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Abstract

As new concepts and discoveries accumulate over time, the
amount of information available to speakers increases as well.
One would expect that an utterance today would be more in-
formative than an utterance 100 years ago (basing information
on surprisal; Shannon, 1948), given the increase in technol-
ogy and scientific discoveries. This prediction, however, is at
odds with recent theories regarding information in human lan-
guage use, which suggest that speakers maintain a somewhat
constant information rate over time. Using the Google Ngram
corpus (Michel et al., 2011), we show for multiple languages
that changes in lexical information (a unigram model) are actu-
ally negatively correlated with changes in structural informa-
tion (a trigram model), supporting recent proposals on infor-
mation theoretic constraints.

keywords: information rate, information theory, Google

Introduction
Most of Campbell’s condensed soup cans in Andy Warhol’s
famous 1962 work show between four and seven words on
the front of the can. Currently, a typical Campbell’s can has
more than ten. The “cream of mushroom with roasted garlic”
soup is “great for cooking”, and the can additionally specifies
its net weight, as shown in Figure 1. Campbell now offers
more soup varieties, more than 80, compared to only 32 in
1962.

Figure 1: Andy Warhol’s Campbell’s tomato soup (left), and
modern Campbell’s cream of mushroom with roasted garlic
(right)

On every front, the development of human society is ac-
companied by information growth. There are more books
to read today, objects to use, and apps to download. In in-
formation theory (Shannon, 1948), the information encoded
in some event is its negative log probability – unpredictable

events are more informative. Imagine if every exchange of
words in English were recorded. In terms of information the-
ory, some exchanges would be more informative than others.
Predictable utterances provide less information than unpre-
dictable ones. Repetitive “how are you”s do not contribute
much information, but utterances such as Neil Armstrong’s
“small step for man” do. It is reasonable to expect that a ran-
dom sample of exchanges collected today will contain more
information than an equal-sized sample collected a hundred
years ago: the modern sample may contain unfollow, Higg’s
boson and politically correct – lexical items, scientific dis-
coveries and social concepts that were first used or discovered
within the past 100 years.1

If a million word sample collected today contains more
information than it did a hundred years ago, the expecta-
tion is that information rate (entropy), will be higher as well.
However, the prediction that information rate has been ris-
ing is incompatible with recent findings in psycholinguis-
tics. It has been proposed that speakers manipulate their
speech so that they will not exceed or fall below acceptable
information rates, such as by omitting, reducing, or hypo-
articulating low-information linguistic material and expand-
ing or hyper-articulating high-information linguistic material
(Aylett & Turk, 2004; Jaeger, 2010; Levy & Jaeger, 2007).
Expansion and reduction have been demonstrated for individ-
ual segments (Cohen Priva, 2015; R. van Son & van Santen,
2005; R. J. J. H. van Son & Pols, 2003), syllables (Aylett
& Turk, 2004), morphemes (Kuperman, Pluymaekers, Ernes-
tus, & Baayen, 2007; Kurumada & Jaeger, 2015; Pluymaek-
ers, Ernestus, & Baayen, 2005), and words (Arnon & Co-
hen Priva, 2014; Bell, Brenier, Gregory, Girand, & Jurafsky,
2009; Jurafsky, Bell, Gregory, & Raymond, 2001; Mahowald,
Fedorenko, Piantadosi, & Gibson, 2013; Piantadosi, Tily, &
Gibson, 2011; Seyfarth, 2014). Such effects have even been
demonstrated at the edge of clauses (Jaeger, 2010; Levy &
Jaeger, 2007; Norcliffe & Jaeger, 2014), suggesting that in-
formation theoretic considerations are also driven by syntac-
tic information. Other studies suggest that higher-level syn-
tactic considerations affect the duration of individual words
within that construction (Gahl & Garnsey, 2004; Kuperman
& Bresnan, 2012). This trend is even suggested in the Camp-
bell’s soup example presented in the first paragraph– there are
more possible choices of soup, and additional words are re-

1This is not to say that some words do not fall out of fashion–
see Petersen, Tenenbaum, Havlin, and Stanley (2012).
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quired to describe most choices, spreading out the amount of
information per symbol.

What factors contribute to the limitations on information
rate? Current research considers at least two. First, speakers
may be unable to speak faster or provide more information
due to speaker-internal limitations, such as time constraints
for motor planning or a cap in cognitive ability (Bell et al.,
2009; the within-speaker model in Jaeger, 2010, pp. 50–
51). Alternatively, the limit may focus on the communica-
tion channel – even if speakers are able to produce high in-
formation rates, their listeners may be unable to follow what
is being said at such rates (Jaeger, 2010; Pate & Goldwater,
2015). Both explanations predict that information rate will
not exceed certain thresholds, even if more information does
become available.

How can information rate be held constant given an in-
crease in available information? Several factors affect the
amount of information provided by speakers. Consider the
phrase it is raining. The information provided by an utter-
ance as a whole is the negative log probability of observing
the utterance, combining the probability of the content and
the probability of the structure. One aspect of this is world
knowledge. If it is -10 degrees outside, then it is raining be-
comes a highly unlikely utterance, whereas it is snowing be-
comes far more likely. Studying this type of information is
beyond the scope of this paper, but it is possible to measure
lexical and structural information. Lexical information is de-
rived from the frequency or probability of individual words.
The word precipitating is less frequent than the word rain-
ing (despite denoting a larger set of events). The phrase it is
precipitating is therefore lexically more informative than it is
raining. Structural knowledge would tell us that it is raining
is more common than raining it is, and so the untopicalized
form is more probable and less informative than the second,
topicalized form. Therefore, one of the ways language use
can change to accommodate the rising amounts of informa-
tion is by reducing structural complexity. Increase in avail-
able information tends to increase the information provided
in any utterance, but using more probable (less informative)
structures would balance this increase. Does language com-
pensate for the rising availability of information by reducing
structural complexity?

We test this hypothesis using a longitudinal study of lan-
guage by contrasting the entropy of a three-word language
model with the entropy of a single-word language model (un-
igram model, Jurafsky & Martin, 2000). A three-word (tri-
gram) language model determines the probability of the ap-
pearance of a word using the expected negative log probabil-
ity of observing a word given the two preceding words (1).
This method is similar to the one used in Genzel and Char-
niak (2002). A unigram model determines the probability of
a word using no context (2). Both models take yearly en-
tropy as the weighted average surprisal of all words in the
corpus for that year. If more information is available, the
diversity of the lexicon will be higher, but if the language fo-

cuses on a more restricted subset of available information, the
entropy of the single-word model would drop. In contrast, the
three-word model factors in both available information and
the structural complexity of the language. If these two val-
ues were independent, they should be positively correlated–
if context were not available, then the best estimate for the
trigram model (1) would be the unigram model (2), and there-
fore a rise in unigram entropy would predict a rise in trigram
entropy. However, we instead expect that one would come
at the expense of the other, and that increasing the amount
of available information should lead to a reduction in trigram
entropy to keep information rate within acceptable ranges.

(1) Trigram entropy

E [− logPr(word|two previous words)]

(2) Unigram entropy

E [− logPr(word)]

Another possible hypothesis is that information rate con-
straints would have no effect on textual data. After all, read-
ers (and writers) can theoretically slow down and speed up as
they will, in order to digest (or produce) denser or more infor-
mative words and structures (although, see Genzel & Char-
niak, 2002, who found evidence for entropy rate constancy
in text). This expectation has the same prediction as the null
hypothesis: increase in unigram information rate would lead
to a rise in structural information rate. A negative correla-
tion between unigram and trigram entropy would suggest that
writers still tend not to exceed some level of information rate.

Methods and materials
The Google Ngram corpus
Historical spoken data was not systematically collected, but
written data is available. The Google Ngram corpus (Lin
et al., 2012; Michel et al., 2011) provides yearly frequency
counts for sequences of words, and has previously been used
to study related phenomena, such as the lifecycle of words
(Petersen et al., 2012). The corpus contains several subsets
that limit the type of word sequences to words that were pub-
lished in a specific language, or a specific country. For ex-
ample, the American English subset includes only word se-
quence counts of English books that were published in the
United States. A typical datum in the Google Ngram corpus
for the American English subset might contain a three-word
sequence, such as “take aerial photographs”, followed by two
numbers, e.g. “1992 23”. This would mean that the sequence
take aerial photographs appeared 23 times in all the books
scanned by Google that were published in 1992 in English in
the United States.

We focus on data from the 20th century, for which data is
available for the greatest number of languages. We exclude
data from 2000 and onwards, as suggested by the authors of
corpus (supplementary material of Michel et al., 2011). We

1896



excluded languages that had too little data in the 20th cen-
tury (Simplified Chinese, Hebrew),2 and languages for which
no single country is dominant (Spanish).3 English data was
split by the corpus into American English and British En-
glish, and English was therefore included. The exact same
methodology, as detailed below, was replicated for each of
the remaining languages: American English, British English,
French, German, Italian, and Russian. For both trigrams and
unigrams, we excluded words that mixed letters and numbers,
as too many of those seemed like data from tables, rather than
language use. 4

Calculating trigram entropy
Trigram surprisal was estimated as the maximum likelihood
estimate (MLE) of observing the third word in a three word
sequence given all the possible words that could follow the
previous two words. For example, to calculate the probability
of the word photographs appearing in the context take aerial,
the frequency of take aerial photographs is divided with the
frequency of take aerial followed by any word. The negative
log of the probability provides the number of bits the word
photographs provided in that context. The average number of
bits per word is the entropy of the corpus given the model.

MLE estimates were used rather than models incorporat-
ing smoothing or backoff (Jurafsky & Martin, 2000, ch. 4),
as such methods explicitly integrate information from lower-
order n-grams to the probability calculations of trigrams.
Thus, they already factor out cases in which a word’s fre-
quency is biased by the context in which it appears (e.g. Fran-
cisco is frequent, but almost always preceded by San). The
proposed account predicts that new words are likely to be
structurally accommodated by facilitating (restrictive) con-
texts. Switching to smoothed models could mask this effect.

Calculating unigram entropy
For unigram entropy, the first words of each trigram in the tri-
gram model were counted. The first word was chosen since
trigrams in the 2012 version of the Google Ngram data do not
span sentence boundaries (this is the version used here; Lin
et al., 2012), and we did not want to bias the sample towards
sentence-final words, which are likely to be less informative
if our hypothesis is correct. The surprisal of observing a par-
ticular word in any context was taken to be the negative log
of the number of times the word was observed, divided by
the number of times each word was observed (MLE of word
probability).

2Hebrew and Chinese had comparable results to the other lan-
guages when using only data for the last 30 years of the 20th cen-
tury.

3We did run the study for Spanish, with comparable results to the
other languages.

4Median total number of trigrams per year after exclusions
(in millions): American English: 623.11; British English: 221.1;
French: 202.8; German: 151.84; Italian: 54.97; Russian: 82.83.
Median number of unique trigrams per year (in millions): Ameri-
can English: 80.22; British English: 35.75; French: 30.11; German:
26.97; Italian: 14.2; Russian: 19.29.

Statistical method
For each language we measured the relationship between tri-
gram entropy and unigram entropy in a linear regression, with
trigram entropy as the predicted variable and unigram entropy
as the main predictor. The log number of unique trigrams per
year, the log of the total number of trigrams in the corpus, and
the log number of unique unigrams were used as controls, as
well as the log number of volumes and log number of pages
that were included in the original Google Ngram corpus. The
total number of unigrams was identical to the total number of
trigrams, and was not used (as unigrams were taken from the
trigram dataset, see previous section). The greater the unique
number of trigrams relative to the total number of trigrams,
the higher the entropy is expected to be, everything else being
equal (as the entropy of a uniform distribution over n+1 out-
comes is higher than a uniform distribution over n outcomes).
There is no concrete prediction for the total number of tri-
grams as a predictor, but it is expected to capture some of the
variance that is associated with having more books (or top-
ics of discussion). The number of unique unigrams expresses
an alternative (though less accurate) estimate for the richness
of the lexicon than unigram entropy. All the predictors and
predicted values are time series, and are not considered to be
independent from their previous values (e.g. the correlation
between trigram entropy in year n and year n-1 is 0.99 for
American English). Therefore, the regression used the differ-
ences between each pair of consecutive years for all variables.
All counts-based controls were logged, as the logged values
correlated better with trigram entropy (e.g. pearson r 0.88 for
the correlation between log unique number of trigrams and
trigram entropy, but only 0.81 for its unlogged counterpart in
American English), and therefore consistute more appropri-
ate controls.

Results and discussion
For all languages, changes to unigram entropy were strongly
negatively correlated with changes to trigram entropy (Amer-
ican English: β=-0.44, SE=0.05, t=-8.753, p<10-12; British
English: β=-0.51, SE=0.034, t=-15.05, p<10-15; French:
β=-0.55, SE=0.055, t=-9.925, p<10-15; German: β=-0.46,
SE=0.07, t=-6.532, p<10-8; Italian: β=-0.76, SE=0.058, t=-
13.148, p<10-15; Russian: β=-0.55, SE=0.042, t=-12.945,
p<10-15), suggesting that structural (or transitional) complex-
ity is reduced when lexical complexity rises, even when the
size of the corpus is controlled for. Figure 2 plots for Amer-
ican English the partial correlation between changes in un-
igram entropy and the residual changes in trigram entropy
after other predictors were controlled for. Figure 3 shows
the equivalent relationship for German, the language with the
least significant relationship between unigram entropy and
trigram entropy.

For all languages used, the number of unique trigrams
was positively correlated with trigram entropy (American En-
glish: β=0.6, SE=0.049, t=12.26, p<10-15; British English:
β=0.71, SE=0.035, t=20.624, p<10-15; French: β=0.76,
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Changes in unigram and trigram entropy for American English

Figure 2: A plot showing the relationship in American En-
glish between changes in unigram entropy on the x-axis, and
residual changes in trigram entropy on the y-axis, after other
predictors are controlled for.
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Changes in unigram and trigram entropy for German

Figure 3: A plot showing the relationship in German be-
tween changes in unigram entropy on the x-axis, and residual
changes in trigram entropy on the y-axis, after other predic-
tors are controlled for.

SE=0.065, t=11.777, p<10-15; German: β=0.86, SE=0.11,
t=7.852, p<10-11; Italian: β=0.84, SE=0.078, t=10.794,
p<10-15; Russian: β=1.161, SE=0.093, t=12.537, p<10-15),
as expected. The total number of trigrams was signifi-
cantly negatively correlated with trigram entropy in every lan-
guage except British English (American English: β=-0.24,
SE=0.058, t=-4.142, p<10-4; French: β=-0.23, SE=0.051,
t=-4.531, p<10-4; German: β=-0.22, SE=0.054, t=-3.983,
p<0.001; Italian: β=-0.47, SE=0.05, t=-9.286, p<10-14; Rus-
sian: β=-0.36, SE=0.057, t=-6.326, p<10-8). In all languages
except Italian and Russian, the number of unique unigrams
had no effect on trigram entropy (positive correlation for Ital-
ian: β=0.28, SE=0.12, t=2.376, p<0.05; negative correla-
tion for Russian: β=-0.31, SE=0.11, t=-2.687, p<0.01). The
number of books was positively correlated with trigram en-
tropy for Russian only (β=0.066, SE=0.03, t=2.19, p<0.05),
and the number of pages was positively correlated with tri-
gram entropy for only Italian (β=0.23, SE=0.065, t=3.454,
p<0.001). No other languages were affected by book or page
count.

In all languages, unigram and trigram entropy change over
time. There are clear drops in trigram entropy, e.g. all West-
ern world countries have a drop in trigram entropies in the
1970s, despite an increase in the size of the corpus. This in
itself, prior to controlled analysis, is an interesting finding. It
would suggest that the acceptable range for information rate
may sometimes drop. Figure 4 plots the change in residual
unigram entropy over time, controlling for the total number
of unigrams and the number of unique unigrams in the cor-
pus. Figure 5 plots the change in residual trigram entropy
over time, controlling for the total number of trigrams and
the number of unique trigrams in the corpus.
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Figure 4: Residual values of unigram entropy in American
English during the 20th century. The x-axis is years. The y-
axis is the residual unigram (lexical) entropy after controlling
for parameters signifying the size of the corpus: log number
of unique unigrams, log number of unigrams.

Because of the individual language differences, we addi-
tionally combined all languages in a mixed-effects regres-
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Figure 5: Residual values of trigram entropy in American En-
glish during the 20th century. The x-axis is years. The y-axis
is the residual trigram (structural) entropy after controlling
for parameters signifying the size of the corpus: log number
of unique trigrams, log number of trigrams.

sion, post-hoc, using random effects for language, with tri-
gram entropy as a random slope. The controls for this re-
gression were identical for those used in the individual lin-
ear regressions, and the results were nearly identical. Crit-
ically, changes to unigram entropy were still strongly nega-
tively correlated with changes to trigram entropy (β=-0.55,
SE=0.0161, t=-34.359, p<10-15). The number of unique tri-
grams and number of volumes were positively correlated with
trigram entropy (β=0.96, SE=0.021, t=45.410, p<10-15 and
β=0.048, SE=0.0107, t=4.496, p<10-5, respectively). The to-
tal number of trigrams and the number of unique unigrams
were negatively correlated with trigram entropy (β=-0.29,
SE=0.0191, t=-14.916, p<10-15 and β=-0.088, SE=0.0238,
t=-3.705, p<0.001, respectively). Number of pages was not
significant.

Summary
Changes to unigram entropy and trigram entropy were neg-
atively correlated, the opposite of what the null hypothesis
expects: When amounts of lexical information rise, structural
information drops. This constitutes strong evidence for ac-
counts that expect language to restrict the amount of infor-
mation provided at a given time (Aylett & Turk, 2004; Jaeger,
2010; Levy & Jaeger, 2007). It is quite surprising that the
transitional or structural properties of language should change
in response to the increasing amount of information, as pre-
dicted by information theoretic accounts, and yet this is the
case for all the languages studied here.

These findings open the door to studies of other trade-offs
in long term information rate. We use transitional probabili-
ties here as an estimate of structural complexity (more com-
plex transitions would indicate more complex structure), but
it would also be interesting to use parsed corpora to look at the
frequency of different grammatical constructs. Does a rise in

information also predict a decrease in complex grammatical
structures, such as complex clauses? Our hypothesis would
suggest so. The Google Ngram corpus does contain basic
syntactic information, in the form of rough part-of-speech
tags (e.g. noun vs. verb, but not preterite vs. participle; Lin
et al., 2012), and those too can perhaps be used to infer com-
plexity in future studies. In a separate study, Cohen Priva
(under revision) shows that speech rate (another form of in-
formation rate) is negatively correlated with both lexical and
syntactic information rates.

Both unigram and trigram information rates rose during
certain years and fell in others. There were large scale dips in
both unigram and trigram entropy in all languages at differ-
ent times, suggesting the existence of additional factors that
play a part in determining the acceptable information rate for
a language at any particular time. The timing of the drops
in information rate is potentially quite telling– in most of the
languages analyzed here, there are large dips in trigram en-
tropy around 1915-1920 and 1935-1945, perhaps correspond-
ing to the two world wars. If information rate corresponds to
large-scale societal attitudes, then this would give us a new
tool to study societal change. Fluctuations in information rate
may be used to track society-level mood, or even predict fu-
ture events. For instance, does information rate rise before
democratic revolutions or following them? Being allowed to
express one’s opinion will mean that more opinions will be
expressed, but perhaps the expression of new opinions is what
brings about democratic revolutions in the first place.
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