
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Using Random Restrictions to Prove Lower Bounds for Constant-Depth Threshold Circuits

Permalink
https://escholarship.org/uc/item/0cs2d39w

Author
Paleja, Pawan Charles

Publication Date
2024
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0cs2d39w
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Using Random Restriction to Prove Lower Bounds for Constant-Depth Threshold Circuits

A thesis submitted in partial satisfaction of the
requirements for the degree Master of Science

in

Computer Science

by

Pawan Charles Paleja

Committee in charge:

Professor Russell Impagliazzo, Chair
Professor Daniel Kane
Professor Ramamohan Paturi

2024



Copyright

Pawan Charles Paleja, 2024

All rights reserved.



The Thesis of Pawan Charles Paleja is approved, and it is acceptable in quality

and form for publication on microfilm and electronically.

University of California San Diego

2024

iii



TABLE OF CONTENTS

Thesis Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Abstract of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Threshold Circuits, Gates, and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Random Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Useful Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
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ABSTRACT OF THE THESIS

Using Random Restriction to Prove Lower Bounds for Constant-Depth Threshold Circuits

by
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Professor Russell Impagliazzo, Chair

A critical challenge in complexity theory is establishing lower bounds on the size, depth,

and complexity of Boolean circuits that compute explicit functions. General Boolean circuits,

however, have proven resistant to such lower bounds. Consequently, the community has focused

on proving lower bounds for more restricted families of circuits, such as bounded-depth circuits

over various bases. A notable success in this area is the use of random restrictions, a method

where input variables are fixed according to a probability distribution to simplify the circuit. This

thesis explores the application of random restriction techniques to circuits and is structured to

provide a thorough understanding of how random restrictions can also be modified and refined to

prove more general results.
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Chapter 1

Introduction

A longstanding problem in complexity theory is to prove lower bounds on the size, depth,

and general complexity of Boolean circuits computing explicit functions in classes of interest

(such as arithmetic operations, graph reachability, and satisfiablity, e.g. [10, 6, 2]). However,

general boolean circuits seem remarkably resistant to lower bounds of this kind; for example we

have been unable to prove that there is a problem in NP that requires Boolean circuits over the

standard basis AND, OR, NOT computing it to be superlinear in size [15]. Thus, it is quite likely

that the community’s current techniques are inadequate for this purpose.

It is constructive still, to look at proving explicit lower bounds against more restricted

families of circuits (for example bounded-depth circuits over various bases) both in the hopes that

the techniques developed may generalize and for their independent interest. Here, the community

has had higher levels of success. In particular, random restrictions have emerged as a powerful

tool in both classical and recent results. For example, in the aforementioned standard basis,

random restrictions were utilized by Ajtai [1], Furst et al [7], Yao [17] and Håstad [8] to show

that Parity and Majority function require circuits of exponential size when the depth is bounded.

Plainly put, a random restriction is a process by which some of the input variables of

a boolean function (or circuit) are fixed to specific values according to a chosen probability

distribution, while the remaining variables are kept free. This process is repeated accordingly

until the circuit is simplified to a point that can no longer compute the simplified function. Finally,
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some sort of equivalence is reached to show that if the simplified circuit cannot compute the

simplified function, then the original circuit cannot compute the original function.

We are interested in the use of this technique when applied to achieve lower bounds

against circuits over the basis that includes not only Majority, but can also compute arbitrary

threshold functions, that is circuits equipped with unbounded fan-in AND, OR, NOT, THRESH-

OLD gates. Circuits over this basis are of interest in general both practically as a model for

neural networks and theoretically because of their relative strength as a computational model.

Indeed, not only can no bounded-depth polynomial-size circuits over the standard basis compute

Majority, but such circuits equipped with Majority can compute pseudorandom function families

which are secure under the hardness of factoring and integer division [13, 9].

This thesis is organized to provide a comprehensive understanding of the use of random

restriction techniques in proving lower bounds against Threshold Circuits. We will first begin

with a section dedicated to introducing the necessary notation and preliminaries definitions.

Following this, we present a simple example of how random restrictions can be applied to

demonstrate lower bounds, using the Håstad Switching Lemma as a case study. The subsequent

sections are devoted to summarizing and contrasting the approaches and results of applications

of the random restriction technique to the class of bounded-depth threshold circuits. We aim

specifically to offer a structured and clear exposition of the advancements in random restriction

techniques as well as some avenues in how they may be improved.

1.1 Preliminaries

1.1.1 Threshold Circuits, Gates, and Functions

We define a threshold gate with fan-in n as a (n+1)-tuple φ = (w,θ) where w ∈Rn,θ ∈

R. We call the vector w the weights of φ . and θ the threshold value. φ computes the Boolean

function

sgn(⟨w,x⟩−θ) = sgn

(
n

∑
i=1

wixi−θ

)
.
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We say that a Boolean function f , represented by some threshold gate fφ , is called a threshold

function. We may discuss the inputs to f and φ , which we denote as the supp( f ),supp(φ). We

define the functions FanIn( f ),FanIn(φ) = |supp( f )|, |supp(φ)|.

Observe that all threshold functions are also unate, meaning that they are always either

increasing or decreasing in each of the variables. Often, unless there is ambiguity, we will omit

φ , writing simply f .

In general, a circuit C on n inputs is a directed acyclic graph with an output node

and exactly n source nodes, representing the inputs. Each internal node is labeled by a gate

with fan-in equal to the in-degree of the node. We will also write C as computing a function

C : {0,1}→ {0,1}. Sometimes it will be more favorable for analysis to write C over a different

domain, C : {−1,1}→ {−1,1}.

The gate complexity of C is equal to the number of non-source nodes of the circuit. The

wire complexity of C is equal to the number of edges in T . When we refer to a circuit’s size,

we will be referring either to its gate or wire complexity. The level of a particular node in C is

defined inductively. The source nodes have level 0, while the level of any other node is 1 + the

maximum level of its immediate predecessors. The depth of C is the level of the output node,

and in this thesis, we will be specifically interested where the depth is some constant d. This will

also allow us to only consider circuits that are layered, that is the inputs to each gate are from

gates of one level less, because we can transform any constant depth circuit into a layered circuit

by increasing the size by at most d.

We refer to the gates at level ℓ also be the gates at depth depth− ℓ. For example, we will

often discuss gates at the bottom level as φ1, ...,φm, which can equivalently be discussed as the

gates at depth d. When disambiguation is unnecessary, we write fi = fφi .

1.1.2 Random Restrictions

For an n variable function or circuit, an assignment α ∈ {0,1,∗}n is a n -tuple which

represents a mapping of the circuit variables to values, ∗ representing that that variable is kept
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unassigned. We will also consider a labelling of α = (A,U,y), where i ∈ A if α(xi) ̸= ∗, i ∈U if

α(xi) = ∗ and y ∈ {0,1}|A| is the bit vector on the assigned values. If x1, ...xn are the variables of

f then f (α) means that we assign xi the value of αi. We will often discuss partial assignments,

where there is at least one variable kept unassigned, which we will denote in the same way as

f (α). This partial assignment means that f (α) is a different threshold function than f , indeed

if A,U ⊂ [n] are indices of the assigned and unassigned variables, then f (α) is the threshold

function with weights wi, i ∈U and threshold θ ′ = θ −∑i∈A αiwi. We can also discuss applying

assignments to gates similarly, which we will notate φ |α to denote applying a partial or complete

assignment with the same definitions. When discussing random restrictions, we will define a

space of possible assignments R based on some experiment and sample α ∼ R. When there is no

ambiguity of the experiment we are using, we will simply write α .

We now formally define some random restriction distributions that we will use later.

Definition 1.1 (Blockwise Restriction). Let X be a variable set, and let P be a partitioning of X

into |P|/n consecutive blocks. Then define RP as a distribution on assignments α : [n]→{0,1,∗}

that randomly fixes all but one element of each part of P.

Definition 1.2 (Uniformly Random Subset). We will use Rn
p to denote the distribution over

restrictions, α : {−1,1,∗} → {−1,1}, such that α(x) = ∗ with probability p and −1,1 with

probability (1− p)/2 each.

Restriction Trees

It will sometimes be beneficial to consider the space of assignments over a tree. A

restriction tree T on {−1,1}n of depth h is a binary tree of depth h all of whose internal nodes

are labeled by one of n variables, and the outgoing edges from an internal node are labeled +1

and −1; we assume that a node and its ancestor never query the same variable. Each leaf ℓ of T

defines a restriction αℓ that sets all the variables on the path from the root of the decision tree to ℓ

and leaves the remaining variables unset. A random restriction tree T of depth h is a distribution

over restriction trees of depth h.
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Given a restriction tree T , the process of choosing a random edge out of each internal

node generates a distribution over the leaves of the tree (note that this distribution is not uniform:

the weight it puts on leaf ℓ at depth d is 2−d). We use the notation ℓ∼ T to denote a leaf ℓ of T

picked according to this distribution.

A decision tree is a restriction tree all of whose leaves are labeled either by +1 or −1.

We say a decision tree has size s if the tree has s leaves. We say a decision tree computes a

function f : {−1,1}n→{−1,1} if for each leaf ℓ of the tree, f |ρℓ
is equal to the label of ℓ.

1.1.3 Useful Facts

We also state the following bounds that will be useful in our analysis.

Theorem 1.3 (Chernoff Bound). Let X1,X2, . . . ,Xn be independent Bernoulli random variables

with Pr[Xi = 1] = pi for i = 1,2, . . . ,n. Let X = ∑
n
i=1 Xi be their sum. Then, for any δ > 0,

Pr [|X−µ| ≥ δ µ]≤ 2exp
(
−δ 2µ

3

)

where µ = E[X ] = ∑
n
i=1 pi.

Theorem 1.4 (Markov’s Inequality). Let X be a non-negative random variable.

1. For any k > 0, we have:

Pr[X ≥ k]≤ E[X ]

k
.

2. For any a > 0, we have:

Pr[X ≥ aE[X ]]≤ 1
a
.

Theorem 1.5 (Chebyshev’s Inequality). Let X be a random variable with finite mean µ and

finite non-zero variance σ2.

1. For any k > 0, we have:

Pr [|X−µ| ≥ kσ ]≤ 1
k2 .
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2. For any t > 0, we have:

Pr [|X−µ| ≥ t]≤ σ2

t2 .

Fact 1.6. Let f : {−1,1}n→{−1,1} be a boolean function, then

Var[ f ] = 4Pr
x
[ f (x) = 1]Pr

x
[ f (x) =−1].

Moreover, if

p = min
(

Pr
x
[ f (x) = 1],Pr

x
[ f (x) =−1]

)
.

Then, Var( f ) = Θ(p).

Fact 1.7. Let f ,g,h : {−1,1}n→{−1,1} be arbitrary.

1. Corr( f ,g) ∈ [0,1].

2. If Corr( f ,g)≤ ε and δ (g,h)≤ δ , then Corr( f ,h)≤ ε +2δ .

3. Let T be any random restriction tree. Then

Corr( f ,g)≤ ET∼T ,ℓ∼T
[
Corr( f |ρℓ

,g|ρℓ
)
]
.

1.2 Warmup: AC0 lower bounds via Håstad Switching
Lemma

In the introduction, we alluded to how one of the classical results using a random

restriction technique was to prove that bounded depth, unbounded fanin circuits over the standard

basis (we will refer to this class now only as AC0) required exponentially many gates to compute

the PARITY function. In this section, we provide a warmup to the random restriction techniques

we will describe later, by proving this result. First, we state the lower bound formally.
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Theorem 1.8. Any AC0 circuit of depth d computing the parity function on n variables has gate

complexity s≥ 2Ω(n1/d).

We will showcase the random restriction framework to prove this lowerbound. In general,

what would want to show is that setting some (but importantly, not all) of the inputs to a given

circuit will allow us to greatly simplify it. We then repeat the process of setting some inputs,

simplifying the circuit further and further until at some point it becomes to simple to compute

the given function. This intution is why Parity can be useful to prove lower bounds, because it is

a fact that every restriction of PARITYn to n0 variables is still either PARITYn or its negation. We

formalize this into a type of lemma that we will prove throughout this thesis, the depth reduction

lemma.

Lemma 1.9 (Depth Reduction of AC0 circuit via Switching Lemma). Let C be an AC0 circuit

computing parity of size S. WLOG, assume the circuit is such that each level alternates AND and

OR gates, let the bottom layer of C be AND gates, so that the gates at depth d−1 consist of DNFs

of width at most s := 20logS. Suppose we apply a random restriction α ∼R p
n , p = 1/(20s).

Then C|α can be computed by an equivalent depth d− 1 circuit C′ over n1 = np = n
400logS

variables.

Following a simple induction, this immediately implies Theorem 1.8 because we can

apply it d − 2 times to get restrictions α1,α2, ...αk−2. Appending these all together α0 =

α1α2 · · ·αk−1, we have that C|α0 is equivalent to a decision tree on

n0 :=
n

(400logS)k−2 variables.

As stated previously, every restriction of Parity is either Parity or its negation. Thus, PARITYn0

variables requires S to be at least 2n0−1, proving Theorem 1.8.

The proof of this statement is achieved immediately following what we will refer to in

this thesis as a random restriction lemma. We state the one for this section below.
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Lemma 1.10 (Håstad’s Switching Lemma, [8]). Let f be a CNF/DNF formula on n variables,

where each clause has width at most s. Let α ∼Rn
p be a random restriction that leaves each

variable unset with probability p and sets it to 0 or 1 with probability (1− p)/2 each. Then for

any integer t ≥ 0,

Pr
α∼Rn

p

[ f (α) can be computed by a decision tree of depth t]≤ (5ps)t .

In other words, if we set some of the input bits to a k-CNF randomly, then actually with

exponentially high probability, the restricted formula f |α) is much simpler, i.e. a function that is

decided by just a few variables. We can use this lemma to prove Theorem 1.8 by using the fact

that the gates at depth d−1 are by definition a CNF/DNF formula on the inputs. Thus, if we

assume that an AC0 circuit exists that computes parity, then interatively set some of its input bits

at random, the switching lemma allows us to collapse the bottom two layers into a single layer.

Formalizing this intuition gives one a proof of Lemma 1.9 and therefore Theorem 1.8.

Intuition behind the proof of Lemma 1.10

Unfortunately, the formal proof of Lemma 1.10 requires notation and methodology that

does not fit into the scope of what we are concerned with. However, the intuition behind the proof

does give a launchpad for which we can discuss the results found later in this thesis. Indeed, we

might ask, how can a random restriction simplify a DNF formula as stated in Håstad’s Switching

Lemma? Suppose we have a function f computable by a DNF formula of width w. Let α ∼R p
n

with p = o(1/w). Let T be a term of the DNF. What we can show is that this term is very likely

to become simplified by the values set under the random restriction. Indeed, we can look at the

cases of what will happen to the variables of T .

1. One of its literals is set to 0. This immediately allows us to delete T from the DNF, so we

successfully simplified the term and DNF. We observe that this is highly likely as well, as

our restriction chose uniformly from {0,1}.
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2. All of its literals are set to 1. This in fact reduces the entire DNF to output 1.

3. At least of T ’s literals is kept free, but all the fixed literals are set to 1. However, given that

we chose p = o(1/w), there will not be many gates that have this occur, as nearly all their

literals will be set.

Intuitively, this would mean that f is highly likely to become constant, i.e. a decision tree on a

single variable, which is implied by the Switching Lemma. To prove this and the general lemma,

however requires slightly more effort, so we refer the interested reader to [3] which gives a

simpler proof than Håstad.

1.3 Can we achieve the same bounds on threshold circuits?

In this section, we were able to understand how we might use the random restriction

technique to prove circuit lower bounds. Before we continue on to discuss threshold circuits, it

is worth considering if we should even hope to achieve similar bounds for threshold circuits as

we could for AC0.

Recall that when we used the random restriction technique to prove that PARITY /∈ AC0,

we relied on the fact that an AND or OR gate can be reduced to a constant by setting any one

variable to the correct value. However, a threshold gate is not ”brittle” in the same sense. A

threshold function computing the MAJORITY function, for example, needs at least half of its

inputs to be set for it to be forced to a constant. It turns out this translates to a drastic increase in

strength for this model. It turns out there are explicit constructions for the Parity function using a

relatively small number of gates. We state the exact result below.

Theorem 1.11 (Upper Bound on Gate Complexity to compute Parity, Theorem 1 of [16]). Let

d≤ log(n). Then there exists a depth d+1 threshold circuit with O(dn1/d) gates and O((dn1/d)2)

wires that computes PARITYn.

Despite this, we would still like to know if we can prove lower bounds that match
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this upper bound. What we will show in the next section is an attempt to do so which comes

marginally close.

10



Chapter 2

Overcoming The Robustness of Threshold
Gates

In this chapter we address the challenges mentioned previously, namely how can we

overcome the relative robustness of threshold gates against random restriction techniques. Using,

some relatively straightforward observations, we can prove a random restriction lemma that will

lead to the following theorem:

Theorem 2.1. Any threshold circuit of depth d that computes PARITYn requires at least

O(n/2)1/2(d−1) gates.

Observe that this bound also applies to the number of wires in the circuit as a circuit of

the kind we defined that has k gates must have at least k+1 wires. However, it turns out we can

improve upon this trivial derivation, which we will show later in the section.

2.1 A partitioning random restriction

The random restriction theorem we would like to prove is as follows:

Lemma 2.2 (Theorem 2 from [11]). Let F = { f1, ..., fm} be collection of m threshold functions

on n variables. Then there exists a partial assignment α that leaves at least ⌊n/
(
|F |2 +1

)
⌋

variables free such that ∀ f ∈ F, f (α) is a constant function.
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As previously stated the collection of threshold functions represents the gates at the

bottom level of a threshold circuit. The consequence then is that we can recursively apply

Theorem 2.2 to simply an entire circuit to a constant. Formally:

Corollary 2.3 (Corollary 3 from [11]). Let C be a depth d circuit on n inputs consisting of at

most N threshold function gates. Then there exists a partial assignment α leaving ⌊n/2N2(d−1)⌋

variables free such that fC(α) is constant.

The proof is a simple induction utilizing Lemma 2.2 which we leave to the reader.

Corollary 2.3 immediately gives Theorem 2.1 because the only partial assignments that compute

the PARITY function are the assignments that assign values to every variable (i.e. the total

assignments). Thus, by Corollary 2.3, the number of gates, N satisfies

2N2(d−1)/n≥ 1

2N2(d−1) ≥ n

N ≥ (n/2)2(d−1).

The rest of the section will be dedicated to proving Lemma 2.4. We start with an intuition. As

we said earlier, a majority gate can be forced to a constant by an assignment on ⌈n/2⌉ of it’s

variables. In fact this upper bound extends to all threshold functions.

Lemma 2.4 (Lemma 3.2 from [11]). Let φ = (w,θ) be a nonconstant threshold gate on variable

set X. Then for the assignment β : βi = sgn(wi) there exists a ℓ∈ {0,1, ...,n} such that fφ (β≤ℓ) =

0 and fφ (β≥ℓ) = 1.

This is easy to verify, so we do not prove it here. The immediate result is that any

threshold function on n variables has a partial assignment α that leaves at least ⌊n/2⌋ variables

free but forces the function to be a constant. The idea is that we want to give a procedure which

will pick the ”correct” assignment for all the gates at the bottom layer simultaneously.
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A11 A12 ... A1m ←With f1
A21 A22 ... A2m ←With f2
· · · ·
Am1 Am2 ... Amm ←With fm

Figure 2.1. Assigned Variable Partitioning

Ah1 Ah2 ... Ah j Ah j+1 ... Ahm

sgn(x) sgn(x) ... sgn(x) sgn(x) ... sgn(x)

Figure 2.2. Division of a particular row fh

What our procedure will do is arbitrarily partition the variable set into m2 + 1 equal

blocks. We will randomly pick m2 of these blocks, A to be the variables that end up with

assigned values, while one block U , will be the unassigned variables. Refer to Figure 2.1 for a

visualization of the blocks that comprise A, after the random shuffling. We can think of blocks

in the ith row of A as being randomly allocated to the ith function of F and we will randomly

assign the variables of these blocks in such a way to try to make fi constant.

Recalling Lemma 2.4, for a specific function fh = φh = (wh,θh) (and row Ah) what we

will end up doing is ”guessing” at the correct value for j using random restriction, setting one

side of the row to the values that we think will make it 1 and the other side to the values that

we think will make it 0 (see Figure 2.2 for an example). Note that we do not have any way of

knowing if the variables in the ith are actually inputs to fi, but this does not matter. What we

want is that our guesses should have some positive probability at simplifying the gate.

We now formally give the procedure that will give the random assignment α we will use

to prove Lemma 2.2.

1. Partition X , the variable set of F into q = m2 +1 equal blocks.

2. Choose uniformly at random a 1-1 function mapping the q blocks to the entries of A∪U .

3. Choose uniformly at random a vector (t1, t2, ..., tm from the set {0,1,2, ...,m}m.

4. For each row Ai, generate an assignment α fix the variables according the following rule:

13



(a) If xk ∈ Ai j for j ≤ ti assign ak = sgn((wi)k)

(b) If xk ∈ Ai j for j > ti assign ak = sgn((wi)k)

Lemma 2.5. For each h ∈ [m], the probability that fh(a) is not constant is at most 1/(m+1).

This lemma is sufficient to prove Lemma 2.2 because we can simply union bound over all the

gates at the bottom layer. Indeed, since we have m functions in F , the probability that one

of them is not constant is at most m/m+ 1. A probabilistic argument implies the existence

of an assignment that makes the theorem hold true, as required. It therefore remains to prove

Lemma 2.5.

Proof of Lemma 2.5. For the analysis, it will be convenient to assume that after the blocks A

and U are assigned and th is chosen, we actually make Ahth the unallocated block and let U be

essentially Ahm+1. This does not change the distribution of our random procedure, because each

gate is still allocated m random sets of variables, with one random set of variables remaining

unallocated, and the way the gates’ variables are assigned remains unchanged. For the variables

not in the blocks assigned to fh, assume we set them according to the procedure for the other

functions i ̸= h with the assignment β . Denote g = fh(β ). Recall then for xk ∈ Ah j for j <

th, j > th, we set xk = sgn((wh)k) and xk = sgn((wi)k) respectively. By Lemma 2.4, there exists

an index ℓ, where if we have an assignment

αk =


sgn(wh)k,k ≤ ℓ

sgn(wh)k,k ≥ ℓ

,

then g(α) is constant. The bad case would be if xp was in Ahth , because as we said, we did not

assign variables from this block. However if ℓ > th or ℓ < th, then by definition, the gate becomes

constant as we want. Since th was chosen uniformly at random, it has probability 1/(m+1) of

being the one containing ℓ, giving the required probability. This proves Lemma 2.5 and therefore

Lemma 2.2.
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2.2 Refining the basic random restriction method

Previously we alluded to how we could do better than the trivial lower bound on wire

complexity that would come from Theorem 2.1. We now state this result

Theorem 2.6 (Corollary 2 from [11]). Let C be a depth d threshold circuit that computes

PARITYn. Then C has at least n1+ 1
3d−1−1/3

√
2 edges.

The improvement is derived from a refinement to the methodology seen in the previous

section. Observe that in the proof of the random restriction lemma, we showed that the probability

under our random assignment that a given function out of |F | was not constant was at most

1/(|F |+ 1). However, what about the case where we were one set variable away, two set

variables away, etc. from the gate being constant? Now previously, it would be quite difficult to

quantify this in general, but when we limit the number of wires, in total, that a circuit can have,

the number of wires that can be allocated per gate must can be quantified. In effect, while we

will do a similar random partition of the variable set, setting variables similar to how we did in

Section 2.1, under this observation we will show that for the gates that our restriction fails to

simplify, we can actually set a small number of their inputs to complete their simplification.

We state the random restriction lemma now.

Lemma 2.7 (Lemma 3.1 from [11]). Let F be a collection of m threshold functions on n variables

and let δ = 1
n ∑ f∈F s( f ). Then there exists a partial assignment α that leaves at least n

4δ 2+2

variables free such that for every f ∈ F, f (α) depends on at most one variable.

We remark that this lemma is different than Lemma 2.4 because we consider the restricted

function to be simplified if it is only on a single variable. However, such a gate must by definition

output either the value that the input takes or its negation, so the gates at the next level above

depend only on the original inputs.

Recall that when proving the lower bound on gate complexity we partitioned the variable

set into associations with a particular function in the collection F . We will do something similar
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to prove Lemma 2.7, except this time we will not allow x to be associated with a function that

does not take x as input. To that end, denote

Dx := { f ∈ F : x ∈ Supp( f )},δx := |Dx|.

The other steps of the procedure are similar as well. After partitioning the variable set, we will

assign the variables in each block a value randomly to try and achieve the assignment that will

neutralize the gate. The final step is to ”clean up” any remaining gates that did not become

constant/single input by manually setting all the inputs to such gates. We describe the procedure

PROC(L) with parameter L formally below:

1. Partition the variables. Construct a random partition of the variable set, this time into

m+1 blocks: C1,C2, ...,Cm for each function and R as the reserve set of variables that will

remain unassigned (for now). We assign x as follows:

Pr[x ∈ R] =
1

1+Lδx
,

For fi ∈ Dx, Pr[x ∈Ci] =
L

1+Lδx
.

Note that if x is not in R, this equates to choosing Ci uniformly from the set of functions x

is an input to. The parameter L can be thought of as a sort of weighting towards/against

putting a variable x in the reserve set R, and will be optimized for later.

2. For each i ∈ [m], fix all the variables in Ci according to the following rule (done indepen-

dently for each i ∈ [m]:

(a) Choose bi from {0,1, ..., |Ci|}.

(b) Choose a subset Bi uniformly from all bi-element subsets of Ci. Generate a partial

assignment γi on the variables of Ci as follows:

i. If xk ∈ Bi, assign γi(k) = sgn((wi)k)
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ii. If xk /∈ Bi, assign γi(k) = sgn((wi)k)

(c) Let γ be the union of the partial assignments γi, i ∈ [m].

3. Fix some of the variables in R. For each i ∈ [m], let Ti denote the set of variables on which

fi(γ) depends. If |Ti| > 1 fix an arbitrary subset T ′i ⊂ Ti of size |T ′i | = Ti− 1. Let α be

obtained from γ by setting all the elements of each T ′i to 1.

The third step clearly ensures that no matter what happens in step 2, the partial assignment α is

such that fi(α) depends on at most one variable for each i. The crux of the proof then is to ensure

that the total number of variables V that we need to set is not too high. By our construction, we

have that

V ≥ |R|−
m

∑
i=1

max(0, |Ti|−1). (2.1)

We can easily calculate that

E[|R|] = ∑
x∈X

1
Lδx +1

.

What is more difficult is calculating E[max(0, |Ti|−1)]. We will show a bound on this expectation.

For convenience we will denote rm(a) := max(0,a−1).

Lemma 2.8 (Lemma 5.1 from [11]). For each i ∈ [m],

E[rm(|Ti|)]≤
1
L ∑

x∈S( fi)

1
Lδx +1

.
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Once we have the expectation, Lemma 2.7 quickly follows,

E[V ]≥ E[R]−
m

∑
i=1

E[rm(|T̃i|)]

≥ ∑
x∈X

1
Lδx +1

−
m

∑
i=1

1
L ∑

x∈S( fi)

1
Lδx +1

(By definition and Lemma 2.8

≥ ∑
x∈X

1
Lδx +1

− 1
L

m

∑
i=1

∑
x∈X , fi∈Dx

1
Lδx +1

(By definition of S( fi))

≥ ∑
x∈X

1
Lδx +1

− 1
L ∑

x∈X

δx

Lδx +1
(By definition of δx)

= ∑
x∈X

1−δx/L
Lδx +1

≥ n
(

1− δ/L
Lδ +1

)
(By Jensen’s Inequality)

≥ n
4δ 2 +2

. (Choosing L = 2δ )

Thus, it remains to show Lemma 2.8.

Proof of Lemma 2.8. Fix h ∈ [m]. We would like to analyze rm(|Ti|). Let Uh = R∩Supp( fh) be

the set of inputs of fh that were kept in reserve (i.e. unassigned). Define a random variable

χh =


1, if fh(γ) not constant

0, if fh(γ) is constant
.

Clearly we have that rm(|Ti|)≤ χhrm(|Uh|). We would like to show

E[χhrm(|Uh)]≤
1
L
E[rm(|Uh|+1]. (2.2)

as it would immediately prove Lemma 2.8. We sketch the analysis of (2.2).

Sketch of (2.2). First, denote K = Ch ∪Uh, i.e. all the variables our procedure set that were

dependent on association with fh. Similar to the proof of Lemma 2.5, we observe that we

18



can condition on the event D of a particular instantiation of Ci,Bi, i ̸= h to make our analysis

easier. By definition, for i ̸= h, D determines γi on the rest of the variables of Supp( fh)−K. Let

g = f (γi), i ̸= h be the function that results from setting those variables according to D. Our goal

then becomes

E[χhrm(|Uh|)]≤
1
L
E[rm(|Uh|+1)|D]

≤
k

∑
i=0

rm(i)Pr[|Uh|= i|D]Pr[g(γ) is not constant|D∧ (|Uh|= i)]. (2.4)

Because Ci, i ̸= h are determined already by D, we have that |Uh| follows a binomial distribution.

Indeed, x ∈ R now with probability p = 1
L+1 and is in Ch with probability L

L+1 = 1− p. Thus we

can replace (2.4) with

k

∑
i=0

rm(i)
(

k
i

)
pi(1− p)k−i Pr[g(γ) is not constant|D∧ (|Uh|= i)]. (2.5)

It remains to upper bound Pr[g(γ) is not constant|D∧ (|Uh|= i)]. It is instructive to recall some

definitions here. Recall that g(γ) is now entirely dependent on Ch,Bh after conditioning on D. So

we want to understand how Ch,Bh are constructed. We are given that |Uh|= i, so this implies that

Ch can be thought of as a uniformly chosen |K|− i subset of K, bh is uniformly chosen element

from {0,1, ...,k− i}, and Bh is a randomly chosen subset of Ch.

However, it is equivalent to understand Bh,Ch using the following experiment:

1. Choose a random ordering Γ of K.

2. Choose bh u.a.r from {0,1, ...,k− i}.

3. Let Bh be the first bh elements of K and Bh be the last k− i−bh elements of K.

4. As normal, let Ch = Bh∪Bh.

Note that again Lemma 2.4 yields an index j such that on the order Γ of K we have an ℓ where if
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we have an assignment

βk =


sgn(wh)k,k ≤ ℓ

sgn(wh)k,k ≥ ℓ

,

then g(β ) is constant. Thus, can verify that g(γ) is nonconstant only if bh satisfies j− i≤ bh ≤

j−1. Since bh is chosen uniformly, this happens with probability i
k−i+1 . Plugging into (2.5), we

have

E[χhrm(|Uh|) | D]≤
k

∑
i=1

rm(i)
(

k
i

)
pi(1− p)k−i i

k− i+1

=
p

1− p

k

∑
i=1

rm(i)
(

k
i−1

)
pi−1(1− p)k−(i−1)

=
p

1− p

k−1

∑
i′=0

rm(i′+1)
(

k
i′

)
pi′(1− p)k−i′

=
p

1− p

k−1

∑
i′=0

rm(i′+1)P[|Uh|= i′ | D]

≤ p
1− p

E[rm(|Uh|+1) | D]

=
1
L
E[rm(|Uh|+1) | D],

which completes the proof of Lemma 2.8 and consequently, Lemma 2.7.

2.3 Drawbacks and challenges

The results we proved in this section are actually the strongest lower bounds that exist

for the size of constant depth threshold circuits computing parity. However, it is not without

its limitations. One that we can observe immediately is the means by which we simplified the

circuit, i.e. the process we used to generate the assignment. We note that in many instances

across both results, we only asked for the existence of an assignment that simplified the circuit.

This could imply that threshold function may still be able to compute the parity function on

many inputs that are not so adversarially chosen. In the next section, we formalize this question
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and exposit two results relating to it.
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Chapter 3

Average-Case Lower Bounds Through
Anti-Concentration Results

In this section, we would first like to expand on the motivation we ended the previous

section on. Recall that the lower bounds we showed previously were worst-case lower bounds,

that is we showed for any sequence of constant depth threshold circuits, how to construct an

input that they would be unable to compute parity on. We would be interested in asking then, do

there exist circuits which can approximately compute parity? That is

Question 3.1. Let C be a depth d circuit that computes parity on 1− ε inputs. What is the order

of the gate complexity of C? What is the order of the wire complexity of C?

Better explicit construction actually exist for this problem than those that exactly match

parity, as was shown in Chapter 2. Indeed,

Theorem 3.2 (Theorem 7 in [16]). Let ε > 0 be an arbitrary constant. Then, there is a

threshold circuit of depth O(d)(̇n log(1/ε))1/(2d−1) gates that computes PARITYn correctly on

1− ε fraction of inputs.

Note that this upper bound for approximation nearly matches the lower bound given in

the last chapter by Theorem 2.1. Like in the previous section, we would like to ask if we can

show a matching lower bound to this upper bound. It turns out that in the case of depth d = 2,

we actually can.
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Theorem 3.3 (Theorem 1.4 from [12]). Let T be a threshold circuit of depth 2 computing PARITY

on 99% of all n-bit inputs. Then T has at least Ω(n) gates and Ω(n3/2) wires.

We will spend the first part of this section explaining again how a random restriction

technique can be used to prove this theorem. We will then move on to a discussion on challenges

to extending such techniques to depths beyond 2, and end the chapter with another result that

addresses some of those challenges.

We will split Theorem 3.3 into two sections, dealing with the gate and wire lower bounds

separately. We begin with the gate lower bound.

3.1 Correlation bounds in depth 2

We first restate the relevant part of Theorem 3.3:

Theorem 3.4 (Theorem 1.4 from [12]). Let T be a threshold circuit of depth 2 computing PARITY

on 99% of all n-bit inputs. Then T has at least Ω(n) gates.

Note this recovers the main theorem from the previous section for d = 2.

We now restate the random experiment that which we will use in this section.

Definition 1.1 (Blockwise Restriction). Let X be a variable set, and let P be a partitioning of X

into |P|/n consecutive blocks. Then define RP as a distribution on assignments α : [n]→{0,1,∗}

that randomly fixes all but one element of each part of P.

We now state the main random restriction theorem to prove this lower bound.

Lemma 3.5 (Lemma 1.1 from [12]). Let φ =(w,θ) be a threshold gate on n variables comprising

the variable set X. Then

Pr
α∼RP

[ fφ (α) is not constant] = O(|P|/
√

n).
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We note some differences between this lemma and Lemma 2.2. One is that obviously

the random procedure is much simpler and less targeted. Intuitively, we hope this allows us

to achieve at least a more lucid upper bound on the failure probability. This will be necessary

to show the required bound as it implies multiple assignments that can force the function to

constant. We now sketch the proof of Theorem 3.3 using Lemma 3.5 as it requires a bit more

thought than Theorem 2.1.

Proof of Theorem 3.3. Let T be a depth-2 Threshold Circuit on n bits with N = o(
√

n) gates

that agrees with PARITY on at least 99% of the 2n inputs. Let |P|= 2, that is RP is the random

restriction that generates a random assignment leaving exactly 2 inputs free. By Lemma 3.5 there

are O(N/
√

n) = o(1) non-trivial gates at the bottom level. By Markov’s inequality, this means

that there are no non-trivial gates on the bottom layer with at least 50% probability, i.e. on 2n−1

inputs, the remaining circuit on two inputs is equivalent to a single threshold gate. As previously

stated, a threshold function is either increasing or decreasing in all its variables, meaning that

there is at least f (α) can compute PARITY on at most 3 of the 4 possible inputs. Thus, it can

only compute PARITY on at most 2n−1 ∗ .75 which is less than 99%.

With our goal in mind, we now move on to explain the advancement achieved by the

authors of [12].

3.1.1 Anti-Concentration

In the beginning of this section, we posited that what we would like to improve on is the

specific targetting of favorable assignments we saw in Section 2.1. We observe that the proof

of the last random restriction lemma made use of the fact that a gate can be eliminated simply

by ensuring that ”the right side” of its variables were set correctly. Somehow we would like to

understand a different view of how a threshold gate might become constant under a restriction,

one that is in a sense more fluid, numerically. To that end, we state without proof a lemma that

will be fundamental to this goal.
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Lemma 3.6 (Littlewood-Offord Lemma). Let f (x) = ∑i=1 wixi be a linear function and r ∈ N.

Let I ⊂ R be a finite interval and |wi| ≥ |I| for at least r of the wi. Then

Pr
x∼{0,1}n

[ f (x) ∈ I]≤ O(1)√
r
.

We explain what makes this tool useful and also alude to how we will prove Lemma 3.5.

For the sake of intuition, suppose our gate φ has weight and threshold (w,θ) with variable set [n],

and suppose that A,U ⊂ [n] respectively are the indices of the assigned and unassigned variables

resulting from α . Then we observe that fφ (α) is constant iff ∑i∈U |wi| > θ −∑i∈A xiwi, that

is the sum of the assigned weights is greater than what the remaining weights can overcome.

Although this is the same observation as is implicit in Lemma 2.4, there is more that can be said.

The advancement comes from the fact that the combined sum of the assigned weights with the

original threshold allows us to define a ”bad” interval over the assigned weights where the gate

does not become constant. Then, Lemma 3.6 can be used to bound the probability this happens.

There is some technical work that is necessary to get the parameters in the correct form, but

equiped with this intuition, we proceed with the formal proof.

Proof of Lemma 3.5. Let φ = (w,θ) be an threshold gate and RP be the distribution as stated in

the hypothesis of the lemma. Fix A⊆ [n] the indices of variables that will be assigned values and

U = [n]\A, the indices of variables kept unassigned. It will be convenient for the partition to be

determined by U . Let α : [n]→{0,1,∗} be a random assignment leaving the variables of U free.

This allows us an equivalence to the statement we want to prove, that is

Pr
α∼RP

[
fφ (α) is not constant] = EU

[
Pr

α∼RU
[ f (α) not constant]

]]
. (3.1)
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Let f ′(x) : {0,1}|U |→= ∑i∈A wixi. Define an interval

I =

[
θ − ∑

i∈U,wi>0
|wi|,θ + ∑

i∈U,wi<0
wi

]
. (3.2)

As previously stated if our assignment falls into this bad interval then our remaining function

f (α) is not constant. Formally then we have that

Pr
α∼RU

[ f (α) is constant] = Pr
x∼{0,1}|A|

[
f ′(x) ∈ I

]
.

We can remove the second condition from the summation from (3.2) by writing I as the union of

intervals Ii, |Ii|= |wi|. Thus, by union bound

Pr
α∼RU

[ f (α) is constant]≤ ∑
i∈U

Pr
x∼{0,1}|A|

[
f ′(x) ∈ Ii

]
.

We now want to choose a proper definition for ri to use Lemma 3.6 for each of the summands.

To that end, define ri to be the rank of wi if the weights were ordered greatest to least, i.e.:

ri ≥ r j←→ |wi| ≤ |w j|. (3.3)

Lemma 3.7. Prα∼RU [ f (α) is not constant]≤ ∑i∈U
O(1)√

ri

Note that this lemma does not come immediately from the Littlewood-Offord Lemma, as

the intervals we have chosen are from the weights of A, while our current definition for ri is the

rank in the complete weights. Still, through some clever analysis we will prove that is the case.

However, assuming the lemma, we complete the proof of Lemma 3.5. Recalling (3.1), we can
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use Lemma 3.7 immediately to get that

Pr
α∼RP

[
fφ (α) is not constant] = EP

[
Pr

α∼RU
[ f (α) not constant]

]
(by (3.1))

≤ EU

[
∑
i∈U

O(1)
√

ri

]
(by Lemma 3.7)

=
n

∑
i=1

O(1)
√

ri
·Pr[i ∈U ] (by Linearity)

=
|P|
n
·

n

∑
i=1

O(1)
√

ri
(by definition of RP)

≤ |P|
n
·

n

∑
l=1

O(1)√
l

(reordering ri by rank)

= O(|P|/
√

n) (by
n

∑
i=1

i−1/2 ≤ 2n1/2),

which completes the analysis. It remains to show Lemma 3.7 and complete the proof.

Proof of Lemma 3.7. For our analysis, let r′i be defined similarly to ri, that is the rank of the ith

weight, except only restricted to i ∈ A. We have that (3.3) holds the same for r′i as it did for ri.

We also note a relation between ri and r′i along with the weights in U which occurs by definition

of the assignment:

ri ≤ r′i +[ # of u ∈U such that |wi| ≤ |wu|] . (3.4)

Lemma 3.6 gives us that Prx∼{0,1}|A| [ f
′(x) ∈ Ii]≤ O(1)√

r′i
. To show Lemma 3.7, it is equiva-

lent to show that ri = O(r′i). Obviously, r′i ≤ ri. We show this by a case analysis.

1. The trivial case if if the weights that were left unassigned are packed together or repre-

sentable by a single weight and rank. Formally, this would be if there is a u∈U that we are

summing over, such that at least ri
2 other v ∈U have rv ≥ ru. This allows us to immediately

bound the sum from the claim by
ri/2
√

ri
> 1.
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Thus the probability bound itself is trivial.

2. Assume that we are not in the trivial case then, i.e. that there is not one rank that can

represent all the unassigned weights. or that for u ∈U there are at most ru/2 different

v ∈U with ru ≤ rv. Recalling (3.4), this means that

ri ≤ r′i + ri/2≤ 2k′i.

This shows that ri = O(r′i) as required, so the proof of Lemma 3.7 is complete and as stated

previously, this proves Lemma 3.5.

3.2 Modifications to prove wire lower bounds

We remark that the same observation we used to prove the wire lower bound of the

previous chapter, can be used to modify the gate lower bound we just proved. We first restate

what we would like to show.

Theorem 3.8. Let T be a threshold circuit of depth 2 computing PARITY of all n-bit inputs. Then

T has at least Ω(n3/2) wires.

We write a similar technical lemma as Lemma 3.5.

Lemma 3.9 (Lemma 3.1 from [12]). Let φ =(w,θ) be a threshold gate on n variables comprising

the variable set X. Assume that φ depends only on S ⊂ X of its inputs. Let P partition X into

equal sizes and let RP be the distributions on assignments α : [n]→{0,1,∗} that randomly fixes

all but one element of each part of P. Then

Pr
α∼RP

[ fφ (α) is not a function of at most one input] = O(|S|(|P|/n)3/2).
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Proof. We start in the same manner as in the proof of Lemma 3.5, which is to focus on a

particular assignment U and take the expectation over it. Thus we have again that

Pr
α∼RP

[ fφ (α) is a function of ≥ 1 input] = EU

[
Pr

α∼RU
[ fφ (α) is a function of ≥ 1 input]

]
. (3.5)

Like in the proof of Lemma 2.7, we can see that we’ve loosened the condition from Lemma 3.5

for which we consider a ”success”. This is because, as we argued, we can remove it from the

level it either outputs exactly the input or its negation. Thus we can apply Lemma 3.7 to get that

Pr
α∼RP

[ fφ (α) is not a function of at most one input]≤ Pr
α∼RP

[ fφ (α) is not constant]

≤ ∑
i∈U

O(1)
√

ri
.

We also observe that fφ (α) is a function on more than one input if and only if |U ∩S| ≥ 2, which

means we only need to consider U for which this is the case. Coupling this with the fact that

∑i∈U∩S
O(1)√

ri
≤ ∑i∈U

O(1)√
ri

, we have that (3.5)

≤ EU

[
Pr[|U ∩S| ≥ 2] ˙

∑i∈U∩S
O(1)
√

ri

]
= ∑

i∈S

O(1)
√

ri
·Pr [i ∈U, |U ∩S| ≥ 2] (U is now the only random variable)

≤∑
i∈S

O(1)
√

ri
·min

{
|P|
n
, ∑

i̸= j∈S
Pr[i, j ∈U ]

}
(Prob. of both ≤ min. of either)

= ∑
i∈S

O(1)
√

ri
·min

{
|P|
n
, |S| · |P|

2

n2

}
≤ 2
√
|S| ·min

{
|P|
n
, |S| · |P|

2

n2

}
(by ∑

i∈S

1
√

ri
≤ 2
√
|S|)

≤ 2
√
|S| ·

(
|S|1/2 · |P|

3/2

n3/2

)
(min{a,b} ≤

√
ab if a,b > 0)

= O

(
|S| · |P|

3/2

n3/2

)
,
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as required.

3.3 Drawbacks and challenges

Thus, as it stands we have successfully shown tight lower bounds for the size of depth 2

threshold circuits approximating parity. However, again the methods used have their limitations.

We observe that though the probability bounds given in this section were strong enough to give a

large enough number of favorable assignments our circuit could not compute parity on, to do so

required setting nearly every single variable. This essentially marks a death knell on extending

this this random restriction lemma to higher depth in its current form, as we would not have

enough variables left to set after just one iteration. All is not lost, however. In the following

chapter, we will show how we again can refine our random restriction methodology to prove

more general lower bounds.
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Chapter 4

Simplification by Biasing

We saw previously how Kane and Williams extended the bounds of Impagliazzo et al to

a new regime by making new observations on what it meant for a gate to become constant. In

this chapter, we will show how we can take this one step further, to prove correlation bounds

in the regime of arbitrary constant depth threshold circuits. The main advancement comes

from a simple observation, which is that a gate becoming constant is not the only metric for

simplification. Indeed, we saw a version of this notion when proving the wire bound in Chapter 2.

Recall that our random restriction was not itself guaranteed to simplify all the gates to constants,

rather we showed that some gates are left still with inputs to be simplified manually later.

Taking this into consideration, the advancement we will explain in this chapter is that

we will not be expecting our gates to become constant following the proper paramertization

of our random restriction. Instead, what we will expect and analyze is the probability that our

gates become highly biased. We will argue that this is in a sense ”good enough” for the bounds

we would like to show, and leads to more favorable probability of success when analyzing the

simplification of a gate or layer. We now state one of the main theorems of this section.

Theorem 4.1 (Corollary 3.1 from [4]). Fix any d ≥ 2. Assume that C is a depth-d threshold

circuit over n variables with k ≤ n1/(2(d−1)) threshold gates and let δ = k/n1/(2(d−1)). Then,

Corr(C,Parn) ≤ O(δ (1−1/d)). In particular, for any constant d, Corr(C,Parn) = o(1) unless

k = Ω(n1/2(d−1)).
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To prove this result, we need to introduce new machinery to quantify and analyze bias.

4.1 Noise Sensitivity

Recall the random experiment from the previous section.

Definition 1.1 (Blockwise Restriction). Let X be a variable set, and let P be a partitioning of X

into |P|/n consecutive blocks. Then define RP as a distribution on assignments α : [n]→{0,1,∗}

that randomly fixes all but one element of each part of P.

We used such an experiment because we thought of |P| as being a constant literal value,

which made reasoning about correlation more straightforward. In this section it will be favorable

to us in this section to now think of our assignments as being uniformly random subsets of size

pn. Recall:

Definition 1.2 (Uniformly Random Subset). We will use Rn
p to denote the distribution over

restrictions, α : {−1,1,∗} → {−1,1}, such that α(x) = ∗ with probability p and −1,1 with

probability (1− p)/2 each.

We importantly note that the two distribution are identical for pn = |P|. This will allow

us to use some of the results from the previous section here.

Definition 4.2. Let f : {−1,1} → {−,1} and p ∈ [0,1] a parameter. We define the noise

sensitivity of f with noise parameter p, NSp( f ) as follows by experiment E. Given x ∈ {−1,1}n

selected uniformly at random, construct y from x by independently negating each bit of x with

probability p. Then

NSp( f ) = Pr
(x,y)∼E

[ f (x) ̸= f (y)].

The random experiment in the aforementioned definition can also easily be expressed

over the distribution of uniformly random subbsets.

Indeed, let x,y be generated equivalently as follows:
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1. Let U be a randomly generated subset of [n], such that Pri∈[n][i ∈U ] = (1−2p). This is

our set of surviving variables.

2. Uniformly at random, generate s∼ {−1,1}U . Observe that s∼Rn
p.

3. Uniformly at random, generate x′,y′ ∼ {−1,1}[n]−U .

4. x̂ = x′ ∥ s, ŷ = y′ ∥ s.

One can verify then that Pr(x̂,ŷ)[ f (x̂) ̸= f (ŷ)] = Pr(x,y)[ f (x) ̸= f (y)], i.e. the distributions

are equivalent, which implies the following fact.

Proposition 4.3. Let f : {−1,1}n→{−1,1} be a boolean function. Then,

1. for p≤ 1/2,NSp( f ) = (1/2)Eα∼Rn
2p
[Var( f (α))].

2. for p≥ 1/n, Corr( f ,PARITYn)≤ O(NSp( f )).

One can easily discern from this that a function’s noise sensitivity is directly proportional

to its correlation with the PARITY function. We can use this proposition and a theorem of Peres

to actually show that a majority gate itself has low correlation with parity. This will serve as a

basis for the intuition behind the proof and the induction itself.

Theorem 4.4 (Peres’ Theorem, [14]). Let f : {−1,1}n→{−1,1} be any LTF. Then,

Eα∼Rn
p
[Var( f (α))] = NSp/2( f ) = O(

√
p).

Corollary 4.5. Let f : {−1,1}n→ {−1,1} be any threshold function. Then Corr( f ,Parn) ≤

O(n−1/2).

Coupled with the above definitions, Peres’ theorem essentially says that on application

of a random restriction a threshold function becomes quite biased in expectation. Considering

Fact 1.6, this means in fact that it can be well approximated by a constant function.
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Remark 4.6. One might be tempted to try to compare the random restriction lemma from Kane

and Williams with Peres’ theorem. Indeed, spoken in terms of variance, Lemma 3.5 states that

Pr
α∼R p

n
[V > 0] ≤ O(p

√
n), while Peres’ theorem can be written to say that E

α∼R p
n
[V ] ≤√p,

where V = Var( f (α)). However, it is unclear on how to obtain an equivalency between the two,

as a tool like Markov’s inequality is undefined for parameter k = 0.

We will use these relations to prove Theorem 4.1. Like in previous sections, what we

will prove in particular is the following depth reduction lemma.

Theorem 4.7. Let C be a depth-d threshold circuit with at most k threshold gates. Then for any

parameters p,q ∈ [0,1], we have

NSpd−1q(C)≤ O(k
√

p+
√

q).

This theorem comes from a similar repeated application of a random restriction for each

layer of a circuit as we saw in previous sections. Essentially, using our bound on the variance of

the bottom layer gates, we replace all of them with their closest constant approximation. We

repeat the procedure of random restriction d−1 times until the entire circuit becomes constant.

This implies that the variance of the circuit must have been small, implying the noise sensitivity

was small as well. Taken this way, we can say that Theorem 4.4 is the logical equivalent to a

kind of random restriction lemma.

For completeness, we state how Theorem 4.1 can follow quite naturally with some simple

parameterization.

Proof of Theorem 4.1. Apply Theorem 4.7 with

p =
1

n1/d

1
k2/d

,q =
k2/d

n1/d
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so that pd−1q = 1/n. This gives us

NS1/n(C)≤ O

k

√
1

n1/d

1
k2/d

+

√
k2/d

n1/d


= O

(
k1−1/d

n1/(2d)

)
.

By Proposition 4.3, Corr( f ,PARITYn)≤ O
(

k1−1/d

n1/(2d)

)
, which means that

Corr( f ,PARITYn)≤ o(1) unless k = Ω(n1/2(d−1).

4.1.1 Noise Sensitivity Bounds via Peres’ Theorem

The rest of this section is dedicated to proving Theorem 4.7. Again, using Proposition 4.3,

we will instead show that

Eαd∼Rn
pd
[Var(C|αd)]≤ O(k

√
p+
√

q)

which will immediately imply Theorem 4.7. We will proceed as in previous sections, via an

induction on d. As previously stated, the base case, d = 1 is simply Peres’ Theorem.

For d > 1, let k1 be the number of threshold gates at depth d− 1. Let us analyze the

result of a random restriction α ∼Rn
p at the bottom level. Clearly we have that

Eαd [Var(C|αd)] = Eα

[
Eαd−1

[
Var
(
(C|α) |αd−1

)]]
(4.1)

which will allow us to apply the induction hypothesis provided we can show that C|α is of depth

d−1. However, as previously stated, this is not actually necessarily true; the random restriction

regime α does not immediately simplify C|α to a depth d−1 circuit. Instead, what we will do is
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give a new depth d−1 circuit C′α and we will use the fact that the gates at the bottom are now

highly biased to show that C′α is a close approximation to C|α . We define C′α as replacing all the

gates φ |α at the bottom level of C′|α with their most probable constant bφ ,α . Recall that Peres’

Theorem gives that

Eα [Var(φ |α)]≤ O(
√

p),

so using Fact 1.6 we can write that

Eα

[
Pr

x∈{−1,1}|α−1(∗)
[φ |α(x) ̸= bφ ,α ]

]
≤ O(

√
p),

i.e. on average our replacement is inaccurate to the original gate a limited amount of times.

Union bounding over the k1 gates at the bottom gives that

Eα

[
Pr

x∈{−1,1}|α−1(∗)
[C|α(x) ̸=C′α ]

]
≤ k1O(

√
p). (4.2)

The following elementary proposition allows us to write our desired quantity in terms of

the expected variance of our new circuit.

Fact 4.8. Let f ,g : {−1,1}m→ {−1,1} and δ = Prx[ f (x) ̸= g(x). Then for any r ∈ [0,1], we

have

Eα∼Rn
r
[Var( f |α)]≤ Eα∼Rn

r
[Var(g|α)]+4δ .

Using Fact 4.8, we can rewrite (4.1) as follows:

Eαd [Var(C|αd)] = Eα

[
Eαd−1

[
Var
(
(C|α) |αd−1

)]]
(4.1)

= Eα

[
Eαd−1

[
Var
((

C′α
)
|αd−1

)]
+O(k1

√
p)
]

(Applying Fact 4.8 with (4.2))

= Eα [O(k− k1)
√

p+
√

q+O(k1
√

p)] . (Induction Hypothesis)

which simplifies to O(k
√

p+
√

q) as required, completing our induction, as well as the proof.
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4.2 A different approach

We have already seen that extending linear gate bounds to superlinear wire bounds

seemed to require marginally closer and technical analysis. This remains true in this chapter.

In fact, while we would hope to simply modify our noise sensativity result to achieve an

understanding on wire complexity, that is unfortunately not the case. Recall that in our proof of

Theorem 4.7 we union bounded over the bottom level gates to simplify the bottom level of the

circuit. Unfortunately, this bound becomes too loose for any correlation bounds if the number

of gates are superlinear, which they could be if the number of edges is superlinear. We thus

dedicate this following section to explain a new approach to prove the correlation bounds when

wire complexity is taken into account. We will show the following lower bound.

Theorem 4.9 (Theorem 4.2 from [4]). For any d ≥ 1, there is an εd = (1/2)O(d) such that any

depth-d threshold circuit C with at most n1+εd wire that satisifies Corr(C,PARITYn ≤ O(n−εd)).

4.2.1 How we might qualitatively refine noise sensitivity

As usual, we will first explain how we might try to extend the techniques or ideas of the

previous lower bound to a gate bound. Like we saw in Section 2.1, now that we have a bound on

the number of wires in our circuit, does this give us a metric by which the gates of our circuit

can be ”close” to simplification? We already saw one version of this, that is that if we can reason

about how close to constant the restricted function is, it may as well be constant in terms of its

contribution to the complexity of the circuit.

We explain how this notion can actually be extended by referring back to Peres’ theorem.

Recall that Peres’ theorem gave us that E
α∼R p

n
[V ] ≤ √p, where V = Var( f (α)). Applying

Markov’s rule arbitrarily with paramter k, this says that 1/k of the functions hit with the random

restriction, will have variance at most O(k
√

p). What does this mean? Well, now naively
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applying Chebyshev’s inequality with parameter a, we could get for such a function f that

Pr
x∈{−1,1}Supp( f )

[| f (x)−E( f (x))| ≥ a]≤
k
√

p
a2 .

And therein lies our advancement. Namely, if we could obtain some quantification of the

expected value of a threshold gate, we may be able to obtain additional savings on some of the

gates at the bottom layer. Doing this in the previous regime, where we were concerned with the

number of gates, may have been more difficult because a 1/k failure rate may have been hard to

overcome. But, as we saw in Section 2.2, we can exploit the limit on the budget of wires to show

that we can manually simplify the problem gates by setting a small number of variables.

In the following subsection, we will make plain this intuition, as well as state the random

restriction lemma that we will use in the proof of Theorem 4.9.

4.2.2 Balance: a new notion of bias

Although we just described how we might use Chebyshev’s Inequality and the expected

value of the threshold function to refine the proof of Theorem 4.7, there is actually a better way,

one that does away with the somewhat bothersome fact that a threshold function has a signed

output.

Recall that idea behind using Lemma 3.6 was to bound the probability our gates became

constant under the author’s random restriction. They became constant because the random

restriction was likely to set the variables of the function in such a way that the linear function

on the remaining variables had no inputs that could exceed (or precede) the threshold. In other

words, the threshold of the resulting function θ ′ was greater in magnitude than the maximum

value of the linear function on the remaining weights (w′). This intuition can be generalized, i.e.

if the threshold value is much larger than the average sum of the weights of the threshold gate, it

will intrinsically be highly biased.

Lemma 4.10 (Modified Chernoff Bound). Let w ∈ Rn be arbitrary and x is chosen uniformly
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from {−1,1}n. Then

Pr
x
[|⟨w,x⟩| ≥ t ∗∥w∥2]≤ exp(−Ω(t2)).

This immediately leads to our new notion of bias.

Definition 4.11 (t-Imbalance). We say that a threshold gate f = (w,θ) is t-imbalanced if

|θ | ≥ t ∗∥w∥2 and t-balanced if |θ |< t ∗∥w∥2.

Now we have all we need to state the author’s random restriction lemma.

Lemma 4.12 (Lemma 4.4 in [4]). The following holds for some absolute constant p0 ∈ [0,1].

For any threshold gate f over n variables with label (w,θ) and any p ∈ [0, p0], we have

Pr
α∼Rn

p

[
f (α) is not

1
pΩ(1)

-balanced
]
≤ pΩ(1).

We defer the proof of this lemma to a later section. For now, we would like to prove the

last main theorem of this thesis.

4.2.3 Using balance to achieve correlation bounds

The proof of Theorem 4.9 will be an induction on the depth of d. The base case d = 1 of

a single majority gate is already proven via Peres’ theorem (see Corollary 4.5). For the induction

step, d > 1, first define parameters in terms of a large enough constant B:

ε = B−2d−1 δd = Bεd p = n−δd/2

t = p−1/3 q = 1
t D = 1

6 .

Let C be a circuit on n variables with n1+εd wires. We want to calculate Corr(C,PARITYn) in

terms of a lower depth circuit Cd−1 on nd−1 variables such that

n1+εd ≤ n1+εd−1
d−1 .

We will do this in multiple steps. First, consider the random assignment α = (A,U,w)∼Rn
p.

Like in the proofs of Theorems 3.9 and 4.1, if applied to the circuit C this random restriction will
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intrinsically trivialize some gates so we can remove/replace them in the circuit without losing

too much correlation with the original circuit. The gates that are not easily simplified will have

to be simplified manually by setting all the wires into these gates like in Section 2.2.

We first argue that we will not need to set many variables for these problem gates in

expectation. To that end, we divide the gates at the bottom level into two classes, small and

large. These, we will analyze separately, counting how many wires we need to set for each class.

We will show that the small gates are likely to already become constants or single-wired gates

(except for the ones we will have to simplify manually) while the large gates are likely to become

biased. Let S,L be the indices of such gates where

i ∈


S if FanIn( fi)≤ p−D

L if FanIn( fi)> p−D
.

where D is a parameter we will optimize later.

We will also assume that the variable sets of our restriction (A,U) can be considered as

somewhat ”generic”. This will allow us to ensure we have favorable bounds on both the total

number of unassigned variables we start with and the possible number of variables we will need

to set later.

Claim 4.13. Let α = (A,U,y) be as was just defined. Call (A,U) a generic restriction set if the

following is true for α:

1. Let φi be a large gate in the bottom level such that i ∈ L. Then FanIn(φ |α))≤ 2pFanIn(φ).

2. |U | ≥ np
2 .

Let Gα be the event that a restriction is generic. Then

Pr
α
[¬G ]≤ exp(−nΩ(δd)).

40



Proof of Claim 4.13. We want to analyze the probability that a given restriction set (A,U) is not

generic. We have two criteria we need to check:

1. i ∈ L→ FanIn( fi|α) ≤ 2p ∗FanIn( fi). Since each variable is set to some constant with

probability 1− p, E[FanIn( fi|α)] = p ·FanIn( fi). The expected fan-in of each gate is at

least p−D = nDδ/2. By applying a Chernoff bound (Theorem 1.3), we have

Pr[FanIn( fi|α)> 2p ·FanIn( fi)]≤ exp(−Ω(4nDδ/2)).

2. |U | ≥ np
2 . We similarly apply another Chernoff bound to get that

Pr[|U |< np
2
]≤ exp(Ω(np)).

We combine the above quantities, using a union bound over the large gates for item 1. (Note that

there can be at most n1+εd

p−D = n1+εd−Dδd/2 = ℓ large gates) to get

Pr
α
[¬G ]≤ ℓexp(Ω(−nDδd/2))+ exp(Ω(np))≤ exp(−nDδd/4)≤ nΩ(δd))

for large enough B.

Since there are many generic restrictions, assuming our random restriction is on a generic

set does little to the success probabilities of our random restriction lemmas (Lemmas 4.12 and

3.9). This leads to the following claim.

Claim 4.14. For i ∈ L,

Pr
α
[ fi(α) is not q-imbalanced |G ]≤ 2q,

and for i ∈ S

Pr
α
[ fi(α) is a function of > 1 input |G ]≤ 2p3/2 p−D.

Proof of Claim 4.14. We leave the reader to verify this using Claim 4.13.
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This will allow us to bound the number of variables we need to set for the problem gates.

We write for i ∈ S

Y S
i =


0 if fi(α) is not constant or single wired

FanIn( fi(α)) otherwise
,

and for i ∈ L,

Y L
i =


0 if fi is not q-imbalanced

FanIn( fi(α)) otherwise
.

Thus the number of wires we need to set for each group is Y S = ∑iY S
i ,Y

L = ∑iY L
i and Y =

Y S +Y L.

Claim 4.15. Let Y be as above. Then,

E[Y | G ]≤ 4p4/3 · (n1+εd).

Proof of Claim 4.15. As alluded to, we will consider small and large gates separately.

1. Large gates, i.e. fi ∈ L.

Recall that since we conditioned on our restriction being generic FanIn( fi(α)) could be at

most 2p ·FanIn( fi(α)). Thus

E[Yi|G ]≤ (2p∗FanIn( fi(α))∗Pr
α
[ fi(α) is not q-imbalanced |G ]≤ 4pq∗FanIn( fi(α))

where the second inequality follows from Claim 4.14. Then using linearity we have that

E[Y L | G ]≤ 4pq ∑
i∈L

FanIn( fi(α)).

2. Small gates, i.e. fi ∈ S.
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Again using Claim 4.14 and linearity, we have

E[Y S | G ]≤ 2p3/2 p−D
∑
i∈S

FanIn( fi(α)).

Taking the two together, we have that

E[Y |G ]≤ 4pq ·∑
i∈L

FanIn( fi(α))+ p3/2 p−D
∑
i∈S

f anin( fi(α))

≤max
{

4pq,2p3/2 p−D
}
·n1+εd ≤ 4p4/3 · (n1+εd)

because we have that 4pq = 4p4/3,2p3/2 p1/6 = 2p4/3.

We want specifically to condition on the expectation from Claim 4.15 being achieved

(within a q factor), so that we can simplify the bottom level as we have stated above. Using

Markov’s inequality (Theorem 1.4), we can argue that the fraction of inputs on which this does

not occur is small enough not to affect our result.

Claim 4.16. Fix a generic set (A′,U ′). Call α1 = (A′,U ′,y) a ”good” restriction if fC(α) is such

that the total fan-in into large t-balanced gates or small non-constant/single-wire gates is at most

µ/
√

q. Then

Pr
y∈{−1,1}A

[α1 is not good]≤ 2
√

q.

This ensures us that we will be able to take care of all the problem gates. We now move

onto simplifying the circuits on the so-called ”good” restrictions. Using Lemma 4.12, we have

that many of them will become highly biased, allowing us to set them to constants as we did in

the proof of Theorem 4.1. We will use the following claim:

Claim 4.17. Let C|α1 be the circuit restricted to any good restriction α1. Then there is a circuit

C′ which replaces all the t-imbalanced gates of Cα1 with their most probable constant such that

Pr
x
[C|α1(x) ̸=C′(x)]≤ exp(n−εd).
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Proof of Claim 4.17. What we will do is set all t-imbalanced gates to their most probable

constants. Formally, consider a t-imbalanced threshold gate f = (w,θ). By definition |θ | ≥

t · ∥w∥2. Replace the t-imbalanced gates fi with constant gates bi such that

bi =


1 if θ ≥ t · ∥w∥2

−1 if −θ ≥ t · ∥w∥2

.

This transforms C|α1 into C′. Note that C|α1(x) ̸=C′(x) iff there is a t-imbalanced threshold gate

such that fi(x) ̸= bi(x). By the Chernoff bound (Theorem 1.3), we have

Pr
x∈{−1,1}

[ fi(x) ̸= bi(x)]≤ exp(−Ω(t2))≤ exp(−nΩ(δd)).

Union bounding over the maximum n1+εd gates

Pr
x∈Rn

[C|α1(x) ̸=C′(x)]≤ n1+εd · exp(−nΩ(δd))≤ exp(−nεd).

All that is left is to then simplify C′, which is now guaranteed to be only small gates and

large t-balanced gates. As this is the last step, we show how to simplify C′ and prove the main

theorem all together.

Completion of Theorem 4.9. Recall that we wanted to calculate Corr(C,Parityn) in terms of a

low depth circuit Cd−1. First, observe that the generic set from Claim 4.13 defines a restriction
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tree TA′ such that by Fact 1.7, we can write

Corr(C,PARITYn)≤ Eℓ∼TA′
[Corr(C|αℓ

,PARITY|U ′|)]

≤ 2
√

q+ max
αℓ good

[Corr(C|αℓ
,PARITY|U ′|)] (By Claim 4.13)

≤ 2
√

q+Corr(C′,PARITY|U ′|)+ exp(n−εd) (Claim 4.17)

≤ 2n−εd +Corr(C′,PARITY|U ′|)

where C′ has no t-imbalanced gates. Since αℓ was a good restriction, we also have total fan-in

into the problem gates of C′ is at most µ/
√

q. Thus, we can generate another restriction tree

T2 that is not random, that sets the the inputs to all the large t-balanced gates and all the small

non-constant/not-single-wire-gates. Applying Fact 1.7 again, we have

Corr(C,PARITYn)≤ 2n−εd +Eℓ2∼T2[Corr(C′|ℓ2,PARITY|U ′|− µ√
q
)]. (4.3)

However, by definition, all C′|ℓ2 are depth d−1.

How many variables survived in our series of restrictions? At least pn/2 survived the

original restriction, and to clean up the remaining problem gates we set at most µ/
√

q more.

µ/
√

q = 4p7/6 ∗n+εd

µ/
√

q≤ 4np∗nεd−Bεd

which is at most half the variables we set in the first restriction, for B large enough. This means

at least n1 = pn/4 variables survived in total. How many wires does the circuit have? We would

like it to have n1+εd−1
1 for

εd−1 = B−2(d−1)−1

so that we can use our induction hypothesis. We leave that to the reader to verify. Thus, we have
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that

Corr(C′|ℓ2,PARITY|U ′|− µ√
q
)≤ nεd−1

by our induction hypothesis and plugging this into (4.3) completes the induction.

4.2.4 Proving the main restriction lemma

In this section, we give the promised proof of the main random restriction lemma of this

section. We state it again as a reminder.

Lemma 4.12 (Lemma 4.4 in [4]). The following holds for some absolute constant p0 ∈ [0,1].

For any threshold gate f over n variables with label (w,θ) and any p ∈ [0, p0], we have

Pr
α∼Rn

p

[
f (α) is not

1
pΩ(1)

-balanced
]
≤ pΩ(1).

As was the case in Chapter 3, the quantity we are concerned with ∥w′∥2 is determined by

the result of a random sum, w′ = Θ−∑i wixi. Thus, we can utilize a similar anti-concentration

bound, one that is a special derivative of the Berry-Essen Theorem.

Proposition 4.18 (Anticoncentration for regular linear functions). Let x1, ...,xn denote indepen-

dent uniformly ±1 and let w1, ...,wn ∈ R. Write σ =
√

∑i w2
i , and assume that |wi|/σ ≤ τ for

all i. Then for any interval [a,b]⊂ R,

|Pr[a≤ wixi + ·+wnxn ≤ b]−Ψ

([
a
σ
,

b
σ

])
| ≤ 2τ,

where Ψ([c,d]) := Ψ(d)−Ψ(c). In particular,

|Pr[a≤ wixi + ·+wnxn ≤ b]≤ |b−a|
σ

+2τ,

Observe that this result presumes a certain ”niceness” of the gate we are analyzing, which

is that its weights are, in a sense, regularly spread (|wi|/∥w∥2 ≤ 2τ). Functions of this kind can

46



be thought of as being essentially the majority function, which proves to be the easiest case to

prove for Lemma 4.12.

To that end, we first give a proof of Lemma 4.12, assuming the gate is the majority gate.

Proof of Lemma 4.12: Majority. Denote t = 1
pΩ(1) . Majority is the easy case because in reference

to the parameters of Proposition 4.18 are already known: σ =
√

n,τ = 1√
n for an n-input

MAJORITY function.

Let f = (θ ,w) be an n bit Majority gate. Consider a random restriction α where

A,U ⊂ [n] are the indices of the assigned and unassigned variables. This time let Pr[x ∈U ] = p

with uniform probability, and let assigned variables be assigned values ±1 with equal probability.

Let f (α) = (θ ′,w′),θ ′ = θ −∑i∈A xiwi, and w′ be the weights of the surviving variables. For

ease of notation relating to Proposition 4.18, we will write ∑i∈A xiwi as ⟨y,w′′⟩ where y = α(A)

and w′′ are the weights associated with the assigned variables. In essence what we want to show

is to bound the probability that θ < t∥w′∥2.

We first observe that Eα [∥w′∥2
2] = p ∗ ∥w∥2

2 = pn. Since the probability that a given

variable (and its corresponding weight) survives is independent of the others, we can use

Chernoff bounds to get

Pr[∥w′∥2
2 ≥ 2p∗∥w∥2

2]≤ Pr[∥w′∥2
2 ≥ 2pn]≤ exp(−n/4). (4.4)

Thus, we have Pr [ f (α) is not t-balanced]≤

Pr
[

f (α) is not t-balanced | ∥w′∥2
2 ≥ 2p∥w′∥2

2
]
+1 · exp(−n/4),

so for the rest of the proof we will assume assume that ∥w′∥2
2 > 2p∗∥w∥2

2. This allows us to
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write

∥w′∥2
2 < p∗∥w∥2

2

∥w′∥2 <
√

p∗∥w∥2
2

∥w∥2−∥w′′∥2 <
√

p∗∥w∥2
2

=
√

2p∥w∥2

∥w∥
√

1−2p < ∥w′′∥2√
n/2≤ ∥w′′∥2. (Choose p < p0 accordingly)

Thus since ∥w′′∥2 ≥ ∥w∥/2, we have by our earlier assumption that

∥w′∥2 ≤ 4
√

p∥w′∥. (4.5)

Recall that we had by definition the relation

|θ ′| ≥ t∥w′∥2

|θ −⟨w′′,y⟩| ≥ t∥w′∥2

≥ t ·4√p∥w′′∥2. (By (4.5))

Our final step is to use our anti-concentration theorem to bound the probability that this occurs.

Again, we want to bound Pr[|θ −⟨w′′,y⟩| ≥ t∥w′∥2], which we write as the probability that
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⟨w′′,y⟩ lies in a ”bad” interval. Pr[|θ −⟨w′′,y⟩| ≥ t∥w′∥2]

= Pr[⟨w′′,y⟩ ∈ [θ −4t
√

p∗∥w′′∥2,θ +4t
√

p∗∥w′′∥2]] (By definition)

≤
4t
√

p∥w′′∥2

∥w′′∥2
+2τ (By Proposition 4.18) (4.6)

≤ 4t
√

p+
1

2
√

n
.

Since 1
2
√

n → 0, this completes our proof because we thought of t = 1
pΩ(1) .

Biasing general Linear Threshold Functions

We now continue to prove Lemma 4.12 for general threshold functions. The main idea

behind the proof is to them into one of three kinds:

1. Gates where the weights are evenly spread, such that none of their variables have too much

weight (called regular; these can be thought of as being similar to MAJORITY)

2. Gates that are top heavy, and have some critical variables with large weight. We then

sub-divide these gates into

(a) Gates where the large weight is concentrated in only a few variables.

(b) Gates where the large weight is concentrated in relatively many.

We now formalize regularity and criticality.

Definition 4.19. Let ε ∈ [0,1] be a real parameter. We say that w ∈ Rn is ε-regular if for each

i ∈ [n], |wi| ≤ ε ∗∥w∥2. Assume now that the coordinates of the vector are sorted by decreasing

magnitude (|w1| ≤ |w2| ≤ · · · ≤ |wn|), then the ε-critical index of w,K = K(ε) is the least index

such that w≥K+1 is ε-regular. Sometimes we will refer to the variables removed as critical

variables. K = 0 if w is already ε-regular and K = n if there is no such index that makes w≥K+1

ε-regular. Accordingly, a gate f = (w,θ) is ε-regular if w is, and it’s ε-critical index is defined

to be the ε-critical index of w.
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We now sketch the proof of Lemma 4.12 for each of these cases. We define

ε
′ ≤ p1/8, L = L(ε ′) =

100log2(1/ε ′)

(ε ′)2

to differentiate the cases. Assume that p≤ p0 such that p1/8 ≤ 1√
16log(1/p)

.

1. Case 1: ε ′-regular functions.

Proof. One can refer simply to the proof from the previous section, replacing the values

for the weights in (4.4) and (4.6)) with ∥w∥2 and ε ′ respectively. We leave it up to the

reader to verify the calculations.

2. Case 2a: f is NOT ε ′-regular and has critical index K ≤ L (bounded number of critical

variables).

Proof. What we would like to show is that since there are relatively few critical variables,

it is very likely that we set all of them, meaning that the resulting function is itself regular

(we can appeal to the regular case). To that end, let

Bc,ℓ(α) be the event that U contains at least c of the ℓ most critical variables.

Then, by definition

Pr
α
[Bk,ℓ(α)]≤ (epℓ/k)k (4.7)

because there are
(ℓ

k

)
≤ (eℓ/k)k many subsets of the critical variables, each with pk chance

of remaining unassigned in U . The event that we leave any critical variable free B1,K(α)

then has probability epK ≤ epL≤√p of occurring so we have

Pr [ f |α is not t-imbalanced]≤ Pr[B1,K]+Pr
[

f |α is not t-imbalanced|¬B1,K]
≤√p+Pr

[
f |α is not t-imbalanced|¬B1,K] . (4.8)
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We can think of all the critical variables as being set ”first”, since they are done indepen-

dently, so our analysis of the previous case can be applied to the restriction alpha giving

us

Pr [ f |α is not t-imbalanced]≤√p+ pΩ(1) ≤ pΩ(1).

3. Case 2b: f is NOT ε ′-regular and has critical index K > L (possibly many critical vari-

ables).

Proof. We start again in the same vein as (4.8):

Pr [ f |α is not t-imbalanced]≤ Pr[B1,L]+Pr
[

f |α is not t-imbalanced|¬B1,L]
≤√p+Pr

[
f |α is not t-imbalanced|¬B1,L] . (4.9)

Again, we condition on a fixed I so that B1,L does not occur. Let L0 =(1/(ε ′)2) ·3log(1/ε ′).

Claim 4.20. Let i < L−L0. Then:

∥w≥(i+L0∥
2
2 ≤

(ε ′)2

9
· ∥w≥i∥2 ≤ w2

i
9
.

We leave the proof of this claim to the reader. We can get from it the following Corollary.

Corollary 4.21. Let i1 = 1, i2 = 1+L0, · · · , ir+2 = 1+(r+1)L0 ≤ L′. Then

wi j+1 ≤
wi j

3
and ∥w≥i j+1∥

2
2 ≤

(ε ′)2

9
· ∥w≥i j∥

2
2

where r is maximized by 10log(1/ε ′).

Essentially what this says is that there is a geometric drop off of the weights and their
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volume. Thus, we can bound the weights of the unassigned variables, because we know

that at least the top L heaviest weights were not in the unassigned set. Again, let A,U be

the assigned and unassigned variables. Then

∑
i∈U

w2
i ≤ ∥w≤L∥2

2

≤ ∥w≥L∥2
2

≤ ∥w≥ir+2∥
2
2 (By Corollary 4.21)

≤ (ε ′)2

9
∥w≥ir+1∥

2
2

≤ (ε ′)2

81
w2

ir . (By Claim 4.20) (4.10)

Recall that our original goal was to understand how the threshold of the restricted function

θ ′ related to the norm of the remaining weights. In the case of the regular function/Majority,

we wrote θ ′ = θ −∑ı∈A xiwi. we condition on setting all the variables in A other than

xi1, ...,xir which we know also must have been assigned and we let Θ = θ −∑ j ̸∈[r]wi jyi j ∈

R. Then

θ
′ = Θ− ∑

j∈[r]
wi jyi j . (4.11)

The probability that the function is not t-imbalanced is at most

Pr
xi1 ,...,xir

[
|θ ′| ≤ 1

p16

√
∑
i∈U

w2
i

]
≤ Pr

xi1 ,...,xir

[
|θ ′| ≤ 1

9
|wir |

]
(By (4.10), ε

′ = p1/8).

Finally, we plug in for (4.11) to get that this probability is at most:

Pr
xi1 ,...,xir

[
r

∑
j=1

wi jxi j ∈ [Θ− 1
9
|wir |,Θ+

1
9
|wir |]

]
.

One can verify that there can be at most one choice of xi1, ...,yir such that ∑ j wi jyi j lies in

the required interval (see [5], Claim 5.7). Thus, Pr
[

f |α is not t-imbalanced|¬B1,L]2−r ≤
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(ε ′)10 ≤ p meaning Pr [ f |α is not t-imbalanced]≤√p+ p as required.

4.3 Conclusion and next steps

In this chapter, we showcased the latest results concerning size-depth tradeoffs for

constant depth threshold circuits. However, in this thesis, we explained how such results came to

be, as a progression and refinement of a limited number of tools. This speaks especially to the

power of random restriction techniques in proving circuit lower bounds in general.

However, as mentioned by all the main authors discussed in this thesis, in this regime such

techniques seem to be nearing the limits of what is possible given known upper bounds. Despite

this there are still many questions one could pose following the results explained in this chapter.

For example, is the refinement (that is shifting our focus to gate constancy to gate bias) given

in this chapter applicable in other situations? Does it, in fact, give a quantitative or qualitative

improvement over the standard technique? In the same vein, are there other approaches to gate

simplification that have not been considered? In the future, we would like to look more into

answering these questions and others.
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