scores (n = 114) (right) as measured by an independent test (KBIT).
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Figure 3. Language network activity and behavior.
(a) Surface projection of the volumetric unthresholded group average activation map (beta 

estimates) for the language Sentences>Nonwords (S>N) contrast. (b) Stability of language 

S>N effect sizes across runs across individuals (n=216) (Pearson correlations are used in the 

figures; see text for highly similar Spearman values). (c) Language S>N effect sizes and 

behavior relationship: larger language S>N effect sizes are weakly associated with better 

accuracy in the spatial WM task (left) and higher IQ scores (right), but not RTs in the WM 

task (middle). (d) Language S>N effect sizes and behavior relationship, controlling for MD 
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H>E effect sizes: the weak relationships between language S>N effect sizes and behavior 

observed in (c) are now abolished.
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Figure 4. Effects of sample size and the reliability of the brain measure on brain-behavior 
relationships.
On the x-axis in both panels, we show correlations (1,000 per sample) obtained for samples 

of different sizes. In the left panel, we use a brain activity measure of low reliability (MD 

E>Fix effect size), and in the right panel, we use a highly reliable brain activity measure 

(MD H>E effect size). Correlations significant at the p<0.05 level are marked in red.
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Table 1.

Details of the design, materials, and procedure for the different variants of the language localizer task.

Version

A B C D

Number of participants 182 12 1 8

Task (Passive Reading/Listening / Memory) PR M PL M

Words / nonwords per trial 12 12 variable 12

Trial duration (ms) 6,000 6000 18000 6000

 Fixation 100 300 0 300

 Presentation of each word / nonword 450 350 variable 350

 Probe (M) + button press (M/PR) 400 1000 -- 1000

 Fixation 100 500 0 500

Trials per block 3 3 1 3

Block duration (s) 18 18 18 18

Blocks per condition (per run) 8 8 8 6

Conditions Sentences
Nonwords

Sentences
Nonwords

Intact speech
Degraded speech

Sentences
Nonwords
Word-lists (not used here)

Fixation block duration (s) 14 18 14 18

Number of fixation blocks per run 5 5 5 4

Total run time (s) 358 378 358 396

Number of runs 2 2 2 2-3
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