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Abstract

Purpose—The phenotypic manifestations of cerebral cavernous malformation (CCM) disease 

caused by rare PDCD10 mutations have not been systematically examined, and a mechanistic link 

to Rho kinase (ROCK) mediated hyperpermeability, a potential therapeutic target, has not been 

established.
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Methods—We analyze PDCD10-siRNA treated endothelial cells for stress fibers, ROCK activity 

and permeability. ROCK activity is assessed in CCM lesions. Brain permeability and CCM lesion 

burden is quantified, and clinical manifestations are assessed in prospectively enrolled subjects 

with PDCD10 mutations.

Results—We determine that PDCD10 protein suppresses endothelial stress fibers, ROCK 

activity and permeability in vitro. Pdcd10 heterozygous mice have greater lesion burden than 

other Ccm genotypes. We demonstrate robust ROCK activity in murine and human CCM 

vasculature, and increased brain vascular permeability in humans with PDCD10 mutation. Clinical 

phenotype is exceptionally aggressive compared to the more common KRIT1 and CCM2 familial 

and sporadic CCM, with greater lesion burden and more frequent hemorrhages earlier in life. We 

first report other phenotypic features including scoliosis, cognitive disability and skin lesions, 

unrelated to lesion burden or bleeding.

Conclusion—These findings define a unique CCM disease with exceptional aggressiveness, and 

they inform preclinical therapeutic testing, clinical counseling and the design of trials.
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INTRODUCTION

Cerebral cavernous malformations (CCM) are clusters of grossly dilated brittle capillaries, 

predisposing patients to a lifetime risk of hemorrhagic stroke, epilepsy and other sequelae1. 

Familial forms account for about a third of cases, involving autosomal dominant inheritance 

at one of three gene loci2. No current treatment exists for CCM, except highly invasive 

surgical procedures for resecting symptomatic lesions. Despite promising 

pharmacotherapeutic targets3-5, progress to clinical trials has been hindered by the relatively 

benign manifestations of CCM disease in general, a low rate of new lesion development, and 

the unpredictability of serious clinical events6-8.

Few studies have examined any special features of the rarest cases with programmed cell 

death 10 (PDCD10) mutation (also known as the CCM3 locus), constituting <15 % of 

probands genotyped by sequential mutation screening, and <2% of CCM cases at large. Our 

group and others have suggested different disease aggressiveness with various CCM 

genotypes9-11, and bleeding at young age and meningiomas were recently associated with 

PDCD10 cases12. But there has been no systematic assessment of lesion burden, 

hemorrhage risks per lesion and per patient, nor other comprehensive phenotypic survey in 

probands with this mutation. The potential link of Rho kinase (ROCK) activity to the loss of 

PDCD10 protein had been suggested previously13, 14, but it has not been linked to vascular 

hyperpermeability as with other CCM genotypes15. ROCK activity has not been previously 

examined in vascular lesions from these patients, nor their brain permeability in vivo. And 

other reports have suggested that PDCD10 mutations might cause CCM via distinct Rho 

independent mechanisms16-20.
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Herein we confirm that PDCD10 loss is associated with increased ROCK activity, stress 

fiber induction and endothelial permeability in vitro, rescued by ROCK inhibition. And we 

demonstrate ROCK activity in CCM vasculature in mouse and humans, defining a 

mechanistic link and a potential therapeutic target. We show that Pdcd10/PDCD10 

mutations result in significantly greater lesion burden in mouse and humans than other CCM 

disease, more severe clinical manifestations, and document several novel clinical 

associations. We first report that the brain of PDCD10 patients manifests vascular 

hyperpermeability, confirming the expected impact of ROCK activity in vivo. The 

exceptionally high rates of lesion formation and symptomatic hemorrhage motivate novel 

hypotheses for mechanistic studies, and provide an opportunity to focus preclinical 

optimization and early therapeutic trials on this small but seriously affected subgroup of 

CCM cases.

MATERIALS AND METHODS

Details for human subjects, cell culture, the Pdcd10+/−Trp53−/− heterozygous murine 

model, genetic testing in subjects, transfection, immunofluorescence, western blotting, 

RhoA activation assay, permeability assay in vitro, sample preparation and histology, 

immunohistochemistry, lesion burden and in vivo brain permeability in humans, lesion 

burden and clinical features, and statistical methods and control comparisons are provided in 

Supplementary Materials and Methods online. Methods have been described previously for 

assessment of endothelial barrier function in vitro15, preparation of murine brain sections3 

and ROCK activity assays3, 15.

RESULTS

PDCD10 inhibits ROCK and maintains endothelial barrier function

Knockdown efficacy was approximately 80% reduction in PDCD10 message in human 

umbilical vein endothelial cells (HUVECs) transfected with PDCD10 siRNA (Figure 1A). 

Control and PDCD10 si-RNA-treated HUVECs were stained for f-actin to show the extent 

of stress fiber content (Figure 1B). Stress fiber content was increased with PDCD10 

depletion. This increase was reversed by the ROCK inhibitor, H-1152. These effects were 

confirmed in human brain microvascular cells (hbmvEC), when KRIT1, CCM2 or PDCD10 

si-RNA was used (Supplementary Figure S1 online). A consequence of ROCK activation is 

phosphorylation of myosin light chain (MLC). To monitor ROCK activity, control and 

PDCD10 si-RNA-treated HUVECs were stained for phosphorylated MLC (pMLC) after 

Western blotting (Figure 1C). PDCD10 depletion increased ROCK activity, which was 

suppressed by H-1152. These effects were confirmed in hbmvEC, while total MLC levels 

were not affected by PDCD10 depletion or H-1152 (Supplementary Figure S2 online). Rho-

GTP activity was increased after KRIT1, CCM2 or PDCD10 knockdown (Supplementary 

Figure S3 online). Stability of endothelial cell junctions was measured by permeability of 

control and PDCD10 si-RNA-treated HUVEC monolayers (Figure 1D). Upon PDCD10 

depletion the monolayers became more permeable. This increased leakage was reversed by 

H-1152, indicating rescue of the hyperpermeable endothelial phenotype by ROCK 

inhibition, despite PDCD10 loss.
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Pdcd10 heterozygous mouse models have more numerous and larger CCM lesions

Total lesion burden per mouse was significantly greater (P<0.001) when comparing 15 

Pdcd10+/− sensitized animals in the Trp53−/− background, to 53 mice with other 

heterozygous CCM genotypes (Krit1+/− or Ccm2+/−) in the same backgrounds 

(Supplementary Table S1 online). The sensitized Pdcd10+/−Trp53−/− model had over 

sevenfold more prevalent CCM lesions, than similarly sensitized models of 

Krit1+/−Trp53−/− or Ccm2+/−Trp53−/− genotypes, and also a greater burden of mature stage 

2 lesions.

Even non-sensitized Pdcd10+/− mice (without Trp53 loss) manifested typical CCM lesions 

(mean 1.6 lesions/mouse), while no such lesions were documented in non-sensitized 

heterozygotes of other CCM genotypes (P<0.001). The mean area for the stage 2 lesions 

was larger in the Pdcd10+/−Trp53−/− model (0.94 mm2 per lesion) than in other sensitized 

genotypes (0.34 mm2/lesion) (P<0.01). From these mouse models, it is clear that 

heterozygous loss of Pdcd10, with or without genetic sensitization, leads to a more severe 

and penetrant CCM phenotype than loss of either Krit1 or Ccm2.

Cerebral endothelial cell ROCK activity is present in Pdcd10 heterozygous mice

ROCK activity was present in CCM lesions and in background capillaries in both sensitized 

and non-sensitized Pdcd10 models as assessed by staining of pMLC and phosphorylated 

myosin binding substrate (pMBS) (Supplementary Figure S4 online), whereas no such 

activity is seen in capillaries of wild type control mice21. The prevalence of pMLC 

immunopositive caverns was the same in CCM lesions regardless of sensitized or non-

sensitized background (95.4% of 1111 caverns counted in 79 lesions present in five 

Pdcd10+/−Trp53−/− mice versus 96.5% of 142 caverns counted in 23 lesions in eleven non-

sensitized Pdcd10+/− mice), indicating that ROCK activity in CCM lesions is related to the 

Pdcd10 mutations and not the background sensitizer. These results complement our in vitro 

experiments by demonstrating the impact of Pdcd10 mutations on ROCK activity in vivo.

Cerebral endothelial ROCK activity in human CCM lesions

We demonstrated ROCK activity in human PDCD10 CCM lesions, as in murine lesions. 

Human PDCD10 CCM lesions had twice as many caverns with ROCK activity than human 

KRIT1, CCM2 and sporadic CCM lesions (P<0.05) (Figure 2).

Spectrum of mutations in PDCD10 in humans, prevalence of spontaneous mutations

The allelic series of PDCD10 mutations is catalogued in Table 1. All mutations are 

predicted to lead to a loss of function allele. In 12 of 13 probands, mutations included 

nonsense and splice site altering mutations. Proband number 12 carried a missense mutation, 

c.131T>C; p.Leu44Pro. This helix-breaking mutation is predicted to result in loss of 

function by disrupting helix αC of the PDCD10 protein, thereby inhibiting both PDCD10 

homo-dimerization and binding to the GCKIII kinases22. Sixteen of the 18 patients 

underwent parental screening for their index PDCD10 mutation. Seven of the 16 cases with 

parental screening (44%) harbored a spontaneous, de novo mutation not inherited from 

either parent.
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Early onset hemorrhage and high risk of recurrent bleeds in humans

The mean age of first clinical symptom was 12.6 years (range 0.25-52). Symptomatic CCM 

bleed was the most common presenting event, affecting ten of 18 subjects (56%), who 

suffered 37 overt hemorrhages. Estimated incidence of hemorrhage was 7.9% (CI 5.6 - 11) 

per patient per year based on exposure risk since birth, and 20% (CI 14 - 28) per patient per 

year based on risk since first symptom onset. The risk of recurrent bleed after a first bleed 

was 24% per patient per year (CI 16 - 35). There were significant associations between the 

annual bleed rate and a younger age at first symptom onset, age at first bleed and a younger 

age at diagnosis (P<0.001, respectively), but no significant difference between sexes. Life 

tables of hemorrhage risk from birth, from first symptom, and from first bleed are presented 

in Figure 3A and 3B.

The first overt hemorrhage occurred most often in the first decade of life (mean age 5.9, 

range 0.33-12). This is significantly earlier than the age at first bleed in KRIT1 and CCM 2 

familial cases evaluated in our clinic (mean age 30, range 1-52, P<0.05), and in the clinical 

dataset for the Angioma Alliance DNA/Tissue Bank (mean age 32, range 3-55, P<0.001) 

(Figure 3C and Supplementary Figure S5 online).

Exceptional lesion burden in humans as in mouse, with low bleeding rate per lesion

Lesion burden on susceptibility weighted imaging (SWI) was exceptionally high, with 33% 

of PDCD10 cases harboring >100 lesions and 78% harboring > 20 lesions. The mean 

number of lesions per patient on T2-weighted magnetic resonance imaging (MRI) scan was 

31.33 (CI 20.64 to 47.57) in PDCD10 cases, significantly greater than the mean lesion count 

of 5.25 (CI 2.38 to 11.59) in familial KRIT1 and CCM2 cases (P<0.001). When adjusted for 

age, the SWI lesion burden was also significantly greater in the PDCD10 cohort than in 

control familial cases with KRIT1 or CCM2 mutations (2.03 SWI lesions/year of life in 

PDCD10 versus 1.08 in KRIT1 and CCM2 cases, P<0.01). PDCD10 patients form 2.36 new 

lesions on T2 per year of follow up compared to 0.30 new lesions per year of follow up in 

KRIT1 cases (P=0.002). Among nine cases that underwent 19 prospective repeated MRI 

scans with comparable technique, there were 2.7 (CI 1.8-3.9) new SWI lesions per patient 

per year of follow up. An MRI scan from one such case with exceptionally high SWI lesion 

burden is shown in Figure 3D.

Bleeding rate per lesion per year after first symptom onset was 0.3 % (CI 0.2-0.4), similar to 

that previously reported in other CCM genotypes6-8, 23-25. The rebleeding rate per lesion 

after a first bleed from any lesion was only slightly higher at 0.4 % (CI 0.23-0.52). This 

suggests that the high bleeding rate in PDCD10 subjects is due to the exceptional lesion 

burden, rather than any particularly higher hemorrhagic propensity of individual CCM 

lesions. CCM lesions in SWI scans formed at a rate of 2.03 lesions (CI 1.89 - 2.16) per 

patient per year of life.

Increased brain permeability in humans

Using dynamic contrast enhanced quantitative perfusion (Supplementary Figure S6 online), 

patients with PDCD10 mutations exhibited increased permeability in white matter far from 

the lesions compared to sporadic CCM cases without germline mutations (P<0.05). This 
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finding was also observed in other familial cases (unpublished data). Lesional permeability 

in PDCD10 cases was found to be higher than in KRIT1 cases. This confirms a functional 

impact of ROCK activity associated with PDCD10 mutations in vivo.

Other clinical features of PDCD10 mutation

Figure 4 illustrates each symptomatic bleed noted during the lifespan of each subject, groups 

the cases by their respective proband, and presents relevant information about each subject’s 

lesion burden and clinical associations.

Skin lesions were noted in five cases (28%). Two patients had café-au-lait lesions, one had a 

scalp hemangioma, and two patients had cutaneous cavernous malformations (both 

confirmed by biopsy). Scoliosis was documented in seven cases (39%). Three of these 

patients had spinal fusion due to severe scoliosis. Of those seven cases, two underwent 

spinal MRI scans, and one was noted to harbor a spinal cord CCM lesion. The presence of 

scoliosis was significantly associated with the rate of recurrent bleed per year after a first 

documented hemorrhage (P=0.001), and with the rate of bleed per lesion per year after a 

first bleed (P=0.001). There was no association between the presence of skin lesions or 

scoliosis and lesion burden, cumulative bleeds per case, the annual bleeding rate, the age at 

onset of first symptoms, nor the age at first bleed.

A brain tumor was found in five cases (28%). Based on MRI features, this had the dural-

based appearance of meningioma in two subjects, and the intra-canalicular nodular 

appearance of acoustic neuroma in two subjects. An additional subject had a biopsy-proven 

cerebellar astrocytoma. The presence of brain tumor was significantly associated with the 

rate of recurrent bleed per year after a first documented hemorrhage (P<0.001), and with the 

rate of bleed per lesion per year after a first bleed (P<0.001). However, there was no 

association of tumor with lesion burden, cumulative bleeds per case, the annual bleeding 

rate, the age at onset of first symptoms, nor the age at first bleed. After Bonferroni 

correction, scoliosis and brain tumor association with bleeds per year after a first bleed, and 

with bleeds per lesion per year after the first bleed were all significant at P<0.01.

Cognitive disability was present in 11 cases (61%) including a learning disorder most 

commonly noted in eight pediatric cases. Surprisingly, we documented no association 

between the presence of cognitive disability and lesion burden, cumulative bleeds per case, 

the annual bleeding rate, the age at onset of first symptoms, nor the age at first bleed. Lesion 

burden may not necessarily result from increased loss of heterozygosity (LOH) for the 

PDCD10 gene. PDCD10 protein may act through a different mechanism than KRIT1/CCM2 

proteins16-20.

DISCUSSION

Two critical questions were answered in this study, establishing that PDCD10 mutations 

result in vascular permeability mediated by ROCK activity, and a particularly severe clinical 

phenotype with previously unappreciated features. Other mechanistic questions remain 

unanswered, with current results generating a number of novel hypotheses.
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It was shown in recent years that mutations in CCM genes KRIT1 and CCM2 result in stress 

fiber expression and endothelial barrier leak, mediated by ROCK activation15, 26. In fact, 

ROCK3 or broader Rho5 inhibition have been advocated as potential therapeutic strategies. 

Although there is no in vivo confirmation that RhoA is associated with disease 

manifestations, our data suggest ROCK may be involved in PDCD10 disease. But it has 

been suggested that PDCD10 mutations may cause CCM disease via a different 

mechanism16-20. Vascular permeability and ROCK activity had not been systematically 

explored as a result of PDCD10 loss. Brain permeability by MRI with ROCK activity is 

presently being investigated in our laboratory in humans with familial CCM. We now 

confirm the expression of stress fibers, endothelial hyperpermeability, and increased ROCK 

activity with loss of PDCD10, as we had shown previously with the more common KRIT1 

gene 3, 15. We also demonstrate phenotype rescue in vitro with ROCK inhibition, despite 

PDCD10 loss, consistent with a report by Borikova et al.14.

We add other pieces of critical information, including the demonstration of increased ROCK 

activity in normal background vessels and in CCM lesions in man and mouse in sensitized 

background. Mice heterozygous for CCM genes have been shown to manifest 

hyperpermeability in several vascular beds, including the brain of murine models 15, 26. For 

the first time, we document increased brain permeability in the white matter of humans with 

heterozygous PDCD10 mutations.

Interesting information was gleaned by comparing lesion burden in Pdcd10 heterozygous 

mice and our previously reported heterozygous Krit1 or Ccm2 murine models recapitulating 

the human disease. We had previously shown no detectable CCM lesions in Krit1 or Ccm2 

heterozygous mice, except when sensitized with the loss of tumor suppression (Trp53) or 

DNA point mutation repair (Msh2) genes21, 29, consistent with enhanced lesion genesis as a 

result of Knudsonian second-hit somatic mutations30, 31. In contrast, Pdcd10 heterozygous 

mice manifest typical CCM lesions without such sensitization, suggesting a much more 

penetrant phenotype. Indeed, comparably sensitized heterozygous Pdcd10 models manifest a 

tenfold greater lesion burden that other CCM genotypes.

Other studies had indicated bleeding earlier in life with this genotype9, 11, 12. We now 

provide a systematic correlation with lesion burden, the rate of lesion formation, and 

hemorrhagic risk. These discoveries would not have been possible, without the concerted 

efforts of Angioma Alliance at facilitated referral of every known case of PDCD10 mutation 

in the United States, to a single specialized clinic performing systematic genotyping, 

phenotypic screening, advanced imaging and biomarker studies. This represents a model of 

studying rare diseases, although we acknowledge potential bias despite best currently 

available controls. As with mice, we show that patients affected with PDCD10 mutations 

have an exceptionally greater lesion burden, and more frequent bleeding episodes than other 

CCM genotypes. They form new small SWI lesions at about twice the rate per year of life, 

and more clinically relevant T2 lesions on MRI at more than six-fold. Remarkably, each 

CCM lesion is associated with a very low risk of hemorrhage per year, in the 0.3% range, as 

was reported with other genotypes6, 7, 23-25. Hence the bleeding tendency in the PDCD10 

genotype appears to result from a much greater number of lesions, rather than any special 

lesional vulnerability to hemorrhage. This favors therapeutic targeting of lesion burden, or 
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the prevention of lesion development early in life. Patients who have had a first documented 

symptomatic CCM hemorrhage are often in the first decade of life, and are predisposed to 

recurrent bleeds at a rate greater than 20% per year, higher than any reported with other 

CCM genotypes.

We document a high frequency of spontaneous mutation in this disease, reflecting in part the 

very severe phenotype (disability at young age preventing procreation), and consistent with 

the previously reported less numerous affected relatives as compared to other familial CCM 

cases 2, 11, 32. Two mutations, c.474+5G>A and c.474+1G>A were present respectively in 

three and two unrelated families. A potential founder effect with these mutations will need 

to be examined.

The high rates of CCM lesion formation, assuming each lesion represents a separate somatic 

mutation event, implies that the PDCD10 locus may be prone to deleterious mutations, 

possibly representing a mutation hotspot. Many of the second-hit somatic mutations are 

likely due to LOH generated by mitotic recombination. The location of the three CCM genes 

on their respective chromosomes in both human and mouse supports a higher frequency of 

mitotic recombination for the CCM3/Ccm3 genes. For the human, the KRIT1/CCM2 gene is 

located on the q arm approximately 32 Mb from the centromere of chromosome 7, the 

CCM2 gene is located approximately 15 Mb from the same centromere on the p arm of 

chromosome 7, whereas the PDCD10/CCM3 gene is located on the q arm approximately 76 

Mb from the centromere of chromosome 3 (GRCh38 assembly). In the mouse, the Krit1/

Ccm1 gene is located approximately 3.8 Mb from the telocentric centromere on 

chromosome 5, the Ccm2 gene is located approximately 6.6 Mb from the telocentric 

centromere on chromosome 11, whereas the Pdcd10/Ccm3 gene is located approximately 75 

Mb from the telocentric centromere on chromosome 3 (GRCm38 assembly). The larger 

distance from their respective centromeres to the CCM3/Ccm3 gene in both species provides 

the genetic template for an increased opportunity for mitotic recombination, leading to LOH 

and the initiation of CCM lesion development. Further study of the molecular genetic cause 

of this phenomenon is needed, potentially explaining the exceptional disease aggressiveness. 

There was substantial variability in lesion burden, bleeding and associated phenotypic 

features among subjects, among families and even within respective probands. Factors 

impacting disease aggressiveness, including potential genetic and epigenetic modifiers merit 

further investigation.

It may be questioned whether the each CCM lesion in these patients is the result of a 

separate and unique somatic mutation. The number of cell divisions and spontaneous 

mutations necessary during each replication cycle to generate the abundance of lesions many 

not be possible during the short timeframe of lesion genesis in many of these patients’ 

lifespan. While somatic biallelic loss of PDCD10 has been shown in human lesions from 

familial cases with germline PDCD10 heterozygocity31, this may not be a requirement for 

the genesis of every lesion, particularly in the setting of this highly prolific genotype. This 

will require further investigation, including the sequencing of multiple lesion samples from 

the same patient or mouse. It is also possible that PDCD10 may act as a tumor suppressor, 

inherently sensitizing patients to somatic mutations, and this could also explain the 
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association of tumors with this CCM genotype (see below). This mechanism will require 

further investigation.

Other phenotypic features are intriguing. An association with skin lesions had been reported 

primarily with KRIT1 cases33. We now report it with PDCD10 cases, although the lesions 

are different (more café-au-lait lesions, for example, rather than keratotic angiomas). 

Associated meningiomas have also been reported12, but we herein document other brain 

tumors as well. Finally, scoliosis and cognitive impairment are first reported here, in 

association with this unique cohort. Scoliosis may or may not be due to associated spinal 

lesions, it was not associated with myelopathy, as would be expected with spinal CCMs, and 

one of two cases with severe scoliosis who underwent spinal MRI had no evidence of spinal 

CCM lesions. The frequency of disabling cognitive impairment is equally sobering. These 

novel phenotypic features require further investigation, yet we note no specific relationship 

of scoliosis or cognitive disability with lesion burden or hemorrhage. This motivates 

hypotheses about the impact of PDCD10 loss on skeletal integrity and neurocognitive 

development or function. These effects might be related to other postulated fundamental 

roles of PDCD10 in cell orientation and Golgi assembly17, DLL4-Notch signaling18, and 

more recently neuronal migration13. We herein note that cognitive impairment in senescence 

has also been correlated with vascular permeability and ROCK activity 34.

In contrast to most CCM patients with other genotypes, who often live normal lives with 

infrequent and rarely disabling clinical events, patients with PDCD10 mutations are 

frequently devastated by lesion burden and repeated hemorrhages, and these most often start 

in childhood. Therapeutic strategies will need to target children with this disease, perhaps 

upon evidence of a first bleed. At the same time, the high lesion burden in murine models 

provides an opportunity to detect and optimize therapeutic benefit in the preclinical setting. 

And fewer subjects would be needed to demonstrate a treatment effect in clinical trials in 

view of the high rate of lesion genesis in man, and the frequency of clinically significant 

hemorrhages (particularly rebleeds). ROCK inhibition therapy is particularly promising, and 

should be explored along with broader Rho inhibition, documented in pleiotropic effects of 

statins35. There has been increasing experience with statin use in childhood, making this 

therapeutic venue quite realistic, if a therapeutic effect and safety of statins are demonstrated 

in animal models. Brain permeability and other ROCK activity biomarkers36 may help with 

detecting treatment effect, and with calibrating therapy. The association of brain 

permeability by MRI with ROCK activity is being investigated in human with familial 

CCMs. Other therapeutic venues with immune modulation37, 38 and other signaling 

targets4, 20, 39, 40 may realistically be screened given the penetrance of disease in murine 

models recapitulating the human disease. And these may be carefully optimized for clinical 

trials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. PDCD10 suppresses stress fibers, ROCK activity and permeability in vitro
HUVECs were treated with control or PDCD10 siRNA. (A) PDCD10 gene expression is 

reduced by 80% by PDCD10 siRNA in HUVECs as compared to those treated with control 

siRNA. Data bars are means ± SE. (B) Increased f-actin stress fibers by PDCD10 depletion 

is blunted by the ROCK inhibitor H-1152. Bar, 100 μm. (C) Increased pMLC activity by 

PDCD10 depletion is reversed by H-1152. (D) PDCD10 depletion during 4 and 24 hours 

increases monolayer permeability in transwell assays. H-1152 treatment reverses this 

increase, implying that PDCD10 inhibits ROCK-mediated monolayer leak. Data bars are 

means ± SE of n = 3. Analysis by ANOVA indicates *P<0.05, **P<0.01, ***P<0.001.
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Figure 2. ROCK activity in CCM lesions from human subjects
There is greater ROCK activity in human PDCD10 CCM lesions than in human sporadic 

lesions as shown by brown pMLC and pMBS staining. Bars are 100 μm. The histogram 

shows that twice as many caverns have at least one endothelial cell stained with pMLC in 

human PDCD10 CCM lesions than in human KRIT1, CCM2 and sporadic lesions 

(*P<0.05). Data bars are means ± SE.
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Figure 3. PDCD10 patients show a more aggressive phenotype
(A) Percent of bleed free PDCD10 patients versus age, showing high bleeding propensity in 

the first decade of life, leveling off in the teen years. The time of hemorrhage has been 

established for every adjudicated bleed. (B) Number of bleeds per PDCD10 patient (mean 

plotted, with standard error bar) vs. years since birth, after first symptom onset, and after 

first hemorrhage. (C) The age at first bleed is lower in PDCD10 patients than in KRIT1 and 

CCM2 patients. Data bars are means ± SE. (D) An SWI scan showing high lesion burden in 

a PDCD10 patient.
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Figure 4. Phenotypic profile of PDCD10 patients
The cases are grouped by their respective proband (F1 to F12). Each subject’s lesion burden 

and clinical associations is indicated. Each symptomatic bleed is noted by a red vertical bar 

during the lifespan of each subject. First symptomatic onset is noted by a yellow vertical bar. 

Sp = spontaneous mutation, PI = parental inheritance, CD = cognitive decline, Sk = skin 

manifestation, Sc = scoliosis, T = tumor, SWI = number of lesions on susceptibility 

weighted imaging.
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Table 1

PDCD10 proband mutations all lead to loss of function alleles.

Family Mutation Effect

1 c.180delA, p.60fsX64 nonsense

2 c.474+5G>A splicing

3 c.474+1G>A splicing

4 c.322C>T; p.Arg108Stop nonsense

5 c.608T>G; p.Leu203Stop nonsense

6 c.474+5G>A splicing

7 c.474+5 G>A splicing

8 c.124C>T; p.Gln42Stop nonsense

9 c.474+1G>A splicing

10 c.131T>C; p.Leu44Pro missense

11 c.501delT, p.167fsX168 nonsense

12 c.103C>T; p.Arg35Stop nonsense

13 c.475-2A>G splicing
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