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Semantic, Lexical, and Geographic Cues are used in Geographic Fluency
Janelle Szary (jszary@indiana.edu)

Michael N. Jones (jonesmn@indiana.edu)
Department of Psychological and Brain Sciences, 1101 E. 10th Street

Bloomington, IN 47405 USA

Abstract

Semantic fluency tasks have increasingly been used to probe
the structure of human memory, adopting methodologies from
the ecological foraging literature to describe memory as a tra-
jectory through semantic space. Clusters of semantically re-
lated items are often produced together, and the transitions be-
tween these clusters of semantically related items are consis-
tent with theories of optimal foraging, where the search pro-
cess exhibits a balance between exploration and exploitation
behaviors (Hills, Jones, & Todd, 2012). Here, we use a seman-
tic fluency memory task in which subjects recall geographic
locations. For each pairwise transition, we measure tempo-
ral, geographic, semantic, lexical, and phonetic distances. In
general, the dimensions are loosely but reliably correlated with
each other. Segmentation of the retrieval sequence into patches
supports the notion that subjects strategically leave patches as
within-patch resources diminish, but also suggests that sub-
jects may shift their attention between different sources of in-
formation, perhaps reflecting dynamically changing patch def-
initions.
Keywords: Memory search; Semantic fluency; Optimal for-
aging; Spatial search

Introduction
In general, effective search strategies require a balance of
both exploration and exploitation. The searcher, whether it be
a bumblebee searching for nectar, or a child searching for hid-
den Easter eggs, needs to know when to stop looking in one
place and start looking in another. Too much exploration, in
the later example, would be a situation in which the child runs
wildly around the yard, but never stops to looks behind any
leaves (where the Easter eggs would be hidden); Too much
exploitation, on the other hand, might be a situation in which
the child, finding one egg hidden in the rose bushes, spends
the afternoon meticulously sorting through the roses for more
eggs, and fails to search the rest of the yard. Although this ex-
ample is exaggerated, it illustrates the importance of finding
an appropriate balance between the two strategies: At either
extreme, the child will do very poorly in an Easter egg hunt.
A successful search process relies on appropriately modulat-
ing between exploration and exploitation.

The same principle applies to search in the cognitive do-
main: At one end of the extreme, a lack of focus would make
it hard to retrieve relevant information, and, at the other end of
the extreme, perseveration on one piece of information would
also be ineffective. The parallel between search in physical
space and cognitive space is not coincidental. Significant ev-
idence suggests that the neural and molecular processes that
evolved to govern search in physical space have been exapted
to control goal-directed behaviors in other, cognitive modal-
ities (reviewed in Hills, 2006). For example, the dopamin-
ergic pathways of the basal ganglia control both cognitive

attention and movement, and increases in dopamine have
been associated with exploitation of resources and highly fo-
cused behaviors, while reductions in dopamine have been as-
sociated with exploratory or inattentive behaviors (see Hills,
2006). The exaptation hypothesis has led to the idea that there
are general cognitive search mechanisms that control goal-
directed search behaviors in both internal and external spaces
(Hills, Todd, & Goldstone, 2008). As evidence for this claim,
Hills et al. (2008) demonstrated that priming certain physical
search strategies can influence cognitive search behavior.

Further support for the exaptation hypothesis comes from
the successful application of models from the animal forag-
ing literature to cognitive search behavior. For example, in
the foraging literature, a search process is considered optimal
when it follows the marginal value theorem (MVT; Charnov,
1976), in which a forager should continue exploiting a patch
of resources while it continues to provide relative rewards,
but should leave and switch to a new patch once the rate of
rewards (for the given patch) drops below a long-term av-
erage. Hills et al. (2012) used the semantic fluency task,
in which subjects are asked to name as many items from a
given category as possible, to show that cognitive search is
well described by MVT, where patches are clusters of se-
mantically related items. As a subject’s relative success in
a given semantic cluster decreases, the subject is more likely
to switch to a new semantic cluster. Models of optimal forag-
ing in semantic memory based on MVT have been successful
in matching human performance, but they rely on the con-
struction of appropriate semantic spaces and patches, which
can be done in different ways with differing results (see dis-
cussion in Hills et al., 2015; Abbott, Austerweil, & Griffiths,
2015).

Anecdotally, the similarity between physical and cognitive
search is supported by the fact that we often describe our in-
ternal, cognitive representations of information as networks
or maps (Steyvers & Tenenbaum, 2005; Tolman, 1948). Fur-
ther, there is growing support for the embodied cognition
perspective that cognitive knowledge is grounded in physi-
cal space. Montez, Thompson, and Kello (2015) asked par-
ticipants to spatially organize a set of items produced dur-
ing a previous semantic fluency task, and found that the spa-
tial distances correlated with the previously observed tempo-
ral distances: Subjects spatially organized items the same
way they had previously organized them during semantic
retrieval. Louwerse and colleagues (Recchia & Louwerse,
2014; Louwerse & Zwaan, 2009) have shown that from the
statistics of language we can extract a great deal of informa-
tion, such as the locations and sizes of cities.
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Using an extended semantic fluency task where subjects
spent twenty minutes retrieving the names of cities and towns
from their home state of California, Szary, Kello, and Dale
(2015) showed that the temporal structure of retrieval se-
quences captured the geographic structure of cities in phys-
ical space. Although the task is known as a ‘semantic flu-
ency’ task, previously we could only infer semantic informa-
tion from the timing of the retrieval process. Here, we build
upon the study presented in Szary et al. (2015) by computing
semantic, lexical, and phonetic measures to compare to the
existing geographic and temporal measures. The new analy-
ses allow us to formulate new research questions. Consider
the hypothesis that internal search is exapted from external
search, and relies on a balance between exploration and ex-
ploitation. Because physical space has a finite number of di-
mensions, it is quite easy to measure exploration versus ex-
ploitation behaviors in external search. By comparison, it is
less straightforward how one should characterize exploration
or exploitation behaviors in the high-dimensional cognitive
space of an internal search. Here, we re-investigate semantic
fluency data along a number of dimensions: temporal, geo-
graphic, semantic, lexical, and phonetic. In this exploratory
study, we show that retrieval sequences do indeed contain
structure along each of these dimensions. That is, when re-
membering geographic information, people do, indeed, use
the embodied physical structure of the information, but we
can also measure their use of semantic, lexical, and even
phonetic information. With regards to the optimal foraging
perspective, these metrics may reflect different dimensions in
which patches exist, highlighting a number of open questions
for future work, as discussed in the conclusion.

Methods
Experimental Procedure
Participants Participants were recruited from a subject
pool of University of California, Merced undergraduate stu-
dents who participated for course credit (4 male, 8 female;
mean age = 19.92 years, SD = 1.08 years), and reported be-
ing native or proficient English speakers. All but two partici-
pants reported living in California for their whole lives, while
the other two reported living in California for the majority
of their lives (15 of 19 years, and 16 of 18 years, respec-
tively). Subjects were comfortably seated by themselves at a
table in small experiment room, and wore Shure microphone
headsets. Speech was collected using an M-Audio MobilePre
recording interface and Audacity software.

Task Subjects completed two recall tasks, presented in
counterbalanced order, each of which lasted for twenty min-
utes. In one task subjects recalled items from the category
of cities and towns in California, and in the other they re-
called from the category of all animals. For the purposes of
the present paper, we discuss only results from the category
of cities and towns in California. Subjects were given the fol-
lowing instructions: “Your goal [is] to think of as many items
from [the] category as you can. When you think of an item,

just say it out loud. You can be as specific or as general as
you wish. For example, if the category were Food you could
say ‘Fruit’, and you could also say ‘Orange’ or ‘Mandarin
Orange’. But keep in mind that your goal is to recall as many
different items as possible. If you are unsure if an item does
or does not belong to the category, just say it anyhow, don’t
spend time worrying about whether something counts or not,”
(adapted from Rhodes & Turvey, 2007).

Audio Transcription The speech recordings were loaded
into Praat audio analysis software for annotation, and were
transcribed as in Szary et al. (2015). That is, each recalled
item was transcribed, and onset times of items were marked.
Repeated items were removed. Incorrect items (“Reno”,
which is in Nevada, not California), geographic landmarks
(“Monterey Bay” bay, “Sierra Nevadas” mountains), and non-
specific areas (”Bay Area”, which refers to several locations
around the San Francisco Bay) were removed. Pronunciation
errors (“Rancho Cucamongo” instead of the correct “Rancho
Cucamonga”) and common abbreviations (“L.A.” instead of
the official “Los Angeles”) were corrected. Districts, neigh-
borhoods, planned communities and census-designated areas
with names recognized by the U.S. Geological Survey (e.g.
“Hollywood”, “Downieville”; United States Board on Geo-
graphic Names, 2016) were retained.

Measures
For each dataset, inter-retrieval intervals (IRIs) are measured
as the amount of time (in milliseconds) between consecu-
tive recall events cityi and cityi+1, and represent the temporal
distances we observed. For each transition (cityi to cityi+1),
we compute additional distances using geographic, semantic,
phonetic, and lexical measures.

Geographic Distance The latitudinal and longitudinal co-
ordinates for most cities were provided by the world.cities
dataset, in the maps package for the R programming language
(Becker, Wilks, Brownrigg, Minka, & Deckmyn, 2016).
Missing values were added by hand, and were retrieved
from Wikimedia’s GeoHack tool (Wikimedia Tool Labs Geo-
Hack, 2016). Geographic distances (GDs) are measured as
the number of miles between consecutively recalled cities.
GDs are calculated using the Haversine formula, which gives
the great-circle distance between two points on an sphere
(Sinnott, 1984).

Semantic Distance Semantic similarity was calculated us-
ing vector representations obtained by a Word2Vec model
from the gensim package for Python (Řehůřek & Sojka,
2010), which was trained on the full English Wikipedia
dataset, available from dumps.wikimedia.org/enwiki, 2016.
The cosine between the vectors representing two city names
is taken as a measure of the semantic distance between those
cities.

Lexical Distance The standard Levenshtein distance,
which measures the number of edits required to transform one
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Figure 1: The number of cities that has each retrieval rate.

string into another, is used as a measure of lexical distance.

Phonological Distance Finally, as an exploratory measure
of phonological difference, we converted city names into their
four-digit soundex codes, which are approximate representa-
tions of how words sound. We then compute the Levenshtein
distance between these codes, which serves as our measure of
phonological distance.

Results
Across all participants, a total of 323 unique city names were
retrieved. On average, each participant retrieved 67 cities
(SD = 28). Many of the cities (n = 171) were retrieved only
once, and only 4 cities were retrieved by all 12 subjects. Fig-
ure 1 shows the number of cities with each retrieval rate. To
visualize the structure in these highly variable retrieval rates,
Figure 2 shows the locations of retrieved cities along with
their retrieval frequencies.

Distance Measures
Across all transitions in our dataset, our distance measures
tended to be subtly correlated. Replicating the findings from
Szary et al., 2015, geographic similarity was positively cor-
related with temporal proximity across all observed pairwise
transitions, as measured by −IRIs, r(787) = 0.16, p < 0.001.
In addition, we found that geographic similarity captured se-
mantic similarity, r(787) = 0.13, p < 0.001. Figure 3 shows
the positive correlations between geographic distance mea-
sures and both semantic and temporal distance measures. As
evident in this graph, semantic and temporal distances are
also closely related, with r(787) = 0.17, p < 0.001. While
temporal distance has slight positive correlations to both lex-

Figure 2: City locations and their retrieval rates.

ical and phonological distance, r(787) = 0.12, p < 0.001
and r(787) = 0.08, p = 0.02, respectively, neither lexical nor
phonological distances are correlated with geographic dis-
tance. Finally, although lexical and phonological distances
are correlated, r(787) = 0.21, p < 0.001, they have dif-
ferent relationships to the semantic distance measure. Se-
mantic and phonological distances are positively correlated,
r(787) = 0.18, p < 0.001, but semantic and lexical distances
actually show a slight negative correlation, r(787) = −0.09,
p < 0.01.

Observed Versus Randomized Distances To make sure
that the distance measures differ from those that would be
observed by chance, we shuffled each subject’s retrieval se-
quence 100 times, and compared this to simulated data. For
each metric, distances were greater for the shuffled data as
compared to the original data, as seen in Figure 4. Geo-
graphic distances were greater in the shuffled data (M = 172.7
miles) than the observed data (M = 115.0 miles), t(813) =
−12.76, p < 0.001. Semantic distances were also greater in
the shuffled data (M = 0.71) than the observed data (M =
0.63), t(798) = −12.9, p < −.001. Lexical distances were
greater in the shuffled data (M = 8.15) as compared to the
observed data (M = 8.39), t(836) = −2.81, p < 0.01. Fi-
nally, phonetic distances were greater in the shuffled data
(M = 3.26) as compared to the observed data (M = 3.35),
t(804) =−2.94, p < 0.01.

Patch Transitions
Kernel density estimation was used to determine a segmen-
tation threshold (at the first local minimum) for each partici-
pant’s IRI sequence (M = 28, SD = 10 seconds). This thresh-
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Figure 5: Boxplot of group means comparing pairwise tran-
sitions that occurred within patches (”W”) to pairwise tran-
sitions that occurred between patches (”B”). Distance mea-
sures are scaled to share a common axis for illustration pur-
poses only.

old was used to segment retrieved items into patches. Our
datasets had an average of 11.4 (SD = 4.7) patches. While
most patches were small (median size = 2), some were quite
large (maximum size = 51; M = 5.8, SD = 9.2).

Figure 5 compares pairwise transitions that occurred within
patches to the pairwise transitions that occurred at patch
boundaries (switches). Mean semantic and geographic dis-
tances were both significantly higher between patches (at the
transition points) as compared to within patches. For seman-
tic distances, Mbetween = 0.71 and Mwithin = 0.62, t(211) =
5.80, p < 0.001; For geographic distances Mbetween = 162.2
miles and Mwithin = 105.5 miles, t(181) = 4.56, p < 0.001.
Lexical distance was slightly but significantly higher be-
tween patches (M = 8.68) as compared to within patches
(M = 8.05), t(194) = 2.94, p < 0.005. Finally, phonetic dis-
tance was also slightly higher between patches (M = 3.44)
as compared to within patches (M = 3.23), t(235) = 3.10,
p < 0.005.

Figure 6 shows this same data, but instead of averaging
across all within-patch distances, considers the transitions im-
mediately preceding patch switches. Specifically, it shows av-
erages for the switches (index = 0) and the 9 transitions pre-
ceding switches. While patch switches have higher average
distances on each metric, Figure 6 suggests that there may be
patterns leading up to patch switches, perhaps reflecting the
depletion of resources available through a given metric.
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Figure 6: Bar heights show scaled averages for each distance metric at the 9 transitions preceding a patch switch, and the switch
itself (index = 0).

Shifting Strategies
Although we focus primarily on summary statistics in this
paper, our larger goal is to explore how different cues (ge-
ographic, semantic, lexical, phonetic) interact dynamically
during retrieval processes. Although a detailed quantitative
analysis is beyond the scope of the present paper, Figure
shows the evolution of all 4 distance metrics over the course
of the trial for each subject, in service of our larger goal.

While there are some similarities across participants (such
as geographic distance being relatively lower than other mea-
sures), there are also striking differences in the way the mea-
sures unfold over time for the different participants. This ob-
servation is consistent with the idea that distances may reflect
the cueing strategies underlying the search process, where ge-
ographic cues would lead a subject to retrieve geographically
proximal items, resulting in low geographic distances. Con-
sider, as a simple example, the phonetic and semantic dis-
tances for Subject 12. Over the course of the task, semantic
distances show a relative increase, while phonetic distances
show a relative decrease. From the perspective that our dis-
tance metrics (in some loose way) reflect the cueing strategies
at work, we see that Subject 12 initially uses a semantic cue-
ing strategy, thinking of items that are semantically related
to one another (perhaps listing affluent cities with colleges:
“La Jolla... Berkeley... Stanford”). But, as semantically re-
lated resources are depleted, the subject switches to a pho-
netic strategy (perhaps “Stanford... Stanton... Winton”).

General Discussion
Overall, most of our distance metrics were positively corre-
lated with each other. Temporal distances were correlated
with geographic, semantic, lexical, and phonetic distances.
Additionally, geographic distances were correlated with se-
mantic distances, but not with lexical or phonetic distances.

Semantic distances were correlated positively with phonetic
distances, but negatively with lexical distances. Still, lexical
and phonetic distances were positively correlated.
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Figure 7: Loess curve fits to each metric (scaled) for each
subject.

To test whether there is geographic, semantic, phonetic, or
lexical structure in the sequence of retrieved items beyond
what would be observed by chance, we compared distances
from the observed sequences to distances from sequences of
the same items in shuffled orders, as in Szary et al. (2015).
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For each of our distance measures, simulated datasets with
randomized orders showed greater distances. That is, there
is structure in the sequence of retrieved items beyond what
would be expected for a random sampling of items, or if a
given distance metric were unrelated. This suggests that sub-
jects use each source of information to cue their retrieval pro-
cesses. In the actual datasets, but not shuffled datasets, pair-
wise transitions include items that are closely related (on one
or more metric).

We also find that each distance metric spikes at the transi-
tions between patches, and tends to increase in the transitions
leading up to patch transitions (seeFigure 6). While a quan-
titative analysis is beyond the scope of the current paper, this
finding is consistent with the notion that semantic search uti-
lizes an optimal foraging policy. A hypothesis consistent with
optimal foraging would predict that, as a forager retrieves
the resources within a given semantic patch, the availabil-
ity of additional resources becomes depleted, which may be
reflected by increases in the the amount of time to find addi-
tional items in the transitions preceding patch switches. Here,
we use an automatic clustering algorithm applied to the tem-
poral sequence to define patches. While temporal distances
are used to define the patch switches, it is difficult to draw
conclusions about how they may effect those switches. Vi-
sual inspection of the other metrics, however, is consistent
with the idea that patches are becoming increasingly sparse
(across multiple dimensions) in the time leading up to the de-
cision to switch.

For the argument that search is a generalized cognitive pro-
cess which relies on the appropriate balance between explo-
ration and exploitation, the word appropriate is key. What
makes the balance appropriate is known to change depend-
ing on search context, such as whether you’re searching for
randomly distributed or highly clustered resources, but it can
also change dynamically over the course of a search process,
such as when the resources in a given patch have been de-
pleted. An open question, then, is how the different dimen-
sions of relatedness (geographic, semantic...) interact in what
we think of as ‘patches’. In order to accurately character-
ize the line between exploration and exploitation in cogni-
tive space, future work must address how these information
sources combine in patches. For example, how does a forager
incorporate multidimensional information? Are the patches
themselves multidimensional? Or do we move, orthogonally,
through cue-strategies and information patches, respectively?
As increasing evidence suggests that search strategies are a
domain-general process, across a number of cognitive con-
texts (Hills, Todd, & Goldstone, 2010; Rhodes & Turvey,
2007), a complete understanding of how we leverage differ-
ent cues to sift through the information in semantic memory
becomes increasingly important.
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