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ABSTRACT OF THE DISSERTATION

Unseen Object Perception for Robots

by

Darren M. Chan

Doctor of Philosophy in Computer Science

University of California San Diego, 2021

Professor Laurel D. Riek, Chair,

Robots have tremendous potential to help us in our daily lives. However, one

key obstacle to facilitating their autonomy is that they lack the ability to perceive novel,

or unseen objects. The de-facto solution to this problem is to pre-program robots using

a large corpus of prior-known objects in hope that they will understand every object

that they encounter. However, if robots need to understand new objects, they must be

manually re-programmed to do so, which has proven to be time consuming and expensive,

and is fundamentally intractable. Alternatively, a more direct approach to this problem is

to leverage a robot’s context, e.g., its immediate surroundings, which can be a rich source

of information from which to learn about unseen objects in a scalable manner.
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The goal of my research is to design algorithms and systems that enable robots

to automatically discover unseen objects from their surroundings in a manner that is

fast and robust to real-world vision challenges. In this dissertation, I discuss four key

contributions of my work. First, I designed Salient Depth Partitioning (SDP), a novel

depth-based region cropping algorithm which substantially improves the computation

time of existing object detectors by up to 30%, with no discernible change in accuracy.

SDP achieves real-time performance and is designed to give robots a better sense of

visual attention, guiding them to visual regions that are likely to contain semantically

important elements, which are also known as salient. Consequently, SDP can be used as

a preprocessing algorithm to improve the computational efficiency of depth-based object

detectors on mobile robots.

Second, I demonstrated that object proposal algorithms, a ubiquitous algorithmic

component in machine vision systems, do not translate well to real-world contexts, which

can negatively impact the performance of robots. I conducted a study to explore how algo-

rithms are influenced by real-world robot vision challenges such as noise, blur, contrast,

and brightness. I also investigated their performance on hardware with limited memory,

CPU, and GPU resources to mimic constraints faced by mobile robots. To my knowl-

edge, I am the first to investigate object proposal algorithms for robotics applications.

My results suggest that object proposal algorithms are not generalizable to real-world

challenges, in direct contrast to what is claimed in the computer vision literature. This

work contributes to the field by demonstrating the need for better evaluation protocols

and datasets, which will lead to more robust unseen object discovery for robots.

Third, I developed Unsupervised Foraging of Objects (UFO), a novel, unsuper-

vised method that can automatically discover unseen salient objects. UFO is substantially

faster than existing methods, robust to real-world noise (e.g., noise and blur), and achieves

state-of-the-art performance. Unlike existing approaches, UFO leverages object propos-
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als and a parallel discover-prediction paradigm. This allows UFO to quickly discover

arbitrary, salient objects on a frame-by-frame basis, which can help robots to engage in

scalable object learning. I compared UFO to two of the fastest and most accurate methods

(at the time of writing) for unsupervised salient object discovery (Fast Segmentation and

Saliency-Aware Geodesic), and found it to be 6.5 times faster, achieving state-of-the-art

precision, recall, and accuracy. Furthermore, I show that UFO is robust to real-world

perception challenges encountered by robots, including moving cameras and moving

objects, motion blur, and occlusion. This work lays the foundation for faster online object

discovery for robots which contributes toward future methods that will enable robots to

learn about new objects via observation.

Fourth, I designed RaccooNet, a new real-time object proposal algorithm for

robot perception. To my knowledge, RaccooNet is the current fastest object proposal

algorithm at a runtime of 47.9 fps while also achieving comparable recall performance to

the state-of-the-art (e.g., RPN, Guided Anchoring). Additionally, I introduced a novel

intersection over union overlap confidence prediction module, which allows RaccooNet

to recall more objects using a lesser number of object proposals, thus improving its

efficiency. I also designed a faster variant, RaccooNet Mobile, which is over ten times

faster than the state-of-the-art (171 fps). Conducting experiments on an embedded device,

I demonstrated that my algorithm is suitable for computationally resource-constrained

mobile robots. I validated RaccooNet and RaccooNet Mobile on three real-world robot

vision datasets (e.g., RGBD-scenes, ARID, and ETH Bahnhof) and showed that they are

robust to vision challenges, for example, blur, motion, lighting, object scale. This work

contributes to the field by introducing a real-time object proposal algorithm, which will

serve as a foundation to new real-time object discovery methods for mobile robots.

Summarizing my doctoral research, my work contributes to building real-time

object perception systems that can be deployed on real-world robotic systems that operate

xviii



in the wild. This work will ultimately lead to more scalable object perception frameworks

that can learn directly from the environment, on-the-fly. Moreover, my research will allow

roboticists to build smarter robots that will one day become more seamlessly integrated

into our daily lives, and become the useful machines that we envisioned for our future.
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Chapter 1

Introduction

Robots have the potential to transform society in ways that can improve the

daily lives of people. For example, robots can provide social assistance to support

people with cognitive impairments and their caregivers [143, 78, 109], and provide

personalized training and treatments [110, 228]. In clinical settings, robots can assist and

train healthcare workers [211, 144, 168, 213, 142]. More generally, they can assist people

with day-to-day tasks such as cooking and cleaning [12], worker support [220, 230], or

even provide companionship [17, 76, 159].

However, before robots are ready to transition to these domains, they will need

a robust understanding of their surroundings so that they can make coherent decisions

while maintaining a safe environment for people [163, 181, 28, 94, 151, 149].

It is particularly challenging to build robots that can operate robustly in human

spaces, because they are prone to change frequently and little can be known about them

in advance [180, 234, 212] (Figure 1.1). For instance, people are prone to constantly

interact with their surroundings, which can cause the context, objects, and environment

to change quickly over time [67, 180, 149, 204, 197]. Moreover, variations in appearance

(and function) between objects, places, and people can be difficult to understand, and
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Figure 1.1: Recently, mobile robots and autonomous vehicles are successfully transi-
tioning to human spaces, where it is easy to perceive objects and people around them
(left column). However, in more cluttered and chaotic environments, enabling robots to
perceive objects and people around them is not straight-forward (right column). Image
references shown in clockwise order starting from upper left: [183, 171, 93, 150]

even more difficult to computationally model. Consequently, robots need to be adaptable

to these factors.

One key challenge that prevents robots from adequately understanding their

surroundings is that they cannot perceive novel objects. This innate ability is one that

people often take for granted, since we can seamlessly discern when objects are unfamiliar

to us, and moreover reason about them. When encountering novel objects, we can make

sense of their shape and form, and also hypothesize their functions using our knowledge

about prior known objects. For example, a person might be unfamiliar with what an

eighteenth-century carbon microphone looks like, and might not be able to immediately

identify one when presented (shown in Figure 1.2, left). However, they might be able to

associate it with modern-day microphones (shown in Figure 1.2, right) by observing the

parts and attributes that they have in common (e.g., diaphragm, ability to input sounds)

[182, 198].
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Figure 1.2: An antique carbon microphone [177] (left) and modern dynamic micro-
phone [156] (right). Despite looking very different, we can infer that they have common
attributes such as a diaphragm and ability to input sounds. However, most computer
vision systems cannot easily perceive novel objects in this way.

If perhaps people stumble upon novel objects that have no resemblance to prior-

known objects, their curiosity can inspire them to interact and learn about them [74]. This

capability allows us to discern how objects can be useful to us and ultimately enables us

to expand our knowledge about the physical world [184]. For example, if a person were

to have never seen a microphone, they might interact with one to learn its utility as a tool

(i.e., one that captures sound), which can then later be applied to solve more complex

problems (e.g., its utility as a sensor for a robot to acquire speech). While this ability to

learn about novel objects might be easy for people, robots are unable to do the same.

In addition to increasing their capacity to learn from their surroundings, enabling

robots to perceive novel objects is critical to their performance and autonomy in real-

world environments. For instance, robots will be able to perform more robustly and

independently if they are able to reason about unfamiliar objects that might be helpful

to their tasks (e.g., appraising items, identifying entities that can be manipulated). Con-

sequently, until robots are equipped with the intelligence to perceive novel objects and

learn about them in a scalable manner, their comprehension of the world and their ability
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to adapt to it remains constrained.

1.1 Motivation and scope

Robots are typically equipped with one or more cameras that allow them to

perceive their surroundings as a sequence of images. Computer vision algorithms then

process these images to enable robots to gather information about their environment. In

particular, object detection algorithms (i.e., object detectors) are often used to support

their ability to visually perceive nearby objects, which can inform them about possible

actions to take (e.g., which objects to inspect, which objects to interact with). However,

object detectors are predominantly designed with the assumption that all objects must fit

within a set of predetermined categories, or classes, which organize objects by common

properties such as appearance or function. When objects are visually dissimilar from

those seen in training, or do not fall into any one of these predefined classes, i.e., unseen

objects, they are either misclassified or completely ignored. Consequently, existing

object detectors constrain robots to perceive a limited set of items, which hinders their

intelligence.

Some researchers address the problem of detecting unseen objects, i.e., unseen

object discovery, where the goal is to recover the boundaries of some generic object in im-

age sequences. The most common approaches require some degree of semi-supervision,

for example, manually annotating an object in at least one image from the sequence.

This annotation then provides a training example (e.g., one-shot object learning), so that

the object can be discovered at later points of the image sequence or across multiple

viewpoints [31, 225]. However, these methods are intractable for robots because they

require a human to manually initialize them (i.e., provide the annotation) each time that a

robot encounters an unseen object.
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To date, there is little work that addresses unseen object discovery in an automatic

manner that is suitable for robots. The most recent and closely related methods function

by uniformly sampling key features (e.g., optical flow boundaries) across bounded image

sequences [227, 158]. Subsequently, many methods use constrained optimization to

compute object boundaries that correlate to unseen objects. While these methods are

accurate, they often require a large number of image frames that need to be post-processed

(i.e., computed offline) before object discovery can occur, making them prohibitively

slow for real-time robot perception [158]. Consequently, these approaches can disrupt

reactive decision-making behaviors of robots, which are essential for time-sensitive tasks

(c.f., [94]).

Designing algorithms to discover unseen objects is challenging. This problem is

oftentimes ambiguous, having multidisciplinary underpinnings in fields such as computer

science, cognitive science, psychology, and philosophy. Thus, there are a number

of diverse and sometimes divergent theories about how this problem should be best

approached. While there are many facets to this problem, this dissertation explores

how to design unseen object discovery algorithms for robots using computational

methods. Specifically, this dissertation explores several themes:

• How to design algorithms that can discover generic objects by exploiting low-level

sensory information.

• How to enable robots to selectively tune their vision to objects that are potentially

meaningful or useful.

• How to design algorithms that are fast for real-time robot perception.

• How to design perception algorithms for ubiquitous vision sensors and systems.

• How to design robot vision algorithms that are robust to real-world vision chal-
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lenges such as noise, blur, or camera motion.

• How to validate the real-world performance of robot and computer vision algo-

rithms.

1.2 Contributions

The contributions of this work are as follows:

• Developed a new computationally efficient algorithm, Salient Depth Partition-

ing (SDP), which extracts regions of interest from color and depth (RGB-D)

images [28]. SDP serves as a basis for “where a robot should look” and is a

preliminary step to object detection, to reduce computation time and minimally

affect detection accuracy. This algorithm requires no a priori knowledge of the

environment, or reliance on geometric constraints, and can work with existing

object detectors given any calibrated RGB-D image. SDP was tested with four

state-of-the-art detectors (HOG and SVM [39], Aggregate Channel Features [50],

Checkerboards [243], and RCNN [73]), improving computation time by up to

30%, with no discernible change in accuracy. When deployed on computationally-

constrained robots, SDP can serve as a preprocessing algorithm to improve the

efficiency of RGB-D object detectors.

• Conducted an investigation on object proposal algorithms to demonstrate

that the standard evaluation dataset is flawed for generalizing algorithm per-

formance, particularly within the context of robotics [25]. This study was the

first to conduct an evaluation of object proposal algorithms on robot vision datasets,

to gain insight into how they perform in more realistic settings with real-world

vision challenges. It also includes a controlled study to see how object proposal
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algorithms perform when exposed to image perturbations (i.e., brightness, gamma

correction, Gaussian blur, and Gaussian noise), reflecting robot vision challenges.

This is also the first study that considers algorithm execution time on portable hard-

ware, showing that most algorithms are suitable for real-time robotics applications.

This research ultimately shows that many prevailing object proposal algorithms

are not as generalizable as the computer vision literature purports, which can

profoundly impact how they perform in real-world robotic systems. The results of

this work will be useful to the robotics community, which can be used to gauge

performance and computation time trade-offs.

• Developed a novel salient object discovery method Unsupervised Foraging of

Objects (UFO), which is designed for monocular robot vision [26, 27]. UFO is

designed with a parallel discovery-prediction paradigm, permitting it to discover

arbitrary, salient objects on a frame-by-frame (i.e., online) basis, which can help

robots to engage in scalable object learning. UFO is 6.5 times faster than the two

current fastest and most accurate methods (at the time for writing) for unsupervised

salient object discovery (Fast Segmentation [158] and Saliency-Aware Geodesic

[227]), achieving state-of-the-art precision, recall, and accuracy. Furthermore, UFO

is robust to real-world robot perception challenges, including moving cameras and

moving objects, detractor objects, motion blur, and occlusion. This work ultimately

lays the groundwork for enabling robots to learn about new objects on-the-fly.

• Developed a new real-time deep learning-based object proposal algorithm,

RaccooNet, which is designed for mobile robot perception applications. Rac-

cooNet is the only method capable of true real-time performance (at time of writ-

ing), which is approximately three times faster than the currently top-performing

object proposal algorithms at 47.9 frames per second (fps). Additionally, this
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research led to RaccooNet Mobile, which at 171 fps, is approximately ten times

faster than top-performing methods. RaccooNet achieves state-of-the-art recall

performance for a variety of real-world robot perception challenges, including

camera motion, blur, and noise, across a range of dynamic scenes. This research

also introduced a novel intersection over union (IoU) overlap confidence prediction

module, which improves object proposal algorithm efficiency. The ideas introduced

in this work is foundational toward future research in deep learning-based real-time

object discovery algorithms.

1.3 Publications

Some of the work presented in this dissertation is based on the following pub-

lications; some of the work in this dissertation is based on research that has yet to be

published.

1. Chan, D. M. and Riek, L. D. (2021). RaccooNet: Real-time Object Proposal

Generation for Robot Vision. In review.

2. Chan, D. M. and Riek, L. D. (2020). Unseen Salient Object Discovery for Monoc-

ular Robot Vision. IEEE Robotics and Automation Letters (RA-L). Also appears

in IEEE International Conference on Robotics and Automation (ICRA).

3. Chan, D. M. and Riek, L. D. (2019). Object Proposal Algorithms in the Wild:

Are they Generalizable to Robot Perception? In Proceedings of the IEEE/RAS

International Conference on Intelligent Robots and Systems (IROS).

4. Chan, D. M. and Riek, L. D. (2019). Unsupervised Salient Object Discovery for

Robots. In Proceedings of Robotics: Science and Systems (RSS) Pioneers.
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5. Taylor, A., Chan, D.M., and Riek, L. D. (2019). Robot-Centric Perception of

Human Groups. ACM Transactions on Human-Robot Interaction (THRI).

6. Chan, D. M., Taylor, A. and Riek, L. D. (2017). Faster Robot Perception Us-

ing Salient Depth Partitioning. In Proceedings of the IEEE/RAS International

Conference on Intelligent Robots and Systems (IROS).

7. Chan, D. M. and Riek, L. D. (2017). A Study on Object Proposal Algorithms for

Robots. Kyoto Prize Symposium at Qualcomm San Diego.

8. Chan, D. M. and Riek, L. D. (2016). A Biologically-Inspired Salient Region Filter

for Faster High-Fidelity Robot Perception. Midwest Robotics Workshop (MWRW)

at the Toyota Technical Institute of Chicago (TTIC).

1.4 Ethical procedures

The acquisition of the dataset involving images of human pedestrians described in

Chapter 3 of this dissertation was formally reviewed by the Institutional Review Board at

the University of Notre Dame. The board found this process straightforward to review as

it did not cause any harm to participants or result in non-identifiable data being disclosed.

The dataset was stored securely and has not been published or publicly distributed.

All other research reported in this dissertation used publically available datasets.

1.5 Dissertation overview

This dissertation is organized as follows:

• Chapter 2 provides a brief overview of related work in the areas of object detection

and object discovery, including a discussion of metrics and datasets.
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• Chapter 3 describes SDP, a new method for faster object detection with salient

depth partitioning.

• Chapter 4 discusses an investigation on the generalizability of object proposal

algorithms for robots.

• Chapter 5 discusses a new unsupervised method for object discovery for robots,

UFO.

• Chapter 6 discusses RaccooNet, a new real-time object proposal algorithm de-

signed for robot perception.

• Chapter 7 summarizes the main contributions of this dissertation, discusses plans

for future work and open research questions in the field, and delivers concluding

remarks.
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Chapter 2

Background

Object perception consists of algorithmic processes that transform visual inputs

(e.g., images, video) to meaningful information about objects. By virtue of its practicality,

a broad range of applications leverage object perception such as video surveillance [38,

194], autonomous vehicles [32, 235], human-computer interaction [160], and robotics

[239, 214, 164].

Often considered a superset of complementary research problems, object percep-

tion can have many theoretical and algorithmic components. This chapter presents a brief

overview of object perception, discussing foundational work from the computer vision

and robotics literature. This includes a discussion about how objects are defined within

the context of computational models, and a discussion about prominent algorithmic

components and theoretical insights that are foundational to my research. Moreover, this

chapter discusses common algorithm evaluation protocols, datasets, and metrics that I

employ in my research.
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2.1 Definition of an object

According to Merriam-Webster, a physical object generally means something

material that can be perceived by the senses [45]. However this definition can be onerous

for computational object perception contexts.

In computer and robot vision research, one contention with the definition of

objects concerns scale, or how cameras capture the appearance of objects with respect to

their distances [170, 64]. Imaging systems project objects onto two dimensional planes

(i.e., images), where closer objects appear larger, while those that are further away appear

smaller. These differences in camera perspectives introduce ambiguity to how objects

appear, which are difficult for computational models to resolve [118]. For example, it is

easy for many modern-day computer vision systems to determine the image of a house

from a further distance (e.g., a full view of the house), since they can also detect several

relevant cues (e.g., windows, doors, roofing). In contrast, computer vision systems cannot

make the same determination given an image of a close-up view of the same house (e.g.,

view of the front porch); rather, they will infer parts of the house such as windows and

doors.

Another problem with the standard definition of object relates to context, or

how systems should perceive objects with respect to their surroundings [6, 151]. One

important consideration regarding context for intelligent robots, is that it is not only

important that they detect objects, but that they detect those that are meaningful [218, 95].

Since object perception algorithms can utilize a great deal of computational resources, it

can be impractical to design them to perceive objects that have little relevance to robots

[222]. For example, trees within the context of a forest can be disregarded as objects since

there are many that naturally blend in with one another; rather, trees can be considered

background entities. In contrast, a lone tree in a barren desert can be much more easily
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distinguished as a foreground entity. For similar reasons, solid entities such as walls and

flooring within the context of indoor environments are often classified as background

elements rather than as objects.

Another complication concerning the definition of objects is that it conflicts

with how the performance of object perception algorithms are measured. To validate

new algorithms and to compare their performance to that of existing ones, they must

be evaluated using repeatable, quantitative metrics. However, this necessitates that

objects be precisely defined and disambiguated in a way that algorithms can be fairly and

consistently evaluated.

Despite the need for clarity about how objects should be defined, there is no

universal agreement about what an object actually is in the robotics and computer vision

literature; instead, its definition is often nuanced depending on the research problem.

In pick-and-place tasks, objects are entities having known affordances, or in this case,

those that can be possibly manipulated [105, 240]. In the object detection literature,

objects are regarded as entities consisting of a set of arbitrarily-chosen classes within a

large database of images [60, 108, 122]. Within the context of mobile robots, objects are

loosely defined as non-static entities that are more likely to change in their environment

over shorter periods of time [223, 113, 164].

In my own research and throughout this dissertation, I adopt the general definition

of object from Alexe et al. [2], which synthesizes decades of computer vision and

robotics research, and is characterized by three axioms:

Axiom 1 An object has closed boundaries [248, 114]. This means that an unobstructed

view of the object is fully visible within an image or video frame. Furthermore, there are

finite edges that define the boundaries of the object.

Axiom 2 An object must differ in appearance from its surroundings [124, 131]. That is,

an object is clearly disambiguated from its background.
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Axiom 3 An object sometimes has a unique appearance that is salient [19, 65]. In other

words, the object can possess visual characteristics that have an effect on the attention

of the observer.

2.2 Saliency estimation

In computer vision, saliency estimation is a process that seeks to extract pixels

from images that are salient, or “stand out” as a means to mimic human visual attention

[95]. In robotics, saliency estimation is often used to filter images so that computational

resources can be efficiently allocated to regions that are more visually interesting (e.g.,

foreground objects). For example, these regions can correspond to vibrant, high-contrast,

or conspicuous pixels in an image. Some prominent applications of saliency estimation in

robotics include semantic segmentation [10, 138] and waypoint detection for navigation

[40].

2.3 Object detection

Object detection is a computational process that determines the presence and

locations of specific kinds (i.e., those belonging to a class) of objects in images or video.

Fundamentally, an object detection algorithm, i.e., object detector, performs

two primary subtasks: localization and classification. Localization addresses how to

generate object regions in the form of segmentation masks (i.e., individual pixels that

form the volume or area of objects) or bounding boxes (i.e., rectangular coordinates that

encapsulate objects). Classification is responsible for assigning each object region to a

set of predetermined classes, or categories of objects that share one or more similarities

in appearance or function.
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Figure 2.1: Saliency predicts pixels of an image that attract visual attention. Original
images are shown on top and their saliency maps are shown on the bottom.

While a number of object detection systems were introduced in the past several

decades [249, 123], they typically follow one of two general approaches: two- or one-

stage. The earliest object detectors were developed as two-stage detectors, which achieve

localization and classification separately. This involves using distinct algorithms to

perform each of these processes one after the other [72, 71, 178].

One-stage object detectors are a more recent innovation developed using modern

data-driven techniques. In contrast to two-stage detectors, one-stage detectors leverage

convolutional neural networks that are designed to simultaneously perform regression

and classification to predict object locations and classes [175, 125].

One-stage networks are generally faster than two-stage networks, since they are

built using a single, unified network to allow them to more efficiently perform detection.
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Consequently, they are more often used in smaller-scale applications such as mobile

robotics [34, 56, 210, 231]. In contrast, modern two stage networks can attain higher

accuracy since their localization and classification processes can be individually tuned.

As such, two stage networks are most often used on systems that have less computational

resource restrictions [242, 77].

2.4 Object discovery

Object discovery is a computer vision problem that investigates how to design

systems that can locate arbitrary objects in images. Unlike the similar problem of object

detection, object discovery methods are not explicitly trained to classify objects that are

known beforehand [141]. Rather, they are designed to locate objects that are unseen,

or objects that they have not been trained to explicitly recognize. Due to the open-

ended nature of the problem, object discovery is challenging, and is largely unsolved.

Consequently, ideas about how to best approach the problem can be both diverse and

disparate in the literature.

Weber et al. [229] are often credited as the first to build a model toward object

discovery, modeling objects as “constellations” of rigid object parts. Akin to graph

networks, constellations are used to match keypoints across unlabeled image sets, to

construct a probabilistic mixture model based on k-means clustering. This work later

became the basis for weakly supervised object discovery [31, 35, 92, 225, 196, 195].

Other researchers approach object discovery using one-shot learning [20, 96, 101,

161, 173, 75, 226]. This requires a human to manually annotate objects from at least

one frame of an image sequence. Subsequently, an algorithm uses the annotation to

automatically locate the same generic objects from images in the rest of the sequence.

However, because one-shot approaches require manual initialization to discover each
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new object, they can cause robots to become over-reliant on humans, making them both

impractical and intractable for mobile robot perception.

To that end, some researchers are working toward approaches that can automati-

cally discover objects in video. Some researchers apply motion boundaries to separate

foreground objects from the background [132, 16].

Figure 2.2: Example outputs of a typical object discovery method shown for eight
image sequences. Constrained optimization is used to determine the most consistent
segmentation boundaries which have high correlation to objects (shown in red) [9].
However, this approach makes assumptions that the image sequence is bounded, which
is incompatible with robot perception applications.

Extracting distinguishable markers (e.g., edges, key points) across equally spaced

frame intervals, researchers often apply constrained optimization to segment unseen

object candidates (shown in Figure 2.2) [227, 158]. However, one disadvantage to these

approaches is that they operate by processing bounded video sequences offline before
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object discovery can occur. Thus, they are unable to discover objects in an online manner,

making them unsuitable for real-time mobile robot perception.

2.5 Object proposals

Object proposal algorithms serve to extract image regions that are most likely

to contain objects while pruning less meaningful background regions to reduce compu-

tational complexity. They often involve predicting object locations using one of two

representations: segmentation masks or bounding boxes (see Figure 2.3).

Figure 2.3: Bounding box (left) and segmentation mask (right).

Segmentation masks consist of pixel-wise labels that articulate the shape of

objects and can delineate spatial boundaries with fine-grained accuracy. Segmentation-

based approaches are designed to produce object candidates at the pixel level, typically

grouping adjacent pixels by some measure of similarity. Earlier methods were designed

using image processing techniques, for example, clustering [37], region growing [81],

and connected component analysis [8]. More modern approaches use convolutional

neural networks to perform classification on individual pixels to derive segmentation

masks [165, 166]. In general, segmentation can be computationally expensive and slow,
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which has prevented its widespread adoption in real-world applications [85]. In contrast,

bounding boxes provide a coarser approximation, but they are significantly faster to

compute and are thus ubiquitous in many robot vision systems.

Bounding boxes form rectangular perimeters around objects and are typically

represented using a Cartesian-based coordinate system (e.g., x, y, width, and height).

Each bounding box is evaluated with a scoring function, which predicts the likelihood

that the region contains an object, i.e., objectness confidence. Bounding boxes containing

low prediction scores can then be quickly rejected with low computational expense. Due

to their versatility, object proposals that output bounding boxes are often used as part of

a larger computational pipeline to address a large and diverse number of robot vision

tasks such as object discovery [152, 153, 27], object detection [206, 193], and SLAM

[164, 238].

Object proposal algorithms often depend on an input parameter that controls

the number of object proposals that they generate, which can be anywhere from a few,

to hundreds of object proposals (shown in Figure 2.4). A larger number of proposals

increases the likelihood that all objects are recovered from the image, leading to higher

recall. However, a larger number of proposals also leads to higher computation cost.

Thus, it is desirable that object proposal algorithms achieve high recall with the least

number of proposals possible.

Figure 2.4: Object proposal algorithms can generate anywhere from a few, to hundreds
of object proposals: 10 (left), 100 (center), 1000 (right).
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2.6 Feature extraction

The goal of feature extraction is to derive patterns or other meaningful infor-

mation from images so that they can be used to solve machine learning problems (e.g.,

handwriting recognition [167], group detection [210]). Within the context of object

perception, feature extraction is responsible for generating unique representations of

objects, i.e., features, so that objects can be understood by machines.

Designing feature extractors for object perception tasks in robotics applications

is challenging. Because robots need to perceive the many objects in their surroundings,

feature extractors must have high representational power so that a broad range of objects

can be more easily distinguishable. Moreover, features need to be robust so that they

can account for changes in object appearances and viewpoints, which are dependent on

the relative position between objects and a robot’s vision systems (e.g., cameras). How-

ever, increasing feature complexity can also require a greater amount of computational

resources, which can negatively impact how robots perform. For example, higher feature

complexity can compete with the computational resources that robots need to perform

other tasks (e.g., decision making, manipulation, navigation).

In this section, I provide a discussion about common feature design techniques

that fall under one of two categories: hand-crafted and learned.

2.6.1 Hand-crafted features

The earliest feature extractors involve convolution filters, or kernels, which are

designed using strict mathematical formulation and image processing techniques. When

kernels are convolved with an image, they extract features such as lines, edges, corners,

shapes, and other patterns or cues that can inform the presence of objects [23, 49, 82, 5].

Because designing feature extractors in this way requires a great deal of intuition to judge
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their usefulness for various object perception tasks, this process is colloquially known in

the literature as “hand-crafting”.

The following subsections provide a brief overview of foundational work in

hand-crafted feature design, where many of the algorithmic processes are still used in

modern object perception research.

Keypoints

Keypoints are features extracted from small image regions, i.e., image patches,

that are robust to illumination, scale, and rotation (e.g., corner points). In general,

keypoint feature extractors apply one or more convolutional kernels to determine pixels

that are unique to their neighbors1 [7, 21, 188, 174].

Within the context of object perception, keypoints are particularly useful for

performing data association across spatially-connected sequences of images to infer

objects or object parts [128, 129]. Consequently, keypoint extraction is essential to many

computer and robot vision applications (e.g., random sampling consensus (RANSAC)

[62] and simultaneous localization and mapping (SLAM) [145]).

Histogram of oriented gradients

To address technical challenges related to how object features can be made more

robust to shift and rotation, Dalil and Triggs introduced a histogram of oriented gradients

(HOG) [39]. HOG consists of generating a feature template derived from an ensemble

of object features captured from multiple viewpoints. When used in conjunction with a

classifier (i.e., support vector machine), a HOG feature template is moved at each position

of an image to make a decision about whether or not an object exists; this process is

1Keypoint extraction differs from saliency estimation because keypoints are unique to their neighbors,
which may not necessarily be unique from the rest of the image. In contrast, saliency correlates to pixels
and regions that are unique with respect to the entire image.
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popularly known as the sliding window method.

To account for non-rigid objects (e.g., pedestrians and animals), Felzenzwalb et al.

[61] introduced the Deformable Part Model (DPM), which decomposes HOG templates

into smaller components, or deformations. Deformations are individually detected using

part-specific templates via the sliding window method, where the interaction between the

parts are modeled using “spring-like” constraints.

Image pyramids

Designing feature extractors that are robust to scale is a challenging problem,

and continues to be a major research hurdle in computer and robot vision. With respect

to hand-crafted features, Felzenszwalb et al. [61] prominently showed that multi-scale

object features can be derived from an image pyramid to characterize multiple sizes in

one convenient structure. This is achieved using convolution and Gaussian kernels to

repeatedly upsample and downsample images at various resolutions to form a “stacked”

pyramid-like structure.

2.6.2 Learned features

The past decade introduced new data-driven methods as a way to enable com-

putational models to extrapolate . In particular, convolutional neural networks (CNNs)

leverage machine learning to directly derive object features that are robust to geometric

transformations such as scale, shift, and rotation. Consequently, CNNs revolutionized the

field of object perception, currently replacing or complementing traditional hand-crafted

feature extraction techniques.
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Convolutional neural networks

CNNs are biologically-inspired algorithms that loosely mimic the human visual

cortex, designed to extract visual features from images. They are constructed from atomic

building blocks of artificial neurons, or perceptrons. Intuitively, perceptrons behave as

binary classification algorithms that map inputs to desired outputs using activation

functions.

To increase their functionality, perceptrons are connected together to form more

sophisticated topologies. Akin to graph theory, connections between perceptrons are

assigned weights; intuitively, weights control the magnitude of perceptron outputs, which

ultimately contribute to how CNNs function. When arranged into a formation of many

interconnected perceptrons, or fully-connected layers (shown in Figure 2.5), they can

output object features with a high degree of representational power [199].

Figure 2.5: A simplified diagram showing three fully-connected layers. Each node
represents a single perceptron.
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An important component of CNNs are convolutional layers. Intuitively, convo-

lutional layers are composed of an arrangement of perceptrons that form convolution

kernels. Similar to hand-crafted feature extractors, convolutional layers extract features

via convolution, which depend on their relative size and position in images (i.e., receptive

field). However, one important distinction from hand-crafted kernels is that CNNs learn to

generate their own kernel parameters, rather than needing them to be manually designed.

Within the context of object perception, CNNs consist of a chained sequence of

interconnected convolutional layers, each with varying dimensions (i.e., width, height,

and depth) that are designed to optimize feature representational power and memory

footprint. In general, as this sequence of layers gets longer, the CNN’s representational

power increases, and is characterized as being deeper [199].

Many CNNs are constructed with one or more fully-connected layers, which are

connected to the end of the convolutional layer chain (shown in Figure 2.6) [108]. This

approach allows CNNs to condense the high-dimensional features from their convolu-

tional layers, and convert them to compact (i.e, one-dimensional) feature vectors; these

feature vectors are sometimes colloquially called flattened features.

More recently, some researchers replace fully-connected layers with convolu-

tional filters to generate depth-wise features; these types of networks are called fully

convolutional networks (FCN) [127].

Using the output feature vectors, CNNs make object predictions, i.e., inferences,

using one of two fundamental operations: regression and classification. More generally,

regression is a machining learning technique where CNNs use feature vectors to predict

continuous variables; when CNNs predict individual object coordinates as continuous

variables, this process is called bounding box regression.

Classification is a machine learning technique where CNNs use feature vectors

to predict discrete variables, which correspond to a set of classes. Within the context of
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Figure 2.6: A simplified “AlexNet-style” [108] diagram showing a typical CNN archi-
tecture with main network components. An image is passed through two convolutional
layers. The neurons (and their features) at the end of the convolutional layer chain are
then flattened to allow them to connect to two fully-connected layers.

object perception, classification often determines how the feature vectors correlate to

specific types of objects.

Feature pyramid networks

Recently, researchers are seeking ways to improve the representational power of

CNNs by leveraging various parts of their structure. Intuitively, the shallower layers of

CNNs possess greater spatial resolution (larger width and height channels) with shallower

outputs (smaller depth channels). Features from these layers excel at characterizing

smaller objects and lower-level structural information (e.g., edges, shapes) [55]. In

contrast, the deeper layers have larger depth channels and smaller spatial resolutions.

Features from the deeper layers of the network contain higher-level semantic content

that have greater specificity and complexity (e.g., textures, specific object parts), making

them more adapted for discriminating larger, more specific objects.

Feature pyramid networks (FPN) were introduced to augment existing CNNs so

that they can extract and concatenate features from their various depths [120, 125]. In
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this way, objects can be represented in multiple scales, making them more resilient in

robot perception applications [33].

Training convolutional neural networks

As previously discussed in Section 2.6.2, CNNs are composed of perceptrons

where their connections consist of weights. By modifying the values of these weights via

training, the network can learn its intended behavior.

In general, training a CNN requires formulating a loss function, which computes

how closely its predictions equal its desired output; CNN predictions that deviate further

from their desired output correspond to a higher error, or loss. Training is achieved

using back propegation, where the network’s weights are iteratively adjusted via gradient

descent, to learn a configuration that minimizes loss [190, 15]. This process also involves

using an optimization algorithm (i.e., an optimizer), which applies a learning strategy for

how the weights should be adjusted [189, 102]. Depending on many of its design factors

(e.g., CNN architecture, training data, and optimizer), a CNN often requires manual

fine-tuning; this involves modifying its hyperparameters, which are independent variables

that directly influence how the network learns and performs.

Within the context of object perception, training a CNN involves curating a dataset

that consists of a large collection of manually-labeled images. Each label characterizes

various attributes of objects (e.g., locations, type), which provide instructions about what

the CNN should learn. In general, training on many variations of image-to-label pairs, i.e.,

training examples, allows the CNN to learn more generalized behavior (c.f., over-fitting),

and thus perform more robustly.

After training a CNN, its weights are frozen in such a way that they can no longer

be updated. The CNN can then be deployed in applications, where they can infer new

images.
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2.7 Evaluation protocols

In this section, I discuss common metrics and datasets from the computer vision

literature that are used to evaluate the performance of object perception methods.

2.7.1 Intersection over union

Intersection over union (IoU) quantitatively measures how well two bounding

boxes overlap with each other (shown in Figure 2.7). Specifically, IoU is given by:

IoU =
A∩B
A∪B

, 0≤ IoU≤ 1 (2.1)

where A and B are two arbitrary bounding boxes.

Figure 2.7: Visualization of IoU between two bounding boxes [186].

When used as an evaluation metric, IoU is indicative of an algorithm’s ability

to accurately localize objects, which measures the similarity between an algorithm’s

predicted bounding box and the dataset’s ground truth. Predicted and ground truth bound-

ing boxes are typically paired using best-fit linear assignment (e.g., Jonker-Volgenant

algorithm [99]) to maximize the IoU overlap among all possible pairs.
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Most commonly, an IoU threshold (IoUt) is used as a decision boundary to decide

how an algorithm’s predictions fall into one of four outcome classifications: true positives,

false positives, true negatives, or false negatives. For example, consider an algorithm that

predicts bounding box A, and a ground truth bounding box B; when the IoU between

bounding boxes A and B exceeds IoUt , the outcome is considered a true positive. When

the IoU between A and B is less than IoUt , the outcome is designated a false positive

In the special case of object detection, false positives are counted when the prediction

assigns the incorrect object class regardless of whether or not the IoU of A and B exceeds

IoUt . A true negative indicates that there is no prediction A, and that there is no ground

truth B; this criterion is generally not used, since it has little meaning in object perception

contexts. A false negative indicates that A has no possible pairing with B; this condition

can also happen when there is no prediction A, but there exists ground truth B.

In the computer vision and robotics literature, the de facto decision boundary

for localization tasks is IoUt = 0.5, because it accommodates the broadest range of

objects, including those that are traditionally difficult to localize such as non-rigid

objects (e.g., people, animals). However, it is also customary to compute metrics for

IoUt ∈ {0.5,0.55 . . . ,1}, which can give an indicator about an algorithm’s ability to

adapt to stricter localization specifications. In this way, algorithm performance can be

presented in a way where researchers can consider their various performance tradeoffs

(e.g., localization accuracy, recall, precision).

2.7.2 Measuring accuracy

Accuracy measures how successfully an algorithm can correctly predict object

locations (and/or object classes), but is penalized for incorrect or missed predictions.

Accuracy (ACC) is computed as a function of IoU threshold IoUt . At each IoU

threshold, accuracy is computed by taking the sum of true positives and true negatives,
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divided by the sum of true positives, true negatives, false positives, and false negatives.

By definition, accuracy is given by Equation 2.2:

ACC(IoUt) =
T P(IoUt)+T N(IoUt)

T P(IoUt)+T N(IoUt)+FP(IoUt)+FN(IoUt)
(2.2)

where T P(IoUt) is the total number of true positives, T N(IoUt) is the total number of

true negatives, FP(IoUt) is the total number of false positives, and FN(IoUt) is the total

number of false negatives; in the literature, it is customary to let T N(IoUt) = 0.

2.7.3 Measuring recall

Recall measures how successfully an algorithm can correctly predict object

locations (and/or object classes), but is only penalized for missed predictions.

Recall is computed as a function of IoU threshold (R(IoUt)). At each IoU

threshold, recall is computed by dividing true positives by the sum of true positives and

false negatives. By definition, recall is given by Equation 2.3:

R(IoUt) =
T P(IoUt)

T P(IoUt)+FN(IoUt)
(2.3)

where T P(IoUt) is the total number of true positives and FN(IoUt) is the total number

of false negatives.

To reduce the dimensionality of the recall vs. IoU metric, it is also common

to compute average recall (AR), which computes the mean of R(IoUt) where IoUt ∈

{0.5,0.55, . . . ,0.95} [122]. Average recall is given by Equation 2.4:

AR =
1
10∑

IoUt∈{0.5,0.55,...,0.95}
R(IoUt) (2.4)
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2.7.4 Measuring precision

Precision (P) measures how successfully an algorithm can correctly predict object

locations (and/or object classes), but is penalized for the number of false predictions.

Precision is computed as a function of IoU threshold. At each IoU threshold,

precision is computed by dividing true positives by the sum of true positives and false

positives, and is given by Equation 2.5:

P(IoUt) =
T P(IoUt)

T P(IoUt)+FP(IoUt)
(2.5)

where T P(IoUt) is the total number of true positives and FP(IoUt) is the total number of

false positives.

To reduce the dimensionality of P(IoUt), it is also common to compute average

precision (AP), which computes the mean of P(IoUt) where IoUt = 0.5,0.55, . . . ,0.95

[122]. Average recall is given by Equation 2.6:

AP =
1
10∑

IoUt∈{0.5,0.55,...,0.95}
P(IoUt) (2.6)

In the object detection literature, algorithms often need to detect objects belonging

to one of several object classes, where it is common to compute AP for each object class

(k ∈ K). Extending Equation 2.6 to include additional classes is given by Equation 2.7:

AP(k) =
1
10∑

IoUt∈{0.5,0.55,...,0.95}
P(IoUt ,k), k = 1 . . .K (2.7)

It is also common to reduce the dimensionality of AP(k) by computing the mean

average precision (mAP), which is the average of AP over all possible classes. Mean

average precision is given by Equation 2.8:
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mAP =
1
K

K

∑
k=1

AP(k) (2.8)

Measuring F-score

F-score (F1) is commonly used in the computer vision literature to evaluate binary

classification algorithms, which combines recall and precision metrics. F1 is computed

as a function of IoU threshold (F1(IoUt)) and is given by Equation 2.9:

F1(IoUt) = 2
R(IoUt)P(IoUt)

R(IoUt)+P(IoUt)
(2.9)

where R(IoUt) is recall and P(IoUt) is precision.

2.7.5 Datasets

When analyzing the performance of object perception methods, it is critical to

objectively and consistently evaluate them. Ideally, datasets serve as impartial testbeds

which allow algorithm performance to be quantitatively measured with repeatable experi-

ments and metrics.

In computer and robot vision applications, a good dataset should contain images

that represent a number of diverse and challenging conditions, i.e., are generalizable,

so that methods can be evaluated for robustness and reliability should they be deployed

on robots or other real-world applications. For example, variable illumination, noise,

contrast, and blur are desirable attributes.

Datasets are commonly partitioned to create three subsets (i.e., splits): training,

validation, and test. The training split consists of images-label pairs which are used

to train an algorithm; the goal of training is to have the algorithm fit to this data. The

validation split consists of image-label pairs which are used to measure the success and
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progress of an algorithm as it is being trained; this data can also allow researchers to tune

hyperparameters without introducing bias. Finally, the test split consists of image-label

pairs which are used to measure how an algorithm is likely to perform when deployed on

unseen data. Some object perception benchmarks combine validation and test splits (e.g.,

object proposal algorithms).

In this section, I list several popular datasets commonly used to design and

evaluate object perception methods, which I also used to conduct my dissertation research.

Microsoft COCO

The Microsoft COCO dataset [122] represents candid objects in everyday scenes.

Each image consists of a unique background that contains an arbitrary number of objects

belonging to 91 common object classes. In total, the dataset contains approximately 118k

training images and 5k validation images. Due to its large size and for its high-quality

annotations, COCO serves as the standard training and evaluation platform for a wide

range of computer vision problems.

PASCAL visual objects challenge and PASCAL+

The PASCAL Visual Objects Challenge (VOC) [60] is an evaluation suite that

includes a large object dataset. It is also the standard benchmarking tool for object

detection algorithms. Included is a set of evaluative approaches, which have become

standard in measuring an object perception algorithm’s ability to detect objects, and

classify them into one of 20 possible object classes.

In Chapter 4, I discuss my research where I modified the PASCAL dataset to

study the effects of image perturbation on object proposal algorithm performance. I

expanded the original dataset to formulate a new version, PASCAL+, by systematically

introducing various levels of brightness, gamma correction, Gaussian blur, and Gaussian
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noise [28].

DAVIS

DAVIS [162] is a standardized dataset for evaluating object tracking and object

discovery methods. The dataset consists of 50 RGB videos, each decomposed into

image frame sequences depicting a moving salient object (e.g., vehicle, pedestrian, or

animal) captured at varying distances to the camera. Each image sequence consists of a

unique outdoor scene with some containing non-salient detractor objects. Moreover, each

sequence is captured from a moving camera under various lighting conditions, clutter,

and occlusion, making it a suitable dataset to represent challenges in robot vision.

RGBD multi-view

The RGB-D Multi-view (RGBDMV or RGBD-Scenes) [113] dataset contains

over 300 common household objects organized by 51 classes, and is frequently used to

validate scene understanding ([80, 112, 22]) and SLAM ([164, 137, 117]) algorithms.

This dataset is also primarily used to evaluate depth-based robot vision algorithms for

multiple object detection and tracking applications. Images of objects are captured

using a PrimeSense RGB-D camera from over 24 unique viewpoints, where they may be

occluded, contain motion blur, and are prone to disappear and reappear within the image

sequence.

Autonomous robot indoor dataset

The Autonomous Robot Indoor 40K Scene (ARID) Dataset [126] contains 3298

RGB images collected from a mobile robot, which autonomously navigated around an

indoor office environment to observe an assortment of objects. ARID consists of 10

unique scenes, which depict various household objects in cluttered environments.
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ETH-Bahnhof

ETH Bahnhof Dataset [126] contains over 1000 RGB images, which was collected

from a stereo camera mounted on top of a mobile platform, which was navigated around

a crowded urban environment. The dataset is labeled with bounding boxes around all the

pedestrians.

Berkeley 3D objects

The Berkeley 3D Objects (B3DO) [97] dataset contains 849 RGB-D image pairs

captured from the Kinect V1, which consists of objects that belong to over 50 object

categories. Moreover, the dataset contains 75 unique scenes that depict occluded objects

in cluttered indoor environments, with natural lighting. Some scenes in the dataset are

spatiotemporally sequenced, where various amounts of motion blur and camera noise are

present.

2.8 Chapter summary

This chapter provided a brief discussion of various technical concepts, theories,

and evaluation considerations that fall under the umbrella of object perception research.

My research covers many of these aspects, which I used to design algorithms that enable

robots to discover unseen objects. The following chapter presents a new RGB-D method

that improves the computation time of object detection algorithms.
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Chapter 3

A new real-time depth-based region of

interest cropping algorithm

Pedestrian and object detection algorithms are computationally expensive for

mobile robots. Many methods (at the time of writing) incorporate a multi-scaled sliding

window approach, followed by a classifier to determine whether or not an object in

question exists in an image. This equates to searching each pixel for detection candidates,

which leads to computationally demanding loads that are counter-productive to robots

which should ideally process images in real-time.

One solution to speed up detection algorithms is to use more powerful hardware

(i.e. more GPUs). However, this is not always feasible because compact and power

efficient computing systems are needed for mobile robots.

Rather than have a robot’s attention divided among every possible location in an

image, it can be given guidance about where to look. For example, autonomous vehicles

require fast detection algorithms to ensure the safety of pedestrians and other inhabitants

of the road. Vision-based algorithms (in contrast to LIDAR and RADAR techniques

[185, 54, 68]) typically exploit road geometry for ground-plane and sky estimation to
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increase detection speed [63, 18].

In more general applications where ground-plane estimation is not always tractable,

proposal algorithms provide a better alternative. Object proposal algorithms operate to

suggest regions of an image that are most likely to contain objects and people, to alleviate

the high computational demands of object detectors [2, 24, 52, 221]. This idea stems

from neurologically-inspired vision [95], where salient characteristics are detected and

derived from low-level image features. However, object proposal algorithms are typically

trained and designed for static images that do not represent real-world, naturalistic data

(i.e. containing motion blur, rotation, and distortion).

In robotics, the prominence of RGB-D cameras has aided in the development

of faster object segmentation and simultaneous localization and mapping (SLAM) al-

gorithms [14, 69]. RGB-D is favored over solely RGB methods, because they allow

geometric and structural information to be extracted from a scene without incurring high

computational overhead [1]. Thus, the processing times of robot perception algorithms

reduced by exploiting depth information.

We introduce a new algorithm, Salient Depth Partitioning (SDP), that extracts

regions of interest from RGB-D images. Our algorithm serves as a basis for “where a

robot should look” and is a preliminary step to object and people detection, to reduce

computation time and minimally affect detection accuracy. In addition, our algorithm

requires no a priori knowledge of the environment or reliance on geometric constraints.

It can work with virtually any detection algorithm given any calibrated RGB-D image.

To validate SDP’s effectiveness, we integrated it with four state-of-the-art pedestrian

detectors (HOG and SVM [39], Aggregate Channel Features [50], Checkerboards [243],

and R-CNN [73]), and found that our algorithm decreases their runtimes by up to 30%

with little to no degradation in detector accuracy.
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Figure 3.1: The steps of the SDP algorithm. (1) depicts the depth image in its un-
modified form, and (2) shows the result of downsampling and Sobel edge-filtering. (3)
removes noise via grid partitioning and edge density thresholding. (4) selects a region
in the image using the remaining edges filtered by (3). The image is subpartitioned in
(5), and transformed to accommodate the size of the original image. The transformed
points are used in (6), where a detector is performed on subpartitions of the RGB image.

3.1 Methodology

SDP applies a multimodal approach on RGB-D images with the observation that

adjacent pixels do not drastically vary in depth, when those pixels belong to the same

object.

The main advantage to utilizing depth images for segmentation is that they do

not contain textural information of people and objects, but instead are adept at relaying

structural details about the scene [1]. This allows edges to establish clear delineations

between objects of varying depth. Using edge detection, we are able to recover ROIs that

contain strongly formed edges, or locations in the image that are most likely to contain

people and objects. In contrast, large regions with uniform and gradual depths (e.g. walls,

floors, buildings, sky, etc.) do not contain strong edges.

SDP does not require previous knowledge about the environment, nor does it

require training. Instead, it adapts to what the robot sees. Furthermore, our method can

be applied to virtually any detection algorithm, provided that the input is a calibrated
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RGB-D image. In the remainder of this section, we describe our algorithm (depicted in

Figure 3.1).

3.1.1 Faster edge detection

Edges describe abrupt variations in depth and can be used as predictors to object

locations. Thus, we can also leverage detected edges to filter out large non-object

regions such as roads, floors, walls, and the sky. However, edge detection and filtering

adds considerable overhead to processing time, especially when they are applied via

convolution. To reduce the number of computations, the depth map is first downsampled

to a lower resolution.

Given an image Irgb and its corresponding depth map, Id , we downscale Id by a

factor, γ. The amount of downscaling largely depends on the resolution of the image. In

the extreme case, downscaling the image by too much will yield a poor quality edge map

because the image will be too small to be operated on by the convolution filter.

For images of 1280×720 resolution, we systematically tested the scale size to

select γ = 4, which we found to provide an optimal balance of image preservation and

mathematical simplicity (wholly divisible).

Finally, we apply an edge detector to I′d . In our implementation, we adopted the

3×3 Sobel kernel for its low computation cost and adequate performance, in comparison

to some state-of-the-art edge detectors [202]. We also tested our algorithm with better

performing edge detectors (e.g. Canny [23] and Laplacian of Gaussian), but found that

they negatively affected the runtime of SDP.
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3.1.2 Edge filtering

After edge detection, the resultant edge map may still contain weakly formed

edges due to noise. To remedy this, I′d is divided into patches of size 5×5 pixels. The

density of each patch is then found by computing the sum of its contents. If the density

of any patch exceeds the edge sensitivity threshold, ρ, the contents of that patch are not

modified. Conversely, if the density of the patch is less than ρ, the contents of the partition

are erased to produce a filtered edge map, PI′d
. Edge filtering is given by Equation 3.1.

PI′d(n,m) =


I′d[α,β] i f ∑I′d[α,β]> ρ

/0 otherwise

I′dN×M; α = (5n−4, ...,5n), β = (5m−4, ...,5m)

∀n = 1, ...,
N
5
,∀m = 1, ...,

M
5

(3.1)

where PI′d
(n,m) is a 5×5 patch of I′d and I′d[α,β] is a submatrix of I′d bounded by rows

α and columns β. ρ is the edge sensitivity threshold.

This method allows us to achieve localized image filtering with low computational

cost. ρ describes the threshold ratio of edge pixels to background pixels of the depth

image, and its value is selected to remove weakly formed edges. The impact of parameter

ρ is discussed in Section 3.3.

3.1.3 Region of interest partitioning

Next, we find the minimum and maximum rows and columns P , containing

non-zero elements, to generate a bounded subregion, ROI. ROI is given by Equation 3.2.

ROI = P [R,C] (3.2)
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where ROI is a subregion of PN×M bounded by minimum and maximum indices of row

and column vectors, R and C, respectively. R is a row vector containing non-zero values

of P and C is a column vector containing non-zero values of P .

ROI may still contain large subregions, containing no edges, which may be

removed by creating smaller partitions.

To accommodate a detector’s ability to detect objects of minimum sizes, smaller

partitions that cannot possibly contain detectable objects are removed. For example, if

a detector is only able to detect objects of minimum size 128× 64 pixels, we remove

partitions measuring a height or width less than 128 and 64 pixels, respectively.

We achieve subpartitioning using a simple plane-sweep technique to detect the

sparsity of empty row or column vectors in partition ROI, and use an efficient data

structure to dynamically store region boundaries. The subpartitioning subroutine is

presented in Algorithm 1.

Finally, the subpartitions are upscaled by γ to generate proposals that are consis-

tent with the original image size.

3.2 Evaluation

SDP is designed to decrease the runtime of any object detection algorithm and

preserve its accuracy. However, it would be impractical to evaluate the effects of SDP on

all of them. Instead, we test SDP within the context of pedestrian detection, which we

argue is a suitable and noisy testbed to allow us to evaluate it for robustness.

In our experiment, we selected four state-of-the-art (at the time of writing)

pedestrian detection algorithms: Histogram of Oriented Gradients (HOG) and SVM,

Aggregate Channel Features (ACF), Checkerboards, and R-CNN.

Despite its age, HOG [39] is still widely used in modern detection algorithms,
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Algorithm 1: Subpartitioning(ROI,T )
Create partitions from a binary image by detecting sparsity of empty
regions.

Input : ROI is a binary image mask of size N×M.
T is the detector’s minimum detection dimension.

Output : S list containing row or column indices of subpartitions.

sweep list = {} // list containing the indices of non-zero valued row or column
vectors.

f lag start count = false // if true, initialize the counting of consecutive
zero-valued columns or rows.

empty count = 0 // counter corresponding to the number of consecutive
zero-valued columns or rows.

for m = 1 to M do
if empty count > T then

if f lag start count = true then
S.append(min(sweep list))
f lag start count = f alse

if ROI[N,m].sum > 0 then
S.append(max(sweep list))
f lag start count = true
sweep list = {}

if ROI[N,m].sum = 0 then
sweep list.append(m)

increment empty count by 1
else

empty count = 0
sweep list = {}

Return S

and is regarded by many as the best hand-crafted feature descriptor [244]. The HOG and

SVM detector exploits gradient features, which are discretized to enable greater detector

immunity, when objects are arbitrary oriented.

Stemming from gradient-based approaches, Dollár et al. [50] proposed ACF,

which runs significantly faster and as accurately as the state-of-the-art object detectors.

Their method derives feature pyramids to be automatically extrapolated from nearby

scales. This allows for quick feature approximations, rather than have explicit time-
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consuming computations performed at every scale.

Zhang et al. [244, 243] introduced the Checkerboards algorithm, using Filtered

Channel Features as an extension of ACF. Using features such as an alternate color space

(CIELUV) and HOG, they were able to show that their algorithm produced improved

precision and recall scores over the current top-performing pedestrian detectors.

Lately, Convolutional Neural Networks (CNNs) have gained prominence in

the computer vision and robotics communities due their adeptness at deriving highly

discriminant features. As a result, they have been shown to achieve high recall and

precision scores, when used for purposes like object and pedestrian detection. To increase

the breadth of our study, we tested SDP with the Region-based Convolutional Network

(R-CNN) proposed by Ross et al. [73], along with its pedestrian-trained variant, made

public by Tome et al. [216].

3.2.1 Data acquisition

We required depth images of formidable quality, that are also calibrated to the

RGB images to test our algorithm. However, existing datasets (such as PASCAL VOC

[60], INRIA [39], ETH [58], TUD-Brussells [233], and Caltech [48]) do not contain

spatiotemporal RGB-D images of pedestrians.

Therefore, we created our own RGB-D pedestrian dataset. Video was recorded

with the ZED stereo camera system [200] at 1280× 720 resolution at approximately

8 frames per second. We note here that we used the ZED camera as an alternative to

the Microsoft Kinect, because it is the most economical camera with the farthest depth

ranging ability (up to 30 meters) at the time of writing.

Additionally, we wanted to strictly control for consistent motion and speed across

both indoor and outdoor data. To simulate mobile robot vision, we attached the ZED to a

hand-wheeled cart which was pushed at a constant walking pace. The camera was also
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Figure 3.2: Cumulative execution times of several state-of-the-art detection algorithms
integrated to SDP, for varying values of ρ - lower execution time is better. Note that we
only select ρ values that depict interesting changes in detection behavior. The baseline
(detection algorithms without SDP integration) algorithms are depicted in red, and do
not have a ρ value.

panned to mimic active vision.

Our dataset consists of images recorded in two hallways and at two outdoor

locations. Each location consists of unique geometric landscapes, corridors, occlusive

objects, lighting, and variable foot traffic to simulate environments that an autonomous

mobile robot may traverse. In total, our dataset contains approximately 3400 RGB-D

images.

To obtain ground truth labels, every video frame was annotated with bounding

boxes around the location of all visible upright humans in the scene.

For our experiments, we used a laptop equipped with an Intel i7-6700 CPU and

8GB RAM. We selected this platform for its compact size, which could reasonably be

used on a mobile robotic platform. All experiments were conducted in MATLAB solely

using CPU resources.
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Figure 3.3: Detection accuracy vs. intersection over union threshold (IoUt) of several
state-of-the-art detection algorithms integrated with SDP, for varying values of ρ. These
curves correspond to the execution times shown in Figure 3.2. The baseline (detection
algorithms without SDP integration) algorithms are depicted in red, and do not have a ρ

value. A ρ curve that more closely matches the baseline curve means lower degradation
in detection performance.

3.3 Results

Here, we present our results for SDP with regards to execution time, detection

accuracy, and computation cost, and discuss their implication in Section 3.4.

3.3.1 Execution time

We measured the cumulative execution time of SDP fused with each of the

baseline algorithms (HOG and SVM, ACF, Checkerboards, R-CNN). The threshold

parameter, ρ, was incrementally varied to show performance cutoff as edge sensitivity

is decreased. Each of the baseline algorithms were also tested, independently of SDP

(shown in Figure 3.2).

We found that SDP reduces the execution time of HOG and SVM, ACF, and

Checkerboards by up to 30%. Our results show that execution time is inversely propor-

tional to the value of ρ, which demonstrates that SDP was able to abstractly speed up

these detectors without modification.

Interestingly, when compared with the other detectors, we found that SDP pro-
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duced the opposite effect for R-CNN, where execution time is proportional to ρ.

3.3.2 Detection accuracy

We evaluated the detection accuracy of SDP to account for the detectors’ ability

to both generate correct predictions, while minimally generating false positives. Here,

we measure the detection accuracy of SDP fused with each of the baseline algorithms

performed on our dataset, using the IoU bounding box criteria found in [60, 248]. We

also use the same evaluation on each of the baseline algorithms independently of SDP.

To account for variability in human poses (e.g. stretched out arms, differences in gait),

we select an IoU threshold of 0.5, which is the standard value in the pedestrian tracking

literature [243].

SDP possesses differences from object proposal algorithms, and is instead charac-

terized as a region cropping algorithm. Rather than generate a number of object proposals,

our algorithm generates sparse regions containing multiple objects.

Consequently, we cannot apply the same metrics (i.e. recall/AUC/detection

accuracy vs. number of proposals) as those of object proposal algorithms. Instead, we

measure detection accuracy as a function of ρ, the edge threshold sensitivity (previously

discussed in section 3.1.2), which directly correlates to the quality of proposed regions.

Furthermore, our algorithm extensively relies on depth information, so the per-

formance of SDP also depends on the camera’s ability to capture depth at longer ranges.

Therefore, to test the performance of our algorithm, we remove predictions and ground

truth labels of pedestrians captured beyond the range limitations of our camera. From

our measurements, we estimate that the ZED can capture the depth of pedestrians within

13 meters distance at 1280×720 resolution, which measures to approximately 154×64

pixels. Figure 3.4 depicts the depth limitations of the ZED camera.

Figure 3.3 presents the detection accuracy of SDP in conjunction with each of
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the selected algorithms; the baseline detection accuracy are also shown. Across all

algorithms, there was minimal degradation in performance for ρ = 5, which suggests that

SDP does not affect detection accuracy for ρ < 6. There is significant degradation for all

algorithms at ρ > 5, which is to be expected, because the amount of image cropping (and

number of cropped pedestrians) is directly proportional to ρ.

Figure 3.4: RGB-D images depicting the limitations of the ZED camera at various
ranges. A pedestrian is observed from the ZED stereo camera at 5m (left), 10m (center),
and 15m (right); the pedestrian is no longer visible in the depth map at 15m.
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3.3.3 Computational throughput

To measure computational throughput of SDP, we executed it on our dataset

without an object detector; in this test, regions are computed, but no classification is

performed. Furthermore, we do not take into account the camera frame-rate, which we

consider to be independent of the algorithm.

We report an average throughput of approximately 77 frames per second (approx-

imately 13 ms per image), which is suitable for robots and real-time purposes.

3.4 Discussion

We introduced SDP, and showed that it substantially decreases the execution

time of several state-of-the-art pedestrian detectors, without affecting detection accuracy.

Thus, we expect that other detectors can also be optimized using region segmentation

strategies.

When combined with SDP, the execution times of HOG and SVM, ACF, and

Checkerboards are significantly reduced. We discovered that the proportional differences

in execution time is dependent on the number of sliding window computations that

each algorithm performs. For example, HOG and SVM uses the most sliding window

operations of all the algorithms in our evaluation, so its execution time benefits most

when more of the image is cropped out.

Contrary to what we expected, the execution time of R-CNN increases proportion-

ally with ρ. We believe this to be caused by R-CNN’s built-in object proposal algorithm,

which caused it to produce extraneous proposals when the original image is partitioned.

Inevitably, the computation time increased because classification is performed on each

proposal.

However, it is interesting to see that R-CNN gained a slight increase in detection
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performance. This highly suggests that a greater number of false positives are removed

when more of the image (without sacrificing the integrity of the detector) is cropped,

which supports the hypothesis found in [88].

Detection accuracy degradation was the highest for HOG and SVM. We postulate

that this effect is caused when gradient features, neighbor to pedestrian locations, are

removed after region cropping. Although actual pedestrians are not removed from the

image, region cropping can have an effect on classification when localized histograms

are altered.

Combined with SDP, ACF yielded lower degradation in detection accuracy at

ρ = 5, when compared to ρ = 1. This is contrary to intuition, where a larger amount of

pruning would expect to yield lower detection accuracy. However, in our experiments

with ACF we found a lower number of false positives for ρ = 5, than ρ = 1. We attribute

this to the same effect (false positives removed from region cropping) that was observed

in the R-CNN and SDP experiments.

This suggests that the image features extracted by Checkerboards are more

invariant to region cropping, and that SDP decreased the runtime of Checkerboards while

preserving the optimal number of detectable pedestrians.

One limitation of our work is that our experiments were only studied within the

context of pedestrian detection, which we believe to be a noisy testbed to evaluate our

algorithm for robustness. However, the our results are encouraging, which motivates us

to explore how SDP can be integrated to general object detection algorithms in our future

work.

Furthermore, our experimental results showed that SDP does not perform as well

with detectors that use an integrated object proposal algorithm (i.e. R-CNN). However,

our results could vastly differ if we had direct control over the number of proposals that

R-CNN generates, which we also plan to investigate in a future study.
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One possible avenue of future work includes testing SDP on new RGB-D cameras

as they become commercially available, to see how well our algorithm will scale to more

precise depth data. Additionally, we can use SDP to pre-process existing low-power,

low-computational algorithms for mobile robots, such as UV sky segmentation [201],

RatSLAM [140], and SeqSLAM [139]. With the study of our algorithm in conjunction

with these other algorithms, we can also gain a better sense of performance when robots

exhibit different types of motion.

3.5 Chapter summary

In this chapter, we introduced SDP and demonstrated that it can substantially

improve detection algorithms by decreasing their computation time, while sacrificing

little to no detection performance. Moreover, compared to existing object detectors, the

computational overhead of SDP is negligibly low (approximately 77 frames per second)

and can be easily adapted to any RGB-D robot vision pipeline. This work motivated

my later research, and inspired me to explore other computational mechanisms that can

address low-level object perception for robots. The next chapter focuses on examining

how object proposal algorithms can be useful for robotics domains, which I use to address

the problem of object discovery in my later work.
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Chapter 4

Investigating object proposal

algorithms for robots

Until recently, many object detection algorithms incorporated the sliding window

paradigm, which performed both object localization and recognition in one simultaneous

step by searching across all possible image positions and scales in a brute-force manner

(c.f. HOG [39]). However, by delineating localization and recognition, object detection

can be achieved much more quickly, demonstrating superior accuracy over the sliding

window approach [72].

Object proposal algorithms emerged to solve object localization more efficiently.

In modern object detection algorithms, classification is typically performed over fewer,

select regions (i.e. proposals) to determine the presence of class-specific objects [72, 175,

125].

Roboticists are beginning to incorporate object proposal algorithms into their

systems for purposes other than object detection. For example, Sunderhauf et al. [205]

used object proposals to predict semantic mappings of objects and places. Object

proposals also show great promise toward solving unseen object discovery, because they
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excel at hypothesizing class-agnostic objects [26].

Despite the achievements of object proposal algorithms, we argue that there is a

problem regarding their generalizability: the standard evaluation data are too clean to

make assumptions about how well object proposal algorithms actually perform in most

applications. A close inspection of the PASCAL VOC and Microsoft COCO datasets

reveals that the images contain objects of interest that are center biased with minimal

amounts of occlusion. Moreover, it is difficult to make a decision about which algorithms

work well for robotics, because there is little study about how they perform with the

influence of real-world image degradation such as noise, contrast, and blur.

This chapter discusses our evaluation of the top-performing object proposal

algorithms in the context of robotics, where we address three research questions: (1)

How well do the state-of-the-art algorithms perform on datasets that include real-world

noise, object occlusion, and motion blur? (2) Are deep learning approaches accurate

and computationally inexpensive enough to be used in robotics? (3) How fast are the

top-performing algorithms, when used on a small computing platform that might be

mounted on a mobile robot?

Our contributions are fourfold. First, we showed that the standard evaluation

dataset, PASCAL VOC, is flawed for determining the generalizability of object proposal

algorithms, particularly in the context of robotics. This raises some concern about how

object proposals algorithms are currently being evaluated.

Second, we tested two recent deep learning approaches (DeepMask [165] and

SharpMask [166]) and showed that they produced high recall on more naturalistic datasets

using only a small number of proposals, suggesting that they have high computational

efficiency.

Third, we conducted a study of algorithm execution time on portable hardware to

find that most algorithms are suitable for robotics applications.
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Fourth, we gained insight into algorithm weaknesses by conducting a controlled

study to see how they performed when introduced to four kinds of image perturbations

(brightness, gamma correction, Gaussian blur, and Gaussian noise). Our results are useful

to the broader robotics community, because they can be used to gauge performance and

computation time trade-offs. It is our intent that this work will be used as a guideline

for how roboticists should select object proposal algorithms to be incorporated in their

system designs.

4.1 Related work

When object proposal algorithms began to take prominence in the computer

vision community, there were no publicly available datasets that were suitable to evaluate

them. Consequently, the PASCAL evaluation protocol was modified to evaluate object

proposal algorithms, to measure their ability to recall objects independently of categories.

Ergo, object proposal algorithms became widely viewed as “category-independent object

detectors”, which also strongly implied their generalizability [219, 106].

Recently, several researchers questioned the effectiveness of object proposal

algorithms, suggesting that the PASCAL VOC evaluation protocol is flawed. With a

thought experiment, Chavali et al. [29] suggested that an object proposal algorithm

could be built using a mixture-of-experts model to exploit the dataset’s object categories.

This would enable the model to excel in the PASCAL evaluation, but have no ability to

perform well outside it.

Hosang et. al [87] performed a study of object proposal algorithms on the

PASCAL VOC dataset and found that their repeatability is sensitive to some image pertur-

bations such as rotation, shift, and image compression. However, their experiments did

not directly address algorithm performance pertaining to real-world, adverse conditions.
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Table 4.1: Recent top-performing object proposal algorithms used in our evaluation. W
indicates that the algorithm is type window-scored, and S indicates segmentation-based.

Algorithm Approach Type
Rahtu [172] Supervised W
Objectness [2] Supervised W
Geodesic (GOP) [106] Seed-based S
Randomized Prim [135] Supervised S
Selective Search [219] Region Similarity Clustering S
DeepMask [165] Supervised Deep Learning S
SharpMask [166] Supervised Deep Learning S

Moreover, their evaluation did not consider image perturbations that might be more

applicable to robot vision such as contrast, motion blur, and noise.

One major hurdle for developing robust object proposal algorithms for robots

is that the datasets used in current evaluations are too clean. Robots do not typically

view objects with capture bias, minimal noise, minimal occlusion, and choice lighting

conditions – thus, the results of current evaluations are not reflective of real-world

scenarios.

Thus, the purpose of this work was to motivate discussions about how well object

proposal algorithms generalize to robotics, by testing them with more realistic datasets.

To our knowledge, we are the first to conduct a comprehensive study of object proposal

algorithms on multi-view datasets, which include spatiotemporal image sequences and

naturally occurring perturbations (noise, occlusion, blur, etc.)–factors that are elemental

to robot vision.

4.2 Methodology

Using standard evaluation metrics in computer vision [29], we measured the recall

performance of seven top-performing object proposal algorithms [172, 2, 107, 106, 135,
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219, 166] (shown in Table 4.1). Among them are three window-scored methods, four

non-deep learning segmentation methods, and two deep learning segmentation methods.

To explore these algorithms in the context of mobile robotics, we tested them on

three egocentric datasets containing images with real-world noise, occlusion, and motion

blur. This differs from other approaches, where evaluations were performed on datasets

containing clean images and capture bias [87, 60, 122].

We also wanted to study how the algorithms might be weak to specific types

of perturbations. However, we found that naturally occurring image perturbations are

difficult to quantify in such a way to create a controllable experiment that fairly assesses

their effects in isolation. Thus, we modified the PASCAL dataset to create our own

version, PASCAL+, which we augmented with controlled amounts of brightness, gamma

correction (simulating contrast), Gaussian blur, and Gaussian noise.

To give researchers insight into how these algorithms might be designed on

smaller, more mobile robotic platforms, we performed our experiments using less power-

ful hardware than those used in other evaluations.

4.2.1 Measuring object proposal algorithm performance

To quantitatively measure the detection performance of a proposal algorithm, two

principles must be considered: intersection over union (IoU) and recall.

IoU is indicative of an object proposal algorithm’s ability to accurately localize

objects, which measures the similarity between an algorithm’s generated hypothesis and

the dataset’s ground truth.

Recall measures an algorithm’s ability to recover image regions, or candidate

windows, that match all of the actual object locations in a dataset. Several varieties of the

recall metric have been introduced in the literature, so we briefly discuss the intuition

behind each of them [29, 87].
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To analyze the behavior of an algorithm’s ability to recall and localize objects, a

graphical function of recall vs. IoU is derived by computing the recall of each algorithm

at various IoU thresholds1 All hypothesis and ground truth pairings having an IoU greater

than or equal to a threshold value are marked as correct detections, and contribute to the

recall for that IoU threshold.

The general consensus among researchers in the computer vision community is

that recall computed at IoU values less than 0.5 do not provide substantial information

about an algorithm’s performance. Thus, in practice, IoU values are only evaluated in the

range of 0.5 to 1, where 0.5 indicates loose overlap, and 1 indicates perfect overlap.

We describe the three recall metrics that we used to evaluate the object proposal

algorithms:

• Recall vs. IoU threshold with fixed number of proposals

• Recall at IoU threshold vs. number of proposals

• Area under recall vs. number of proposals

Recall as a function of IoU threshold with fixed # of proposals

To observe the localization accuracy of object proposal algorithms, recall as

a function of IoU threshold is preferred because it represents an algorithm’s ability

to localize objects as the IoU threshold becomes more strict. In this metric, recall is

computed for each IoU threshold between 0.5 and 1. Here, the top K proposals are used

in the evaluation, where K is a user-defined number of proposals.

In our evaluation, we selected a maximum value of K = 1000 for GOP, DeepMask,

Objectness, Selective Search, and Rahtu. However, Randomized Prim does not allow us

1For a more detailed summary of recall performance metrics, see [29].

56



to have direct control over this parameter, so we report K = 900 proposals, which were

automatically generated.

We note that the implementation of SharpMask, provided by Facebook, contained

memory leak issues at time of writing but, decided to include it in our study because

it remains to be one of the most prominent object proposal algorithms in the computer

vision literature. However, we were not able to set the K value of SharpMask to K = 1000,

as we did with the other algorithms. Instead, we systematically decreased the K parameter

starting at K = 1000 until the algorithm was stable enough for evaluation at K = 300.

Recall at IoU threshold as a function of # proposals

In some circumstances, it is desirable to place a lower bound on localization

accuracy when studying object proposal algorithm behavior. For instance, an IoU

threshold of 0.5 is commonly regarded as the optimal balance between loose and tight

fitting. When the IoU threshold is set to 0.5, all hypothesized regions must at least have

an IoU overlap with ground truth objects greater than or equal to 0.5 to be considered

correct detections. We conduct two separate evaluations by fixing the IoU threshold to

0.5 and 0.7.

Area under recall (AUC) as a function of # proposals

In AUC, the area under the recall curve (for all IoU thresholds in range 0.5 to 1)

is computed for a fixed number of proposals (in the range of 10 to 1000). AUC combines

recall, IoU threshold, and the number of proposals in a single function, and is indicative

of general recall performance.

To measure algorithm performance on PASCAL+, we computed AUC with

respect to perturbation type and amount. Moreover, we fixed the number of proposals

to a practical value of 100. This mitigates the undesirable effect that a larger number
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of proposals increases the likelihood that objects are recalled at random, rather than by

design.

4.2.2 Computation time

To gain insight about the computational performance of these algorithms when

used on a mobile robot, we conducted our evaluation on a high performance laptop

equipped with a quad-core i7-6600HQ CPU, an Nvidia GTX970M 3GB GPU, and 8GB

RAM.

DeepMask and SharpMask were evaluated using the laptop’s GPU. Randomized

Prim, Geodesic, Objectness, Selective Search, and Rahtu were evaluated using the

laptop’s CPU because they were not designed for GPU operation.

4.2.3 Datasets

We conducted our experiment using video frames and images that are repre-

sentative of real-world robot vision challenges, which include naturalistic motion blur,

occlusion, camera noise, non-centric biasing, and non-ideal lighting conditions. We

were also interested in studying the performance of object proposal algorithms from an

egocentric and spatiotemporal point of view that captures the morphology of objects in

space and time.

We selected two datasets commonly used to evaluate object detection for robotics:

RGB-D Multi-view [113], and Berkeley 3-D Object [97] (shown in Table 4.2).

To study the effects of image perturbations in isolation, we create our own version

of the PASCAL dataset, PASCAL+. We split the PASCAL dataset in half, applying four

kinds of perturbations: brightness, gamma correction, Gaussian blur, and Gaussian noise

(shown in Figure 4.2). In total, PASCAL+ contains over 124k images.
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Figure 4.1: Sample images of bottles from the three datasets used in our evaluation:
PASCAL [60], B3DO [97], and RGBDMV [113].

Table 4.2: A list of datasets used in our evaluation, comparing the presence of some
robot vision challenges.

Dataset Ego-
centric

Spatio-
temporal Blur Occluded

Objects # Images

B3DO [97] Yes Yes Yes Yes 849
RGBDMV [113] Yes Yes Yes Yes 18.4k
PASCAL [60] No No No No 11.5k
PASCAL+ No No Yes No 124k

To mimic how brightness affects imaging in robot vision, we applied additive

illumination to each image. This was achieved by adding scalar intensity values (for each

RGB channel) to each pixel, ranging from −200 to 200 in increments of 40. To preserve

the 8-bit format of the images, pixels with intensity less than 0 or pixels with intensity

exceeding 255 were scaled to 0 and 255, respectively.

To mimic various levels of dynamic contrast, we transformed each image using

gamma correction, defined by Iout = Iγ

in. We applied gamma correction to each pixel of

each image, varying γ from 0.5 to 2.5 in increments of 0.5.

To simulate camera and motion blur, Gaussian blur was applied to each image

with an adaptive square filter of size 2∗ceil(2σ)+1, varying σ from 2 to 10 in increments

of 2.

Noise negatively impacts how illumination is perceived, which affect how object
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Figure 4.2: Sample images from PASCAL+, depicting perturbations shown in rows
from top to bottom, with various magnitudes shown from left to right: brightness
(−200,−120,0,120,200), gamma correction (γ= 0.5,1,1.5,2,2.5), Gaussian blur (σ=
2,4,6,8,10), and Gaussian white noise (σ = 0.02,0.04,0.06,0.08,0.1).

proposal algorithms perform. To this end, we applied zero-mean additive Gaussian white

noise to each image, varying σ2 from 0.02 to 0.1 in 0.02 increments.

4.2.4 Procedure

The robot vision datasets were repurposed for this experiment by removing

category labels. Furthermore, we only evaluated on RGB images.

For each algorithm in Table 4.1, we generated K-proposals for each dataset listed

in Table 4.2. Each of the recall scoring functions (previously described in Section 4.2)

were computed, and graphed (shown in Figures 4.3 and 4.4).

DeepMask and SharpMask are built on top of the ResNet-50 model (pre-trained

on ImageNet [41]), and were additionally trained using segmentation annotations from

the Microsoft COCO dataset [122]. The models were trained on data that are indepen-

dent from PASCAL to evaluate their generalizability. We note that these training and
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evaluation procedures of DeepMask and SharpMask are identical to those from their

respective papers.

4.3 Results

In this section, we present a summary of our results (see Table 4.3 and Figures

4.3, 4.4, and 4.5).

4.3.1 Recall as a function of IoU threshold with fixed # of Proposals

Across all datasets (see Figure 4.3), DeepMask and SharpMask produced the

highest recall, which suggests that they are able to locate the most objects.

At IoU≥ 0.7, all non-deep learning approaches substantially dropped in perfor-

mance, while DeepMask and SharpMask had a shallower performance cutoff.

4.3.2 Recall at fixed IoU threshold as a function of # proposals

At IoU threshold = 0.5 (see Figure 4.3), all algorithms achieve high recall because

objects are detected with more forgiving overlap criteria between the hypothesized object

regions and the ground truths. At IoU threshold = 0.7, the recall of all algorithms

decreased, because the overlap criteria are more strict. We found that the recall of

Objectness suffered to a greater degree than the other algorithms from IoU threshold =

0.5 across all datasets.

Comparing algorithm performance on B3DO to the performance on PASCAL,

our results show that a substantial performance difference at # proposals≤ 100, where the

recall gap between deep learning methods and non-deep learning methods is considerably

narrower.
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Figure 4.3: Recall vs. IoU Threshold and Recall vs. # Proposals

In contrast, algorithm performance on the PASCAL and RGBDMV datasets are

similar. This is somewhat expected, because RGBDMV contains a smaller number of

objects that are less cluttered in the camera view.

4.3.3 Area under recall (AUC) as a function of # proposals

In general, most algorithms performed better on the PASCAL dataset at a lower

number of proposals (see Figure 4.4), which highly suggests that the standard evaluation

protocol does not account for realistic image noise.

However, it is interesting to see that the performance of the algorithms is generally

consistent across all datasets at higher number of proposals. This implies that the

algorithms are more generalizable when set to produce a large number of candidate object
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regions. However, this case is undesirable because this leads to higher computation cost,

where these algorithms should be ideally designed to produce the highest AUC and recall

using the least number of proposals.

Figure 4.4: AUC vs. # Proposals on the PASCAL (left), B3DO (center), and RGBDMV
(right).

4.3.4 Evaluation on PASCAL+

The results of our evaluation on PASCAL+ are presented in Figure 4.5. Most

algorithms were less affected by gamma correction, blur, and noise than expected, though

performance gradually declined as the perturbation magnitude increased. However, we

found that all the algorithms performed worse when varying the brightness.

Figure 4.5: AUC at 100 proposals vs. image perturbations from PASCAL+.

4.3.5 Computation time

We present the execution time of each algorithm, corresponding to the configura-

tions used in our evaluation (K values) in Table 4.3. We also report the average time it

takes for each algorithm to compute one proposal.
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Table 4.3: Computation time (per 640× 480 image) of the algorithms used in our
evaluation.

Algorithm K
Cumulative

Runtime
per Image at K

Computation Time
per Proposal

Randomized Prim 900 0.63s 0.69ms
GOP 1000 1.25s 1.79ms
DeepMask 1000 3.13s 3.06ms
Objectness 1000 3.92s 3.29ms
SharpMask 300 1.28s 4.27ms
Selective Search 1000 4.43s 4.43ms
Rahtu 1000 4.70s 4.70ms

We found that Randomized Prim performed faster than the others by a substantial

margin at 0.69ms per proposal, while Rahtu performed the slowest at 4.70ms per proposal.

4.4 Discussion

Addressing the first research question (how the state-of-the-art object proposal

algorithms perform on images containing real-world noise, occlusion, and motion blur),

we found that all algorithms dropped in recall performance on the robot vision datasets,

particularly for # proposals < 100.

Despite the claim that object proposal algorithms are designed to be generalizable

[2], our results show that several of the algorithms did not perform consistently in relation

to each other. For instance, GOP actually performed better on the robot datasets than

on PASCAL. Additionally, we found that Rahtu performed better than Objectness on

RGBDMV, while the inverse was true for B3DO and PASCAL.

In contrast to the findings in the computer vision literature, our results suggest

that it is difficult to derive algorithm performance solely using the PASCAL dataset to

conduct evaluations on object proposal algorithms. This is especially notable for proposal

algorithms at a lower number of proposals, where the difference in recall performance
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is more dramatic. Arguably, this is most important for robotics and real-time systems,

where high recall at low number proposals is desirable.

We found that the algorithms were more robust to perturbations than expected, as

shown in our evaluation on PASCAL+. Nevertheless, we still show that perturbations can

affect some algorithms more than others. For instance, although Objectness and Rahtu

scored lower in overall recall, they were less affected by perturbations. These results

open new and important discussions about how object proposal algorithms should be

evaluated and designed for systems and robots operating in the wild.

Regarding the second research question (are deep learning approaches accurate

and computationally inexpensive enough for robotics), we found that DeepMask and

SharpMask performed the best across all metrics by a substantial margin on the robotic

vision datasets. We also found this to be true on the PASCAL+ dataset, where DeepMask

and SharpMask consistently attained the highest AUC scores, despite not being trained

for the added perturbations. Moreover, even though SharpMask was limited by the

number of proposals it could produce, it consistently performed better than the non-deep

learning methods.

We also found that DeepMask and SharpMask achieved higher recall using only a

small number of proposals (AUC ≈ 0.7 for # proposals < 100), which suggests that they

might be best-suited for robotic systems with GPU platforms that are powerful enough

to support them. However, deep learning methods can be computationally expensive,

particularly regarding GPU memory. Consequently, systems with lower computational

power, such as those found on mobile robots, might be incompatible.

Regarding the third research question (are object proposal algorithms fast enough

for computationally-limited mobile robots), we found that none of the algorithms in

our evaluation took a substantial amount of time to run on a CPU (non-deep learning

methods) or GPU (deep learning methods). We found that most of the algorithms were
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generally able to achieve high recall using only a few hundred proposals which is still

practical within most robotics contexts [51].

In terms of practical insights, we suggest using DeepMask at 100 proposals

for general vision applications on robotic systems that have sufficient GPU computing

resources, which appears to be optimal for high recall and low computation time. For

non-GPU systems, we suggest using GOP, which scored the highest AUC across the robot

datasets. For applications that require high localization accuracy (e.g., pose estimation

[116, 215]), we suggest using DeepMask, which has the highest recall at IoU thresholds

≥ 0.8.

4.5 Chapter summary

In this chapter, I discussed our investigation into object proposal algorithms,

where we found that the standard evaluation protocols were not suitable for designing

and evaluating object proposal algorithms for robotics contexts. This work also provided

us with insights into the robustness of different object proposal algorithms, which was

inspirational to my current research. In the next chapter, I discuss a new object discovery

method which leverages object proposals.
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Chapter 5

A new salient object discovery method

for monocular robot vision

One challenge that robots must overcome “in the wild” is to discover unseen

objects. This will play an important role for robots to learn about new objects to help

them perform tasks (e.g., appraising anomalous parts or tools used for repair, retrieval

of uncommon items, investigating new environments, identifying entities that can be

manipulated, etc.). Furthermore, by exploring and interacting with unseen objects, robots

can learn in a scalable manner.

Roboticists often leverage multi-modal data (e.g., via depth sensors) association

to infer the presence of unseen objects and their properties [28]. For example, depth

segmentation is prevalent in grasping [116], simultaneous localization and mapping

(SLAM) [203], and multi-object tracking [152] topics. Recently, some researchers have

also proposed using depth proposals to discover and track generic objects in street scenes

[154, 104]. However, depth cameras can be particularly sensitive to placement, dynamic

lighting conditions, and distance [53]. This can cause methods that rely on depth or 3D

image to be more constrained to specific domains (e.g., close or far-range applications),
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in contrast to standard RGB cameras which can be used for more general vision problems.

As a consequence, some researchers show that depth is not necessary for robot perception,

and that vision-related tasks can be achieved using monocular camera systems [136, 43].

Using solely RGB imaging, some researchers address the problem of detecting

unseen objects that are visually salient, also known as salient object discovery. The

most recent approaches require some degree of semi-supervision, for example, manually

drawing a bounding box or segmentation mask that encapsulates the boundaries of an

object. This annotation provides a training example (e.g., one-shot object learning), so

that the object can be discovered from multiple viewpoints [31, 225]. However, these

methods can be poorly suited for real-time robotics because they require a human to

manually initialize them each time that a robot encounters a new object.

To date, little work addresses salient object discovery in an unsupervised manner,

typically by aggregating multi-view images [227, 158]. These methods extract key

features (e.g. optical flow boundaries) at spaced time intervals across entire video

segments to determine the presence of salient objects. However, these methods often

take many image frames to process, which can be prohibitively slow for real-time robots

[158]. This can disrupt reactive decision-making behaviors of robots, which are essential

for time-sensitive tasks (c.f., [94]).

To this end, we introduce an unseen salient object discovery method, Unsuper-

vised Foraging of Objects (UFO). UFO is automatic and unsupervised in the sense that

it does not require manual annotation or initialization to discover objects. Furthermore,

UFO only requires a spatiotemporal stream of RGB image frames for input, making it a

suitable method for robots with monocular RGB camera systems.

The contributions of this research are threefold. First, our method discovers

unseen objects within a few image frames, in contrast to existing methods that require

entire image sequences to be processed before object discovery can occur. By extension,
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Figure 5.1: Our unsupervised object discovery framework, UFO, is composed of
six processes: a) object proposal generation, b) saliency scoring , c) non-maximum
suppression (NMS), d) feature extraction, e) sliding window graph update, f) path
selection, and g) object proposal prediction.

UFO is able to discover salient objects in real-time image sequences, while also achieving

state-of-the-art recall, precision, and accuracy.

Second, we designed a novel parallel discover-prediction paradigm to enforce the

selection of strong object candidates, improving precision over state-of-the-art salient

object discovery methods. Our method leverages the history of previously discovered

objects to make new predictions about their locations while also re-discovering them

using low-level image cues. In this way, previously discovered object instances can be

used to make self-correcting predictions as objects change appearance over time.

Third, our method is less computationally expensive than predominant methods

that employ motion cues. Instead, UFO leverages object proposals, exploiting their

spatiotemporal consistency to obtain object boundaries. UFO can infer unseen objects in

seconds, whereas optical flow-based methods can take on the order of minutes.

5.1 Methodology

Here, we describe UFO, which addresses unsupervised salient object discovery

for RGB vision. UFO introduces the concept of an augmented GOP, a data structure

that contains a bounding box (b), an objectness confidence score (o), a saliency score

(s), and a feature embedding ( f ). A bounding box (b) corresponds to the location of
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a potential object, and an objectness confidence score (o) measures the likelihood that

the same bounding box tightly encloses an object. Saliency (s) measures how much

a bounding box visually stands out in an image frame. A feature embedding ( f ) is a

compact representation of an image region inside a bounding box, used to detect object

correspondences for adjacent frames.

We developed UFO with the observation that GOPs corresponding to non-objects

appear randomly, due to camera noise, lighting, or image artifacts. In contrast, GOPs

containing objects appear more consistently, making it possible to detect salient object

correspondences in image sequences.

Transforming GOPs to vertices and object correspondences to edges, we construct

a sliding window graph. This graph is updated for each frame, tracking the histories of

discovered objects, which are used to predict GOPs in the event that the OPA fails to

make consistent predictions.

Figure 5.1 shows an overview of UFO and each of its aspects, which include:

(a) object proposal generation, (b) saliency scoring, (c) saliency-aware non-maximum

suppression, (d) feature extraction, (e) sliding window graph updating, (f) path selection,

and (g) object proposal prediction. For the first frame of an image sequence, UFO

performs Steps (a)-(f), generating an object prediction for the next frame in Step (g).

Steps (a)-(f) repeat for the next frame, merging the object prediction from the previous

frame after Step (c). This procedure repeats for incoming frames, where the sliding

window graph is updated with the history of discovered objects in Step (e). These steps

are described in detail in the following section.

5.1.1 Object proposal generation

Given an image sequence, we first apply an OPA to an image frame, It , at time t

to generate a finite number (N) of GOPs. Each GOP consists of a bounding box which
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we denote as bt
nt

, and we denote the set of bounding boxes generated by the OPA as

Bt = {bt
nt
|nt ∈ 1 . . .Nt}. For each GOP, the OPA assigns a confidence value that relates

to the probability that the GOP correlates to an object, or objectness score. We denote

the set of objectness scores as Ot = {ot
nt
|nt ∈ 1 . . .Nt}.

In our implementation, we selected DeepMask [165] for the OPA with N = 100,

which we determined to provide an optimal balance of speed and performance.

5.1.2 Saliency scoring

To discover salient objects, we designed a method to measure the normalized

saliency of each GOP. We first compute a saliency heat map, Ut , for image frame It , using

the Minimum Barrier Distance (MBD) Transform [241]. Next, we generate a binary

mask, Ut
msk, to compute the strongest salient pixels that highly correlate to object centers

of mass. Since MBD generates a bimodal distribution of salient pixels centered around

Gaussian distributed clusters, we can apply a globally-optimal threshold (e.g., Otsu’s

method [155]) to yield Ut
msk, which represents the locations of the strongest salient pixels

that correspond to “hot points” in Ut . This approach allows us to compute a normalized

measure of saliency for each GOP, which can adapt to changes in lighting and contrast

that can affect the raw saliency values in Ut .

There are two components in our saliency metric: saliency area (sarea) and

saliency centeredness (scenter). Saliency area measures the number of salient pixels

enclosed by each bounding box, bt
nt

, with respect to (w.r.t.) the total number of salient

pixels in the image frame (see Equation 5.1):

st
areant

=

∑
x,y∈bt

nt

Ut
msk(x,y)

∑
x,y∈It

Ut
msk(x,y)

(5.1)
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where x and y denote pixel coordinates w.r.t. It .

GOPs with bounding boxes that contain no salient pixels (i.e., st
areant

= 0) are

immediately discarded. For sake of discussion and simplicity, we treat N as a constant,

although N is time-dependent in practice.

Scenter measures how closely located a GOP is to the center of a hot region in U t

(shown in Equation 5.2):

st
centernt

= max
x,y∈bt

nt

(
Ut(x,y)◦g(x,y)

)
(5.2)

where g(x,y) is a two dimensional Gaussian function centered-aligned with bounding

box bt
nt

. We require the standard deviations of g(x,y) to be arbitrarily small to bias the

center pixels, so we selected σx =
w
10 and σy =

h
10 , respectively, where w is the width and

h is the height of bt
nt

1. This allows maximally salient pixels at the center of bt
nt

to yield a

saliency centeredness of 1, and non-salient pixels at the center of bt
nt

to yield a saliency

centeredness of 0.

The saliency area and saliency centeredness metrics are then aggregated (shown

in Equation 5.3) to construct a set of saliency scores, St = st
nt
|nt ∈ 1 . . .N such that (s.t.)

0≤ st
nt
≤ 1.

st
nt
= st

areant
st

centernt
(5.3)

1We experimented with various standard deviation values and found that any value between w
20 ≤σx≤ w

5
and h

20 ≤ σy ≤ h
5 did not impact performance.
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Figure 5.2: In modified non-maximum suppression (mNMS), the strongest bounding
box is assigned with the cumulative sum of the scores of all overlapping neighbors.

5.1.3 Modified and saliency-aware non-maximum suppression

OPAs will generate redundantly overlapping GOPs that need to be removed. This

is achieved by using non-maximum suppression (NMS), which selects the best GOP

among overlapping ones. Traditional NMS is greedy [148], using the confidence scores

directly generated by the OPA. While OPAs can produce high quality bounding boxes

(i.e., those that tightly enclose objects), they can sometimes falsely assign parts of an

object with higher confidence scores than the whole object. Additionally, OPAs can

sometimes assign high objectness scores to background elements. These conditions can

cause standard greedy NMS to incorrectly suppress GOPs that are essential to object

discovery.

Thus, we designed a novel NMS procedure that accounts for both objectness and

saliency; our approach is constructed in two stages: modified greedy NMS (mNMS) and

saliency-aware greedy NMS (sNMS) shown in Algorithm 2. In mNMS, the maximally-

selected GOPs are augmented with the sum of scores of their neighboring GOPs (illus-

trated in Figure 5.2). These sum-of-neighbor scores favor GOPs with more within-frame

redundancy (i.e., GOPs with stronger correlations to objects). The outputs of the mNMS

are then applied to sNMS.

For sNMS, a graph is constructed using GOPs as vertices, and the intersection
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over minimum area (IoMA) of their bounding boxes as edges (shown in Equation 5.4).

When used in tandem with the sum-of-neighbor scores from mNMS, sNMS suppresses

non-redundant GOPs that more likely correlate with irrelevant entities (e.g., object parts

or background regions), that also overlap with real objects.

IoMA =
a∩b

min(aarea,barea)
(5.4)

where a and b are bounding boxes and area denotes their area.

In sNMS, we sum-aggregate the scores from mNMS (i.e., sum-of-neighbors) and

saliency scores, St , to select the best GOP among neighbors. This achieves selection of

GOPs that have more redundant overlap that are also highly salient. To eliminate outlier

bias, we apply feature scaling to normalize the objectness and saliency scores, shown in

Equation 5.5:

Y =
X−X

max(X)−min(X)
(5.5)

where a bolded variable indicates a vector, X denotes the mean of vector X.

5.1.4 Feature extraction

For each GOP, we extract their image features to detect correspondences across

adjacent image frames. We experimented with various CNN architectures (AlexNet

[108], VGG19 [199], ResNet [86], and InceptionV3 [207]) to study how they perform

as feature extractors for bipartite image feature matching (discussed in Section 5.1.5).

In general, since image content does not drastically vary across adjacent image frames,
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Algorithm 2: Saliency-Aware Greedy NMS (sNMS)
Inputs: A set of GOPs.
Initialization: Let Gs = (Vs,Es) using GOPs as vertices and the

intersection over minimum area overlap of their bounding boxes define
edges. V′s = /0.

while |Vs|> 0 do

vmax←vi =argmax
i

∑
j∈Vs

Φ(i, j) =

{
1, if e(vi,v j)

0, otherwise
Vneighbors←{v|e(v,vmax)≥ 0.5}
vselect ← vn = argmax

n|vn∈Vneighbors

(v∗n.o+ v∗n.s)

vselect .o = max(vneighbors.o)
V′s← vselect
Vs = Vs−Vneighbors

end
Return V′
. o is the objectness score corresponding to vertex vn.
. s is the saliency score corresponding to vertex vn.
. ∗ denotes scale-normalized (shown in Equation 5.5).

we found that the performance differences of UFO were negligible (less than 0.01mAP)

when substituting the CNN. We selected VGG-19 for its simplicity, speed, and object

representational power. Features are extracted from the final fully connected layer ( f c7),

and stored in a set which we denote as F t = { f t
nt
|nt ∈ 1 . . .Nt}.

5.1.5 Updating the sliding window graph

Previously, we discussed bounding boxes (Bt), objectness scores (Ot), saliency

scores (St), and feature vectors (F t) at time t. We now group these components into

a single structure, denoting a set of GOPs at time t as V t = {vt
nt
⊇ bt

nt
,ot

nt
,st

nt
, f t

nt
|nt ∈

1 . . .Nt}. For example, the bounding box of the n-th GOP at time t, is expressed as

vt
nt
.b. Using this notation, we expand our discussion from a single image frame to a

time-dependent sequence, where the current frame at time t is It , and a prior frame is

It−τ for time τ.
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To track the history of prior GOPs with a memory-scalable approach, we adapted

a sliding window graph. This enables GOPs that fall outside of a temporal window to be

removed from memory, allowing UFO to run indefinitely.

Given a window of size W , we construct a sliding window directed acyclic graph.

In our implementation, we set W = 3 (we later discuss this parameter in Section 5.2.4).

We denote this graph as G = (V,E), with vt
nt

as vertices, and edges defined by the

spatiotemporal intersection over union (IoU) of their bounding boxes between adjacent

frames. For example, the vertices in the window are denoted as V = {V t−W . . .V t}. V is

stored in a queue where V t corresponds to the GOPs of the most recent frame, It .

Edges are generated in a directed matter from t − 1 to t, where edges from

previous time steps are moved further into the queue as new frames become available.

Edges are only formed for GOPs if their bounding boxes are time-adjacent and spatially

overlapping (i.e. vt−1
ni

.b∩ vt
n j
.b > 0|ni ∈ 1 . . . |V t−1|,n j ∈ 1 . . . |V t |).

For each pair of GOPs in adjacent frames It and It−1, we compute their pairwise

similarity score, Λ (shown in Equation 5.6), using their bounding box dimensions (i.e.,

width and height) and VGG19 features. Λ = 1 indicates little or no similarity and Λ = 0

indicates perfect similarity.

Λ = λ(a,b), 0≤ λ(a,b)≤ 1

λ(a,b) = 1− e−zssd(a f ,b f )e−
( |ah−bh|

ah+bh
+
|aw−bw|
aw+bw

) (5.6)

where a and b are bounding boxes corresponding to spatiotemporally adjacent GOPs,

subscripts w and h refer to a bounding box’s width and height, and subscript f denotes

their feature embeddings. zssd computes the similarity of two feature vectors via zero-

mean sum of square differences.

To find optimal edge assignments for vertices V t−1 and V t we apply bipartite
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minimum-cost matching using their similarity scores, λ(vt−1
nt−1

,vt
nt
), where nt−1 . . .Nt−1

and nt . . .Nt . This procedure is repeated for incoming frames to form object paths. The

time step is updated and the previous version of the sliding window graph is moved

further into the FIFO queue (i.e., V t−W ←V t−W+1, . . . ,V t−1←V t).

Figure 5.3: The sliding window graph of length W (shown in green). Vertices represent
GOPs and edges represent similarity scores. Dashed lines show the resultant, non-
adjacent connections of vertices between times t−W +1 and t−1. Solid lines show
direct connections between frame-adjacent vertices.

5.1.6 Path selection

Finally, to discover objects, we compute the shortest paths in G which correspond

to the greatest GOP correspondences in the image sequence. G contains a finite number

(K) of shortest paths which we denote as P = {pk|k ∈ 1 . . .K}, where pk contains a set of

vertices: pk = {vt−W+1
nW

, . . . ,vt
nt
}. From P, the goal is to find a path pk, corresponding to

the most salient object in the sequence.

We designed a greedy path selection strategy to find the path that contains vertices
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with the highest objectness and saliency scores, which likely corresponds to the most

salient object in the image sequence. To prevent outlier bias, we apply scaling (shown in

Equation 5.5) to the set of objectness (V t .o) and saliency scores (V t .s) from each frame

in interval t−W . . . t. For each path pk, the normalized objectness and saliency scores

are used to derive sum-aggregated selection scores (pk.score), shown in Equation 5.7.

The set of paths P= {pk|k ∈ 1 . . .K} is sorted in descending order w.r.t. to pk.score.

Finally, the top-ranking path is selected, where the bounding box vt
nt
.b ∈ p0, is the output

of UFO.

pk.score =
t−WP+1

∑
τ=t

∑
vτ

nτ
∈pk

vτ
nτ
.s+

t−WP+1

∑
τ=t

∑
vτ

nτ
∈pk

vτ
nτ
.o (5.7)

5.1.7 Object proposal prediction

While GOPs of objects tend to consistently appear throughout an image sequence,

it is still unlikely that they will be present in every frame, since the appearance of

objects can change dramatically over time. This can cause UFO to temporarily misdetect

discovered objects until the corresponding path is regenerated in the sliding window.

To mitigate this problem, we generate a template using the bounding box from

the previous frame. This template is cross-correlated with the current frame to predict

the location of the object. Assuming small object displacement between adjacent frames,

we form a search area two times the template, centered at the object’s previously known

location.

The resulting bounding box is then assigned with the mean objectness score of

the vertices in its path to form a GOP prediction. We also apply a penalization factor to

the mean objectness score, which enables the objectness score of a recurrent prediction

to decay over time, preventing erroneous predictions from propagating due to drift.
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The prediction is merged with the output of the OPA for the current frame (Section

5.1.1). Merging is achieved by computing the similarity score (shown in Equation 5.6)

and solving bipartite matching for within-frame GOPs. Among matching pairs, the

higher-scoring GOP is selected as the final merged candidate.

Figure 5.4: Image sequence depicting segmentation mask to bounding box conversion
procedure. Left: original segmentation mask. Center: ropes are removed. Right: the
final bounding box forms a perimeter around the mask.

5.2 Evaluation and results

5.2.1 Dataset

We use the DAVIS 2016 dataset [162], which is a standard testbed for evaluating

salient object discovery methods.

The DAVIS dataset contains ground truth segmentation masks for each frame,

which we converted to bounding box format2. To generate high quality bounding boxes

(e.g., to support tighter fits around objects), we needed to adjust some segmentation

masks by removing thin object parts (e.g., strings, ropes, chains) – for an example, see

Figure 5.4. In total we adjusted 281 of 3455 images (i.e., from paragliding-launch (79),

kite-walk (79), kite-surf (49), and boat (74) scenes).

2We note that while we made adjustments to DAVIS to make our experiments bounding box compatible,
we compared our results to the recent survey by Caelles et al. [20], which also reported auxiliary bounding
box evaluation results. We found no discernible differences in FST’s performance. We note however, that
we use the latest release of SAL which performs better than reported in their paper.
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5.2.2 Comparison to the state-of-the-art

We selected two recent unsupervised salient object discovery methods to compare

against UFO: Saliency-Aware Geodesic (SAL) [227] and Fast Segmentation (FST) [158],

the fastest and most accurate methods reported in the literature [20]. We evaluated FST

and SAL using their default parameters. Our results are shown in Figures 5.6, 5.1, 5.5,

and 5.7.

To provide a fair comparison to UFO, we converted the segmentation masks from

the output of SAL and FST to bounding boxes using the procedures in Section 5.2.1.

To measure performance, we employed widely-used metrics from the salient

object discovery literature: precision, recall, F-measure, accuracy, mean average precision

(mAP), and end-to-end computation per frame in seconds (t(s)) [209]. To measure the

generalizability of each method, we computed the precision for each image sequence,

then averaged them across all 50 sequences to compute the mean average precision

(mAP).

We found that UFO was approximately 6.5 times faster than SAL (which took

on average 35.7 seconds to infer object discovery predictions for each frame) and FST

(which took on average 29.4 seconds). Comparing precision, recall, F-measure, and

accuracy, we found that UFO scored similarly to FST, while SAL scored lower for all

metrics.

Table 5.1: Comparison between UFO and two state-of-the-art methods on DAVIS. We
measured precision, recall, F-score, accuracy, mean average precision (mAP) at IoU =
0.5. We report the average end-to-end computation time in seconds per frame (t(s)).
Columns with upward arrows indicate that a higher score is better. Lower computation
time is better. UFO scores best for computation time, precision, F-score, accuracy, and
mAP.

Method t(s) ↓ Precision ↑ Recall ↑ F-score ↑ Accuracy ↑ mAP ↑
UFO 4.52 0.662 0.645 0.654 0.486 0.568
FastSeg (FST) [158] 29.4 0.659 0.647 0.653 0.485 0.586
Salient Geodesic (SAL) [227] 35.7 0.517 0.597 0.597 0.425 0.517
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Figure 5.5: Precision (left) and Accuracy (right) measured over IoU threshold (IoUt),
which correlate to robustness to false-positives and overall accuracy, respectively (higher
is better). For the standard overlap criterion (IoUt = 0.5), UFO scores highest.

5.2.3 Ablation experiments

To analyze the importance of each system component, we evaluated ablated

versions of UFO. Specifically, we investigated how UFO performs without the proposal

prediction (UFO-P) and saliency-aware NMS (UFO-NMS) components. We also evalu-

ated UFO without either of these components (UFO-P-NMS). We show our results in

Figures 5.5 and 5.2.

When prediction is removed from UFO (UFO-P), performance declines across all

metrics, with exception to computation time (4.41 seconds per frame). Our results suggest

that the prediction component is important for correcting object discovery instances that

can become corrupt over time.

When NMS is removed (UFO-NMS), performance again declines across all

metrics. Moreover, UFO-NMS has longer computation time (6.41 seconds per frame).

This suggests that saliency-aware NMS removes non-salient OPAs, reducing both the

number of false positives and computation time.

Finally, we show that UFO-P-NMS has substantially longer computation time

than UFO (6.53 seconds per frame). This further suggests that both components are
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significant to UFO’s design, such that the prediction component increases recall, while

saliency-aware NMS reduces computation time.

Table 5.2: Ablation Study Findings: overall performance of UFO declines when
prediction and/or NMS components are removed from the pipeline.

Method t(s) ↓ Precision ↑ Recall ↑ F-score ↑ Accuracy ↑ mAP ↑
UFO 4.52 0.662 0.645 0.654 0.486 0.568
UFO-P 4.41 0.649 0.632 0.641 0.471 0.556
UFO-NMS 6.41 0.631 0.614 0.622 0.452 0.547
UFO-P-NMS 6.53 0.661 0.644 0.652 0.471 0.563

5.2.4 Performance due to window size

To explore how the size of the sliding window affects UFO, we incrementally

varied parameter W (results shown in Figure 5.3). Our experiments show that as W

increases, UFO can focus on false-positive or detractor objects instead of the main object,

which reduces recall performance. Specifically, UFO will favor objects that remain in the

window for a longer time, which possibly includes detractor objects. However, we also

found that a larger W decreases computation time because it also reduces the number of

object candidates.

When W is small, we found that UFO is more adaptable to new object candidates.

This also enables it to recover previously discovered objects that were lost due to occlu-

sion. We also found that a smaller W enables UFO to achieve higher recall when objects

of interest are more easily discernible from the background (e.g., more salient).

Table 5.3: Effect of Window Size (W ) Findings: overall performance of UFO declines
as the window size increases.

Method t(s) ↓ Precision ↑ Recall ↑ F-score ↑ Accuracy ↑ mAP ↑
UFO, W=3 (default) 4.52 0.662 0.645 0.654 0.486 0.568
UFO, W=5 4.36 0.646 0.629 0.638 0.468 0.555
UFO, W=10 4.17 0.629 0.612 0.620 0.450 0.541
UFO, W=20 4.03 0.618 0.601 0.609 0.438 0.534
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5.2.5 Computation time of system components

To study which factors affect the speed of UFO, we measured the computation

time of each of its system components. In general, we found that most components were

computationally inexpensive, with exception to the OPA and NMS algorithm. However,

we can expect the speed of the pipeline to improve by refining the OPA and NMS

algorithm, since all other components are dependent on them. Our results are shown in

Figure 5.4.

Table 5.4: Average per-image computation time of individual system components in
UFO.

System Component t(s)
Object Proposal Generation (OPA) 2.13
Saliency Scoring 0.23
Modified & Saliency-Aware NMS 1.08
Feature Extraction 0.63
Sliding Window Graph Update 0.27
Path Selection 0.01
Prediction 0.15

5.2.6 Discussion

UFO is a vision-based approach which can complement other perception methods

that address object learning for robots. For example, UFO can be used with haptic-based

approaches, to enable robots to autonomously explore novel objects by both means of

touch and sight (c.f. [47]). UFO can also be suitable for detecting unfamiliar objects, to

inspire robots to examine them via active perception.

Our method is designed for RGB vision, making it a viable perception framework

for robots with monocular camera systems. Moreover, UFO is flexible in that it does not

require depth data, which can be problematic for object discovery methods that rely on
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range estimation.

UFO is approximately 6.5 times faster than recent unsupervised salient object

discovery methods for RGB vision. Our method leverages an OPA to generate salient

GOPs, exploiting their spatiotemporal consistency to discover objects in image sequences.

We also designed UFO with a discover-prediction approach, which recovers previously

discovered objects in the event that the OPA fails to generate suitable GOPs. With

this approach, we show that object discovery can be achieved much more quickly than

predominant approaches that rely on motion boundary detection. Since unsupervised

salient object discovery methods require multiple frames and iterations to discover

objects, optical flow-based methods take on the order of minutes, while UFO is able to

reduce this time to seconds. To our knowledge, UFO is the fastest unsupervised salient

object discovery method for RGB vision.

We evaluated UFO on the DAVIS dataset, which reflects real-world robot percep-

tion challenges including moving cameras and objects, motion blur, and occlusion. In

terms of overall precision, F1-measure, and accuracy, UFO attained the highest perfor-

mance among the methods studied. Moreover, UFO was able to perform consistently

across nearly all of the scenes, suggesting that it can generalize to a broad range of robot

vision contexts (see Figure 5.7).

We also found that UFO was robust to motion blur and dynamic lighting. In some

image sequences (c.f., “mallard-fly” in Figure 5.6), the object of interest is visible at start

of the sequence, but became heavily blurred when both the object and camera velocities

suddenly changed. Because UFO does not rely on motion boundaries, it was still able

to discover these objects, which suggests that it is robust to faster camera movement,

suggesting its suitability for mobile robot vision.

One limitation was that we used DeepBox [111] to generate GOPs, where experi-

mentation with other OPAs could have possibly improved our results. However, DeepBox
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still enabled UFO to achieve state-of-the-art recall and precision, and we treat our current

design as a lower bound for performance.

UFO

FST

SAL

Figure 5.6: Sample object discovery sequence across a challenging scene (i.e., mallard-
fly) from the DAVIS 2016 dataset. Our results suggests that UFO is robust to dynamic
lighting, and fast camera and object motion, which is difficult for methods that rely on
optical flow or motion boundaries.

Figure 5.7: Examples of successful (top row) and less successful (bottom row) ob-
ject discovery instances. Cyan boxes show the output of UFO, and magenta boxes
correspond to ground truth objects.

5.3 Chapter summary

In this chapter, I discussed UFO, a new unsupervised salient object discovery

method that can quickly and automatically discover unseen salient objects on-the-fly.
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This research was influential to my current goal of achieving faster object discovery. In

particular, this work motivated my exploration into faster methods for object proposal

generation, which is an important factor for achieving this goal. The next chapter

addresses this challenge by introducing a new real-time object proposal algorithm for

robot vision.
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Chapter 6

A new real-time object proposal

algorithm for robot vision

One promising approach toward faster object discovery concerns object proposal

algorithms which can be used to query images for regions of interest that are likely to

contain objects. Previously discussed in Chapter 5, object proposals can enable robots to

perceive unseen objects with a high degree of accuracy and recall [152, 27]. However,

current methods have high computational overhead, making them unsuitable for real-time,

real-world robot perception [25].

To address this gaps, we introduce a new robot-optimized real-time object pro-

posal algorithm, which can recall any conspicuous object using a one-stage network

(RaccooNet1). We designed RaccooNet to address real-world robot vision challenges

(i.e., camera motion, blur, noise) in contexts where robots need to quickly make decisions

in uncertain environments [210, 213]. RaccooNet accepts standard RGB images as an

input, allowing it to be adapted into existing vision pipelines and systems to support

unseen object discovery for robots.

1Celebrating the unofficial mascot of our campus, and for its ability to Recall Any ConspiCuous Object
using a One-stage Network, we named our method RaccooNet.
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RaccooNet employs a one-stage, dense sampling approach to generate a diverse

set of high-quality object proposals. Using a feature pyramid network to combine the

advantages of low- and high-level features of deep convolutional neural networks, Rac-

cooNet can robustly address object scale challenges. Moreover, RaccooNet incorporates

a novel IoU prediction approach, making it more efficient in its ability to recall objects

using a smaller number of object proposal predictions. In contrast to existing region

proposal networks [178, 120], our method is designed for real-time operation, and for

mobile robots.

The contributions of this work are four-fold. First, we introduce RaccooNet, a

new real-time object proposal algorithm that perceives unseen objects, and is designed for

mobile robot perception applications. To our knowledge, RaccooNet is the only method

capable of true real-time performance, which is approximately three times faster than

the currently top-performing object proposal algorithms at 47.9 fps, while also achieving

state-of-the-art recall performance. We also show RaccooNet is robust when encountering

a variety of real-world robot perception challenges, including camera motion, blur, and

noise, across a range of dynamic scenes.

Second, to our knowledge, we are the first to design an object proposal algorithm

with an intersection over union (IoU) overlap confidence module, which improves object

recall using a smaller number of proposals (thus substantially improving its efficiency).

Third, we introduce RaccooNet Mobile, which at 171 fps, is approximately ten

times faster than top-performing methods. We also show that RaccooNet Mobile is

suitable for computationally-limited, low-powered systems by evaluating it on a popular

embedded platform, the Nvidia Jetson TX2, without diminishing its recall performance.

Finally, we plan to release our implementations of both systems as open-source,

which will benefit the broader robotics community to address real-time robot perception

challenges.
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6.1 Bounding box regression

Previously discussed in Chapter, 2.5 object proposal algorithms often involves

predicting objects using one of two representations: segmentation masks or bounding

boxes. In general, segmentation can be computationally expensive and slow, which has

prevented its widespread adoption in real-world applications [85]. In contrast, bounding

boxes provide a coarser approximation, but they are significantly faster to compute and

are thus ubiquitous in many robot vision systems.

Bounding boxes form rectangular perimeters around objects, and are typically

represented using a Cartesian-based coordinate system (e.g., x, y, width, and height).

Recently, researchers used CNNs to predict bounding box coordinates as continuous

variables (i.e., bounding box regression) [178, 125, 224]. In this manner, CNNs also

learn parameters to invoke eccentric features that correspond to strong object boundaries.

Some researchers apply predefined boxes, i.e., anchor boxes, at various locations

of the image to improve bounding box accuracy and training time. Using this approach,

CNNs learn to make adjustments for each anchor box until they converge to their target

object boundaries [208, 178]. Since anchor boxes can be adapted to possess unique

properties (e.g., location, sizes, ratios), they can also specialize at detecting objects with

similar characteristics. However, existing methods favor using multiple anchor boxes

that simultaneously target the same objects [176, 247, 231]. While this increases the

probability that those objects will be recalled, it also leads to redundant bounding box

predictions that reduce the network’s overall efficiency.

Addressing this limitation, we developed a new anchor-based bounding box

regression technique which RaccooNet employs. RaccooNet uses an asymmetric assign-

ment procedure to map anchor boxes to the feature pyramid according to their optimal

receptive field dimensions. In effect, this forces overlapping anchors to selectively target
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objects where their features are more prominent (e.g., smaller anchors projected onto

higher resolution feature maps). With this approach, we mitigate the number of redundant

predictions per target object, allowing the network to recall a diverse range of objects

with a smaller number of object proposals.

6.2 Real-time object proposals with RaccooNet

RaccooNet is a one-stage, feed-forward CNN that predicts object proposals in

real-time (shown in Figure 6.1). It uses an anchor-based approach to densely sample

images for object-rich features. Composed of a three-level feature pyramid network

(FPN), RaccooNet can generate object proposals over a large range of scales and aspect

ratios, making it robust for real-world robot perception. Unique to RaccooNet, we use

asymmetrically distributed anchors across feature pyramid levels, which we adapted

to their respective field sizes. We also designed a novel approach to predict overlap

confidence, allowing our method to be efficient in its ability to yield high quality object

proposals using a small number of predictions.

In this section, we first discuss details of our target encoding procedure. We then

discuss how we designed RaccooNet to predict object proposals, which we characterize

by three attributes: object locations, objectness confidence, and overlap confidence. We

then present the loss function which we use to optimize RaccooNet.

6.2.1 Encoding target objects

Taking a standard RGB image as an input, RaccooNet outputs tensors that corre-

spond to object proposal predictions. Thus, a critical design challenge involves encoding

its output tensors such that they map to target objects relative to their position in the

image. We accomplish this goal in three steps: design the anchor boxes, map the anchor
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Figure 6.1: Overview of RaccooNet. An image is inputted into a pre-trained (a)
backbone network, where its multi-scale features are extracted by a (b) feature pyramid
network (FPN). From the FPN features from the receptive field are passed into the (c)
necks to form spatially dependent feature encodings. Intuitively, this process subdivides
the image into cells with respect to the FPN dimensions. Being fully convolutional, the
(d) prediction network cells make dense object proposal predictions each consisting of:
a bounding box (blue), objectness confidence interval, and IoU confidence score.

boxes to their FPN level according to size, then finally encode target objects to anchor

boxes.

First, we compute a set of anchor boxes A = {ad ⊇ (aw
d ,a

h
d)|d = 0 . . .D} using

k-means clustering on the Microsoft COCO [122] training set, where we use the width

and height dimensions of all ground truth objects as sample points. Motivated by the

widely accepted design choice of three anchors per FPN level [120], we parameterized

nine clusters (D = 9).

We avoid the problem of using uniformly distributed anchor boxes (e.g., RPN)

which can oversaturate the lower-levels of the FPN, leading to higher computational

cost. We instead assign anchor boxes in an asymmetric fashion where we consider their

positioning with regard to the width and height of the output layer of the backbone

network, which is δ×δ, or where δ = 7 for most CNN architectures. Our intuition is that

this will more efficiently assign anchors according to their appropriate size. For example,
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smaller anchors are optimally paired with smaller objects; moreover, smaller objects are

less likely to overlap with each other, which necessitates less anchor boxes. Starting

from the bottommost FPN level, we assign anchors having a minimum dimension less

than 2
δ

to l0. Anchors having a maximum dimension greater than 4
δ

are assigned to the

highest level, l2; all other anchors are assigned to l1; these assignment rules are shown in

Algorithm 3.

Algorithm 3: Assign Anchors to FPN Level
Input: anchors, A = {ad ⊇ (aw

d ,a
h
d)|d = 0 . . .D}

Output: FPN levels, l0, l1, l2
for d ∈ D do

if min(aw
d ,a

h
d)<

2
δ

then
l0← ad

else if max(aw
d ,a

h
d)≥

4
δ

then
l2← ad

else
l1← ad

end
Return l0, l1, l2
. δ is the native dimension of the backbone network’s output layer.

Once anchors are matched to an FPN level2, they are assigned to their output

tensors for every row i ∈ I and column j ∈ J, where we now denote anchors A = {ai jk ⊇

(aw
i jk,a

h
i jk)}, for k ∈ K anchors.

Lastly, we encode target objects to anchors, where the goal is to generate an

optimal pairing such that we achieve the maximum intersection-over-union (IoU) overlap

for all pairs. We show the generalized form of IoU in Equation 6.1:

IoU(b1,b2) =
b1∩b2

b1∪b2
(6.1)

2While our FPN structure possesses three levels, we only discuss one level for the remainder of this
section for the sake of notational simplicity.
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where b1 and b2 are two arbitrary bounding boxes.

We define the set of bounding boxes around target objects Qgt = {qgt
m ⊇

(xgt
m ,y

gt
m ,w

gt
m ,h

gt
m)|m ∈ 1 . . .M}. Formulating a bipartite graph from Qgt to A , where

we define edges by their IoU, we match optimal pairs using Equation 6.2:

qgt∗
m = argmax

qgt
m∈M

IoU(qgt
m ,ai jk) (6.2)

where qgt∗
m is the optimal pairing to ai jk.

Simplifying, we let qgt∗
m → qgt

i jk so that matched target objects and anchors share

the same indices. We now denote the set of matched targets to cell-anchors Q gt = {qgt
i jk ⊇

(xgt
i jk,y

gt
i jk,w

gt
i jk,h

gt
i jk)|¬∀(i, j,k)∃qgt

i jk}.

6.2.2 Network components

We define object proposal predictions for each row i ∈ I, column j ∈ J, and

anchor k ∈ K with six tensor variables (v): vx
i jk, vy

i jk, vw
i jk, vh

i jk, vob j
i jk , and viou

i jk .

Tensors vx
i jk, vy

i jk, vw
i jk, and vh

i jk correspond to one bounding box location in

cartesian coordinates (x position, y position, width, and height, respectively). Tensor

vob j
i jk ∈ [0,1] corresponds to the likelihood that the object proposal contains an object.

Finally, tensor viou
i jk ∈ [0,1] corresponds to the predicted accuracy of the bounding box’s

overlap with an object.

Predicting object locations

RaccooNet makes an object proposal prediction for each row i ∈ I, column j ∈ J,

and anchor k ∈ K. Intuitively, this formulation divides an image into a grid, where we

can consider each i, j position a “cell”. With respect to the bounding box positional
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coordinates, RaccooNet makes the initial assumption that objects occupy the center

of each cell, where tensor variables vx
i jk and vy

i jk predict positional offsets between a

bounding box and the origin of its cell. Using a sigma function, we constrain the offsets

so that they cannot extend beyond the boundaries of their cells. To convert the tensor

predictions to normalized coordinates, we add the column and row offsets, ci =
1
I i and

c j =
1
J j, xpred ∈ [0,1] and ypred ∈ [0,1], shown in Equations 6.3 and 6.4:

xpred =
1
I

σ(vx
i jk)+ cx

i j (6.3)

ypred =
1
J

σ(vy
i jk)+ cy

i j (6.4)

Tensor variables vw
i jk and vh

i jk predict how to adjust the anchor boxes, A = {ai jk ⊇

(aw
i jk,a

h
i jk)}, so that they fit an object’s width (wpred ∈ [0,1]) and height (hpred ∈ [0,1]).

Consistent with ubiquitous bounding box regression techniques, we adapted wpred and

hpred to the log space to improve their fitness to a wide range of generic objects, which

we show in Equations 6.5 and 6.6:

wpred = aw
i jkevw

i jk (6.5)

hpred = ah
i jkevh

i jk (6.6)
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From Equations 6.3-6.6, we denote the set of predicted bounding boxes Qpred =

{qpred
i jk ⊇ (xpred

i jk ,ypred
i jk ,wpred

i jk ,hpred
i jk )|¬∀(i, j,k)∃qpred

i jk }.

Next, we define a loss function that minimizes the positional (x and y) and

dimensional (h and w) errors between predicted and target bounding boxes. Rather than

employing conventional losses (e.g., L1,L2,smoothL1) to train each term individually

[71, 175], we adopt Complete IoU (CIoU) loss [246]. This enables our network to learn

positional and dimensional terms jointly, which consolidates other important factors such

as aspect ratio and IoU overlap [179, 246]. The general form of CIoU loss given two

arbitrary bounding boxes is given by:

LCIoU(b1,b2) =(
1− IoU(b1,b2)

)
+

g(b1,b2)
2

H (b1,b2)2 +θ(b1,b2) f (b1,b2)
(6.7)

where g(b1,b2)
2 is the squared Euclidean distance between centroids of bounding boxes

b1 and b2, and H (b1,b2) is the diagonal of the rectangular convex hull of b1 and b2.

f (b1,b2) measures the aspect ratio consistency between b1 and b2 and is given by

Equation 6.8:

f (b1,b2) =
4
π2 (arctan

bw
1

bh
1
+arctan

bw
2

bh
2
) (6.8)

θ scales down the weight of f to give higher priority to the other terms (i.e.,

overlap area and distance) and is given by Equation 6.9:
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θ(b1,b2) =
g(b1,b2)(

1− IoU(b1,b2)
)
+ f (b1,b2)

(6.9)

Applying Qpred and Q gt to CIoU loss, we formulate our bounding box regression

loss in Equation 6.10:

Lbbreg(q
gt
i jk,q

pred
i jk ) =

I

∑
i=1

J

∑
j=1

K

∑
k=1

1
gt
i jkLCIoU(q

gt
i jk,q

pred
i jk ) (6.10)

where

1
gt
i jk =


1 if ∃qgt

i jk

0 else
(6.11)

Predicting objectness confidence

For each anchor, RaccooNet outputs an objectness confidence interval, vob j
i jk ∈

[0,1], to predict the likelihood that each bounding box contains an object. This is a critical

component of our design, because the network learns bounding box parameters for each

anchor, even though anchors do not necessarily contain objects. Thus, the network will

output noisy bounding boxes which can be filtered out by thresholding those with low

objectness confidence.

One common approach to designing a network to predict objectness is to minimize

the cross-entropy (CE) loss between ground truth class s and predicted class u, defined

by the expression: LCE(s,u) = −s log(u)− (1− s) log(1− u), s ∈ [0,1] and u ∈ [0,1]

[30, 133, 100]. However, CE loss can bias the network to falsely classify objects as

background when the number of objects per image is disproportionately smaller than the

number of background regions.
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Here, we adopt focal loss [121] to rebalance the weight distribution across cor-

rectly and incorrectly classified objects. For convenience, we write CE loss using

shorthand notation first defining z as a piecewise function of s and u in Equation 6.13:

z(s,u) =


u if s = 1

1−u if s 6= 1
(6.12)

We can then write CE loss in the form:

LCE(s,u) =− log
(

z(s,u)
)

(6.13)

Focal loss is then given by Equation 6.14:

LFL(s,u) =−α

(
1− z(s,u)

)γ

log
(

z(s,u)
)

(6.14)

where α ∈ [0,1] and γ > 0 are hyperparameters that adjust the weights of the cor-

rectly/incorrectly classified training examples; we use the default values from [121],

where α = 0.25 and γ = 2.

Using the standard IoU threshold (IoUt = 0.5) true-positive metric, we consider

positive examples qgt
i jk,q

pred
i jk s.t. IoU(qgt

i jk,q
pred
i jk ) ≥ 0.5. Objectness confidence loss is

then given by Equation 6.15:

Lob jcon f (s
ob j
i jk ,v

ob j
i jk ) =

I

∑
i=1

J

∑
j=1

K

∑
k=1

LFL(s
ob j
i jk ,v

ob j
i jk ) (6.15)

where
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sob j
i jk =


1 if ∃qgt

i jk

0 else
(6.16)

and

vob j
i jk =


1 if IoU(qgt

i jk,q
pred
i jk )≥ 0.5

0 else
(6.17)

Predicting overlap accuracy

One unavoidable complication for using CNNs to generate object proposals is

that they generate redundant predictions that negatively impact object recall performance.

Within many object perception contexts, the de facto solution is to apply a greedy-

class non-maximum suppression (NMS) strategy. Applied after forward propagation,

NMS selectively outputs bounding boxes having the strongest classification score among

overlapping proposals; other bounding boxes are otherwise removed. While greedy-class

NMS is generally effective at removing outlier bounding boxes, Jiang et al. [98] showed

that class confidence is suboptimal because it does not correlate to bounding box overlap

accuracy.

To address this, we designed our network to directly predict bounding box overlap

accuracy using an IoU confidence loss, shown in Equation 6.18. We formulate our

network to learn a novel IoU confidence interval, viou
i jk ∈ [0,1] for positive target objects.

Using a weighted regression approach, our network accomplishes negative hard mining

to suppress object proposals that have poor overlap, which we define as qgt
i jk,q

pred
i jk s.t.

IoU(qgt
i jk,q

pred
i jk )< 0.4.
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Lioucon f (IoU(qgt
i jk,q

pred
i jk ),viou

i jk ) =

I

∑
i=1

J

∑
j=1

K

∑
k=1

uob j
i jk smoothL1

(
IoU(qgt

i jk,q
pred
i jk ),viou

i jk

)
+Ψ

I

∑
i=1

J

∑
j=1

K

∑
k=1

unoob j
i jk smoothL1

(
0,viou

i jk

) (6.18)

where Ψ is a weighing factor to balance the number of objects with non-objects (we

select a value of Ψ = 0.001 to approximate a 1:1000 ratio). smoothL1 is a loss function

that incorporates the benefits of L1 and L2 losses [71]. unoob j
i jk is a threshold used to

determine hard negatives, and is given by Equation 6.19:

unoob j
i jk =


1 if IoU(qgt

i jk,q
pred
i jk )< 0.4

0 else
(6.19)

6.2.3 Loss function

Combining Equations 6.1, 6.10, and 6.15, the loss function which we use to

optimize RaccooNet is given by Equation 6.20:

LRaccooNet = λ1Lbbreg(q
gt
i jk,q

pred
i jk )

+λ2Lob jcon f (s
ob j
i jk ,v

ob j
i jk )

+λ3Lioucon f (IoU(qgt
i jk,q

pred
i jk ),viou

i jk )

(6.20)

where λ1 = 1 and λ2 = λ3 = 2 are weights to balance the individual losses.
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6.3 Evaluation and results

We evaluated RaccooNet (and RaccooNet Mobile) for its speed, efficiency, and

overall effectiveness for generating object proposals for unseen objects in robot percep-

tion contexts (shown in Figures 6.4). We compare our method to four state-of-the-art deep

learning object proposal algorithms (shown in Figure 6.1): DeepMask [165], Guided

Anchoring [224], RPN [120], and SharpMask [166]. To investigate performance for a

variety of robot vision contexts, we conducted our experiments on three challenging

robotics datasets: RGBD-scenes [113], Autonomous Robot Indoor Dataset 40k Scene

(ARID) [126], and the ETH Bahnhof Dataset [59]. We also conducted ablation exper-

iments to show the effectiveness of RaccooNet’s unique IoU confidence component,

which predicts overlap accuracy to improve object proposal efficiency.

Table 6.1: Summary of methods used in our evaluation along with their attributes.

Method Type Backbone
DeepMask [165] Segmentation ResNet-50

Guided Anchoring [224] Bounding Box ResNet-50-FPN
RPN [120] Bounding Box ResNet-50-FPN

SharpMask [166] Segmentation ResNet-50
RaccooNet Bounding Box ResNet-50-FPN

RaccooNet Mobile Bounding Box MobileNetV2-FPN

6.3.1 Implementation details

To enable RaccooNet to achieve real-time object proposal generation suitable

for robot vision, we designed a CNN that is both fast and expressive in its ability to

represent complex objects. Our network is composed of a backbone network (ResNet-50

[86] pre-trained on ImageNet [108]), which we augmented with an FPN consisting of

three levels, where each level is designed to predict small, medium, and large objects.

To accommodate standard camera ratios (4:3), we modified the backbone to accept
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512×384×3 input images.

We designed our FPN using three principal design components: upsampling,

lateral connectivity, and 1×1 convolutional pooling. To combine the deeper, semantically-

rich features [119] with the shallower spatial features from the backbone network, we

recursively upsampled the output of the backbone by multiples of two, to create a three-

layer FPN network that emulates the shape of the backbone. We then add 1×1 lateral

connections from the backbone layer to their respective FPN levels. For each FPN level,

we apply 1×1 convolution filters to create 1×512 channel necks, which serve to increase

representational power and preserve fine-grained spatial information which is crucial

for locating objects. Finally, from each neck we form a mixed regression-classification

network that outputs object proposal prediction tensors.

RaccooNet Mobile

To make our method suitable for mobile robots with limited computational

resources, we developed a smaller and faster variant, RaccooNet Mobile, which we

built on top of a lightweight backbone optimized for mobile devices, i.e., (MobileNetV2

[191]). We used the default input resolution of the backbone network (224× 224×

3), which significantly reduced its number of learnable parameters compared to the

baseline RaccooNet. However, this also means that RaccooNet Mobile predicts a much

smaller number of object proposals. Nevertheless, this tradeoff allows RaccooNet to be

considerably faster at 171 fps.

6.3.2 Training

We trained RaccooNet using the Microsoft COCO 2017 training and validation

sets [122], which consists of candid objects in everyday scenes. Each image consists of a

unique background that contains an arbitrary number of objects belonging to 91 common
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object classes. In total, the dataset contains approximately 118k training images and 5k

validation images. Due to its large size and for its high-quality annotations, COCO serves

as the standard training and evaluation platform for a wide range of computer vision

problems.

We optimize our network via gradient descent using the Adam algorithm [102]

and its default decay parameters (β1 = 0.9,β2 = 0.999), with a sample size of 16 images

per iteration for a total of 35 epochs, at an initial learning rate of 1e− 4 for 5 epochs.

For the final 30 epochs, we trained the network using a scheduled learning rate of 5e−5,

dropping this value by a factor of two for every 10 epochs.

We regularize each of the samples with 50% probability (Pr = 0.5) of horizontal

and vertical flip transformations. We also randomly apply Gaussian blur (Pr = 0.1,

VAR ∈ [1,2]). These values were chosen by experimenting with our model on a small

subset of the MS COCO training and validation splits until we achieved convergence and

maximum recall.

6.3.3 Datasets

To investigate the performance of RaccooNet for a variety of mobile robot percep-

tion contexts, we selected two indoor datasets (RGBD-scenes and ARID) and one outdoor

dataset (ETH Bahnhof) to use as evaluation testbeds (see Figure 6.6 for dataset examples

and sample outputs from RaccooNet). We selected these datasets because they consider

robot vision challenges such as variable lighting conditions, blur, occlusion, clutter, scale,

and camera/object motion among diverse scenes. Additionally, none of the methods in

our experiments were trained on these datasets, enabling them to be favorable platforms

to evaluate their generalizability to recall unseen objects in real-world applications.
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6.3.4 Metrics

To measure how object proposal algorithms can efficiently and accurately locate

unseen objects, we employ the following metrics:

• Recall at IoUt = {0.5,0.7} vs. number of proposals.

• Recall vs. IoUt , fixing number of proposals to 1000.

Figure 6.2: Object proposal algorithms can depend in input parameter τ, which directly
controls the number of object proposals that they output: τ = 10 (left), τ = 100 (center),
τ = 1000 (right). If an object proposal algorithm is more efficient if it can recall more
objects with a lower τ.

Object proposal algorithms are dependent on an input parameter that controls

their number of object proposal predictions (τ); object proposals are typically ranked

by their objectness confidence score to define top-τ predictions. Unique to RaccooNet’s

design, we take the top-τ predictions derived from the product of its objectness and IoU

confidence scores, vob jviou.

A larger τ increases the likelihood that a method will recall more objects, however

it will also yield a greater number of noisy proposals (i.e., those containing no objects).

When used as a component of vision pipelines, object proposal algorithms with larger τ

values will require a proportional amount of filtering to remove noisy proposals, which

adds computational complexity [29, 25]. Consequently, an object proposal algorithm is

more efficient if it can recall more objects with a smaller τ value.
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To compare the efficiency of each method, we compute recall varying τ =

[1,1000]. Intuitively, τ = 1 represents how well a method can recall the most salient

objects [124, 13]. Conversely, τ = 1000 represents how well a method can recall all

objects without computational restrictions3.

Varying τ, we computed recall via bipartite matching between ground truth labels

and predictions, maximizing IoU overlap. True positives were determined using two

commonly-used IoU thresholds (IoUt): IoUt = 0.5 and IoUt = 0.7. IoUt = 0.5 is widely

accepted for general perception tasks, which represents an optimal compromise between

recall and localization accuracy. IoUt = 0.7 prioritizes localization accuracy over the

number of recalled objects, and is often preferred in applications that require tight object

boundaries (e.g., manipulation and grasping [215, 147]).

Recall vs. IoUt , fixing number of proposals to 1000

To measure recall for the practical, computational upper limits of object proposal

algorithms we fix τ so that each method outputs a maximum of 1000 proposals. We vary

IoUt = {0.5,0.55, . . . ,1.0} to investigate how well each method can accurately localize

objects as the IoU criterion becomes more challenging.

6.3.5 Comparison to the state-of-the-art

To compare RaccooNet to the state-of-the-art, we selected four top-performing

methods that are widely used in a broad range of object perception and robot vision

applications: DeepMask [165], Guided Anchoring [224], Region Proposal Network

[120], and SharpMask [166] (see Figure 6.1 for a summary of their attributes). To

conduct a fair evaluation, all methods were trained on the COCO 2017 training set. We

show our results in Figures 6.5-6.4 and Table 6.2.

3Many sources do not report values for τ > 1000 because it is computationally impractical.
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Figure 6.3: Recall at fixed thresholds IoUt = 0.5 (top row) and IoUt = 0.7 (bottom
row) vs. number of proposals (τ) shown on logarithmic scale. Left column: RGBD-
Scenes dataset (all scenes). Middle column: Autonomous Robot Indoor Dataset (all
experimental sets). Right column: ETH Bahnhof. All methods were trained on the MS
COCO 2017 training set. Higher recall at lower τ directly correlates to the efficiency of
the method, while higher recall at τ = 1000 represents the potential of a method without
computational restrictions. Best viewed in color.

Table 6.2: Summary of results for robot vision datasets: computation time in frames
per second (fps) and recall (R) for IoUt = 0.5 w.r.t. top-τ proposals (Rτ).

RGBD-Scenes ARID ETH Bahnhof
Method fps fpsTX2 R1 R10 R100 R1000 R1 R10 R100 R1000 R1 R10 R100 R1000

DeepMask 3.33 - .094 .492 .896 .984 .026 .182 .472 .686 .100 .402 .647 .822
Guided Anchoring 12.8 .766 .112 .698 .957 .993 .037 .303 .891 .987 .124 .720 .971 .997

RPN 16.8 1.09 .118 .578 .944 .990 .031 .283 .847 .984 .113 .715 .964 .996
SharpMask 2.77 - .094 .492 .890 .985 .026 .184 .475 .692 .105 .428 .678 .858
RaccooNet 47.9 3.57 .158 .747 .946 .985 .052 .364 .818 .969 .119 .711 .931 .968

RaccooNet Mobile 171 12.6 .111 .64 .933 .976 .046 .289 .718 .934 .111 .564 .818 .844

Comparing recall performance

Comparing against the other methods, we found that RaccooNet consistently

scored higher recall on the indoor datasets for τ≤ 10, while scoring similarly to RPN and

Guided Anchoring on the ETH Bahnhof dataset. DeepMask and SharpMask consistently

scored the lowest, except in region IoUt = 0.7.

We found that for the standard threshold at IoUt = 0.5, RaccooNet, RPN, and

Guided Anchoring scored similarly across all datasets. Despite being a much smaller
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Figure 6.4: Recall at fixed number of proposals, τ = 1000 vs. intersection over union
threshold (IoUt). Left: RGBD-Scenes dataset (all scenes). Middle: Autonomous Robot
Indoor Dataset (all experimental sets). Right: ETH Bahnhof. Higher recall at a higher
intersection over union threshold correlates to higher overlap accuracy. Best viewed in
color.

model than our full-sized implementation, we found that RaccooNet Mobile achieved

higher recall than DeepMask and SharpMask.

At IoUt = 0.7, we found that Guided Anchoring consistently performed the best.

Comparing recall measured at IoUt = 0.5, we found that RaccooNet’s performance

suffered at IoUt ≥ 0.7, particularly on the ETH Bahnhof dataset. For extremely high

IoUt ≥ 0.8 at τ = 1000, we found that DeepMask and SharpMask scored the highest.

Comparing algorithm speed

We evaluated the computation time of all methods using a desktop computer

with the following specifications: Intel I9 9900K CPU, 64GB RAM, and an Nvidia

RTX 2080TI GPU. Comparing computation time across all experiments, we found that

RaccooNet and RaccooNet mobile were the only methods capable of real-time.

To gain insight into how our method would perform on a mobile robot platform,

we measured computation time on a portable embedded computing device, the Nvidia

TX2, which is ubiquitous in many robotics domains [36, 232, 169]. RaccooNet Mobile

achieved the highest frame rate at 12.6 fps.
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Figure 6.5: Computation time in frames per second on 640×480 RGB image, measured
using a desktop computer with an I9 9900K CPU and RTX 2080Ti GPU (fps).

6.3.6 Ablation experiments

To validate the effectiveness of the IoU confidence prediction module, which

is unique to RaccooNet’s design, we conducted ablation experiments (results shown

in Table 6.3). Specifically, we investigated the effects on recall at IoUt = {0.5,0.7},

removing the IoU and objectness confidence modules. To conduct our experiments, we

aggregated all evaluation datasets.

Comparing the baseline to RaccooNet omitting the IoU prediction module, the

baseline scores approximately 8% higher recall for 10 ≥ τ ≥ 100 at IoU ≥ 0.5. The

baseline also scores 7% higher recall for τ = 10 at IoUt = 0.7.

All versions of RaccooNet achieved similar recall at τ = 1000. However, compar-

ing the baseline to RaccooNet omitting the objectness confidence module, the baseline

scored markedly higher for τ < 1000. In summary, when either the objectness and

IoU prediction modules are used alone to compute the top-τ proposals, there is notable

recall degradation compared to the baseline. Thus, our ablation experiments show that

both objectness and IoU confidence are critical to improving the recall performance and

efficiency of RaccooNet.
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Table 6.3: We aggregated all of the evaluation datasets to conduct ablation experiments
on RaccooNet to study effects on recall w.r.t. objectness (Obj) and IoU confidence
(IoU). Rows with Obj + IoU components represent our baseline version of RaccooNet.

Obj IoU IoU threshold R1 R10 R100 R1000
x 0.5 .089 .468 .823 .951

x 0.5 .054 .368 .816 .953
x x 0.5 .088 .504 .850 .952
x 0.7 .075 .374 .666 .794

x 0.7 .048 .313 .663 .775
x x 0.7 .076 .404 .668 .774

6.4 Discussion

Among recent state-of-the-art methods, RaccooNet is approximately three times

faster, being the only method capable of achieving real-time at 47.9 fps, while also

achieving comparable recall at the standard threshold metric of IoUt = 0.5. Compared to

the other methods, we also show that in many cases, RaccooNet has superior efficiency,

which could recall more objects using a smaller number of proposals (τ≤ 10). This result

suggests that RaccooNet may be more adept at recalling conspicuous objects, including

salient objects [103, 27].

We also designed RaccooNet Mobile, running at 171 fps, is over 10 times faster

than the leading object proposal algorithms. While RaccooNet Mobile makes compro-

mises to recall performance to be substantially faster than the baseline, it still outperforms

DeepMask and SharpMask across most practical metrics. It is also worth mentioning that

RaccooNet Mobile was the only method that was capable of achieving near real-time

performance on the Nvidia TX2, making it the only viable object proposal algorithm for

resource-limited robotic platforms.

In our ablation experiments, we found that RaccooNet’s IoU confidence prediction

module allowed it to attain higher recall for τ ≤ 10, which is the most common use-

case for object proposal algorithms. Our results suggest that while the objectness
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score is important for ranking the top-τ proposals, IoU confidence adds considerable

refinement. We believe that designing a similar module can benefit other researchers who

are investigating how to build more efficient object proposal algorithms.

When designing RaccooNet, it was our intention to build an object proposal

algorithm for more general robot vision applications for the commonly-accepted IoUt =

0.5 metric, prioritizing speed. Thus, the primary limitation of RaccooNet was that

its recall performance suffered at IoUt ≥ 0.7 for τ ≥ 10, where we did not expect our

algorithm to perform as well as Guided Anchoring; however, Guided Anchoring was

also the slowest among the bounding box-type methods. Nevertheless, RaccooNet was

still able to achieve superior efficiency on the indoor robot datasets, scoring higher recall

at τ≤ 10, even at threshold IoUt = 0.7. In contrast, DeepMask and SharpMask scored

the highest for τ = 1000 at IoUt ≥ 0.8, which can make them favorable for robot vision

applications that require extremely precise object boundaries (e.g., object grasping and

manipulation [236, 11, 42, 130]). This result was not surprising, given that DeepMask

and SharpMask are segmentation algorithms, allowing them to achieve more precise

object boundaries, which directly correlates to higher IoU accuracy.

To make our method practical for roboticists, we designed RaccooNet to serve as

a drop-in module for existing robot vision pipelines that use object proposal algorithms

[91, 44]. RaccooNet can be a powerful component for a broad range of real-time object

perception tasks including discovery [153, 27, 237] and detection [245], as well as for

other problems such as simultaneous localization and mapping (SLAM) [146, 115].

In our future work, we plan to use RaccooNet to solve real-world, real-time robot

perception problems. Specifically, our goal is to build scalable vision systems that will

enable robots to learn about unseen objects “in the wild”, in an online and holistic manner

similar to how humans learn. We are also interested in using our method on low-powered,

computationally-limited robots for autonomous exploration in unfamiliar environments,
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such space or deep sea contexts [66, 134].

Figure 6.6: We show that RaccooNet can locate arbitrary objects despite not being
explicitly trained to detect them. Sample outputs computed by RaccooNet (τ = 1000)
on various datasets, from top to bottom row: RGBD-scenes, ARID, and ETH Bahnhof.
Magenta boxes denote ground truth objects and cyan boxes denote object proposals that
best overlap with ground truth objects.

6.5 Chapter summary

In this chapter, I discussed RaccooNet, a new object proposal algorithm designed

for real-time robot perception. I also introduced a novel IoU overlap confidence predic-

tion module, which increased the efficiency of object proposal generation. I validated

RaccooNet on several robot vision datasets, and on resource-constrained hardware to

show that it is a viable algorithm for mobile robot applications. This algorithm has

110



the potential to propel a new class of real-time object perception algorithms that will

further the ability for robots to solve open-world recognition challenges in unstructured

environments.
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Chapter 7

Conclusion

This chapter discusses the main contributions of my doctoral research toward

unseen object discovery for robot perception. It then introduces future avenues of research

related to my work, followed by broader open questions in the field. Finally, this chapter

closes with concluding remarks.

7.1 Contributions

7.1.1 Developed SDP, a new computationally efficient region of in-

terest extraction algorithm for RGB-D images

Deep learning-based object detectors can be incompatible for mobile robots,

particularly those that lack the specialized hardware (i.e., GPUs) to support them. In

contrast, sliding window-based object detectors do not require as much computational

bandwidth, making them more suitable for a broader range of mobile robot computing

platforms. However, sliding window-based algorithms can still be computationally

expensive, since they essentially operate using a brute-force paradigm to search each

pixel in an image for potential object candidates. To address these challenges, I developed
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Salient Depth Partitioning (SDP), an RGB-D-based region cropping algorithm devised

to be easily adapted to existing object detection algorithms.

I designed SDP to give robots a better sense of visual attention, and to reduce the

processing time of object detectors (see Chapter 3). In contrast to object proposal algo-

rithms, SDP extracts sparse image regions, which are more robust to image degradation

caused by robot motion, making them more suitable for real-world operation. Moreover,

SDP requires no training, and is designed to work with any detection algorithm, provided

that the input is in the form of a calibrated RGB-D image.

I validated SDP by applying it to four state-of-the-art pedestrian detectors (HOG

and SVM [39], Aggregate Channel Features [50], Checkerboards [243], and R-CNN

[73]), and showed that it improved computation time by up to 30%, with no discernible

change in accuracy. Furthermore, I showed that SDP is compatible with smaller com-

puting platforms commonly found on mobile robots, and was able to achieve real-time

performance (77 frames per second) on a gaming laptop with a single CPU core without

a GPU.

These results show that SDP can serve as a preprocessing step to alleviate the

computational burden of RGB-D object detectors, which addresses a vital need to increase

the efficiency of low-power mobile robots.

7.1.2 Investigated object proposal algorithms for robot perception

contexts

The recent emergence of object proposal algorithms in computer vision shows

great promise toward addressing difficult problems in robotics such as object discovery

and salient object detection. However, it is difficult to determine how these algorithms

actually perform in robot vision applications, because the standard evaluation proto-

col validates them on datasets which do not adequately account for real-world vision
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challenges (motion blur, noise, occlusion, etc.). Thus, to gain insight into how object

proposal algorithms perform in more realistic robot vision contexts, I evaluated several

state-of-the-art object proposal algorithms using naturalistic datasets from the robotics

community (discussed in Chapter 4).

This study highlighted substantial performance differences between the standard

evaluation dataset and the robot vision datasets across all object proposal algorithms. In

general, I found that object proposal algorithms recalled a larger number of objects on the

standard evaluation dataset than on the robot vision datasets. This suggested that object

proposal algorithms are not as generalizable as the computer vision literature purports,

which can have a significant impact on how they perform in robotics domains.

I also conducted a study on how object proposal algorithms can be influenced by

specific kinds of real-world robot vision challenges. I achieved this by evaluating the

algorithms on a modified version of the PASCAL VOC [60] dataset, which I augmented

by systematically adding variable brightness, gamma correction, Gaussian blur, and

Gaussian noise. The results provided insights into the strengths and weaknesses of object

proposal algorithms, which can affect how robot vision practitioners choose to deploy

them.

This work enables roboticists to be better informed regarding algorithm trade-offs

between computation time and recall. Moreover, this work will motivate future research

about how to design more flexible and robust object proposal algorithms for the robotics

community.

7.1.3 Developed a new salient object discovery method for monocu-

lar robot vision

Many state-of-the-art salient object discovery methods are limited to post-

processing (i.e., offline) large video segments before discovering objects, which can
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constrain how quickly robots perceive their surroundings. To that end, I designed Unsu-

pervised Foraging of Objects (UFO), a new online approach toward unsupervised salient

object discovery (discussed in Chapter 5).

In contrast to existing methods, UFO leverages object proposals to discover

arbitrary objects in a frame-by-frame manner. In this way, UFO can infer arbitrary

objects using only a few observation samples, making it faster than similar, competitive

methods. For context, UFO can discover objects in a matter of seconds, while prior

methods can take on the order of minutes.

UFO can simultaneously predict and track object proposals over unbounded

spatiotemporal sequences to accommodate robot perception tasks. Leveraging a sliding

window graph, UFO also keeps a history of prior discovered objects to make self-

correcting predictions as objects change appearance over time.

I validated UFO by comparing it to the two fastest and most accurate methods

for unsupervised salient object discovery (i.e., Fast Segmentation and Saliency-Aware

Geodesic), and showed that UFO is 6.5 times faster, achieving state-of-the-art precision,

recall, and accuracy. The results suggest that UFO is robust to real-world perception

challenges encountered by robots, including moving cameras and moving objects, motion

blur, and occlusion.

As a method that can be readily deployed on robots, UFO can provide a step for-

ward toward scalable object detection frameworks that can learn on-the-fly. In particular,

this work can be used to address difficult challenges in building scalable object detection

frameworks for robots that can learn to recognize new objects in real-time.
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7.1.4 Developed a new real-time deep learning-based object pro-

posal algorithm to support real-time mobile robot perception

Existing object proposals are computationally expensive, making them unsuitable

to deploy on resource-limited robots. Thus, I designed RaccooNet, a new efficient, dense-

sampling approach toward real-time object proposals for robots (discussed in Chapter 6).

RaccooNet runs at 47.9 fps, which to my knowledge, makes it the only object proposal

algorithm capable of real-time performance (at time of writing) compared to state-of-

the-art methods (e.g., RPN, Guided Anchoring), while also achieving comparable recall

performance.

I designed a robot-optimized variant of RaccooNet, RaccooNet Mobile, which

is over ten times faster than the state-of-the-art (171 fps) and is also well-suited for

computationally-limited robotics applications. When deployed on the Nvidia TX2,

RaccooNet Mobile was the only algorithm that was capable of near real-time performance

at 12.6 fps; for context, the second fastest method was the baseline version of RaccooNet,

which ran at 3.57 fps.

Unique to RaccooNet and RaccooNet Mobile, I developed a novel intersection

over union overlap confidence module, which I demonstrated to improve object recall

efficiency. I validated this method using a series of ablation studies, to show that it

enables RaccooNet to recall more objects using a smaller number of proposals. In several

cases, I show that RaccooNet can recall more objects than the leading object proposal

algorithms in the literature.

I validated RaccooNet and RaccooNet Mobile on three real-world robot vision

datasets to simulate indoor and outdoor environments, including RGB-D-scenes, ARID,

and ETH Bahnhof, and showed that our method is robust to a variety of robot vision

contexts and challenges (e.g., blur, motion, lighting, object scale).
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By introducing this new object proposal algorithm that is both fast and robust, it is

my intent that this research will propel a new class of real-time vision algorithms that will

further the ability for robots to solve open-world recognition challenges in unstructured

environments.

7.1.5 Evaluation of object perception methods on resource-

constrained hardware

Prior to my work, few researchers reported the computation time of object per-

ception methods which made it difficult to gauge tradeoffs between speed and per-

formance for robotics applications. Moreover, computation time is often reported for

high-performance workstations or GPU clusters, which are not representative of typical

robotics hardware. To address this research gap, I performed runtime analysis of various

object perception methods on mobile computing platforms to simulate their performance

on mobile robots.

In Chapters 3-5, all of my experiments were conducted on a portable laptop

computer to conduct runtime analysis. To my knowledge, I am also the first to evaluate

object proposal algorithms on mobile hardware. In Chapter 6, I conducted experiments

on a small embedded device, i.e., Nvidia TX2, and demonstrated that RaccooNet is a

suitable algorithm for mobile robots.

It is my ambition that my approach toward evaluating object perception methods

on resource-constrained computing platforms will be foundational to how new methods

will be designed and validated for real-world, real-time robotic platforms.
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7.2 Future work

7.2.1 End-to-end deep-learning for object discovery

In Chapter 5, I introduced UFO, a new method that enables robots to automatically

discover arbitrary, salient objects in unbounded image sequences. UFO is composed

of a mixture of deep learning and traditional algorithmic components which consist

of: an object proposal algorithm, a non-maximum suppression algorithm, a saliency

algorithm, a convolutional neural network feature extractor, and a sliding window graph.

One limitation of this approach was that object proposal generation followed by feature

extraction can be computationally prohibitive for real-time robot vision. In contrast, an

end-to-end deep learning approach can perform these algorithmic processes in a unified

neural network, where features can be shared to eliminate computational redundancy.

This research motivated my current and future exploration into designing new object

discovery methods using an end-to-end deep learning approach.

In Chapter 6, I introduced RaccooNet, a new deep learning-based object proposal

algorithm, which is significantly faster than previous methods, and, to my knowledge,

is the only method capable of real-time performance on mobile computing platforms.

Combining ideas from UFO, this work lays the foundation for formulating temporal

models (e.g., recurrent neural network) that can perform salient object discovery in

an online and real-time manner. Moreover, twin neural networks [79, 84] can be a

promising approach to build on top of this work, which can be used to build more

robust spatiotemporal object proposals. These expansions to my current work can enable

multiple objects to be simultaneously discovered in a manner that is suitable for real-time

robot vision.
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7.2.2 Synthesizing known and unseen objects

Before robots can become intelligent agents in open-world environments, they

need to understand the notion of known and unknown objects. Specifically, robots need

the ability to differentiate recognizable objects from those that are novel, so that they can

begin to understand how to learn from their surroundings. For example, if a robot were

to have this ability, their perception can be used to bootstrap their curiosity and sentience,

so that they can learn in a holistic way similar to how humans learn.

While object detection addresses perception of known objects, and object dis-

covery addresses perception of unknown objects, they are treated as separate research

problems. Consequently, there is very little work that attempts to unify them.

My work lays the foundation toward a new system that can simultaneously detect

and discover objects. In particular, the methods in Chapters 5 and 6 can be modified to

include a classification network to perform object detection. This is the logical next step

in my line of research because the methods that I designed can be readily adapted to

detect from a database of known objects using transfer learning techniques [157, 217]

My research can also be used to develop a system that can automatically append

newly discovered objects to a database of known objects. Such a system can automate

the process of annotating training datasets for vision algorithms, which is otherwise time

consuming and expensive for humans to manually implement. By extension, this can

have the potential to enable robots and intelligent systems to learn from observation,

which will allow them to learn as they are deployed in real-world environments.

7.2.3 Spatiotemporal non-maximum suppression

Due to their feed-forward nature, object perception algorithms generate redun-

dant false positives that can lead to adverse ramifications for intelligent systems. For
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example, false positives can cause a robot to perceive objects that are not actually present.

Conversely, removing false positives in a naive manner (e.g., thresholding) can inadver-

tently remove true positives to yield detrimental effects. This can cause a robot to not

perceive objects that are actually present. Consequently, false positives can ultimately

yield negative effects on robot decision-making and behavior.

Object perception methods typically employ a non-maximum suppression (NMS)

algorithm to remove redundant false positives. Briefly described in Chapter 5, the de

facto NMS algorithm follows a greedy approach (i.e., greedy-NMS [148]), which seeks

to select the highest scoring sample among distributions of neighbors. While NMS

is a critical component for vision pipelines, there has been very little focus to make

improvements to the greedy-NMS paradigm [187, 89, 90].

In Chapter 5, I showed that greedy-NMS can be a suboptimal approach to mitigat-

ing redundant object proposals. Thus, I augmented the greedy-NMS algorithm with the

notion of saliency density, which improved recall performance. However, one limitation

to this approach is that it can still add considerable computational complexity to hinder

its adoption in real-time object discovery applications.

Leveraging spatiotemporal constraints can possibly lead to a faster NMS algo-

rithm for object discovery. If a system were to have a way of tracking object proposals

over time, it could more efficiently perform NMS using data association to determine a

more optimal distribution of neighbors. This could serve to narrow the search margin for

NMS neighbors, which will improve computation time. Additionally, the IoU confidence

prediction method that I introduced in Chapter 6 could be used in tandem with this

approach to rescore proposals, leading to higher recall for object discovery.
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7.3 Open questions

7.3.1 How can we redefine objects?

My current research explores how to develop computational models for object

discovery using the following three axioms from Chapter 2:

Axiom 1 An object has closed boundaries [248, 114].

Axiom 2 An object must differ in appearance from its surroundings [124, 131].

Axiom 3 An object sometimes has a unique appearance that is salient [19, 65].

While these axioms can be used to solve today’s research challenges, they will eventually

need to evolve as the field progresses. In particular, more research is needed to address

perceiving objects that lie outside of these axioms, for example, partially occluded objects,

reflective objects, liquids, and fabric materials. In computer vision research, there is also

little consensus about whether or not whole objects should be regarded as the sum of its

individual object parts. Because there are no precise definitions to describe a broader

definition of objects, object perception has many uncharted areas of research.

Despite recent efforts to define objects, many researchers are still designing

object detection methods around the notion of predefined objects, which limits them from

reaching broader object perception domains. Thus, it is important to develop a more

standardized, broader definition of objects that will allow researchers to work toward a

common goal. If researchers were to adopt a universal definition of objects, researchers

can develop object perception methods that have standardized specifications so that they

can be more seamlessly used together in robotics applications.
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7.3.2 How can we develop context-aware methods for object discov-

ery?

Context dictates how robots understand their surroundings, and ultimately controls

how they function as intelligent agents. With respect to object perception, context can

provide robots with cues about how to navigate their environments safely around people,

while also giving them a sense of where to find objects relevant to their tasks.

However, one limitation with existing computational models is that context is

treated with a priori assumptions, i.e., that their environments are deterministic, rigid, and

static [180, 149]. Moreover, the primary focus of current object perception research is to

infer low-level context from the viewpoint of traditional computer vision challenges (i.e.,

saliency and scale from single images). In reality, context is a much broader problem,

where environments are prone to constantly evolve as the people, objects, activities, and

tasks change over time. Many object perception methods are unable to adapt to these

kinds of dynamic environments, which ultimately constrains robot intelligence.

As an emerging research topic, questions about how to incorporate context into

object perception processes will become increasingly important for robotics. For example,

computer vision models can address bottom-up (e.g., low-level visual cues) and top-down

context (e.g., tasks and activities) as separate problems, but there is little work to develop

new computational models that can synthesize them. Moreover, it is also unclear how

we can develop computational mechanisms that can decide whether bottom-up or top-

level processes should take higher priority when making decisions. To highlight these

differences, bottom-up perception is important when robots are engaging in exploratory

tasks; for example, with the absence of information, a robot might use saliency cues to

determine what is important in a new environment. In contrast, top-down perception is

important when robots need to make decisions about how to solve well-defined tasks; for
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example, they might use object detection to find a task-specific object. However, in many

situations, a robot might need to use both top-down and bottom-up processes in tandem;

for example, they might need to identify an object based on some vague description.

Understanding how bottom-up and top-down perception processes work together

is still largely a challenge in the neuroscience literature [46, 4]. Thus, extensive research

still needs to be conducted about how neurological processes distribute priority between

bottom-up and top-down perception processes before we can model this kind of behavior

for robots.

7.3.3 How can we design robots to learn from curiosity?

While the goal of my dissertation is to develop computer vision methods that can

enable robots to discover unseen objects, there are many areas of research that can stem

from my work. For example, object discovery can bootstrap curiosity for robots, which

can be used as visual feedback for active vision control systems [3, 57]. Object discovery

can also be used in tandem with haptics, to enable robots to interact with novel objects

and learn about their properties (i.e., affordances [70]).

If robots had the ability to be curious, to seek novel objects and interact with them,

they can be used to gather data in unconstrained environments. This can enable their

object recognition models and perception systems to learn on-the-fly, and in real-time.

This will ultimately enable robots to become more seamlessly integrated into real-world

and open-world environments.

However, enabling robots to be curious has major challenges, which can closely

relate to the problem of context. For example, more research needs to be conducted to

determine when a robot should be doing something productive (i.e., completing a set of

assigned tasks), and when it should be engaging in more open-ended curiosity-driven

tasks (i.e., exploration and learning).
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Moreover, it is not only important to understand when robots should be curious,

but also how they should be curious. In particular, robots need to understand how to

interact and learn about new objects in a way that is appropriate to humans. For example,

robots needs to consider when objects are currently in use by a human, which should

either be avoided (i.e., to prevent interrupting the human) or encouraged (i.e., the human

is trying to teach the robot [83, 192]).

7.4 Closing remarks

Summarizing this dissertation, the central theme of my doctoral research explores

how to design computational models for object perception, toward more intelligent robots

that can operate in the wild. The ultimate goal of my work is to design machines that

will eventually learn from their surroundings in an automatic and holistic manner, similar

to how humans learn.

Before robots are ready to transition to open-world environments where they will

be expected to operate autonomously among humans, their perception will need to be

robust to uncertainty. While there are many facets to this problem, my work lays the

foundation for enabling robots to perceive novel or ambiguous objects. Specifically, the

contributions of my work are the introduction of new algorithms and systems that enable

robots to discover unseen objects in a manner that is both fast and robust to real-world

vision challenges. My research also highlights several future research directions that will

need to be addressed before robust perception can be truly attainable.

It is my hope that this research will lead to new algorithms that will allow robots

to solve open-world challenges in unstructured environments, so that they will become

the intelligent machines that we have long envisioned.
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Appendix A

Glossary

activation function A mathematical function of a perceptron that maps numerical inputs

to a new numerical output space. 23

affordance The possible ways that an object can be interacted with. 13

back propegation A process of training a convolutional neural network, where its

parameters are iteratively adjusted to optimize a loss function. 26

backbone A pre-built convolutional neural network that is re-purposed to solve another

computer vision problem. 91

background Entities in an image that do not provide significant meaning, including

those that do not correlate to objects. This can also mean entities that are not

foreground elements. 12

bounding box A box that forms the rectangular perimeter of an object in an image. 18

bounding box regression A computer vision technique where regression is employed

to predict a set of rectangular coordinates. 24

125



class In object perception, this pertains to a set of objects that are grouped by similar

appearance or function. More generically, it can also mean a category of entities

that share one or more properties or attributes. 14

classification A computer vision process that determines how to associate data (e.g.,

object features) with classes. More generically, a machine learning process where

an algorithm makes a discrete variable prediction to assign a piece of data to a

known set. 14, 24

context How computer and robot vision systems should perceive objects with respect to

their surroundings. 12

convolutional layer A topological structure of convolutional neural networks that con-

sists of one or more learned convolutional kernels. 24

convolutional neural network A type of neural network architecture that consists of

one or more learned convolutional layers. 22

dataset A collection of images that are used to train and evaluate object perception

algorithms. 26

feature Quantized patterns extracted from images that are used to solve machine learning

problems. 20

feature extraction A computer vision task that involves converting images or image

regions to features. 20

feature pyramid network A network extension of a CNN that concatenates features

from various depths. 25

feature template A type of convolution kernel that contains appearance-based features

that correspond to a specific kind of object. 21
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flattened feature A one-dimensional feature that has been converted from a multi-

dimensional space. 24

foreground Entities in an image that potentially provide significant meaning, including

those that correlate to objects. This can also refer to entities that are not background

elements. 13

fully convolutional network A type of convolutional neural network that does not con-

tain any fully-connected layers. 24

fully-connected layer A topological structure of neural networks in which every per-

ceptron from one layer connects to every perceptron in another layer. 23

gradient descent An iterative optimization algorithm that computes the first-order

derivative of a loss function to estimate its local minimum as the parameters

of a machine learning algorithm are updated. 26

hand-crafted feature An image feature derived explicitly from mathematical formula-

tion, rather than from data. 21

hyperparameter An independent variable that influences how a machine learning algo-

rithm performs and learns. 26

image patch Any small rectangular region in an image. 21

image pyramid A multi-scale image representation of an image that involves a linear

combination of upsampling and/or downsampling. 22

inference A machine learning process where an algorithm makes a prediction on a new

piece of data. 24

instance Referring to any one individual object or entity. 69
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intersection over union A qualitative metric that describes the quality of overlap be-

tween two bounding boxes; also called the Jaccard Index. 27

kernel A matrix consisting of specialized values that are used in conjunction with

convolution to extract atomic features (e.g., edges, corners) from images. A kernel

is synonymous with a convolution filter. 20

keypoint Small image regions that are robust to illumination, scale, and rotation (e.g.,

corner points). 21

label Information given to images that characterizes what an object perception algorithm

should learn. 26

localization A computer vision process that determines the locations of objects in

images. 14

loss A quantitative representation of error that represents cost. 26

loss function A function that quantifies the error between the actual output of a machine

learning algorithm and its expected output. 26

object detection A computer vision process that performs localization and classification

to determine the presence of class-specific objects in images; a computer vision

algorithm or system that performs object detection is sometimes called an object

detection algorithm or object detector. 14

object discovery A computer vision process that determines the presence and locations

of unseen objects. 16

object proposal algorithm A computer vision algorithm that extracts image regions

containing possible objects. 18
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one-shot learning A machine learning task that describes an algorithm’s ability to make

future predictions given only one ground truth example. 16

one-stage detector An object detector that performs localization and classification si-

multaneously. One-stage detectors typically consist of convolutional neural net-

works that perform bounding box regression and classification. 15

optimizer An algorithm that employs a learning strategy to train neural networks. 26

perceptron An atomic unit of a neural network that behaves like a binary classifier.

Perceptrons consist of weights to control the sensitivity of inputs, and an activation

function that maps its inputs to a new output space. 23

receptive field The spatial relationship between the size of an image and the input size

of a convolutional kernel. 24

regression A machine learning process where an algorithm makes a continuous variable

prediction. 24

RGB-D An imaging modality that includes color (i.e., red, green, and blue) and depth. 6

saliency A confidence interval that correlates to the likelihood that regions or pixels in

an image attract human attention; the process by which a computer or robot vision

algorithm computes saliency is called saliency estimation. 14

saliency estimation A computer vision process that determines the saliency of individ-

ual pixels in an image. The output of a saliency estimation algorithm is sometimes

called a saliency map. 14

salient object discovery A computer vision process that determines the locations of

objects that are likely to attract human attention. 68
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scale How large an object appears in an image relative to its distance from the camera.

In the computer vision literature this can also relate to the problem of how objects

should be perceived relative to their size in the image. 12

segmentation mask A set of pixels that intersect with the area or volume of an object

in an image. 18

sliding window method An algorithmic approach in computer vision that involves con-

volving a feature template across an image and performing classification across all

positions and scales. 22

training The process by which a machine learning algorithm adjusts its internal pa-

rameters to build a model that maps inputs to outputs based on exemplified data.

26

training example One image-label pair from training data. 26

two-stage detector An object detector that performs localization and classification as

two separate processes. In two-stage detectors, classification is performed after

localization. 15

unseen A property that describes objects that are unknown to a computer or robot vision

system. Unseen objects are those that have not been explicitly seen in training, or

does not belong to any predefined object class. 16
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[1] G. Alenyà, S. Foix, and C. Torras. Using tof and rgbd cameras for 3d robot
perception and manipulation in human environments. Intelligent Service Robotics,
7(4):211–220, 2014.

[2] B. Alexe, T. Deselaers, and V. Ferrari. What is an object? In IEEE computer
society conference on computer vision and pattern recognition (CVPR), pages
73–80. IEEE, 2010.

[3] J. Aloimonos, I. Weiss, and A. Bandyopadhyay. Active vision. International
journal of computer vision, 1(4):333–356, 1988.

[4] G. Baghdadi, F. Towhidkhah, and R. Rostami. A mathematical model of the
interaction between bottom-up and top-down attention controllers in response to a
target and a distractor in human beings. Cognitive Systems Research, 58:234–252,
2019.

[5] D. H. Ballard. Generalizing the hough transform to detect arbitrary shapes. Pattern
recognition, 13(2):111–122, 1981.

[6] M. Bar. Visual objects in context. Nature Reviews Neuroscience, 5(8):617–629,
2004.

[7] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. In
European conference on computer vision (ECCV), pages 404–417. Springer, 2006.

[8] A. Bieniek and A. Moga. A connected component approach to the watershed
segmentation. Computational Imaging and Vision, 12:215–222, 1998.

[9] Bikingdog. Samples of object co-segmentation. https://upload.
wikimedia.org/wikipedia/commons/6/6b/Samples_of_object_co-
segmentation.jpg.

[10] H. Blum, A. Gawel, R. Siegwart, and C. Cadena. Modular sensor fusion for
semantic segmentation. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 3670–3677. IEEE, 2018.

131

https://upload.wikimedia.org/wikipedia/commons/6/6b/Samples_of_object_co-segmentation.jpg
https://upload.wikimedia.org/wikipedia/commons/6/6b/Samples_of_object_co-segmentation.jpg
https://upload.wikimedia.org/wikipedia/commons/6/6b/Samples_of_object_co-segmentation.jpg


[11] C. Bodnar, A. Li, K. Hausman, P. Pastor, and M. Kalakrishnan. Quantile qt-opt for
risk-aware vision-based robotic grasping. Robotics: science and systems (RSS),
2019.

[12] N. Bore, R. Ambrus, P. Jensfelt, and J. Folkesson. Efficient retrieval of arbitrary
objects from long-term robot observations. Robotics and Autonomous Systems,
91:139–150, 2017.

[13] A. Borji, M.-M. Cheng, H. Jiang, and J. Li. Salient object detection: A benchmark.
IEEE transactions on image processing, 24(12):5706–5722, 2015.

[14] L. Bose and A. Richards. Fast depth edge detection and edge based rgb-d slam. In
2016 IEEE international conference on robotics and automation (ICRA), pages
1323–1330. IEEE, 2016.

[15] L. Bottou. Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT, pages 177–186. Springer, 2010.

[16] M. Braham, S. Piérard, and M. Van Droogenbroeck. Semantic background sub-
traction. In IEEE International Conference on Image Processing (ICIP), pages
4552–4556. IEEE, 2017.

[17] C. Breazeal. Emotion and sociable humanoid robots. International journal of
human-computer studies, 59(1-2):119–155, 2003.

[18] R. Brehar and S. Nedevschi. Scan window based pedestrian recognition methods
improvement by search space and scale reduction. In IEEE Intelligent Vehicles
Symposium Proceedings, pages 529–534. IEEE, 2014.

[19] N. Bruce and J. Tsotsos. Saliency based on information maximization. In Advances
in neural information processing systems (NIPS), pages 155–162, 2005.

[20] S. Caelles, K.-K. Maninis, J. Pont-Tuset, L. Leal-Taixé, D. Cremers, and
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[152] A. Ošep, W. Mehner, P. Voigtlaender, and B. Leibe. Track, then decide: Category-
agnostic vision-based multi-object tracking. In IEEE International Conference on
Robotics and Automation (ICRA), pages 3494–3501. IEEE, 2018.
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