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Abstract 

Many category learning experiments use supervised learning 
(i.e., trial-by-trial feedback). Most of those procedures use 
deterministic feedback, teaching participants to classify 
exemplars into consistent categories (i.e., the stimulus i is 
always classified in category k). Though some researchers 
suggest that natural learning conditions are more likely to be 
inconsistent, the literature using probabilistic feedback in 
category learning experiments is sparse. Our analysis of the 
literature suggests that part of the reason for this sparsity is a 
relative lack of flexibility of current paradigms and procedures 
for designing probabilistic feedback experiments. The work we 
report here offers a novel paradigm (the Probabilistic Prototype 
Distortion task) which allows researchers greater flexibility 
when creating experiments with different p(category|feature) 
probabilities, and also allows parametrically manipulating the 
amount of randomness in an experimental task. In the current 
work, we offer a detailed procedure, implementation, 
experimental results and discussion of this novel procedure. 
Our results suggest that by designing experiments with our 
procedures, the experimental setup allows subjects to achieve 
the desired classification performance.  

Keywords: Category learning; Probabilistic feedback; 
Perceptual categorization; Experimental designs 

Introduction 

In the current work we present a method to develop category 

learning experiments with probabilistic feedback, allowing a 

researcher to flexibly stipulate category to feature association 

strengths, and at the same time easily controlling category to 

whole exemplar (i.e., feature combination) association. In the 

reported experiment, we use our method to train subjects, and 

show that participants learn as predicted, suggesting that the 

method is apt to be used on almost any category learning task 

with probabilistic feedback. 

In category learning, a common procedure is to create 

stimuli by combining binary valued features. In general, with 

n features, it is possible to create 2n stimuli spanning all 

possible feature combinations (see, Ashby & Valentin, 2018). 

Each stimulus or exemplar is thus a particular combination of 

features in one of their two possible states (Posner & Keele, 

1968; Reed, 1972). In category learning experiments, 

participants are typically trained with all possible stimuli (but 

sometimes only with a subset; Medin & Schaffer, 1978). 

They may learn that certain combinations are members of 

category A and others are not (A not-A task), or that certain 

combinations are members of category A and others of 

category B (A or B task). After training, subjects are tested 

for classification performance (though other dependent 

variables are also possible). In most cases, subjects are 

provided with corrective feedback during training. 

The most common type of feedback in category learning 

experiments is deterministic feedback (DF; Ashby & Ell, 

2001; Nosofsky, Palmeri, & McKinley, 1994). In DF, each 

feature combination is always member of one of the 

categories. Consequently, subjects’ performance increases 

during training towards some asymptotic performance level. 

Probabilistic feedback (PF) has been used much less 

frequently (Ashby & Gott, 1988; Gluck & Bower, 1988; 

Knowlton, Squire & Gluck, 1994; Little & Lewandowsky, 

2009; Meeter, Radics, Gluck, & Hopkins, 2008). In PF, each 

feature combination belongs to a category with a probability 

less than 1.0. 

The justification for the current work is twofold. First, it is 

likely that natural learning conditions integrate feedback 

from different sources, hence PF may be more representative 

of natural learning environments (Little & Lewandowsky, 

2009; Meeter, et al., 2008; Lagnado, Newell, Kahan, & 

Shanks, 2006). DF assumes a perfect teacher, and natural 

conditions are probably more like PF, where the teaching 

signal may be inconsistent (e.g., an unprecise teacher). 

Second, at least some empirical findings in category learning 

may be conditional on DF. For example, inter-feature 

correlations have for a long time been considered an 

important part of conceptual representations (Hoffman & 

Rehder, 2010; Ell, Smith, Peralta & Hélie, 2017). It is 

generally accepted that subjects in category learning 

experiments tend not to learn inter-feature correlations. For 

inter-feature correlations to be learned, inference tasks have 

to be used (Chin-Parker & Ross, 2002; Yamauchi, Love & 

Markman, 2002). However, when PF has been used with 

classification procedures, evidence has been found that 

subjects do learn inter-feature correlations (Little & 

Lewandowsky, 2009). Consequently, it is possible that 

categorization phenomena being uncovered by using DF fail 

to generalize under PF conditions. Given these concerns, PF 

should be used more broadly. 
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We suspect that the relative lack of research in category 

learning that uses PF is due to difficulties that researchers 

might experience if attempting to design PF experiments. By 

looking at the Little and Lewandowsky (2009) experiments, 

it is apparent that they took their DF condition and turned it 

into a PF condition by simply changing the probabilities of 

each exemplar or feature combination. In contrast to using 

probabilities 1 and 0, in their PF conditions a feature 

combination belonging to category A with p(A) = .75, 

belonged to category B with p(B) = .25. The main problem 

with the Little and Lewandowsky procedures is that they 

allow little flexibility when designing experiments. Basically, 

probabilities are assigned to complete feature combinations, 

and individual feature probabilities are only derived. For 

experimental control, one would want a procedure that can 

flexibly combine feature probability choices with whole 

stimulus probabilities. 

A procedure that could be used for giving PF is the Weather 

Prediction Task (WP; Knowlton, Squire, & Gluck, 1994; 

Gluck, Shohamy, & Myers, 2002). In the WP task, subjects 

are presented with combinations of playing cards similar to 

those of the Wisconsin Card Sorting Test (Monchi, Petrides, 

Petre, Worsley, & Dagher, 2001), and they have to learn to 

use them to predict the weather (i.e., rain or sun). During 

training, subjects are presented with combinations of cards 

(i.e., 1, 2, 3 or 4 cards). Problematically, to compute the 

probability of the outcome (i.e., rain) given each individual 

card, a very specific set of card combinations and of outcome 

probabilities have to be chosen. As in the Little and 

Lewandowsky procedures, here too there is little flexibility 

for researchers to select different cue probabilities. That 

many researchers continue to use the same probabilities used 

in the original Knowlton, Squire, and Gluck (1994) paper, 

attests to the paradigm’s lack of flexibility in allowing the 

generation of stimuli with different probability patterns 

(Gluck, et al., 2002; Meeter, et al., 2008; Meeter, Myers, 

Shohamy, Hopkins, & Gluck, 2006). 

The issue of how to design experiments with PF is what 

motivates the current work. In what follows, we present a 

novel way of designing PF category learning experiments, 

which can be flexibly used to determine p(category|feature), 

and to easily compute the probability of feature combinations 

(i.e., p(category|feature combination)). The method also 

allows introducing biases for a given category, and to create 

stimuli that gradually move from completely random to fully 

deterministic. Though we don’t explore this issue in the 

current work, our novel procedures will allow researchers to 

study inter-feature relations if they wish to introduce them in 

their task. In the experiment we report, we show that the 

method allows participants to learn feature weights that are 

consistent with the relative informativeness of the features 

predicting category outcome. For reasons that will become 

clear shortly, we call this paradigm the Probabilistic 

Prototype Distortion task (PPD). 

Method 

Participants 

Thirty-six undergraduate students (27 females) aged 18 to 37 

(mean = 20.11, SD = 3.21), signed informed consent to 

participate in the experiment for course credit. Participants 

were randomly assigned to one of the three experimental 

conditions (AB, BC and CA, twelve participants in each 

condition). The experiment lasted approximately 30 minutes.  

Design 

We set up a 3 (condition: AB, BC and CA) x 3 (feature 

coefficient: A, B and C) mixed design experiment, with the 

last being a within-subjects factor. The Probabilistic 

Prototype Distortion task (PPD) is a mixture of classical 

prototype distortion tasks (Posner & Keele, 1968; Casale & 

Ashby, 2008) with probabilistic feedback. As discussed in the 

introductory section, there are some probabilistic 

classification procedures (e.g., Knowlton, Mangels, & Squire 

1996; Gluck, Shohamy, & Myers, 2002; Little & 

Lewandowsky, 2009; Kruschke & Johansen, 1999), but they 

are hard to implement flexibly. To the best of our knowledge, 

there is no current procedure that allows flexibly combining 

feature probabilities (i.e., p(category|feature)) with overall 

feature combination probability (i.e., p(category|feature 

combination)).  

The PPD assumes an “A-B” prototype procedure, though 

other procedures like “A-not A” or Inference are also 

possible. As any other prototype distortion task, two 

prototypical categories are created: A and B. As it will be 

clear next, our stimuli are composed of three features that 

have binary values (1 or -1). Category A prototype is defined 

by the “111” combination and category B prototype is 

defined by the “-1-1-1” feature combination. Using effect 

coding (see Table 1), we combined every possible feature-

state to obtain a total of 8 exemplars (23 = 8).  

 

Table 1:  Effect coding for every binary valued feature (f1, 

f2 and f3) and every exemplar combination. 

 

Exemplar f1 f2 f3 

E1 1 1 1 

E2 1 1 -1 

E3 1 -1 1 

E4 1 -1 -1 

E5 -1 1 1 

E6 -1 1 -1 

E7 -1 -1 1 

E8 -1 -1 -1 

 

What is novel in our procedure is the use of the logistic 

regression equation to assign probabilities to exemplars. 

Using logistic regression, where each feature has an 

individual feature-weight, we can define an overall exemplar 

probability for each feature combination where 

p(category|feature combination) can be computed as shown 

in eq. (1). 
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𝑝 = 1
1 + 𝑒−𝑐(𝛽0+𝛽1𝑓1+𝛽2𝑓2+𝛽3𝑓3)
⁄  (1) 

 

where, c is a sensibility parameter, B0 is the constant on the 

equation and B1, B2, and B3 are feature-weights. We created 

three different conditions (AB, BC and CA) that differentially 

weighted features in each specific feature combination. For 

example, in condition AB, feature A (f1) is the most 

diagnostic feature (weight = 2.5), whereas feature B (f2) 

contributes less to the classification probability (weight = 1), 

and finally feature C (f3) has no diagnosticity at all (weight = 

0). This same logic is applied to the other two conditions (BC 

and CA). Feature-weights for each condition are shown in 

Table 2.  By using eq. (1) and the experimenter-specified 

feature weights, probabilities for each exemplar (i.e., feature 

combination) can be easily computed (see Table 3). 

 

 

Table 2: Individual feature-weights (Bi) for each 

condition. 

 

feature Condition 

AB 

Condition 

BC 

Condition 

CA 

(A)f1 2.5 0 1 

(B)f2 1 2.5 0 

(C)f3 0 1 2.5 

 

Table 3: Classification probability to category A for each 

condition by every exemplar using eq. (1). Classification 

probability to category B is 1 - p(A). These probabilities can 

be used to guide how probabilistic feedback is provided (see 

text for details). 

 

Exemplar Condition 

AB p(A) 

Condition 

BC p(A) 

Condition 

CA p(A) 

E1 0.9 0.9 0.9 

E2 0.9 0.7 0.3 

E3 0.7 0.3 0.9 

E4 0.7 0.1 0.3 

E5 0.3 0.9 0.7 

E6 0.3 0.7 0.1 

E7 0.1 0.3 0.7 

E8 0.1 0.1 0.1 

 

Finally, we used Luce’s axiom (1962) to calculate 

individual feature diagnosticity (see eq. (2)). Accordingly, a 

feature-weight equal to 2.5 has a diagnosticity of .77, a 

feature-weight equal to 1 has a diagnosticity of .59 and 

feature-weight equal to 0 has a diagnosticity of .5. 

 

𝑝(𝐴|𝑓) =
𝐿𝐴(𝑓)

[𝐿𝐴(𝑓) + 𝐿𝐵(𝑓)]
 

(2) 

 

Importantly, exemplar probabilities in Table 3 specify how 

feedback is to be provided. A 0.9 probability in Table 3 tells 

the researcher that, e.g., exemplar E1 will be a member of 

category A on 90% of the trials and of category B in the 

remaining 10% of trials. This means that even if subjects have 

learned that exemplar E1 is most probably a member of 

category A, they will continue receiving corrective feedback 

on 10% of those trials in which exemplar E1 has to be 

classified. Additionally, this procedure allows that each 

individual feature is experienced in association with each 

category as specified in Table 2 and the corresponding feature 

diagnosticities. To set up any similar experiment, all the 

researcher needs to do is to specify the feature weights. 

Because the probabilistic nature of the task, perfect 

performance is impossible. Optimal performance is near 

77%. This means that optimal classification performance 

would be possible if subjects only use the feature weighted 

equal to 2.5 and completely ignore the other two. As will 

become clear in what follows, our data analysis methods 

allowed us to test whether subjects in our experiment resorted 

to such a rule or learned the specified feature weights instead. 

Materials and procedures 

We created two prototypical ceremonial symbols, similar to 

those used in Hoffman and Rehder (2010) and in Rehder, 

Colner, and Hoffman (2009). Ceremonial symbols are 

composed of three circles (each covering 9.62 cm2 on the 

screen). Each of them encloses one of the two possible 

symbols (see Fig. 1). Each category prototype had a particular 

symbol combination. Circles remained in the same location 

throughout the task, and the binary-valued symbols were 

exclusive to each circle. The experiment was built using 

PsychoPy v3 and mounted online through the Pavlovia 

environment (Peirce, Gray, Simpson, MacAskill, 

Höchenberger, Sogo, Kastman, & Lindelov, 2019). 

 

 

Figure 1. Complete experiment set-up. (A) Prototype 

ceremonial symbol for Family Z. (B) Prototype ceremonial 

symbol for Family M. Note that other exemplars are created 

by distorting these two prototypes. (C) Experimental 

procedure, which is composed of two phases: Training (240 

trials) and Transfer (8 trials). 
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As with any prototype distortion task, the PPD involves 

two phases: Training and Transfer (Fig. 1C). During training, 

people had to classify if the presented exemplar belonged into 

one of the two possible categories: Family Z (Fig. 1A) and 

Family M (Fig. 1B). People had to press the keyboard letter 

Z if they believed that the exemplar belonged to Family Z or 

press letter M if they believed it belonged to Family M. 

During training, trial-by-trial feedback was provided. For 

correct responses, a green “correct” word appeared on screen 

for 1500 ms. For incorrect responses, a red “incorrect” word 

was presented. Subjects had only 30 seconds to press a 

button, otherwise a “too slow” message appeared on screen. 

Training phase was composed of 3 blocks with 80 trials each, 

for a total of 240 trials. After subjects completed training, 

they were moved to the transfer phase. In transfer, subjects 

had to rate the eight possible exemplars using a similarity 

scale. The scale ranged from 1 (more similar to Family Z) to 

8 (more similar to family M), without a middle point. Each 

exemplar was rated only once. However other procedures like 

generalization and category membership ratings are also 

possible as means of ascertaining what is it that subjects 

learned during training. 

Results 

 

Training results: Results of the training phase revealed that 

participants in condition AB achieve a mean accuracy of .58 

(SD=.06), .63 in condition BC (SD = .08) and .62 in condition 

CA (SD=.07). In none of the conditions did subjects approach 

optimal performance, nor did they show signs of using the 

most diagnostic feature as a rule for classification (see design 

section). This is likely to be the result of the PF procedure, as 

will be discussed below. A factorial 3 (conditions: AB, BC, 

CA) x 3 (blocks) design with the last being the repeated 

measure factor, revealed a main effect of block 

(F(2,66)=9.55, MSe=.05, p<.001, 𝜂p
2=.22, power=.98), and a 

non-significant interaction between block and condition 

(p>.05). These results suggest that there was a learning effect 

across blocks in every condition. Contrast comparisons 

revealed a significant difference between block 1 and block 

2 (F(1,33)=9.99, MSe=.12, p=.003, 𝜂p
2=.23, power=.87) and 

a non-significant difference between block 2 and block 3 

(p>.05). This suggests that in the three conditions learning 

occurred primarily from block 1 to 2, and it does not appear 

further changes in learning occurred from block 2 to 3 (see 

Fig. 2). 

Additionally, we compared our classification predictions 

given by eq. (1) with training accuracy. We averaged 

accuracy in block 3 for every exemplar in each condition. As 

the analysis above reveals, most of the subjects had learned 

the classification criterion by block 3. Because we wanted to 

compare two linear trajectories (the predicted and the 

observed), we directly estimated the R2 between the observed 

and predicted responses (based on the average observed vs. 

predicted probability for each exemplar). As Fig. 3 shows, 

there is a clear tendency for subjects in every condition to 

learn the exemplar classification probability. In general, 

fittings are fairly good (for condition AB R2=.90, for 

condition BC R2=.97, and for condition CA R2=.89). We 

suspect that a higher number of training blocks would lead to 

a significant increase in model fittings. As will be discussed 

shortly, our results show that by providing PF as our 

experiment illustrates, subjects are able to learn to classify 

close to what eq. (1) stipulates. This suggests that our 

procedures could in fact be used to flexibly design PF 

experiments by fixing desired p(category|feature) 

probabilities and easily deriving other corresponding values 

of interest from that starting point. 

 

Figure 2. Classification probability of category A (Family Z) given each specific exemplar combination across blocks, 

showing that for each condition (AB, BC and CA) subjects approximately learned individual exemplars’ p(A). A closer 

look to E8 shows that this exemplar is clearly classified in category B (1 - p(A)).  
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Analyzing transfer data 

For transfer data we implemented individualized multiple 

regressions (similar to Rehder & Hastie, 2001). This method 

has been used in studies of conceptual representation (Puebla 

& Chaigneau, 2014; Rehder, 2003) and allows obtaining the 

relative feature weight implied in a set of category 

membership or similarity ratings. To implement 

individualized multiple regression on transfer data, we do as 

follows: First, similarity ratings were collected, as described 

in the Materials and Procedure section. Second, we used as 

predictors the effect coding shown in Table 1. Using these 

values as predictors in a regression equation allows us to 

predict a participant’s similarity ratings. Essentially, this is 

possible because during transfer participants rate all possible 

feature combinations, and because these features are by 

design independent from each other (i.e., across exemplars, 

features are uncorrelated). Because individualized regression 

equations yield coefficients for single properties, these 

regression coefficients can then be used as individual data 

points reflecting, across participants, the contribution of each 

predictor variable to the ratings. Furthermore, the distribution 

of coefficients across participants can then be submitted to 

significance tests. 

 

Transfer results: For the transfer phase we implemented the 

individualized regression method explained above. A 

repeated measure 3 (condition: AB, BC, CA) x 3 (feature-

coefficient: A, B, C) mixed ANOVA, with the last being the 

repeated measure factor revealed a non-significant main 

effect of feature-coefficient (F(2,66)=2.91, MSe= 3.1, p=.06, 

𝜂p
2=.08, power=.55), but a significant interaction 

(F(4,66)=10.36, MSe=11.02, p<.001, 𝜂p
2=.39, power=.99). 

To follow up on this significant interaction we performed 

one-way ANOVAs with feature-coefficients as dependent 

variables. The ANOVAs revealed a significant difference for 

feature-coefficient A (F(2,33)=6.33, MSe=5.97, p=.005), a 

significant difference for feature-coefficient 

B  (F(2,33)=4.50, MSe=4.77, p=.019) and a significant 

difference for feature-coefficient C  (F(2,33)=12.17, 

MSe=11.96, p<.001). Post-hoc tests using Bonferroni 

correction revealed a significant difference for feature-

coefficient A between conditions AB and BC (p=.005), a 

significant difference for feature-coefficient B between 

conditions BC and CA (p=.024), and a significant difference 

for feature-coefficient C between conditions CA and AB 

(p<.001) and between CA and BC (p=.001). These post-hoc 

tests suggest that subjects in each condition were indeed 

focusing more on the relevant feature (fweight=2.5), less on the 

less-relevant feature (fweight=1) and completely ignoring the 

irrelevant feature (fweight=0). In other words, subjects in each 

condition were learning the feature to outcome associations 

(see Fig. 4). 

To corroborate this last hypothesis, we collapsed our data 

by condition and reordered each feature-coefficient by its 

weight. Then, we ranked our coefficients by their individual 

weights. We submitted our ranked weights to a one-way 

ANOVA with coefficient value as the dependent variable. 

We found a significant difference in ranked weights 

(F(2,107)=21.40, MSe=21.73, p<.001). Planned comparisons 

revealed a significant difference between weight 2.5 and the 

average between weight 1 and weight 0 (t(105)=-5.64, 

p<.001). And a non-significant difference between weight 1 

and weight 0 (t(105)=1.47, p=.146). 

 

Figure 3. Probability of classification in category A for a given feature combination in each condition (AB, BC and CA). 

Dashed line shows predicted probabilities computed by eq. (1) and in Table 3. Continuous line shows average subject 

data on Block 3. 

 

165



 
Figure 4.  Regression coefficient weights obtained 

through individualized multiple regression method on 

transfer data across experimental conditions. 

 

Discussion 

Most category learning experiments use DF, while PF is 

underrepresented. However, not only is PF arguably more 

representative of natural learning conditions, but it is also 

possible that results obtained with DF may change when PF 

is used (e.g., Little & Lewandowsky, 2009). 

In the current work, we have argued that a possible reason 

explaining why researchers don’t make greater use of PF is 

that current PF paradigms are not flexible enough to 

accommodate different designs (e.g., the WP task; Knowlton, 

Squire, & Gluck, 1994). In contrast, in the current work we 

offer a way of designing PF category learning experiments 

that allows easily achieving any design with the desired 

probability characteristics. The method that the current 

experiment illustrates allows designing exemplars by setting 

from the start the relative contributions of every feature, 

and deriving feature combination probabilities (i.e., whole 

exemplar probabilities) from those relative contributions. 

Furthermore, by manipulating parameter c in eq. (1), a whole 

family of exemplar probabilities can be obtained, all of it 

consistent with the desired feature relative contributions. 

In the current work we have illustrated the use of the PPD 

task and shown that the obtained classification probabilities 

can be used to guide PF such that subjects are able to 

consistently learn the desired classifications. In the category 

learning part of the task, subjects not only showed learning 

across blocks, but they also achieved classification 

performances very close to those implied by the task’s design 

(Figs. 2 and 3). During transfer, subjects provided evidence 

of perceiving individual features’ conceptual weights in the 

pattern intended by our design. Though only the most 

diagnostic feature showed a statistically higher regression 

coefficient, the pattern of means exhibited the predicted order 

(i.e., f1 > f2 > f3). Current work in our laboratory is 

manipulating feature strengths so that subjects provide 

evidence of learning not only the correct pattern of means, 

but also the correct pattern of statistical differences implied 

in the design. Importantly, the PPD method can be used to 

parametrically vary different aspects of the task, such that 

many interesting issues can be explored. A few of them are 

offered here. We expect that the task will allow researchers 

to estimate how much randomness will make a classification 

task unlearnable, and how much determinism leads subjects 

to develop explicit categorization rules. Also, the task should 

allow researchers to obtain converging evidence with a 

different experimental setup, that PF promotes learning a 

category’s internal structure, even though subjects learn the 

category by classification in contrast to learning it by making 

inferences. Furthermore, our experimental design could be 

applied to tasks with non-binary features. By discretizing 

continuous features into n levels (where n > 2), it is trivial to 

apply the same procedures described here, with the only 

limitation being the increase in the total number of exemplars 

necessary during training to cover all possible combinations. 

In summary, the PPD task could allow researchers to 

flexibly design PF classification experiments beyond 

relatively fixed existing alternatives such as the WP task. We 

believe this is a contribution to mathematical modeling in 

cognition as well as providing new insights into learning and 

categorization. 
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