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1Department of Chemistry, University of California, Irvine, California 92617, USA

(Dated: November 19, 2014)

Abstract

Electron and vibrational dynamics of molecules is commonly studied by subjecting them to two

interactions with a fast actinic pulse that prepares them in a nonstationary state and after a vari-

able delay period T , probing them with a Raman process induced by a combination of a broadband

and a narrowband pulse. This technique known as femtosecond stimulated Raman spectroscopy

(FSRS) can effectively probe time resolved vibrational resonances. We show how FSRS signals can

be modeled and interpreted using the stochastic Liouville equations (SLE) originally developed for

NMR lineshapes. The SLE provides a convenient simulation protocol that can describe complex

dynamics due to coupling to collective coordinates at much lower cost that a full dynamical simu-

lation. The origin of the dispersive features which appear when there is no separation of timescales

between vibrational variations and dephasing is clarified.

1



I. INTRODUCTION

Stimulated Raman spectroscopy is a common established time-resolved technique for

monitoring vibrational motions [1–8]. Multidimensional Raman techniques [9–11] probe

the molecular system at multiple time points via a sequence of Raman processes, which

measure correlations between several coherence periods. Non-adiabatic relaxation dynamics

in chemical reactions [6, 12, 13] as well as structural changes [5, 7, 8, 14] can then be probed

with high temporal resolution. In a typical UV-(or visible) pump - Raman probe experiment,

an actinic pump pulse launches a photochemical process in an excited electronic state, which

is subsequently probed by a delayed Raman pulse sequence. Several variants of spontaneous

and stimulated Raman probe-techniques which show high temporal and spectral resolution

have been reported [15, 16]. In the femtosecond stimulated Raman spectroscopy (FSRS)

technique the Raman probe sequence consists of a picosecond pulse E2 superimposed with a

femtosecond laser pulse E3 which stimulates the Raman signal. Starting from the earlier work

of Yoshizawa and Kurosawa [17] this technique has shown to be a sensitive local probe for

ultrafast photo-induced processes [18, 19]. Different configurations of the FSRS techniques

including temporally and spectrally overlapping pulses and resonant Raman processes [20]

and cascading effects in FSRS [21] have been calculated [22].

Typically in off-resonant FSRS a spectrally resolved pattern of narrow vibrational lines

(linewidth ≈10 cm−1) is recorded in short time intervals (20 fs). FSRS is thus considered an

ideal probe for ultrafast light-induced processes [4, 6] which relates nuclear rearrangements

to spectral changes.

Recently we investigated the microscopic origin of the temporal and spectral resolution

of FSRS [23]. We proposed three levels of theory which form a hierarchy of approximations

for the simulation of the matter response [23] based on loop diagrams in the frequency

domain. These include sum over states and direct propagation of non adiabatic dynamics

which is usually described by semiclassical models where bath degrees of freedom are treated

classically. The simplest level of modeling assumes that the vibrational frequency becomes

time dependent due to e.g structural rearrangement [6, 23]. In this case the frequency

trajectory is inserted into the wavefunction description of the signal and the bath degrees

of freedom are not explicitly included in the Hilbert space description. A higher level of

theory assumes that some Hamiltonian parameters are fluctuating due to coupling to a
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bath described by collective coordinates. In that case the signals can be described using

the stochastic Liouville equations (SLE) that act in the joint system plus bath space [24–

26]. If the bath is harmonic and only modulates the frequencies one can solve the dynamics

analytically using the cumulant expansion since the fluctuations are Gaussian, and avoid the

SLE (see Eq. (39) of Ref. [23]). However a much broader class of models with continuous or

discrete collective coordinates which may be coupled to any Hamiltonian parameter (not just

the frequencies) can be treated by SLE. Adding the bath complicates the calculation but it is

still less demanding than the complete microscopic simulation involving all relevant degrees

of freedom. The SLE, originally developed by Kubo and Anderson in NMR [24–26], thus

provide an affordable and practical level of modeling of complex lineshapes. In our earlier

work we applied the SLE for comparison of the resolution of several Raman techniques for a

simple two-state kinetics model [27]. Recently we have applied the SLE for identifying the

spectroscopic signature of the underlying bond splitting mechanism in cyclobutane thymine

dimer, one of the major lesions in DNA [28]. In the present work we provide more in depth

general analysis of the SLE in the context of Stimulated Raman Spectroscopy and show how

to use the SLE to trace the origin of the dispersive lineshapes reported in FSRS experiments.

II. TRANSIENT ABSORPTION OF A SHAPED PULSE; LINEAR ANALOGUE

OF FSRS

We first present a formal expression for the pump-probe signal defined as the change in the

frequency-dispersed probe intensity . We consider a multilevel quantum system described

by the Hamiltonian H0 and coupled to an external optical field by the interaction

Hint(t) = E(t)V † + E∗(t)V (1)

where E(t) and E∗(t) are the positive and negative frequency components of the total electric

field operator Ẽ(t) = E(t) + E∗(t) respectively. The dipole operator is Ṽ = V + V † where

V † (V ) is the raising (lowering) operator responsible for excitation (de-excitation) between

the molecular states. The total Hamiltonian is given by

HT (t) = H0 +Hint(t) (2)

We use superoperator notation [29–31] that allows to derive compact expressions for

the signal. With each Hilbert space operator A, we associate two superoperators, denoted
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as AL (left) and AR (right) defined through their action on Hilbert space operator X as

ALX ≡ AX, ARX ≡ XA. We further define the linear combinations of these superoperators

A+ = (AL+AR)/2 and A− = AL−AR. A+ (A−) superoperator in Liouville space corresponds

to an anticommutation (commutation) operation in Hilbert space. Using this notation the

heterodyne detected signal (frequency dispersed transmission of Ep centered around t = t0)

can be recast as

S(ω, t− t0,Γ) =
2

~
Im

[

E∗
p (ω)

∫ ∞

−∞

dt eiω(t−t0)
〈

T VL(t) exp
(

−
i

~

∫ t

−∞

dτ1Hint−(τ1)
)〉

]

, (3)

where Γ represents the set of parameters of the incoming fields. The angular bracket 〈· · · 〉

represents the average with respect to the initially prepared molecular density matrix. We

define the interaction picture superoperator asAν(t) ≡ exp(iH0−(t− τ0))Aν exp(−iH0−(t− τ0)),

ν = L,R. We also define the retarded Liouville space evolution operator as G(t − τ0) =

(−i/~) θ(t − τ0) exp
[

− i
~
H0−(t − τ0)

]

. In the frequency domain the propagator is given as

G(ω) ≡
∫∞

−∞
dteiω(t−τ0)G(t − τ0) =

1
~
(ωI − 1

~
H0− + iǫ)−1 where ǫ is an infinitesimal positive

number used to satisfy the causality condition. Finally T is the time-ordering superoperator

that orders superoperators in increasing time argument from right to left i.e.,

T Aν(t1)Bν′(t2) = θ(t1 − t2)Aν(t1)Bν′(t2) + θ(t2 − t1)Bν′(t2)Aν(t1), ν, ν ′ = L,R. (4)

Specific signals are obtained by expanding Eq. (3) to the desired order in the field.

This paper focuses on the FSRS signal, which is a six-wave mixing process and thus we

expand Eq. (3) to fifth order in Hint−. Before we proceed to FSRS however, we discuss

a lower order signal which uses the same probe and may provide similar type of physical

and chemical information. This is a Transient Absorption of the shaped pulse (TASP) with

a visible-pump and shaped probe (broad plus narrow band) which is a linear analogue of

the FSRS and is obtained by expanding Eq. (3) to third order in Hint−. The measurement

is the transient absorption (TA) of a shaped pulse consisting of a narrow plus broadband

probe (Fig. 1). An actinic pulse Ea, centered at τ0, promotes the molecule from the ground

electronic state |g〉 to a superposition of vibrational levels of an electronic excited state. A

spectrally narrow E1 and spectrally broad Ep probe pulse, both centered around t0 > τ0,

then interact with the molecule and can either stimulate emission to lower vibrational state

or absorption to a higher vibrational state and the frequency dispersed transmission of the

probe pulse is recorded. The positive frequency component of the electric field is given by

E(t) = Ea(t− τ0) + E1(t− t0) + Ep(t− t0). (5)
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FIG. 1. TASP signal: Level scheme (a) and ladder diagrams
(

Eq. (6) and Eq. (7)
)

(b).

The entire sequence of events (including the actinic pulse) is a four wave mixing process and

the signal scale as E1EpE
2
a . The signal can be viewed as a generalized linear response with

respect to E1Ep from the non-stationary state prepared by Ea.

Fig. 1 represents the level scheme and corresponding ladder diagrams that contribute to

the signal (for diagram rules see ref. [29]). We first expand the exponential in Eq. (3) to first

order in E1 and Ep and to second order in Ea, taking the actinic pulses to be impulsive Ea(τ) =

Eaδ(τ). The following expressions can be directly read off the diagrams (see Appendix A)

S
(i)
TASP (ω; t0, τ0) =

2

~
Im

[

(−
i

~
)

∫ ∞

−∞

dt

∫ ∞

0

dt3 e
iω(t−t0) 〈VLG(t3)V

†
RG(t−t3−τ0)〉

′

×E∗
p (ω)E1(t−t3−t0)

]

, (6)

S
(ii)
TASP (ω; t0, τ0) =

2

~
Im

[

(
i

~
)

∫ ∞

−∞

dt

∫ ∞

0

dt3 e
iω(t−t0) 〈VLG(t3)V

†
LG(t−t3−τ0)〉

′

×E∗
p (ω)E1(t−t3−t0)

]

. (7)

where 〈· · · 〉′ ≡
∑

ac ρac〈〈I| · · · |ac〉〉. If the system is prepared in a superposition of vibra-

tional states a and c in an electronic excited state, created by two interactions with actinic

pulse Ea represented by the action of VRV
†
L on the ground electronic state. A non-stationary
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vibrational wave-packet in the excited state [3] is then described by |Ea|
2VRV

†
L |gg〉〉 =

∑

ac ρac|ac〉〉 where ρac = |Ea|
2µgaµcg. By inverse Fourier transformation of the propagator

and the electric field, performing time integrals and introducing a delay between preparation

time τ0 and probe pulse t0: T = t0 − τ0 Eqs. (6) - (7) yield

S
(i)
TASP (ω;T ) =

2

~
Im

[

(−
i

~
)

∫ ∞

−∞

d∆

2π
e−i∆TE∗

p (ω)E1(ω +∆)χ̃
(1)
TASP (i)(−ω, ω +∆)

]

, (8)

S
(ii)
TASP (ω;T ) =

2

~
Im

[

(
i

~
)

∫ ∞

−∞

d∆

2π
e−i∆TE∗

p (ω)E1(ω +∆)χ̃
(1)
TASP (ii)(−ω, ω +∆)

]

, (9)

where we have introduced the generalized susceptibility χ̃
(1)
TASP (j)(−ω, ω +∆), j = i, ii

χ̃
(1)
TASP (i)(−ω, ω +∆) = 〈VLG(ω)V

†
RG(−∆)〉

′

, (10)

χ̃
(1)
TASP (ii)(−ω, ω +∆) = 〈VLG(ω)V

†
LG(−∆)〉

′

. (11)

Four-wave-mixing such as transient absorption was proposed by P. Champion’s group [32, 33]

where it has been called “effective linear response approach”. Here we extend the idea to

recasting the n + m-wave mixing signal in terms of the effective m-wave mixing. We use

this approach in the context of six-wave mixing FSRS signal. Eqs. (8) - (9) are similar to

those obtained by Champion, but for TASP - the linear analogue of the FSRS.

The signal may be interpreted as a generalized linear response to the field E1Ep from

a nonstationary state ρac prepared by the actinic pulse Ea. Note that χ̃
(1)
TASP depends on

two frequencies (rather than one for systems initially at equilibrium). This implies that

the signal (Eqs. (8, 9)) is sensitive to the phase of the field. The choice of broadband Ep

and narrowband E1 is one example of more broadly defined pulse shaping [34–37]. Different

phase shapes can manipulae signals by enhancing or suppressing various spectral features

and changing the line shapes, etc. In our earlier work we have been studying the pulse

shaping of linear signals as a possible tool for coherent control [38] . Our formalism can

incorporate arbitrary pulse shapes which can and provide many novel control tools for the

signals.

Assuming that the E1 pulse is spectrally narrow (picosecond) i.e., E1(ω + ∆) = E1δ(ω +

∆− ω1) we can perform the integral over ω′
1 which results in

S
(i)
TASP (ω;T ) =

2

~
Im

[

(−
i

~
) ei(ω−ω1)TE∗

p (ω)E1χ̃
(1)
TASP (i)(−ω, ω1)

]

, (12)

S
(ii)
TASP (ω;T ) =

2

~
Im

[

(
i

~
) ei(ω−ω1)TE∗

p (ω)E1χ̃
(1)
TASP (ii)(−ω, ω1)

]

. (13)
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FIG. 2. Ladder diagrams for FSRS signal Eq. (17) and Eq. (18).

The total signal is finally given by S
(total)
TASP (ω;T ) = S

(i)
TASP (ω;T )+S

(ii)
TASP (ω;T ). In the absense

of a bath the correlation functions can be expanded in terms of molecular eigenstates which

gives the signal as

S
(i)
TASP (ω;T ) =

2

~
Im

∑

a,c,d

[

(−
i

~
)

e−i(ω−ω1)TµdaµcdE
∗
p (ω)E1ρac

(ω − ωad + iγad)(ω − ω1 − ωac + iγac)

]

,

S
(ii)
TASP (ω;T ) =

2

~
Im

∑

a,c,d

[

(
i

~
)

e−i(ω−ω1)TµadµdcE
∗
p (ω)E1ρac

(ω − ωda + iγda)(ω − ω1 − ωca + iγca)

]

. (14)

These results will later be compared with the FSRS signal Eq. (23).

III. OFF-RESONANT FSRS

FSRS is a powerful technique for studying photophysical and photochemical processes

in molecules [6, 39] including vibrational and nonadiabatic electron dynamics . It is a six-

wave mixing process [27] that, when the actinic action is treated implicitly, is given by a

generalized χ̃(3). Moreover in the electronically off resonant regime, considered here, it can

be expressed in terms of a generalized linear response χ̃(1) that resembles TASP.

The general expression for a four wave-mixing probe of a nonstationary system is given

in Appendix B. FSRS (Fig. 2) can be described using diagrams similar to Fig. (1) where we

simply replace the dipole operators by the polarizibility. We use the same level scheme as

in Fig. (1). The effective radiation-matter interaction Hamiltonian (in the Rotating wave

approximation) for the electronically off-resonant Raman process induced by pump pulse E1

and the probe pulse Ep, reads

Hint(t) = αnE
∗
p (t− t0) E1(t− t0) + Ea(t− τ0)V

†
e + h.c. (15)
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Here the dipole operator Ve couples the molecule with actinic pulse Ea, centered at time

τ0 and creates a non-stationary state in the excited electronic level. αn = α̃n + α̃†
n is the

excited state polarizibility that couples parametrically the pump E1 and the probe fields Ep.

Both pulses arrive simultaneously and are centered at time t0 > τ0. Similar to TASP we set

the delay between the actinic and Raman pulses as T = t0 − τ0. Note that this off-resonant

Raman process is instantaneous and the system can only spend a very short time in the

intermediate electronic state. Following Eq. (3), the frequency-dispersed probe transmission

signal is written as

SFSRS(ω;T ) =
2

~
Im

[

∫ ∞

−∞

dt

∫ ∞

−∞

dω′
1

2π
ei(ω−ω′

1
)(t−t0)E∗

p (ω)E1(ω
′
1)〈αL(t)e

−(i/~)
∫
Hint−(τ)dτ 〉

]

.

(16)

The picosecond pump pulse E1 has a narrow bandwidth centered at frequency ω1. This

signal can be read off from the diagrams given in Fig. (2) and is given as

S
(i)
FSRS(ω; t0, τ0) =

2

~
Im

[

(
i

~
)

∫ ∞

−∞

dt

∫ ∞

0

dt3 e
iω(t−t0) 〈αnLG(t3)αnLG(t−t3−τ0)〉

′

×E∗
p (ω)Ep(t− t3 − t0)E1(t)E

∗
1 (t−t3−t0)

]

, (17)

S
(ii)
FSRS(ω; t0, τ0) =

2

~
Im

[

(−
i

~
)

∫ ∞

−∞

dt

∫ ∞

0

dt3 e
iω(t−t0) 〈αnLG(t3)αnRG(t−t3−τ0)〉

′

×E∗
p (ω)Ep(t− t3 − t0)E1(t)E

∗
1 (t−t3−t0)

]

. (18)

Eqs. (17)- (18) for FSRS or Eqs.(6)-(7) for TASP can be used for high level numerical

simulations including nonadiabatic dynamics. Alternatively we can recast the signal using

frequency domain Green’s functions. Denoting T = t0 − τ0 we get the total signal as

Stotal
FSRS(ω;T ) = S

(i)
FSRS(ω;T ) + S

(ii)
FSRS(ω;T ),

S
(i)
FSRS(ω;T ) =

2

~
Im

[

(
i

~
)

∫ ∞

−∞

d∆

2π
e−i∆T |E1|

2E∗
p (ω)Ep(ω +∆)χ̃

(1)
FSRS(i)(−ω+ω1,−ω1+ω+∆)

]

,

(19)

S
(ii)
FSRS(ω;T ) =

2

~
Im

[

(−
i

~
)

∫ ∞

−∞

d∆

2π
e−i∆T |E1|

2E∗
p (ω)Ep(ω+∆)χ̃

(1)
FSRS(ii)(−ω+ω1,−ω1+ω+∆)

]

,

(20)

The generalized FSRS susceptibility is now given by

χ̃
(1)
FSRS(i)(−ω+ω1,−ω1+ω+∆) =

〈

αnLG(ω − ω1)αnLG(−∆)
〉′

, (21)

χ̃
(1)
FSRS(ii)(−ω+ω1,−ω1+ω+∆) =

〈

αnLG(ω − ω1)αnRG(−∆)
〉′

. (22)
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This signal may be viewed as the linear response to E∗
p E1 with the generalized susceptibility

formally similar to TASP (Eqs.(10) - (11)) except that the dipole operators V are replaced

by the polarizability αn. The reduced description of the six-wave mixing FSRS in terms of

an effective four-wave-mixing has been studied previously [40] where the response function

has been calculated using the multimode Brownian oscillator model. The Green’s functions

expressions presented here provide more general framework for calculating the signals. In

particular our approach is very effective if the excited state coherence is long lived on the

time scale of the Raman probe sequence [41, 42]. It also applies in the presence of a non-

trivial relaxation process such as internal conversion between excited states [40]. In the

absense of a bath we expand the signals (19) - (20) in the molecular eigenstate basis and

obtain

S
(i)
FSRS(ω;T ) =

2

~
Im

∑

a,c,d

[

(
i

~
)

∫ ∞

−∞

d∆

2π

e−i∆Tαdaαa′dE
∗
p (ω)Ep(ω +∆)|E1|

2ρac

(ω − ω1 − ωad + iγad)(−∆− ωac + iγac)

]

,

S
(ii)
FSRS(ω;T ) =

2

~
Im

∑

a,c,d

[

(−
i

~
)

∫ ∞

−∞

d∆

2π

e−i∆TαadαdcE
∗
p (ω)Ep(ω +∆)|E1|

2ρac

(ω − ω1 − ωda + iγda)(−∆− ωca + iγca)

]

. (23)

Comparing FSRS signal (Eq. (23)) to the TASP (Eq. (14)), we note several differences.

First the dipole moments in TASP are replaced by corresponding excited state polarizabili-

ties in the case of FSRS. When the narrowband pulse E1 is monochromatic the TASP signal

has a perfect frequency resolution, which governs the Raman resonance ω−ω1 ∼ ωda. In the

same time it loses all temporal resolution, since the exponent e−i(ω−ω1)T in Eq. (14) has no

dependence on material parameters such as energies and dephasing rates. In order to obtain

some temporal resolution, E1 must have a finite bandwidth. Generally the temporal and

spectral resolutions of the TASP signal will be Fourier conjugates, so the perfect time reso-

lution would correspond to poor spectral resolution. In contrast, the FSRS signal contains

an extra integration over ∆. Therefore, the ac state in Eq. (23) does not give a spectral

signature but rather controls the temporal resolution. Furthermore, once we fix the narrow-

band E1 with frequency ω1 the Raman resonance ω − ω1 ∼ ωda is now well resolved. Thus

under the same conditions FSRS has both high spectral and temporal resolution, which are

not directly Fourier conjugates of each other. In the next section we show how the coupling

to a dynamical bath can be incorporated to calculate signal using the stochastic Liouville

equation.
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IV. SIMULATING FSRS SIGNAL BY THE STOCHASTIC LIOUVILLE EQUA-

TIONS

The stochastic Liouville equations (SLE), first developed for NMR, is a convenient tool

for computing spectral line shapes [24, 25, 43–45]. This approach assumes that the quantum

system of interest is affected by a classical bath, whose stochastic dynamics is described by

a Markovian master equation. The SLE is an equation of motion for the joint system plus

bath density matrix ρ

dρ

dt
= L̂ρ(t) = −

i

~
[H, ρ(t)] + L̂ρ(t). (24)

where L̂ represents the stochastic Markovian dynamics of the bath. Both discrete N -state

jump and continuous collective coordinates (Fokker Planck equations) are commonly used

to model the bath. In our model, the system has two vibrational states a and c, and the

vibrational frequency ωca,s is perturbed by the bath which has N states, s = 1, 2, · · ·N . The

entire density matrix ρ thus has 4N components |νν ′s〉〉 which represent the direct product

of four Liouville space states |νν ′〉〉, where ν, ν ′ = a, c, and s represents N bath states. The

Liouville operator L̂ is diagonal in the vibrational space, and is thus represented by four

N ×N diagonal blocks in bath space.

[L̂]νν′s,ν1ν′1s′ = δνν1δν′ν′1

(

[L̂S]s,s′ + δss′ [L̂S]νν′s,νν′s

)

, (25)

where L̂S = −K describes the kinetics given by the rate equation:

d

dt
ρ(s)aa (t) = −

∑

s′

Kss′ρ
(s′)
aa (t), (26)

where ρ
(s)
aa (t) is the population of the s-th bath state. The solution of Eq. (26) is given by

ρ(s)aa (t) =
∑

s′

Uss′ exp
[

−Kdiagt
]

s′s′
U−1
s′s ρ

(s)
aa (0), (27)

where U is the transformation matrix, where the eigenvectors are organized as rows. This

matrix satisfies left-eigen equation
∑

p UspKps′ = Kdiag
s′s′ Uss′ as the rate matrix K is not

Hermitian. ρ
(s)
aa (0) represents the population of the initial bath state.

The coherent part L̂S = −(i/~) [HS, . . .], which describes the vibrational dynamics, van-

ishes for the |aa〉〉 and |cc〉〉 blocks, [L̂S]aa,aa = [L̂S]cc,cc = 0. The remaining blocks of L̂S
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read

[L̂S]ac,ac = i















ω
(1)
ca 0 ... 0

0 ω
(2)
ca ... 0

... ... ... ...

0 0 ... ω
(N)
ca















. (28)

The two Liouville space Green’s functions (i.e., the solution of Eq. (24)) are thus given by

Gaa,aa(t) = −
i

~
θ(t) exp

[

[L̂S]t
]

= −
i

~
θ(t)U exp

[

[L̂S]
diagt

]

U−1,
(29)

Gac,ac(t) = −
i

~
θ(t) exp

[

([L̂S] + [L̂S]ac,ac)t
]

= −
i

~
θ(t)V exp

[

[L̂]diagac,act
]

V −1,
(30)

where U and V are transformation matrices, which diagonalize the matrices in the exponents.

The time domain FSRS signal on the Stokes side (ω < ω0) is given by

SFSRS(ω, T ) = ℑ

∫ ∞

−∞

d∆

2π
E∗
p (ω)Ep(ω +∆)S̃

(i)
FSRS(ω, T ; ∆), (31)

where S̃
(i)
FSRS(ω, T ; ∆) can be recast in Liouville space as follows:

S̃
(i)
FSRS(ω, T ; ∆) =

2

~

∫ ∞

−∞

dt

∫ t

−∞

dτ3|E1|
2|Ea|

2e−i∆(τ3−T )

× ei(ω−ω1)(t−τ3)F(t− τ3, τ3),

(32)

where by using the Green’s functions in Eqs. (29) and (30), the matter correlation function F(t1, t2)

is given by

F(t1, t2) =−
i

~

∑

a,c

α2
ac|Vag|

2 〈〈I| Gac,ac(t1)Gaa,aa(t2) |ρ0〉〉S

=− (
i

~
)3
∑

a,c

α2
ac|Vag|

2θ(t1)θ(t2)e
−γa(t1+2t2)

× (1, 1, ..., 1)V exp
[

[L̂]diagac,act1

]

V −1U exp
[

[L̂S]
diagt2

]

U−1















1

0

...

0















.

(33)
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Here, the initial state is the direct product,

|ρ0〉〉S = |aa〉〉















1

0

...

0















, (34)

and we have traced over the final state 〈〈I| = (1, 1, ..., 1)Tr where Tr = 〈〈aa| + 〈〈cc|. Vibrational

dephasing terms have been added; e−γat is added to Gac,ac and e−2γat to Gaa,aa. Inhomogeneous

broadening can be included by convoluting the present results with a spectral distribution. Gaus-

sian frequency fluctuations can be incorporated via the cumulant expansion which solves the SLE

for a Brownian oscillator bath. We have incorporated this level of theory in an earlier study [23].

Upon evaluating the time integrals in Eq. (32) we obtain

S̃
(i)
FSRS(ω, T ; ∆) =

−2i

~2
|E1|

2|Ea|
2
∑

a,c

α2
ac|Vag|

2ei∆T 〈〈I|Gac,ac(ω − ω1)Gaa,aa(−∆)|ρ0〉〉S .
(35)

Following Eq. (27) we introduce the bath population of the state a after interaction with the

actinic pulse:

ρ(s)aa (t) = |Ea|
2|Vag|

2Gaa,aa(t)|ρ0〉〉S . (36)

Substituting Eq. (36) into the signal expression Eq. (32) and Eq. (31) gives

SFSRS(ω, T ) = ℑ
−2i

~2
E∗
p (ω)|E1|

2
∑

a,c

α2
ac

∑

s

Gac,ac,s(ω − ω1)

∫ ∞

−∞

d∆

2π
Ep(ω +∆)ei∆Tρ(s)aa (−∆), (37)

where ρaa(−∆) is the Fourier transform of the population of the state a. Gac,ac(ω) is a frequency-

domain Green’s function and
∑

s represents the sum over bath states. It follows from Eq. (37)

that the ∆ integration represents a path integral over the bandwidth corresponding to the inverse

dephasing time scale. This integral is generally a complex number. Therefore, the signal (37)

depends on both real and imaginary parts of the coherence Green’s function Gac,ac(ω), and thus

contains absorptive as well as dispersive spectral features. In the limit of slow fluctuations, one can

neglect the jump dynamics during the dephasing time. In this case we can replace Ep(ω + ∆) ≃

Ep(ω), the integral over ∆ simply yields ρaa(T ) and we obtain the static averaged signal

SFSRS(ω, T ) =
∑

a

∑

s

S
(s)
FSRS,a(ω)ρ

(s)
aa (T ), (38)

12



with

S
(s)
FSRS,a(ω) = −ℜ

2

~2
|Ep(ω)|

2|E1|
2
∑

c

α2
acGac,ac,s(ω − ω1). (39)

For comparison we give the corresponding TASP signal:

STASP (ω, T ) = ℑ
−2i

~2
E∗
p (ω)E1

∑

a,c

|µac|
2
∑

s

Gac,ac,s(ω)e
i(ω−ω1)Tρ(s)aa (ω − ω1). (40)

Unlike the general FSRS signal (37), the static averaging limit (38) only contains absorptive line

shapes since bath dynamics is neglected during the dephasing time. Furthermore the time evolution

in this case is governed by a snapshot of the populations of the excited states. Eq. (37) and (38)

are therefore expected to be different at short times and become more similar at longer time.

Note that since the signal (37) is written in terms of Green’s functions expanded in sum over

states, it can be applied to complex systems with multiple vibrational modes coupled to various

baths. In the typical chemical reaction, such as isomerization, only few collective coordinates are

involved. Therefore these degrees of freedom are typically treated explicitly whereas the rest of

the vibrational and bath degrees of freedom can be treated by a harmonic approximation. In the

following we use a simple model system to illustrate the power of SLE approach . Using Eq. (37)

we performed simulations of the signals for a model system with four vibrational modes and

ten bath states (N = 10). Two vibrational states (i.e., a and c) are included for each mode,

there are two vibrational states (i.e., a and c). We use a kinetic model described by rate

equation (26) and we assume a linear chain of forward and backward reactions among the

bath states.

State 1
k1
⇄
k−1

State 2
k2
⇄
k−2

· · ·
k9
⇄
k−9

State 10. (41)

The rate constants vary linearly along the chain










ki = k1 +
k9−k1

8
(i− 1),

k−i = 0.1ki,
(42)

where k1 > k9. These are given in Table I. The process slows down along the chain. This

allows to observe both fast and slow jump modulation regimes. Considering the detailed

balance relation, the second line in Eq. (42) indicates a constant energy difference between

two neighboring bath states, namely s and s+1 states. The resulting population dynamics,

obtained from Eq. (27), is depicted in Fig. S1 [46]. At T = 20 ps, not only the state 10

but also several bath states contribute to the signal. As shown in Fig. 3, in our model, the

13



frequency for a given vibrational mode depends on the bath states (Eq. (28)), and satisfies

a linear relation.

ω(s)
ca = ω(1)

ca + δca(s− 1), (43)

where δca represents the frequency shift when the bath transits from the s to the s+1 state.

As shown in Fig. 3 and Table I, we employed two parameter regimes both using two values

of δca; small δ1 is used for two modes (mode 1 and 2, hereafter), and large δ2 is used for the

remaining two (mode 3 and 4). The two regimes correspond to different relation between

the jump rate k and splitting δca. In the first regime (I), modes 1 and 2 rapidly evolve (

k1 . δ1, fast modulation limit - FML) and the modes 3 and 4 are modulated slowly (k1 ≪ δ2,

SML). In contrast, in the second parameter regime (II), all four modes are subject to FML.

Note that at longer delay times, the jump rate itself slows down (k1 > k9) as mentioned

above. The ω
(1)
ca of mode 2 and 3 are set so that their ω

(s)
ca frequencies show crossing between

each other (see Fig. 3 for the crossing frequencies). We take E1(t) = E1e
−iω1(t−T ) to be

monochromatic, whereas the Raman probe has a Gaussian envelope with center frequency

ωp and finite duration σ, Ep(t) = Epe
−(t−T )2/2σ2−iωp(t−T ). The integrations of Eq. (37) are

then performed analytically to get SFSRS(ω, T ), where prefactor σ2|E1|
2|Ea|

2|Ep|
2α2

ac|Vag|
2 is

set to be 1. Note, that in reality the duration of the E1 is finite. However since it is in the

picosecond range, whereas all dynamical processes as well as the duration of the Ep are in

the femtosecond range, the the CW approximation is justified. In more general case, the

bandwidth of E1 has to be taken into account which will reduce the spectral resolution of

the signal. As has been shown in our earlier work [23] the duration of Ep has to be optimized

in order to obtain both high temporal and spectral resolution.

The resulting FSRS signals obtained for regime I are shown in Fig. 4. In mode 3 and 4,

corresponding to SML, fine structure features of bath states are found even at early delay

times (around 1 ps, see Fig. 4b). The fine structure is reduced for longer delay times (> 10

ps), reflecting the population decay shown in Fig. S1 [46]. This indicates that the signals

are in the snapshot limit. The SLE coincides with the static average limit. In modes 1 and

2, fine structures are found only after 5 ps. At T = 2 fs, dispersive lineshapes are present

since the dynamics is not negligible during the dephasing (see Eq. (38)). The FSRS signals

for regime II are shown in Fig. 5. At early delay times, the signals have no fine structure

(Fig. 5b). Only in mode 3 and 4 at long delay times (> 5 ps), there are several weak

fine structure features due to approaching the SML. These signals are beyond the snapshot
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FIG. 3. Model frequency change of four vibrational modes along the sequential reaction. (a)

Parameter regime I and (b) regime II. In Eq. (43), the ω
(1)
ca of mode 2 and 3 are set so that their

ω
(s)
ca frequencies show crossing during the transition from bath state 5 to 6. The frequencies at the

crossing points (dashed lines) are shown.

TABLE I. Parameters employed in the FSRS simulations.

Parameter regime k1 (s−1) k9 (s−1) δ1 (s−1) a δ2 (s−1) a σ (fs) b γa (s−1) c

I 1.00× 1012 0.667× 1012 3.76× 1012 7.51× 1012 20.0 1.88× 1012

II 1.00× 1012 0.333× 1012 0.939× 1012 3.76× 1012 30.0 1.88× 1012

a The frequency shift δca is small δ1 for two normal modes, and large δ2 for the rest two modes.

b The center frequency of the Gaussian Raman probe, ωp, is equal to ω1 − 1000.0 cm−1.

c The vibrational dephasing time corresponds to linewidth of 10.0 cm−1, and is used for all four

vibrational modes.

limit. The SLE allows to explain the dispersive line shapes observed when the dynamics of

the system is fast compared to the dephasing time scale, that it cannot be neglected. Such

simple analysis is only possible in Liouville space and cannot be done in Hilbert space.
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FIG. 4. Variation of simulated FSRS signals with different delay times T up to (a) 15 ps and (b)

0.95 ps. Parameter regime I was employed. After T = 2 fs, time intervals are (a) 500 fs from

T = 500 fs up to 10 ps, and 1 ps later and (b) 50 fs from T = 50 fs up to 1 ps. The stick spectra

on the horizontal bottom (top) axis represent the frequencies of the state 1 (state 10).

V. DISCUSSION AND CONCLUSIONS

In summary, we have employed a superoperator diagrammatic technique to calculate

the linear and third order frequency-dispersed transmission signals. Assuming impulsive

(femtosecond) actinic pulse we show that both TASP and FSRS signals can be recast in

terms of a generalized linear response function with respect to pump and probe field from

a non-stationary state prepared by the actinic pulse. Our expressions can be used in three

types of simulation protocols: Eq. (7) and Eq. (18) may be used in direct nonadiabatic

propagation of the wavefunctions. The sum over states expressions Eq. (14) and Eq. (23)

may be used for the interpretation of resonances. Finally the stochastic Liouville equations
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FIG. 5. Variation of simulated FSRS signals with different delay times T up to (a) 15 ps and (b)

0.95 ps. Parameter regime II was employed. After T = 2 fs, time intervals are (a) 500 fs from

T = 500 fs up to 10 ps, and 1 ps later and (b) 50 fs from T = 50 fs up to 1 ps. The stick spectra

on the horizontal bottom (top) axis represent the frequencies of the state 1 (state 10).

(Eq. 37-38) provide an inexpensive level of modeling that is numerically less demanding than

the direct propagation. This approach provides a qualitative explanation for the dispersive

features observed in Raman signals. It further covers the fast dynamical behavior which

cannot be described the snapshot limit, which yields the system response far beyond the

instantaneous frequency tracking.

We first considered the linear analogue of the FSRS - a transient absorption of the shaped

(broad plus narrowband) pulse STASP (ω, T ) signal: linear transmission of a single probe

following a femtosecond actinic-pump pulse. The entire process (including the actinic pulse)

is a χ(3) which can be interpreted as a generalized χ̃(1) when starting in a nonstationary

state. The signal with a second order (three wave mixing) probe is a χ(4) process which can
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be recast as a generalized χ̃(2). For a third oder - four wave mixing (FWM) probe the χ(5)

process can be described as a generalized χ̃(3). The generalized n-th order susceptibilities

χ̃(n) depend on n+ 1 rather than n independent frequency variables due to the lack of time

translational invariance of the time evolution of the system.

The present formalism can be generalized to other spectroscopic techniques. The off-

resonant FSRS can be extended to the resonant case, which generally provides a stronger and

more complex signal. In particular the six-wave mixing process which generally described

by χ(5) will be reduced to a four-wave mixing described by a generalized χ̃(3) compared

to a generalized χ̃(1) of a combined broad plus narrowband pulse in the off-resonant case.

The Impulsive excitation may include photoexcitation by a short optical or infrared pulse

[30, 47, 48], photoionization [49] that prepares an excited ion and core excitation followed

by an Auger process [50] that leaves the molecule in a doubly ionized state.
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APPENDIX A: DERIVATION OF THE TASP SIGNAL

We read the signal from the diagrams of Fig. 1. First we expand the exponential in

Eq. (3) to the first order E1 and Ep and second order in Ea which yield for the first diagram

(i)

S
(i)
TASP (ω; t0, τ0) =

2

~
Im

[

∫ ∞

−∞

dt

∫ t

−∞

dτ3

∫ τ3

−∞

dτ2

∫ τ2

−∞

dτ1 e
iω(t−t0) E∗

p (ω) E1(τ3−t0)

[

〈VLG(t−τ3)V
†
RG(τ3−τ2)VRG(τ2−τ1)V

†
L〉 E

∗
a(τ2−τ0) Ea(τ1−τ0)

+ 〈VLG(t−τ3)V
†
RG(τ3−τ2)V

†
LG(τ2−τ1)VR〉 Ea(τ2−τ0) E

∗
a(τ1−τ0)

]

. (44)

where two terms indicate two possible ways that actinic pulse can excite the ground state to

the vibrational state of excited electronic state. For the first (second) term the absorption

happens first on the ket (bra) side followed by the absorption on the bra (ket) side. Now
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assuming the actinic pulses to be impulsive Ea(τ) = Eaδ(τ), we get

S
(i)
TASP (ω; t0, τ0)=

2

~
Im

[

(−
i

2~
)

∫ ∞

−∞

dt

∫ ∞

0

dt3 e
iω(t−t0)

[

〈VLG(t3)V
†
RG(t−t3−τ0)VRV

†
L〉

+〈VLG(t3)V
†
RG(t−t3−τ0)VLV

†
R〉
]

E∗
p (ω)E1(t−t3−t0)|Ea|

2
]

, (45)

where note that the first propagator G from the right is evaluated at t = 0 and we use

G(0) = −i/2~. The action of VRV
†
L or V †

LVR on ground electronic state creates vibrational

wave-packet in the excited state |ac〉〉 which is a non-stationary state. Now performing

inverse Fourier transformation for the propagator and for the electric field and integrating

over t and t1 variables we obtain the signal as

S
(i)
TASP (ω; t0, τ0) =

2

~
Im

[

(−
i

~
)

∫ ∞

−∞

dω0

2π

∫ ∞

−∞

dω′
1

2π

〈

VLG(ω
′
1 + ω0)V

†
RG(ω0))

〉′

e−i(ω−ω′

1
)t0eiω0τ0

×E∗
p (ω)E1(ω

′
1)|Ea|

22πδ(ω − ω0 − ω′
1)
]

. (46)

Finally integrating out ω0 variable we obtain

S
(i)
TASP (ω; t0−τ0) =

2

~
Im

[

(−
i

~
)

∫ ∞

−∞

dω′
1

2π

〈

VLG(ω)V
†
RG(ω−ω′

1)
〉

〉
′

E∗
p (ω)E1(ω

′
1)|Ea|

2e−i(ω−ω′

1
)(t0−τ0)

]

.

(47)

Note that the above expression depends on the time delay between the actinic and the probe

pulses which we write as T = t0 − τ0. Therefore the signal can be recast as

S
(i)
TASP (ω;T ) =

2

~
Im

[

(−
i

~
)

∫ ∞

−∞

d∆

2π
e−i∆TE∗

p (ω)E1(ω +∆)χ̃
(1)
TASP (i)(−ω, ω +∆)

]

, (48)

where the generalized susceptibility χ̃
(1)
TASP (i)(−ω, ω +∆) is given as

χ̃
(1)
TASP (i)(−ω, ω +∆) = 〈VLG(ω)V

†
RG(−∆)〉

′

. (49)

The expression for diagram (ii) of Fig. 1 can be derived similarly.

APPENDIX B: THREE AND FOUR-WAVE-MIXING PROBES

Here we consider a three wave-mixing (TWM) and four wave-mixing (FWM) signal. After

preparation of the state ρac we sent pulses E1, E2 for TWM, and additional E3 for FWM

which are centered around T1, T2, and T3 relative to the preparation time τ0. We then detect

the frequency dispersed transmission of the probe pulse Ep centered at t = T with respect to
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τ0. The signal can be calculated in the second and third order of the field matter interactions

for TWM and FWM respectively and we obtain

STWM(ω;T, T1, T2) =
2

~
Im

[

∫ ∞

−∞

dω′
1

2π

∫ ∞

−∞

dω′
2

2π
e−iωT+iω′

1
T1+iω′

2
T2

× E∗
p (ω)Ẽ1(ω

′
1)Ẽ2(ω

′
2)χ̃

(2)
TWM(−ω, ω′

1, ω
′
2)
]

, (50)

where the second order generalized susceptibility is given by

χ̃
(2)
TWM(−ω, ω′

1, ω
′
2) = 〈ṼLG(ω)Ṽ−G(ω − ω′

2)Ṽ−G(ω − ω′
2 − ω′

1)〉
′

. (51)

Similarly the FWM signal is given by

SFWM(ω;T, T1, T2, T3) =
2

~
Im

[

∫ ∞

−∞

dω′
1

2π

∫ ∞

−∞

dω′
2

2π

∫ ∞

−∞

dω′
3

2π
e−iωT+iω′

1
T1+iω′

2
T2+iω′

3
T3

× E∗
p (ω)Ẽ1(ω

′
1)Ẽ2(ω

′
2)Ẽ3(ω

′
3)χ̃

(3)
FWM(−ω, ω′

1, ω
′
2, ω

′
3)
]

, (52)

where the third order generalized susceptibility is

χ̃
(3)
FWM(−ω, ω′

1, ω
′
2, ω

′
3) = 〈ṼLG(ω)Ṽ−G(ω−ω′

3)Ṽ−G(ω−ω′
3−ω′

2)Ṽ−G(ω−ω′
3−ω′

2−ω′
1)〉

′

, (53)

where Ṽ = V + V † is the full matter transition operator. Note, that Eq. (50) and Eq. (52)

do not rely on the rotating wave approximation (RWA).
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