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1 Introduction

The discovery of a Higgs boson in 2012 by the ATLAS and CMS experiments [1–3] at the

CERN LHC fulfilled the predicted particle content of the standard model (SM). However,

within the SM as a quantum field theory, the measured Higgs boson mass of around 125 GeV

presents a special challenge as the calculated mass is unstable against corrections from loop

processes when the theory is extended to higher mass scales. In the absence of extreme

fine tuning [4–7] that would precisely cancel the divergent terms, the mass value can run

up to the ultraviolet cutoff of the model at the Planck scale. This instability of the Higgs

boson mass and the entire electroweak scale is known as the gauge hierarchy problem.

One widely studied extension of the SM is supersymmetry (SUSY) [8–10], which posits

a partner for each SM particle differing in spin by one-half unit. For example, squarks q̃

and gluinos g̃ are the SUSY partners of quarks and gluons, respectively. Depending on the

mass hierarchy of these new particles, they could resolve the gauge hierarchy problem by

providing necessary radiative corrections to partly cancel the SM contributions. Further-

more, in R-parity conserving models [11, 12], SUSY particles are produced in pairs, while

the lightest of them is neutral, stable, and weakly interacting. This lightest SUSY particle
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(LSP) provides a suitable candidate for dark matter [12], which is not described in the

SM. The typical experimental signatures of pair-produced SUSY particles with R-parity

conserving decay chains are jets, leptons, and large missing transverse momentum (pmiss
T ).

As gluinos and squarks carry color charge, like their SM partners, they can be pro-

duced via the strong interaction; therefore among SUSY particles they have the highest

production cross sections at hadron colliders for a given mass. Searches for direct decays

of gluinos to quarks and the LSP have excluded m(g̃) . 2 TeV [13–16], depending on the

model. The search described in this paper focuses on gluino decay cascades to Z bosons and

the LSP via the next-to-lightest SUSY particle (NLSP). We consider a picture in which the

NLSP and LSP are respectively the neutralinos χ̃
0
2 and χ̃

0
1, mixed states of SUSY partners

of the neutral Higgs and gauge bosons. Such a situation arises in SUSY scenarios like those

described in ref. [17] that seek to preserve “naturalness,” that is, minimal fine tuning of

the SM to solve the gauge hierarchy problem, by admitting large mass splittings among

the neutralinos (and charginos), leading to experimental signatures with vector bosons and

pmiss
T in the final state. Figure 1 shows our signal process, expressed within the framework

of simplified models [18–21], and referred to as T5ZZ. We further assume a heavy χ̃
0
2, (with

mass below that of the g̃), and a light χ̃
0
1. This gives rise to energetic Z bosons along with

large pmiss
T and additional soft quarks in the final state. In our model calculations we set

the branching fraction for χ̃
0
2 → Zχ̃0

1 to 100%, the χ̃
0
1 mass to 1 GeV, and the difference

in mass between the g̃ and χ̃
0
2 to 50 GeV, though any set of mass parameters with a large

[O(TeV)] mass difference between the χ̃
0
2 and χ̃

0
1 will result in highly energetic Z bosons.

For the dominant Z → qq decay at large momentum, the decay products can be contained

in a single reconstructed jet with a large angular radius (wide-cone jet).

In this paper, we present a search in proton-proton (pp) collisions at
√
s = 13 TeV

for events with two highly Lorentz-boosted, hadronically decaying Z bosons and large

pmiss
T . The analysis is based on the LHC Run 2 data set with an integrated luminosity of

137 fb−1, recorded by the CMS experiment during 2016–2018. The signature for a signal

is a pair of wide-cone jets, each having a reconstructed mass consistent with the Z boson

mass. This selection, in combination with large pmiss
T , greatly suppresses backgrounds from

SM processes.

2 The CMS detector and trigger

A detailed description of the CMS detector and the associated coordinate system and

kinematic variables is given in ref. [22]. The main components of the apparatus are briefly

discussed here. The core of CMS is a cylindrical superconducting solenoid with an inner

diameter of 6 m that provides a 3.8 T axial magnetic field. A silicon pixel and strip tracker,

a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron

calorimeter are placed within the volume enclosed by the solenoid. Gas-ionization detectors

are embedded in the steel flux-return yoke outside the solenoid to identify muons. The

detector is nearly hermetic, permitting accurate measurements of pmiss
T .

The CMS trigger system is described in ref. [23]. For this analysis, signal candidate

events were recorded by requiring pmiss
T at the trigger level to exceed a threshold that varied

– 2 –



J
H
E
P
0
9
(
2
0
2
0
)
1
4
9

p

p

p

p

g̃

g̃

g̃

g̃

q̄
q

q
q̄

q̄
q

q
q̄

eχ0
2 eχ0

2

eχ0
2 eχ0

2

Z

Z

eχ0
2 eχ0

2

eχ0
2 eχ0

2

q̄
q

q
q̄

q̄
q

q
q̄

eχ0
2 eχ0

2

eχ0
2 eχ0

2

Z

Z

eχ0
2 eχ0

2

eχ0
2 eχ0

2

qqqq

χ̃1χ̃1χ̃1χ̃1

χ̃0
1χ̃
0
1χ̃
0
1χ̃
0
1

Figure 1. Signal diagram for the T5ZZ simplified model process. The assumed small mass splitting

between the g̃ and χ̃
0
2 implies a massive χ̃

0
2. We further assume a 100% branching fraction for the

χ̃
0
2 decay to the Z boson and χ̃

0
1, leading to an energetic Z boson and large pmiss

T .

between 100 and 120 GeV, depending on the LHC instantaneous luminosity. The efficiency

of this trigger is measured in data to be greater than 97% for events satisfying the selection

criteria described in section 5. Additional triggers based on an isolated lepton or photon

are used to select control samples for the background predictions.

3 Simulated event samples

The estimation of yields for the most prominent backgrounds is based on data in orthogonal

signal-depleted control regions and is described in section 6. Samples of Monte Carlo (MC)

simulated events are used to test the background estimation, as well as to optimize the

selection criteria. These samples include events with top quark pair production (tt), and

photon, W boson, or Z boson production accompanied by jets, denoted γ+jets, W+jets,

or Z+jets, respectively.

The SM production of tt, γ+jets, W+jets, Z+jets, and quantum chromodynamics

(QCD) multijet events is simulated using the MadGraph5 amc@nlo 2.2.2 [24, 25] gen-

erator for 2016 samples and MadGraph5 amc@nlo 2.4.2 for 2017 and 2018 samples, all

with leading order (LO) precision. The tt events are generated with up to three additional

partons in the matrix element calculations, while the γ+jets, W+jets, and Z+jets events

are generated with up to four additional partons. Single top quark events produced via

the s channel, diboson events originating from WW, ZZ, or ZH production, and events

from ttW, ttZ, and WWZ production, are generated with MadGraph5 amc@nlo 2.2.2

at next-to-leading order (NLO) [26], except that WW events in which both W bosons

decay leptonically are generated using powheg 2.0 [27–31] at NLO. The powheg gen-

erator is also used to describe t-channel production of single top quarks as well as tW

events. Normalization of the simulated background samples is derived from the most ac-

curate cross section calculations available [24, 30–40], which generally correspond to NLO

or next-to-NLO (NNLO) precision.

Samples of simulated signal events are generated at LO using Mad-

Graph5 amc@nlo 2.2.2 (2.4.2) for the 2016 (2017 and 2018) samples, with up to

two additional partons included in the matrix element calculations. The production cross

– 3 –
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sections are normalized to approximate NNLO plus next-to-next-to-leading logarithmic

(NNLL) precision [41–52].

All simulated samples make use of pythia 8.205 (2016) or 8.230 (2017 and 2018) [53]

to describe parton showering and hadronization. The CUETP8M1 [54] tune was used to

simulate both the SM background and signal samples for the 2016 simulation. To generate

the 2017 and 2018 samples, pythia was used, with the CP5 tune [55] for the backgrounds

and the CP2 tune [55] for signals. Simulated samples generated at LO (NLO) with the

CUETP8M1 tune use the nnpdf3.0lo (nnpdf3.0nlo) [56] PDF set, while those generated

with the CP2 or CP5 tune use the NNPDF3.1LO (NNPDF3.1NNLO) [57] PDF set. Here

PDF refers to the parton distribution function. The detector response is modeled with

Geant4 [58]. The simulated events are generated with a distribution of pp interactions

per bunch crossing (“pileup”) that is adjusted to match the corresponding distribution

measured in data.

To improve the description of initial-state radiation (ISR), the MadGraph5 amc@nlo

prediction of the jet multiplicity distribution is compared with data in a control sample

enriched in tt events [13]. A correction factor derived therefrom is subsequently applied

to the simulated tt and signal events. The correction is found to be unnecessary for tt

samples that are generated with the CP5 tune, so it is not applied to those samples.

4 Event reconstruction

Individual particles are reconstructed with the CMS particle-flow (PF) algorithm [59],

which identifies them as photons, charged or neutral hadrons, electrons, or muons. These

objects are characterized kinematically by their transverse momentum pT, pseudorapidity

η, and azimuthal angle φ. Photon and electron candidates are required to satisfy |η| < 2.5,

and muon candidates |η| < 2.4, within the fiducial coverage of the tracking and muon

system, respectively.

The missing transverse momentum vector ~pmiss
T is computed as the negative vector sum

of the pT of all of the PF candidates in an event, and its magnitude is denoted as pmiss
T [60].

The ~pmiss
T is modified to account for corrections to the energy scale of the reconstructed

jets in the event.

The reconstructed vertex with the largest value of summed physics-object p2T is taken

to be the primary pp interaction vertex, where the physics objects are the jets, clustered

using the anti-kT algorithm [61, 62] with the charged particle tracks assigned to the vertex

as inputs, and the associated missing transverse momentum, taken as the negative vector

pT sum of those jets. Charged particle tracks associated with vertices other than the

primary vertex are removed from further consideration.

Jets are defined as clusters of PF candidates formed by the anti-kT algorithm with

a distance parameter of 0.4 or 0.8. Quality criteria [63, 64] are imposed to suppress jets

from spurious sources such as electronics noise in the calorimeters. The jet energies are

corrected for the nonlinear response of the detector [65]. Jets with pT > 30 GeV, |η| < 2.4,

and a distance parameter of 0.4 (AK4) are used as specified in section 5 to calculate some

of the selection variables. For these jets, charged particles that emerge from vertices other
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than the primary one are removed from the list of PF candidates used for the jet clustering.

The expected contribution from neutral particles from pileup is removed using the effective

area technique [64, 66].

The hadronically decaying Z boson candidates are reconstructed as wide-cone jets

with a distance parameter of 0.8 (AK8). These AK8 jets are reclustered from their original

constituents using the “soft drop” method [67] to remove soft, wide-angle radiation that

can adversely impact the mass measurement of the jet. Contributions from pileup in these

jets are removed with the PUPPI technique [68]. The soft drop mass mjet is then used to

identify jets from Z → qq decays. No requirements on their flavor content are imposed.

The identification of b jets (b jet tagging) is performed by applying, to the AK4 jets,

a version of the combined secondary vertex algorithm based on deep neural networks [69]

(DeepCSV). A working point (“medium”) of this algorithm is used that has a tagging

efficiency for b jets of 68%, and a misidentification probability of approximately 1% for

gluon and light-flavor quark jets and 12% for charm quark jets.

As described in section 5, events with leptons or photons are vetoed in the search

sample selection. Electron and muon candidates are identified as described in refs. [70]

and [71], respectively. To suppress jets erroneously identified as leptons or genuine lep-

tons from hadron decays, electron and muon candidates are subjected to an isolation re-

quirement. The isolation criterion is based on a variable I, which is the scalar pT sum

of charged hadron, neutral hadron, and photon PF candidates within a cone of radius

∆R =
√

(∆η)2 + (∆φ)2 around the lepton direction, divided by the lepton pT. The ex-

pected contributions of neutral particles from pileup are subtracted [64, 66]. The radius

of the cone, in radians, is 0.2 for lepton pT < 50 GeV, 10 GeV/pT for 50 ≤ pT ≤ 200 GeV,

and 0.05 for pT > 200 GeV. The decrease in cone size with increasing lepton pT accounts

for the increased collimation of the decay products from the lepton’s parent particle as the

Lorentz boost of the latter increases [72]. The isolation requirement is I < 0.1 (0.2) for

electrons (muons).

To further suppress events with leptons from hadron decays and single-prong hadronic

τ lepton decays, the event selection veto is extended to include isolated charged-particle

tracks not identified as electrons or muons by the criteria of the previous paragraph. For

these candidates the scalar pT sum of all other charged-particle tracks within ∆R = 0.3

around the track direction, divided by the track pT, is required to be less than 0.2 if the

track is identified as a PF electron or muon, and less than 0.1 otherwise. Isolated tracks

are required to satisfy |η| < 2.4.

Photon candidates are identified as described in ref. [73], using the “loose” working

point, and with an isolation requirement based on the individual sums of energy from

charged and neutral hadrons and electromagnetically interacting particles, excluding the

photon candidate itself, within ∆R = 0.3 around the direction of the photon candidate.

Each of the three individual sums, corrected for pileup, is required not to exceed a threshold

that depends on the calorimeter geometry.

– 5 –
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5 Event selection

We select events with large jet activity and pmiss
T , no leptons or photons, and wide-cone

jets from Lorentz-boosted, hadronically decaying Z bosons. Control regions for the deter-

mination of backgrounds are also defined.

The observables used to characterize candidate events are:

• Njet, the number of AK4 jets in the event;

• pmiss
T ;

• HT =
∑

AK4 jets|~pT|;

• ∆φ
j, ~H

miss
T

, the azimuthal angle between the ~pT of the jth AK4 jet and ~Hmiss
T =

−
∑

AK4 jets ~pT;

• mT
i, the transverse mass [74] of a system comprising the ith isolated track and ~pmiss

T ;

• ∆RZ,b , the angular separation between a wide-cone jet and a b-tagged jet.

The following requirements define the event selection:

1. Njet ≥ 2;

2. pmiss
T > 300 GeV;

3. HT > 400 GeV;

4. |∆φ
j, ~H

miss
T
| > 0.5 (0.3) for the first two (up to next two, if Njet > 2) AK4 jets ranked

in descending order of pT;

5. no identified isolated photon, electron, or muon candidate with pT > 10 GeV;

6. no isolated track with mT < 100 GeV and

pT >

{
5 GeV if the track is identified as a PF electron or muon,

10 GeV otherwise.

7. at least two AK8 jets with pT > 200 GeV;

8. mjet of the two highest pT AK8 jets between 40 and 140 GeV;

9. ∆RZ,b > 0.8, for the second-highest pT AK8 jet and any b-tagged jet.

The ∆φ
j, ~H

miss
T

requirements suppress background from QCD multijet events, as well as

those from hadronic Z and W boson decay, for which ~Hmiss
T is usually aligned along a jet

direction. The mT requirement restricts the isolated track veto to situations consistent

with a W boson decay.

The first six requirements define an inclusive “hadronic baseline” selection, and the last

three specify the further selection of events with jet pairs that include pairs of hadronically

– 6 –
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Figure 2. Distributions of pmiss
T for simulated SM backgrounds (stacked histograms), with only the

hadronic baseline selection (left), and after the additional Z candidate selection (right). Expected

signal contributions for two example mass points (dotted lines) are also shown. The last bin includes

the overflow events.

decaying Z boson candidates. The accepted range in mjet is chosen to reject the bulk of

nonresonant SM processes on the low side, and the peak from boosted top quark jets on the

high side, while including sidebands around the Z boson peak to facilitate the determination

of the background. The ∆RZ,b requirement suppresses backgrounds from tt and single top

quark events in which a top quark is reconstructed as a b-tagged jet together with a W

boson reconstructed as an AK8 jet.

Figure 2 shows the simulated SM background components and two example signal

mass points for events selected without and with the three Z boson requirements. The

main sources of SM background are Z+jets, W+jets, and tt, which can yield large pmiss
T

accompanied by AK8 jets formed from random combinations of hadrons. In the case

of Z+jets, large pmiss
T comes from the Z → νν decay. For W+jets and tt, pmiss

T arises

from a leptonically decaying W boson where the charged lepton is undetected. Smaller

background contributions arise from the QCD multijet events in which the measurement

of a jet’s energy suffers a large fluctuation, production of single top quarks, and other SM

processes, such as diboson production and tt pairs accompanied by vector bosons.

An event satisfying the above criteria lies in the search region (SR) if, in addition, both

of the two highest pT AK8 jets have mjet values in the range [70,100] GeV (as discussed

in section 6.1). Relative to the hadronic baseline selection, about 21% of signal events are

retained in the SR, along with 0.5% of background events. The pmiss
T distribution in the SR

is divided into six bins, with lower boundaries at 300, 450, 600, 800, 1000, and 1200 GeV.

6 Background estimation

This section focuses on the estimation of SM backgrounds in each pmiss
T bin. We first

describe the method based on control samples in data, then follow with a description

of the performance of the method in simulation (MC closure), and lastly deal with the

– 7 –
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Figure 3. Definition of the search and control regions in the plane of subleading vs. leading jet mass.

The search region (red central box), with both mjet values lying within the Z signal window, defines

the acceptance for potential signal; the leading-jet mass sideband (dark blue), with subleading jet

within and leading jet outside the signal window, is used to measure the background normalization;

the pmiss
T CR (light blue), with both leading- and subleading-jet mjet values lying outside the signal

window, is used to derive the pmiss
T shape in the search region.

uncertainty in the pmiss
T dependence (shape uncertainty) based on the data observed in the

validation samples.

6.1 Background estimation method

Control regions (CRs) are formed from the events in which one or both of the highest

pT (leading) and second-highest pT (subleading) jets lie in the mjet sideband [40, 70] ∨
[100, 140] GeV. Figure 3 shows the definition of the SR and CRs in the plane of jet masses

of the leading and subleading jets. In addition, validation samples are selected by inverting

the lepton or photon veto requirement.

The first step of the method is to determine the background normalization Bnorm
integrated over all pmiss

T bins above 300 GeV. We fit the mjet distribution for the leading

jet in the leading-jet mass sideband, defined as the sample having the subleading jet mjet

within, and the leading jet mjet outside, the Z signal window. The bulk of the background is

from nonresonant SM contributions, which can be modeled with a smoothly falling shape.

The nominal fit is performed with a linear function, as shown in figure 4.

The uncertainties in Bnorm include a statistical component from the fit, and a system-

atic one due to the choice of the fitting function. To obtain the statistical uncertainty due

to the interpolation of the fit into the SR, pseudo-experiments generated from the back-

ground model are fitted using a linear function with free slope and normalization. The

Gaussian width of the resulting distribution of the yields in the Z signal window, 10.7

events, is taken as the statistical uncertainty in the total background prediction.

To test if the linear function is adequate to represent the mjet distribution, we consider

higher-order polynomials as alternative functions. We check Chebyshev polynomials of up

to the fourth order. The largest variation in the fitted yield with respect to the nominal one,

10.9 events, comes from a fit with a third-order Chebyshev polynomial, and is taken as an

– 8 –
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Figure 4. Leading AK8 jet mjet shape fit in the mass sidebands. The Z candidate selection is

applied and the subleading AK8 jet mjet value is required to lie in the Z signal window. The blue

hatched region represents the ±1 standard deviation uncertainty in the fit to the mass sideband

performed with a linear function, which is indicated by the blue line. The stacked histogram shows

the background from simulation scaled to the data. Expected signal contributions for two example

mass points are also shown.

additional uncertainty attributable to the fit shape. Considering the statistical uncertainty

described above, this results in Bnorm = 325± 15.

To determine the distribution of background events in the pmiss
T bins, we rely on an

underlying assumption that pmiss
T and mjet have minimal correlation. To derive the pmiss

T

shape in the SR, a nonoverlapping CR is used in which both leading and subleading AK8

jets have mjet in the mass sideband. This is referred to as the pmiss
T CR (figure 3). In each

of the six pmiss
T bins, we calculate the background prediction as

Bi = T NCR
i , (6.1)

where NCR
i is the yield in pmiss

T bin i in the pmiss
T CR, and the transfer factor,

T ≡ Bnorm∑
iN

CR
i

= 0.198± 0.009, (6.2)

scales the pmiss
T CR yield to that of the SR. The uncertainty in T includes both statistical

and systematic uncertainties in Bnorm.

6.2 Background closure in simulation

The background estimation method based on control samples in data is tested by applying

the procedure to MC simulation. We perform this closure test in two steps.

The main assumption to verify is the lack of correlation between the AK8 jet mass and

pmiss
T shape. Figure 5 shows the results of a test of this assumption, where the simulated

sample size permits a distribution in relatively fine steps. The plots compare the pmiss
T
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Figure 5. Comparison of the pmiss
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T ) in the two regions, while the

lower panels show the ratio of the number of events in the search region to that in the control

region. This comparison is done for two main background components: Z → νν (left) and tt plus

W+jets (right). In the lower panel the statistical uncertainties in the search and control region

yields are denoted by the shading and vertical bars, respectively, and a fit to a constant is included

to show the average ratio.

shape in the search and control regions, for the two main background processes. In both

cases we see that the pmiss
T shapes are consistent between the two regions.

For the closure test of the background estimation method we calculate the background

prediction in each pmiss
T bin [eq. (6.1)] and compare these predictions with the background

yields taken directly from simulation. The results of this test, shown in figure 6, demon-

strate good agreement within the statistical precision of the test. To account for the

uncertainties in the comparison, we assign the relative difference between the prediction

and direct observation as a nonclosure systematic uncertainty in the pmiss
T shape. This dif-

ference ranges from 1 to 20%, where the variations in the four lower pmiss
T bins are treated as

being anti-correlated with those in the higher pmiss
T bins to give a systematic uncertainty in

the pmiss
T shape that does not affect the overall normalization of the background estimation.

6.3 The pmiss
T shape uncertainty

While the background estimation method is shown to close well in simulation, we addition-

ally verify in data how well the pmiss
T CR models the pmiss

T shape in the Z signal window. In

particular, two validation samples are used to compare the pmiss
T shape obtained from the

pmiss
T CR with the one obtained in the Z signal window, used to define our SR, for the main

background components. A photon validation sample is used as a proxy for the Z+jets

background component, while a single-lepton sample is used to validate the modeling of tt

and W+jets combined.

We select the photon validation sample from events recorded with a single-photon

trigger, replacing the photon veto with the requirement of exactly one photon, defined as
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Figure 6. Results of the closure test in which the background estimation method based on control

samples in data is applied to simulation and compared with the direct yield, in the analysis search

bins. Expected signal contribution for one example mass point is also shown. The lower panel shows

the ratio of the prediction to the direct yield. The gray band shows the statistical uncertainty in

the direct yield, and the error bars on the points represent the total uncertainty in the prediction.

in section 4. The photon pT is used to emulate the pmiss
T from the Z boson when the latter

decays to neutrinos. The lower-pT trigger threshold for the photon compared with the pmiss
T

threshold in the signal trigger allows us to consider the photon validation sample down to

200 GeV in photon pT as a proxy for pmiss
T . To enhance the event count in this sample, we

do not require a threshold on ∆RZ,b since there is a low risk of heavy flavor contamination.

All other event selection requirements are the same as for the SR of the analysis.

For the single-lepton sample, the same pmiss
T trigger is used as for the SR. The same

offline criteria are also applied, with the exception that the pmiss
T requirement is relaxed to

200 GeV to gain a longer lever arm for the pmiss
T shape comparison, and the lepton vetoes

are applied only after selecting exactly one electron or muon.

Figure 7 shows the pmiss
T shape comparison for the photon and single-lepton data. Both

ratios are consistent with being independent of pmiss
T , as expected from the MC closure test,

albeit within the limited statistical precision of the data. To account for possible shape

differences between the search and control regions, we apply a systematic uncertainty in

the pmiss
T shape calculated using the photon and single-lepton samples. The uncertainty

is the difference with respect to a uniform distribution of a fit to the SR/CR distribution

with a linear function having a free slope parameter. This results in uncertainties ranging

from 0–33% in the Z+jets background based on the photon validation sample, and 1–14%

in the combined tt and W+jets background based on the single-lepton validation sample.

Weighting these by the proportions of those components in the total background yields

uncertainties of 2–30%, depending on the pmiss
T bin.
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Figure 7. Comparison of the pmiss
T shape between the Z signal window and pmiss

T control region for

the photon (left) and single-lepton (right) validation samples in data. The upper panels show the

unit-normalized pmiss
T distributions fdata(pmiss

T ) in the two regions, while the lower panels show the

ratio of the number of events in the search region to that in the control region. A fit to a constant is

included in the lower panels to show the average ratio. The horizontal bars on the markers indicate

the widths of the search bins. In the lower panel the statistical uncertainties in the search and

control region yields are denoted by the shading and vertical bars, respectively.

7 Systematic uncertainties

The uncertainties in the SM background prediction are described in section 6, along with

the description of the background estimation method. The uncertainties in the background

normalization include the statistical uncertainty from the mass sideband fit interpolation

as well as the systematic one derived from alternative fit functions. The uncertainties

in the pmiss
T shape include the statistical uncertainties of the pmiss

T CR. The systematic

uncertainties only affect the pmiss
T shape without changing the background normalization.

These are derived from the MC closure test and data validation samples. All of these

systematic uncertainties are summarized in the upper section of table 1.

The sources of uncertainty in the signal efficiency affect the signal normalization, the

signal pmiss
T shape, or both, as indicated in table 1. The uncertainties in the integrated

luminosity are 2.5% [75], 2.3% [76], and 2.5% [77] for 2016, 2017, and 2018, respectively.

The trigger, lepton veto, and isolated-track veto efficiencies are measured in data valida-

tion samples and their statistical uncertainties propagated to the signal yields. The ISR

modeling in the simulation is adjusted to match the efficiencies measured in data events

enriched in dileptonic tt production and decay, and the uncertainty in this correction is

propagated to the signal yields. To evaluate the uncertainty associated with the renormal-

ization (µR) and factorization (µF) scales, each scale is varied independently by a factor of

2.0 and 0.5 [78, 79]. Uncertainties in the simulation of pileup are found to be of the order

of 0.02%; thus no associated uncertainty is applied.

The jet momenta in MC samples are smeared to match the jet energy resolution

(JER) in data. The jet energy corrections (JECs) are varied using pT- and η-dependent
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Source of uncertainty Effect on yields (%) norm. or shape

Uncertainties in the background predictions

Fit, normalization 3.3 norm.

Fit, shape 3.4 norm.

mjet CR statistics 3–100 shape

MC closure 2–13 shape

Data validation 2–30 shape

Uncertainties in the signal yields

Integrated luminosity 2.3–2.5 norm.

Trigger efficiency 2.0 both

Isolated lepton and track vetoes 2.0 norm.

Jet quality requirements 1.0 norm.

ISR modeling 1–2 both

µR and µF scales 0.2–0.5 both

JEC 2–4 both

JER 5–6 both

MC statistics 1–2 both

mjet resolution 1–3 norm.

Table 1. Summary of systematic uncertainties, where the ranges refer to different pmiss
T bins. In

the last column we distinguish uncertainties that affect the normalizations (”norm.”), the shapes

of distributions, or both.

uncertainties. Both effects are propagated to the jet-dependent variables, including pmiss
T ,

HT, and ∆φ
j, ~H

miss
T

, and are varied within the uncertainty of the corrections to derive a

systematic uncertainty in the signal yields. The efficiency of the jet quality requirements

used to suppress events with misreconstructed jets is found to differ by 1% between data and

simulation, and this is applied as a systematic uncertainty. The difference in the resolution

of mjet between data and simulation is applied as a smearing factor to the MC events,

and the statistical uncertainty in the size of the correction is included as a systematic

uncertainty in the corresponding selection efficiency. Lastly, the statistical precision due

to the limited event count in the simulated samples is accounted for as an uncertainty.

The systematic uncertainties associated with the signal yields are evaluated assuming

that the contributions from the three years of data taking are fully correlated. The total

systematic uncertainties in the signal yields range from 0.2 to 6%.

8 Results

The background predictions and observed yields for each pmiss
T bin are shown in figure 8

and table 2. The table also gives the inputs to the prediction calculation, eq. (6.1). The

observations are found to be consistent with the SM predictions within uncertainties, and

no evidence for SUSY is observed. We calculate upper limits on the gluino pair-production
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Figure 8. Observed data and background prediction as functions of pmiss
T . The horizontal bar

associated with each data point represents the width of the corresponding bin. The red hatched

region denotes the expected statistical and systematic uncertainties added in quadrature. Expected

signal contribution for one example mass point is also shown.

cross section using a maximum-likelihood fit in which the free parameters are the signal

strength µ and the nuisance parameters associated with the systematic uncertainties in

the background and signal model. The uncertainty in the normalization of the background

is represented with a lognormal function correlated across all pmiss
T bins, while the pmiss

T

CR statistical uncertainties are assigned as uncorrelated. The MC closure and data-MC

agreement uncertainties are assigned as correlated across pmiss
T bins.

We evaluate 95% confidence level (CL) upper limits based on the asymptotic form

of a likelihood ratio test statistic [80], in conjunction with the CLs criterion described

in refs. [81–83]. The test statistic is q(µ) = −2 ln(Lµ/Lmax), where Lµ is the maximum

likelihood for fixed µ, and Lmax is the same determined by allowing all parameters, including

µ, to vary.

Expected and observed 95% CL upper limits, and the predicted gluino pair-production

cross sections, are shown in figure 9, taking m(χ̃0
1) = 1 GeV and m(g̃)−m(χ̃0

2) = 50 GeV.

The observed (expected) gluino mass limits reach as high as 1920 (2060) GeV. The observed

limit is 1.4 standard deviations weaker than the expected one due to the mild excesses

observed in the two highest pmiss
T bins. The sensitivity of the search is independent of

m(χ̃0
1) values that are small compared with m(χ̃0

2), and of m(χ̃0
2) values large enough to

ensure Lorentz-boosted Z boson daughters. A gradual loss of signal efficiency occurs with

increasing ∆m(g̃ , χ̃0
2) as quarks from the gluino decay that form AK8 jets with pT above

the 200 GeV threshold displace Z jets as leading or subleading in pT.
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pmiss
T bin pmiss

T CR Transfer Background Observed Exp. signal

( GeV) yield NCR factor T prediction B yield m(g̃ ) = 1700 GeV

(events) (events) (events) (events)

300–450 1191

0.198± 0.009

236± 7± 16 237 3.5± 0.1

450–600 320 63.3± 3.6± 3.3 67 4.3± 0.1

600–800 112 22.2± 2.0± 1.9 20 6.6± 0.1

800–1000 16 3.2± 0.8± 0.5 3 7.2± 0.1

1000–1200 2 0.40± 0.29± 0.11 3 7.2± 0.1

>1200 1 0.20± 0.20± 0.06 1 11.6± 0.1

Table 2. Number of events in the pmiss
T CR, transfer factor, background prediction, and observed

yield in each of the six pmiss
T bins. Where two uncertainties are quoted, the first is statistical and the

second systematic. The systematic uncertainties in the background prediction include the shape

uncertainties in addition to the uncertainty in T . Also listed in the last column is the number of

expected signal events and corresponding statistical uncertainties for one example mass point.
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Figure 9. The 95% CL upper limit on the production cross section for the T5ZZ signal model as a

function of the gluino mass. The solid black curve shows the observed exclusion limit. The dashed

black curve presents the expected limit while the green and yellow bands represent the ±1 and ±2

standard deviation uncertainty ranges. The approximate-NNLO+NNLL cross sections [41–45] are

shown in the solid blue curve while the dashed blue curves show their theoretical uncertainties [84].

The T5ZZ model assumes a 100% branching fraction for the χ̃
0
2 to decay to the Z boson and χ̃

0
1.

9 Summary

Results are presented of a search for events with two hadronically decaying, highly energetic

Z bosons and large transverse momentum imbalance, in proton-proton collisions at
√
s =

13 TeV. The sample corresponds to an integrated luminosity of 137 fb−1. The signature

for a Z boson candidate is a wide-cone jet having a measured mass compatible with the

Z boson mass. Yields from standard model background processes, which are small for

events with the largest transverse momentum imbalance, are estimated from the data in
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jet mass sidebands. No evidence for physics beyond the standard model is observed. The

reach of the search is interpreted in a simplified supersymmetric model of gluino pair

production in which each gluino decays to a low-momentum quark pair and the next-to-

lightest supersymmetric particle (NLSP), and the latter decays to a Z boson and the lightest

supersymmetric particle (LSP). With the further assumption of a large mass splitting

between the NLSP and LSP, the data exclude gluino masses below 1920 GeV at 95%

confidence level. This is the first search for beyond-standard-model production of pairs of

boosted Z bosons plus large missing transverse momentum.
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de Physique Nucléaire de Lyon, Villeurbanne, France

E. Asilar, S. Beauceron, C. Bernet, G. Boudoul, C. Camen, A. Carle, N. Chanon, D. Con-

tardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, Sa. Jain,

I.B. Laktineh, H. Lattaud, A. Lesauvage, M. Lethuillier, L. Mirabito, L. Torterotot,

G. Touquet, M. Vander Donckt, S. Viret

Georgian Technical University, Tbilisi, Georgia

A. Khvedelidze11, Z. Tsamalaidze11

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

L. Feld, K. Klein, M. Lipinski, D. Meuser, A. Pauls, M. Preuten, M.P. Rauch, J. Schulz,

M. Teroerde

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

D. Eliseev, M. Erdmann, P. Fackeldey, B. Fischer, S. Ghosh, T. Hebbeker, K. Hoepfner,

H. Keller, L. Mastrolorenzo, M. Merschmeyer, A. Meyer, P. Millet, G. Mocellin, S. Mondal,

S. Mukherjee, D. Noll, A. Novak, T. Pook, A. Pozdnyakov, T. Quast, M. Radziej, Y. Rath,

H. Reithler, J. Roemer, A. Schmidt, S.C. Schuler, A. Sharma, S. Wiedenbeck, S. Zaleski

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

C. Dziwok, G. Flügge, W. Haj Ahmad17, O. Hlushchenko, T. Kress, A. Nowack, C. Pistone,

O. Pooth, D. Roy, H. Sert, A. Stahl18, T. Ziemons

Deutsches Elektronen-Synchrotron, Hamburg, Germany

H. Aarup Petersen, M. Aldaya Martin, P. Asmuss, I. Babounikau, S. Baxter, O. Behnke,

A. Bermúdez Mart́ınez, A.A. Bin Anuar, K. Borras19, V. Botta, D. Brunner, A. Campbell,

A. Cardini, P. Connor, S. Consuegra Rodŕıguez, V. Danilov, A. De Wit, M.M. De-
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INFN Sezione di Pisaa, Università di Pisab, Scuola Normale Superiore di Pisac,

Pisa, Italy

K. Androsova, P. Azzurria, G. Bagliesia, V. Bertacchia,c, L. Bianchinia, T. Boccalia,

R. Castaldia, M.A. Cioccia,b, R. Dell’Orsoa, M.R. Di Domenicoa,b, S. Donatoa,

L. Gianninia,c, A. Giassia, M.T. Grippoa, F. Ligabuea,c, E. Mancaa,c, G. Mandorlia,c,

A. Messineoa,b, F. Pallaa, G. Ramirez-Sancheza,c, A. Rizzia,b, G. Rolandia,c,

S. Roy Chowdhurya,c, A. Scribanoa, N. Shafieia,b, P. Spagnoloa, R. Tenchinia, G. Tonellia,b,

N. Turinia, A. Venturia, P.G. Verdinia

INFN Sezione di Romaa, Sapienza Università di Romab, Rome, Italy
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