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Abstract of the Dissertation

Solution Path Clustering with Minimax Concave

Penalty and Its Applications to Noisy Big Data

by

Yuliya Marchetti

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2014

Professor Qing Zhou, Chair

Fast accumulation of large amounts of complex data has created a need for more

sophisticated statistical methodologies to discover interesting patterns and better

extract information from these data. The large scale of the data often results in

challenging high-dimensional estimation problems where only a minority of the

data shows specific grouping patterns. To address these emerging challenges, we

develop a new clustering methodology that introduces the idea of a regularization

path into unsupervised learning. A regularization path for a clustering problem

is created by varying the degree of sparsity constraint that is imposed on the dif-

ferences between objects via the minimax concave penalty with adaptive tuning

parameters. Instead of providing a single solution represented by a cluster as-

signment for each object, the method produces a short sequence of solutions that

determines not only the cluster assignment but also a corresponding number of

clusters for each solution. The optimization of the penalized loss function is car-

ried out through an MM algorithm with block coordinate descent. The advantages

of this clustering algorithm compared to other existing methods are as follows: it

does not require the input of the number of clusters; it is capable of simultane-

ously separating irrelevant or noisy observations that show no grouping pattern,

which can greatly improve data interpretation; and it is a general methodology

ii



that can be applied to many clustering problems. We then develop an iterative

subsampling approach to improve the computational efficiency of this clustering

methodology. The proposed approach iterates between clustering a small sub-

sample of the full data and sequentially assigning the other data points to attain

orders of magnitude of computational savings. It preserves the ability to isolate

noise, includes a solution selection mechanism that ultimately provides one clus-

tering solution with an estimated number of clusters, and is shown to be able to

extract small tight clusters from noisy data. The iterative subsampling approach’s

relatively minor losses in accuracy are demonstrated through simulation studies,

and its ability to handle large datasets is illustrated through applications to gene

expression datasets.
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CHAPTER 1

Introduction

1.1 Overview and challenges of clustering

Cluster analysis allows us to group a collection of objects into subsets such that

objects within a subset are similar to each other, while objects in different subsets

are dissimilar from each other. Clustering is widely used in exploratory data anal-

ysis and has a great variety of applications ranging from biology and astrophysics

to social sciences and psychology. Clustering is a first step in knowledge discovery

where prior information is rarely available to a researcher. It is also instrumen-

tal for visualization of complex data and for partitioning a dataset into more

homogeneous groups in which simpler models might be adequate. At the same

time, clustering can enable discovery of unknown groups or associations, provid-

ing deeper insights into the data. For example, in biological research, clustering

can help determine which genes are associated with particular cellular functions

or phenotypes and can help isolate subclasses of diseases for targeted treatments.

There exists a great variety of clustering methods. A majority of them rely

on minimizing some loss function, usually by an iterative procedure, like the well

known k-means algorithm, while other methods recursively organize objects into

trees, like the popular hierarchical clustering. Spectral clustering techniques are

based on graph theory and matrix decomposition and are gaining popularity as

being simple, accurate, and able to find non-convex clusters [Lux07, HTF09].

Along with k-means and its variants, there also exist mixture likelihood cluster-
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ing approaches [MBP02, FR02, YFM01] that assume an underlying statistical

model for the data and maximize the likelihood function with the EM algorithm

or MCMC methods [BCR97, OR07]. Yet other methods take modified or com-

bined approaches, for example, self-organizing maps [Koh90], dp-means [KM11],

CLICK [SMS03], gene shaving [HTE00], pclust [WNM08], and support vector

clustering [BHS01] to name just a few. Clustering literature is vast, and surveys

of clustering methodologies are usually specialized. A recent comprehensive re-

view of basic and new clustering methodologies is presented in [AR13], and more

general developments and trends in clustering are covered in [Jai10].

Increasingly large and complex datasets, such as those in gene expression anal-

ysis or data mining, have created the need for new efficient approaches to clus-

tering. Data now often contain large amounts of both noisy observations and ir-

relevant variables. Most existing clustering methods do not address the problems

of identifying noise and selecting meaningful variables. Only recently, researchers

have shown that simultaneously accommodating for the presence of noisy or irrel-

evant observations can immensely improve clustering results and provide a better

interpretation of the patterns in the data [TW05b, TMZ06]. A number of new

clustering algorithms have been proposed, the most popular of which include the

resampling-based tight clustering method [TW05b], penalized weighted k-means

[Tse07], and model-based clustering [FR02]. Other methods that take noise into

account include adap Cluster [DMM02], k-clips [MR09], DWCN [SSL10], trimmed

k-means [GGM08] and other robust clustering algorithms [SEC13, FKG12]. An-

other challenging task in clustering in general is the specification of the number

of clusters, which is required as an input for most of the existing methods. When

the number of clusters is a required input, the obtained solution is prone to error,

especially when a dataset is large and complex. There are a number of methods

that suggest rules for choosing the number of clusters. For a recent overview,

please refer to [FW12].
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A different class of methodologies that has gained popularity for high-dimensional

complex datasets is sparsity regularization techniques. Some examples of such

penalization methods include the lasso [Tib96], the elastic net [ZH05], the group

lasso [YL06], the fused lasso [TSR05], SCAD [FL01], SparseNet [MFH11], and

MC+ [Zha10]. These methods are mostly used in linear and generalized linear

models for identifying useful predictors among a large number of covariates. They

introduce a penalty to a loss function to find sparse solutions in challenging prob-

lems. Efficient optimization methods exist that compute the entire regularization

path or a particular solution for a penalized loss function, such as the least angle

regression [EHJ04] and coordinate descent [FHH07, FHT10, WL08].

Penalized estimation has also been increasingly implemented for clustering

problems. It has been utilized in clustering mostly for variable selection, such as

in gene expression analysis [PS07, WZ08, XPS08, ZPS09, GLM10, WT10, SW12].

These methods assume a given number of clusters and select useful variables

to partition objects, usually in high-dimensional cases and when the number of

samples is smaller than the number of variables or dimensions. Very recently,

several authors introduced penalized clustering methods that impose a penalty on

the pairwise differences between cluster centers and make it possible to generate

sets of solutions that do not require the specification of the number of clusters

[PDS05, HJB11, LOL11, CL13, PSL13]. The partitioning of the data points into

a certain number of clusters for such methods is achieved through varying the de-

gree of penalization. Such emerging approaches are very promising for clustering

and have potential to handle datasets with complex, intricate structures. Indepen-

dently from the mentioned penalization methods, we develop a new regularization

based approach to clustering and introduce the idea of a solution path.
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1.2 Clustering and large data

There have been a large number of sophisticated and state-of-the-art clustering

methods developed in statistics and machine learning over the last few decades,

in response to the rapid emergence of more complex and richer datasets. The

exponential growth in stored data has ushered in the era of “big data” and the

interest to understand and exploit such information. The ever-increasing problem

size and computational intensity of such efforts are further creating challenges for

conventional data analysis methods. Large datasets are often noisy and consist

of heterogeneous subsets. Consequently, clustering is an essential exploratory

analysis to partition the data into smaller subsets and to filter out noisy data

points so that simpler and robust models may be constructed for each cluster.

The challenges of clustering large datasets have been widely studied, and nu-

merous methods have been proposed to efficiently handle such data. The majority

of such methods, originating in machine learning and data mining applications,

modify the popular k-means or EM algorithms in order to increase their computa-

tional speeds. Some examples of such modifications include the use of simple ran-

dom subsampling or more sophisticated sampling schemes [GRS01, RD03, HJ06,

BFR98, FRB98], the computation of some summary representations of the data

[ZRL96, NH02, Pos01], and the parallelizing and distributing of the computation

process [RRP07, EIM11]. A number of reviews of such techniques summarize and

categorize the abundance of these methodologies [AR13, Jai10, SAW14].

More advanced clustering methodologies, on the other hand, make it possible,

for example, to automatically estimate the number of clusters [FR02, Tse07], to

isolate outliers and noisy data points [FR02, TW05b, Tse07], i.e. data points

showing no grouping pattern, to perform dimension and variable selection [PS07,

ZPS09], and to handle non-convex clusters [HJB11, CL13, PSL13]. Although not

as fast as the k-means or the EM algorithm, these methods are powerful, and it is
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very useful to develop computational strategies to enable the application of these

clustering methodologies to moderately large datasets that otherwise would be

prohibitively slow or simply impossible to manipulate.

Perhaps the simplest approach to clustering a large dataset is based on ran-

dom subsampling, which would be computationally efficient if the subsample is

very small, say with size on the order of
√
n, where n is the sample size of a

dataset. Subsampling for large datasets is not new and was first proposed in

[KR90]. Banfield and Raftery [BR93] cluster a real dataset using model-based

clustering (mclust) and apply discriminant analysis to classify the remaining data

points. Fayyad and Smyth [FS96] suggest iteratively subsampling datasets for

clustering and classifying the remaining data points until all of them belong

to the clusters identified in the subsamples with sufficiently high probability.

Later, Fraley and Raftery [FR02] elaborate on subsample clustering and dis-

criminant analysis for large data and discuss a modification of the simple ran-

dom subsampling with the goal of finding small, tight clusters. A number of

other clustering methods were subsequently developed, following a similar idea

[Mai01, WBF04, FRW05, KMC10, NDR14]. All of these methods are geared

mainly towards computational efficiency, and several were also developed to find

small clusters in large datasets [FS96, Mai01, FRW05, NDR14]. In this work

we propose an approach to cluster big noisy data using a simple subsampling

approach, performed iteratively on a dataset and coupled with a new noise clas-

sification and cluster selection procedures, which achieves all the aforementioned

properties and benefits.

1.3 Outline of the dissertation

The remaining part of this dissertation is organized in three chapters. In Chap-

ter 2 we discuss more extensively the regularization methods for clustering. We
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formulate, derive, and implement a new algorithm based on a quadratic loss func-

tion with a penalty imposed on the pairwise distances between the cluster centers.

We show the performance of this method on simulated data and real data and

then compare it with other popular sophisticated clustering methodologies that

are able to recognize noisy data points. Chapter 3 is centered on extending the

method developed in Chapter 2 to noisy big data. A heuristic acceleration of

the algorithm is introduced that utilizes iterative subsampling with subsequent

cluster assignment of the remaining data based on likelihood ratio evaluations.

We are able to detect and isolate the noisy data points and provide the estimated

number of clusters automatically with minimal user input. Lastly, we show the

performance of the new iterative subsampling procedure on simulated data and

large gene expression data, where we find some biologically meaningful gene clus-

ters. The dissertation is concluded in Chapter 4 with a summary and future work

discussion.
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CHAPTER 2

Clustering with Concave Penalty

2.1 Introduction

In this chapter we propose a novel solution path clustering (SPC) method that

can be applied to a wide range of data settings, including high dimensionality

and the presence of noisy or irrelevant observations, which this method is able to

isolate into singleton or very small clusters. Our algorithm minimizes a penal-

ized quadratic loss function under the minimax concave penalty (MCP) [Zha10].

The regularization allows us to obtain sparse solutions and to construct a so-

lution path with a decreasing number of clusters, which eliminates the need to

specify the number of clusters as an input parameter. The method minimizes

a non-convex objective function via the majorization-minimization (MM) algo-

rithm [Lan04] coupled with block coordinate descent. We also develop adaptive

data-driven strategies for selecting the penalty parameters along a solution path

so that the SPC algorithm has in effect only one tuning parameter for initializing

the path. Overall, SPC is a simple, easily implemented and relatively fast algo-

rithm that has worked well in practice, although its convergence properties are to

be established in future work.

Very recently, a number of authors introduced penalized clustering methods

that are similar to our method in that they also impose a penalty on the pairwise

differences between cluster centers and can generate solution paths that do not

require the specification of the number of clusters. [PDS05], [HJB11], [LOL11]
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and [CL13] suggested minimizing an objective function where the penalty on the

differences between the cluster centers is convex, and thus, the resulting algorithms

are guaranteed to converge to a global minimizer. The potential severe bias in

the cluster center estimates from these procedures are handled through penalty

weights. The first three referenced papers focus primarily on the optimization

of objective functions with convex penalties and do not discuss the choice of the

penalty parameter, the detection of noise, performance on high-dimensional data,

nor the impact of the penalty weights on the clustering results. [CL13] have

improved on these convex clustering methods and have provided a general unified

algorithm for solving such problems. They have also noted that the solution

paths obtained from convex clustering can be unsatisfactory if the weights are not

selected properly.

In addition, [PSL13] have proposed a penalized regression-based clustering

method (PRclust) using a novel non-convex penalty on the pairwise differences

in order to alleviate the possible bias of convex penalties. The authors have re-

parametrized the objective function to ensure the convergence of the coordinate

descent algorithm to a stationary point. PRclust, however, has not been shown

to handle noisy and large high-dimensional datasets. In contrast to our adaptive

selection of penalty parameters, [PSL13] mainly focus on determining the number

of clusters by searching over a pre-specified grid of three penalty parameters re-

sulting from the re-parametrization, which might not be efficient for large complex

datasets.

The remainder of this chapter is organized as follows. Section 2.2 provides a

general formulation of a clustering problem under a concave penalty. In Section 2.3

we develop our clustering algorithm with adaptive solution path construction. In

Section 2.4 we use simulated data to illustrate and compare the SPC algorithm to

several clustering methods. In Section 2.5 we briefly discuss solution selection for

SPC. In Section 2.6 we apply SPC to a gene expression dataset from mouse embry-
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onic stem cells to show the performance on bigger real data. Finally, Section 2.7

contains further discussion and future research directions.

2.2 Formulation

Let Y = (yim)n×p be an observed data matrix, where yi = (yi1, . . . , yip) ∈ Rp

represents the ith object. Assuming that the underlying model for yi, i = 1, . . . , n,

is multivariate Gaussian with a mean parameter θi ∈ Rp and a constant diagonal

covariance matrix σ2Ip, we propose to cluster the n objects into an unknown

number of clusters K by minimizing a penalized `2 loss function. This is achieved

by the use of sparsity regularization on the difference between pairwise mean

parameters d(θi, θj) = ‖θi − θj‖2. Our goal is then to minimize

`(θ) =
n∑
i=1

‖yi − θi‖2
2 + λ

∑
i<j

ρ (‖θi − θj‖2) , (2.1)

over θ = (θ1, . . . , θn), where λ > 0 and ρ(·) is some penalty function. With a

careful choice of ρ(·) we can achieve sparsity such that ‖θ̂i − θ̂j‖2 is arbitrarily

small when λ is sufficiently large, where (θ̂1, . . . , θ̂n) is the minimizer of (2.1).

An important advantage of this formulation, especially for situations when there

is very little prior knowledge about the data, is that the number of clusters K

does not need to be specified beforehand. This regularization also makes it possi-

ble to naturally separate noisy objects into singletons and to prevent them from

erroneously merging into other clusters.

An appropriately chosen penalty should result in an estimator that satisfies the

properties of unbiasedness, sparsity, and continuity [FL01]. To achieve these three

properties and to specifically avoid excessive bias in the estimation of θ, which

could lead to unsatisfactory cluster assignment, we propose to use the minimax
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concave penalty (MCP) developed by [Zha10],

ρ (t) =

∫ t

0

(
1− x

δλ

)
+
dx (2.2)

=

(
t− t2

2λδ

)
I(t < λδ) +

(
λδ

2

)
I(t ≥ λδ), (t ≥ 0),

where I(·) is the indicator function. The MCP penalty ρ(t) in (2.2) defines a

family of penalty functions that are concave in t ∈ [0,∞), where λ > 0 controls

the amount of regularization and δ > 0 controls the degree of concavity. It

has been noted that such non-convex penalties promote sparser models than the

`1 penalty with the same or superior prediction accuracy in regression models

[Zha10, MFH11]. In fact, MCP includes both the `1 penalty when δ → ∞ and

the `0 penalty when δ → 0+, forming a continuum between the two extremes.

MCP is a simple differentiable penalty function with only two parameters and

is designed to minimize maximum concavity. Compared to other non-convex

penalties such as SCAD [FL01] or the truncated Lasso penalty [PSL13], it includes

the explicit concavity parameter δ in its formulation that is easily separated from

the penalization rate. Increasing the concavity through this parameter allows us

to effectively control the bias of θ using a data-driven approach. The minimax

concave penalty is demonstrated in Figure 2.1.

We illustrate this regularization in the penalized loss function (2.1) with a

special case n = 2. Denote the sample mean of the two observations by ȳ =

1
2
(y1 + y2). The objective function in this special case is

`(θ1, θ2) = ‖y1 − θ1‖2
2 + ‖y2 − θ2‖2

2 + λρ (‖θ1 − θ2‖2) . (2.3)

Let γ = (θ2 − θ1) ∈ Rp. Then, for any fixed γ, `(θ1, θ2) is minimized at (θ1, θ2) =

(ȳ − γ/2, ȳ + γ/2), and thus, minimizing (2.3) reduces to

min
γ

[
`(γ) = ‖y1 − ȳ + γ/2‖2

2 + ‖y2 − ȳ − γ/2‖2
2 + λρ (‖γ‖2)

=
1

2
‖γ − (y2 − y1)‖2

2 + λρ (‖γ‖2)

]
. (2.4)
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Figure 2.1: MCP in (a) and its derivative in (b) are plotted for different values of

δ and λ = 1. It approaches the `1 penalty when δ is high (solid line).

Figure 2.2 plots `(θ1, θ2) and the corresponding `(γ) for different combinations

of (λ, δ) for the MCP in (2.2), and demonstrates how the choice of these two tuning

parameters affects the estimation of the cluster centers. The light gray contours

in Figure 2.2a represent the unpenalized `2 loss (with δ → 0 or λ → 0), which

is minimized at (y1, y2) and gives two different clusters. The black contours in

the same figure depict the objective function (2.3) when the value of δ = 1 is low

enough and the value of λ = 5.8 is big enough to produce an unbiased estimate

of one cluster center θ̂1 = θ̂2 = ȳ. The penalty on |θ1− θ2| forces the minimizer to

move from (y1, y2), when the loss function has no penalty, to θ̂1 = θ̂2 = ȳ, which

lies on the dashed line θ1 = θ2. The dark gray contours plot the objective function

for a larger value of δ = 11.6 and a smaller value of λ = 1.5, which is minimized at

(θ̂1, θ̂2) = (1.3, 2.8). In this case, two clusters are obtained, and both centers are

estimated with substantial bias. Therefore, a proper and data-driven choice of δ

and λ is key to our method. This also shows that a penalty in the form ‖θi−θj‖2,

which corresponds to δ →∞, may not be appropriate for clustering.
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Figure 2.2: Demonstration of the regularization with n = 2 and p = 1 for three

sets of (λ, δ): black color for (λ, δ) = (5.8, 1), dark gray for (λ, δ) = (1.5, 11.6), and

light gray for (λ, δ) = (0, 0). (a) The contours of `2(θ1, θ2) (2.3). The dark gray

contours centered at (θ̂1, θ̂2) = (1.3, 2.8) demonstrate the bias in the estimates

of the cluster centers. (b) The penalized loss function `(γ) (2.4) with minimizer

indicated by a vertical dashed line.
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Figure 2.2b plots the objective function `(γ) with the same combinations of

tuning parameters as those in Figure 2.2a. It can be seen from the figure that

`(γ) with (λ, δ) = (5.8, 1) is minimized when γ = 0, i.e. θ1 = θ2 = ȳ, and the

unpenalized loss function in light gray color is minimized at γ = (y2 − y1). The

loss function with (λ, δ) = (1.5, 11.6) in dark gray color is minimized at γ = 1.5,

between 0 and (y2 − y1).

2.3 Solution path clustering

2.3.1 An MM algorithm

Minimization of a non-convex objective function is usually non-trivial. Motivated

by the MM algorithm [De 94, Lan04] we propose to majorize the penalty term

of (2.1) by a linear function [WL08]. We then minimize the majorizing surrogate

function by cyclic block coordinate descent. We initialize the algorithm assuming

all objects form singleton clusters and gradually merge the objects into a decreas-

ing number of clusters for an appropriately chosen sequence of parameters (δ, λ),

stopping when all the objects form one cluster. Correspondingly, once two ob-

jects are merged into a cluster, we do not consider splitting them in the later

stages of the algorithm (Remark 3). Suppose that in the current solution the

objects yi are assigned to K clusters with centers µ1, . . . , µK , where µk ∈ Rp. Let

Ck = {i : θi = µk} represent the kth current cluster and Nk = |Ck| denote the

size of this cluster. We may then rewrite the objective function (2.1) as

`K(µ) =
K∑
k=1

∑
i∈Ck

‖yi − µk‖2
2 + λ

∑
k<`

NkN`ρ (‖µk − µ`‖2) , (2.5)

where µ = (µ1, . . . , µK). With a proper choice of (λ, δ), minimizing `K(µ) over

µ will force some µk’s to be very close to one another, effectively merging these

clusters into a bigger cluster in the next solution.

To minimize `K(µ), we employ a blockwise MM step to cycle through µk.
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At each step, we fix µ[−k] = (µ1, . . . , µk−1, µk+1, . . . , µK) to its current value and

majorize

`K(µk) ,
∑
i∈Ck

‖yi − µk‖2
2 + λNk

∑
`6=k

N`ρ (‖µk − µ`‖2) . (2.6)

Let µ
(t)
k be the value of µk before the current MM step, where t corresponds to the

iteration number. By assumption µ
(t)
k 6= µ` for all `, and we majorize ρ(‖µk−µ`‖2)

by

ρ (‖µk − µ`‖2) (2.7)

≤ ρ
(
‖µ(t)

k − µ`‖2

)
+ ρ′

(
‖µ(t)

k − µ`‖2

)(
‖µk − µ`‖2 − ‖µ(t)

k − µ`‖2

)
≤ ρ

(
‖µ(t)

k − µ`‖2

)
+ ρ′

(
‖µ(t)

k − µ`‖2

)(‖µk − µ`‖2
2 − ‖µ

(t)
k − µ`‖2

2

2‖µ(t)
k − µ`‖2

)
,

due to the concavity of the functions ρ(x) and
√
x for x > 0. When the ma-

jorization (2.7) is substituted into `K(µk) (2.6) we obtain a quadratic surrogate

function in µk for which the minimizer is

µ
(t+1)
k =

ȳk + λ
∑

`6=k w
(t)
k,`µ`

1 + λ
∑

`6=k w
(t)
k,`

, (2.8)

where ȳk = 1
Nk

∑
i∈Ck

yi and w
(t)
k,` can be regarded as the weight for µ`:

w
(t)
k,` =

N`ρ
′
(
‖µ(t)

k − µ`‖2

)
2‖µ(t)

k − µ`‖2

=
N`

(
1− ‖µ(t)

k − µ`‖2/λδ
)

+

2‖µ(t)
k − µ`‖2

. (2.9)

In effect, the derivative ρ′ in (2.9) becomes the adaptive weight for the estimation

of the cluster centers µk, which is similar to the convex clustering penalty weights

in [HJB11] and [CL13]. The weight in (2.9), however, uses the distances between

the cluster centers µk and varies with each iteration, whereas weights in [HJB11]

and [CL13] are based on the distances between the data points, which do not

change throughout the estimation procedure and solution path. It can be seen

from (2.8) and (2.9) that:
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• When ‖µ(t)
k − µ`‖2 ≥ λδ for all ` 6= k, then w

(t)
k,` = 0, and thus, in the next

iteration µ
(t+1)
k = ȳk, the sample mean.

• When ‖µ(t)
k −µ`‖2 � λδ so that λw

(t)
k,` � 1 for a particular `, then µ

(t+1)
k ≈ µ`

and the two clusters Ck and C` will merge.

A single iteration of the MM algorithm cycles through all K blocks as summa-

rized in Algorithm 1. To account for data scaling we set ξ = ε√
p

∑p
m=1 σm, where

ε = 10−4 and σm is the standard deviation of the mth component of the data.

Algorithm 1 One iteration of the MM algorithm

1: for k = 1, . . . , K do

2: majorization: compute weights w
(t)
k,` as in (2.9) for all ` 6= k

3: minimization: update µ
(t+1)
k as in (2.8)

4: if ‖µ(t+1)
k − µ`‖2 < ξ for some ` then

5: set µ
(t+1)
k and µ` to their weighted mean

6: end if

7: end for

Remark 1 (Relative sparsity). It should be noted that the minimizer of (2.5)

in general does not have exactly identical pairs of µk’s for any finite λ, and thus

only relative sparsity can be achieved so that some µk’s become very close to

one another. This is due to the penalized loss function (2.5) itself, not because

of the algorithm implementation. However, such relative sparsity is sufficient

for practical applications, with a simple thresholding step like on lines 4-5 of

Algorithm 1. We perform the thresholding step for every iteration of the MM

algorithm to decrease the overall running time of SPC as K may become smaller

for the next iteration.

Remark 2 (Convergence). Convergence for coordinate descent type algorithms

has been established for the sum of a smooth function and a non-convex penalty
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under certain conditions that are in fact met by MCP [MFH11]. However, since

the penalty term in (2.6) is non-separable, this result as well as that in [TY09]

cannot be applied. Another difficulty is that the objective function (2.6) is non-

differentiable when µk = µ`, which does not meet the assumption for the fixed

points of the MM algorithm to coincide with the set of the stationary points

of the objective function [Lan95, LDY00]. Consequently, there is no theoreti-

cal guarantee that Algorithm 1 always converges to a stationary point. In our

implementation, Algorithm 1 is repeated until it reaches the stopping criterion

max
1≤k≤K

‖µ(t+1)
k − µ(t)

k ‖2 < ξ (2.10)

or until 50 iterations. In practice, we have observed that Algorithm 1 almost

always terminates in fewer than 50 iterations. See Sections 2.4.2 and 2.4.3 for

more discussion with numerical results.

Remark 3 (Cluster splitting). In order to minimize (2.1), it is necessary that

objects are allowed to be split or unfused from the clusters to which they were as-

signed. However, to save computation time, we have made a heuristic assumption

that a cluster is never split so that µk’s are gradually merged into a decreasing

number of clusters. In order to exactly solve the problem in (2.1) it is necessary

that objects are allowed to be split or unfused from the clusters they were assigned

to. The splitting of clusters could be handled easily within the framework of our

algorithm by an additional soft thresholding step. The details on cluster splitting

by soft thresholding are provided in the Appendix.

2.3.2 Solution path construction

The penalty function in (2.2) has two parameters λ and δ, the former controlling

the amount of regularization and the latter determining the degree of concavity of

the function. We would like to create some simple data-driven rules for selecting

several combinations of the penalty parameters to produce a solution path for
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any clustering problem. We start the algorithm assuming that each individual

observation yi forms its own singleton cluster. We then gradually enforce sparsity

in the differences between cluster centers by using an increasing sequence of λ

while reducing the bias, if necessary, through a decreasing sequence of δ. Since

the penalty function (2.2) depends on the distances between µk’s, the sequences of

the tuning parameters can be guided by these distances, and the solution from the

current combination of (δ, λ) can be used as a warm start for the next combination.

We define a decreasing sequence ∆ = {δ1, . . . , δH} and for each δh, h =

1, . . . , H, define an increasing sequence Λ(δh) = {λ1(δh), . . . , λG(δh)}. The se-

quence ∆ is simply determined by

δh = δh−1α, (2.11)

for h = 2, . . . , H, where α ∈ (0, 1) is a constant. We discuss the choice of δ1 later

in this section when we talk about λ1(δ1). Each time the value of δ is decreased

a new Λ(δ) is computed. The initial solution is then obtained with the lowest

concavity. As mentioned previously, high values of δ decrease concavity of the

penalty function and make it behave more like the `1 penalty, which could intro-

duce considerable bias into the estimate of µk. Therefore, in order to determine

whether the value of δ needs to be decreased, we define the bias-variance ratio

(BVR) for each cluster Ck as

BVRk =


‖µk−ȳk‖22∑

i∈Ck
‖yi−ȳk‖22/(Nk−1)

, Nk > 1

‖µk−yi‖22
(rk/2)2

, Nk = 1, Ck = {i},

(2.12)

where rk = min 6̀=k ‖yi − µ`‖2 is the distance between yi and the nearest cluster

center. If BVRk > 1 for any k, then we decrease δ as in (2.11). The idea behind

the bias-variance ratio is that if a certain estimated cluster center µk moves beyond

the range of the observations yi in that cluster Ck, then the concavity is increased

in order to reduce the bias that could lead to a bad solution.
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We now address the choice of Λ(δh) determined by the lower and upper bounds

of the sequence, λ1(δh) and λG(δh). The values of λ in between are evenly spaced

in log-scale. We state two lemmas for a simple case with n = 2 and then use these

lemmas to motivate our choice of the lower and upper bounds for Λ(δh). The

proofs for the lemmas are provided in the Appendix.

Lemma 1. Assume n = 2 and that there are only two points (y1, y2) with distance

d = ‖y1 − y2‖2. Let θ
(t)
i be the value of θi generated by the MM algorithm with

θ
(0)
i = yi, i = 1, 2. Fix λδ = η > 0. For a given φ ∈ (0, 1), if η > d and

λ =
2φηd

(1− φ) (η − d)
, (2.13)

then ‖θ(1)
1 − θ

(0)
2 ‖2 = (1 − φ)‖θ(0)

1 − θ
(0)
2 ‖2. If η ≤ d, then θ

(t)
i = yi for all t ≥ 1

and i = 1, 2.

Lemma 2. Assume n = 2 and that there are only two points (y1, y2) with distance

d = ‖y1 − y2‖2. For a given δ > 0, if

λ ≥
(

1 +
1

δ

)
d, (2.14)

then the global minimizer of (2.3) is given by (θ̂1, θ̂2) = (ȳ, ȳ).

We use Lemma 1 to determine δ1 and the initial lower bound λ1(δ1). From this

lemma one sees that η serves as a threshold: if d ≥ η, then θ
(t)
i will not change,

and the points will not merge. Let η1 = λ1(δ1)δ1 and Qβ be the β-quantile of the

nearest neighbor distances among yi’s. We choose η1 = Qω, where ω ∈ (0, 1) can

be regarded as the approximate proportion of data points that may merge in the

initial solution. On the other hand, it follows from Lemma 1 that φ ∈ (0, 1) can

be considered the minimization step size. By default, we set φ = 0.5. Then, to use

(2.13) to determine λ1(δ1) we need to specify d. We may choose d as the distance

between a pair of points such that d < η1. This can be achieved by simply setting

d = Qτ , where τ ∈ (0, ω). Plugging these choices of parameters into (2.13), we
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obtain the initial lower bound for λ as

λ1(δ1) =
2φQωQτ

(1− φ) (Qω −Qτ )
. (2.15)

The first value of the sequence ∆ then follows directly from

δ1 = Qω/λ1(δ1). (2.16)

Denote the maximum penalty by z = λmaxt ρ(t) = 1
2
λ2δ. In order to achieve

gradual merging of objects into fewer clusters, both the threshold η = λδ and

z should be non-decreasing. Suppose that δh−1 is decreased to δh by the BVR

criterion and zh−1 = 1
2
[λG̃(δh−1)]2δh−1, where λG̃(δh−1) is the value of λ before

decrease. The lower bound for Λ(δh) is then

λ1(δh) =

(
2zh−1

δh

)1/2

=

(
[λG̃(δh−1)]2 δh−1

δh

)1/2

= α−1/2λG̃(δh−1). (2.17)

Next, we directly apply Lemma 2 to define the upper bound λG(δh), h =

1, . . . , H. Given a collection of objects, we can conservatively choose d in (2.14)

to be the maximum distance among all pairs of objects to obtain

λG(δh) =

(
1 +

1

δh

)
max
i,j
‖yi − yj‖2. (2.18)

For a collection of n > 2 objects, the upper bound in (2.18) becomes only an

approximation for the value of λ such that all objects merge into a single cluster.

This value of λ does not necessarily guarantee that the objects will merge, but in

practice, we have not encountered a situation when this approximation did not

work. In a case when the value of the upper bound of λ is not sufficiently large,

one can simply decrease the value of δ, recalculate the new sequence of λ and run

the algorithm until all data points form a single cluster.

In summary, the construction of the solution path involves the specification of

four parameters, α in (2.11), and ω, φ and τ in (2.15), all ranging between 0 and

1. In effect, the parameters τ and φ control the step size of the MM iteration,
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and consequently the length of the solution path. Based on our experience and

as demonstrated by the sensitivity analysis in Section 2.4.5, the solution path is

not much affected by the choice of φ and τ , except when very small values are

used (φ, τ ≤ 0.01), which can slow down the progression of the solution path. We

recommend setting τ to be slightly smaller than ω in order to avoid unnecessary

detail in the solution path. In general, we recommend setting α = 0.9, φ = 0.5

and τ = 0.9ω, and we use these default values throughout the paper.

The only tuning parameter that needs to be specified by the user is ω for the

calculation of λ1(δ1) in (2.15) and δ1 in (2.16). Since it stands for the approximate

proportion of the nearest neighbors that may merge initially, the nature of the

dataset might help determine its value. For instance, if the dataset is very noisy

and clusters are not tight, ω could be set to a low value, and if the dataset is well

separated into clusters and there is little noise, a high value of ω could be used. If

chosen too high in cases where the data is very noisy, ω could force the algorithm

to skip the correct solution by initially merging too many noisy observations. In

practice, we also found that ω should be small in high-dimensional settings. In

this paper we use ω = 0.1 for the high-dimensional examples when n < p and

ω = 0.5 when n > p.

2.3.3 The full SPC algorithm

We now combine the MM algorithm with the construction of the solution path to

describe the full SPC algorithm. It is initialized assuming that each observation

forms its own singleton cluster and is run until all observations merge into one

cluster using a sequence of (δ, λ). The solution obtained from a particular (δ, λ)

is used as a warm start for the next solution. We do not require the input of

the number of clusters K, and the algorithm typically yields a short path of 2–15

solutions.
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For a particular (δh, λg(δh)), let K(h, g) be the estimated number of clusters

and µ̂k(h, g) for k = 1, . . . , K(h, g) be the estimated cluster centers. Using these

notations, the full SPC algorithm is provided in Algorithm 2.

Algorithm 2 Solution path clustering

Inputs

required input: Y = (yim)n×p, ω ∈ (0, 1)

default input: τ = 0.9ω, φ = 0.5, α = 0.9, G = min (20, p)

initialization: h = 1, K = n, µk = yk, k = 1, . . . , n

1: repeat

2: compute δh, λ1(δh), λG(δh) and construct Λ(δh) in logarithmic scale of size

G

3: for g = 1, . . . , G do

4: run the MM algorithm (Algorithm 1) until max
k
‖µ(t+1)

k − µ(t)
k ‖2 < ξ or

t > 50 to obtain K(g, h) and {µ̂k(h, g), k = 1, . . . , K(h, g)}

5: for k = 1, . . . , K(h, g) do

6: compute BVRk

7: if BVRk > 1 then

8: h← h+ 1 and go to line 2

9: end if

10: end for

11: end for

12: h← h+ 1

13: until K(h, g) = 1
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2.4 Simulation study

2.4.1 Competing methods and cluster quality assessment

We illustrate the performance of SPC on simulated data and compare it to the k-

means++ algorithm [AV07], the convex clustering method of [CL13], and several

popular clustering algorithms that were developed to account for the noise in data.

For the latter purpose we selected model-based clustering (mclust) [FR02], tight

clustering [TW05b], and penalized weighted k-means (PWK-means) [Tse07].

The majority of authors use the adjusted rand index (ARI) [HA85] to compare

the clustering results across different methods when the true cluster assignment is

known. ARI calculates the similarity of a clustering result to the underlying true

clustering assignment. It yields a maximum value of 1 if the clustering solution is

identical to the true structure and yields a value close to 0 if the clustering result

is obtained from random partitioning. The exact definition of the ARI can be

found in the Appendix. For the simulation study we also use ARI in order to be

consistent with the prevailing method of cluster quality assessment.

Since most of the competing methods will detect noise, i.e. the data points

that do not belong to any well-defined clusters, we calculate two ARI scores

(ARIc,ARIn) for each of them. Suppose the true partition and an estimated par-

tition are C = {C1, . . . , CR, CR+1} and Ĉ = {Ĉ1, . . . , ĈK , ĈK+1}, where Cr and Ĉk

contain the indices of the data points assigned to true and estimated clusters for

r = 1, . . . , R and k = 1, . . . , K, respectively, and CR+1 and ĈK+1 are the indices

assigned to noise. Denote the respective cluster labels as v = {v1, . . . , vR, vR+1}

and û = {û1, . . . , ûK , ûK+1}, where vR+1 and ûK+1 indicate the labels for the true

and estimated noise, respectively. See Table 2.1 for the full contingency table of

the counts nkr = |Ĉk ∩ Cr|. Our ARI scores are calculated based on parts of the

counts in this table.

ARIc accounts for data points that are identified as belonging to estimated
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Table 2.1: Contingency table and notation for the calculation of (ARIc,ARIn)

Cluster v1 . . . vR vR+1 Sum

û1 n11 . . . n1R n1(R+1) n1•
...

...
...

...
...

...

ûK nK1 . . . nKR nK(R+1) nK•

ûK+1 n(K+1)1 . . . n(K+1)R n(K+1)(R+1) n(K+1)•

Sum n•1 . . . n•R n•(R+1) n

clusters Ĉk, k = 1, . . . , K, and is calculated as in (2.24) in the Appendix using

only the first K rows of Table 2.1, {nkr : 1 ≤ k ≤ K, 1 ≤ r ≤ R + 1}, with the

corresponding row and column sums. In effect, ARIc provides a quality assessment

of the identified clusters Ĉk, i.e. misclassification of clustered data and the amount

of noise in the estimated clusters is reflected as lower values of ARIc.

ARIn indicates how sensitive a method is in identifying noise and whether any

clustered data point is misclassified as noise. It is based on all the data points

except the noise in the estimated clusters, which is accounted for in ARIc. We

collapse Table 2.1 to a 2 × 2 table with counts n∗cc =
∑K

k=1

∑R
r=1 nkr, n

∗
nn =

n(K+1)(R+1), n
∗
nc =

∑R
r=1 n(K+1)r, and n∗cn =

∑K
k=1 nk(R+1). We set n∗cn = 0 since

we account for these data points in ARIc. The total number of data points to be

considered for ARIn is thus n∗ = n∗cc + n∗nn + n∗nc. Again, we use (2.24) in the

Appendix to calculate ARIn by plugging in n∗cc, n
∗
nn, n∗nc, and n∗cn = 0. In general,

if n∗nn is large and n∗nc is small, ARIn will be close to 1.

PWK-means, tight clustering, and k-means++, which is a classical k-means

method combined with a randomized seeding procedure to select the starting

centers, require as an input, an estimated number of clusters, and mclust requires

an input of a range of the number of clusters. In most cases, we provided the

comparison algorithms with ideal input parameters, which will likely result in
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optimal performance for these methods. In addition to the number of clusters,

the competing methods, except k-means++, have other tuning parameters that

we mention below.

PWK-means also requires the input of a penalty parameter λ since this method

imposes a penalty on the number of noisy data points. We used the suggested

prediction-based resampling method [TW05a] to find λ, calculated the prediction

strength criterion for an increasing sequence of λ, and selected the value of λ

corresponding to the highest prediction strength computed.

Tight clustering has several tuning parameters, but most of them are recom-

mended to stay at their default values, which we follow for the simulated data.

Along with the user-specified target number of clusters ktarget, tight clustering

relies on a starting number of clusters k0 > ktarget. The tight clustering algorithm

is then applied to a decreasing sequence, decremented by 1, starting with k0 and

ending with ktarget. The authors recommend k0 ≥ ktarget + 5, however, a too large

k0 results in smaller clusters and many of the clustered data identified as noise.

Conversely, a small k0 can result in a smaller size of the estimated noise and more

noise assigned to clusters. We set k0 = ktarget + 5, the smallest recommended

value.

One additional tuning parameter of mclust is the reciprocal of the hyper-

volume V of the data region, and the authors note that the method is sensi-

tive to this value. The default method of calculating the hypervolume is V =∏p
j=1(maxi{yij} − mini{yij}), which we use for the simulated data. Another in-

put into mclust is the estimated categorization of each data point as clustered

data or noise. Once the categorization is provided, mclust applies hierarchical

clustering to the identified clustered data to get a good initialization for the EM

algorithm that generates a final clustering result. We have used the recommended

Kth-nearest neighbor cleaning method [BR98] to obtain the initial categorization

into clusters and noise. It is suggested that the value of K should be the size
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of the smallest cluster to be detected, but if K is selected too high, the noise

identification might not perform well. We chose K = 5 for the nearest neighbor

cleaning such that it is smaller than the average cluster size.

Finally, convex clustering requires the specification of three tuning parameters,

which are the Gaussian kernel weight φ, the number of nearest neighbors k, and an

increasing sequence of the regularization parameter γ for obtaining a solution path.

We chose the parameter φ such that the penalty weights wij = ιk{i,j} exp(−φ‖yi −

yj‖2
2), where ιk{i,j} is 1 if yj is among yi’s k-nearest neighbors and 0 otherwise,

are on average around 0.25. This rule forced the parameter φ to be very close to

0 for our simulated data, but any larger values for φ resulted in unsatisfactory

clustering. We also used k = 5 and an increasing sequence of γ ∈ [0, 50] of size 20

at even intervals, following an example in the documentation for the R package

cvxclust.

To compare the performance, we created four different clustering scenarios:

1) well-separated clusters, 2) overlapping clusters, 3) well-separated clusters with

added noise, 4) overlapping clusters with added noise. All clusters in the examples

in Sections 2.4.2 and 2.4.3 are spherical, with equal variance. The cluster centers

and the noise points were generated from a uniform distribution on [−5, 5]p. All

noise was generated outside of the radius of the clusters, where the radius is

the largest distance from the cluster center to the data points in that cluster.

Overlapping clusters were generated such that 15–20% of the data points in a

pair of clusters are located within the radiuses of both clusters. For each scenario,

we simulated 20 datasets with n > p and n < p. To demonstrate the ability of

SPC to identify noise and for the purposes of comparison with other methods, we

simply regard all estimated clusters of size Nk ≤ 3 as noise. The same cut off is

also used for defining noise from k-means++ and convex clustering results.
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2.4.2 Results for n > p

The simulated datasets for both well-separated and overlapping scenarios when

n > p are of size n = 400, dimension p = 20, and with K = 10 clusters. For each

of the two scenarios with noise, 200 uniformly distributed noise points were added

to the clustered data. We chose ω = 0.5 for all the scenarios assuming that about

half of the nearest neighbors should merge. As the output from each dataset, we

obtained a solution path of 7–12 solutions, each containing the number of clusters

K with size Nk > 3, estimated cluster centers µ̂k, and cluster assignments Ck.

The ARIc and ARIn scores for the comparison with other methods are pre-

sented in Figure 2.3. In addition to the true number of clusters K = 10, we

supplied the competing methods with the number of clusters (of size Nk > 3)

along the SPC solution path to demonstrate their performance when the number

of clusters is misspecified. We report the ARI scores averaged over 20 datasets for

K = 10 and for different ranges of K, e.g. 6 − 9, since each of the SPC solution

paths for the 20 datasets might contain a different number of clusters. It must

be noted that ARIn = 0 when no noise is detected, which is misleading for the

scenarios without noisy data. Thus, we use a special score, Sn = 1 − n∗nc/n, for

these scenarios, such that if no noise is identified by a method, then Sn = 1. As

shown in Figure 2.3, SPC can clearly outperform k-means++, especially in the

scenarios with noise, due to the fact that k-means++ is not designed to separate

noisy observations. SPC performs similarly or slightly better in most scenarios

compared with tight clustering and PWK-means. For K = 10, mclust outper-

forms all the other methods in all scenarios and separates the overlapping clusters

and noise well. The pre-classification of the noise and hierarchical clustering of the

remaining data provide mclust with an excellent initialization. The spherical na-

ture of the clusters and uniformly generated noise also perfectly match the model

assumptions of mclust. For K = 10 or a slightly smaller value, the performance

of SPC is very comparable to that of mclust for noisy data scenarios, although
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(1) well-separated clusters (4) overlapping clusters with noise

(2) overlapping clusters (3) well-separated clusters with noise

SPC
K-means++

CVX
Mclust

TC
 PWK-means

Figure 2.3: ARIc and ARIn for comparison methods for all four scenarios when

n > p. Each scenario is represented by a panel consisting of a block of plots.

Each colored point indicates the average ARIc or ARIn across 20 datasets and the

error bar shows its 95% confidence interval. ARI scores are between 1 (best) and

0 (worst) as labeled on the y-axis. The range of numbers above or below each

plot refers to the number of clusters of size Nk > 3 found by SPC. Different colors

correspond to the different competing methods, as shown in the color legend with

convex clustering and tight clustering abbreviated as CVX and TC, respectively.

For scenarios (1) and (2) ARIn reports Sn = 1− n∗nc/n.

our method makes much weaker data generation assumptions and does not use

any specific initialization.

All the methods recover well-separated clusters with accuracy whether noise is
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present or not; however, tight clustering tends to considerably underperform when

no noise is present due to the fact that it is targeted specifically for noisy data.

When clusters are not well-separated, SPC tends to merge overlapping clusters

but identifies noise very well (high ARIn). With the progression toward greater

sparsity (smaller K), SPC adds more and more noise into the clusters or creates

bigger clusters from noise, which results in a low ARIc score. On the other hand,

the remaining noise is identified accurately, which is reflected in the high ARIn

scores. In contrast, when the number of clusters is misspecified and K < 10, tight

clustering and PWK-means have the tendency to leave out clustered data as noise,

reflected by low ARIn scores, while mclust merges the closest clusters together.

Convex clustering performs well with overlapping clusters; however, compared to

SPC, it tends to produce less satisfactory results when any noise is present. In

the scenarios with noise, aside from k-means++, convex clustering adds the most

noise into the clusters.

Figure 2.4 shows an example of the cluster assignment for the overlapping sce-

nario with noise for different methods. Figures 2.4a–2.4b show cluster assignments

for two consecutive solutions with K = 10 and K = 9 for SPC. The solution for

K = 10 leaves out a number of clustered data points as noise. The solution with

K = 9 separates the noise perfectly, but merges two overlapping clusters. Fig-

ures 2.4c–2.4f show the results of competing methods with K = 10. One sees that

mclust (Figure 2.4d) separates noise well and misclassifies only one noisy point,

while tight clustering (Figure 2.4e) and PWK-means (Figure 2.4f) add noise to

the clusters. Convex clustering (Figure 2.4c) has the most noise added to the

clusters.

Finally, we provide some empirical evidence, which suggests that the SPC

algorithm may reach the stopping criterion (2.10) quickly with the simulated data.

Let T ∗ be the number of iterations before meeting the stopping criterion (2.10).

Figure 2.5a shows the histogram of T ∗ for the combined four scenarios and confirms
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Figure 2.4: Cluster assignment plots for comparison methods. The y-axis displays

the index i of each data point and the x-axis shows K estimated clusters and one

additional cluster for the noise. The color indicates the true cluster assignment

with true noise in gray, such that if a clustered data point is identified as noise it

will appear as noise on the x-axis but will have a color associated with it. If noise

is misclassified then it will appear in the clusters but in gray color. (a)–(b) Cluster

assignments for solution path clustering for K = 10 and K = 9, corresponding

to two consecutive solutions in a solution path. (c)–(f) Cluster assignments for

K = 10 for convex clustering (CVX), mclust, tight clustering, and PWK-means.

that the SPC algorithm terminated within 35 iterations per solution for all the

datasets. We note that T ∗ generally decreases along a solution path due to warm

starts and the reduction in K.
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Figure 2.5: Histograms of T ∗ for the combined four scenarios for the simulated

data.

2.4.3 Results for n < p

For n < p we simulated datasets with n = 100 clustered data points, p = 200,

and K = 10. For each dataset, 50 uniformly distributed noise points were added

to the clustered data. Similarly to the scenarios with n > p, we consider clusters

of size Nk ≤ 3 as noise so that the results can be compared across the methods.

With high-dimensional data we chose ω = 0.1 in order to create a longer and a

more detailed solution path. By setting a smaller ω, fewer observations merge into

clusters in the initial stages so that the majority of data points are left as singletons

or very small clusters. As the sparsity is increased, more observations form new

clusters. Consequently, even though the total number of clusters (Ktotal) decreases,

the number of clusters of size Nk > 3 (Kclust) increases along the solution path.

As shown in the results for SPC in Figure 2.6, ARIc is always high because almost

no noisy points merge into clusters and there are few misclassified clustered data

points. On the other hand, ARIn increases as more clusters are formed so that
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Figure 2.6: ARIc and ARIn for comparison methods for two scenarios with noise

when n < p. The two scenarios are presented in two panels of plots in the same

format as those in Figure 2.3. The x-axis indicates Kclust ranges and Ktotal ranges

in brackets. NA on the x-axis in the last column in scenario (2) reflects that SPC

did not obtain a solution path with K = 10 for this scenario.

fewer data points are regarded as noise. One sees that when Kclust is close to the

true number of clusters (K = 10), satisfactory results are obtained with SPC in

terms of both cluster assignment and noise detection.

When the number of dimensions p is higher than the number of observations n,

SPC shows better performance than all the other methods in most scenarios. It

performs at least as well as or slightly better than tight clustering. We could not

obtain solutions for mclust due to error messages when the initial noise catego-

rization was provided for the EM initialization, and thus, we used the solutions

without the pre-specification of noise, which resulted in all the noise included in

the clusters. This clearly demonstrates that mclust is sensitive to pre-specification

of noise. K-means++ recognized clustered data quite well but grouped the noise

with the clusters. The performance of mclust and k-means++ was very similar to
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that of PWK-means, which also did not recognize noise with penalty parameter

λ selected by prediction-based resampling. This comparison shows that identifi-

cation of noise in high-dimensional space is very challenging and that the uniform

assumption for the noise may not be appropriate because the volume of the data

range becomes huge when p is large.

Convex clustering showed slightly worse ARI scores in the n < p scenarios,

adding noise to the clusters as well as leaving out the clustered data as noise,

which indicates that high dimensionality might create challenges for this method.

The distances between observations in high-dimensional data become very large,

forcing the parameter φ to be very close to 0 in order to produce reasonably

large weights wij, which corresponds to uniform wij and introduces more bias into

the estimation of the cluster centers, possibly leading to unsatisfactory solutions.

The k-nearest-neighbor approach could mitigate this problem somewhat, but as

mentioned in qualitative comparisons section in [CL13], can still lead to data

points not being agglomerated correctly.

As in the previous section, we demonstrate in Figure 2.5b the empirical evi-

dence that the SPC algorithm reached the stopping criterion (2.10) for the sim-

ulated data with n < p. From the figure we see that T ∗ is somewhere between

3 and 28 for each solution. In the high-dimensional case T ∗ is larger on average

(about 8 iterations vs. about 4 for n > p).

Table 2.2 summarizes an example of the running time for all the methods

except kmeans++, which is by far the fastest method. The run time for SPC is

based on the longest solution path for each scenario, usually 10–14 solutions. The

matching run times for mclust, tight clustering and PWK-means are calculated

based on the unique cluster counts and those for convex clustering are based on

its corresponding full solution path of length 20. If the number of clusters Kclust

(of size Nk > 3) is duplicated in a solution path, these duplicates are not included

in the run times of mclust, tight clustering and PWK-means. The running time for
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Table 2.2: Summary of run times (in seconds) for SPC and comparison methods

n > p n < p

SPC CVX mclust TC PWK SPC CVX mclust TC PWK

(1) 4.56 1.87 1.36 9.42 19.07 4.26 3.63 0.92 812.75 17.60

(2) 3.88 3.76 1.34 12.61 19.26 2.68 3.36 0.95 369.51 14.29

(3)11.95 19.14 1.43 10.32 39.40 7.38 1.69 0.89 11.16 4.29

(4)11.43 24.50 1.56 10.36 41.29 9.10 0.76 1.08 11.92 4.64

NOTE: (1) well-separated clusters, (2) overlapping clusters, (3) well-separated

clusters with noise, (4) overlapping clusters with noise.

PWK-means includes penalty parameter search with prediction-based resampling.

SPC is currently implemented in R, while tight clustering and PWK-means are

written in C, mclust in Fortran, and convex clustering in R and Fortran. It seems

that SPC’s run times compare well to the other methods and that it has good

potential in terms of speed, especially after implementation in a faster language.

2.4.4 Results for non-convex and non-spherical clusters

We now show the performance of SPC on non-convex and non-spherical simu-

lated clusters. For the non-convex case we generated n = 400 observations in

p = 2 dimensions grouped in K = 4 clusters, where data in each cluster were

generated from a normal distribution with a high correlation. Three out of the

four clusters have a negative or positive correlation of around 0.9 and the other

one has a slightly lower correlation of 0.5. After the data points were simulated,

non-convexity was introduced to each cluster as shown in Figure 2.7 (true model).

The cluster size was varied to be N1 ≈ 250, N2 ≈ 100, N3 ≈ 30, and N4 ≈ 20.

Finally, 20 noise data points were added similarly to the scenarios in the previous

sections. We then applied all the methods except tight clustering, which did not
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Figure 2.7: Cluster assignment results for non-convex clusters. Colored points

indicate data in clusters and gray points indicate noise.

converge, to this simulated dataset.

It can be seen from Figure 2.7 that SPC can perform well in relatively complex

settings when the clusters are non-convex, the noise or outliers are present and

when the cluster sizes are different. All the comparison methods tend to split one

of the two bigger clusters (black and green in the true model plot), while SPC cor-

rectly does not. Mclust and PWK-means perform well with noise; however, they

do not recognize the smallest cluster with the lowest correlation (blue). Mclust

also assigns the ends of the non-convex clusters to noise, showing its sensitivity

to the assumption of normality. Convex clustering does not seem to be robust to

outliers and noise, due to the design of its penalty, specifically the weights, even

though it can obtain very good results for non-noisy non-convex data for exactly

the same reason.
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Figure 2.8: ARIc and ARIn for comparison methods for non-spherical simulated

clusters with p = 20 and K = 4 true clusters, in the same format as the panels in

Figure 2.3.

To further test the relative performance between SPC and the competing meth-

ods we applied them in higher dimensions. We generated K = 4 similarly corre-

lated clusters in p = 20 dimensions with the same sizes and added 50 noise points.

We did not, however, introduce any non-convexity into the clusters. The result-

ing ARI scores, averaged over 20 randomly generated datasets, are presented in

Figure 2.8. SPC has the highest ARIc and ARIn scores for the true number of

clusters K = 4 and also performs well when the number of clusters is misspecified.

This confirms the usefulness of SPC for clustering high-dimensional non-spherical

data.

2.4.5 Sensitivity to tuning parameters

In this section, we further comment on the sensitivity of the solution path to

the tuning parameters ω, φ, τ in (2.15), and α in (2.11). As mentioned in the

previous section, the parameter ω could have a considerable impact by skipping
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Table 2.3: Solution path length and (ARIc, ARIn) scores for different tuning

parameters φ and τ

τ φ = 0.05 φ = 0.1 φ = 0.3 φ = 0.5 φ = 0.7

0.05 6 (0.91, 0.99) 9 (0.90, 1.00) 10 (0.91, 1.00) 10 (0.91, 1.00) 11 (0.91, 0.99)

0.15 8 (0.90, 1.00) 13 (0.90, 1.00) 10 (0.91, 1.00) 11 (0.91, 0.99) 11 (0.91, 0.99)

0.25 10 (0.90, 1.00) 10 (0.90, 1.00) 10 (0.91, 1.00) 11 (0.91, 0.99) 11 (0.92, 0.99)

0.35 11 (0.90, 1.00) 10 (0.91, 1.00) 11 (0.91, 0.99) 11 (0.91, 1.00) 11 (0.91, 0.99)

0.45 10 (0.91, 0.99) 10 (0.91, 1.00) 11 (0.91, 1.00) 11 (0.92, 0.99) 11 (0.92, 0.99)

the best solution in the initial step if set too high. This can be avoided by

setting this parameter to a low value at the expense of a more detailed solution

path with a longer running time. We have found, however, that the rest of the

tuning parameters do not impact the solution path in any major way. Setting

a different value for α will automatically trigger a corresponding change in the

value of λ, which might affect the speed of the algorithm. To further demonstrate

the sensitivity to τ and φ, we have run SPC on 20 randomly generated datasets

with different combinations of these parameters and averaged the length of the

solution path with ARIc and ARIn for each combination. Table 2.3 is based on the

overlapping case with noise for n > p and illustrates that the cluster assignment

and noise detection are not sensitive at all to these two parameters. The length

of the solution path, except for the smallest values for both τ and φ, is also

very stable. The greatest difference between the smaller and larger values of these

tuning parameters was the speed of each solution due to the different minimization

step size.
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2.5 Solution selection

SPC does not require the specification of the number of clusters; however, it pro-

duces a solution path. Unlike the entire clustering path of hierarchical clustering

or arbitrary regularization paths of convex clustering [CL13, HJB11] or PRclust

[PSL13], a SPC solution path includes only a limited number of solutions obtained

using an adaptive data-driven approach. This makes it easier for a user to explore

different possible clustering assignments. However, it is still very useful in prac-

tice to be able to select the most appropriate member along the solution path,

especially for large datasets.

Resampling-based methods such as the gap statistic [TWH01] or the cluster-

ing instability method in [FW12], are computationally intensive, while Bayesian

information criterion and cross-validation have been shown to select models that

are too complex compared to the true model in sparse linear regression. These

problems are especially relevant for our method that aims at high-dimensional and

large data. We therefore adopt the empirical approach in [FZ13] to demonstrate

that solution selection for SPC is possible in a simple and fast way.

The approach of [FZ13] is based on the fact that as sparsity decreases, i.e. as

the number of clusters increases, the unpenalized log-likelihood of the data will

increase. The increase in the number of clusters, then, is justifiable only by a

significant increase in the unpenalized log-likelihood. We should choose a solution

after which an increase in the number of clusters will not correspond to a large

increase in the unpenalized log-likelihood. To determine this, we sort the solution

path according to an increasing number of clusters Ktotal, and for each solution s,

s = 1, . . . , S, we calculate the difference ratio for two adjacent solutions:

dr(s,s+1) =
L(K(s+1))− L(K(s))

K(s+1) −K(s)
, (2.19)
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provided that K(s+1) −K(s) ≥ 1, where

L(K(s)) =
n∑
i=1

log

K(s)∑
k=1

π
(s)
k φ(yi;µ

(s)
k ,Σ

(s)
k )

 (2.20)

is the mixture Gaussian log-likelihood function and K(s) is the total number of

estimated clusters Ktotal for that solution. The cluster centers µ
(s)
k and the cluster

proportions π
(s)
k are estimated given the cluster assignments for each solution s.

We set the covariance Σ
(s)
k to be the identity matrix, in line with the implicit

assumption behind the use of `2 loss in (2.1) and (2.5). The likelihood for a

singleton cluster in this case is well-defined and in effect amounts to 1/n. We

choose the solution indexed by

K∗ = max
{
K(s) : dr(s,s+1) ≥ a×max

(
dr(1,2), . . . , dr(S−1,S)

)}
, (2.21)

with a = 0.05 as suggested by [FZ13]. We have plotted the difference ratio (2.19)

and the unpenalized log-likelihood (2.20) for two simulated datasets in Figure 2.9.

In Figure 2.9a the selected solution according to (2.21) is the solution with the true

number of clusters K∗ = Ktotal = Kclust = 10. An example from the scenario with

noise in Figure 2.9b is more ambiguous and in this particular case we would barely

choose a solution with Ktotal = 214 and Kclust = 10, which does not correspond

to the highest ARI score and leaves 4 of the clustered points as noise. Generally,

however, the selected solutions have relatively high ARI scores, as reported in

Table 2.4. In this table, we demonstrate the averages for ARIc and ARIn scores

for the selected solutions as well as the averages for the best ARI scores (in terms

of the sum of the two ARI scores) along each solution path of the corresponding

scenario. One sees that the ARI scores of a selected solution are close to the best

along the solution path. The table also reports the average selected Kclust and its

range, showing that the number of clusters given by a selected solution is close to

the true one. All averages and ranges are taken over 20 simulated datasets.

It is generally hard to determine whether singleton or very small clusters are

truly noise, and thus, solution selection is more challenging when noisy data points
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Figure 2.9: The difference ratio (vertical bars) and the unpenalized log-likelihood

(gray solid line) as a function of the number of clusters in a solution path. The

dashed line represents the cutoff with a = 0.05 and the black color highlights

the difference ratio for the solutions with the highest ARI scores. The number of

clusters on the x-axis is represented by the total number of clusters Ktotal and the

number of clusters of size Nk > 3 in brackets (Kclust). (a) An example from the

n > p scenario with well-separated clusters and no noise. (b) An example from

the n > p scenario with well-separated clusters and noise.
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Table 2.4: Solution selection summary for n > p scenarios

ARIc ARIn Kclust

select best select best mean range

(1) 1.000 1.000 1.000 1.000 10 10-10

(2) 0.899 0.935 1.000 0.986 9 9-9

(3) 0.986 1.000 0.979 1.000 10 10-13

(4) 0.940 0.918 0.900 0.987 10 9-10

NOTE: (1) well-separated clusters, (2) overlapping clusters,

(3) well-separated clusters with noise, (4) overlapping clusters

with noise. ARIc and ARIn are averaged over 20 datasets for

each scenario for the selected solutions (select) and for the

largest ARI scores in each solution path (best).

are present, which is reflected in selected average ARIn being slightly lower than

the best ARIn scores in Table 2.4. For overlapping scenario with no noise, we

tended to select the solutions with Kclust = 9 clusters, while the best ARI scores

were given by solutions with Kclust = 10 (with a few clustered data points mis-

classified as noise). On the contrary, for the overlapping scenario with noise, most

of the solutions selected were given by Kclust = 10, which resulted in a higher

than best ARIc but lower than best ARIn. Altogether this method is very fast

and appears to select good solutions for SPC, but more experiments are needed,

especially for various possible assumptions on Σk.

2.6 Clustering gene expression data

To further test its performance in a real data environment we applied SPC to a

gene expression dataset [ZCM07]. The full dataset consists of over 45,000 genes

across 16 different experimental conditions that were created to study the reg-
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ulation of these genes by Oct4, a transcription factor (TF) important for the

self-renewal and maintenance of mouse embryonic stem cells. The 16 gene expres-

sion profiles include 3 generated from undifferentiated cells which are naturally

high in Oct4 expression (conditions 1–3), 5 from early differentiated cells with

high Oct4 expression (conditions 4–8), and 8 with low Oct4 expression (condi-

tions 9–16). The study in [ZCM07] has identified and referenced 1,325 Oct4-high

genes (Oct4+) and 1,440 Oct4-low genes (Oct4−) out of all the genes, which we

regard as two true separated clusters for validation. We then added 3,000 extra

randomly selected genes with various levels of coefficient of variation and ran-

domly permuted the expression vector of each gene to obtain noise data points.

Thus, we analyzed a final dataset with n = 5, 765 observations (genes), p = 16

dimensions, and K = 2 distinct clusters of Oct4+ and Oct4− genes. Following

common practice, we normalized the expression data of each gene to have zero

mean and unit standard deviation.

We ran SPC with ω = 0.5 and the resulting solution path is presented in

Table 2.5. SPC has clearly identified the largest two clusters of Oct4+ and Oct4−

genes, which are shown in Figure 2.10a–2.10b. It also suggested an additional

smaller cluster of size Nk = 43 shown in Figure 2.10c. We do not address in

this paper the problem of choosing a proper threshold for the size of a cluster.

For demonstration purposes we consider only K = 2 largest clusters and regard

the rest of the observations as noise, including the small cluster in Figure 2.10c.

The left side of Table 2.5 shows the number of clusters of different size per each

solution and the right side shows the numbers of Oct4+, Oct4−, and random

genes in the two largest clusters (Cluster 1 and Cluster 2) and those in the rest

of the genes (Other). The differences among the solutions 1–4 are only due to the

random genes forming mostly very small clusters of size Nk < 30, and there are

only 4 random genes assigned to the Oct4 clusters. It can be seen from the last

column that a small number of Oct4 genes were left out as random, but most of
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Table 2.5: Solution path for the gene expression data

# of clusters of size # of genes (Oct4+ / Oct4− / noise)

δ λ [1K, n)[30, 1K)(1, 30) Cluster 1 Cluster 2 Other

1 0.3 6.2 2 1∗ 2954 1313/ 0 / 3 0/1392/ 1 12/48/2996

2 0.3 6.7 2 1∗ 2868 1313/ 0 / 3 0/1392/ 1 12/48/2996

3 0.3 7.3 2 1∗ 2617 1313/ 0 / 3 0/1392/ 1 12/48/2996

4 0.3 8.0 2 1∗ 2000 1313/ 0 / 3 0/1392/ 1 12/48/2996

5 0.3 8.7 3 1 837 1315/ 0 / 4 0/1435/ 9 10/ 5 /2987

6 0.3 9.5 1 0 234 1325/1440/2658 0/ 0 / 8 0 / 0 / 334

7 0.3 10.4 1 0 80 1325/1440/2910 0/ 0 / 3 0 / 0 / 87

8 0.3 11.3 1 0 46 1325/1440/2954 0/ 0 / 1 0 / 0 / 45

9 0.3 12.4 1 0 4 1325/1440/2996 0/ 0 / 1 0 / 0 / 3

10 0.3 13.5 1 0 0 1325/1440/3000 0/ 0 / 0 0 / 0 / 0

NOTE: The asterisks (∗) identify the small cluster of size Nk = 43 (Oct4−) in

the solution path.

these genes (43 out of 48 Oct4− genes) formed the small Oct4− cluster of Figure

2.10c. In solution 5 the small Oct4− cluster is merged with the main Oct4−

cluster and another large cluster of size > 1,000 is formed from many random

genes. In solution 6 the majority of the genes merge into a single cluster and

in the subsequent solutions the remaining random genes (outliers) are gradually

added to this cluster. All the solutions in Table 2.5 were obtained in fewer than

41 iterations.

Table 2.6 compares the result of SPC with that of mclust, tight clustering, and

PWK-means. For best results, we ran tight clustering with K = 2 and k0 = K+1

since any larger values of k0 produced inferior results, with large amounts of Oct4

genes added to the random category. For mclust, we overrode the default value

for the hypervolume V and applied the calculation from Section 2.4.1. For the
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(c)

Figure 2.10: Heatmaps of the three largest clusters identified by SPC. Red color

indicates high expression and blue color indicates low expression.

nearest neighbor cleaning K = 5 was used (the resulting partitioning into Oct4

clusters and random genes was not sensitive for K < 40, while if K ≥ 40 was used,

no noise would be identified in this data). Finally, for PWK-means we performed

the penalty parameter λ search as with the simulated data. However, we had to

start the sequence with a value greater than 1, otherwise the chosen value of λ

would be less than 1 by prediction-based resampling and would result in most

of the genes classified as random. Overall, we felt that all the other methods

required more user fine tuning and rerunning for this dataset than SPC. It should
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be noted that the variation in the results of tight clustering across different runs

was negligible, while the results of the other three methods were deterministic.

Table 2.6: Comparison of different clustering methods for the Oct4-sorted expres-

sion data

# of genes (Oct4+ / Oct4− / noise)

Cluster 1 Cluster 2 Other

SPC 1315 / 0 / 3 0 / 1435 / 9 10 / 5 / 2987

mclust 1302 / 0 / 4 0 / 1412 / 5 23 / 28 / 2991

tight clust 1323 / 0 / 108 0 / 1402 / 64 2 / 38 / 2828

PWK 1250 / 0 / 11 0 / 1375 / 13 75 / 65 / 2976

It can be seen from Table 2.6 that none of the methods misclassified genes

between the Oct4+ and Oct4− sets in this well-separated data; however, generally

SPC added the fewest random genes into the Oct4 clusters and left out the fewest

Oct4 genes as random. SPC (solution 5 in Table 2.5) performed better compared

to tight clustering, which tended to add more random genes into Oct4 clusters,

and PWK-means, which left out more Oct4 genes as random. SPC identified a

larger number of Oct4 genes compared to mclust. Even when comparing mclust

to solutions 1–4 of SPC, it can be seen that SPC’s overestimation of the number

of random genes is attributed to the small Oct4− cluster in Figure 2.10c that can

arguably be classified as a separate cluster. Indeed, compared with those genes

in the big Oct4− cluster in Figure 2.10b, the genes in Figure 2.10c have lower

expression levels in conditions 9 to 12 and higher expression levels in conditions

13 to 16, corresponding to cells starting differentiation.

Gene ontology (GO) term enrichment analysis further confirms the specific

biological roles of the genes in this newly identified small cluster. Using the full

set of the 1,440 Oct4− genes as the background set, we found 64 enriched GO
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Table 2.7: Top GO terms enriched in the small Oct4− cluster

GO term

% in

clus-

ter

% in

full

set

P-value

nervous system development 43.6 12.9 1.41×10−6

multicellular organismal process 71.8 34.8 1.99×10−6

cranial nerve development 10.3 0.3 2.27×10−6

sequence-specific DNA binding 25.6 5.6 2.76×10−5

sequence-specific DNA binding

TF activity
28.2 6.8 2.86×10−5

nucleic acid binding TF activity 28.2 6.9 3.16×10−5

NOTE: Tabulated are the top three GO terms from the process (top) and the

function (bottom) ontology.

terms from the process ontology with P < 1.7× 10−4 and three from the function

ontology with P < 1×10−4, both having a false discovery rate (FDR) of less than

0.005% as strong evidence that these genes are not clustered by chance. From Ta-

ble 2.7 we see that this small cluster is highly enriched for genes involved in nerve

development and organismal process and for TFs with sequence-specific DNA

binding activity, compared to the corresponding proportions in the full Oct4−

set. This analysis demonstrates a strong performance of SPC on a larger gene ex-

pression dataset and the possibility of discovering smaller, biologically meaningful

clusters by further examining the solution path. Moreover, this shows an example

where a detailed solution path is useful even when strong prior knowledge for the

number of clusters is available. With the expected number of clusters K = 2, all

the other methods failed to discover this small cluster. The results of mclust, tight
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clustering and PWK-means identified solely the two big clusters and only differed

in how many random genes were added to the clusters and how many Oct4 genes

were left out as random.

2.7 Discussion

SPC is a new general clustering method that provides a small set of solutions,

each including a cluster assignment and a number of clusters, in a wide variety of

situations including high-dimensional settings when model-based clustering, for

example, may have difficulty in providing a solution. SPC can be applied to

datasets of different complexities, whether they are small with only a few outliers

or large with a high proportion of irrelevant observations. This method searches

for the best solution given a certain degree of sparsity penalty, which is determined

adaptively by the data. The irrelevant observations are simultaneously identified

as singletons or very small clusters. SPC does not require extensive fine tuning

and has only one required input tuning parameter, which could have some impact

on the resulting set of solutions. However, even this parameter can be set at

the lowest possible value, with the only drawback of a longer solution path and

running time. Most importantly, SPC does not require the knowledge of the

number of clusters and provides its own estimate, depending on the amount of

sparsity imposed.

Solution path clustering is effective in separating noise from clustered data;

however, it tends to merge overlapping clusters due to its dependence on distances

between cluster centers. In the later stages of a solution path, when sparsity

is higher, it also tends to add more noise into clusters as the larger distances,

usually characterized by noisy observations or outliers, receive more penalization.

Overall, SPC has provided satisfactory clustering results across all the simulated

data scenarios and the gene expression data.
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Penalized estimation methods have been widely applied in linear model anal-

ysis and are emerging in clustering. The idea of a solution path or surface along

with model selection methodology has been successfully utilized for fast search of

sparse models. We extended the regularization path or surface and sparsity ap-

proach to unsupervised learning, where the gradual increase of sparsity is guided

by the data and the bias of the cluster centers is explicitly adjusted to avoid bad

solutions. All these features make SPC different from the majority of the existing

penalization frameworks, which either encourage sparsity in cluster means or use

a convex penalty for sparsity.

There are several questions that need to be addressed by future research.

First, we have not discussed what can be considered a cluster and what can be

considered noise. If a cluster consists of just one observation, it could safely be

assumed that this singleton cluster is an outlier; however, a decision needs to be

made, based on the data, with respect to clusters of size Nk > 1. This is easier

to determine with smaller datasets, where the cut off Nk > 1 is usually sufficient;

however, it will not be clear with larger and more complex data that might need

higher cluster size cutoff values. We would like to address this issue in the future

in a more principled manner. In this chapter, we also only cursorily discuss the

methods for selecting the best candidate solution from a solution path and we do

not address the asymptotic properties of the cluster center estimates. These and

other algorithmic improvements are interesting topics for future work.
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2.8 Appendix

2.8.1 Soft thresholding

In order to split an existing cluster, we cycle through every θi for i = 1, . . . , n

while fixing θ[−i] = (θ1, . . . , θi−1, θi+1, . . . , θn) to its current value and minimize

`(θi) = ‖yi − θi‖2
2 + λ

K∑
k=1

Nkρ (‖θi − µk‖2) , (2.22)

over θi. Suppose that θ
(t)
i = µk for some k, i.e. the object yi has been assigned to

the kth existing cluster. We cycle through each component of θi = (θi1, . . . , θip)

and write the difference in each component as βm = θim− µkm, m = 1, . . . , p. Let

θ̃
(t+1)
im =

yim + λ
∑

` 6=k w
(t)
i,`µ`m

1 + λ
∑

`6=k w
(t)
i,`

, (2.23)

and

γ =
λNk

1 +
∑

`6=k
λN`

2‖θ(t)i −µ`‖2

.

Minimization of `(θi) in (2.22) reduces to soft thresholding of β̂m = θ̃
(t+1)
im − µkm.

Let

β(t+1)
m =


β̂m − γ, β̂m > 0 and γ < |β̂m|

β̂m + γ, β̂m < 0 and γ < |β̂m|

0, γ ≥ |β̂m|.

If β
(t+1)
m = 0 for all m, then θ

(t+1)
i = θ

(t)
i = µk and the corresponding yi will

stay in its current cluster k. If β
(t+1)
m 6= 0 for any m, then the corresponding yi

will be separated or unfused from its current cluster. In this case, θ
(t+1)
i 6= µk

and the update for the remainder of the coordinates
(
θi(m+1), . . . , θi(p)

)
will be

performed jointly as for θ
(t+1)
im (2.23). Algorithm 1 could be modified accordingly

to incorporate this split step.
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2.8.2 Proof of Lemma 1

Fix θ
(t)
2 and one minimization step of the MM algorithm as in (2.8) gives

θ
(t+1)
1 − θ(t)

2 =
y1 + λw

(t)
1,2θ

(t)
2

1 + λw
(t)
1,2

− θ(t)
2 .

Equating this to (1− φ)(θ
(t)
1 − θ

(t)
2 ) and simply re-arranging the terms, we get

λ =
2η‖(θ(t)

1 − y1) + φ(θ
(t)
2 − θ

(t)
1 )‖2(

η − ‖θ(t)
1 − θ

(t)
2 ‖2

)
+

(1− φ)
.

For the initial step of the MM algorithm θ
(0)
1 = y1 and θ

(0)
2 = y2, and thus

λ =
2φη‖y1 − y2‖2

(1− φ) (η − ‖y1 − y2‖2)
,

if η > d = ‖y1 − y2‖2. If η ≤ d, then w
(t−1)
1,2 = 0 and thus θ

(t)
i = yi for all t ≥ 1.

2.8.3 Proof of Lemma 2

Let γ = θ2 − θ1. Recall that `(θ1, θ2) is minimized at (ȳ − γ/2, ȳ + γ/2) for any

γ and thus, minimizing (2.3) reduces to minimizing `(γ) defined in (2.4). First

assume that γ = c(y2 − y1) for c ∈ R and define

f(c)
∆
= `(c(y2 − y1)) =

1

2
d2(c− 1)2 + λρ(d · |c|),

where d = ‖y2 − y1‖2. It is easy to see that f(c) > f(0) for all c < 0 and

f(c) > f(1) for all c > 1. Therefore, f must be minimized globally at c ∈ [0, 1].

Then a sufficient condition for f(c) to be minimized at c = 0, which gives γ = 0,

is

∂f(c)

∂c
= d2(c− 1) +

(
λ− dc

δ

)
+

d > 0,

for 0 < c ≤ 1. If (2.14) holds, the above inequality is equivalent to

λ >
[
(1− c) +

c

δ

]
d,
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which is obviously implied by (2.14), noting that c ∈ (0, 1]. Lastly, for any nonzero

γ′ that is not collinear with y2−y1, there is a γ = c(y2−y1) such that ‖γ‖2 = ‖γ′‖2

and ‖γ−(y2−y1)‖2 < ‖γ′−(y2−y1)‖2 by triangle inequality, and thus `(γ) < `(γ′).

Therefore, the global minimizer of (2.3) is (θ̂1, θ̂2) = (ȳ, ȳ) if (2.14) holds.

2.8.4 Adjusted Rand Index

Let h(k) = ( k2 ). Given a contingency table (nij)I×J with entries nij, row sums

ni• =
∑

j nij, column sums n•j =
∑

i nij, and a total sum of entries n =
∑

i,j nij,

the ARI is defined by

ARI =

I∑
i=1

J∑
j=1

h (nij)−

[
I∑
i=1

h (ni•)
J∑
j=1

h (n•j)

]
/h (n)

1
2

[
I∑
i=1

h (ni•) +
J∑
j=1

h (n•j)

]
−

[
I∑
i=1

h (ni•)
J∑
j=1

h (n•j)

]
/h (n)

. (2.24)
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CHAPTER 3

Iterative Subsampling in Solution Path

Clustering of Noisy Big Data

3.1 Introduction

In this chapter we propose a new algorithm, primarily motivated by the need

to accelerate the SPC method developed in Chapter 2. SPC produces a small

set of clustering solutions, called a solution path, that includes not only cluster

assignments but also an estimated decreasing number of clusters along the path.

SPC is based on sparsity regularization and introduces a concave penalty to a

quadratic loss function, which is minimized with penalty parameters chosen by a

data driven approach. The regularization on the pairwise distances between the

cluster centers effectively makes it possible to achieve clustering and at the same

time eliminates the need to specify the number of clusters as an input parameter.

SPC is able to find compact clusters and detect noise as singleton or small clus-

ters, due to the fact that initial clustering solutions are obtained by penalizing

relatively small pairwise distances between the cluster centers. SPC, however, has

time complexity O(n2) as it depends on the calculation of the pairwise distances

between data points. To achieve considerable computational savings we introduce

an iterative approach that enables applications of SPC to large datasets. For the

new algorithm, we combine SPC, performed on a small subsample of the data,

with subsequent assignment of the remaining data points based on likelihood ra-

tio evaluation. We then iterate between the clustering and sequential assignment
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steps until no more valid clusters are found. The iterative subsampling SPC

(ISSPC) provides orders of magnitude computational savings compared to the

original SPC algorithm with relatively little loss in accuracy of the resulting clus-

tering partition. It maintains the effectiveness of SPC to separate the noise from

the clusters, eliminating the need for any prior filtering of the data. It can also

be successful in locating small tight clusters in large datasets. Moreover, the new

iterative subsampling approach utilizes SPC’s solution path to obtain one final

clustering solution with an estimated number of clusters, and in effect, performs

fast and efficient solution selection.

First, we summarize the novel contributions of our work in comparison to

existing subsampling-based clustering methods. First, while all of the existing

methods assume that the number of clusters is given or require that some initial

estimate of the number of clusters is provided by the user [FS96, Mai01, NDR14,

BR93, FR02, WBF04, FRW05], ISSPC determines the number of clusters on

its own through significance tests on a solution path. This improves usability

and at the same time reduces user bias. Second, both the clustering step and

the assignment step in our approach are designed under the assumption that

the full dataset may contain a certain proportion of noisy data points. In each

iteration, only a portion of the data points are partitioned into clusters, and the

remaining data points will be considered in the subsequent iterations until no

more clusters are identified. On the contrary, all but one of the methods reviewed

above partition the entire dataset into clusters generated from the subsample. The

performance on noisy data has been demonstrated solely in [WBF04] with data

containing only 5% of noise, while we show results for varying noise proportions up

to 90%. Third, as most clustering algorithms including SPC have time complexity

of O(n2), the subsample size we consider here is O(
√
n), which is much smaller

than the subsample sizes used in the previous work [BR93, FR02, WBF04, FRW05,

KMC10, NDR14]. This is important in the context of big data applications and
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inherently large datasets, for which only algorithms with O(n) operations would

be computationally feasible. We study systematically the performance loss and

computational savings by varying the subsample size as a
√
n for a ∈ [1, 10].

SPC algorithm is initialized assuming that all data points form singleton clus-

ters. It then gradually builds up the sparsity in ‖θi− θj‖2 and merges the cluster

centers by penalizing increasingly larger distances between them. As an output,

SPC provides a path of clustering solutions with a decreasing number of clusters,

each solution consisting of cluster assignments for all yi and a number of clusters.

Index the solutions on a path of size S by s = 1, . . . , S and denote the cluster

assignment by As = As(Y ) and the number of clusters by K̂s. The number of

total clusters K̂s consists of clusters of any size, including singleton clusters, and

K̂s ≥ K̂s+1 for all s. The solution path A(Y ) = {A1, . . . , AS} is generated us-

ing an adaptive data-driven approach by automatically selecting a combination of

the penalty parameters (λ, δ)s for each solution. The choice of the combination

of (λ, δ)s is based on the properties of the MCP and is guided by the pairwise

distances between center parameters θi’s.

The noisy data in each solution As can be identified as singleton or very small

clusters, i.e. clusters of size Nk ≤ n0. Our default choice is n0 = 3; however, a

much larger cutoff cluster size can be selected based on some knowledge about the

data. Another special characteristic of SPC is that it can find tight clusters in the

initial solutions, similar to hierarchical clustering, when a clustering tree is cut at

smaller distances or at a relatively large number of clusters. Finally, SPC is very

easy to use as it effectively has only one tuning parameter that determines the

approximate proportion of nearest neighbors to be merged for the initial solution.

These characteristics of SPC coupled with the small solution path allow us to

develop an iterative subsampling algorithm that can handle large noisy data and

can select a single clustering solution.

Lastly, integrating SPC, a regularization clustering method, with subsampling
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raises a number of new challenges, such as the choice of tuning parameters in the

concave penalty and model selection along the regularization path. This work

provides practical solutions to these problems with satisfactory performance on

both simulated and real data.

The remainder of this chapter is organized as follows. In Section 3.2.1 we

describe the sequential assignment based on likelihood ratio calculation. The full

algorithm is presented in Section 3.2.2. Section 3.2.3 discusses some practical con-

siderations for choosing tuning parameters. We demonstrate the performance of

ISSPC on simulated data in Section 3.3 and on gene expression data in Section 3.4.

The chapter is then concluded with a brief discussion.

3.2 Methods

3.2.1 Sequential cluster assignment

In this section we describe the sequential cluster assignment procedure that can

be applied to noisy data and that is thereafter combined with SPC for the full

ISSPC algorithm. The sequential cluster assignment can be directly connected

to classification, specifically to discriminant analysis as it is based on evaluating

the likelihood ratios for new data points to determine their cluster memberships.

We assume that a dataset can generally be separated into data points showing

a grouping pattern and data points without any grouping pattern, i.e. noise.

We introduce a background model M0 under which a noise data point follows

Np(µ0,Σ0), while clustered data points are modeled by a mixture Gaussian dis-

tribution MC. In short, we apply SPC on a subsample to estimate parameters for

these models and then classify the remaining data points to obtain their cluster

memberships. In this sense, the role of the subsample is similar to that of training

data and the remaining data similar to test data. So we may also call the two

subsets training and test data, respectively.
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Suppose that we have drawn without replacement a subsample D (training

data) from Y and denote the remaining data by T (test data). Let D,T ⊂

{1, . . . , n} be the indices for data points in D and T . The SPC method is applied

to D to obtain a clustering path A(D) from which a cluster assignment is selected.

Write the selected clustering assignment as Ct = {C, C0}, where C = {C1, . . . , CK}

denotes the clusters and C0 contains the indices of the data points identified as

noise. Assuming that yi follows a mixture Gaussian distribution MC, its likelihood

is

L (yi|MC) (3.1)

=
K∑
k=1

πk

|2πΣk|1/2
exp

{
−1

2
(yi − µk)T Σ−1

k (yi − µk)
}

∆
=

K∑
k=1

Lk(yi|Mk),

with µk denoting the mean, Σk = diag(σ2
k1, . . . , σ

2
kp) – a diagonal covariance ma-

trix, and the mixture proportions
∑K

k=1 πk = 1. Let Nk = |Ck| be the size of a

cluster. Based on the clustering assignment C of the training data, we estimate µk

by the cluster sample mean ȳk = 1
Nk

∑
i∈Ck

yi and Σk by cluster sample variances

Sk = diag(s2
k1, . . . , s

2
kp), where

s2
km =

1

Nk − 1

∑
i∈Ck

(yim − ȳkm)2, (3.2)

and the mixture proportions π̂k = Nk/
∑K

j=1Nj. On the other hand, the back-

ground model M0 is estimated by the overall mean and variance of all the data

points Y , i.e., µ̂0 = ȳ = 1
n

∑
i yi and Σ̂0 = S0 = diag(s2

01, . . . , s
2
0p) with

s2
0m =

1

n− 1

n∑
i=1

(yim − µ̂0m)2. (3.3)

To simplify notation, we use M̂0 and M̂C (M̂k) to denote the two models with the

estimated parameters.
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We then classify the test data T sequentially based on the estimated models

M̂0 and M̂C. We follow a simple decision rule that assigns a test data point yi,

i ∈ T , to the more likely model. The likelihood ratio for each yi, i ∈ T , is

Λ(yi) =
L(yi|M̂C)
L(yi|M̂0)

=

∑K
k=1 Lk(yi|M̂k)

L(yi|M̂0)
. (3.4)

Let G(yi) ∈ {0, . . . , K} be the cluster membership for yi. Then the assignment

rule is

G(yi) =


argmax
1≤k≤K

Lk(yi|M̂k) if Λ(yi) ≥ c

0 if Λ(yi) < c

, (3.5)

where by default c = 1. The threshold c can also take values other than 1 de-

pending on the application; however, we assume c = 1 for all the simulation and

real data studies. Note that yi is identified as noise if G(yi) = 0. Once yi is

assigned to a cluster Ck, the estimated parameters π̂k, ȳk and Sk are updated for

the calculation of (3.4) for the next test data point.

The above assignment rule can be regarded as a mixture discriminant analysis.

Mixture discriminant analysis [HT96] is a generalization of linear and quadratic

discriminant analysis, which was further generalized and extended to the models

with varying covariance matrices [FR02]. In our case, we have a mixture discrim-

inant model with two classes, where one of the classes, the cluster model MC, is a

Gaussian mixture model with K components.

3.2.2 Iterative subsampling

We now show how sequential cluster assignment can be combined with SPC to

produce accurate clustering solutions for large datasets that otherwise would be

computationally expensive or prohibitive. Given a large dataset Y , we choose

the subsample size ν = |D | = a
√
n where a ≥ 1 is a small scalar, so that the

computational complexity of both the clustering and the sequential assignment

steps is O(n). However, such a small subsample will most probably not be able
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to capture all the clustering structure of the full data Y . Thus, we introduce a

recursion between the clustering and sequential assignment steps. Let Y0 be the

data points identified as noise by either the clustering or the sequential steps after

the current iteration. That is, the index set of data points in Y0 is C0 ∪ {i ∈

T : G(yi) = 0}. SPC is then repeated for a random sample of the same size ν

taken from Y0, followed by another sequential assignment step. This recursion

will be repeated until no more clusters are found. Since SPC does not require the

number of clusters as an input parameter and provides a short solution path, it is

necessary to select one clustering solution for the sequential step in the combined

algorithm. Instead of relying on a sophisticated model selection procedure, we

consider any solution on the path as a set of potential clusters C. We test whether

these potential clusters are significantly different from the null model M0, which

is characterized by a large variance since it is estimated with all the data points,

including noise. If some clusters in C are not significantly different from the null,

then the data points in these clusters are reassigned to C0. This quality check

becomes important for later stages in the clustering-assignment recursion since

the clustering is assumed to be performed on an increasing amount of noise. It

also becomes a stopping criterion for the recursion: the recursion is terminated

when no more clusters are found to be significantly different from the null.

Now we describe the detailed testing procedure. For a particular solution, we

compare each estimated covariance matrix Sk, k = 1, . . . , K, to the estimated null

covariance matrix S0. Since we have assumed that both Σk and Σ0 are diagonal,

a set of p hypothesis tests can be performed for each cluster k:

H0
km : σ2

km = σ2
0m vs H1

km : σ2
km < σ2

0m, m = 1, . . . , p,

where we reject H0
km if s2

km (3.2) is sufficiently large relative to s2
0m (3.3). Since

by design n� ν > Nk for all k, the variance of s2
0m is negligible compared to s2

km
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and thus may be treated as a constant. Then the test statistic

Fkm =
(Nk − 1)s2

km

s2
0m

, k = 1, . . . , K and m = 1, . . . , p, (3.6)

follows a χ2-distribution with Nk − 1 degrees of freedom if H0
km is true. Next,

we sort the p-values Pkm of the statistic Fkm in ascending order, Pk(m) ≤ Pk(m+1),

and apply the Benjamini-Hochberg procedure to find

m∗k = max

{
m : Pk(m) ≤

m

p
β,m = 1, . . . , p

}
(3.7)

for each k, where β is the cutoff of the false discovery rate (FDR). We keep cluster

Ck if m∗k ≥ η with η ∈ (1, p), i.e. if we find sufficiently many dimensions with sig-

nificantly smaller s2
km compared to the corresponding s2

0m. Otherwise, we discard

cluster Ck and reassign its members to C0. The procedure of controlling the FDR

for each cluster allows us to account for the relevancy of a subset of dimensions or

features in each cluster, which becomes more critical for high-dimensional data.

In addition, this procedure will generally reject very small clusters with moder-

ately small variances, and thus, it can also be seen as a way of controlling for a

minimum cluster size. Finally, if all the clusters are discarded after the SPC step

for a subsample, then the clustering-assignment recursion is terminated.

The hypothesis testing coupled with FDR control effectively becomes a prac-

tical mechanism for an automatic determination of the number of clusters in

a dataset. In fact, we do not need to use any sophisticated solution selection

methodology in order to pick a solution from A(D), but we would simply select

the first solution with the largest number of clusters of size Nk > n0, followed

by the above testing procedure to remove loose clusters. This gives us a higher

chance of discovering tight clusters in presence of noise. The effectiveness of this

approach will be demonstrated in Sections 3.3 and 3.4.

The full ISSPC method is outlined in Algorithm 3, in which b is the iteration

number in the clustering-assignment recursion. The collection of clusters gener-

ated in the bth iteration is denoted by C(b), while the noise data points are denoted
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Algorithm 3 Iterative Subsampling SPC (ISSPC)

Inputs

input: Y = (yim)n×p, ω
(1) ∈ (0, 1), ν, η

default input: ω(b) = 0.1 for b ≥ 2, β = 0.01

initialization: b = 1, Y
(1)

0 = Y , C = ∅

1: repeat

2: C(b) = ∅

3: draw a random sample D (b) of size ν from Y
(b)

0

4: T (b) = Y
(b)

0 \D (b)

5: run SPC Algorithm 2 to obtain a solution path A(D (b))

6: choose At = {C0, C1, . . . , CK} ∈ A(D (b)) such that K is maximized.

7: for k = 1, . . . , K do

8: compute m∗k as in (3.7)

9: if m∗k ≥ η, C(b) ← C(b) ∪ {Ck}

10: else C0 ← C0 ∪ Ck

11: end for

12: if K = 0 or m∗k < η for all k then

13: break

14: end if

15: for all yi ∈ T (b) do

16: compute G(yi) as in (3.5)

17: assign yi to C0 or the clusters in C(b) accordingly

18: end for

19: Y
(b+1)

0 = C0, C ← C ∪ C(b), b← b+ 1

20: until |Y (b)
0 | < ν

by Y
(b)

0 . The set C consists of all the clusters found along the recursion. Note that

ω ∈ (0, 1) is an input parameter for the SPC algorithm.
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3.2.3 The choice of the tuning parameters

Along with the tuning parameter ω of the original SPC, the ISSPC has additional

user-defined parameters. These include β, the FDR cutoff, and η, the number of

dimensions with FDR < β that determines whether a cluster should be kept or

removed. The choice of these parameters is relatively straightforward, especially

for β, which does not have a big impact on the procedure as long as its value

is reasonably low, e.g. β ∈ (0.1, 0.01). Throughout the simulated data and

real data examples we set β = 0.01, which is commonly used in practice for

hypothesis testing. High values of β can result in the acceptance of “false” clusters,

i.e. clusters consisting mostly or entirely of noise, and the subsequent erroneous

assignment of clustered data into these clusters along with noise. The parameter

η can be set based on user knowledge of dimension relevance, but we generally

recommend to choose η ∈ (0.1p, 0.5p). If η ≈ p, many relevant clusters could

be omitted, and if η ≈ 1, too many “false” clusters can be accepted since low

variances can occur by chance in just a few dimensions. It is clear that the

parameter η can also affect the number of clusters, with smaller values resulting

in more clusters.

It is important to point out that SPC itself and the sequential assignment

rely on the assumption that the clusters are generated by a mixture Gaussian

distribution. If this assumption is violated, the clustering result might be unsat-

isfactory, especially considering the fact that the subsample sizes for clustering

are very small. A typical example of such an adverse scenario is the presence of

several outliers in the SPC clusters, which can trigger the sequential assignment

step to incorporate noise or misclassify clustered data. To overcome such prob-

lems we may calculate (3.4) by using robust estimates of µk and Σk, such as the

trimmed mean and variance. Trimming 5% to 25% of data points is usually an

acceptable amount. If α% of data points are removed in trimming, then (α/2)%

of the smallest and (α/2)% of the largest values in each dimension are discarded.
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We perform trimming on clusters with a relatively substantial size; in particular

we set this size to be Nk > 10n0 to avoid trimming very small clusters that can

lead to unstable estimates of means and variances. Generally, more clusters with

a smaller size will be discovered with increasing amounts of trimming. This is due

to the fact that fewer test data points will be added to the existing trimmed clus-

ters, and these omitted data will most probably be clustered in the next iteration

of the subsample clustering. Since the same amount of trimming is done across

all of the clusters with a larger size, it is possible that, while very tight patterns

can be extracted, some larger clusters could be split as a result.

To conclude, we would like to comment on the choice of the original SPC

tuning parameter ω. This parameter can be determined by the user for the first

iteration of Algorithm 3; however, we generally recommend to set ω = 0.1 or a

comparably small value for b ≥ 2 iterations of the clustering and sequential steps.

Low values of ω will ensure that smaller clusters with fewer outliers are discovered

in later iterations and the procedure does not terminate prematurely.

3.3 Simulation studies

In this section we demonstrate the performance of ISSPC on simulated data. We

generate large datasets and cluster these data with three methods: the original

SPC algorithm, ISSPC and the mclust method in the R package mclust [FR02].

We chose mclust based on its ability to produce high quality results, to separate

noisy data points and to estimate the number of clusters, as well as its competitive

speed as shown in Chapter 2. We compare the accuracy and the speed of both SPC

approaches and mclust. The accuracy is evaluated based on the adjusted rand

index (ARI) developed in [HA85], which compares an estimated cluster assignment

to the true cluster assignment. We calculate two different ARI scores (ARIc,ARIn)

as stated in Section 2.4.1 to gauge the performance with respect to the clustered
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Figure 3.1: The orders of magnitude of computational savings of the ISSPC algo-

rithm compared to the original SPC algorithm. The bars indicate 95% confidence

intervals. The subsample sizes are a
√
n for a = 10, 5, 2, 1 from left to right.

data and noise. ARIc assesses whether data points are misclassified, whether

identified clusters are merged or split, and whether the estimated clusters contain

noise. ARIn evaluates whether any clustered data point is misclassified as noise.

We performed the comparison on four different data sizes n = 10, 000, n =

20, 000, n = 50, 000, and n = 100, 000 and p = 20 dimensions, and generated each

dataset with four different proportions of noise – 0.1n, 0.3n, 0.5n, and 0.9n. The

clustered data in each of a total of 16 datasets were generated from a Gaussian

mixture model with K = 10 clusters of about equal size and variance. The noise

was generated from a uniform distribution on [−5, 5]p outside the radiuses of the

clusters, where the radius of a cluster is defined as the largest distance from the

cluster center to the data points in that cluster. The ISSPC algorithm was run

20 times independently on each dataset and the ARI scores and the computation

speed are reported as an average of the 20 runs, with each run using different

subsamples. We chose η = 10 since all the dimensions were relevant for all the

62



simulated clusters. We were not able to apply the original SPC algorithm to the

datasets of size n > 20, 000 due to operating memory limitations in holding large

distance matrices, and so we present the comparison results only with n = 10, 000

and n = 20, 000. The results from n = 50, 000 and n = 100, 000 are presented

to demonstrate the accuracy, stability and potential time savings of the ISSPC

approach.

Mclust, when applied to data with noise, has in effect three inputs that include

the categorization of data into noise and clusters, a range of the number of clusters

for model selection via Bayesian Information Criterion (BIC), and the reciprocal

hyper volume V of the data region. For more details on the tuning parameters of

mclust, please refer to [FR02] and Section 2.4.1. The recommended Kth nearest

neighbor cleaning method was applied for the categorization [BR98] with K = 10

and the range of the number of clusters was set to (5, 15). We could not use the

default value for V , which appeared to be too small and forced all the noise into

the clusters. Instead we estimated a larger V using the approximate volume of

the convex hull of the data, which was computed with the geometry package in

R based on six dimensions and extrapolated roughly to 20 dimensions.

3.3.1 Computation time

First, we show computational savings of the new approach compared to the origi-

nal algorithm for n = 10, 000 in Figure 3.1a and for n = 20, 000 in Figure 3.1b. The

curves show the average orders of magnitude of computational savings compared

to the original SPC algorithm. The different gray scales in the plots represent the

different proportions of noise in the datasets. It can be seen from Figure 3.1 that

computational improvements of this procedure are considerable and can amount

to somewhere between 1 to 2 orders of magnitude (10 to 100 times faster) for

n = 10, 000 and even larger, 1.5 to 2.5 orders of magnitude, for n = 20, 000. For

the dataset with 90% of noise and of size n = 10, 000, ISSPC with a subsample
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size of
√
n = 100 did not find any clusters, and thus the computation time for

this case is not reported in Figure 3.1a.

Figure 3.2 shows the comparison of the absolute run times for all the compared

clustering methods across all the simulated datasets. The run time for mclust

includes the Kth nearest neighbor procedure that estimates the noisy data points.

It can be seen from the figure that the run time of mclust depends on the amount

of noise and is much shorter when this amount is large due to the fact that mclust

is effectively applied only to the identified clustered data. It should be noted that

mclust could not be run on n = 100, 000, due to reaching operating memory limits.

The original SPC algorithm is shown to have a computational time complexity of

O(n2) approximately for all the simulated data scenarios with a slightly shorter

time when there is little noise. Mclust unsurprisingly shows much better speed

than the original SPC algorithm. ISSPC, however, outperforms mclust on speed,

especially with larger data sizes. ISSPC is able to cluster a large dataset, e.g.

n = 100, 000, in a reasonable amount of time, even when the subsample size is

ν = 10
√
n, and it can favorably compete with mclust in terms of speed, especially

considering the fact that ISSPC is currently implemented in R, while mclust is

implemented in Fortran.

3.3.2 Accuracy

We now report the comparative performance of original SPC, ISSPC and mclust.

Figures 3.3a-3.3d demonstrate ARIc (top panel), ARIn (middle panel) and the

estimated number of clusters (bottom panel) for each data size n. The boxplots

for ISSPC show the results across 20 independent runs on the same dataset, while

only one (deterministic) result is reported for each dataset for SPC and mclust.

For each subsample size, increasing amounts of noise in the data are represented by

a lighter gray scale. The results for the original SPC algorithm are reported after

the hypothesis testing and cluster selection procedure, described in Section 3.2.2,
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Figure 3.2: The run times in minutes for the original SPC (red), mclust (blue)

and ISSPC (gray scale). Each panel corresponds to a different noise proportion

in the datasets.
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is applied to the solution with the largest number of clusters.

Overall, in these examples ISSPC shows very strong results when the noise

proportion is no more than 50%, especially considering the small sizes of the

subsamples. These results are quite competitive compared to the original SPC

and mclust, even though somewhat inferior as expected. In fact, the results for

smaller subsamples, ν =
√
n and 2

√
n, have high and stable ARI scores across all

the scenarios. There are several outliers in the ARI scores, especially when there is

a larger amount of noise, indicating that the quality of the clustering result may

depend on a particular random subsample. ARIc scores for larger subsamples,

ν = 5
√
n and 10

√
n, become more volatile, and the clustering results vary more

in their quality and are generally somewhat inferior in ARIc, compared to those

with the smaller subsamples. There are at least two reasons for this observation.

First, the SPC solution for a larger subsample tends to have a higher variance.

Second, in later iterations of ISSPC, the use of larger subsamples increases the

risk of creating, relatively large clusters that consist mostly or exclusively of noise

but are accepted by the cluster selection procedure due to their substantial sizes.

Thus, a smaller subsample may be beneficial not only for computational savings

but also for the quality of the clustering result. Furthermore, it is seen that ISSPC

does not show consistently good performance with the highest proportion of noise

90%. However, for a suitable subsample size somewhere between 600 and 1,600, it

can give a very satisfactory result, close to that of mclust, for such amount of noise,

as seen from the ARI scores and the estimated number of clusters in Figure 3.3

(the lightest gray color). With a relatively small subsample size, ISSPC was able

to provide a fairly accurate estimated number of clusters for all the scenarios in

Figure 3.3, with the exception of the cases with the highest proportion of noise,

which were discussed above. However, ISSPC tends to overestimate the number

of clusters when the subsample size is larger as a result of splitting clusters.

In summary, we see competitive performance of ISSPC with relatively small
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Figure 3.3: ARI scores and the number of estimated clusters for ISSPC, original

SPC and mclust for various dataset sizes. From left to right the subsample sizes

are
√
n, 2
√
n, 5
√
n, and 10

√
n.
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subsample sizes, compared to the results of SPC and mclust, as long as the noise

proportion in the data is not too high (≤ 50%). On the other hand, for such small

subsample sizes, ISSPC is up to two orders of magnitude faster as shown in the

previous subsection.

3.3.3 Trimming

As mentioned in Section 3.2.3, trimmed estimates of cluster means µk’s and vari-

ances Σk’s can be useful if the clusters significantly deviate from the spheri-

cal shape, are not well separated, or generally if data are complex and high-

dimensional. These situations are certainly typical for real data. Our simulated

data have a simplified structure; however, to understand its potential impact,

we have applied 10% trimming to the simulated data with n = 10, 000 and

n = 50, 000.

Figure 3.4 shows boxplots of ARI scores in the top and middle panels and the

estimated number of clusters in the bottom panel for both sizes. When trimming

is applied to the simulated data, the clustering results are inferior to the results in

Figure 3.3 for smaller subsamples. It is mainly due to the fact that with trimming,

the clusters tend to be split, especially for clusters of a smaller size. Specifically,

trimming tends to remove valid clustered data points for the calculation of the

centers and variances and forces the likelihood ratios in the sequential assignment

to be too small, which results in some clustered data points being assigned to the

background model. These data then create their own clusters in the subsequent

clustering and sequential assignment steps. This problem is particularly severe for

smaller subsample sizes, in which cases the clusters generated by the clustering

steps are necessarily small. As the subsample size increases or the size of the

clusters becomes larger, as in Figure 3.4b, the results improve considerably. It

should also be mentioned that trimming in fact improves the results for larger

subsample sizes, ν > 1000, compared to those without trimming in Figures 3.3a
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Figure 3.4: ARI scores and the number of estimated clusters for 10% mean and

variance trimming.

and 3.3c. Generally, greater amounts of trimming will produce a larger number

of smaller clusters. While unfavorable for some of the simulated data scenarios,

trimming can be beneficial for obtaining compact, small clusters in large datasets,

which we will show in Section 3.4.

3.3.4 Non-spherical clusters

Finally, we demonstrate the performance of ISSPC on data with non-spherical

clusters. For this purpose we generated K = 10 clusters with p = 20 correlated

dimensions for n = 20, 000 and n = 50, 000. Four out of 10 clusters were generated

with 0.5 correlation, and the rest of the clusters had a correlation of 0.3. The

four clusters with the highest correlation were also the largest clusters with sizes

≈ (0.3n, 0.2n, 0.1n, 0.1n), and the remaining six clusters were smaller and of size

≈ 0.05n. The noisy data points were added in the same way as in the spherical

data scenarios and in the same proportions. As previously, we ran ISSPC 20 times

independently on each non-spherical scenario and report the average ARI scores
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Figure 3.5: ARI scores and the number of estimated clusters for non-spherical

simulated clusters. The subsample sizes are
√
n, 2
√
n, and 5

√
n.

and their distributions in boxplots in Figure 3.5. We again include the comparison

with the original SPC algorithm and mclust.

Overall, ISSPC gives a satisfactory result with non-spherical clusters, expect

for the cases with 90% of noise, which still prove to be challenging. As can be

expected, the non-spherical clusters tend to be split into smaller clusters. ARIc

and the estimated number of clusters in Figure 3.5 indicate that the splitting

creates several very small clusters; however, the majority of the “true” clusters

is preserved correctly, albeit with a very small amount of misclassified noise. It

can also be seen from the figure that mclust’s results are quite comparable to

those of ISSPC. Particularly, the ARIc scores of the two methods are close for the

datasets with less than 90% of noise. Mclust recognizes noisy data points with

slightly higher accuracy, reflected by slightly better ARIn scores, mainly due to

the Kth nearest neighbor cleaning method, but the largest clusters are also split

as seen from ARIc scores and the estimated number of clusters. We believe that

ISSPC is useful for data with non-spherical clusters or data that violate Gaussian
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assumptions as it can provide a competitive result with significant computational

savings, and it is able to deliver this result for large datasets that otherwise would

not be tractable for regular full data approaches such as mclust.

3.4 Gene expression data

We applied ISSPC to two gene expression datasets. We first analyzed a mouse

embryonic stem (ES) cell dataset [ZCM07] (Zhou dataset), which was analyzed

previously in Section 2.6 with the original SPC algorithm. The full dataset consists

of about 45,000 genes across 16 experimental conditions; however, we used only

a subset of this dataset, obtained in the same way as in Section 2.6. The subset

consists of n = 5, 765 genes in K = 2 large distinct clusters (1, 325 genes in

the Oct4+ and 1, 440 in the Oct4− clusters) with 3, 000 randomly selected genes

whose profiles were perturbed such that these genes can be considered noise. This

abridged version of the Zhou dataset is studied here as it combines the complexity

of real data with a simplified noise structure. The distinct grouping patterns

and the availability of information about the involved clustered genes make the

clustering result easier to evaluate. The second dataset [IDL06] (Ivanova dataset)

consists of 45,264 gene expression profiles generated under different treatments in

mouse ES cells across 70 experimental conditions. While gauging the behavior

of ISSPC on clean, noncomplex data with the first dataset, we chose the second

dataset for testing its ability to handle a full, noisy gene expression dataset.

3.4.1 Results for the Zhou dataset

The Zhou dataset was run with η = 5 and the subsample size ν = 5
√
n = 380

as the full data size was relatively small. If ISSPC is applied to the Zhou data

without the trimming as per Section 3.2.3, then only the two largest Oct4+ and

Oct4− clusters are found with just 4 random genes incorrectly included in these
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Table 3.1: Top GO terms enriched in the small cluster shown in Figure 3.6d

GO term

% in

clus-

ter

% in

full

set

P-value FDR(%)

olfactory bulb development 3.7 0.5 1.2×10−5 0.0

olfactory lobe development 3.7 0.5 1.2×10−5 0.0

negative regulation of Wnt signaling path-

way
6.2 1.5 4.7×10−5 2.7

embryonic organ morphogenesis 8.7 3.2 2.7×10−4 7.0

central nervous system development 13.0 6.2 4.6×10−4 7.2

regulation of Wnt signaling pathway 7.5 2.7 6.9×10−4 10.0

clusters and 174 Oct4 genes erroneously excluded as random. We then applied

10% trimming and obtained five clusters with distinct grouping patterns as shown

in Figure 3.6 in under a minute of run time. The two largest clusters in Figure 3.6a

and Figure 3.6c recover the large Oct4+ and Oct4− groups, respectively. There

were 10 misclassified random genes and 138 misclassified Oct4 genes in these two

clusters. The other three clusters (Figures 3.6b, 3.6d, and 3.6e) are relatively

small and are seen to have some subtle differences in expression patterns from the

two big clusters. To check whether these clusters are functionally distinct from

the Oct4+ and Oct− groups, we performed Gene Ontology (GO) term enrichment

analysis and compared the three small clusters to the full set of Oct4+ or Oct4−

genes. We found that the small cluster in Figure 3.6d had several significant

terms with an FDR between 0% and 10% (Table 3.1), confirming that genes in

this cluster are indeed involved in distinct biological processes.

Although the two clusters in Figures 3.6b and 3.6e did not have any GO terms

with FDR < 10%, it can be clearly seen from the figures that they both have

distinct expression patterns from the other clusters. Compared to all the other
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(a) 1, 120 genes (b) 159 genes

(c) 1, 095 genes (d) 164 genes (e) 102 genes

Figure 3.6: Five clusters obtained from the Zhou dataset. The caption of each

plot indicates the size of the cluster. The experimental conditions 1-16 are lo-

cated along the x-axis. Blue color indicates low expression and red indicates high

expression.
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clusters, the cluster in Figure 3.6b has much lower expression levels in the first

three conditions and somewhat higher levels in conditions 6-8 compared to the

large Oct4+ cluster in Figure 3.6a. The cluster in Figure 3.6e has a particularly

high expression pattern across conditions 9-11. Detecting such heterogeneity may

be useful for novel findings from a big dataset.

3.4.2 Results for the Ivanova dataset

The gene expression data in [IDL06] were generated under retinoid acid (RA)

induction, a control condition, and the knockdown experiments of seven tran-

scription factors (Oct4, Nanog, Sox2, Esrrb, Tbx3, Tcl1 and Mm343880) over

approximately eight days to explore the mechanisms of self-renewal and differen-

tiation of mouse ES cells. The study in [IDL06] clustered 3,109 genes, and another

study in [MFP09] clustered about 17,000 genes from this dataset. We attempt to

cluster the full dataset of 45,264 genes without any filtering to identify more poten-

tial patterns. The ISSPC algorithm was applied with η = 15, 20% trimming, and

subsample size ν = 2
√
n = 425. We obtained 13 clusters of various sizes, depicted

in Figure 3.7, and identified a total of about 15,000 genes as noise. Hereafter, we

characterize a cluster from this dataset as condition-high or condition-low. For

example, if a cluster is described as Oct4-high, then it means that genes in this

cluster have high expression in the Oct4 knockdown condition. Overall, the ob-

tained clusters display four main distinct expression patterns: high expression in

Oct4 knockdown in Figure 3.7a, high expression in the control condition (H1P) in

Figure 3.7b, low expression in Oct4 knockdown in Figures 3.7c-3.7h, and low ex-

pression in H1P in Figures 3.7i-3.7m. While the first two patterns are represented

by two large clusters of sizes approximately 6,800 and 6,100 genes, respectively,

each of the latter two is separated into one big cluster of size > 6, 000 and a few

smaller groupings. We again turn to GO term enrichment analysis to determine

whether the clusters, particularly the small clusters with low expression in Oct4
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knockdown, contain any biologically relevant genes.

GO term enrichment analysis indicates that all of the discovered clusters are in

fact biologically relevant, containing genes enriched in both function and process

categories. All of the clusters, however, shared many broad terms such as “bind-

ing” or “cellular process” with a large number of genes involved in these high-level

functions and processes, and thus, we report only top unique GO terms in each

cluster. The large H1P-low cluster in Figure 3.7i as well as any of the smaller

H1P-low clusters in Figures 3.7j-3.7m did not have any unique GO terms asso-

ciated with them. The H1P-high cluster in Figure 3.7b contained approximately

one third of the genes in the “unannotated” process and function categories with

P = 4.8 × 10−24 and FDR ≈ 6%, which means that the role of these genes have

not yet been annotated and/or not yet determined. The six significant unique

GO terms for the Oct4-high and -low clusters are presented in Table 3.2.

All of the small Oct-low clusters (Figures 3.7d-3.7h) have markedly evident

expression differences from the big Oct4-low cluster of Figure 3.7c. Four out of

the five small Oct4-low clusters were enriched for multiple unique GO terms with

FDR< 5%, mostly in the process ontology, confirming that these small clusters are

biologically relevant and might have some distinct biological roles. Some examples

of the significant unique GO terms of these clusters included reproductive system

development, heart development, and cell cycle phase transition. The associated

unique significant GO terms are provided in Table 3.3 and Table 3.4. Among

these small Oct4-low clusters the one in Figure 3.7e is particularly interesting.

In addition to low expression when Oct4 is knocked down, this cluster shows

a high expression pattern in Sox2 knockdown, using the expression level in the

control condition (H1P) as a reference. Thus, the two transcription factors, Oct4

and Sox2, regulate the genes in this cluster in an opposite way. This finding is in

sharp contrast to the established co-regulation roles between Oct4 and Sox2 in ES

cells ([ZCM07] and references therein), often regulating genes in a coordinated way
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Table 3.2: Top unique GO terms enriched in the two clusters from Figure 3.7a

and Figure 3.7c

cluster GO term

% in

clus-

ter

% in

full

set

P-value FDR(%)

3.7a regulation of localization 13.2 8.3 9.2×10−47 0.0

regulation of transport 10.1 6.1 7.2×10−41 0.0

cell surface receptor signaling pathway 15.3 10.4 2.7×10−39 0.0

receptor binding 9.5 5.7 1.3×10−38 0.0

receptor activity 7.4 4.6 2.2×10−27 1.6

signal transducer activity 7.8 4.9 1.1×10−26 1.3

3.7c
cellular response to DNA damage stim-

ulus
5.1 2.7 2.9×10−28 0.1

cellular macromolecular complex as-

sembly
4.6 2.5 1.0×10−23 0.3

mitochondrion organization 2.8 1.3 1.5×10−22 0.4

structural constituent of ribosome 2.1 0.5 9.1×10−48 0.0

hydrolase activity 14.7 10.3 2.3×10−29 0.1

hydrolase activity, acting on acid anhy-

drides
5.6 3.1 8.1×10−27 0.4
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(a) 6,823 genes (b) 6,116 genes

(c) 6,409 genes (d) 250 genes (e) 285 genes

(f) 188 genes (g) 498 genes (h) 216 genes

(i) 6,093 genes (j) 210 genes (k) 1,235 genes

(l) 765 genes (m) 339 genes

Figure 3.7: Clusters obtained from the Ivanova dataset. From left to right

the experimental conditions are labeled as RA, Esrrb, control condition (H1P),

Mm343880, Nanog, Oct4, Sox2, Tbx3, Tcl1.
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Table 3.3: Top unique GO terms enriched in the small low Oct4 clusters from

Figures 3.7e and 3.7f

cluster GO term

% in

clus-

ter

%

in

full

set

P-value FDR(%)

3.7e placenta development 4.7 0.7 5.9×10−8 0.0

embryonic placenta development 4.0 0.5 7.7×10−8 0.0

reproductive structure development 7.2 1.8 1.9×10−7 0.0

reproductive system development 7.2 1.8 2.2×10−7 0.0

cytoskeleton organization 11.2 4.0 2.6×10−7 0.2

hydro-lyase activity 2.2 0.3 1.1×10−4 5.0

bombesin receptor binding 0.7 0.0 1.7×10−4 5.0

TAP binding 1.1 0.0 1.7×10−4 4.7

3.7f
regulation of G1/S transition of mitotic cell

cycle
3.9 0.4 3.2×10−6 0.0

regulation of cell cycle G1/S phase transition 3.9 0.4 3.4×10−6 0.0

positive regulation of G1/S transition of mi-

totic cell cycle
2.2 0.1 1.3×10−5 0.1

positive regulation of mitotic cell cycle phase

transition
2.8 0.2 1.4×10−5 0.1

positive regulation of cell cycle phase transi-

tion
2.8 0.2 1.8×10−5 0.1

poly(A) binding 2.2 0.1 6.0×10−6 0.2

poly-purine tract binding 2.2 0.1 1.7×10−5 0.2

mRNA binding 3.9 0.5 4.0×10−5 0.6

single-stranded RNA binding 2.8 0.2 6.7×10−5 1.0

heat shock protein binding 2.8 0.3 3.2×10−4 4.0

NOTE: Tabulated are the top five unique GO terms from the process (top) and the function

(bottom) ontology. The number in the first column refers to the cluster represented in each

subplot in Figure 3.7.
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by binding to adjacent DNA sites [MPZ10]. This cluster was uniquely enriched

for genes responsible for reproductive system development. Another class of GO

terms that were significant for this cluster can be classified as relating to cardiac

and heart system development, all with P ≤ 5.1× 10−4 and FDR < 5%.

It appears that none of the H1P-low clusters, including the largest one in

Figure 3.7i, contained any unique GO terms, and moreover, none of the small H1P-

low clusters were enriched for genes with a significant GO terms when compared to

the big H1P-low cluster. It is possible that these clusters are a result of splitting as

experienced with the non-spherical simulated data. Gene expression data usually

contain clusters with a correlated structure, and splitting might be compounded

due to a high degree of trimming for this particular cluster. As a result, splitting of

some big clusters might be the price of discovering tight clusters in such a dataset.

Fortunately, split clusters can be easily detected and merged, especially given a

reasonably small number of them. A possible remedy is to decrease the amount

of trimming. For example, if 10% trimming is applied to the clusters before the

sequential assignment step, then 8 clusters will be obtained with the four largest

clusters preserved. The other small clusters include one with the same pattern as

in Figure 3.7h, one similar to that in Figure 3.7g, and two small H1P-low clusters

instead of four. The smaller amount of trimming thus created larger clusters with

less splitting, but some special patterns were not extracted from the big Oct4-low

cluster.

The Ivanova dataset has shown that ISSPC is able to obtain previously un-

seen clusters that have meaningful biological functions. Moreover, some of the

obtained clusters were very small, of sizes between 200 and 500. These small

clusters were extracted from a dataset of over 45,000 genes along with clusters of

size approximately 6,000, demonstrating the ability of ISSPC to find tight clus-

ters with very small subsamples. These results were achieved in about 30 minutes

of computational time and would not be computationally feasible with the orig-
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Table 3.4: Top unique GO terms enriched in the small low Oct4 clusters from

Figures 3.7g and 3.7h

cluster GO term

% in

clus-

ter

%

in

full

set

P-value FDR(%)

3.7g reproduction 9.4 3.6 7.8×10−9 0.0

multi-organism reproductive process 8.3 3.2 4.6×10−8 0.0

single organism reproductive process 9.8 4.2 6.7×10−8 0.1

sexual reproduction 7.5 2.8 1.1×10−7 0.2

gamete generation 6.4 2.2 1.3×10−7 0.2

protein domain specific binding 6.8 2.9 9.9×10−6 2.1

3.7h DNA duplex unwinding 2.4 0.2 2.3×10−5 0.7

DNA geometric change 2.4 0.2 2.6×10−5 0.8

regulation of cellular component biogenesis 7.1 2.1 4.7×10−5 1.4

regulation of lamellipodium assembly 1.9 0.1 4.9×10−5 1.4

response to ionizing radiation 3.3 0.5 7.4×10−5 2.2

DNA helicase activity 3.8 0.2 2.5×10−8 0.0

transcription regulatory region DNA binding 10 2.4 4.3×10−8 0.0

regulatory region DNA binding 10 2.4 5.4×10−8 0.0

regulatory region nucleic acid binding 10 2.4 5.4×10−8 0.0

ATP-dependent DNA helicase activity 3.3 0.2 1.2×10−7 0.0

NOTE: Tabulated are the top five unique GO terms from the process (top) and the function

(bottom) ontology. The number in the first column refers to the cluster represented in each

subplot in Figure 3.7.

inal SPC algorithm or other clustering algorithms with time complexity O(n2).

The computational savings of the iterative subsampling approach make it feasi-

ble to explore this dataset even further by varying the degree of trimming or the
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dimension number cutoff η and to discover more interesting patterns.

3.5 Discussion

We believe that ISSPC is a very promising approach to clustering as it allows us to

perform computation with a relatively low trade off between speed and accuracy.

It can successfully cluster large datasets in a reasonable amount of time. Such

large datasets would otherwise require either filtering or some other preprocessing,

which could potentially remove valuable data points. Gene expression datasets,

for instance, are typically filtered based on coefficient of variation, and the genes

that do not make a certain coefficient of variation cutoff are removed. Thus, some

genes that do in fact carry patterns in their expression profiles and play a role in

certain biological functions can be lost, which could confound the analysis. We

have shown that ISSPC is able to produce good results with real data. Moreover,

it generates a solution without the prior knowledge of the number of clusters and

is able to effectively separate noise.

The ISSPC algorithm requires some fine tuning, which involves the dimension

number cutoff η, the trimming percentage, and the subsample size ν. The so-

lution can be sensitive to each of these tuning parameters. The computational

savings, however, make it possible to quickly rerun a dataset with various values

of these parameters. Additionally, in light of the problem of split clusters, espe-

cially with trimming, it is possible to address and introduce a merging step after

the recursions are terminated. Such a merging step would make it easier for the

user to interpret the clustering result and can potentially help with separating

overlapping versus truly homogeneous clusters.

Iterative subsampling with sequential assignment can be applied generally to

accelerate any advanced clustering method that has inferior time complexity, such

as mclust, PWK-means [Tse07], convex clustering [CL13], or PRclust [PSL13].
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However, the clustering mechanism at the center of the iterative subsampling ap-

proach would need to be able to estimate the number of clusters or provide a

solution path as well as be able to isolate noisy data points. The simplicity of

implementation and easy intuition alongside the orders of magnitude of compu-

tational savings could present further appeal of this methodology for big data

applications.
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CHAPTER 4

Conclusions and Future Work

In this dissertation we formulated and implemented a new clustering method SPC

that uses a penalty on pairwise distances between the cluster centers to achieve

greater degrees of sparsity and the merging of the cluster centers. The output of

this clustering method is a short solution path, where each solution contains the

cluster assignments for the data points and the estimated number of clusters. Since

it is known that penalization can produce considerably biased estimates, which

is particularly undesirable for clustering, we use the minimax concave penalty

[Zha10] that has an explicit concavity parameter along with the regularization

degree parameter. We control the bias directly through this concavity parame-

ter when such bias becomes too high. Both the regularization and the concavity

parameters are chosen in a data-driven way for each solution. Moreover, in each

solution we determine which data points belong to noise by simply thresholding

those clusters that have a very small size, e.g. Nk ≤ 3. To accelerate this method

and to allow it to handle big noisy data we introduce a simple iterative subsam-

pling approach ISSPC with sequential cluster assignment, similar to discriminant

analysis. This proves to save orders of magnitude of computation time and to

largely preserve accuracy of the clustering partition. Simulated and real data

studies further provide evidence of usefulness of this method.

In this dissertation we propose to use a fast and simple solution selection

method as proposed in [FZ13] . However, we believe that a more rigorous investi-

gation of the solution selection problem can be undertaken in the future. Solution
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selection does not need to be limited to choosing a particular solution from a

solution path, but it can be approached as a node selection problem in a directed

graph. A directed graph can be created from all the clusters across the whole

solution path since it contains gradually merging clusters. Some rule could be

created to choose particular nodes represented by clusters. For example, p-values

or FDR from gene ontology analysis could be such a selection criterion for gene

expression data.

Another interesting direction for future work is simultaneous feature selec-

tion. So far we have focused on clustering data points yi by taking into account

all of the dimensions or variables. It has been noted, however, that simultane-

ous identification of the so-called informative features or variables, especially for

high-dimensional low-sample data, can enhance the clustering results and make

interpretability much easier. Traditional approaches that separate variable selec-

tion and clustering, such as dimension reduction by PCA prior to clustering of the

reduced space, can also destroy the original structure of the data and distort the

result [PS07, WZ08, WT10]. A number of regularization approaches have been

proposed to perform penalized log-likelihood clustering by imposing sparsity on

the cluster mean parameters µk, k = 1, . . . , K, where K is the number of clusters.

The first such penalization method proposed in [PS07] applied the `1 penalty to all

the mean parameters µkm for k = 1, . . . , K and m = 1, . . . , p, with p as a number

of variables. Subsequently developed methods improved variable selection results

by extending a group parameter penalty idea of group lasso regression [YL06] to

the clustering problem. For example, the group penalty in [WZ08] is a weighted

`∞ regularization of the mean parameters µkm, and [XPS08] uses the `2 penalty

for “vertical” (variable selection) and “horizontal” (addition of some prior knowl-

edge about dimension groups) mean parameters. The idea behind these types of

penalties is that they can shrink the mean parameters towards 0 if the data is cen-

tered to have the global mean 0 at each dimension, and thus they can distinguish
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which variables are not informative for clustering. If the mean is not 0, then the

mean parameters can be re-parameterized as a sum of some global mean φm and

a local mean ξkm, and the shrinkage can be performed towards the global mean

[PS07]. Another method for variable selection suggests a pairwise fusion penalty

or an `1 penalty on the difference between µkm’s for each pair of clusters, which

can shrink some cluster means to a common value [GLM10]. All of the above

mentioned methods rely on the EM algorithm to estimate the mean parameters,

which requires the input of the number of clusters.

We have attempted to introduce simultaneous feature selection through an

additional penalty on the cluster centers µk, similarly to the previously discussed

methods; however, even though the minimizer could be derived in closed form, the

resulting algorithm proved to be particularly slow, due its need to cycle through

not only all the cluster centers but also all the dimensions. Consequently, we

think that feature selection could be implemented in an easier and faster way

through multiple comparison analysis of variance (ANOVA). For each cluster with

size Nk > 3 and for each dimension m, we can compute the test statistic as

Fkm =
∑

k Nk(ȳkm−ȳm)2/(Nk−1)∑
k

∑
i∈Ck

(yim−ȳkm)2/(n−K)
, where ȳm is the overall mean for dimension m,

and ȳkm is the mean for cluster k in dimension m. P-values can then be calculated

based on the F -distribution with Nk−1 and n−K degrees of freedom. Finally, the

Benjamini-Hochberg procedure can be applied and only those dimensions chosen

to be relevant, where FDR ≥ β, for some cutoff β. Such procedure can be repeated

after each SPC solution and the irrelevant dimensions removed for the subsequent

set of SPC iterations.

Another possible future research direction related to this work is the gen-

eralization of the model in (2.1) to impose additional sparsity in the difference

between µ0, the mean of the null cluster C0 that is described in Section 3.2.1, and

µk’s. This will introduce an additional penalty parameter λ0, and to match the

two penalties, we can choose λ0 = nλ since the size of the null cluster is close
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to n. The minimization problem (2.5) could then be easily reformulated and the

same MM algorithm used to compute the solutions. Such sparsity in the null

cluster distances could be useful in situations when a large majority (around 80-

90%) of data does not show any grouping pattern. Handling noisy observations

in an efficient manner could make the original SPC method considerably faster

computationally and more convenient to the user.

Finally, we have not yet fully explored the theoretical properties of the es-

timator resulting from our method. Based on our very preliminary analysis, it

seems that establishing the consistency of our method might be very technical

and would require a substantial amount of additional work. As the main focus of

this dissertation is on the practical side of this method, we plan to postpone these

interesting and challenging theoretical topics to the future.
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