UC Berkeley
UC Berkeley Previously Published Works

Title
CRITICAL UNMAKING Toward a Queer Computation

Permalink
https://escholarship.org/uc/item/0cqg870wh

ISBN
978-1-138-84430-8

Author
Gaboury, Jacob

Publication Date
2018

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/0cq870wh
https://escholarship.org
http://www.cdlib.org/

49

CRITICAL
UNMAKING

Toward a
Queer Computation

Jacob Gaboury

If there is an ethos that drives our contemporary digital culture, it is the belief that technology
improves over time and that improvements in technology bring improvements to our lives.
It is this desire for the new that supports our faith in the potential good of technology in
bringing about a better future (Kurzweil 1990). Simply put: technology drives progress. This
belief is by no means new—indeed, this progressivist faith in technology is a defining feature
of the postindustrial west—but it has been accelerated by computational technologies whose
exponential growth has become the self-fulfilling prophecy of our digital age (Moore 1965).
With the release of each new software update, each new generation of smartphone or game
console, and each new operating system, we update and upgrade. We want what is faster
and newer, or perhaps what we have no longer functions as it should or once did. We are
compelled to engage in this drive toward the new—this push toward a technological future
that is always on the horizon, always deferred.

Left out of these narratives of progress are the many ways in which technology fails us
and the ways we fail with and through technology. Not all digital technologies work as they
should. Many fail to make money or disrupt, transform, and revolutionize the world as
they so often claim. Often, technologies fail to be adopted by users, or simply fail to work
altogether. Yet our belief in technological progress asks us to ignore the bugs, glitches, and
obsolescence built into technical systems (Slade 2006; Krapp 2011; Parikka 2011). Moreover,
it asks us to limit our use of these objects to their most productive forms, and to deny any
use outside these sanctioned boundaries, disavowing them as somehow failed. Under these
terms, failure becomes much more than an unfortunate or unforeseen error; it becomes a
refusal of this impulse toward compulsory production, a disruptive withholding of one’s
identity, activity, and process time. Indeed, we might argue that the production of failure
within technological systems in this way constitutes a radical queer practice.

Radical, perhaps, but why queer? To be sure, queerness is not the only means through
which we might understand technological failure, and indeed many forms of failure or mis-
use might explicitly work against queer forms of life. One need only look to the disruptive
and often violent use of technology to harass and threaten women, queer and trans people,
and people of color online to see the limits of non-normative technological use as a radical

483



JACOB GABOURY

practice (Massanari 2015). Likewise, failure is often reframed and recuperated as a useful step
along the road to innovation and success (Farson & Keyes 2003; Harford 2011; Firestein 2015).
Nonetheless, there is great value in thinking about queerness and computation together, as
digital media technologies continue to have a transformative effect on the ways we construct
identity and build community. As such, it seems crucial that we find new ways to make queer
theory speak to technology on its own terms. To this end, this chapter looks to “compute
queerness” by both making it subject to the logic of computation and asking it to act com-
putationally; that is, to become executable (Galloway 2004: 165). In doing so, it proposes a
practice of critical unmaking, foregrounding queer techniques of refusal, misuse, and disruption
that must nonetheless work with and through contemporary digital technologies.

Fail

Queerness and queer theory offer us an ideal lens through which to understand and critique
the progressivist teleology that drives the production of contemporary technology. Just as
failure offers us a way to think outside the compulsion toward progress through technological
production (Nunes 2011; Menkman 2011), queer theory has for decades worked to critique
the demands of biological reproduction under compulsory heterosexuality and the drive
toward a future that is inaccessible to queer forms of life.

This connection between queerness and failure is embodied in a wide range of theoretical
practices and intellectual histories reaching back to the start of the twentieth century. As literary
theorist, Heather Love, notes in her work on loss and the politics of queer history, “same-
sex desire is marked by a long history of association with failure, impossibility and loss,” such
that “homosexuality and homosexuals serve as scapegoats for the failures and impossibilities
of desire itself” (2009: 21). Queerness here is marked by failure in that it not only exists
outside a given norm, but cannot be made legible or useful to a given society. For early queer
theorist, Guy Hocquenghem, it is capitalism that marks the homosexual as failed, where fail-
ure is understood as an incapacity for proper reproductive love. Without a clear connection
between sociality, relationality, family, sex, desire, and consumption as afforded to heterosexual
reproduction, homosexuality cannot be made productive to capital and is re-territorialized
as a failed state of being (Hocquenghem 1993 [1972]: 93—112). For literary scholars such as
Lee Edelman, the queer subject has always been epistemologically bound to negativity,
occupying the space of the social order’s death drive, an irrecuperable excess whose ethical
value lies in “accepting its figural status as resistance to the viability of the social while insisting
on the inextricability of such resistance from every social structure” (2004: 3). Queerness
here 1s marked by its own illegibility to the social order, a social order that Edelman identifies
as reproductive futurism. Indeed, this illegibility is its very value. For Edelman, we must resist
the legibility of a secure political identity lest we lose the radical difference that queerness
offers. Refusing this move away from the political, Jack Halberstam (2011) has taken up the
radical potential of queer failure to suggest that living within failure and refusing the terms
of success pushed onto us by capitalism, patriarchy, heteronormativity, neoliberalism, and
other compulsory norms might allow for new ways of being in the world that need not
disavow the possibility of a political imaginary, that may indeed form the basis for a politics
of refusal. Failure here becomes a radical practice, one that is not without a future but instead
reimagines how that future might come into being.

Simply put, queer theory has, for decades, engaged in the difficult and at times contradictory
task of marking a political identity bound by a refusal to be made useful or productive.
Deploying queer theory in this way asks us to think through failure as not only a disruptive

484



CRITICAL UNMAKING

technical practice but also a radical lived experience that might allow for an embodied critique
of technological futurism. To compute queerly, then, is to acknowledge, embrace, and enact
a practice of radical technological failure. It is to engage in critical unmaking: to make central
those externalities—exploits, bugs, breakdown, abuse, and misuse—of our digital culture that,
while pervasive, we nonetheless disavow. To compute in this way is to work against the
neoliberal drive toward the capture and exploitation of the self by technology; to work
against the demands of pervasive visibility by means of always-on devices, against the quanti-
fication of affect, leisure, and solitude for the purpose of value extraction; and to disrupt
the fantasy that technology—through the aggregation and quantification of data—allows us
access to some unmediated truth (boyd & Crawford 2012; Crary 2013). In acknowledging,
accepting, and even producing failure, queer computation seeks to make clear the values
and assumptions that drive our culture of technological development and to offer alternate
modes for living with and through technology. But what might a queer computing look
like?

Glitch

There are several objects to which we might turn to identify a queer computational form,
but perhaps the most immediately recognizable would be small but playful forms of disruption
such as the error or glitch. A glitch is a temporary malfunction within a technical, usually
computational, system. Glitches are unexpected, but importantly they do not shut down a
system entirely. They temporarily transform a technical object by producing an unintended
result or error, and in the process lay bare its material function. A glitch is an outlier, an
aberration. As such, it should be no surprise that it has been for decades an extremely pro-
ductive site for artistic and critical investigation into the aesthetics and politics of digital media.
Early net art artists such as the European art collective, Jodi, have, since the 1990s, used markup
languages and videogame modification as platforms for disruptive play (Jodi 2001; Adang
2013). This interest in shattering the illusion of a medium by laying bare the processes and
materials that produce its technical form is a longstanding tradition in modernist art and the
avant-garde. Nonetheless, the glitch offers a unique engagement not simply with the specificity
of its medium, but in its negotiation with failure as a temporally delimited and unexpected
transformation in the function of computational devices.

In recent years, the aesthetics of glitch have grown in both visibility and popularity, with
a number of artists adopting techniques for producing glitch in a variety of visual works to
both critical and aesthetic ends. The artist, Rosa Menkman, deals explicitly with the disruptive
potential of glitch as both an unexpected and engineered form. In her 2010 work, “A
Vernacular of File Formats,” Menkman offers a didactic visual text that points at ways to
exploit and deconstruct the organizations of file formats into new designs. Repeatedly
glitching an image of herself in a variety of file formats (e.g., JPEG, BMP, TIFF, and RAW),
Menkman attempts to demonstrate the particularity of each, making visible its method
of compression, its bitmap structure, and its analog to digital conversion. In one example,
Menkman databends a GIF file, producing a horizontal blur that resembles a VCR tracking
error. The resulting image appears warped and smeared across the frame in jagged interlaced
repetitions. Alongside the image, Menkman notes:

The GIF format uses a four pass dimensional interlacing strategy. This basically means

that the image, consisting of different rows of pixels, decodes some rows of pixels
before other rows. The example image shows the displacement of the different rows

485



JACOB GABOURY

during weaving (the putting together of the two layers), resulting in “combining
artifacts” with “jagged edges.”
(Menkman 2011: 21)

Bending each format multiple times, Menkman produces a surprisingly diverse range of visual
glitches. In breaking the technology in this way, Menkman shows that the verisimilitude of
each image is highly dependent on the formal specificity of the image file. What we are left
with after the glitch is not the image itself but the file format revealed (Sterne 2012).

Here, the glitch offers both a compelling and frustrating example of queer computation.
To be sure, the work of Menkman and others demonstrates the disruptive and didactic poten-
tial of technological failure, but it is also readily recuperable as a visual aesthetic divorced
from critique. The proliferation of glitch as an aesthetic practice in this way diminishes its
radical potential, a transformation that Menkman openly acknowledges. Differentiating glitch
from failure itself, Menkman notes, “while failure is a phenomenon to overcome, the
glitch is a phenomenon that will be incorporated into new processes and conditions of tech-
nological design or cultural meaning” (2011: 27). Glitch is, like noise, a relative and subjective
phenomenon. All channels are noisy channels. All systems contain glitch. These phenomena
have no essential quality; they are simply that which we disavow as irregular, unwanted, or
queer (Chang 2013; Halberstam 2013).

This contradiction, whereby the radical potential of glitch is transformed into a productive
aesthetic practice, echoes the concerns of Edelman and others with regards to queerness. In
marking failure as an explicit and repeatable practice, it is abstracted from its critical potential
and recuperated by technological futurism. Here, we find ourselves in a double bind. While
we may desire to identify or prescribe a queer computational form that we might use to
disrupt or transform our digital landscape, we must acknowledge that any such prescription
opens queerness to a radical visibility such that it may be repurposed to serve a normative
ideology. How can we break free of this bind? What queer forms cannot be recuperated in
this way?

Taken to an extreme, we might logically argue that the only truly queer computational
form is one that fully embodies the radical potential of failure. If any investment in productivity
or futurity is normatively recuperable, then the only queer computer is broken, nonfunctional,
or destroyed. Surely, complete annihilation is the most radical, most extreme form of failure
possible. Yet, while it may be compelling to smash our computers in an act of queer rebellion,
the radical potential of such a gesture ends there. A broken machine cannot compute, queerly
or otherwise. It is a brick, a doorstop; it has no radical potential for computation as it has no
computational function. Likewise, it may be compelling to simply opt out of digital
technologies altogether, supposing that digital media are irreconcilable with a radical queer
politics. While Luddism is certainly a form of critique, it is deeply limited in its efficacy
here. We cannot simply ignore the pervasive influence of digital technologies on all forms
of contemporary life, queer and otherwise, and we must find ways to negotiate queer
technological practices while working against the recuperative drive toward productivity and
futurity.

Norm

It would appear that queer computation cannot simply offer an antinormative critique of
digital media. Instead, it must offer a reframing of the goals, drives, and interests of these
media as technologies in which queerness is necessarily situated. This presents a challenge,

486



CRITICAL UNMAKING

given how closely queer theory and indeed queer life hews to a politics of antinormativity.
Indeed, antinormativity is in many ways the ground on which queer theory was formed. As
Robyn Wiegman and Elizabeth Wilson have argued, “nearly every queer theoretical itinerary
of analysis that now matters is informed by the prevailing supposition that a critique of
normativity marks the spot where queer and theory meet” (2015: 1). And yet computation
is built on and requires norms in order to function at all.

The computer is a precisely engineered machine, and computer science is a discipline made
possible through the arrangement of incredibly complex systems that must function with
consistency and accuracy if they are to function at all. This belief in the exceptional perfection
of computation is a founding principle of the field. Writing in 1948, John von Neumann—
a key conceptual inventor of the stored program digital computer—notes that:

A computing machine is one of the exceptional artifacts. They not only have to
perform a billion or more steps in a short time, but in a considerable part of the
procedure (and this is a part that is rigorously specified in advance) they are permitted
not a single error. In fact, in order to be sure that the whole machine is operative,
and that no potentially degenerative malfunctions have set in, the present practice
usually requires that no error should occur anywhere in the entire procedure.
(von Neumann 1961: 292)

Computers require near perfect conditions to operate. A single error might produce an
incorrect calculation or, worse still, cause a machine to fail altogether. Yet this ideal of a
perfectly functioning technology is precisely that: an ideal. Far more common than the
successful execution of a given calculation—particularly in von Neumann’s own time—were
bugs, errors, and failure. This was due in no small part to the high degree of human labor
involved in the operation of a mechanical computer at that time. Programming, data input,
and the interpretation of output were all dependent on mathematical calculation and
interpretation by individuals known as either “human computers” or “computers,” many of
whom were women (Light 1999; Grier 2007; Ensmenger 2010). Likewise, the machines
themselves were highly unstable, reliant on unreliable vacuum tubes and experimental
hardware long since phased out of our modern machines. Yet our belief in the scientific
precision of computation persists, due in part to the increasing malleability of computa-
tional systems, which have automated many of these processes in an attempt to account for
human error, unexplained glitches, and other forms of inconsistency at those sites where
the analog world interfaces with the logic of the digital. Put another way, in spite of this
ideal of scientific precision, modern technical systems are, to a degree, incredibly tolerant of
failure and misuse.

What, then, might we understand as the “normal” conditions under which a modern
computer functions? If this ideal of a perfectly running machine is little more than a fantasy,
perhaps a more accurate description might be that computation requires certain base conditions
to be met, a set of rules or procedures known as protocols. These protocols constitute the
control structure of a given computational form. Unless they are satisfied, a machine will not
boot, run, or compute. Yet, problematically, these protocols are often designed and described
as being without an explicit politics, that is, as postideological. On the topic of distributed
network protocols, Alexander Galloway notes:

[I]declogy is a problem to be forgotten or subsumed: networks are specifically
conceived and designed as those things that both are nonideological in their conception

487



JACOB GABOURY

(we just want to “get things done”), but also post-ideological in their architecture (in
that they acknowledge and co-opt the very terms of previous ideological debates,
things like heterogeneity, difference, agency, and subject formation).

(Galloway 2014)

Protocols are, by design, expansive and inclusive, but this disavowal of their own political
agency also makes them insidious, even dangerous. While technical protocols are intended
to facilitate communication and interaction rather than restrict use, they nonetheless shape
what is permissible to a given technology. As such, while a technology may allow for queer
uses, it will nonetheless demand strict adherence to certain base assumptions. In this way,
protocols set the conditions for discourse itself.

This normalization of the terms of engagement can have wide-reaching effects, particu-
larly on minority populations whose needs, desires, and bodies are often excluded from the
norms that structure protocological assumptions. Scholars such as Dean Spade (2011), Simone
Browne (2015), and Shoshana Magnet (2011) have shown the many ways that the norms we
program into our technologies have a disproportionate effect on non-normative bodies and
identities, enacting a double violence in which subjects are made hyper-visible in their differ-
ence and also violently excluded from those sites at which normalizing technologies are used:
airport security, police surveillance, and state and national identification documentation, for
instance.

In the face of these protocological norms that set the very terms of engagement in our
digital society, antinormativity offers us very little. How, then, can we queer, if not as a
resistance to the norms that govern a particular system?

Code

I would suggest that our queer imperative must be to identify the ideological assumptions
that produce protocologial norms and then subvert them—to make visible through a queer
critical practice the values that structure our technology. If it is not possible to work outside
the conditions for engagement produced by a given technology, then we must work with
technical practices to critique and disrupt the values and assumptions that structure that tech-
nology. We must acknowledge the value in making as a productive practice that creates the
conditions for political intervention, as well as the need for a critical unmaking as both a means
to resist recuperation and a mode of being that exists outside of protocological norms—that
is, as a form of life that cannot be made productive to technology. In other words, we must
begin by asking ourselves a question: What does our protocol value?

To begin to think through this challenge, I put forward here an exemplary practice: a
playful, half-serious, yet deeply political form of computational subversion known as the
esoteric programming language or esolang. Esolangs are a group of weird, largely unused tech-
nical languages built for the purpose of testing the limits of programming language design.
They seem well suited to the kind of queer computation described here as they play at the
limits of computational logic but generally strive to be computationally complete. Esolangs
can theoretically be used to program anything that a more standard programming language
could be used for. However, they are largely avoided due to their bizarre or intentionally
frustrating form. Esolangs take on many forms, from playful parodies of existing languages to
maddeningly complex languages that test the very limits of what we understand as code (Mateas
& Montfort 2005).

488



CRITICAL UNMAKING

The first known esolang is INTER CAL, and it was developed in 1972 by Don Woods
and James Lyon (Raymond 2015). INTERCAL began largely as a send-up of programing
languages from the 1960s, such as COBOL, FORTRAN, and APL. Borrowing and trans-
forming the vocabulary and structure of these languages, INTERCAL “reads” as a series of
clever puns and reversals designed for a technical audience. It confounds where it should
clarify, plays language games, and makes bad jokes; it frustrates utility, but it also opens new
avenues for playful expression not available to more rigid or purposeful linguistic forms. The
name INTERCAL, for example, stands for “Compiler Language with No Pronounceable
Acronym.” The compiler itself, called simply “ick,” is designed to skip over any text it does
not understand and cannot compile, rather than return a compiling error as with all standard
compilers. This makes debugging a particular challenge, but it also allows programmers to
comment and converse in-program through the addition of noncompilable text.

This commentary form of esolang is also the most common for artists and scholars looking
to critique the normative structure of technical language design through the lens of gender
and sexuality. For example, the artist, Zach Blas, produced the transCoder programming
language as part of his Queer Technologies (2007-12) suite. Drawing on queer linguistic
traditions of coded and obfuscated language, such as the Polari cant slang used by queer men
in Britain during the nineteenth and twentieth centuries (Baker 2002), transCoder seeks
to produce new computational forms not normally accessible to technical languages. The
language relies heavily on statements meant to play on the function of existing languages,
such as C, replacing commands like INCLUDE and FOR with tongue-in-cheek forma-
tions such as finger(), which stimulates data, and qTime(), which permits the executions
of a program to run outside of conventional computational narratives. In this sense, transCoder
plays on a major feature of esolangs, a kind of structured play that allows for “double
coding,” where meaning may be expressed as computationally complete and compilable
code, but also, on another level, as legible human language that either supplements or subverts
that code.

Still other esolangs work in precisely opposite ways, obscuring code such that it loses all
human-readable reference. One of the most famous esolangs to exhibit this feature is the
Brainfuck language, which allows for an extremely limited set of only seven commands, each
of which is represented by a single nonalphanumeric character. All commands in Brainfuck
are produced through the assembly of these seven characters, but this lack of alphanumeric
text alienates the language from anyone attempting to read it as text. This extreme minimalism
and refusal of human-readable language are what make Brainfuck notorious, but the language
is in fact Turing complete, which is to say it can be used for most any functional programming
task. While we need not be too literal in our interpretation, Brainfuck’s name seems apropos,
given how it plays on our expectation of what a programming language is and can do, fucking
with our desire for a language that prioritizes clarity and functionality. Read another way,
the language fucks with our desire for simplicity, offering up an offensively simple set of
characters that render the language all but useless. Here, we see the ways in which queer
technologies might acknowledge and redeploy the assumptions that structure a technical object
or practice, and in so doing draw attention to the ideological function of its protocols, that
is, those ideologies that its producers and users disavow.

Brainfuck has also inspired a number of derivative languages, but most notable here is the
bodyfuck language developed by artist and programmer, Nik Hanselmann, in which each of
the seven Brainfuck commands is assigned a body movement or gesture. To “write” in
bodyfuck, the programmer/performer must use their body in discrete and specific ways:

489



JACOB GABOURY

Jumping increases the memory register, ducking decreases the memory register,
moving left or right either swaps the memory register or sets a point in the “magnetic
strip” by which the head will return upon the zeroing of the preceding register
(a loop).

(Hanselmann 2009-10)

In adding an additional layer of difficulty onto an already tedious process, and invoking
the body as a physical and material apparatus that makes possible the coding of technical
systems, bodyfuck renders explicit the ways in which embodiment is both inscribed and erased
into digital technologies. As Hanselmann notes:

bodyfuck as well as the performances that it engendered places conventional
computability in tension with movements of the body. While bodyfuck maintains
its ability as to automatically compute, the process of transcribing the code into the
computer becomes an arduous task. The embedding of physical difficulty into the
creation of a computer program reifies the gaps between machine performance and
physical performance. The computer didn’t get sore. I did.

(Hanselmann 2009-10)

bodyfuck does not break the function or concept of the programming language, but instead
opens it up to new forms of failure and play by asking its programmers to consider their body
and its performance as part of a technical practice. While it is unlikely bodyfuck will ever be
used outside its initial artistic context, it points to the great potential of queer interventions
that take up and subvert the very technologies they employ.

End

To compute queerness, we must begin by acknowledging what queerness offers to a critique
of computation. In doing so, we are left with few clear answers and are instead asked to
imagine new ways to work against the normalizing influence of our technical culture while
maintaining the general functionality of the systems we inhabit. While we need not give up
on the radical potential of queerness as a means of imagining a future that is not yet here
(Munoz 2009), we must nonetheless acknowledge how futurity has been colonized by the
cultural logic of contemporary technology, and as such cannot serve as the primary vector
for queer computational critique. Thus, rather than mobilize queerness as a useful technological
apparatus, we might deploy it as part of a critical practice of unmaking.

Further Reading

Blas, Z. and W. Schirmacher (eds.) (2011) The Transreal: Political Aesthetics of Crossing Realities, New York, NY:
Atropos Press.

Gaboury, J. (2013) “On Uncomputable Numbers: The Origins of a Queer Computing,” Media-N: Journal of the
New Media Caucus, retrieved from median.newmediacaucus.org/ caa-conference-edition-2013/on-uncomputable-
numbers-the-origins-of-a-queer-computing.

Keeling, K. (2014) “Queer OS,” Cinema Journal 53(2), 152-57.

Magnet, S. (2011) When Biometrics Fail: Gender, Race, and the Technology of Identity, Durham, NC: Duke University
Press.

Mateas, M. and N. Montfort (2005) “A Box, Darkly: Obfuscation, Weird Languages, and Code Aesthetics,” in
Proceedings of the 6th Digital Arts and Culture Conference, I'T University of Copenhagen, pp. 144-53.

490



CRITICAL UNMAKING

References

Adang, L. (2013) “Untitled Project: A Cross-Disciplinary Investigation of Jodi’s Untitled Game,” New York: Rhizome,
retrieved from media.rhizome.org/artbase/documents/Untitled-Project:-A-Cross-Disciplinary-Investigation-of-
JODI%E2%80%99s-Untitled-Game.pdf.

Baker, P. (2002) Polari—The Lost Language of Gay Men, London and New York, NY: Routledge.

Blas, Z. (n.d.) TransCoder, retrieved from www.zachblas.info/projects/queer-technologies.

boyd, d. and K. Crawford (2012) “Critical Questions for Big Data: Provocations for a Cultural, Technological, and
Scholarly Phenomenon,” Information, Communication & Society 15(5), 662-79.

Browne, S. (2015) Dark Matters: On the Surveillance of Blackness, Durham, NC: Duke University Press.

Chang, E. (2014) “Queer Glitches, or, the Recuperation of Vanellope von Schweetz,” Society for Literature, Science,
and the Arts Annual Conference, Notre Dame, IN: University of Notre Dame.

Crary, J. (2014) 24/7: Late Capitalism and the Ends of Sleep, London: Verso Books.

Edelman L. (2004) No Future: Queer Theory and the Death Drive, Durham, NC: Duke University Press.

Ensmenger, N. L. (2010) The Computer Boys Take Over: Computers, Programmers, and the Politics of Technical Expertise,
Cambridge, MA: MIT Press.

Farson, R. and R. Keyes (2003) The Innovation Paradox: The Success of Failure, the Failure of Success, New York, NY:
Simon and Schuster.

Firestein, S. (2015) Failure: Why Science Is So Successful, New York, NY: Oxford University Press.

Galloway, A. R. (2004) Protocol: How Control Exists after Decentralization, Cambridge, MA: MIT Press.

Galloway, A. R. (2014) “Network Pessimism,” 11 November, retrieved from cultureandcommunication.org/
galloway/network-pessimism.

Grier, D. A. (2005) When Computers Were Human, Princeton, NJ: Princeton University Press.

Halberstam, J. (2011) The Queer Art of Failure, Durham, NC: Duke University Press.

Halberstam, J. (2013) “Queer Gaming: Gaming, Hacking, and Going Gaga,” Queer Games Conference, UC Berkeley,
retrieved from www.twitch.tv/qgcon/c/3156423.

Hanselmann, N. (2009-10) “There Is No Hardware,” M.F.A. Thesis, UC Santa Cruz, retrieved from nik.works/bodyfuck.

Harford, T. (2011) Adapt: Why Success Always Starts with Failure, New York, NY: Farrar, Straus and Giroux.

Hocquenghem, G. (1993 [1972]) “Capitalism, the Family and the Anus” in Homosexual Desire, Durham, NC: Duke
University Press, pp. 93—-112.

Jodi (2001) www jodi.org/, retrieved from jodi.org.

Krapp, P. (2011) Noise Channels: Glitch and Error in Digital Culture, Minneapolis, MN: University of Minnesota Press.

Kurzweil, R. (1990) The Age of Intelligent Machines, Cambridge, MA: MIT Press.

Light, J. S. (1999) “When Computers Were Women,” Technology and Culture 40(3), 455-83.

Love, H. (2009) Feeling Backward, Cambridge, MA: Harvard University Press.

Magnet, S. (2011) When Biometrics Fail: Gender, Race, and the Technology of Identity, Durham, NC: Duke University Press.

Massanari, A. (2015) “#Gamergate and The Fappening: How Reddit’s Algorithm, Governance, and Culture Support
Toxic Technocultures,” New Media & Society, 9 October, retrieved from nms.sagepub.com/content/early/2015/
10/07/1461444815608807.

Mateas, M. and N. Montfort (2005) “A Box, Darkly: Obfuscation, Weird Languages, and Code Aesthetics” in
Proceedings of the 6th Digital Arts and Culture Conference, I'T University of Copenhagen, pp. 144-53.

Menkman, R. (2010) “A Vernacular of File Formats,” Sunshine in My Throat, retrieved from rosa-menkman.
blogspot.ca/2010/08/vernacular-of-the-file-formats-2-workshop.html.

Menkman, R. (2011) The Glitch Moment(um), Amsterdam: Institute of Network Cultures.

Moore, G. (1965) “Cramming More Components onto Integrated Circuits,” Electronics 38(8), 114-17.

Mufioz, J. E. (2009) Cruising Utopia: The Then and There of Queer Futurity, New York and London: NYU Press.

Nunes, M. (ed.) (2011) Error: Glitch, Noise, and Jam in New Media Cultures, New York, NY: Continuum Books.

Parikka, J. (2011) “Mapping Noise: Techniques and Tactics of Irregularities, Interception, and Disturbance,” in
E. Huhtamo and J. Parikka (eds.) Media Archacology: Approaches, Applications, and Implications, Berkley, CA:
University of California Press, pp. 256-77.

Raymond. E. S. (2015) The INTERCAL Resources Page, retrieved from catb.org/esr/intercal.

Slade, G. (2006) Made to Break: Technology and Obsolescence in America, Cambridge, MA: Harvard University Press.

Spade, D. (2011) Normal Life: Administrative Violence, Critical Trans Politics, and the Limits of Law, Brooklyn, NY:
South End Press.

Sterne, J. (2012) MP3: The Meaning of a Format, Durham, NC: Duke University Press.

von Neumann, J. (1961) “The General and Logical Theory of Automata,” in A. H. Taub (ed.) Collected Works:

Vol. 5, Design of Computers, Theory of Automata, and Numerical Analysis, Oxford: Pergamon Press, pp. 288—326.

Wiegman, R. and E. A. Wilson (2015) “Introduction: Antinormativity’s Queer Conventions,” differences 26(1), 1-25.

491





