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Abstract

Developments in the field of microfluidics have triggered technological revolutions in many 

disciplines, including chemical synthesis, electronics, diagnostics, single-cell analysis, micro- 

and nanofabrication, and pharmaceutics. In many of these areas, rapid growth is driven by the 

increasing synergy between fundamental materials development and new microfluidic capabilities. 

In this Review, we critically evaluate both how recent advances in materials fabrication have 

expanded the frontiers of microfluidic platforms and how the improved microfluidic capabilities 

are, in turn, furthering materials design. We discuss how various inorganic and organic materials 

enable the fabrication of systems with advanced mechanical, optical, chemical, electrical and 

biointerfacial properties — in particular, when these materials are combined into new hybrids 

and modular configurations. The increasing sophistication of microfluidic techniques has also 

expanded the range of resources available for the fabrication of new materials, including particles 

and fibres with specific functionalities, 3D (bio)printed composites and organoids. Together, 

these advances lead to complex, multifunctional systems, which have many interesting potential 

applications, especially in the biomedical and bioengineering domains. Future exploration of the 

interactions between materials science and microfluidics will continue to enrich the diversity of 

applications across engineering as well as the physical and biomedical sciences.

Microfluidic architectures (BOX 1), which usually make use of fluid flows at the micrometre 

scale (that is, flow rates of microlitres per minute or less and total volumes of microlitres 

or less), have triggered techno logical revolutions in several scientific and engineering 

disciplines, including diagnostics, cell-based screening technologies, single-cell research, 

analytical chemistry, electronics, biosensing, and micro- and nanofabrication1. For example, 

cell-based assays, previously conducted primarily in cell culture dishes and plates, have 

progressively migrated to microchip platforms over the past two decades2–4. Cells and 

proteins can be separated by size and type, and captured and analysed in microfluidic 

devices5. In diagnostics, microfluidics have made it possible to capture circulating tumour 

cells6,7 and to design progressively more sensitive and integrated point-of-care applications 

for chronic and infectious diseases using small volumes of biologically complex samples8.

The field of microfluidics has experienced explosive growth in the past decade, and this 

trend is expected to continue. The synergistic innovation of materials and microfluidic 

platforms is central to increasing the sophistication of microfluidics-based technologies 

across many scientific disciplines; new materials are expanding the applications of 

microfluidics, and microfluidic systems have also been shown to provide robust and flexible 

platforms for the fabrication of materials with well-defined physicochemical properties. A 

historical timeline of key events and developments at the materials–microfluidics interface is 

presented in FIG. 1.
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This Review provides an overview of recent developments in materials design strategies, 

both adapted for and derived from microfluidics, and is structured into three sections. First, 

we discuss how various types of materials confer new properties and capabilities in the 

production of microfluidic devices, ranging from inorganic and organic materials to hybrid 

and composite materials. Second, we discuss recent progress in the use of microfluidics as 

platforms for the fabrication of new materials. Last, we address challenges associated with 

current microfluidic platforms and the potential solutions, such as bioinspired design, that 

we anticipate will lead to the next generation of microfluidic systems.

Materials for microfluidic devices

The development of new materials, as well as innovative ways to combine and to configure 

existing materials, has led to the design of microfluidic systems with a wide range of unique 

functionalities. These materials can be generally categorized as inorganic, organic, and 

hybrid or composite. In this section, we briefly discuss the advantages and disadvantages 

of each type of material, and give key examples of their evolution in the fabrication of 

microfluidic devices with a focus on recent applications. We highlight how recent advances 

in synthesizing, structuring, functionalizing and combining new and conventional materials, 

which include glass, responsive polymers, paper and even liquid components, are creating 

opportunities for integrating and building on the distinctive properties of different materials.

Inorganic materials

Early microfluidic devices primarily used inorganic materials as substrates, owing to their 

often superior surface stability, tunable thermal conductivity and solvent compatibility9,10. 

Even before the introduction of the concept of microfluidics, microchannels had been used 

in the form of glass capillaries in gas chromatography10.

The earliest microfluidic systems originated from the microelectronics industry and 

were consequently constructed from silica or glass. Silicon gradually became the 

preferred material at the time, primarily because of the advances in and availability 

of microfabrication techniques. However, silicon is optically opaque, a disadvantage for 

applications that require optical measurements. Glass, by contrast, has excellent optical 

transparency, well-defined surface chemistry and superior high-pressure resistance for 

microfluidics applications. For example, multiplexed configurations of glass capillaries were 

used for the microfluidic fabrication of various functional microparticles11–14. Glass is 

also more compatible with electro-osmotic flow than silicon, arguably because of its lower 

electroconductivity9. However, a challenge lies in the difficulty of preparing high-aspect-

ratio anisotropic structures using amorphous glass. Recently, liquid glass was produced in 

the form of a photocurable amorphous silica nanocomposite15. This advance constitutes the 

next step towards the prototyping and fabrication of micro fluidic microstructures based on 

glass at relatively low cost, with high fidelity and without the need for clean-room facilities 

or hazardous chemicals.
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Organic materials

Organic materials are usually robust and cost-effective. They also enable faster and simpler 

fabrication processes than inorganic materials. Organic materials commonly used in the 

fabrication of microfluidic devices include polystyrene, polyvinyl chloride, polymethyl 

methacrylate (PMMA), cyclic olefin co-polymers, polycarbonate and polydimethylsiloxane 

(PDMS). In contrast to inorganic materials, these polymers possess several attractive 

properties, such as facile surface modification, low cost, low thermal conductivity and 

compatibility with biomedical applications. For example, PDMS microfluidic devices are 

permeable to gases and are thus able to support long-term cell culture, which cannot be 

achieved using silicon- or glass-based microfluidics16. Although organic materials offer 

many advantages, they also present challenges involving the ageing, chemical resistance, 

and mechanical, thermal and optical properties of the materials. For example, PDMS can 

restrict the detection of short-wavelength fluorescence, resulting in reduced measurement 

sensitivity compared with glass9. Typical organic materials used for microfluidics can be 

classified into five categories according to their physicochemical properties: elastomers, 

thermosets, plastics, hydrogels and paper10. These different classes of materials for 

microfluidics fabrication have been previously described in detail10,16,17; here, we focus 

on important recent developments.

Elastomeric materials.—Elastomers are weakly cross-linked polymers that can be 

easily stretched or compressed and revert to their original shapes when external forces 

are removed. PDMS has been the most widely used elastomer in microfluidics since 

Whitesides and co-workers18–20 first reported its use for this purpose in 1995. PDMS 

microfluidic devices can be prepared using simple mixing, casting and heating processes 

to replicate the numerous microchannel shapes and structures of master moulds (such as 

patterned silicon or SU-8)21,22. The use of PDMS imparts important properties, including 

optical transparency, high gas permeability, robustness, biocompatibility and low toxicity, 

which make it particularly well suited for microfluidic platforms designed for biomedical 

applications16.

Microfluidics based on PDMS also enable the development of flexible electronics23. The 

evolution of the next generation of stretchable, bendable and wearable electronics has 

resulted in innovations such as smart bandages for health monitoring and sensors for use 

in monitoring the wing status of aeroplanes. However, the technology is not sufficiently 

developed for devices to be manufactured at large scales and low cost (see the MIT News 

web page). Improvements in smart, flexible microfluidics are anticipated to lead to further 

advances in flexible electronics. Notable examples in which this concept has already been 

realized include stretchable microfluidic radio-frequency electronics24,25 (FIG. 2a,b) and 

ultra-low-modulus, highly stretchable electronic systems26 (FIG. 2c).

Although PDMS is arguably the most popular material for microfluidic fabrication today, 

it has limitations for universal application27. One problem is its hydrophobic nature, 

which significantly increases the possibility of adsorption and absorption of hydrophobic 

molecules, leading to fouling in microchannels28. In addition, PDMS is incompatible with 

organic solvents; for example, it swells in octane (among other solvents), which alters the 
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structural features and dimensions of the microchannels29. Strategies need to be developed 

to improve the chemical resistance of PDMS to a wider range of organic solvents30–32. 

Moreover, the elasticity of PDMS mandates that its mechanical properties be enhanced to 

reduce the deformation of microfluidic systems under high-pressure conditions33. Although 

often an advantage, the fact that PDMS is gas-permeable can lead to concentration changes 

during liquid handling operations in microchannels due to water evaporation. By contrast, 

this permeability is beneficially exploited when studying the dynamics of biomolecular 

crystallization34 or when promoting crystal growth for the building of complex, hierarchical 

microarchitectures35.

Thermoset materials.—Thermosets (or thermo setting plastics) are materials that result 

from irreversible crosslinking of polymers in response to exposure to heat or light36. This 

process leads to molecules with very high molecular masses and, therefore, materials that 

cannot be melted and reshaped after curing, which distinguishes them from plastics. The 

heavily crosslinked structures of thermosets impart stability, rigidity and brittleness, even at 

high temperatures. Thermosets are chemically resistant to most solvents and are optically 

transparent. The properties of thermosets allow their use in the fabrication of microfluidic 

devices with free-standing structures that have high aspect ratios and are stable over a 

wide range of temperatures (under their decomposition thresholds) and at high pressures. 

Nonetheless, the current high cost of thermosets limits their application in microfluidics10. 

SU-8 and polyimide are the most commonly used thermosets37–40 in microfluidics, and both 

materials provide advantages in 3D microfabrication through photopolymerization41. For 

example, SU-8 is optically transparent (in the visible region but not in the UV region)17 

and mechanically robust, and can be directly structured using a photolithography process 

to fabricate a great variety of 3D microstructures. Recently, a free-standing and flexible 

SU-8-based microfluidic sensor with a predictable impedance spectrum behaviour was 

reported42 (FIG. 3a). This design integrated electrical and microfluidic components to create 

a reduced-scale sensing device, revealing a new level of miniaturization.

Plastic materials.—In contrast to thermosets, plastics can melt and become pliable or 

mouldable on application of heat; they then solidify on cooling. Acrylic (for example, 

PMMA), polystyrene and polytetrafluoroethylene (PTFE) are three commonly used plastics 

in microfluidics. These materials can be conveniently reshaped to fabricate microchannels 

at temperatures close to their glass transition temperatures (the temperature above which 

the plastic is distinctly softened)17,43–46. Because of this feature, plastics are widely used 

and well developed in industry. Many plastics have superior properties to PDMS, such as 

improved solvent compatibility47, reduced antifouling47, gas impermeability48 and greater 

rigidity49. Plastics were once less favoured in research laboratories for prototyping owing 

to the relatively sophisticated thermo-processing procedures needed for microfabrication, 

which are better suited for mass production16. Currently, more and more plastics are being 

used for prototype designs. For example, a microfluidic chip was developed with solvent-

resistant photocurable perfluoropolyethers50, and microfluidics entirely based on PTFE were 

shown to exhibit excellent inertness to a wide range of chemicals and high resistance to 

many solvents47 (FIG. 3b). More recently, laser cutting technology has been used to develop 

PMMA and PTFE microchannels51,52. The emerging popularity of 3D printing technology 

Hou et al. Page 5

Nat Rev Mater. Author manuscript; available in PMC 2024 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



has now enabled the fabrication of template moulds for building prototype microfluidic 

devices, which offer the advantage of producing large numbers of replicas rapidly and at low 

cost, while also allowing quick iterations between different designs53,54.

Hydrogel-based materials.—Hydrogels are networks of crosslinked polymers wherein 

water constitutes the majority of the total mass. In principle, any water-soluble polymer 

can be used as a matrix for a hydrogel by controlling the degree of polymerization of the 

polymer chains9. The highly porous structures of hydrogels along with their controllable 

pore sizes enable diffusion of various molecules throughout their matrices. The inherent 

biocompatibility, tunable degradability and high permeability of many hydrogels make them 

ideal for biomedical microfluidics applications10,16,55–59. Hydrogels can be functionalized 

to respond to external stimuli (for example, temperature, pH or chemical concentration) 

such that their swelling and deswelling elicit mechanical changes (expansion or contraction) 

inside microchannels, in which response times are determined by the rate of diffusion of the 

stimulus into the hydrogel matrix.

Several challenges associated with hydrogel-based microchannels are currently being 

addressed. For example, the production of microchannel networks with high-resolution 

shapes using conventional methods is difficult with hydrogel systems because of their low 

densities and strengths compared with other polymers. Recently, however, hydrogel-based 

microfluidics were developed from a silk protein elastomeric material; the resultant systems 

had 3D microchannel networks with a minimum feature resolution of 100 μm (REF. 

60). These microfluidic platforms exhibited controllable mechanical properties, long-term 

stability, and tunable in vitro and in vivo degradability (FIG. 3c). Engineered hybrid or 

composite hydrogels with greatly improved mechanical properties may expand the use of 

hydrogel-based microfluidics61,62, particularly in cell and tissue culture applications.

In general, hydrogels are hydrophilic materials. However, they can be produced to include 

hydrophobic moieties, which can be important in the design of microfluidics for biological 

applications. A simple strategy was recently reported for making the surfaces of hydrogels 

superhydrophobic to obtain heterogeneous wettability across their surfaces and inner 

networks63. This strategy prevented the immediate diffusion of substances between the 

hydrogel and the aqueous environment, and may enable fine tuning of surface wettability in 

future microfluidics applications. Similarly, hydrophobicity can be imparted to hydrogel 

surfaces by coating with superhydrophobic microparticles64. The stimulus-responsive 

behaviour of hydrogels has further enabled them to be designed for switchable surface 

wettability.

Paper-based materials.—Paper is a highly porous, fabric matrix that is typically thin and 

prepared using well-developed and economical manufacturing processes by compressing 

cellulose fibres derived from wood, grass or rags. Some of the intrinsic characteristics of 

paper, such as the porosity and microstructure, increase the passive transport of liquids 

owing to the liquid capillary effect65 and make it particularly suitable for microfluidics 

applications. In addition, paper can be easily functionalized by treating it with different 

liquids, conferring not only the desired wettability and colours, but also other properties, 

such as conductivity and mechanical resistance65. Moreover, the typical white colour of 

Hou et al. Page 6

Nat Rev Mater. Author manuscript; available in PMC 2024 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



paper makes it well suited for colour-based detection methods in most assays66. Paper 

can also be discarded or recycled easily, which is a great advantage for single-use testing 

devices. Paper-based microfluidics therefore offer a promising platform for diagnostic 

bioassays to address global health concerns in developing countries, for which simplicity, 

rapidity, portability and low cost are desirable10,16,17.

In 2008, a paper-based 3D microfluidic system was fabricated by stacking alternating layers 

of paper and water-impermeable tape67; this was followed by the development of pressure-

driven open-channel microfluidic devices using an omniphobic paper68. In 2011, a laser 

treatment method was reported for the fabrication of inexpensive microfluidic platforms 

on paper, and the applicability of these paper-based microfluidic devices was demonstrated 

using a luminol-chemiluminescence assay69. Paper-based microfluidic systems have many 

benefits, but challenges remain — these are typically associated with the difficulties in 

fabricating well-controlled patterns at small scales, owing to the inability to produce 

microchannels with hydrophilic and/or hydrophobic barriers in paper. In 2015, wax-printed 

and impregnated paper-based microfluidic devices were reported; these systems featured 

small patterns with appropriate resolution (3.4 mm detection zones) to enable simple and 

robust point-of-care diagnostics70 (FIG. 3d).

Hybrid microfluidic systems

Following the first use of silicon for microfluidics applications, microchannels have 

subsequently been fabricated from various materials such as glass, polymers and hydrogels. 

However, alone, each of these materials has limitations for use in extended microfluidics 

applications, as discussed in the previous sections. The combination of different constituent 

materials or the use of composites, which is an emerging strategy, offers approaches to 

overcome these challenges, as well as to improve or expand functionality and to create 

complex, multifunctional systems suited for a variety of environments. As an illustrative 

example, organically modified ceramics are beneficial for many biological microfluidics 

applications; these materials are produced using fabrication processes similar to those 

used in polymer synthesis and feature glass-like surface chemistry71,72. In this section, we 

introduce several typical and emerging hybrid and composite material-based microfluidics 

approaches.

The use of PDMS in combination with other materials for the fabrication of hybrid 

microfluidic systems has been frequently explored. Examples include PDMS combinations 

with glass73–77, SU-878,79, polycarbonate80,81, PMMA82, hydrogels83,84, paper85 and 

biodegradable materials86. Even hybrid materials with the same components can be designed 

and customized for different applications. For example, one PDMS–polycarbonate hybrid 

microfluidic system used nanoporous polycarbonate membranes as molecular gates to 

control the net flow of gases80. The same hybrid device can also be used to generate 

perpendicular chemical and oxygen gradients suitable for cell culture by using the embedded 

polycarbonate film as a gas diffusion barrier81. Many other examples of hybrid microfluidics 

have been reported, such as silicon–polycarbonate microfluidics87. A microfluidic device 

was recently developed for organic synthesis based on a hybrid fluoroethylene propylene–
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polyimide film that offered good physical toughness at high pressure, operability at low 

temperature and chemical inertness88.

Multiconstituent hybrid materials for microfluidics are attracting increasing interest. The 

combination of the different properties of the constituent materials results in microfluidic 

devices of greater sophistication. The development of a hybrid microfluidic device 

consisting of a top PDMS substrate, a bottom quartz substrate and a patterned middle layer 

of SU-8 enabled isoelectric focusing of proteins with whole-channel imaging ability89. In 

addition, relative to a comparable device made of only PDMS, the hybrid chip exhibited 

increased heat dissipation owing to the high thermal conductivity of the quartz substrate, 

allowing larger electric fields to be used in separations, and also demonstrated a two-

to-threefold improvement in sensitivity. In other examples, hybrid microfluidic devices 

constructed of PDMS–paper–glass and PMMA–PHEMA–glass (where PHEMA is poly(2-

hydroxyethyl methacrylate)) were used for single-step multiplexed pathogen detection90 and 

potential cell-on-a-chip applications91. The multiconstituent designs allow each material to 

serve its own function in the hybrid systems, often outperforming devices based on single 

materials.

Coating the inner surface of existing microchannels with another material is a frequently 

used and simple option for the preparation of hybrid microfluidics. For example, a hybrid 

microfluidic device was fabricated using a UV-patternable organic–inorganic hybrid sol–gel 

coating92. This approach could be extended to the development of microchannel systems on 

silicon and glass materials. In another example, a method was established for the preparation 

of a solvent-resistant hybrid microfluidic device by using an inorganic–organic hybrid 

coating on the inner surface of PDMS microchannels to substantially increase chemical 

resistance to various solvents31. Metals can also be used to coat the polymer surfaces 

to obtain new features of relevance for microfluidics applications. For example, physical 

vapour deposition of silver on PDMS was used to create partially embedded, 3D clusters of 

silver93. This robust coating enhanced the dielectric properties of the PDMS substrate and 

its capacity to protect silver from oxidation. Furthermore, hydrogels may be used to coat 

microfluidic channels to enhance their bioactivity94.

In addition to solid-based hybrid and composite materials, liquid-based materials are 

providing new opportunities for microfluidics. For example, the bioinspired idea of using a 

fluid lining to prevent fouling inside a microchannel has resulted in anti-fouling microfluidic 

networks with liquid-infused porous membrane materials that show outstanding inertness to 

various chemicals, particles, proteins and blood95. A variant of this technology has also been 

used to create pressure-sensitive liquid-gated pores in the walls of microfluidic systems, 

enabling selective extraction of gases or liquids from multiphase flows96.

Microfluidics for materials fabrication

Advances in the application of microfluidic systems as microfabrication platforms have 

afforded considerable advantages and opportunities to materials scientists, biologists and 

bioengineers. The intrinsic properties of a material (for example, its conductivity, resistance, 

flexibility, hydrophobicity or hydrophilicity) can be better exploited in microfluidic devices 
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simply because larger interfaces between materials and fluids can be achieved. In addition, 

currently available and emerging microfluidics-assisted platforms enable the fabrication 

of objects and materials with an improved level of control of key variables, such as 

temperature, concentration (and concentration gradients), flow rates, flow profiles and 

mixing parameters.

In this section, we describe important examples from a wide range of microfabrication 

techniques that are enabled by microfluidics. In addition, we discuss the distinctive 

characteristics of various microfluidic platforms that make them particularly suited for the 

fabrication of materials with specific shapes, architectures and/or functionalities that are 

otherwise difficult to achieve.

Micro- and nanoparticles

The microfabrication of monodispersed micro- and nanoparticles continues to be a 

technological challenge. Microfluidic devices provide an environment in which the flow 

properties can be finely tuned to provide suitable chemical and physical conditions to 

ensure particle size homogeneity from uniform emulsions14,96–99 (FIG. 4a). The state of 

the art in this area quickly evolved from the production of single-component particles 

to the fabrication of Janus (multicomponent) particles with specific architectures and 

characteristics, including hydrogel particles with predefined shapes11,100, magnetic and/or 

conductive particles101, magnetic hydrogel particles102, porous microcarriers for cell 

culture applications103–105, composite particles containing metal–organic frameworks106, 

microcapsules (microparticles containing smaller particles)13,98,107, and photo- or 

thermoresponsive capsules99,108,109, among other possibilities.

The field of materials fabrication using microfluidics has been revolutionized by stop-flow 

lithography110, which conventionally could only be used to generate spherical objects, 

owing to the effect of surface tension generated within the emulsion system. In the initial 

strategy, termed continuous-flow lithography, a projection photolithographic method is 

combined with microfluidics: a particular pattern can then be projected to the flow within 

the microfluidic device. This method enables in situ photo-crosslinking of the material 

precursor, thus achieving continuous production of arbitrarily shaped microparticles100. 

The technology has been further optimized to introduce a short period in which the flow 

is temporarily stopped during the lithography process; the process is then repeated by 

resuming the flow to improve the fidelity of the microparticle synthesis111. Stop-flow 

lithography has also been extended to applications including the generation of cell-laden 

microparticles112; the production of opaque113 and shape-evolving114 microparticles; high-

throughput fabrication of microparticles115; and, in combination with flow focusing, large-

scale array patterning116.

Although the conventional fabrication of nanometresized particles using microfluidics has 

been challenging, a microfluidic nebulator was recently developed that uses supersonic 

spray-drying to produce monodisperse amorphous nanoparticles down to the scale of a 

few nanometres117 (FIG. 4b). Similarly, microfluidic approaches that promote chaotic 

mixing have been used to synthesize lipid nanoparticles that incorporate RNA payloads 

for CRISPR-based genome-editing applications118. In addition, the design of cell-laden 
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hydrogel particles that provide a specific micro-niche for the function of particular cell types 

has recently received special attention105,119,120. Biomedical research will greatly benefit 

from these cell-associated particle fabrication techniques in the near future.

Another area of emerging interest is the use of microfluidic droplets as microreactors 

for a range of chemical and nanoparticle synthesis processes, which provides more 

rigorous control over reaction parameters than conventional bulk methods121. The rationale 

behind using microdroplets as reactors is to reduce the volume to as small as possible 

to achieve higher homogeneity in the reaction conditions96,121,122. Indeed, micro fluidic 

platforms can be particularly useful for obtaining nanoparticles with narrower particle size 

distributions than can be achieved using conventional beaker or flask proto cols121,123. 

The use of microfluidic platforms to produce noble metal nanoparticles has been widely 

demonstrated124,125. Microfluidic platforms have recently shown sufficient flexibility to 

accommodate multistage reagent injections or localized heaters for the facile fabrication 

of nanoparticles with selected shapes, such as nanorods126, octahedra and nanocups125 

(FIG. 4c), and nanowires127 (FIG. 4d), as well as nanoparticles of different sizes and/or 

functionalities. Microfluidic approaches can also be used to fine-tune the continuous and 

large-scale synthesis of nanoparticles, in which the feeding ratio of the growth solution 

to the seed solution, temperature and residence time determine the shape and size of the 

resulting nanoparticles128. This field has seen notable advances in the past few years, and 

exciting developments continue to be made, pushing the fabrication limits to smaller sizes 

and more tightly controlled conditions.

Beyond the inert materials used for micro particle fabrication, microfluidic platforms 

have also been increasingly adopted for the fabrication of biological materials that are 

anticipated to lead to the creation of miniaturized tissues. These local microenvironments 

or ‘niches’ are specific for each type of cell and exert their influence through a 

complex combination of chemical and physical stimuli129,130. Microfluidic technologies 

that integrate biomaterials and matrices tailored to mimic specific niches are well 

suited to define such microenvironments and have been increasingly demonstrated and 

applied. For example, the recently described microfluidics-based fabrication of hydrogel 

microspheres for the encapsulation of stem-cell lines may offer minimally invasive methods 

for effectively delivering stem-cell-based therapies to their clinical targets105. Droplet-

based microfluidics approaches using hydrogels have also recently been coupled with 

next-generation sequencing technologies to develop analytical tools that can index large 

populations of individual pluripotent stem cells to map single-cell gene expression profiles, 

enabling the identification of heterogeneous subpopulations during early differentiation131. 

These microfluidic technologies, aided by advances in biomaterials design, address a vital 

need as the field rapidly moves closer towards the translation and deployment of clinically 

relevant (stem-)cell-based regenerative therapies.

Crystals and nanocrystals

The use of microfluidic platforms addresses some of the key requirements for controlling 

crystallization processes. For example, crystallization is known to depend strongly on mass 

and heat transfer rates, as well as on local concentrations. The typical length scales of 
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microfluidic platforms enable a high degree of control of the heat and mass transfer 

conditions and a reduction in diffusion distances, resulting in good control of the crystal 

size distributions132–135. This control is especially important in the process of synthesizing 

nanocrystals. This concept has evolved in complexity with the aim of developing high-

throughput crystallization systems that could eventually replace classical methods for the 

production of nanocrystals. Microfluidic systems also enable continuity in the crystallization 

procedure, in which individual crystallization reaction niches136 (FIG. 5a) or multiplexed 

reactors operate concurrently in the same system, allowing high-throughput production or 

easy exploration of multiple crystallization conditions137 (FIG. 5b).

Expanding the variety of materials used to fabricate microfluidic devices has resulted 

in a greater range of crystallization applications. The development of pharmaceuticals 

requires the screening of many different conditions to identify those suitable for the 

crystallization of a specific active pharmaceutical ingredient. These screening operations 

necessitate the use of different types of solvent; however, not all solvents are compatible 

with the materials commonly used in microfluidics. Typically, screening requires the use 

of 0.5 g (at least) of active ingredient — a quantity not always available in early stages 

of development. Recently, a microfluidic platform for crystallization was developed to be 

chemically resistant to many of the solvents (polar and nonpolar) most commonly used in 

pharmaceutical industry crystallization138. This platform is also Raman-compatible, thereby 

allowing the direct study of the crystallization kinetics. The use of metallic surfaces, glass 

and silica permits the operation of microfluidic reactors at high temperatures, resulting 

in a wide range of applications, such as the synthesis of semiconductor nanocrystals. For 

example, cadmium selenide nanocrystals were crystallized at high temperatures (180–210 

°C) using a continuous microfluidic coil in which the temperature and residence times 

determined the average size of the resulting crystals132.

Protein crystallization continues to be one of the principal bottlenecks for protein 

characterization, because determination of the 3D structure of a protein by X-ray 

crystallography requires high-purity crystals. However, obtaining such crystals can be a 

cumbersome and difficult process. The integration of microfluidics with instrumentation has 

resulted in important advances in this area. A microfluidics-based system was recently used 

to study protein crystallization using very small sample volumes137. The technique is useful 

for building crystallization phase diagrams, which are otherwise difficult and time-intensive 

to construct using conventional methods. In another recent study, the concept of graphene-

based microfluidics was introduced139; the adoption of a thin microfluidic chamber (less 

than 1 μm in thickness) with graphene walls enabled in situ X-ray diffraction studies in 

picolitre volumes.

Fibres with precisely controlled architecture

Many technological applications require the fabrication of fibres. For example, long 

conductive wires are needed for electronics applications; fibrous polymeric matrices with 

predetermined orientations are used to create structures with superior mechanical properties; 

and fibrous tissue-like structures are used to mimic the function of muscles and nerves, 

among other applications. Therefore, the microfabrication of fibres with precisely controlled 
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architectures is an area of great interest and potential. The flexibility of microfluidic systems 

for the fabrication of a wide range of fibres of different diameters, cross-sectional shapes, 

lengths and materials has been demonstrated by controlling key parameters, such as flow 

rates and compositions of the inlet fluids140,141, the geometric features of microfluidic 

devices142 or the flow profiles within microfluidic channels143. Fabrication approaches can 

be generally divided into two classes: hydrogel fibres obtained by in situ crosslinking (for 

example, alginate fibres crosslinked by Ca2+ (REFS 144,145) and gelatin methacryloyl 

fibres crosslinked by UV light142) and polymer fibres produced using solvent extraction141.

The existence of a laminar flow regime in microfluidic devices enables the fabrication of 

multimaterial, multiniche or multilayer materials. This strategy has been used in different 

ways. For example, an inertial laminar microfluidic process was used for the fabrication 

of shaped microfibres143. In this system, two non-reactive streams and one central reactive 

stream flow through a channel containing a sequence of pillars that deflect and deform 

the fluids, generating a flow structure. The reactive stream is polymerized at the channel 

outlet using UV light. The cross-sectional shape of the resultant fibres, predicted by flow 

simulations, depends on the flow rate and the number and positions of the pillars within the 

channel.

Recent work has demonstrated the use of an interfacial microfluidic membrane-processing 

reactor for the fabrication of a metal–organic framework membrane on the inner surface of a 

hollow fibre. Two solutions — one containing Zn2+ ions and the other methylimidazole 

linkers — were respectively fed along the outer and inner sides of a polysulfone 

hollow fibre. The reaction between the two precursors resulted in the formation of a 

polycrystalline zeolitic imidazolate framework (ZIF-8) membrane layer on the inner wall146. 

The fabrication of multiniche, biologically active fibres with perfusable cylindrical hollow 

cores has also been demonstrated147, whereby endothelial cells were grown in the interior 

walls of the cylindrical channels to mimic the architecture of blood vessels. Different niches 

(two or three) were also created independently within these multifibre constructs, allowing 

the co-culture of different cell types and potentially enabling the design of multicellular 

fibrous tissues147.

Microfluidic printing

Three-dimensional printing has emerged as a versatile fabrication technology that is capable 

of one-step generation of well-defined volumetric architectures. Since its debut in 1986 

in the form of stereolithography148, 3D printing technology has evolved into a wide 

variety of forms149, including inkjet printing150,151, selective sintering152, fused deposition 

modelling153 and laser-assisted forward transfer154. The recent extension of these fabrication 

techniques for the production of biological components, including cells and biomolecules 

(termed 3D bioprinting), is leading to unprecedented advances in the reproducible assembly 

of complex tissue constructs with high fidelity and spatial resolution155–158. Among the 

different printing techniques, those based on the extrusion of inks from nozzles are 

particularly versatile in terms of the choice of available inks, as well as the capability for 

multimaterial printing156,157. Extrusion printing integrates the concept of microfluidics to 

introduce precise control over the flow of bioinks, usually in the form of a hydrogel159–164 
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or a nanocomposite165,166, through the nozzle printhead to achieve the timed delivery of 

materials at desired locations.

The recent combination of extrusion printing with advanced microfluidic printheads 

has greatly improved our ability to deposit multiple materials with ease and speed. 

Although conventional multimaterial printing systems rely on the use of several physically 

separated nozzles160,162,167, dual-channel microfluidic extrusion printheads have recently 

been developed that enable programmed, sequential or simultaneous extrusion of two 

materials168,169. In this approach, a T- or Y-junction microfluidic chip is used as the 

printhead and is fitted at the tip of a printer, where the extrusion of the two materials 

from the side channels converges to a single outlet for printing168 (FIG. 6a). This 

simplified direct-extrusion microfluidic printhead enables extrusion of multiple materials 

of relatively high viscosities (FIG. 6b). Another form of this chip and printhead involves 

a more sophisticated approach with the addition of a sheath flow outside the common 

outlet169 (FIG. 6c). This modification enables the extrusion of materials of relatively low 

viscosity by adopting a fast crosslinking mechanism that is realized through delivery of the 

crosslinking agent from the sheath flow. For example, crosslinking of a hybrid hydrogel 

bioink containing gelatin methacryloyl and alginate occurs immediately on the introduction 

of calcium chloride carried by the sheath flow, thereby achieving layered printing of 

microfibrous structures (FIG. 6d).

This printhead was further advanced to incorporate a rotating impeller within the common 

outlet to actively mix two materials into a homogeneous ink170 (FIG. 6e). In contrast to a 

passive dual-channel microfluidic chip, which only leads to the deposition of alternating 

materials (FIG. 6b,d) or laminated mixtures of the two (FIG. 6d), the active-mixing 

printhead enables the direct printing of homogenized inflowing inks. Careful tuning of the 

amounts of each material to be delivered into the mixer permits graduated outflowing inks 

and thus a continuous or discrete gradient in the material of the printed volume (FIG. 6f). 

This innovation marked the advance of microfluidics-enabled 3D (bio)printing, paving the 

way for future uses of this technology in constructing compositionally complex structures, in 

addition to the architectural sophistication currently possible.

Summary and outlook

The field of microfluidics is still growing rapidly, and its integration with progress in 

materials science, chemistry, physics, and micro- and nanotechnology will be crucial to 

producing smarter and more complex functional systems. Many challenges lie ahead, 

such as addressing fouling and stability issues, and the need to design portable, flexible, 

stretchable, multifunctional and controllable systems that can perform in many different 

environments.

Bioinspired design is an increasingly fruitful source of new directions in the development 

of micro fluidics and will probably lead to further advances focused on large market 

applications171–173. Microchannels in biological systems exhibit controlled, responsive 

transport of multiphase fluids, are integrated into hierarchical systems, and not only self-heal 

damage but also respond to clogging, pressure changes or gas build-up in the flow. One 
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example is blood vessels, which serve as tightly regulated mass-transport networks to ensure 

oxygen and nutrient delivery to surrounding tissues and maintain homeostasis throughout 

the body. The vascular networks that regulate water pumping and balance liquid and gas 

pressures within trees provide a complementary set of design principles. Building systems to 

study and simulate these innate processes continues to represent a challenge for biomedical 

applications of microfluidics.

Fouling constitutes a critical challenge to the design of future microfluidic devices174. 

Numerous approaches have been explored to reduce fouling, including selecting low-

surface-energy materials to fabricate microfluidic channels, or using bulk and surface 

chemical modification post-fabrication. However, these methods inevitably complicate 

fabrication procedures and fail to provide effective solutions to fouling issues. The 

bioinspired concept of using a fluid lining to prevent fouling inside microfluidic channels 

results in antifouling microfluidic networks that show inertness to various chemicals, 

particles, proteins and blood95. In addition, chemical modifications of the interior surfaces 

of microchannels with functional molecules that closely mimic the controllable transport 

properties of biological microchannels are anticipated to control mass transport through 

a microscale orifice in response to ambient stimuli, such as pH, applied force, light and 

temperature. It is anticipated that the new concept of microchannel functional molecular 

systems will soon be applied to build smart microfluidics with functions that can be 

controlled with greater precision through bioinspired design strategies175–178.

Advances in bioinspired smart materials are also leading to biofabrication technologies such 

as 4D bioprinting, which adds a time dimension to the conventional 3D bioprinting (that 

is, fabricated constructs can change their shapes on application of desired stimuli)179,180. 

Bioinspired design can be transformative to manufacturing, and 4D printing is the first 

process of its kind to offer the capability to control size, shape and structure post-

manufacture.

Being inherently multifunctional and multidisciplinary, bioinspired design provides 

principles for integrating microfluidics across a broad range of fields. For example, the 

bioinspired gating concept for microfluidic applications has led to new separation techniques 

that provide opportunities for complex sorting in environmental, fuel, biomedical, degassing 

and waste treatment fields, among others, for real-world industrial application95. This 

is a radical shift in our understanding of microfluidics; up to this point, microfluidic 

technologies have remained static and rigid, but they will soon be dynamic, flexible, 

adaptable and tunable for on-demand performance.

Microfluidics will continue to expand the frontiers of manufacturing as it imparts 

extraordinary processing control. The manufacture of high-value-added products will greatly 

benefit from the control of key quality variables, such as temperature, pressure, and 

chemical or bio chemical microenvironments, which can be better achieved in microfluidic 

systems than in large stirred tanks. The coming years will see the use of microfluidic 

platforms in the fabrication of new materials and in the addition of functionality to existing 

materials. For example, advances are expected in the area of continuous manufacturing of 
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pharmaceutical and biopharmaceutical products enabled by micro fluidics-based fabrication 

technologies181–183.

We have provided an overview of recent developments, contemporary challenges and future 

directions at the interface between materials science and micro fluidics. We anticipate 

that further progress in microfluidics will enable new real-world applications, which range 

from the implementation of advanced manufacturing techniques to personalized diagnostics 

and therapeutics for healthcare. In addition, the intersection of microfluidics and materials 

science is expected to grow progressively, leading to increasingly complex systems that 

integrate channel design and in situ materials processing. We hope that this Review 

will foster and inspire research towards these next-generation materials and micro fluidic 

technologies.
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Box 1 |

Microfluidics

Microfluidics is a multidisciplinary field in which engineering, physics, chemistry, 

biochemistry, nanotechnology and biotechnology converge. A microfluidic system can 

be defined as a fluid device in which the channels have diameters that range from around 

100 nanometres to several hundred micrometres. The tiny channels lead to interesting and 

sometimes counterintuitive properties, which enable many unconventional applications. 

For example, systems designed to process such small volumes of fluids can achieve 

multiplexing, automation and high-throughput screening. Microfluidics, which emerged 

at the beginning of the 1960s and was first defined by A. C. Eringen184, is expected 

to become a US$30 billion core industry with potential applications in a wide range of 

scientific disciplines, including, but not limited to, healthcare (for example, molecular 

biology, drug discovery, diagnostics and forensics, drug delivery and medical analysis), 

environmental analysis, high-value fluid production, micro- and nanoparticle fabrication, 

mass and energy exchange, multidimensional printing and petrochemicals.
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Figure 1 |. Historical timeline of developments in materials and microfluidics.
Key advances in materials (red) and microfluidics (grey) have aided the interplay between 

the two complementary fields and their synergistic growth. PCR, polymerase chain reaction; 

TAS, total analysis system.
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Figure 2 |. Elastomer-based stretchable microfluidics.
a | Schematic illustrations and optical micrographs of a stretchable antenna. The half-

wave dipole antenna was made of EGaIn (eutectic gallium–indium, a liquid metal alloy) 

embedded in microfluidic channels composed of polydimethylsiloxane (PDMS) and Ecoflex 

(an elastomeric silicone polymer that is softer than PDMS). b | Photographs of a 

microfluidics-based solution for the fabrication of a stretchable radio-frequency electronic 

radiation sensor that can operate in an ordinary office environment. The insets are the 

LED indicators of the sensor, which show no difference in the signal with different 

degrees of stretching. From left to right: non-stretched; strained with 15% elongation along 

the y axis; manually applied strain in both x and y directions; and severe twisting. c | 

Schematic illustrations and images of a soft, stretchable electronic system that integrates 

strain-isolated device components and a free-floating interconnecting network in a thin 
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elastomeric microfluidic enclosure. The inset in the far right is an optical micrograph of the 

device, which contains a pair of epidermal electrodes in a serpentine mesh layout. LED, 

light-emitting diode. Panel a is adapted with permission from REF. 24, Wiley-VCH. Panel 

b is adapted with permission from REF. 25, Royal Society of Chemistry. Panel c is adapted 

with permission from REF. 26, AAAS.
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Figure 3 |. Representative materials for microfluidic devices.
a | A free-standing SU-8-based microfluidic sensor. The inset shows a cross-sectional 

scanning electron microscopy (SEM) image of a microchannel. b | A polytetrafluoroethylene 

(PTFE)-based microfluidic device with two-layer microchannels separated by a thin 

membrane. The inset shows a cross-sectional SEM image of the microchannel. c | 

Fabrication process of a two-layer silk hydrogel microfluidic device using gelatin moulding 

and layer-by-layer stacking methods. The inset shows optical micrographs of the minimal 

microchannel diameters achievable with the silk hydrogel microfluidic device. d | Paper-
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based 3D microfluidic device for multiple bioassays and sequential fluidic manipulation. 

The inset on the right shows a magnified view of the device before liquid injection, and 

that on the bottom shows the device after injection. Panel a is adapted with permission 

from REF. 42, Copernicus Publications. Panel b is adapted with permission from REF. 47, 

National Academy of Sciences. Panel c is adapted with permission from REF. 60, Elsevier. 

Panel d is adapted with permission from REF. 70, Elsevier.
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Figure 4 |. Fabrication of micro- and nanoparticles in microfluidic systems.
a | Microfluidic fabrication of monodispersed microparticles. The two scanning electron 

microscopy (SEM) images show the formation of Janus particles (left) and microcapsule 

particles (right). b | Amorphous nanoparticles prepared using a microfluidic nebulator (the 

example shown is for CaCO3 nanoparticles, although this method can be applied for a 

wide range of materials). c | Synthesis of noble metal nanoparticles (for example, Ag 

nanocubes, Ag truncated octahedra and Au–Ag nanocups) in microfluidic droplet reactors 

with multistep adsorption and reactions. Transmission electron microscope images of the 
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particles are shown on the right. d | In situ synthesis of ZnO nanowires in a microfluidic 

chip; comparison of global synthesis in the entire fluidic channel and local synthesis 

by microheaters in the fluidic channel. SEM images of the nanowires are shown below. 

AA, ascorbic acid; CA, citric acid; PDMS, polydimethylsiloxane. Panel a is adapted with 

permission from REF. 98, Royal Society of Chemistry. Panel b is adapted with permission 

from REF. 117, AAAS. Panel c is adapted with permission from REF. 125, American 

Chemical Society. Panel d is adapted with permission from REF. 127, Royal Society of 

Chemistry.
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Figure 5 |. Crystallization in microfluidic systems.
a | Precipitation of protein crystals in a microfluidic reactor. By changing solvent ratios, 

the degree of mixing, the protein solution and other additives, different conditions can 

be established in each drop. b | Multichamber microfluidic system that enabled up to 

144 different experimental conditions to be established, as indicated in the fluorescence 

images that show the gradient of fluorescein (left). In the right part, different conditions 

were used for investigating the optimal crystallization conditions of lysozymes (Lyz). The 

arrows indicate increasing concentrations of the denoted chemicals, and the coloured squares 

indicate the conditions under which crystals form. Panel a is adapted with permission from 

REFS 136, American Chemical Society. Panel b is adapted with permission from REF. 137, 

American Chemical Society.
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Figure 6 |. Microfluidics-enabled 3D bioprinting.
a | Microfluidic printhead for the extrusion of two viscoelastic materials. b | Printed 

heterogeneous 1D, 2D and 3D polydimethylsiloxane (PDMS) patterns. c | Dual-layer 

microfluidic printhead for the extrusion of two materials with low viscosities. d | Printed 

heterogeneous gelatin methacryloyl (GelMA)–alginate patterns. e | Microfluidic printhead 

containing an active rotating impeller for homogenizing two inflowing materials before 

they are extruded from the printhead to deposit patterns. f | Printed continuous- and discrete-

gradient patterns. Panels a and b are adapted with permission from REF. 168, Wiley-VCH. 
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Panels c and d are adapted with permission from REF. 169, Wiley-VCH. Panels e and f are 

adapted with permission from REF. 170, National Academy of Sciences.
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