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Multi-omics of the gut microbial 
ecosystem in inflammatory bowel diseases
    Jason lloyd-Price1,2, cesar Arze2, Ashwin N. Ananthakrishnan3, Melanie Schirmer1,3, Julian Avila-Pacheco4, tiffany W. Poon1,  
elizabeth Andrews3, Nadim J. Ajami5, Kevin S. Bonham1,2, colin J. Brislawn6, David casero7, Holly courtney3, Antonio Gonzalez8,  
thomas G. Graeber9, A. Brantley Hall1, Kathleen lake10, carol J. landers11, Himel Mallick1,2, Damian r. Plichta1,  
Mahadev Prasad12, Gholamali rahnavard1,2, Jenny Sauk13, Dmitry Shungin1,14, Yoshiki Vázquez-Baeza15,16, richard A. White iii6, 
iBDMDB investigators17, Jonathan Braun7, lee A. Denson10,18, Janet K. Jansson6, rob Knight8,16,19, Subra Kugathasan12,  
Dermot P. B. McGovern11, Joseph F. Petrosino5, thaddeus S. Stappenbeck20, Harland S. Winter21,22, clary B. clish4,  
eric A. Franzosa2, Hera Vlamakis1, ramnik J. Xavier1,3,23,24 & curtis Huttenhower1,2,24*

Inflammatory bowel diseases, which include Crohn’s disease and ulcerative colitis, affect several million individuals 
worldwide. Crohn’s disease and ulcerative colitis are complex diseases that are heterogeneous at the clinical, 
immunological, molecular, genetic, and microbial levels. Individual contributing factors have been the focus of 
extensive research. As part of the Integrative Human Microbiome Project (HMP2 or iHMP), we followed 132 subjects 
for one year each to generate integrated longitudinal molecular profiles of host and microbial activity during disease  
(up to 24 time points each; in total 2,965 stool, biopsy, and blood specimens). Here we present the results, which provide 
a comprehensive view of functional dysbiosis in the gut microbiome during inflammatory bowel disease activity. We 
demonstrate a characteristic increase in facultative anaerobes at the expense of obligate anaerobes, as well as molecular 
disruptions in microbial transcription (for example, among clostridia), metabolite pools (acylcarnitines, bile acids, and 
short-chain fatty acids), and levels of antibodies in host serum. Periods of disease activity were also marked by increases 
in temporal variability, with characteristic taxonomic, functional, and biochemical shifts. Finally, integrative analysis 
identified microbial, biochemical, and host factors central to this dysregulation. The study’s infrastructure resources, 
results, and data, which are available through the Inflammatory Bowel Disease Multi’omics Database (http://ibdmdb.
org), provide the most comprehensive description to date of host and microbial activities in inflammatory bowel diseases.

Inflammatory bowel diseases (IBD) affect more than 3.5 million  
people, and their incidence is increasing worldwide1. These diseases, the 
most prevalent forms of which are Crohn’s disease (CD) and ulcerative  
colitis (UC), are characterized by debilitating and chronic relapsing 
and remitting inflammation of the gastrointestinal tract (for CD) or 
the colon (in UC). These conditions result from a complex interplay 
among host2,3, microbial4–6, and environmental7 factors. Drivers of 
IBD in the human genome include more than 200 risk variants, many 
of which are responsible for host–microbe interactions3. Common 
changes in the gut microbiome in individuals with IBD include an 
increase in facultative anaerobes, including Escherichia coli8, and a 
decrease in obligately anaerobic producers of short-chain fatty acids 
(SCFAs)4. Here, to support a systems-level understanding of the aetiol-
ogy of the IBD-associated gut microbiome that goes beyond previously 
reported metagenomic profiles, we introduce the IBDMDB, as part of 
the Integrative Human Microbiome Project.

We recruited 132 participants from five academic medical cen-
tres (three paediatric sub-cohorts: Cincinnati Children’s Hospital, 

Massachusetts General Hospital (MGH) Pediatrics, and Emory 
University Hospital; and two adult cohorts: MGH and Cedars-
Sinai Medical Center; Fig. 1a, Extended Data Table 1, see Methods). 
Individuals not diagnosed with IBD on the basis of initial endoscopic 
and histopathologic findings were classified as ‘non-IBD’ controls. We 
analysed 651 biopsies (baseline) and 529 blood samples (approximately 
quarterly), which were collected in the clinic, and 1,785 stool samples, 
which were collected every two weeks using a home shipment pro-
tocol for one year (Fig. 1b). The latter yielded primarily microbially 
focused profiles: metagenomes (MGX), metatranscriptomes (MTX), 
proteomes (MPX), metabolomes (MBX), and viromes (VX) at several 
‘global’ time points across all subjects (Fig. 1b), as well as denser, more 
intensive sampling from individuals with more variable disease activity 
(see Methods, Extended Data Fig. 1a–d). We generated multiple meas-
urement types from many individual stool specimens, including 305 
samples that yielded all stool-derived measurements, and 791 MGX–
MTX pairs (Fig. 1c, Extended Data Fig. 1b). Biopsies yielded host- 
and microbe-targeted human RNA sequencing (RNA-seq (HTX)), 
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epigenetic reduced representation bisulfite sequencing (RRBS), and 
16S rRNA gene amplicon sequencing (16S), which were matched with 
human exome sequencing, serological profiles, and RRBS from blood. 
All data are available at https://ibdmdb.org/.

Multi-omic gut microbiome changes in IBD
Consistent with prior studies4,5, although subsets of IBD (CD in par-
ticular) contributed to the second axis of taxonomy-based principal 
coordinates (Fig. 1d, Extended Data Fig. 2a), inter-individual variation 
accounted for the majority of variance for all measurement types5,9,10 
(Fig. 1e, f, Extended Data Fig. 2a). Even relatively large effects, such 
as disease status or physiological and technical factors, explained a 
smaller proportion of variation (Fig. 1f); this was true across measure-
ment types, although these captured distinct aspects of IBD dysbiosis  
(see below).

Most measurement types captured correlated changes among 
and within subjects, cross-sectionally and longitudinally (Fig. 1e). 
Functional profiles, measured from MGX, MTX, and MPX, were 
the most tightly coupled (Fig. 1e), although some individual feature- 
wise correlations were weak (Spearman’s correlation MGX–MTX 
0.44 ± 0.10 (mean ± s.d.), MGX–MPX 0.14 ± 0.083, and MTX–
MPX 0.18 ± 0.096l; Extended Data Fig. 2b). Unexpectedly, charac-
terized enzymes tended to be only weakly correlated with their known 

substrates or products (Supplementary Fig. 1). Although our dietary 
characterization was obtained through a very broad-level food fre-
quency questionnaire, it provides an initial characterization of longitu-
dinal diet–microbiome coupling in a substantial population over many 
months; diet accounted for a small but significant 3% (false discovery 
rate (FDR) P = 7.4 × 10−4) of taxonomic variation between subjects, 
and 0.7% (FDR P = 4.3 × 10−4) of variation longitudinally.

Simple cross-sectional differences between individuals with IBD and 
those without (Supplementary Tables 1–14) were most apparent in the 
metabolome (Figs. 1f, 2a, Extended Data Fig. 2a, c, d, see Methods). 
Overall, metabolite pools were less diverse in individuals with IBD, par-
alleling previous observations for microbial diversity (Supplementary 
Table 2); this might be caused by poor nutrient absorption, greater 
water or blood content in the bowels, and shorter bowel transit times 
in individuals with active IBD11. The smaller number of compounds 
that were more abundant in patients with IBD included polyunsatu-
rated fatty acids such as adrenate and arachidonate. Pantothenate and 
nicotinate (vitamins B5 and B3, respectively) were particularly depleted 
in the gut during IBD; this is notable because these are not typically 
among the B vitamins that are deficient in the serum of patients with 
IBD12, although low nicotinate levels have been detected during active 
CD13. Both vitamins are required to produce cofactors used in lipid 
metabolism14, and nicotinate has anti-inflammatory and anti-apoptotic 
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Fig. 1 | Multi-omics of the IBD microbiome in the IBDMDB study.  
a, Overview of cohort characteristics. We followed 132 participants (with 
CD, with UC, or without IBD (control)) for one year each. Principal 
component analysis (PCA) of SNP profiles shows that the resulting 
IBDMDB cohort is mostly of European ancestry as compared to the 1000 
Genomes (1kG) reference (see Methods). b, Sampling strategy. The study 
yielded host and microbial data from colon biopsy (baseline), blood 
(approximately quarterly), and stool (every two weeks), assessing global 
time points for all subjects and dense time courses for a subset. Raw, non-
quality-controlled sample counts are shown. c, Overlap of multi-omic 
measurements from the same sample (strict) or from near-concordant 
time points (with differences of up to 2 or 4 weeks; see Methods).  
d, Principal coordinates analysis (PCoA) based on species-level Bray–
Curtis dissimilarity; most variation is driven by a tradeoff between phylum 
Bacteroidetes versus Firmicutes. Samples from individuals with IBD  
(CD in particular) had weakly lower Gini–Simpson alpha diversity 

(Wald test P = 0.26 and 0.014 for UC and CD compared with non-IBD, 
respectively). e, Mantel tests quantifying variance explained (square of 
Mantel statistic) between measurement type pairs, with differences across 
subjects (inter-individual) or within subjects over time (intra-individual; 
see Methods); results show tight coupling across measurement types. 
Sample sizes in f. f, PERMANOVA shows that inter-individual variation 
is largest for all measurement types, with even relatively large effects 
(for example, antibiotics or IBD phenotype) capturing less variation 
(see Methods). Stratified tests (CD/UC) consider only samples within the 
indicated phenotype (note that sample counts decrease for these, resulting 
in larger expected covariation by chance). Stars show FDR-corrected 
statistical significance (FDR *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001). 
Variance is estimated for each feature independently (Methods). ‘All’ refers 
to a model with all metadata. Total n for each measurement type is shown 
in square brackets, distributed across up to 132 subjects (Extended Data 
Fig. 1a, see Methods).
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functions in the gut15. Notably, nicotinuric acid, a metabolite of  
nicotinate16, was found almost exclusively in the stool of patients with 
IBD. Faecal calprotectin and the Harvey–Bradshaw Index (HBI), two 
measures of disease severity in CD, showed no significant correlation, 
whereas the Simple Clinical Colitis Activity Index17 (SCCAI) in UC did 
correlate weakly with faecal calprotectin levels (Fig. 2b).

Notably, no metagenomic species were significantly different between 
samples from individuals with IBD and those from control individ-
uals after correction for multiple hypothesis testing (Supplementary 
Table 1), in contrast with previous work4,5,18. We hypothesized this 
was due to the differentiation of study participants into two subsets, 
one with relatively inactive IBD (due to remission or recent onset) and 
the other with greater activity. This differentiation has been observed 
in several cohorts of patients with IBD5,18, but it is more pronounced 
here because we did not take samples specifically from subjects selected 
for active disease. We therefore classified samples with taxonomic com-
positions highly unlike those of non-IBD control samples as ‘dysbiotic’ 
(Fig. 2c, Extended Data Fig. 3a–e, see Methods). Dysbiotic excursions 
in this cohort did not correspond with disease location (for example, 
ileal CD; F-test P = 0.11, see Methods), and occurred longitudinally 
within subjects; they were weakly correlated with patient-reported and 
molecular measures of disease activity (Fig. 2d, Extended Data Fig. 3a). 
In total, 272 dysbiotic samples were taken during 78 full periods of  
dysbiosis and 9 censored periods (that is, subjects who were dysbiotic at 

the end of the time series, see Methods), or 17.1% of all samples (n = 178 
(24.3%) in CD and n = 51 (11.6%) in UC). Plots of the durations of 
and times between dysbiotic periods were approximately exponential,  
suggesting that transitions are triggered, at least in part, by events with 
constant probability over time (and are thus potentially stochastic; 
Fig. 2e).

Using the resulting definition of dysbiosis, dysbiotic periods  
corresponded to a larger fraction of variation in all measurement types 
than did overall IBD phenotype (Fig. 1f, Supplementary Tables 15–28);  
this is likely to reflect a clearer delineation between active and less 
active disease states within extremely heterogeneous subjects over 
time. Though it is unclear which aspects of dysbiosis are causes or 
consequences of IBD, characterization of these changes will lead to 
greater understanding of microbial dynamics in disease. As in previ-
ous cross-sectional studies of established disease4, differences between 
dysbiotic and non-dysbiotic samples from individuals with CD were 
more pronounced than in those from individuals with UC (Fig. 1f). 
Notably, dysbiosis also distinguished between independent host meas-
ures, such as individuals with high and low ASCA (anti-Saccharomyces 
cerevisiae antibodies), ANCA (anti-neutrophil cytoplasm antibodies),  
OmpC (outer membrane protein C), and CBir1 (anti-flagellin)  
antibody titres in serological profiles (Fig. 2f; Fisher’s combined 
probability test P = 0.00044 from Wilcoxon tests between dysbiotic 
and non-dysbiotic CD). Dysbiosis was not significantly associated 
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Fig. 2 | Metagenomic, metatranscriptomic, and stool metabolomic 
profiles are disrupted during IBD activity. a, Relative abundance 
distributions for ten of the most cross-sectionally significantly 
differentially abundant metabolites in samples from individuals with IBD, 
as a ratio to the median relative abundance in individuals without IBD 
(Wald test; all FDR P < 0.003; see Methods; Supplementary Tables 1–14). 
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disease activity: patient-reported (Harvey–Bradshaw index (HBI) in CD, 
n = 680 samples from 65 subjects; simple clinical colitis activity index 
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regression shown with 95% confidence bound. c, d, Distribution of 
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see Methods) and its relationship with calprotectin (d, n = 652 samples 
from 98 subjects). Linear regression with 95% confidence. e, Kaplan–
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between (right) dysbiotic episodes in UC and CD. Both are approximately 
exponential (fits in dashed lines), with means of 4.1 and 17.2 weeks, 
respectively, for UC, and 7.8 and 12.8 weeks for CD (see Methods).  
f, Relative abundance distributions of significantly different metagenomic 
species (n = 1,595 samples from 130 subjects), metabolites (n = 546 
samples from 106 subjects), and microbial transcribers (n = 818 samples 
from 106 subjects) in dysbiotic samples compared to non-dysbiotic 
samples from the same disease group (Wald test; all FDR P < 0.05; full 
results in Supplementary Tables 15–28). Also shown are antibody titres 
for ANCA, ASCA (IgG or IgA), anti-OmpC, and anti-CBir1 antibodies 
(n = 146 samples from 61 subjects). Boxplots show median and lower/
upper quartiles; whiskers show inner fences; sample sizes above boxes.
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with demographics or medication (logistic regression with subject as 
random effect, all FDR P > 0.05). Dysbiosis recapitulated a known 
decrease in alpha diversity in active disease, but we also identified 
numerous communities with normal complexity as dysbiotic (Extended 
Data Fig. 4a). Notably, taxonomic perturbations during dysbiosis mir-
rored those previously observed cross-sectionally in IBD6, such as the 
depletion of obligate anaerobes including Faecalibacterium prausnitzii 
and Roseburia hominis in CD and the enrichment of facultative anaer-
obes such as E. coli (Fig. 2f, Extended Data Fig. 4b). Ruminococcus 
torques and Ruminococcus gnavus, two prominent species in IBD19, 
were also differentially abundant in dysbiotic CD and UC, respectively 
(FDR P = 0.041 and 0.0087. A smaller subset of species also increased 
significantly in transcriptional activity (mean total transcript relative 
abundance relative to genomic abundance; see Methods) as well as 
showing differences in abundance, including Clostridium hathewayi, 
Clostridium bolteae, and R. gnavus (Fig. 2f). All had significantly 
increased expression during dysbiosis (all FDR P < 0.07), and thus 
their roles in IBD may be more pronounced than suggested solely by 
their differences in genomic abundance.

In the metabolome, SCFAs were generally reduced in dysbiosis 
(Fig. 2f). The reduction in butyrate in particular is consistent with 
the previously observed depletion of butyrate producers6 such as  
F. prausnitzii and R. hominis, which was also observed here (Fig. 2f). 
We also detected enrichment of the primary bile acid cholate and its  
glycine and taurine conjugates (glycocholate q = 5.2 × 10−5, tauro-
cholate q = 1.3 × 10−5) in dysbiotic samples from participants with 
CD, when compared with non-dysbiotic samples. Similarly, glycoche-
nodeoxycholate (q = 1.1 × 10−4) was also enriched. By contrast, the 
secondary bile acids lithocholate and deoxycholate (q = 5 × 10−7 and 
q = 1.8 × 10−4, respectively) were reduced in dysbiosis, suggesting 
that secondary bile-acid producing bacteria are depleted in IBD-related 
dysbiosis, or that transit time through the colon is too short for these 
compounds to be metabolized20,21. These significant metabolomic 
differences during microbial dysbiosis, which were concordant with 
changes expected during disease, provide further evidence that the 
dysbiosis measure is specifically relevant in IBD.

We also observed several previously undescribed biochemical dif-
ferences during dysbiosis, such as large changes in acylcarnitine levels. 
Many acylcarnitines were significantly enriched in dysbiosis (all FDR 
P < 0.05; see Extended Data Fig. 4c), whereas levels of base metabo-
lites were typically reduced (Fig. 2f, Extended Data Fig. 4d). Of note, 
however, arachidonoyl carnitine (C20:4 carnitine) was reduced, and 
free arachidonate, a precursor of prostaglandins involved in inflam-
mation, was increased (Fig. 2a). Like bile acids, carnitines are microbi-
ally modified compounds that can have competing phenotypic effects 
depending on the precise modifications: l-carnitine, for example, tends 
to be anti-inflammatory, whereas fatty acid-conjugated carnitine does 
not act uniformly on gut inflammation22. These opposing changes in 
biochemically related metabolites further suggest that the differences 
seen during dysbiosis do not stem simply from the wholesale dilution 
of stool. Numerous other metabolites were also significantly altered in 
individuals with dysbiotic IBD (117 of 548 tested known metabolites 
with FDR P < 0.05; Extended Data Fig. 4d, Supplementary Table 16), 
showing large-scale dysregulation of metabolite pools in tandem with 
host- and microbiome-specific taxonomic and molecular features 
(Fig. 2f). Finally, although we found only a single, poorly characterized 
bacteriophage to be differentially prevalent in both IBD and dysbiosis 
(notably with reduced prevalence in IBD; Supplementary Tables 3, 17), 
we note that several participants showed a spike in viral load before a 
dysbiotic period (Supplementary Fig. 2).

Decreased gut microbiome stability in IBD
Our dense time series for stool-derived multi-omics from many sub-
jects enabled us to carry out in-depth longitudinal analysis, integrating 
multiple measurements of the microbiome. Each subject’s microbiome 
tended to diverge more from the baseline over time for metagenomic, 
metatranscriptomic, and metabolomic profiles (Fig. 3a; F-test power 

law fit P < 10−24; see Methods). These changes were most pronounced 
for the taxonomic profiles of individuals with CD and UC (F-test dif-
ference in power law fits P < 10−9), where a the microbiome of an 
individual may have almost no species in common with itself at an 
earlier time point (dissimilarity of 1; Fig. 3a), consistent with previous 
observations9. Transcripts summarized within species (Extended Data 
Fig. 5a) showed similar trends (all F-test P < 8 × 10−4) to metagen-
omic species abundances. Meanwhile, gene family transcripts (Kyoto 
Encyclopedia of Genes and Genomes (KEGG) Orthologues (KOs)), 
metabolites (Fig. 3a), and proteins (KOs, Extended Data Fig. 5a) var-
ied much more rapidly, with essentially as much change after around 
two weeks as over longer time periods (increasing trends less or not 
significant: non-IBD, UC and CD F-test P = 0.0006, 0.001, and 0.04, 
respectively for transcripts; 0.02, 0.06, and 0.003 for metabolites; and 
0.5, 0.15, and 0.06 for proteomics). This indicates that these features 
vary rapidly in the guts of individuals with and without IBD and lack 
additional, more extreme excursions during disease.

We further characterized large-scale temporal differences by search-
ing for ‘shifts’ in the microbiome between consecutive time points, 
defined as Bray–Curtis dissimilarities more similar to those between 
different people than within one person (Fig. 3a, Extended Data Fig. 5b, 
see Methods). First, considering only metagenomic taxonomic profiles, 
we found 166 such shifts, with 39 in individuals without IBD (of 382 
total possible), 44 in individuals with UC (of 381), and 83 in individuals 
with CD (of 650) (Supplementary Table 29). Owing to differences in 
total observation times, the rate of shifts was only marginally higher 
in individuals with CD or UC than in non-IBD participants (2.09 and 
1.83 shifts per year, respectively, compared with 1.79), and these were 
generally confined to a subpopulation of dysbiotic individuals (Fig. 3a). 
However, the species with the greatest changes in relative abundance 
differed markedly (Fig. 3b). Shifts in individuals without IBD occurred 
primarily in individuals with high abundances of Prevotella copri, which 
underwent repeated expansion and relaxation cycles over the course of 
weeks to months (Fig. 3c). This organism is of particular interest owing 
to its behaviour as a population-scale outgroup and its enrichment  
during new-onset rheumatoid arthritis23. The lack of shifts due to  
P. copri in participants with IBD was not due to an absence of P. copri 
in these individuals or an overabundance in those without IBD (6 of 
27 non-IBD subjects had at least one time point with more than 10% 
P. copri, consistent with healthy populations10,24). Instead, the relative 
abundances that were present remained more stable in the population 
with IBD (Fig. 3c). Taxonomic shifts in participants with IBD mirrored 
earlier observations of relative reductions in obligate anaerobes and 
overgrowth of facultative anaerobes (Fig. 3b, Extended Data Fig. 5c), 
and frequently corresponded with entry into and exit from dysbiosis 
(28 and 23 shifts marked entries and exits in IBD, respectively, account-
ing for 40% of shifts in IBD). E. coli in particular contributed to a large 
number of shifts in IBD, although there was no clear pattern in which 
species it traded abundance with (Extended Data Fig. 5c, d).

When we define shifts in a similar manner for metabolomics profiles 
(Extended Data Fig. 5e), the rate of shifts is approximately half that seen 
for the metagenome (1.05 shifts per year in participants without IBD, 
0.99 shifts per year in UC and 1.36 shifts per year in CD), although 
these data were strongly affected by the availability of fewer metabo-
lomics samples (Extended Data Fig. 5e). We examined differences in 
metabolite profiles between adjacent samples from the same subjects 
and found significant separation by diagnosis (Fig. 3d; PERMANOVA 
P < 10−4). These differences were largely driven by unknown com-
pounds, emphasizing the need for further compound annotation efforts 
and follow up to determine the significance of these compounds in 
IBD. Features with the greatest differences included urobilin (which 
showed larger differences in individuals without IBD), urate (largely in 
patients with CD), and a feature with an m/z of 152.0354 and retention 
time (RT) of 4.16 min (potentially the formic acid adduct of pyridinal-
dehyde), which accounted for differences largely specific to UC. The 
primary contributors to shifts were largely unidentified compounds 
(Extended Data Fig. 5f, Supplementary Table 30). HILp_QI22918,  
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an unknown feature with m/z of 648.43067 and RT of 5.03 min, contrib-
uted the most (ten) shifts exclusively in individuals with IBD. Among 
known compounds, methylimidazole acetic acid and urate were the 
primary contributors to the most shifts (four shifts each; Fig. 3e).

Microbiome-associated host factors
When we incorporated host molecular measurements, primarily from 
intestinal biopsies taken colonoscopically at baseline, into our analysis 
of the microbiome in IBD, the main influences on population varia-
bility were strikingly different from those that affected the microbiota 
alone. In particular, tissue location was a major driver of intestinal 
epithelial gene expression (Extended Data Fig. 2c) even in the face of 
microbial variation25 (Extended Data Fig. 2d). We therefore performed 
microbiome and phenotypic association analyses independently for 
each standardized biopsy location (see Methods).

We identified genes that were significantly differentially expressed 
(DEGs) in patient biopsies taken in inflamed locations of the ileum 
(from individuals with CD) and rectum (both CD and UC) compared 
to individuals without IBD (Extended Data Fig. 6a). This analysis 
identified 305 and 920 genes, genes that were differentially expressed 

(primarily overexpressed) in the ileum and rectum, respectively, 
for further analysis (together representing 1,008 unique genes, neg-
ative binomial model FDR P < 0.05 and fold-change >1.5; Fig. 4a, 
Supplementary Table 31). These included genes that can affect com-
mensal microorganisms directly, such as the antimicrobial CXCL6  
(a cell membrane disruptor26) and SAA2 (which inhibits growth of 
Gram-negative bacteria27), as well as indirect microbial modulators 
such as DUOX2 (which produces reactive oxygen species28) and 
LCN2 (which induces microbial iron starvation through sequestra-
tion29; Fig. 4b). Enrichment analysis testing for overrepresentation of 
KEGG30 pathways among DEGs also confirmed strong representation 
of immune-related pathways (one-sided hypergeometric test, FDR 
P < 0.05). In particular, the IL-17 signalling pathway, components 
of which have been previously identified in gene expression studies 
of ileal biopsies from patients with CD31,32, was enriched in upregu-
lated DEGs in both ileum and rectum (FDR P = 2.8 × 10−14; Fig. 4a, 
Supplementary Table 32). Among upregulated DEGs in rectal biopsies 
from patients with UC, we found further enrichment of the complement  
cascade (FDR P = 4.4 × 10−10), a component of innate immunity33 that 
has been implicated in IBD25,34,35.
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Fig. 3 | Temporal shifts in the microbiome are more frequent and 
more extreme in IBD. a, Bray–Curtis dissimilarities within subjects as a 
function of intervening time difference, as compared to different people 
or technical replicates; calculated for metagenomic taxonomic profiles 
(species; n = 1,595 samples from 130 subjects), metabolomics (n = 546 
samples from 106 subjects), and functional profiles (KO30 gene families; 
n = 818 samples from 106 subjects). Boxplots show median and lower/
upper quartiles; whiskers show inner fences. Blue, least-squares power-law 
fits; orange, thresholds for microbiome shifts (see Methods). Proteomics 
and species-level transcripts in Extended Data Fig. 5a. Within-subject 
changes are significantly more extreme in UC and CD than in non-IBD for 
taxonomic profiles (F-test P = 3.9 × 10−10 and 1.2 × 10−18, respectively) 
and transcripts (P = 0.00016 and 1.7 × 10−5), with mixed differences 
for metabolites (P = 0.012 and 0.23). Technical replicates shown (when 
possible) at 0 weeks. b, Shift frequencies for the top 10 species with greatest 
change during shifts, ranked by number of shifts as primary contributor, 

stratified by disease phenotype(s) (full table Supplementary Table 29).  
c, P. copri is of interest in arthritis23 and international populations44, and 
it alone retained stable abundances in CD but bloom-relaxation dynamics 
in controls (two-tailed Wilcoxon test of absolute differences between 
consecutive time points P = 4.2 × 10−6 between non-IBD and UC, and 
1.1 × 10−4 between non-IBD and CD). Plot shows 22 subjects with at 
least one time point with more than 10% differential abundance (n = 267 
samples). d, Ordination of temporally adjacent samples within individual, 
based on metabolomics (Bray–Curtis principal coordinates on normalized 
absolute abundance differences). Disease groups separate significantly 
(n = 440 sample pairs from 106 subjects; PERMANOVA R2 = 2.8%, 
P < 10−4). Urobilin, urate, and an unidentified untargeted feature  
that segregates with disease groups in the PCoA are shown (right);  
HILn_QI1594 (HILIC-neg method m/z = 152.0354, RT = 4.16 min).  
e, As in c, but for urate (two-tailed Wilcoxon test P = 0.0012 non-IBD–UC, 
P = 0.044 non-IBD–CD; n = 546 samples from 106 subjects).
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To identify the components of the microbiome that were most asso-
ciated with these changes, we tested for transcripts that covaried with 
the relative abundance of microorganisms measured directly from 
the same specimens using 16S amplicon sequencing. We identified 
31 and 106 significant gene–operational taxonomic unit (OTU) pairs 
in the ileum and rectum, respectively, with no overlap between the 
two sites, consistent with the different overall gene expression pat-
terns that separate them (partial Spearman correlation FDR P < 0.05; 
see Methods, Extended Data Fig. 6b, Supplementary Table 33). The 
genes involved included known IBD-associated host–microbial interac-
tion factors, including DUOX2 and its maturation factor DUOXA231,36, 
both of which were negatively associated with the abundance of 
Ruminococcaceae UCG 005 (OTU 89) in the ileum. The expression 
of several chemokine genes, some of which have reported antimicrobial  
properties37 (CXCL6, CCL20), were negatively correlated with the 
relative abundance of Eubacterium rectale (OTU 120) in the ileum, 
and Streptococcus (OTU 37) and Eikenella (OTU 39) in the rectum, 
suggesting that these species are the most susceptible to the activity of 
these chemokines. Finally, although this cohort was not designed for 
genetic association discovery (Supplementary Discussion, Extended 
Data Fig. 6c, d, Supplementary Table 34), we also provide exome 
sequencing for 92 subjects, which may be integrated with larger  
populations in the future.

Dynamic, multi-omic microbiome interactions
We next searched for host and microbial molecular interactions that 
might underlie disease activity in IBD by constructing a large-scale 
cross-measurement type association network that incorporated ten 
microbiome measurements: metagenomic species, species-level 
transcription ratios, functional profiles captured as Enzyme 
Commission (EC) gene families (MGX, MTX and MPX), metabo-
lites, host transcription (rectum and ileum separately), serology, and 
faecal calprotectin. To identify co-variation between components of 
the microbiome above and beyond those linked strictly to inflam-
mation and disease state, each measurement type was first residu-
alized using the same mixed-effects model (or linear model when 
appropriate) used to determine differential abundance (‘adjusted’ 
network; see Methods). This residualization uses longitudinal meas-
urements to minimize any inter-individual variation (including IBD 
status), as well as dysbiotic excursions as drivers of the detected 
associations, and thus highlights within-person associations over 
time. The resulting network contained 53,161 total significant edges 
(FDR P < 0.05) and 2,916 nodes spanning features from all meas-
urement types (Supplementary Table 35). We constructed a filtered 
subnetwork for visualization from the top 300 edges (by P value) 
per measurement type in which at least one connected node was 
dysbiosis-associated (Fig. 4c).
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Fig. 4 | Colonic epithelial molecular processes perturbed during  
IBD and in tandem with multi-omic host–microbe interactions.  
a, Human DEGs (negative binomial FDR P < 0.05, minimum fold 
change 1.5; Supplementary Table 31) from 81 subjects with paired ileal 
and rectal biopsies. Ordering by diagnosis, clustering within diagnosis. 
IL-17 signalling (I) showed strongest enrichment in ileal DEGs (FDR 
P = 8.2 × 10−12)31, while the complement cascade (II)45 was enriched 
in rectal DEGs from patients with UC (FDR P = 5.2 × 10−8; KEGG30 
gene sets, Supplementary Table 32). Example DEGs shown with I and II. 
b, Expression of four genes involved in host–microbe interactions26–29. 
Inflamed biopsy samples are shown for CD from ileum (left, n = 20, 
23, 39 independent samples for non-IBD, UC, CD respectively); for CD 
and UC in rectum (right column; n = 22, 25, 41 independent samples 
for non-IBD, UC, CD); non-IBD samples were non-inflamed. Asterisks 
indicate significant differential expression compared to non-IBD 
(Fisher’s exact test, FDR P < 0.05; P values in Supplementary Table 31). 

Boxplots show median and lower/upper quartiles; whiskers show inner 
fences. c, Significant associations among 10 aspects of host–microbiome 
interactions: metagenomic species, species-level transcription ratios, 
functional profiles captured as EC gene families (MGX, MTX and 
MPX), metabolites, host transcription (rectum and ileum), serology, 
and calprotectin (sample counts in Fig. 1b, c). Network shows top 300 
significant correlations (FDR P < 0.05) between each pair of measurement 
types (for serology, FDR P < 0.25). Nodes coloured by disease group in 
which they are ‘high’, edges by sign and strength of association. Spearman 
correlations use residuals of a mixed-effects model with subjects as 
random effects (or a simple linear model when only baseline samples were 
used (biopsies)) after covariate adjustment (see Methods). Time points 
approximately matched with maximum separation 4 weeks (see Methods). 
Singletons pruned for visualization (Extended Data Fig. 8). Hubs (nodes 
with at least 20 connections) emphasized.
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Representatives from the five stool-derived measurements occurred 
as hubs (defined as nodes with at least 20 connections) in this network, 
all of which were identified as differentially abundant in dysbiosis. 
Particularly connected taxonomic features (from metagenomes and 
metatranscriptomes) included the abundances of F. prausnitzii and 
unclassified clades related to Subdoligranulum38, which are closely phy-
logenetically related, although the only molecular features common 
to both organisms covaried with the abundances of cholesterol and 
inosine (Extended Data Fig. 7a). F. prausnitzii accounted for some of 
the strongest associations overall, including the expression of numerous 
ECs that were downregulated in dysbiosis. On the other hand, E. coli 
(and to lesser extent Haemophilus parainfluenzae) accounted for a large 
fraction of upregulated ECs. Members of the Roseburia genus were 
also associated, metatranscriptionally as well as metagenomically, with 
bile acids and a number of acylcarnitines, suggesting that Roseburia 
(together with Subdoligranulum) are involved in the carnitine and bile 
acid dysregulation observed in IBD.

Acylcarnitines and bile acids as overall chemical classes featured 
prominently in the network, related in part to their changes during  
dysbiosis. Acylcarnitines were associated with numerous dysbiosis- 
associated species including R. hominis (nine acylcarnitines, FDR 
P < 0.05; Supplementary Table 35), Klebsiella pneumoniae (three), and 
H. parainfluenzae (three), as well as expression of C. bolteae (three), 
suggesting that multiple scales of regulation, including long-term 
growth-based and short-term transcriptional, are involved. Particularly 
notable biochemical hubs in the network included C8 carnitine, another 
acylcarnitine that was significantly increased in dysbiotic CD, cholate, 
chenodeoxycholate, and taurochenodeoxycholate, which together 
accounted for 107 edges (6%; Fig. 4c). Other prominent metabolite 
associations included several long-chain lipid hubs and the SCFA pro-
pionate; antibodies against OmpC were strongly associated with these, 
as well as with the metagenomic abundances of the numerous ECs 
involved in the system’s biosynthesis or as interactors. Calprotectin, as 
the sole feature in its own measurement type, was weakly associated with 
a number of metabolites that were not differentially abundant in dysbi-
osis, as well as with the metagenomic abundance of several dysbiosis- 
associated ECs. Three host genes appeared in this high-significance 
subnetwork: ileal expression of GIP, NXPE4, and ANXA10. Expression 
of RNA polymerase was also a prominent node in the network, though 
not a hub, that was upregulated in dysbiosis (Extended Data Fig. 8). The 
regulation of this essential enzyme class is growth-rate-dependent39, 
suggesting that microbial communities as a whole are more often in 
higher growth conditions in dysbiotic IBD.

Finally, we also identified associations among features in the micro-
biome that took dysbiosis into account, resulting in a second network 
using the same methodology but without adjusting for dysbiosis 
(‘unadjusted’; Supplementary Discussion, Extended Data Figs. 7b, 9, 
Supplementary Table 36). Together, these networks contextualize the 
multiple types of microbiome disruption that are observed in IBD, with 
associations among many molecular feature types that represent poten-
tial targets for follow-up studies on the mechanisms that underlie IBD 
and gastrointestinal inflammation.

Conclusions
As part of the HMP2, we have developed the IBDMDB, one of the first 
integrated studies of multiple molecular features of the gut microbiome 
that have been implicated in IBD dynamics. While overall population 
structure was comparable among measurements of the microbiome—
metagenomic, metatranscriptomic, metabolomic, and others—each 
measurement identified complementary molecular components 
of longitudinal dysbioses in CD and UC. Some, such as taxonomic 
shifts in favour of aerotolerant, pro-inflammatory clades, have been 
captured by previous studies; others, such as greater gene expression 
by clostridia during disease, were discovered by the use of new meas-
urements (metatranscriptomes). The temporal stability of multiple 
microbiome measurements likewise differed across IBD phenotypes 
and disease activity, with distinct effects on molecular components of 

the microbiome (including unexpected stability of the relative abun-
dance of P. copri in individuals with IBD). Our data provide a catalogue 
of new relationships between multi-omic features identified as poten-
tially central during IBD, in addition to data, protocols, and relevant 
bioinformatic approaches to enable future research.

By leveraging a multi-omic view on the microbiome, our results 
single out a number of host and microbial features for follow-up  
characterization. An unclassified Subdoligranulum species, recently 
shown to form a complex of new species-level clades38, was both markedly  
reduced in IBD and central to the functional network, associating with 
a wide range of IBD-linked metabolites both identifiable (for example, 
bile acids and polyunsaturated fatty acids) and unidentifiable. The clade 
is likely to contain at least seven species that are closely related to the 
Subdoligranulum, Gemmiger, and Faecalibacterium genera, typically 
butyrate producers that are considered to be beneficial, particularly 
in IBD40. Therefore, the isolation and characterization of additional 
species—especially in tandem with these associated metabolites—is 
likely to reveal these clades’ physiological and immunological inter-
actions and the consequences of their depletion in IBD. More gen-
erally, strain-level profiling of implicated microorganisms remains to 
be carried out, particularly in direct association with host epithelium 
and corresponding molecular changes. This profiling is feasible with 
existing data from this study, and will serve to pinpoint the specific 
organisms responsible for IBD-associated accumulation of primary 
unconjugated bile acids and depletion of secondary bile acids41. Only 
very few, low-abundance species are currently known to be capable of 
secondary bile acid metabolism42, and expanding the range of strains 
known to carry appropriate metabolic cassettes will indicate poten-
tial new targets for therapeutic restoration. Beyond short-chain fatty 
acids and bile acids, the large-scale acylcarnitine dysbiosis observed 
here may also provide a promising new target for IBD, particularly 
after determining whether this shift in metabolite pools is host- or 
microbiome-driven.

We stress that it has not yet been determined whether these multi- 
omic features of the microbiome can predict disease events before 
their occurrence and that the disease-relevant time scales of distinct 
molecular events have not been identified (for example, static host 
genetics, relatively slow epigenetics or microbial growth, rapid host 
and microbial transcriptional changes). It may also be fruitful to seek 
out the earliest departures from a subject-specific baseline state that, 
while themselves still ‘eubiotic’, may predict the subsequent onset of 
dysbiosis or disease symptoms. Some such characterization may be 
possible in data from this study, although other causal analysis may 
be better carried out at finer-grained time scales or using interven-
tional study designs. It will be most important to take these molecular 
results back to the clinic, in the form of better predictive biomarkers 
of IBD progression and outcome, and as a set of new host–microbe 
interaction targets for which treatments to ameliorate the disease may 
be developed.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-019-1237-9.
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MEthODS
Recruitment and specimen collection. Recruitment. Five medical centres partici-
pated in the IBDMDB: Cincinnati Children’s Hospital, Emory University Hospital, 
Massachusetts General Hospital, Massachusetts General Hospital for Children, and 
Cedars-Sinai Medical Center. Patients were approached for potential recruitment 
upon presentation for routine age-related colorectal cancer screening, work up 
of other gastrointestinal (GI) symptoms, or suspected IBD, either with positive 
imaging (for example, colonic wall thickening or ileal inflammation) or symp-
toms of chronic diarrhoea or rectal bleeding. Participants could not have had a 
prior screening or diagnostic colonoscopy. Potential participants were excluded 
if they were unable to or did not consent to provide tissue, blood, or stool, were 
pregnant, had a known bleeding disorder or an acute gastrointestinal infection, 
were actively being treated for a malignancy with chemotherapy, were diagnosed 
with indeterminate colitis, or had undergone a prior, major gastrointestinal surgery 
such as an ileal/colonic diversion or j-pouch. Upon enrolment, an initial colonos-
copy was performed to determine study strata. Subjects not diagnosed with IBD 
based on endoscopic and histopathologic findings were classified as ‘non-IBD’ 
controls, including the aforementioned healthy individuals presenting for routine 
screening, and those with more benign or non-specific symptoms. This creates a 
control group that, while not completely ‘healthy’, differs from the IBD cohorts 
specifically by clinical IBD status. Differences observed between these groups are 
therefore more likely to constitute differences specific to IBD, and not differences 
attributable to general GI distress. In total, 132 subjects took part in the study 
(Extended Data Table 1).
Regulatory compliance. The study was reviewed by the Institutional Review Boards 
at each sampling site: overall Partners Data Coordination (IRB #2013P002215); 
MGH Adult cohort (IRB #2004P001067); MGH Paediatrics (IRB #2014P001115); 
Emory (IRB #IRB00071468); Cincinnati Children’s Hospital Medical Center (2013-
7586); and Cedars-Sinai Medical Center (3358/CR00011696). All study partici-
pants gave written informed consent before providing samples. Each IRB has a 
federal wide assurance and follows the regulations established at 45 CFR Part 46. 
The study was conducted in accordance with the ethical principles expressed in 
the Declaration of Helsinki and the requirements of applicable federal regulations.
Specimen collection and storage. Specimens for research (biopsies, blood draws, 
and stool samples) were collected during the screening colonoscopy, at up to five 
quarterly follow-up visits at the clinic (termed ‘baseline’, visit 2, and so on, occur-
ring at months 0, 3, 6, 9, and 12), and every two weeks by mail.
Biopsies. Biopsies were primarily gathered during the initial screening colonoscopy, 
where approximately four to fourteen biopsies were collected for each subject. For 
each location sampled (at least ileum and 10 cm from rectum, plus discretionary 
sites of inflammation), one biopsy was collected for standard histopathology at 
the sampling institution, two biopsies were collected and stored in RNAlater for 
molecular data generation (host and microbial, stored at –20 °C), and one biopsy 
was collected and placed in a sterile tube with 5% glycerol (stored at –80 °C). If 
possible, additional biopsies from inflamed tissue and nearby non-inflamed tissue 
were taken from participants with CD or UC. For adults, a second set of biopsies 
was also collected from each location (rectum and ileum) for epithelial cell cul-
ture (for detailed protocols see http://ibdmdb.org/protocols). All biopsies were 
stored for up to two months at the collection site, and shipped overnight on dry 
ice to Washington University for epithelial cell culture or to the Broad Institute 
for molecular profiling.
Blood samples. Blood samples (whole blood and serum) were taken at the quarterly 
clinical visits. For whole blood, 1 ml of blood was collected and stored at –80 °C. 
For serum, blood was drawn into a 5-ml SST tube, and left at room temperature 
for 40 min. This was centrifuged for 15 min at 3,000 r.p.m. and 0.5-ml portions 
were immediately aliquoted into 2-ml microtubes. Tubes were stored at –80 °C.
Stool samples. Stool specimens were collected both at the clinical visits and every 
two weeks by mail using a home collection kit developed for the project (http://
ibdmdb.org/protocols) and previously validated46. Participants first deposited 
stool into a collection bowl suspended over a commode. They then collected two 
aliquots using a scoop to transfer stool into two Sarstedt 80.623 tubes: one with 
approximately 5 ml molecular biology grade 100% ethanol, and one with no pre-
servative. Stool samples were then sent from each participant by FedEx to the 
Broad Institute where they were processed immediately before storage at –80 °C. 
The ethanol tube was centrifuged to pellet stool, which was subaliquotted, and the 
supernatant was transferred to a new tube for metabolomic analysis. Stool from 
ethanol was aliquoted into 2-ml cryovials in ~100–200-mg aliquots, prioritizing 
specimens for meta’omic sequencing, metabolomics, and viromics in that order. 
Any remaining stool was stored in additional aliquot tubes. One hundred mil-
ligrams of the non-ethanol stool was stored for assaying faecal calprotectin and 
the remainder was saved in a second tube. All samples were stored at –80 °C after 
receipt before processing. This home-collection method was shown previously to 
produce reproducible results compared to flash-frozen samples46, consistent with 
previous observations across data types47–49. Note that an accurate estimate of the 

stool water content could not be obtained, as samples were collected by subjects 
and preserved in ethanol at room temperature until aliquots were generated for 
the different data generation platforms.
Participant and sample metadata. Descriptions of each participant and specimen 
were captured at baseline and accompanying each specimen collection, respec-
tively. At baseline (that is, during or before the screening colonoscopy), subjects 
completed a Reported Symptoms Questionnaire, the Short Inflammatory Bowel 
Disease Questionnaire50, a Food Frequency Questionnaire, and an Environmental 
Questionnaire, and the Simple Endoscopic Score51 for CD subjects or Baron’s 
Score52 for UC subjects was assessed.

During both follow-up visits and paired with mailed stool samples, subjects 
completed an Activity Index and Dietary Recall Questionnaire to assess their 
disease activity index (HBI for CD or SCCAI for UC) and provide a retrospec-
tive recall of their recent diet. All questionnaires, as well as detailed protocols 
(including product numbers), can be found on the IBDMDB data portal at http://
ibdmdb.org/protocols. Responses and metadata are available at http://ibdmdb.
org/results, and summaries of phenotypes for samples and subjects are provided 
(Supplementary Fig. 3) along with summaries of the final time series for each 
subject (Supplementary Fig. 2).
Stool specimen processing. Sample selection. Sample selection proceeded in two 
phases, with an initial round of data generation producing a pilot metagenomics 
and metatranscriptomics data set, which was analysed separately53. This pilot sam-
ple selection included at least one sample per participant that was enrolled in the 
study at that time, two long time courses per disease group (CD, UC, non-IBD), 
and multiple shorter time courses, resulting in 300 samples. For a subset of 78 
samples, metatranscriptomic data were generated. Samples were chosen on the 
basis of sample mass, preferentially selecting samples that could be re-sequenced 
if needed during the later data generation.

For the second, larger phase of data generation, stool samples were selected for 
different assays with the goal of generating data covering as many aspects of the 
cohort as possible, including per-subject time courses, cross-subject global time 
points, and samples from all patients, phenotypes, age ranges, clinical centres, and 
so forth (Fig. 1b). The subset of measurements performed for each sample was 
determined in large part by aliquot requirements (in particular, mass requirements 
for the assay relative to how much the patient provided) and cost.

For proteomics and metabolomics, six global time points were equally distrib-
uted over the year-long time series for as many subjects as possible. Restrictions 
such as available sample mass and missing samples were incorporated by select-
ing the nearest suitable sample in time, resulting in slight irregularities in the 
sampling pattern. In total, 546 metabolite profiles and 450 proteomics profiles 
were generated. From among these samples, 768 were selected for metagenom-
ics, metatranscriptomics, and viromics, corresponding to 8 plates of 96 samples 
each. Samples already selected for proteomics or metabolomics were prioritised 
to facilitate integrated data analysis (316 samples had sufficient mass), resulting in 
six global time points for all subjects. In cases where the respective sample was not 
available for a subject, the nearest suitable sample in time was selected. Subjects 
with greater fluctuations in their HBI or SCCAI scores were then prioritized for 
denser sampling, resulting in 12 long time courses for 5 participants with CD, 4 
with UC, and 3 without IBD. The selection also included 23 technical replicates 
for metagenomics, metatranscriptomics and viromics.

Finally, 576 additional samples were selected specifically for metagenomic 
sequencing (6 plates) resulting in a total of 1,344 metagenomic samples. Samples 
at previously selected global time points and long time courses that had been 
restricted by available mass for other measurement types were prioritized. An 
additional four global time points were added by this process, as well as 15 long 
time courses (representing 10 participants with CD, 10 with UC, and 7 without 
IBD), and 22 samples that had been previously sequenced for the pilot data and 
represented additional technical replicates. Lastly, 522 samples were selected for 
faecal calprotectin measurements, prioritizing samples that were selected for any 
other multi-omics data generation and representing a broad overview of the cohort. 
Of a total of 2,653 collected stool samples, 1,785 generated at least one measure-
ment type (Fig. 1b).

Sample selection for RNA-seq and 16S sequencing from biopsies, and host gen-
otyping from blood draws, aimed to cover the 95 subjects who contributed at least 
14 stool samples, as permitted by the availability of biopsies and blood draws for 
each assay. Sample selection from biopsies additionally aimed to cover biopsies 
from inflamed and non-inflamed sites. In total, 254 biopsies were selected for 
RNA-seq, covering 43 participants with CD, 25 with UC, and 22 without IBD, and 
distributed across biopsy sites and inflammation statuses (Extended Data Fig. 6A); 
and 161 biopsies were selected for 16S sequencing, covering 36 participants with 
CD, 21 with UC, and 22 without IBD. Exome sequencing was performed for 46 
participants with CD, 24 with UC, and 22 without IBD.

Sample selection for remaining sample types (RRBS, blood serology) included 
all samples with a suitable sample available.

http://ibdmdb.org/protocols
http://ibdmdb.org/protocols
http://ibdmdb.org/protocols
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http://ibdmdb.org/results


ArticlereSeArcH

Sequencing assays. DNA and RNA isolation for metagenomics and metatranscrip-
tomics. Total nucleic acid was extracted from one aliquot of each assayed stool 
sample via the Chemagic MSM I with the Chemagic DNA Blood Kit-96 from 
Perkin Elmer. This kit combines chemical and mechanical lysis with magnetic 
bead-based purification. Prior to extraction on the MSM-I, TE buffer, lysozyme, 
proteinase K, and RLT buffer with beta-mercaptoethanol were added to each stool 
sample. The stool lysate solution was vortexed to mix.

Samples were then placed on the MSM I unit to automate the following steps: 
M-PVA magnetic beads were added to the stool lysate solution and vortexed to mix. 
The bead-bound total nucleic acid was then removed from solution using a 96-rod 
magnetic head and washed in three ethanol-based wash buffers. The beads were 
then washed in a final water wash buffer. Finally, the beads were dipped in elution 
buffer to resuspend the DNA sample in solution. The beads were then removed 
from solution, leaving purified total nucleic acid eluate. The eluate was then split 
into two equal volumes: one for DNA and the other for RNA. SUPERase-IN 
solution was added to the DNA samples, and the reaction was cleaned up using 
AMPure XP SPRI beads. DNase was added to the RNA samples, and the reaction 
was cleaned up using AMPure XP SPRI beads.

DNA samples were quantified using a fluorescence-based PicoGreen assay. RNA 
samples were quantified using a fluorescence-based RiboGreen assay. RNA quality 
was assessed via smear analysis on the Caliper LabChip GX.
Metagenome sequencing. Metagenomes were generated from the resulting DNA for 
1,638 stool samples, selected to obtain both a broad overview of targeted, aligned 
time points for all subjects (Fig. 1b), complemented by a dense sampling of sub-
jects which tended to have greater disease activity, as determined by their HBI or 
SCCAI scores.

Whole-genome fragment libraries were prepared as follows. Metagenomic DNA 
samples were quantified by Quant-iT PicoGreen dsDNA Assay (Life Technologies) 
and normalized to a concentration of 50 pg/ul. Illumina sequencing libraries were 
prepared from 100–250 pg DNA using the Nextera XT DNA Library Preparation 
kit (Illumina) according to the manufacturer’s recommended protocol, with reac-
tion volumes scaled accordingly. Prior to sequencing, libraries were pooled by 
collecting equal volumes (200 nl) of each library from batches of 96 samples. Insert 
sizes and concentrations for each pooled library were determined using an Agilent 
Bioanalyzer DNA 1000 kit (Agilent Technologies). Libraries were sequenced on 
HiSeq2000 or 2500 2x101 to yield ~10 million paired end reads. Post-sequencing 
de-multiplexing and generation of BAM and FASTQ files were generated using 
the Picard suite (https://broadinstitute.github.io/picard).
Metatranscriptome sequencing. Metatranscriptomes were generated for 855 stool 
samples, subsampled from metagenomic selections as above. Illumina cDNA 
libraries were generated using a modified version of the RNAtag-seq protocol54. 
In brief, 500 ng–1 μg of total RNA was fragmented, depleted of genomic DNA, 
dephosphorylated, and ligated to DNA adapters carrying 5′-AN8-3′ barcodes of 
known sequence with a 5′ phosphate and a 3′ blocking group. Barcoded RNAs were 
pooled and depleted of rRNA using the RiboZero rRNA depletion kit (Epicentre). 
Pools of barcoded RNAs were converted to Illumina cDNA libraries in two main 
steps: (i) reverse transcription of the RNA using a primer designed to the constant  
region of the barcoded adaptor with addition of an adaptor to the 3′ end of the 
cDNA by template switching using SMARTScribe (Clontech) as described55;  
(ii) PCR amplification using primers whose 5′ ends target the constant regions 
of the 3′ or 5′ adaptors and whose 3′ ends contain the full Illumina P5 or P7 
sequences. cDNA libraries were sequenced on the Illumina HiSeq2500 platform 
to generate ~13 million paired end reads.
Viromics. We selected 703 stool samples for viral profiling, following the sample 
selection used for metatranscriptomics and adjusted slightly only when aliquots 
were unavailable (Fig. 1c). Viral nucleic acids were extracted using the MagMax 
Viral RNA Isolation Kit (AM1939, Thermo Fisher Scientific). Viral RNA was 
reverse transcribed using SuperScript II RT (18064014, Thermo Fisher) and 
random hexamers. After short molecule and random hexamer removal using 
ChargeSwitch (CS12000, Thermo Fisher), molecules were amplified and tagged 
with a BC12-V8A2 construct56 using AccuPrimeTM Taq polymerase and cleaned 
with ChargeSwitch kit.

The resulting viral amplicons were normalized, pooled, and made into an 
Illumina library without shearing. The library (150–600 bp) was loaded into an 
Illumina HiSeq 2000 (Illumina, Carlsbad, CA) and sequenced using the 2 × 100 bp  
chemistry. Reads were demultiplexed into a sample bin using the barcode pre-
fixing read-1 and read-2, allowing zero mismatches. Demultiplexed reads were 
further processed by trimming off barcodes, semi-random primer sequences, and 
Illumina adapters. This process used a custom demultiplexer and the BBDuk algo-
rithm included in BBMap (http://sourceforge.net/projects/bbmap). The resulting 
trimmed data set was analysed using a pipeline created at the Alkek Center for 
Metagenomics and Microbiome Research at Baylor College of Medicine57. In brief, 
the viral analysis pipeline uses a clustering algorithm creates putative viral genomes 
using a mapping assembly strategy that leverages nucleotide and translated  

nucleotide alignment information. Viral taxonomies were assigned using a scoring 
system that incorporates nucleotide and translated nucleotide alignment results 
in a per-base fashion and optimizes for the highest resolution taxonomic rank.
Metabolomics. Sample selection, receipt, and storage. Sample selection for metab-
olomics aimed to obtain only a broad sampling of many subjects. In total, 546 
stool samples were selected for profiling (Fig. 1b). A portion of each selected stool 
sample (40–100 mg) and the entire volume of originating ethanol preservative 
were stored in 15-ml centrifuge tubes at –80 °C until all samples were collected.
Sample processing. Samples were thawed on ice and then centrifuged (4 °C, 5,000g) 
for 5 min. Ethanol was evaporated using a gentle stream of nitrogen gas using a 
nitrogen evaporator (TurboVap LV; Biotage) and stored at –80 °C until all samples 
in the study had been dried. Aqueous homogenates were generated by sonicat-
ing each sample in 900 μl H2O using an ultrasonic probe homogenizer (Branson 
Sonifier 250) set to a duty cycle of 25% and output control of 2 for 3 min. Samples 
were kept on ice during the homogenization process. The homogenate for each 
sample was aliquoted into two 10-μl and two 30-μl samples in 1.5-ml centrifuge 
tubes for LC–MS sample preparation and 30 μl of homogenate from each sample 
was transferred into a 50-ml conical tube on ice to create a pooled reference sample. 
The pooled reference mixture was mixed by vortexing and then aliquoted (100 μl 
per aliquot) into 1.5-ml centrifuge tubes. Aliquots and reference sample aliquots 
were stored at –80 °C until LC–MS analyses were conducted.
LC–MS analyses. A combination of four LC–MS methods were used to profile 
metabolites in the faecal homogenates, as previously published58; two methods that 
measure polar metabolites, a method that measures metabolites of intermediate 
polarity (for example, fatty acids and bile acids), and a lipid profiling method. For 
the analysis queue in each method, subjects were randomized and longitudinal 
samples from each subject were randomized and analysed as a group. Additionally, 
pairs of pooled reference samples were inserted into the queue at intervals of 
approximately 20 samples for quality control and data standardization. Samples 
were prepared for each method using extraction procedures that are matched for 
use with the chromatography conditions. Data were acquired using LC–MS sys-
tems comprised of Nexera X2 U-HPLC systems (Shimadzu Scientific Instruments) 
coupled to Q Exactive/Exactive Plus orbitrap mass spectrometers (Thermo Fisher 
Scientific). The method details are summarized below.

LC–MS Method 1: HILIC-pos (positive ion mode MS analyses of polar metab-
olites). LC–MS samples were prepared from stool homogenates (10 μl) by protein 
precipitation with the addition of nine volumes of 74.9:24.9:0.2 v/v/v acetoni-
trile/methanol/formic acid containing stable isotope-labelled internal standards 
(valine-d8, Isotec; and phenylalanine-d8, Cambridge Isotope Laboratories). The 
samples were centrifuged (10 min, 9,000g, 4 °C), and the supernatants injected 
directly onto a 150 × 2-mm Atlantis HILIC column (Waters). The column was 
eluted isocratically at a flow rate of 250 μl/min with 5% mobile phase A (10 mM 
ammonium formate and 0.1% formic acid in water) for 1 min followed by a linear 
gradient to 40% mobile phase B (acetonitrile with 0.1% formic acid) over 10 min. 
MS analyses were carried out using electrospray ionization in the positive ion 
mode using full scan analysis over m/z 70–800 at 70,000 resolution and 3-Hz data 
acquisition rate. Additional MS settings are: ion spray voltage, 3.5 kV; capillary 
temperature, 350 °C; probe heater temperature, 300 °C; sheath gas, 40; auxiliary 
gas, 15; and S-lens RF level 40.

LC–MS Method 2: HILIC-neg (negative ion mode MS analysis of polar metab-
olites). LC–MS samples were prepared from stool homogenates (30 μl) by pro-
tein precipitation with the addition of four volumes of 80% methanol containing 
inosine-15N4, thymine-d4 and glycocholate-d4 internal standards (Cambridge 
Isotope Laboratories). The samples were centrifuged (10 min, 9,000g, 4 °C) and 
the supernatants were injected directly onto a 150 × 2.0-mm Luna NH2 column 
(Phenomenex). The column was eluted at a flow rate of 400 μl/min with initial 
conditions of 10% mobile phase A (20 mM ammonium acetate and 20 mM ammo-
nium hydroxide in water) and 90% mobile phase B (10 mM ammonium hydroxide 
in 75:25 v/v acetonitrile/methanol) followed by a 10-min linear gradient to 100% 
mobile phase A. MS analyses were carried out using electrospray ionization in the 
negative ion mode using full scan analysis over m/z 60–750 at 70,000 resolution  
and 3 Hz data acquisition rate. Additional MS settings are: ion spray voltage,  
–3.0 kV; capillary temperature, 350 °C; probe heater temperature, 325 °C; sheath 
gas, 55; auxiliary gas, 10; and S-lens RF level 40.

LC–MS Method 3: C18-neg (negative ion mode analysis of metabolites of inter-
mediate polarity; for example, bile acids and free fatty acids). Stool homogenates 
(30 μl) were extracted using 90 μl methanol containing PGE2-d4 as an internal 
standard (Cayman Chemical Co.) and centrifuged (10 min, 9,000g, 4 °C). The 
supernatants (10 μl) were injected onto a 150 × 2.1-mm ACQUITY BEH C18 col-
umn (Waters). The column was eluted isocratically at a flow rate of 450 μl/min with 
20% mobile phase A (0.01% formic acid in water) for 3 min followed by a linear 
gradient to 100% mobile phase B (0.01% acetic acid in acetonitrile) over 12 min.  
MS analyses were carried out using electrospray ionization in the negative ion 
mode using full scan analysis over m/z 70–850 at 70,000 resolution and 3 Hz data 

https://broadinstitute.github.io/picard
http://sourceforge.net/projects/bbmap


Article reSeArcH

acquisition rate. Additional MS settings are: ion spray voltage, –3.5 kV; capillary 
temperature, 320 °C; probe heater temperature, 300 °C; sheath gas, 45; auxiliary 
gas, 10; and S-lens RF level 60.

LC-MS Method 4: C8-pos. Lipids (polar and nonpolar) were extracted from 
stool homogenates (10 μl) using 190 μl isopropanol containing 1-dodecanoyl-2- 
tridecanoyl-sn-glycero-3-phosphocholine as an internal standard (Avanti Polar 
Lipids; Alabaster, AL). After centrifugation (10 min, 9,000g, ambient temperature), 
supernatants (10 μl) were injected directly onto a 100 × 2.1-mm ACQUITY BEH 
C8 column (1.7 μm; Waters). The column was eluted at a flow rate of 450 μl/min 
isocratically for 1 min at 80% mobile phase A (95:5:0.1 v/v/vl 10 mM ammonium 
acetate/methanol/acetic acid), followed by a linear gradient to 80% mobile phase 
B (99.9:0.1 v/v methanol/acetic acid) over 2 min, a linear gradient to 100% mobile 
phase B over 7 min, and then 3 min at 100% mobile phase B. MS analyses were 
carried out using electrospray ionization in the positive ion mode using full scan 
analysis over m/z 200–1,100 at 70,000 resolution and 3 Hz data acquisition rate. 
Additional MS settings are: ion spray voltage, 3.0 kV; capillary temperature, 300 °C; 
probe heater temperature, 300 °C; sheath gas, 50; auxiliary gas, 15; and S-lens RF 
level 60.
Metabolomics data processing. Raw LC–MS data were acquired to the data acquisi-
tion computer interfaced to each LC–MS system and then stored on a robust and 
redundant file storage system (Isilon Systems) accessed via the internal network at 
the Broad Institute. Nontargeted data were processed using Progenesis QIsoftware 
(v 2.0, Nonlinear Dynamics) to detect and de-isotope peaks, perform chromato-
graphic retention time alignment, and integrate peak areas. Peaks of unknown ID 
were tracked by method, m/z and retention time. Identification of nontargeted 
metabolite LC–MS peaks was conducted by: i) matching measured retention 
times and masses to mixtures of reference metabolites analysed in each batch; and  
ii) matching an internal database of >600 compounds that have been characterized 
using the Broad Institute methods. Temporal drift was monitored and normalized 
with the intensities of features measured in the pooled reference samples.
Proteomics. Sample selection and LC–MS/MS. Sample selection for proteomics 
largely followed sample selection for metabolomics (Fig. 1b, c), with slight adjust-
ments when aliquots were unavailable. In total, 447 stool samples were targeted for 
profiling. From the selected samples, proteins were proteolytically digested using 
trypsin, and each digest was subjected to automated offline high-pH reversed-
phase fractionation with fraction concatenation. LC–MS/MS analysis for each 
fraction was performed using a Thermo Scientific Q-Exactive Orbitrap mass 
spectrometer at UCLA, outfitted with a custom-built nano-ESI interface. Samples 
were loaded onto an in-house packed capillary LC column (70 cm × 75 μm, 3-μm 
particle size), and data were acquired for 120 min. Precursor MS spectra were 
collected over 400–2,000 m/z, followed by data-dependent MS/MS spectra of the 
twelve most abundant ions, using a collision energy of 30%. A dynamic exclusion 
time of 30 s was used to discriminate against previously analysed ions.
Peptide identification and protein data roll-up. Mass spectra from the resulting 
analyses were evaluated using the MSGF+ software59 v10072 using the HMP 1 gut 
reference genomes (HMP_Refgenome-gut_2015-06-18). In brief, after conversion 
of the metagenomic assemblies into predicted open reading frames (for example, 
predicted proteins), libraries were created using the forward and reverse direction 
to allow determination of FDR. The reverse decoy database allows measurement 
of the rate of detection of false hits, which in turn allows calculation of FDR and 
appropriate filtering of the data to maximize real peptide identifications while 
minimizing spurious ones. MSGF+ was then used to search the experimental mass 
spectra data against both the forward and reverse decoy databases. Cut-offs for data 
included: MSGF+ spectra probability (>1 × 1010, equivalent to a BLAST e value), 
mass accuracy (± 20 p.p.m.), protein level FDR of 1% and one unique peptide per 
protein identification.
Faecal calprotectin. Faecal calprotectin was quantified for 652 stool samples, 
which were stored at –80 °C without preservative before processing. Sample selec-
tion focused on obtaining a broad survey of all subjects rather than detailed time 
series (Fig. 1b). Calprotectin was quantified using QUANTA Lite Calprotectin 
ELISA (Inova Diagnostics 704770) following the manufacturer’s protocol. Between 
80 and 120 mg of stool was used for input. Incubation time before stopping the 
reaction was adjusted to obtain OD405 values in the suggested range for assay.
Biopsy specimen processing. Co-isolation of DNA and RNA from frozen tissue.  
DNA and RNA were extracted from RNA-later-preserved biopsies using the 
AllPrep DNA/RNA Universal Kit from Qiagen. Biological samples were cut into 
20–25-mg pieces on a dry ice batch, then placed in tubes with a steel bead for 
mechanical homogenization and a highly denaturing guanidine isothiocyanate- 
containing buffer, which immediately inactivates DNases and RNases to ensure 
isolation of intact DNA and RNA. After homogenization, the lysate was passed 
through an AllPrep DNA Mini spin column. This column, in combination with 
the high-salt buffer, allows selective and efficient binding of genomic DNA. 
On-column proteinase K digestion in optimized buffer conditions allows puri-
fication of high DNA yields from all sample types. The column was then washed 

and DNA was eluted in TE buffer. Flow-through from the AllPrep DNA Mini spin 
column was digested by proteinase K in the presence of ethanol. This optimized 
digestion, together with the subsequent addition of further ethanol, allowed for 
appropriate binding of total RNA, including miRNA, to the RNeasy Mini spin col-
umn. Samples were then digested with DNase I to ensure high-yields of DNA-free 
RNA. Contaminants were efficiently washed away and RNA was eluted in water.
16S rRNA gene profiling. We selected 178 biopsies for 16S amplicon-based taxo-
nomic profiling. The 16S rRNA gene-sequencing protocol was adapted from the 
Earth Microbiome Project60 and the Human Microbiome Project61–63. In brief, bac-
terial genomic DNA was extracted from the total mass of the biopsied specimens 
using the MoBIO PowerLyzer Tissue and Cells DNA isolation kit and sterile spat-
ulas for tissue transfer. The 16S rDNA V4 region was amplified from the extracted 
DNA by PCR and sequenced in the MiSeq platform (Illumina) using the 2 × 250 bp  
paired-end protocol, yielding pair-end reads that overlapped almost completely. 
The primers used contained adapters for MiSeq sequencing and single-index bar-
codes such that PCR products may be pooled and sequenced directly61, targeting 
at least 10,000 reads per sample.

Read pairs were demultiplexed and merged using USEARCH v7.0.109064. 
Sequences were clustered into OTUs at a similarity threshold of 97% using the 
UPARSE algorithm65. OTUs were subsequently mapped to a subset of the SILVA 
database66 containing only sequences from the V4 region of the 16S rRNA gene to 
determine taxonomies. Abundances were then recovered by mapping the demul-
tiplexed reads to the UPARSE OTUs, producing the final taxonomic profiles. The 
150 samples with ≥1,000 mapped reads were used in downstream analyses.
Host RNA-seq. cDNA library construction. In total, 252 biopsies were selected for 
transcriptional profiling. Total RNA was quantified using the Quant-iT RiboGreen 
RNA Assay Kit and normalized to 5 ng/μl. Following plating, 2 μl of ERCC controls 
(using a 1:1,000 dilution) were spiked into each sample. An aliquot of 200 ng for 
each sample was transferred into library preparation, which was an automated var-
iant of the Illumina TruSeq Stranded mRNA Sample Preparation Kit. This method 
preserves strand orientation of the RNA transcript. It uses oligo dT beads to select 
mRNA from the total RNA sample. It is followed by heat fragmentation and cDNA 
synthesis from the RNA template. The resultant 500-bp cDNA then goes through 
library preparation (end repair, base ‘A’ addition, adaptor ligation, and enrichment) 
using Broad Institute designed indexed adapters substituted in for multiplexing. 
After enrichment the libraries were quantified using Quant-iT PicoGreen (1:200 
dilution). After normalizing samples to 5 ng/μl, the set was pooled and quantified 
using the KAPA Library Quantification Kit for Illumina Sequencing Platforms. 
The entire process is in 96-well format and all pipetting is done by either Agilent 
Bravo or Hamilton Starlet.
Illumina sequencing. Pooled libraries were normalized to 2 nM and denatured using 
0.1 N NaOH before sequencing. Flowcell cluster amplification and sequencing 
were performed according to the manufacturer’s protocols using either the HiSeq 
2000 or HiSeq 2500. Each run was a 101-bp paired-end with an eight-base index 
barcode read. Data were organized using the Broad Institute Picard Pipeline which 
includes de-multiplexing and lane aggregation.
Blood specimen processing. Serological analysis. We analysed 210 serum samples 
for expression of ANCA, ASCA, anti-OmpC, and anti-CBir1 by ELISA as previ-
ously described67,68. Antibody levels were determined and the results expressed 
as ELISA units (EU/ml), which are relative to laboratory standards consisting of 
pooled, antigen-reactive sera from of patients with well-characterized disease.
DNA isolation from whole blood. DNA was extracted using Chemagic MSM I with 
the Chemagic DNA Blood Kit-96 from Perkin Elmer. The kit combines chemical 
and mechanical lysis with magnetic bead-based purification. Whole blood samples 
were incubated at 37 °C for 5–10 min to thaw. The blood was then transferred to a 
deep well plate with protease and placed on the Chemagic MSM I. The following 
steps were automated on the MSM I.

M-PVA magnetic beads were added to the blood and protease solution. Lysis 
buffer was added to the solution and vortexed to mix. The bead-bound DNA was 
then removed from solution using a 96-rod magnetic head and washed in three 
ethanol-based wash buffers to eliminate cell debris and protein residue. The beads 
were then washed in a final water wash buffer. Finally, the beads were dipped in 
elution buffer to resuspend the DNA. The beads were then removed from solution, 
leaving purified DNA eluate. The resulting DNA samples were quantified using a 
fluorescence-based PicoGreen assay.
Host exome sequencing. Ninety-two host exomes were sequenced from DNA 
extracts using previously published methods69. Whole-exome libraries were con-
structed and sequenced on an Illumina HiSeq 4000 sequencer with 151-bp paired-
end reads. Output from Illumina software was processed by the Picard pipeline to 
yield BAM files containing calibrated, aligned reads.
Library construction. Library construction was performed as described69 with 
some slight modifications. Initial genomic DNA input into shearing was reduced 
from 3 μg to 50 ng in 10 μl solution and enzymatically sheared. In addition, for 
adaptor ligation, dual-indexed Illumina paired end adapters were replaced with 
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palindromic forked adapters with unique 8-base index sequences embedded 
within the adaptor and added to each end.
In-solution hybrid selection for exome enrichment. In-solution hybrid selection was 
performed using the Illumina Rapid Capture Exome enrichment kit with 38 Mb 
target territory (29 Mb baited). The targeted region includes 98.3% of the intervals 
in the Refseq exome database. Dual-indexed libraries were pooled into groups of 
up to 96 samples before hybridization. The liquid handling was automated on a 
Hamilton Starlet. The enriched library pools were quantified using PicoGreen after 
elution from streptavadin beads and then normalized to a range compatible with 
sequencing template denature protocols.
Preparation of libraries for cluster amplification and sequencing. Following sample 
preparation, the libraries prepared using forked, indexed adapters were quanti-
fied using quantitative PCR (purchased from KAPA biosystems), normalized to  
2 nM using the Hamilton Starlet Liquid Handling system, and pooled by equal 
volume using the Hamilton Starlet Liquid Handling system. Pools were then dena-
tured using 0.1 N NaOH. Denatured samples were diluted into strip tubes using 
the Hamilton Starlet Liquid Handling system.
Cluster amplification and sequencing. Cluster amplification of the templates was 
performed according to the manufacturer’s protocol (Illumina) using the Illumina 
cBot. Flow cells were sequenced on HiSeq 4000 Sequencing-by-Synthesis Kits, then 
analysed using RTA2.7.3
Host genetic data processing. Host genetic exome sequence data were processed 
using the Broad Institute sequencing pipeline by the Data Sciences Platform 
(Broad Institute). This was done in three steps: pre-processing (including reads 
mapping, alignment to a reference genome and data cleanup), variant discovery 
(including per-sample variant calling and joint genotyping), and variant filtering 
to produce callset ready for downstream genetic analysis, using Genome Analysis 
Toolkit (GATK) (detailed documentation at https://software.broadinstitute.org/
gatk/documentation/).
Reduced representation bisulfite sequencing. Reduced representation bisulfite 
sequencing (RRBS) libraries were prepared for 221 biopsies and 228 blood samples 
as described previously70 with modifications detailed below. In brief, genomic 
DNA samples were quantified using a Quant-It dsDNA high sensitivity kit 
(ThermoFisher, Q33120) and normalized to a concentration of 10 ng/μl. A total 
of 100 ng of normalized genomic DNA was digested with MspI in a 20-μl reaction 
containing 1 μl MspI (20 U/μl) (NEB, R0106L) and 2 μl of 10× CutSmart Buffer 
(NEB, B7204S). MspI digestion reactions were then incubated at 37 °C for 2 h 
followed by a 15 min incubation at 65 °C.

Next, A-tailing reactions were performed by adding 1 μl dNTP mix (containing 
10 mM dATP, 1 mM dCTP and 1 mM dGTP) (NEB, N0446S), 1 μl Klenow 3′-5′ 
exo- (NEB, M0212L) and 1 μl 10× CutSmart Buffer in a total reaction volume of 
30 μl. A-tailing reactions were then incubated at 30 °C for 20 min, followed by 37 °C 
for 20 min, followed by 65 °C for 15 min.

Methylated Illumina sequencing adapters70 were then ligated to the A-tailed 
material (30 μl) by adding 1 μl 10× CutSmart Buffer, 5 μl 10 mM ATP (NEB, 
P0756S), 1 μl T4 DNA Ligase (2,000,000 U/ml) (NEB, M0202M) and 2 μl methyl-
ated adapters in a total reaction volume of 40 μl. Adaptor ligation reactions were 
then incubated at 16 °C overnight (16–20 h) followed by incubation at 65 °C for 
15 min. Adaptor ligated material was purified using 1.2× volumes of Ampure 
XP according to the manufacturer’s recommended protocol (Beckman Coulter, 
A63881).

Following adaptor ligation, bisulfite conversion and subsequent sample purifi-
cation were performed using the QIAGEN EpiTect kit according to the manufac-
turer’s recommended protocol designated for DNA extracted from FFPE tissues 
(QIAGEN, 59104). Two rounds of bisulfite conversion were performed yielding a 
total of 40 μl bisulfite-converted DNA.

In order to determine the minimum number of PCR cycles required for final 
library amplification, 50 μl PCR reactions containing 3 μl bisulfite-converted DNA,  
5 μl 10× PfuTurbo Cx hotstart DNA polymerase buffer, 0.5 μl 100 mM dNTP (25 mM  
each dNTP) (Agilent, 200415), 0.5 μl Illumina TruSeq PCR primers (25 μM each 
primer)70 and 1 μl PfuTurbo Cx hotstart DNA polymerase (Agilent, 600412) were 
prepared. Reactions were then split equally into four separate tubes and thermo-
cycled using the following conditions: denature at 95 °C for 2 min followed by X 
cycles of 95 °C for 30 s, 65 °C for 30 s, 72 °C for 45 s (where X number of cycles = 11, 
13, 15 and 17), followed by a final extension at 72 °C for 7 min. PCR products were 
purified using 1.2× volumes of Ampure XP and analysed on an Agilent Bioanalyzer 
using a High Sensitivity DNA kit (Agilent, 5067-4626). Once the optimal number 
of PCR cycles was determined, 200-μl PCR reactions were prepared using 24 μl  
bisulfite-converted DNA, 20 μl 10× PfuTurbo Cx hotstart DNA polymerase 
buffer, 2 μl 100 mM dNTPs (25 mM each), 2 μl Illumina TruSeq PCR primers 
(25 μM each) and 4 μl PfuTurbo Cx hotstart DNA polymerase with the thermal 
cycling conditions listed above. PCR reactions were purified using 1.2× volumes of 
Ampure XP according to the manufacturer’s recommended protocol and analysed 
on an Agilent Bioanalyzer using a High Sensitivity DNA k it .

RRBS sequencing produced an average of 15.0M reads (s.d. 4.0M reads) over 
all 504 samples, with 448 (88.9%) samples exceeding 10M reads. Samples were 
analysed with Picard 2.9.4 using default parameters, resulting in a mean alignment 
rate to the human genome hg19 of 95.1%. Mean CpG coverage was 8.9× (s.d. 
2.1%). As expected, 99.9% (s.d. 0.02%) of non-CpG bases and 49.8% (s.d. 2.8%) 
of CpG bases were converted.
Data handling. Informatics for microbial community sequencing data. For metage-
nomes and metatranscriptomes, sequencing reads from each sample in a pool were 
demultiplexed based on their associated barcode sequence using custom scripts. Up 
to one mismatch in the barcode was allowed provided it did not make assignment 
of the read to a different barcode possible. Barcode sequences were removed from 
the first read as were terminal Gs from the second read that may have been added 
by SMARTScribe during template switching.

Taxonomic and functional profiles were generated with the bioBakery meta’om-
ics workflow71 v0.9.0 (http://huttenhower.sph.harvard.edu/biobakery_work-
flows). In brief, reads mapping to the human genome were first filtered out using 
KneadData 0.7.0. Taxonomic profiles of shotgun metagenomes were generated 
using MetaPhlAn272 v2.6.0, which uses a library of clade-specific markers to pro-
vide pan-microbial (bacterial, archaeal, viral, and eukaryotic) profiling (http://
huttenhower.sph.harvard.edu/metaphlan2). Functional profiling was performed 
by HUMAnN273 v0.11.0 (http://huttenhower.sph.harvard.edu/humann2). 
HUMAnN2 constructs a sample-specific reference database from the pangenomes 
of the subset of species detected in the sample by MetaPhlAn2 (pangenomes are 
precomputed representations of the open reading frames of a given species74). 
Sample reads are mapped against this database to quantify gene presence and 
abundance on a per-species basis. A translated search is then performed against a 
UniRef-based protein sequence catalogue75 (UniRef release 2014_07) for all reads 
that fail to map at the nucleotide level. The result are abundance profiles of gene 
families (UniRef90s), for both metagenomics and metatranscriptomics, stratified 
by each species contributing those genes, and which can then be summarized to 
higher-level gene groupings such as ECs or KOs.

Sample counts in Fig. 1b represent the numbers of raw products available. To 
ensure a reasonable read depth in each sample, only samples (metagenomes and 
metatranscriptomes) with at least 1 million reads (after human filtering) and at 
least one non-zero microbial abundance detected by MetaPhlAn2 were used in 
downstream analyses (Fig. 1c and later). In total, this was 1,595 metagenomic 
and 818 metatranscriptomic samples. Principal coordinates plots were generated 
with the cmdscale function in the R package stats. Visualizations were principally 
generated using ggplot276.
Species-level meta’omic functional profile summaries. Functional profiles per clade 
(typically species) were further quantified by summing the total sum-normalized 
stratified abundance attributed to each organism in the HUMAnN2 functional 
profiles from both metatranscriptomics and metagenomics. For metatranscrip-
tomic analyses, the expression ratio for the species was then also defined as the 
ratio between these sums.
Metaproteomic gene family functional profiles. Gene family profiles were gener-
ated from metaproteomic peptides using UniRef90 identifiers by mapping pep-
tide sequences to the Diamond-annotated reference in HUMAnN2 v0.11.0 with 
v0.8.22.8477. Each peptide was mapped to the UniRef90 with the highest per cent 
identity (minimum 90% match).
Statistical methods and association testing. PERMANOVA and Mantel tests. 
Omnibus testing was performed on Bray–Curtis dissimilarity matrices from MGX, 
MTX, MPX, and biopsy measurements. Functional profiles (MGX, MTX, and 
MPX) were first summarized to the KO level using HUMAnN2. Profiles were first 
normalized before calculation of dissimilarities. Dietary distance matrices were 
calculated by ordering the dietary intake frequencies from less to more frequent, 
assigning integers to these levels, and calculating the Manhattan distance.

Quantifications of covariation between measurement types in Fig. 1e were done 
using Mantel tests. To quantify cross-sectional (‘inter-individual’) covariation, we 
first produced an average profile for each subject by taking the feature-wise mean 
over all samples from the subject. Subject-subject dissimilarity matrices were then 
generated and compared using the mantel.rtest function in the R package ape4. To 
quantify longitudinal covariation, we first generated the complete sample–sample 
dissimilarity matrix, but only calculate the Mantel test statistic (the Pearson corre-
lation between distances) from distances between samples from the same subject. 
Significance in this case was assessed using a permutation test with permutations 
limited within-subject.

Quantifications of variance explained in Fig. 1f were calculated using 
PERMANOVA with the adonis function in the R package Vegan78. Apart from 
the All row in Fig. 1f, the total variance explained by each variable was calculated 
independently of other variables (that is, as the sole variable in the model) to avoid 
issues related to variable ordering, and should thus be considered the total variance 
explainable by that variable. To account for the repeated measures present for all 
measurement types tested, relevant permutations were performed blocked within 
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subject for variables that change over time (medication, biopsy location, inflam-
mation status, and dysbiosis). Meanwhile, variables that were constant (or change 
slowly enough to be considered constant) across samples from the same subject 
(age, sex, body mass index (BMI), race, recruitment site, diagnosis, and disease 
location) were first permuted across subjects and samples were relabelled with 
the variable from their permuted subject. To determine the significance of models 
including inter-individual variance (the Subject and All rows), permutations were 
performed freely. For subjects with incomplete records for BMI, we imputed the 
mean BMI of the remaining population. The All row is the total variance explained 
when including all other variables in the model.
Differential microbiome feature abundance. Differential abundance (DA) analysis  
of all microbial measurement types (except for viruses, which were modelled as 
presence/absence binary features) were tested as follows. First, an appropriate  
transformation/normalization method was applied: arcsine square-root  
transformation for microbial taxonomic and functional relative abundances, 
log transformation (with pseudo count 1 for zero values) for metabolite profiles 
and protein abundances, and log transform with no pseudocount for expression 
ratios (non-finite values removed). Transformed abundances were then fit with the  
following per-feature linear mixed-effects model:

+ + / +
+ + +
~feature (intercept) diagnosis diagnosis dysbiosis antibiotic use

consent age (1 recruitment site) (1 subject)

That is, in each per-feature multivariable model, recruitment sites and subjects 
were included as random effects to account for the correlations in the repeated 
measures (denoted by (1 | recruitment site) and (1 | subject), respectively) and 
the transformed abundance of each feature was modelled as a function of diag-
nosis (a categorical variable with non-IBD as the reference group) and dysbiosis 
state as a nested binary variable (with non-dysbiotic as reference) within each IBD  
phenotype (UC, CD, and non-IBD), while adjusting for consent age as a continuous 
covariate, and antibiotics as as binary covariate. Pearson’s residual values from the 
above linear mixed effects models were retained for use in subsequent analyses 
(see ‘Cross-measurement type interaction testing’).

Fitting was performed with the nlme package in R79 (using the lme function), 
where significance of the association was assessed using Wald’s test (except for 
viruses, where a logistic random effects model was considered with the glmer 
function from the lmer R package). Nominal P values were adjusted for multiple  
hypothesis testing with a target FDR of 0.25. In order to reduce the effect of zero- 
inflation in microbiome data, features with no variance or with >90% zeros were 
removed before fitting linear models. In addition, a variance filtering step was 
applied to remove features with very low variance. To further remove the effect of 
redundancy in KO gene family abundances (explainable by at most a single taxon), 
only features (both DNA and RNA) with low correlation with individual microbial 
abundances (Spearman correlation coefficient <0.6) were retained.
Differential host gene expression. Differentially expressed human genes between 
disease groups were quantified using a quasi-likelihood negative binomial gener-
alized log-linear model (glmQLFit), implemented in the edgeR package in R80,81. 
Analysis was performed separately for each section of the intestine on genes with at 
least 2 CPM (counts per million) in 10 or more samples, with significance threshold 
FDR P < 0.05 and >1.5 log-fold change. Gene enrichment analysis was performed 
on differentially expressed genes against the KEGG database82 using a one-sided 
hypergeometric test in the package limma83.
Associations with host gene expression. Associations between host gene expression 
and biopsy taxonomic profiles were assessed using partial Spearman correlation, 
accounting for BMI, age at consent, sex and diagnosis. Association testing was 
performed for each biopsy location independently, as biopsy location was shown 
to heavily influence expression profiles (Figs. 1f, 4a, b). This simpler method was 
used rather than the more complex procedure outlined above for microbial meas-
urement types since host gene expression, once filtered by biopsy location, do 
not have the same repeat measures problem as the microbial measurement types, 
allowing a simpler test.
Genetic associations. Genetic principal components for IBDMDB subjects 
as well as 1,000 Genomes subjects84 were calculated for a set of independ-
ent SNPs overlapping between the two data sets and pruned on the basis of 
linkage disequilibrium (LD). Pruning was first performed in HMP2 using the 
–indep-pairwise 1500 150 0.1 command in PLINK85 by calculating LD (r2) for 
each pair of SNPs within a window of 1,500 SNPs, removing one of a pair of 
SNPs if r2 > 0.1 and repeating this procedure by shifting the window 150 SNPs 
forward. We then used the 1,000 Genomes reference phase 3 version 5a data 
for 2,504 participants (http://bochet.gcc.biostat.washington.edu/beagle/1000_
Genomes_phase3_v5a) to merge with the HMP2 pruned data, resulting in 7,227 
overlapping independent SNPs. Using these, we performed genome-wide esti-
mation of identity-by-descent allele sharing on the combined data set using 
the –genome function in PLINK, followed by calculation of genetic principal 

components using the –cluster–mds-plot function for the first two principal 
components (Fig. 1a).

For association analyses, we used first 20 genetic principal components as  
covariates, obtained from the same identity-by-descent sharing matrix using the 
–cluster–pca 20 function. We targeted associations in five loci that had strong 
previously reported associations with IBD and/or have been implicated in micro-
bial interactions86–88. To avoid confounding by ancestry, we restricted the analysis 
to subjects of European ancestry, excluding eight subjects with exomes availa-
ble from other ancestral backgrounds. When available, we used reported SNPs 
that had minor allele frequency of at least 5% and Hardy–Weinberg equilibrium 
P < 5 × 10−5. If not, we used close proxies (LD r2 < 0.8 in CEU population using 
1,000 genomes phase 3 version 5 reference via http://analysistools.nci.nih.gov/
LDlink (MST1, FUT2, IRGM, NKX2-3) or SNPs from the gnomAD browser at 
http://gnomad.broadinstitute.org (PTGER4)).

We used the following linear mixed effect model with the SNP as a predictor var-
iable, coded with an additive genetic model with the outcome as the arcsine-square 
root transformed microbial relative abundance measured from stool metagenomes. 
Age, sex, antibiotic and immunosuppressant use, and the first 20 genetic principal 
components (PCs) were fitted as covariates with subjects as the random effect:

+ + + +
+ + − +
~taxon intercept SNP antibiotic use sex age
recruitment site PC1 PC20 (1 subject)

Optimization was performed using the lme function (from the nlme R package), 
with P values calculated using the Wald test.

Associations between the rs1042712 SNP of the LCT locus89 and self-reported 
milk intake from dietary recall forms were tested using the same mixed effect 
model. Reported dairy intake options were assigned the following numeric values 
for regression: 1 (‘yesterday, 3 or more times’), 2 (‘yesterday, 1 to 2 times’); 3 (‘within 
the past 2 to 3 days’), 4 (‘within the past 4 to 7 days’), and 5 (‘did not consume in 
last 7 days’).
Density ridgeline plots of differentially abundant features. To visualize the abun-
dances of features that showed significantly different abundances by one of the tests 
above (Fig. 2, Extended Data Fig. 4), the bandwidth for kernel density estimation 
was selected independently for the portion of each feature above the detection limit 
(non-‘zero’) using the Sheather and Jones method90. Density estimates were scaled 
such that the maximum density for the plot spanned the distance between base-
lines for a given disease group. Samples below the detection limit are represented 
as barplots on the left, where a bar that spans the distance between baselines for 
a disease group represents 100% zeros. Density estimates were then additionally 
scaled by the fraction of non-zero samples such that relative differences in densities 
between groups with differing fractions of zeros are accurately represented. For 
both density estimates and fraction of zeros, samples were weighted by the inverse 
of the number of samples obtained from that subject, to avoid biasing estimates 
towards subjects with more densely sampled time series.
Dysbiosis analyses. Dysbiosis score. To identify samples with highly divergent 
(dysbiotic) metagenomic microbial compositions, as a complement to baseline 
disease diagnosis, we defined a dysbiosis score based on Bray–Curtis dissimilarities 
to non-IBD metagenomes. First, a ‘reference set’ of samples was constructed from 
non-IBD subjects by taking all samples after the 20th week after the subject’s first 
stool sample. This was chosen because a subset of the non-IBD subjects at the 
start of their respective time series may not yet have overcome any gastrointestinal 
symptoms that triggered the initial visit to a doctor, though these were ultimately 
not caused by IBD. The dysbiosis score of a given sample was then defined as the 
median Bray–Curtis dissimilarity to this reference sample set, excluding samples 
that came from the same subject (Fig. 2c).

To identify samples that were highly divergent from the reference set, we thresh-
olded the dysbiosis score at the 90th percentile of this score for non-IBD samples. 
This therefore identifies samples with a feature configuration that has a less than 
10% probability of occurring in a participant without IBD. By this measure, 272 
metagenomes were classified as dysbiotic. Samples from participants with CD 
or UC were overrepresented in the dysbiotic set, with 24.3% and 11.6% of their 
samples classified as dysbiotic, respectively. As expected, these samples also tended 
to locate in the extremes of the taxonomic ordination based on metagenomes 
(Extended Data Fig. 3b, c). Dysbiosis was unevenly distributed among subjects 
(Extended Data Fig. 3d), with some subjects remaining dysbiotic for all or most of 
their time series, while others remained non-dysbiotic for their entire time series.

To lend additional support to the definition of dysbiosis (that is, as outliers by 
one type of microbiome profile), we tested the concordance between dysbiosis clas-
sifications made using the same statistical definition, but applied to metabolomic 
rather than taxonomic profiles. That is, we defined a metabolomic dysbiosis score 
as the median Bray–Curtis dissimilarity of one metabolomic profile to the non-IBD 
metabolomic profiles (after the 20th week), and defined the dysbiosis threshold 
as the 90th percentile of this distribution among non-IBD metabolomic profiles.  
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We then compared these dysbiosis classifications with those from the nearest 
metagenomic sample (up to two weeks, see ‘Cross-measurement type temporal 
matching’) and found that dysbiotic samples identified by metagenomics were 4.6 
times more likely to be dysbiotic by metabolomics (Fisher’s exact P = 5.9 × 10−9), 
showing that dysbiosis measurements are highly consistent across measurement 
types.

To test the sensitivity of the dysbiosis classification to the choice of reference 
data set, we also performed the dysbiosis classification using the HMP1-II stool 
samples10 as the reference sample set instead of the non-IBD samples. The result-
ing dysbiosis scores (Extended Data Fig. 3e) were highly concordant (Spearman 
ρ = 0.86; P < 2.2 × 10−16), as were the dysbiosis classifications (odds ratio of 56; 
Fisher’s exact P < 2.2 × 10−16). This shows that, despite the inclusion of subjects 
with other conditions in the non-IBD group here, as well as large differences in 
measurement technologies between the data sets, the dysbiosis classification is 
highly robust. Furthermore, 43 out of 426 (10.1%) of non-IBD samples were clas-
sified as dysbiotic using the HMP1-II samples as reference, falling remarkably 
close to the 10% expected by the definition and showing that the enrichment of 
IBD samples in the dysbiotic set is not simply a consequence of the definition.
Dysbiosis durations and intervals. Samples of the dysbiosis durations and intervals 
were obtained by taking the difference in time between stool metagenomes in 
which the dysbiosis state changes, that is, the time from the first dysbiotic sam-
ple in an excursion into dysbiosis until the next non-dysbiotic sample was taken 
as one sample of the dysbiosis duration distribution. If the subject’s time series 
ended before this transition occurred, this resulted in a ‘censored’ duration or 
interval (Fig. 2e). Estimates of the durations of and time between dysbioses were 
then obtained from a censored maximum likelihood estimator for the mean of 
an exponential distribution. This incorporates the censored durations and inter-
vals into the estimate to avoid underestimating these durations owing to limited 
observation times.
Association of dysbiosis with disease location. We tested for a relationship between 
the Montreal disease location classification in CD and periods of dysbiosis to 
ensure that dysbiosis was not simply detecting different disease locations. For 
this, an F-test of no significance was used with a Kenward–Roger approximation 
of degrees of freedom91 in a logistic random effects regression that models dysbi-
osis as the binary outcome with subjects as a random effect and disease location 
as covariate, as implemented in the function glmer in the R package lme4. Only 
individuals with CD were considered.
Temporal analyses. Power-law fits to Bray–Curtis dissimilarities. Power-law fits to 
species-level metagenomic, metatranscriptomic, and metabolite Bray–Curtis dis-
similarities (Fig. 3a, Extended Data Fig. 5a) were performed by fitting a power-law 
curve with free intercept by least-squares using the neldermead function from the 
R package nloptr. Significance was assessed using an F-test to compare the fit model 
with a flat line. Significance of the difference of the fit between disease groups was 
also assessed using an F-test, comparing a model jointly fit to both disease groups 
with separate fits to each group.
Microbiome shifts. A microbiome ‘shift’ was defined as having occurred between 
two consecutive time points from the same person if the Bray–Curtis dissimilarity 
between their profiles was more likely to have come from a comparison between 
samples from different people rather than from the same person (Extended Data 
Fig. 5b). As an individual’s microbial profile naturally changes over time10,92, the 
Bray–Curtis threshold at which this occurs will increase with the time difference 
between samples. To determine these thresholds, kernel density estimates were 
generated for the distribution of Bray–Curtis dissimilarities between profiles from 
different individuals without IBD and between samples from the individuals with-
out IBD at a range of time differences, using the density function in R. The point at 
which the inter-individual density estimate exceeded the intra-individual density 
estimate was then taken as the threshold to define a ‘shift’, with the additional con-
straint that this must be a monotonically increasing function of the time difference 
between samples (Fig. 3a). Metabolomic shifts were defined similarly, although 
owing to the more sparse temporal sampling of the metabolomics data (Extended 
Data Fig. 1) and lack of a strong upward trend in Bray–Curtis dissimilarities with 
time difference (Fig. 3a), only a single threshold was used based on the distribu-
tion of Bray–Curtis dissimilarities from comparisons within-subject over time in 
participants without IBD. Heatmaps of shift differences were generated using the 
R package pheatmap 1.0.1093.
Longitudinal multi-omic study design. Owing to the large variation in microbial 
profiles between people (Supplementary Fig. 2), with relatively smaller variation 
within subjects over time (Fig. 3a), longitudinal study designs have the potential to 
be higher-powered than purely cross-sectional studies, particularly in their ability 
to self-control individuals and to capture transitions between phenotypes (or after 
interventions) of interest94. Here, although some subjects remained in a dysbiotic 
state far longer than others (Extended Data Fig. 3d), the heterogeneity observed 
was enough to discover differences in measurement types other than where  
dysbiosis was defined. For example, subjects who had unusual, disease-associated 

microbiome taxonomic profiles also proved to have generally shifted serological 
and/or metabolomic profiles at corresponding time points. Noting these dysbi-
otic time points offered a complementary set of differences to what was visible 
cross-sectionally (Fig. 2).

Among microbially related measurements, metabolomics provided the most 
robust separation between disease and dysbiosis groups, possibly because it inte-
grated a combination of host, microbial, and dietary differences (Fig. 1e, f). Thus, 
despite the challenges presented by untargeted metabolomics, such as unknown 
compound identification, the presence of redundant and background signals, and 
the complexity of the stool matrix, this measurement type often provides a robust 
characterization of subjects, their disease state, and individual small molecules that 
interface between host and microbiome. Conversely, the current state of viromics 
assays and reference databases makes this more challenging to work with, although 
the importance of the virome in microbial community dynamics95 will make this 
an extremely interesting feature space going forward.

All longitudinal microbial measurement types showed significant variation 
within two weeks (Fig. 3a, Extended Data Fig. 5a). This suggests that even higher 
sampling rates may be needed to catch relevant microbial variation, particularly 
before the onset of more severe clinical symptoms. Our sampling protocol also did 
not account for other potential sources of within-subject variation, such as transit 
time or the precise portion of each whole stool that was sampled. In this data set, 
we thus cannot distinguish between temporal and technical variation within sub-
jects. To mitigate the higher costs associated with processing additional samples, 
a future study aiming to achieve higher temporal resolution might proceed in two 
phases, thanks to the coupling between data types (Fig. 1e): first, collect samples 
at a higher frequency, and process these with metagenomic or 16S sequencing. 
Then proceed with more expensive and detailed data generation only for samples 
taken specifically around periods of interest, such as periods of dysbiosis identified 
during the first stage. To this end, the sampling rate can also be tuned to target a 
particular probability of missing a dysbiosis period.
Integrative analyses. Lenient cross-measurement type temporal matching. For 
comparison between multiple measurement types, we first constructed sets of 
samples corresponding to the same biosample across data sets. However, exact 
matches were not always possible, for example, owing to specimen limitations 
during sample selection (see ‘Sample selection’) or to samples that failed quality 
control. In these cases, matching sample sets across data sets were created using 
nearby samples. During this process, a degree of leniency was allowed in the match-
ing, allowing samples up to a given time difference (two or four weeks) apart to 
be ‘matched’. To perform this matching (sample numbers in Fig. 1c and Extended 
Data Fig. 1b), we used the following algorithm.

For a given set of measurement types to be matched for a particular subject, find 
the first time window in which all measurement types have at least one produced 
sample. Next, within this window, find the time point with the most measurement 
types produced; in the event of a tie, select earlier time points. Finally, for each 
data set, select the nearest sample to this target time point that is within the time 
window, breaking ties towards earlier time points. This set of selected samples 
comprises one ‘matched’ sample. For each data set, all samples up to and includ-
ing the later of the selected sample or the target time point are then disregarded 
from future consideration (and thus any sample will be included in at most only 
one matched time point). This process is repeated for each subject until no such 
window exists.
Cross-measurement type interaction testing. Significant associations between fea-
tures from multiple measurement types were identified using two different models: 
an ‘unadjusted’ model of associations that are mainly due to dysbiosis, and an 
‘adjusted’ model that emphasizes associations in addition to those that are dysbiosis- 
linked. Associations in both cases incorporated features from ten data sets: 
metagenomic species, species-level transcription ratios, functional profiles at the 
EC level (MGX, MTX and MPX), metabolites, host transcription (rectal and ileal 
separately), serology and faecal calprotectin.

To detect adjusted associations, we first obtained residuals of features from the 
above data types fit to a mixed-effects model including subjects as random effects 
as above for the differential abundance testing (or a simple linear model without 
the random effects when only baseline samples were used) and adjusting for age, 
sex, diagnosis, dysbiosis status, antibiotic and immunosuppressant use, and bowel 
surgery status. Residuals from subjects with fewer than four samples in their time 
series for the measurement type were ignored, and for measurements with no 
longitudinal samples (for example, serology and host transcriptomics measure-
ments), the residualization was repeated with the first available samples using a 
simple linear model without random effects. This allowed the identification of 
significant (FDR P < 0.05 for most measurement types, P < 0.25 for serology) 
Spearman associations using HAllA 0.8.17 (hierarchical all-against-all association 
testing, http://huttenhower.sph.harvard.edu/halla, Supplementary Table 35). As 
subject-specific random effects and covariate effects were removed from these 
residuals, the resulting correlations are likely to be independent of all sources of 
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inter-individual variation as well as confounding effects due to the covariates.  
See Fig. 4c and Extended Data Figs. 7–9 for summary visualizations of these results. 
Similarly, unadjusted associations were identified using the same procedure, but 
without including dysbiosis as a covariate (Supplementary Table 36). Network 
visualization was done using Cytoscape96 3.6.0.
Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this paper.

Data availability
Protocols and data (both raw and summarized to data type-dependent profiles) are 
available at the IBDMDB website (https://ibdmdb.org), the HMP DACC web portal 
(https://www.hmpdacc.org/ihmp/), and Qiita97 (https://qiita.ucsd.edu/). Sequence 
data are available from SRA BioProject PRJNA398089. Expression data have been 
deposited in the NCBI Gene Expression Omnibus98 and is accessible through 
GEO Series accession number GSE111889. Metabolomics data are available at the 
NIH Common Fund’s Metabolomics Data Repository and Coordinating Center 
(supported by NIH grant U01-DK097430) website, the Metabolomics Workbench 
(http://www.metabolomicsworkbench.org), where it has been assigned Project 
ID PR000639. Mass spectrometry proteomics data have been deposited to the 
ProteomeXchange Consortium via the PRIDE99 partner repository with the data 
set identifiers PXD008675 and 10.6019/PXD008675. Reprints and permissions 
information is available at www.nature.com/reprints.

Code availability
Bioinformatics workflows for metagenomics and metatranscriptomics data are 
available at https://bitbucket.org/biobakery/hmp2_workflows. Analysis scripts 
are available at https://bitbucket.org/biobakery/hmp2_analysis.
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Extended Data Fig. 1 | Distribution of sample and measurement types 
and timing. a, Measurements available over time for each IBDMDB 
participant. b, Number of identical or closely-aligned time points available 
for which each measurement type has been generated (see Methods).  

c, Distributions of the number of processed samples per subject, stratified 
by disease and measurement type. d, Distributions of time intervals 
between consecutive samples for each measurement type.
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Extended Data Fig. 2 | Within-individual stability is a major driver 
of microbiome differences across measurement types. a, PCoA and 
t-SNE embeddings based on Bray–Curtis dissimilarity matrices from 
stool species abundances, transcripts, proteins, and metabolites. Marginal 
densities are shown for the PCoAs that show disease separation for 
some measurements. In the t-SNEs, each subject has been assigned a 
different hue, showing that small clusters generally represent individuals’ 
time courses, as inter-individual differences are the greatest driver 
of microbiome variation across measurement types (Fig. 1f). Sample 
counts are shown in Fig. 1b. b, Distributions of correlations between 
functional profiles, captured as UniRef90100 gene family abundances73, 

measured from paired metagenomes, metatranscriptomes, and 
metaproteomes (see Methods). c, Human transcriptional expression was 
mostly determined by biopsy location rather than IBD phenotype and 
inflammation (n = 249 samples from 91 subjects). Ordination shows PCA 
on gene expression levels normalized by library sizes and represented as 
CPM. Ellipses indicate 95% confidence regions for the indicated sample 
types. d, Principal coordinates plot (Bray–Curtis on OTU profiles) of 
community profiles from biopsy samples shows that mucosal microbial 
communities do not differ significantly by biopsy location (shape), unlike 
human gene expression in epithelial tissue (Fig. 4b).
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Extended Data Fig. 3 | Patient-reported, molecular, and microbial 
disease activity measures. a, Relationships between six measures of 
disease activity: the patient-reported HBI in CD, patient-reported SCCAI 
in UC, faecal calprotectin, the fractions of human reads from stool MGX 
and MTX, and a dysbiosis score defined here as departures from control 
population microbiome configurations (Fig. 2c). Rho values are Spearman 
correlations with ties broken randomly. Linear regression is shown (red 
line) with 95% confidence bound (shaded). Sample counts are presented 
in the title bar, though sample counts for a particular correlation may be 
less as samples must be paired. b, c, PCoA based on metagenomic species-

level Bray–Curtis dissimilarities (n = 1,595 samples from 130 subjects), 
indicating dysbiosis score (b) and whether the sample was defined as 
dysbiotic (c). d, Number of dysbiotic samples per participant. Colour 
scheme as in c. e, Relationship between the dysbiosis score, when using the 
HMP1-II gut data set as reference (n = 553 from 249 subjects), compared 
to the non-IBD data set. The threshold for the dysbiosis classification is 
also shown (black lines). The two scores are highly correlated (Pearson 
ρ = 0.86; two-sided P < 2.2 × 10−16), as are the resulting dysbiosis 
classifications (odds ratio of 56; Fisher’s exact test P < 2.2 × 10−16). 
n = 1,595 samples from 130 subjects.
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Extended Data Fig. 4 | Significant microbial and metabolic 
perturbations during taxonomic dysbioses. a, Alpha diversity  
(Gini–Simpson) as a function of the dysbiosis score for the sample 
(Pearson correlation –0.60; P < 2.2 × 10−16). n = 1,595 samples from 
130 subjects. b, Seven (chosen for space constraints) most differentially 
abundant species not shown elsewhere in this manuscript (n = 1,595 
samples from 130 subjects; Wald test; see Methods; full results in 

Supplementary Table 15). c, Top 10 differentially abundant acylcarnitines 
in dysbiosis (n = 546 samples from 106 subjects; Wald test). Carnitine and 
acylcarnitines are more abundant in dysbiotic CD, whereas C20:4 carnitine 
is significantly depleted (Supplementary Table 16). d, Top 10 differentially 
abundant metabolites during dysbiosis not shown elsewhere in this 
manuscript (n = 546 samples from 106 subjects; Wald test; full results in 
Supplementary Table 16).
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Detecting shifts in longitudinal microbiome 
multi-omics. a, Distributions of Bray–Curtis dissimilarities as a function 
of time difference between samples for protein profiles, species-level 
transcriptional activity (see Methods), and species-level taxonomy 
(though excluding subjects with dysbiosis at any time point), otherwise as 
in Fig. 3a. Removing subjects with dysbiotic samples removes the extreme 
dissimilarities (near 1) observed in IBD subjects. Boxplots show median 
and lower/upper quartiles; whiskers show inner fences. b, Distribution  
of Bray–Curtis dissimilarities between samples from the same subject,  
two weeks apart versus those from different individuals, allowing us  
to define a ‘shift’ in the microbiome as a change more likely to have  
been drawn from the between-subject distribution than within-subject  
distances (corresponding to Bray–Curtis > 0.54). c, Relative abundance  
differences of the top ten microorganisms that contributed to each of the  
183 detected taxonomic shifts among any two within-subject subsequent  
time points. Shifts are typically reciprocal (that is, losing a microorganism 
and regaining it later, or vice versa), and microorganism with frequent 
high-abundance shifts generally correspond to frequent contributors in 
Fig. 3b. Sample ordering is from a hierarchical clustering using average 
linkage followed by optimal leaf ordering101. d, As in Fig. 3c, but for E. coli  

(n = 322 samples from 24 subjects; two-tailed Wilcoxon test of the 
absolute differences in relative abundances between consecutive time 
points P = 2.2 × 10−4 for non-IBD to UC, and P = 0.029 for non-IBD  
to CD), which is frequently implicated in gut inflammation. e, As in  
b, but showing Bray–Curtis dissimilarities of metabolomic profiles. Here, 
22% (96 out of 440) of sample pairs exceed the shift threshold, whereas 
13% (183 out of 1,413) exceed the threshold in b. If metagenomic profiles 
are sub-sampled to match the metabolomics samples, this increases to 
14% (57 out of 398) of sample pairs, showing that if we increased the 
sampling rate, this measurement type would be likely to shift more than 
the metagenomes. f, As in Fig. 3b, but showing the primary contributors 
to metabolomic shifts, that is, the metabolite with the largest change in 
relative abundance during a shift. Note that other metabolites may still 
experience large changes in abundance (for example, for this reason, urate 
was not a primary contributor to any non-IBD shifts, though large changes 
are visible for one non-IBD individual in Fig. 3e). The full table of detected 
metabolomic shifts is given in Supplementary Table 30. Violin plot shows 
the density of points around that intake frequency; bandwidth chosen 
automatically by Silverman’s method102.
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Extended Data Fig. 6 | Mucosal communities and human genetics. 
a, Number of biopsy samples available for each biopsy location and 
inflammation status. b, DEGs (Fig. 4a) with newly identified significant 
correlations with OTU abundances in biopsies (partial Spearman 
correlation conditioned on disease status, BMI, age at consent and sex; 
FDR P < 0.05; n = 54 in ileum and n = 52 independent 16S–RNA-seq 
pairs; full table in Supplementary Table 33). c, A limited subset of the 
microbiome trended with genetic variants in targeted testing, including 
the strongest trend shown here of Parabacteroides distasonis with 
genotypes of NKX2-3 (a known IBD-associated locus103; boxplots show 
median and lower/upper quartiles; whiskers show inner fences). This is 
the most significant association by P value among all tested associations 
between metagenomic taxa and five known IBD loci (nominal significance 
P = 0.006; no associations passed FDR P < 0.05, mixed effect model 
with age, sex, antibiotic and immunosuppressant use and first 20 genetic 
principal components as covariates while specifying subjects as random 

effects; Wald test; n = 84 subjects of European ancestry with exomes and 
960 metagenomes; full results in Supplementary Table 34). d, Association 
between rs1042712 SNP in the LCT locus and self-reported milk intake 
from dietary recall. Self-reported short-term milk intake (from dietary 
recalls accompanying stool samples) was significantly associated with 
the count of C alleles (29.8% allele frequency) at rs1042712 in the LCT 
gene locus using a linear mixed effect model accounting for age, sex, first 
20 genetic principal components and with subjects as random effects 
(P = 0.028, linear mixed effect regression with Wald test, see Methods). 
All available data are plotted for unique subjects of European ancestry 
with exome data (per-genotype subject count (GG/GC/CC):50/26/8). 
Differences between IBD and non-IBD groups are not statistically 
significant (odds ratio 0.27; 95% CI 0.05–1.33; P = 0.10; n = 84 subjects 
of European ancestry with exomes and 960 dietary surveys; model: IBD 
(yes|no) ~ intercept + SNP + sex + age + PC1–PC20).
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Extended Data Fig. 7 | Microbial and host-related subsets of the multi-
omic association networks. a, Subset of the network in Fig. 4c showing 
metagenomic abundances (octagons) and expression levels (hexagons) of 
Subdoligranulum, Roseburia spp. and F. prausnitzii and their neighbours 
(three functionally associated microbial hubs selected for further 

investigation based on anti-inflammatory associations in the literature, 
see text). b, The host expression-related subnetwork of the ‘unadjusted’ 
association network (Extended Data Fig. 9, Supplementary Discussion). 
Sample counts in Fig. 1b, c.
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Extended Data Fig. 8 | Significant covariation among multi-omic 
components of the gut microbiome and host interactors in IBD 
(adjusted). Detailed labelling of the association network in Fig. 4c 
(intended for magnification). The network was constructed from ten data 
sets: metagenomic species, species-level transcription ratios, functional 
profiles at the EC levels (MGX, MTX and MPX), metabolites, host 
transcription (rectal and ileal separately), serology and faecal calprotectin. 
As in Fig. 4c, measurement types were approximately matched in time 
with a maximum separation between paired samples of four weeks. The 
top 300 significant correlations (FDR P < 0.05) among correlations 
between features that were differentially abundant in dysbiosis were 
used to construct the network visualized here (for serology, a threshold 

of FDR P < 0.25 was used). Nodes are coloured by the disease group in 
which they are ‘high’, and edges are coloured by the sign and strength of 
the correlation. For this adjusted network, Spearman correlations were 
calculated using HAllA from the residuals of a mixed-effects model with 
subjects as random effects (or a simple linear model without the random 
effects when only baseline samples were used) after adjusting for age, sex, 
diagnosis, dysbiosis status, recruitment site, and antibiotics (see Methods). 
Appropriate normalization and/or transformation for each measurement 
type was performed independently before the model fitting (see Methods). 
Singleton node pairs were pruned from the network. Source associations 
are in Supplementary Table 35, sample counts in Fig. 1b, c.
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Extended Data Fig. 9 | Significant covariation among multi-omic 
components of the gut microbiome and host interactors in IBD 
(unadjusted). The network was constructed from ten data sets: 
metagenomic species, species-level transcription ratios, functional profiles 
at the EC levels (MGX, MTX and MPX), metabolites, host transcription 
(rectal and ileal separately), serology and faecal calprotectin. As in Fig. 4c, 
measurement types were approximately matched in time with a maximum 
separation between paired samples of four weeks. The top 300 significant 
correlations (FDR P < 0.05) among correlations between features that 
were differentially abundant in dysbiosis were used to construct the 

network visualized here (for serology, a threshold of FDR P < 0.25 was 
used). Nodes are coloured by the disease group in which they are ‘high’, 
and edges are coloured by the sign and strength of the correlation. For this 
unadjusted network, Spearman correlations were calculated using HAllA 
from the residuals of the same model as in Extended Data Fig. 8, though 
without adjusting for dysbiosis (see Methods). Appropriate normalization 
and/or transformation for each measurement type was performed 
independently before the model fitting (see Methods). Singleton 
node pairs were pruned from the network. Source associations are in 
Supplementary Table 36, sample counts in Fig. 1b, c.
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Extended Data table 1 | IBDMDB cohort characteristics

Breakdown of the cohort by diagnosis, sex, ethnicity, physical characteristics, and disease location for each clinical site. Numeric data are summarized as mean ± s.d., with the range given by  
[min–max], and with blank cells for NA (not applicable). Subject counts for disease locations are subsets of the respective diseases.
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    Experimental design
1.   Sample size

Describe how sample size was determined. The target sample size calculated for at least n=72 subjects with repeated measures was 
designed to have power of 0.9 to detect 1) between-group differences in taxon abundance 
(repeated measures ANOVA, group F > 0.4), 2) differentially expressed transcripts (Edland’s 
test for a linear mixed model with random slope, d > 0.07), and 3) multi'omic correlations 
(Pearson correlation, r > 0.6). Power calculations incorporated conservative Bonferroni p-
value correction, with numbers of post-QC microbial features and within-sample correlations 
estimated from previous microbiome studies.

2.   Data exclusions

Describe any data exclusions. Potential subjects were excluded from the study if they were unable or did not consent to 
provide tissue, blood, or stool, were pregnant, had a known bleeding disorder or an acute 
gastrointestinal infection, were actively being treated for a malignancy with chemotherapy, 
were diagnosed with indeterminate colitis, or had a prior, major gastrointestinal surgery such 
as an ileal/colonic diversion or j-pouch. These criteria were established prior to the study 
start. Samples were filtered based on data type-specific quality control measures. For 
metagenomes and metatrascriptomes, samples were required to have >1M reads and at 
least one species detected by MetaPhlAn2.

3.   Replication

Describe the measures taken to verify the reproducibility 
of the experimental findings.

The study was a large-scale clinical cohort and we did not attempt to replicate all aspects of 
sample collection and data generation. However, data and source code for computational 
tools used are available to the public and therefore all of our analysis can be reproduced 
using our methods or re-analyzed using other methods. When possible, we refer to existing 
literature that supports our findings. Multiple pilot studies as well as technical replicates 
covering a subset of samples are also available, and these data were successfully integrated 
into subsequent multi-batch analyses, ensuring that data generation methods produced 
reproducible results.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Experimental groups could not be randomized as they depended on diagnosis. Participants 
were recruited into the three disease groups as available from each of the recruitment sites. 
Upon enrollment, an initial colonoscopy was performed to determine study strata. Subjects 
not diagnosed with IBD based on endoscopic and histopathologic findings were classified as 
“non-IBD” controls, including the aforementioned healthy individuals presenting for routine 
screening, and those with more benign or non-specific symptoms. This creates a control 
group that, while not completely “healthy”, differs from the IBD cohorts specifically by clinical 
IBD status. 

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Samples were collected by clinical staff who were not blinded as they needed to examine 
patients to determine which experimental group they should be allocated to. All data were 
generated by investigators that were blinded to the metadata. Once data were generated, 
computational analysis was performed with all of the necessary clinical information to test 
between groups. 

Note: all in vivo studies must report how sample size was determined and whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

Test values indicating whether an effect is present 
Provide confidence intervals or give results of significance tests (e.g. P values) as exact values whenever appropriate and with effect sizes noted.

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars in all relevant figure captions (with explicit mention of central tendency and variation)

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

Analysis of mass spectra: MSGF+ software v10072 
Sequence processing: Picard 2.9.4 
Metagenome and metatranscriptome profiles generated using bioBakery meta’omics 
workflow v0.9.0 (Preprocessing: KneadData 0.7.0; Taxonomic profiles: MetaPhlAn2 v2.6.0; 
Functional profiles: HUMAnN2 v0.11.0 with UniRef release 2014_07, Diamond v0.8.22.84) 
Viral profiles: VirMAP 
16S analysis: USEARCH v7.0.1090 
Data analysis and plotting: R (main packages: edgeR, nlme, ggplot2, ggridges, pheatmap, 
vegan, tsne), Julia plots package 
Network construction and visualization: HAllA 0.8.17, Cytoscape 3.6.0

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a third party.

Remaining biospecimen aliquots from the project are available by request from the 
corresponding author.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

Antibodies were used for serology and the ELISAs we performed are not commercially 
available as kits or reagents (except for secondary antibodies). 
The primary antibodies are patient sera (validation not applicable). 
Conjugated polyclonal secondary antibodies are utilized, clone not applicable: 
Jackson ImmunoResearch Laboratories goat anti-human IgG-alkaline phosphatase; Cat # 
109-056-098; 1:1000 dilution 
Jackson ImmunoResearch Laboratories goat anti-human IgA-alkaline phosphatase; Cat # 
109-055-011; 1:1000 dilution
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10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used.

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No eukaryotic cell lines were used.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No commonly misidentified cell lines were used.

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide all relevant details on animals and/or 
animal-derived materials used in the study.

No animals were used.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

Population characteristics are presented in Extended Data Table 1.
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