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MAIN ARTICLE

Winner-take-all or long tail? A behavioral model
of markets with increasing returns

P.J. Lambersona*

Abstract

This paper develops a model of consumer choice that demonstrates why some markets with in-
creasing returns converge to a winner-take-all outcome while many others have a power law mar-
ket share distribution with a “long tail” of small-share products. The model takes the standard
winner-take-all model of increasing returns and adds a simple behavioral assumption: when faced
with complex choices, decision makers first quickly eliminate many of the available options using
a simple heuristic before selecting from the remaining feasible set. We examine the market-level
consequences of this model using an agent-based simulation. Under a wide range of parameters
the model produces a power law share distribution. But when consumers have very large feasible
sets the market converges to a winner-take-all outcome, and when consumers have very small fea-
sible sets the model produces an evenly split market.
Copyright © 2017 System Dynamics Society

Syst. Dyn. Rev. 32, 233–260 (2016)

Additional Supporting Information may be found online in the supporting information tab for this
article.

Introduction

A variety of positive feedbacks ranging from network effects to economies of
scale increase the likelihood that future consumers will purchase a product
or adopt a technology as the size of the installed base of that product or tech-
nology grows (Sterman, 2000). Understanding the implications of these feed-
backs for markets and firm strategy has been a fundamental contribution of
the system dynamics methodology (e.g. Oliva et al., 2003; Sterman et al.,
2007; Struben and Sterman, 2008).
In economics, these feedbacks are collectively known as increasing returns,

and standard models predict that markets with increasing returns will con-
verge to a winner-take-all (WTA) outcome (e.g. Arthur, 1989). Many empirical
examples support this prediction, including the VHS versus Betamax and
more recent Blu-Ray versus HD-DVD format wars (Arthur, 1990; den Uijl
and de Vries, 2013), and early competition among nuclear reactor technolo-
gies (Cowan, 1990). In each of these cases a single technology eventually dom-
inated the market (VHS, Blu-Ray, and light water reactors, respectively). But
other markets with known positive feedbacks are split among multiple firms.
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For example, the U.S. web browser market is shared by Google Chrome
(34.7%), Microsoft Internet Explorer (28.3%), Safari (20.3%), Firefox (11%),
and many others (Vaughn-Nichols, 2015). One site lists 40 browsers that are
each estimated to account for at last one-tenth of 1 percent of the browser mar-
ket (netmarketshare.com, 2015). Despite known cumulative advantages
(Leskovec et al., 2007), the markets for books, music, and movies all include
many products that are each sold to a small number of people, but that in ag-
gregate account for a large share of the market (Brynjolfsson et al., 2003, 2006;
Anderson, 2006). Rather than theWTA outcome that increasing returns theory
predicts, these markets have a highly skewed or power law (PL) market share
distribution, popularly known as a “long tail” (Anderson, 2006).i

This paper develops a model grounded in research on behavioral decision
making that explains why some markets with positive feedbacks fit the
WTA prediction, while others exhibit a PL. We argue that the standard model
of increasing returns applies when there are few available choices and con-
sumers are willing and able to consider all alternatives. The markets for VCRs,
high-definition video disc players, and nuclear reactors (Arthur, 1990; Cowan,
1990) satisfy these conditions. We refer to this situation, and the correspond-
ing model, as simple increasing returns. However, research in marketing and
behavioral decision making demonstrates that when choosing among a large
number of alternatives consumers employ a more complex decision-making
algorithm; they first quickly eliminate many choices using a simple heuristic
and then choose more carefully from the remaining feasible set (Simon,
1955; Einhorn, 1971; Payne, 1976; Hauser and Wernerfelt, 1990; Beach,
1993; Payne et al., 1993). In the model we propose, agents use such a two-stage
decision rule, first limiting their choice to a feasible set and then selecting
from among this set with a preference for more popular products. We call this
model complex increasing returns.
We examine the market-level consequences of complex increasing returns

through simulations and find that under an initial set of parameter choices
the market share distribution converges to a PL. We then investigate the ro-
bustness of the PL result to an extensive set of parameter variations to better
understand which features of the model drive the result. The model continues
to produce a PL for a wide range of parameters, including different distribu-
tions of agent preferences and of available product attributes. However, the
model produces different market share distributions with extreme distribu-
tions of agent feasible set sizes. By varying the distribution of feasible set sizes
the model produces outcomes that range from the WTA outcome of simple in-
creasing returns at the one extreme to the flat distribution predicted by stan-
dard models of differentiated product markets without positive feedbacks at
the other (Lancaster, 1971).
Understanding the conditions under which increasing returns produce a

WTA or PL market share distribution is more than an academic exercise. Strat-
egy scholars recommend vastly different approaches in these two types of
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markets. On the one hand, inWTA or winner-take-most markets, standard rec-
ommendations include discount pricing, heavy marketing, and rapid expan-
sion to open a gap on competitors and “lock-in” the market (Arthur, 1996;
Shapiro and Varian, 1999; Elberse, 2013). On the other hand, because each in-
dividual product in the long tail appeals to a limited audience, producers and
retailers can ill afford to devote significant marketing resources to individual
items. Rather, it is important to offer options that fit a wide range of consumer
niches and to develop accurate “recommender systems” to help consumers
find more obscure offerings that match their specific tastes (Anderson, 2006;
Brynjolfsson et al., 2006). The model in this paper suggests that individual
feasible set sizes, a variable that has previously received little attention, is crit-
ical for understanding which of these strategy recommendations is appropri-
ate in different positive feedback markets.
We further explore the implications of complex increasing returns by exam-

ining the impact of feasible set sizes on the predictability of market success.
One key implication of standard models of simple increasing returns is that
success is highly unpredictable; while one standard is guaranteed to eventu-
ally dominate themarket,whichwill win is anybody’s guess. We find that with
complex increasing returns the level of predictability depends strongly on the
distribution of feasible set sizes. The results closely match experimental obser-
vations on consumer choice with social influence by Salganik et al. (2006).
We conclude by discussing how our model of complex increasing returns

can help us to understand why, despite the increased availability of informa-
tion on product popularity, the Internet is causing long tails to grow longer
rather than markets to become more concentrated (Brynjolfsson et al., 2003;
Anderson, 2006).

Simple increasing returns and winner-take-all markets

We begin by describing the standard model of simple increasing returns and
the WTA result. The underlying feedback structure of the model can be found
in the textbook by Sterman (2000) and is reproduced in Figure 1.1 Classic
applications of the model include competition between VHS and Betamax
video cassette formats, and the dominance of the QWERTY keyboard
standard.
In the simplest version, a sequence of individuals i=1 , 2 , 3 ,… choose

between two competing technologies, A and B. Each individual is either of
type A or type B, and, all else equal, type A consumers prefer technology A
to technology B, while type B consumers prefer technology B to technology
A. In addition to the type related preferences, there is a positive feedback that

1The model of simple increasing returns described here is based on the work of Arthur (1989). Arthur formu-
lated his model as a discrete Markov process, but a continuous time version of the model can easily be
implemented.
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increases the attractiveness of a technology as its market share increases.
These preferences can be formalized using the utility function

Ui xð Þ ¼ pi xð Þ þ αnx (1)

Here, pi is the type-based utility to individual i from choosing technology
x∈ {A,B}. For simplicity we assume that this utility is equal for all individuals
of the same type, but later we show this assumption is unnecessary for the
main implications. The fact that individuals prefer to purchase the technology
that matches their type corresponds to the assumption that pi(A)>pi(B) when
i is of type A, and pi(B)>pi(A) when i is of type B. The term αnx captures the
positive feedback, where nx is the current installed base of technology x and α
is simply a scaling constant that measures how much positive feedbacks mat-
ter relative to individual tastes in the consumer’s decision. Typically, α≪1.
As enumerated by Sterman (2000, ch. 10), there are a variety of mechanisms
that can lead individuals to prefer more popular products including network
effects (Katz and Shapiro, 1985), conformity pressure (Jones, 1984; Bernheim,
1994), and social learning (Ellison, 1993).
The dynamics of this model are straightforward and can be most easily un-

derstood by focusing on the difference in accumulated installed base between
the two technologies, nA�nB. Early in the process, when neither technology
has accumulated a significant installed base, the pi term dominates the utility

Fig. 1. The feedback
structure of a standard
network effects model (cf.
Sterman, 2000,
Figure 10–23)
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function, so individuals simply purchase according to their type. If the order
in which consumers enter the market is random with respect to type, then
the difference in accumulated installed base between the two technology
types starts at zero and makes a random walk on the integers as illustrated in
Figure 2. However, if one of the two technologies accumulates a sufficient ad-
vantage so that the positive feedback term αnx outweighs the utility from type-
based individual tastes pi(x), then both types of individuals will purchase the
market leading technology. At this point we say the market is “locked-in” be-
cause all future consumers will purchase from the market leader. Specifically,
letting pa(x) and pb(x) denote the type-based utility from technology x of type
A and type B individuals, respectively, the market locks-in to technology A if

pb Að Þ þ αnA > pb Bð Þ þ αnB (2)

αnA � αnB > pb Bð Þ � pb Að Þ (3)

nA � nB > 1=αð Þ pb Bð Þ � pb Að Þ� �
(4)

Similarly, the market locks-in to technology B if

nB � nA > 1=αð Þ pa Að Þ � pa Bð Þ� �
(5)

The mathematical theory of random walks guarantees that with probability
one nA�nB will eventually cross one of these two thresholds and thus the
market is guaranteed to lock-in to a “winner-take-all” outcome.

Fig. 2. The typical dy-
namics of Arthur’s model
of simple increasing
returns and lock-in from a
single simulation run. The
“A wins threshold” and
“B wins threshold” are
given by the inequalities
in Eqs (4) and (5), respec-
tively. [Colour figure can
be viewed at
wileyonlinelibrary.com]
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Arthur (1989) goes further by proving that, with any number of technologies
and a continuum of individual tastes pi, one can replace the linear network ef-
fects term αnx in Eq. (1) with a general increasing function f(nx) and, so long as
there exists an ϵ>0 such that f 0> ϵ, the market will eventually converge to a
WTA outcome with probability one. In other words, as long as each individual
purchase has some non-vanishing positive effect on the attractiveness of a
technology to future consumers, the market is guaranteed to converge eventu-
ally to a WTA outcome.

Complex increasing returns

The analysis in the previous section raises a question: if, under the assump-
tions of the standard model, increasing returns always lead to a WTA out-
come, but we observe market sharing in settings where we know increasing
returns operate, then what assumptions of the model are violated?
Here, we focus on the assumption that there are non-vanishing positive feed-

backs for all products for all consumers.2 Research in behavioral decisionmak-
ing, marketing, and consumer behavior finds that when faced with complex
choices consumers rarely consider all possible alternatives. Instead, they em-
ploy a combination of heuristics, first coarsely categorizing products as accept-
able or unacceptable, and then selecting from the acceptable options using a
more sophisticated heuristic (Simon, 1955; Einhorn, 1971; Payne, 1976; Payne
et al., 1993). Because this research implies that for some consumers some prod-
ucts are unacceptable no matter how popular they become, positive feedbacks
only apply to those products within a consumer’s feasible set.
To formalize this behavioral observation, our model makes two changes to

the standard model described in the previous section. First, we replace the in-
dividual preference term pi with a standard spatial model of individual pref-
erences. Each product x is described by a point, also denoted by x, in a
characteristics space A, and each agent i has an ideal point pi in A. For exam-
ple, the characteristics space for laptop computers consists of all possible
combinations of size, weight, processor speed, hard drive size, and memory,
among other things. Agents are assumed to prefer products closer to their
ideal point, where distance is measured by a function d :A×A→ [0 , ∞ ). This
is the core structure of the Lancaster spatial model (Lancaster, 1971), which
also underlies many standard conjoint analysis models used to estimate con-
sumer preferences in marketing (Green and Srinivasan, 1990). The resulting
utility to agent i of purchasing product x is

2Lee et al. (2006) relax another assumption of Arthur’s model and demonstrate the possibility of market sharing.
Namely, consumers in their model only receive increasing returns from purchases made by their neighbors in a
social network. However, Lee et al.’s model only considers two competing alternatives and thus cannot account
for the long tail phenomena we seek to explain here.
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Ui xð Þ ¼ αnx ið Þ � d pi; x
� �

(6)

where as before α is a positive constant and nx(i) is the number of agents that
purchased product x prior to agent i. Replacing Arthur’s pi with the distance
term �d(pi,x) has no substantive impact on the model or the WTA result,
and is merely a formal change that allows us to implement the second
adaptation.
The second modification to the model is more significant. Namely, each

agent in the complex increasing returns model has a feasible set of products
Fi, specified by the agent’s ideal point pi and a radius ri∈ [0 , ∞ ):

Fi ¼ xj d pi; x
� �

≤ ri
� �

The first step in an agent’s decision is to eliminate all products not in their
feasible set. If the feasible set is non-empty, the agent selects the product in the
feasible set that maximizes the combination of increasing returns and per-
sonal preferences in Eq. (6). If no products meet the agent’s consideration re-
quirements, he or she does not make a purchase (or, equivalently, chooses
to purchase an outside good).
The model resonates with the shopping experience at a typical online re-

tailer. For example, imagine a consumer shopping for a camera at an online
electronics store. The website presents the consumer with a dizzying range
of options. With a few clicks she quickly narrows the displayed options to
those that meet her requirements. Once the choice set has been narrowed so
that all (or most) of the remaining products are acceptable, she sorts them ac-
cording to popularity to see which of the options that meet her needs are most
popular with other customers. Figure 3 shows an example from a large elec-
tronics retailer’s website. The consumer has limited the feasible set using a se-
quence of attribute requirements: Cameras & Camcorders > Digital Cameras >
Point & Shoot Cameras > 15+ Megapixels > 5–6× > Image Stabilization > HD
Movie Mode. The default option is to sort the remaining products according to
popularity (“Best Selling”).ii

The emergence of market structure

We examine the market structure that emerges from the individual choice
model in the previous section using a computer simulation.3 Because of the
large number of products in the markets we wish to simulate, the hetero-
geneity in agent ideal points and feasible sets, and the interaction between

3The simulation was implemented in the programming language R. Source code for the base case simulations
can be found in the Online Supplementary Material.
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consumer purchase decisions, the model is implemented as an agent-based
simulation.
An overview of the simulation structure is shown in Figure 4. Before run-

ning the simulation, the modeler must externally specify a number of model
parameters listed in Table 1. We describe the particular choices for the param-
eters in Table 1 in subsequent sections and for now focus on the steps of the
simulation assuming that the parameters are given.
Once the parameters are specified, a one-time initialization stage begins,

during which a set of simulated products is created by drawing Np points,

xj
� �Np

j¼1 , from the product attribute distribution fp. A vector s= (0, … , 0) of

length Np is created to keep track of the sales of the Np products.
Following this initialization stage, a loop runs over a sequence of simulated

consumers i=1 , 2 , … ,Nc, keeping track of the sales s of the set of products

xj
� �Np

j¼1 as the simulated consumers make their selections based on the choice

model described in the previous section. At each step in the loop a consumer i
is created by drawing an ideal point pi∈A from the distribution fc and a feasible
set size ri from the distribution g. If there are no products xj with d(xj,pi)≤ ri,

Fig. 3. The website of a popular electronics retailer (the image has been altered to obscure the retailer’s identity). The website
allows the consumer to quickly filter her options until only those that meet her requirements remain. The default option is to
sort the remaining products according to popularity (“Best Selling”). [Colour figure can be viewed at wileyonlinelibrary.com]
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then the simulation moves on to the next consumer without recording a
purchase. If the feasible set is non-empty then the simulated consumer i
chooses the product xj that maximizes the utility function

Ui xj
� � ¼ αsj � d pi; xj

� �
(7)

subject to the constraint that d(pi,xj)≤ ri. The purchase is recorded by
incrementing the sales vector s by one in the entry corresponding to the pur-
chased product.
The simulation then moves on to the next simulated consumer and so on

until the final consumer i=Nc is reached. As the simulation proceeds, we keep
track of the number of sales for each product. When the final consumer i=Nc

makes their choice the simulation terminates and we analyze the resulting
distribution of sales. Although the simulation is dynamic and the market
share distribution emerges over time (where “time” in the model is indexed
by the sequence of consumer purchases), for this analysis we focus on the

Fig. 4. Simulation
overview

Table 1.
Simulation parameters Parameter Description

Np Number of products
Nc Number of consumers
A Characteristics space
d Distance metric
fp Product attribute distribution
fc Consumer ideal point distribution
g Feasible set radii distribution
α Utility weight on popularity
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distribution of market shares at i=Nc. Graphical examination of the market
shares over time show that the market share distribution stabilizes at an effec-
tively steady state well before the simulation terminates, so this analysis is
equivalent to examining the steady state results of the dynamic process.
For each set of parameters chosen, we repeat the simulation many times and

examine the distribution of outcomes. Below (“Analysis of the model”) we
sweep across many values of the parameters to examine the sensitivity of
these outcomes to the parameter choices. Thus the computational simulations
allow us to build a theory of how the individual choice model described in the
previous section relates to market-level outcomes, and how these market-level
outcomes depend on specific parameters of the model (Miller and Page, 2007).

Benchmark simulations

Before examining the results of the full model, we consider two benchmark
cases: no increasing returns and simple increasing returns. We then turn to
the model of complex increasing returns and find that with a set of initial as-
sumptions regarding agents and products, shown in Table 2, the model pro-
duces a PL. We vary the parameters to determine which assumptions drive
the result. The distribution of market shares continues to follow a PL for
many, but not all, parameter values.
The model is run 100 times with both no increasing returns and simple in-

creasing returns (no feasible sets). All other parameters are as in Table 2 (the
choice of base case parameters is discussed below, under “Complex increas-
ing returns and the power law result”). These results will serve as useful
benchmarks when we turn to the full model in subsequent sections. Figure 5
presents the resulting market share distribution from a representative run with
no increasing returns in the left-hand panels and with simple increasing
returns in the right-hand panels. The panels in the top row show the market
shares for all products that earned at least one-tenth of 1 percent of the market,
ordered by market share. The panels in the bottom row display the
rank/frequency plots on log–log scales and the maximum likelihood estimate
of a PL fit to the data.4

The first and third columns of Table 3 summarize the results. With no in-
creasing returns agents simply choose the product closest to their ideal point.
As expected, the 100 products split the market roughly equally: the mean mar-
ket share is 0.01, the mean maximum share is 0.03 and on average 99.7 prod-
ucts earn a market share greater than 0.001.
These results echo those of classic models of competition among differenti-

ated products by Hotelling (1929) and Lancaster (1971, 1979), which predict

4The rank/frequency plot is an unbiased estimator of the complementary cumulative distribution function, F(x)
= P(X ≥ x), for the distribution from which the data are drawn. If the data are drawn from a PL, this plot approx-
imates a straight line on log scales (for details see Appendix.)
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roughly uniform market share distributions. Unlike the WTA outcome under
simple increasing returns, differentiation without popularity effects diverges
from a PL in the opposite direction, producing a market that is “all tail” with-
out the large share products at the head of the distribution characteristic of a
PL. The market share distribution is determined entirely by the positions of
agent ideal points and products in the characteristics space. Differences in

Table 2. Base case
parameter values Parameter Description Base case value

Np Number of products 100
Nc Number of consumers 10,000
A Characteristics space [0, 10] × [0, 10]
d Distance metric Euclidean
fp Product attribute distribution Uniform over A
fc Consumer ideal point distribution Uniform over A
g Feasible set radii distribution Uniform [0,

ffiffiffiffiffiffi
50

p �1
α Utility weight on increasing returns 0.01

1 ffiffiffiffiffiffi
50

p
is the distance from the center of the attribute space to a far corner of the space. See section

on “Complex increasing returns” for details.

Fig. 5. Market share distributions and rank/frequency plots from benchmark simulations. All other parameter values are shown
in Table 2. Note that the vertical scale in the upper left panel differs from the vertical scale in the upper right panel
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product attributes cause slight variation in market share—products that are
clustered more closely together receive smaller shares of the market, while
others that occupy less crowded areas of the attribute space have greater mar-
ket shares—but these deviations from equal shares are small. Furthermore,
with no increasing returns such a market share distribution would quickly
dissolve if firms were allowed to strategically position their products. In that
case, as argued by Hotelling (1929) and Lancaster (1971, 1979), firms would
reposition themselves until all firms captured equal shares of the market.
Thus consumer preferences alone are not a reasonable explanation for the
broad empirical PL observation.
In the simple increasing returns case a single product monopolizes the mar-

ket: the mean maximum share from the 100 simulations is 0.96, and on aver-
age only 10.7 products earn a market share greater than 0.001. These results
demonstrate that adding product differentiation to a model of simple increas-
ing returns is insufficient to explain the PL regularity.
The small share products shown in the upper right panel of Figure 9 are a

relic of purchases made early on in the simulation run. If Dmax is the
maximum distance between any two points in the product characteristics
space (Dmax ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

102 þ 102
p ¼ ffiffiffiffiffiffiffiffi

200
p

in these simulations), all agents will choose
the same product once the best-selling product has accumulated Dmax/α more
sales than any of its competitors. To see this, note that agent i will choose
product x once

Ui xð Þ ¼ αnx ið Þ � d pi; x
� �

> αny ið Þ � d pi; y
� � ¼ Ui yð Þ (8)

for all products y not equal to x. Some algebra shows that this is equivalent to

nx ið Þ � ny ið Þ > d pi; x
� �� d pi; y

� �� �
=α (9)

Table 3. Benchmark and
base case simulation
results

No increasing
returns

Complex increasing
returns

Simple increasing
returns

Products above min.
share 99.7 (0.601) 48.6 (2.77) 10.7 (3.39)
Mean share 0.010 (0.000) 0.011 (0.000) 0.014 (0.001)
Median share 0.009 (0.000) 0.001 (0.000) 0.000 (0.000)
Max. share 0.030 (0.005) 0.380 (0.049) 0.962 (0.008)
KS statistic 0.189 (0.020) 0.056 (0.018) 0.318 (0.103)
Power law exponent (k) 1.60 (0.095) 1.68 (0.034) 1.92 (0.211)
Chose outside good — 731 (37.5) —

Means and standard deviations from 100 simulations. (Note: standard errors are not reported as
these can be made arbitrarily small by increasing the number of simulations run.)
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Since (d(pi,x)�d(pi, y)) is always less than or equal to Dmax, if nx(i)�ny(i)>
Dmax/α then Eq. (9) is guaranteed to hold. The theory of random walks guaran-
tees that one product will eventually accumulate such an advantage.
Thus only early adopters choose a product other than the eventual market

leader. In each of the 100 runs of the simulation with simple increasing
returns analyzed here, only the eventually dominant product captured any
sales after the first 750 purchases. This also demonstrates that the WTA out-
come with simple increasing returns is independent of parameter choices
such as the distribution of agent ideal points or product characteristics, repli-
cating the WTA outcome of the standard model of simple increasing returns.

Complex increasing returns and the power law result

We now turn to the results of the model under complex increasing returns. We
begin by examining the simulation results under an initial “base case” set of
parameters shown in Table 2, but the focus of our analysis is not on any par-
ticular choice of parameters, but rather on how the output of the model varies
with changes in the input parameters as examined below (“Analysis of the
model”). Our choice of base case parameters follows the framework of a
“neutral model” developed and widely used in genetics and evolutionary
biology, in which no particular individual has a significant a priori advantage
(e.g. Hubbell, 2001). Later we examine the sensitivity of the model results to
these parameter choices.
We now describe the base case parameters. The weight on product popular-

ity α=0.01 only changes the speed with which the market reaches equilib-
rium. The number of consumers Nc=10,000 is sufficiently large so that the
market shares are stable well before the simulation is complete. The two-
dimensional Euclidean topology with boundary for the attribute space A is
chosen because it is computationally fast. Using a toroidal topology is exam-
ined below and does not significantly change the results. (As in the standard
circular city model (Salop, 1979), a toroidal topology removes any potential
boundary effects.) The uniform distribution of consumer ideal points fc and
product attributes fp ensures that no particular product has a significant
advantage a priori. The maximum feasible set radius

ffiffiffiffiffiffi
50

p
is the distance from

the center of the attribute space to the farthest corner, and thus is the smallest
radius for which it is possible that the entire attribute space could be consid-
ered by a single consumer. A consumer with the minimum feasible set radius
of zero will only accept a product with attributes that exactly match those of
her ideal product.
The simulation is run for the base case 100 times, and the center column of

Table 3 presents the results. A stable (over time) and consistent (across simu-
lation runs) market structure emerges. The mean market leader’s share across
the 100 simulations is 0.38—much larger than the mean maximum share of
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0.03, with no increasing returns and significantly less than the mean maxi-
mum share of 0.96 observed under simple increasing returns. On average,
48.6 of the 100 products earned a share greater than or equal to 0.001, again
placing the base case results between those obtained without increasing
returns and with simple increasing returns (99.7 and 10.7, respectively).
Although the summary statistics for the complex increasing returns simula-

tions tend to fall between those obtained in the two benchmark models exam-
ined in the previous section, the outcome is not simply an average of the two
extremes. On the one hand, the model results differ from those predicted by
standard models of simple increasing returns because a sizable share of the
market is captured collectively by firms that individually only obtain small
market shares. Unlike the small share firms in the tail of the distribution under
simple increasing returns shown in Figure 9, these small but non-vanishing
market shares are not relics of model “burn-in” that would ultimately vanish
if we run the model long enough. As the number of purchases approaches in-
finity, these firms continue to hold on to their position in the tail of the distri-
bution. On the other hand, the inequality of success between the outsize “hits”
at the head of the market share distribution and the many small share prod-
ucts in the tail is far from the roughly uniform share distribution predicted
by standard models of competition among differentiated products introduced
by Hotelling (1929) and later extended by Lancaster (1971). Instead, the
resulting distribution of market shares, as shown for a representative example
in Figure 6, resembles a PL.
To test the hypothesis that the resulting market shares follow a PL, we fit a

PL to the data using maximum likelihood estimation (MLE) and test the good-
ness of fit with the Kolmogorov–Smirnov (KS) test. The null hypothesis that
the data are drawn from the PL distribution estimated using maximum likeli-
hood cannot be rejected at the 0.1 significance level in 93 of the 100 simula-
tions.5 Thus the model reproduces the widely observed PL pattern.

Analysis of the model

While some markets display PL distributions, not all do. For example,
Figure 7 shows the market share distributions for deodorant and breakfast ce-
reals, neither of which fit a PL (the KS test rejects PL at the 0.05 level in both
cases). Ideally, the model will reveal what characteristics of a market and of
consumer demand are more or less likely to produce this phenomenon. To in-
vestigate this we vary seven parameters of the model: four relating to the prod-
ucts and three relating to the agents. In the former category we vary the
number of products, the number of characteristics, the topology of the

5Contrary to many common statistical tests, in the KS test the inability to reject the null hypothesis at a higher
significance level corresponds to stronger evidence of fit (see Conover, 1980; Press et al., 2002). The 0.1 signif-
icance level is the highest reported in the table published by Goldstein et al. (2004) used in this analysis, and
thus provides the strongest available evidence for PL fit. For details see Appendix.

246 System Dynamics Review

Copyright © 2017 System Dynamics Society
DOI: 10.1002/sdr



characteristics space, and the distribution of product characteristics. In the
latter category we vary the distribution of agent ideal points, the information
delay before agents perceive past sales, and the distribution of feasible set
radii.
Table 4 reports whether or not the PL fits with these variations in parameter

values (see Table A1 in Appendix for the goodness-of-fit statistics). In most
cases a PL continues to fit the market share distribution. Figure 8 displays rep-
resentative market share distributions for a subset of the parameter variations
where a PL continues to fit the data. While in each case the market share dis-
tributions are slightly different, they all fit a PL well. Similar variation is also
evident in the empirical data.
The number of products has little effect on the distribution of shares. The PL

continues tofit when agents only consider a single characteristic and alsowhen

Fig. 6. Market share distribution (left panel) and rank/frequency plot (right panel) with line indicating maximum likelihood
estimate of PL fit from a base case simulation. Parameter values are listed in Table 2 (KS statistic =0.055). For details see
Appendix

Fig. 7. Rank/frequency plots of the market share distribution for deodorant and breakfast cereals (Euromonitor International,
2007)
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they consider three or four. Changing the topologyof the characteristics space to
a torus (and thus removing the boundary) also does not change themarket-level
outcome. When either product characteristics or agent ideal points are distrib-
uted normally, the distribution continues to be well approximated by a PL, re-
gardless of the variance in those distributions. Incorporating an information
delay, so that agents do not immediately perceive changes in the market share
distribution, hasno effect on the long-runoutcome.The robustness of themodel

Table 4. Power law fit
under varying parameter
assumptions

Parameter changed Value Power law fits?

Number of products 10 Yes
50 Yes
250 Yes
500 Yes

Characteristics space dimensions 1 Yes
3 Yes
4 Yes

Characteristics space topology Torus Yes

Product characteristics distribution Normal(5, 1) Yes
Normal (5, 3) Yes
Normal(5, 5) Yes

Agent ideal point distribution Normal(5, 1) Yes
Normal (5, 3) Yes
Normal (5, 5) Yes

Information delay 10 Yes
100 Yes
250 Yes
500 Yes

Feasible set radii distribution Uniform [0, 13] Yes
Uniform [0, 11] Yes
Uniform [0, 9] Yes
Uniform [0, 5] Yes
Uniform [0, 3] Yes
Uniform [0, 1] No
Uniform [1,

ffiffiffiffiffiffi
50

p
] Yes

Uniform [3,
ffiffiffiffiffiffi
50

p
] No

Uniform [5,
ffiffiffiffiffiffi
50

p
] No

Here, a PL is said to fit the data if the KS test does not reject the PL hypothesis at the 0.1 signifi-
cance level using the mean KS statistic from 20 runs of the simulation. Normal (μ , σ) denotes a
truncated normal distribution with mean μ and standard deviation σ truncated to lie in the
interval [0, 10]. Uniform [min, max] denotes a uniform distribution over the interval [min, max].
Distributions are for each dimension of the characteristics space. See Appendix for details.
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to variations such as changes in the distribution of product attributes and agent
preferences increases its credibility. PL market share distributions have been
observed across such a wide range of markets that any plausible explanation
for the pattern must hold up under alternate assumptions. The results of the
model are most sensitive to changes in the distribution of feasible set radii.

The distribution of feasible set sizes

In reality feasible set sizes vary across consumers within an industry, and the
distribution of sizes varies across industries (Howard and Sheth, 1969;
Belonax and Mittelsteadt, 1978; Hauser and Wernerfelt, 1990). In some indus-
tries, there may not be any consumers with a large feasible set. The phrase,
“Give me the most popular car you’ve got” is likely a rarity in auto dealer
showrooms. In other product markets, such as cell phones or portable music
players, most consumers may simply want a product that works and is com-
patible with others but care little about the underlying technologies. In these
markets most consumers have a large feasible set. The results of the model in-
dicate that this variation in the specificity of consumer requirements can have
dramatic consequences for market structure.
The distribution of feasible set sizes has a greater effect on the eventual mar-

ket form than either the distribution of product characteristics or the distribu-
tion of agent preferences. When the minimum feasible set radius is large (three

Fig. 8. Market share distributions and rank/frequency plots from representative simulation runs with four parameter variations.
All other parameters are as in the base case
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or five), the top few products are unusually successful; that is, they win a
higher share of the market than predicted by the maximum likelihood esti-
mated PL distribution.
The left-hand panel of Figure 9 shows a representative rank/frequency plot

with agent radii distributed U 5;
ffiffiffiffiffiffi
50

p� �
. These results more closely resemble

those under simple increasing returns than the base case of complex increas-
ing returns. The mean shares for the top three products respectively are 0.7,
0.16 and 0.1. In this case, the average median number of products in an agent’s
feasible set is 62, so for a majority of the agents most of the products are ac-
ceptable, making the consumers’ decisions more similar to simple increasing
returns where all products are acceptable for all agents. This could correspond
to an industry in which compatibility and other network externalities are
more important to consumers than specific product characteristics, such as
the market for portable digital music players, in which the top three firms
have market shares 74 percent, 9 percent, and 3 percent (Elmer-DeWitt,
2007). Clearly, if the minimum feasible set radius was sufficiently large so that
all feasible sets contained all products, complex increasing returns would rep-
licate the model of simple increasing returns and converge to a WTA outcome.
Thus simple increasing returns are an extreme case of complex increasing
returns in which all agents have very large feasible sets.
As shown in the right-hand panel of Figure 9, when the maximum feasible

set radius is small, the distribution of shares looks similar to the results with-
out increasing returns (shown in the right-hand panel of Figure 5). In this case,
where the maximum feasible set radius is one, the average agent’s feasible set
contains only one product, and thus most agents choose based on personal
preferences alone without being influenced by product popularity. Deodorant
and breakfast cereals have similar market share distributions, shown in

Fig. 9. Rank/frequency plots from a representative simulation with parameter values as in Table 2 with feasible set radii distrib-
uted U 5;

ffiffiffiffiffiffi
50

p� �
in the left-hand panel and with feasible set radii distributed U[0, 1] in the right-hand panel
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Figure 7. The implication is that for these products most consumers consider
very few of the available options or increasing returns play no role.
While this is not an exhaustive sweep of all potential distributions of feasi-

ble set sizes, some general features of the model are evident. When agents
have specific tastes and pay little attention to the choices of others, the market
is split roughly equally among all products. When the majority of agents find
most of the products acceptable, the results are closer to the WTA distribution
observed under simple increasing returns. For intermediate distributions of
agent feasible sets the market share distribution follows a PL.
As these results demonstrate, despite the assumption that consumers value

previous sales equally across all of the simulations (i.e. α is constant), a variety
of market structures arise depending on the restrictiveness of consumer re-
quirements. Markets that consist only of a long tail with no massive hits or
only of hits with no long tail lie at the extreme ends of a spectrum controlled
by the size of consumer feasible sets. For a wide range of intermediate distri-
butions of agent feasible sets the market share distribution follows a PL, and
this outcome is robust to other variations in the model.

Predicting market success

Anecdotally, markets with increasing returns are notoriously unpredictable
(Gladwell, 2006; Watts, 2007), and competing in these markets has been lik-
ened to high-stakes gambling (Arthur, 1996; Watts and Hasker, 2006). How-
ever, empirically measuring unpredictability is difficult since history only
runs once. The simulation approach allows us to examine the predictability
ofmarkets with complex increasing returns by running the simulationmultiple
times and examining the consistency of the outcomes. We run the model 100
times with a single set of products (with the base case assumptions on the dis-
tribution of product characteristics shown in Table 2) under each of three con-
ditions: no increasing returns, complex increasing returns, and simple
increasing returns; and then compute the measure of unpredictability used
by Salganik et al. (2006).6 The unpredictability for each product is given by

ui ¼
∑100

j¼1∑
100
k¼jþ1 mi;j �mi:k

		 		
100
2

� � (10)

where mi , j is the market share of product i in repetition j. The total number of
pairs of repetitions is 100

2

� �
, so Eq. (10) simply gives the average difference in

6Salganik et al. (2006) conduct an Internet-based experiment to examine the effect of social influence on con-
sumer behavior. They compare the downloads of a collection of songs from a control group where individuals
are given no information about other consumers’ choices, and a treatment group, where individuals are shown
each product’s number of previous downloads.
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market share for product i over all pairs of repetitions. The unpredictability
for each returns condition is the average over all products. Because the only
stochastic variables in this exercise are the consumer ideal points and feasible
sets, this quantity captures how unpredictable the market outcomes are even
when the overall distribution of consumer preferences and product attributes
remains constant.
Figure 10 plots the unpredictability for each of the three conditions. With-

out increasing returns, any unpredictability results from randomness in agent
ideal points. After 10,000 agents the effect of this randomness on market
shares is minimal. Complex and simple increasing returns have higher levels
of unpredictability. These results mirror those obtained experimentally by
Salganik et al. (2006), who found unpredictability to be significantly higher
with social influence than without and higher when social influence was more
salient.7

As discussed above, by varying the distribution of agent feasible set radii,
complex increasing returns produces results ranging between those expected
from choice without increasing returns to those of simple increasing returns.
Similarly, the corresponding level of unpredictability moves from low values
when feasible sets are small to higher values as feasible sets become large. To
demonstrate this, we run the same experiment under complex increasing
returns with three additional distributions of feasible set sizes: U[0, 1],
U[0, 3] and U[0, 13]. Figure 11 plots the unpredictability with these three dis-
tributions of feasible sets along with the base case (feasible sets distributed
U 0;

ffiffiffiffiffiffi
50

p� �
) and the no increasing returns and simple increasing returns cases.

Clearly, unpredictability increases as feasible sets become larger.
7Salganik et al. (2006) have two social influence conditions: one in which they show subjects the number of pre-
vious purchases by other participants, and a second in which subjects are shown the number of previous pur-
chases and the options are listed in order by the number of previous purchases.

Fig. 10. Unpredictability
with no increasing returns,
complex increasing
returns, and simple
increasing returns from
100 simulation runs. Dif-
ferences in the unpredict-
ability between each pair
of conditions are signifi-
cant (p< 0.0001)
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For marketers, these results should raise a red flag. In any market where so-
cial influence plays a role, the specificity of consumer requirements should be
a part of the marketing analysis. When consumers have larger feasible sets, ef-
fort spent on measuring and meeting consumer preferences may well be
wasted if by chance a competitor gains an early advantage that overwhelms
the benefits of producing a well-positioned product. When consideration sets
are small, traditional methods of determining consumer preferences, such as
conjoint analysis, are more likely to be successful, but as consideration sets
grow larger it becomes more important that forecasting efforts consider the
impact of social influence on market success.

Discussion

By adding an important behavioral assumption—the use of feasible sets—this
model extends the theory of increasing returns to markets where consumers
choose among many products and no single product comes to dominate the
market. Research from marketing, consumer behavior, and psychology dem-
onstrates that consumers often use feasible sets when making complex
choices (Einhorn, 1971; Payne, 1976; Olshavsky, 1979; Payne et al., 1993).
This paper extends this research on individual use of the feasible set heuristic
to examine the market-level implications. The findings demonstrate that mar-
ket structure depends on the size of consumers’ feasible sets. When con-
sumers consider a wide variety of products, the market reflects the WTA
outcome that we tend to associate with increasing returns. When consumers
limit their choice, and thus hold smaller feasible sets, the market reflects the
flat distribution of the traditional spatial model. Between these two extremes
the model most often produces a PL.
Although a variety of statistical models generate PLs (Mitzenmacher, 2004),

this model gives us insight into a microlevel choice process that gives rise to
the macrolevel pattern. That insight sheds light on a puzzle of the Internet
economy: information on product popularity is more accessible to consumers

Fig. 11. Unpredictability
with complex increasing
returns and different fea-
sible set distributions
along with no increasing
returns and simple in-
creasing returns from 100
simulation runs.
U 0;

ffiffiffiffiffiffi
50

p� �
is the base case.

All differences between
levels of unpredictability
are significant (p< 0.0001)
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than ever before and yet, contrary to theoretical predictions, markets are be-
coming less concentrated (Brynjolfsson et al., 2003; Anderson, 2006). While
the Internet provides more information about product popularity, it also gives
consumers more choices and more information about product attributes
(Brynjolfsson et al., 2003, 2006; Anderson, 2006). By making product charac-
teristics accessible, the Internet facilitates the screening process, enabling “the
formation of consideration sets that include only those few alternatives best
suited to a consumer’s personal taste” (Alba et al., 1997). In an experiment,
Belonax and Mittelsteadt (1978) find that individuals consider fewer products
when information about more product characteristics is available. The model
of complex increasing returns in this paper predicts that the resulting
narrowing of individuals’ feasible sets will lead to less concentrated market
share distributions with more niche products.
One next step suggested by this paper is to empirically verify the predicted

relationship between feasible set sizes and market share distributions. Specif-
ically, when all feasible sets contain most of the available products, markets
will be dominated by a single product; when all feasible sets contain very
few products, markets will be evenly split; and when feasible sets are more
variable, the market share distribution resembles a PL. At present, little data
on feasible set sizes is available. The best available data come from automo-
biles and consumer packaged goods where feasible set sizes are small and,
as the model predicts, market share distributions are relatively flat (Hauser
and Wernerfelt, 1990). But the results of this model suggest that feasible set
sizes should be an important variable to examine in future empirical research
on consumer choice. A laboratory experiment, similar to the design employed
by Salganik et al. (2006), but with an added feasible set component, could also
be used to test the model predictions.
A second area for future research involves expanding the model to include

more detail, such as social network structure on the demand side as consid-
ered by Lee et al. (2006), and product positioning dynamics on the supply
side. Most studies of strategies for competing in markets with increasing
returns have focused on pricing (Arthur and Ruszczynski, 1992; Fudenberg
and Tirole, 2000) and compatibility choices (Katz and Shapiro, 1985, 1986).
By introducing horizontal differentiation among products, the complex in-
creasing returns model raises a new dimension of firm strategy to be exam-
ined: the choice of product attributes. Some authors argue that firm
strategies exhibit significant “herding behavior” or “bandwagon effects”
(Abrahamson and Rosenkopf, 1993; Haveman, 1993; Kennedy, 2002;
Scharfstein and Stein, 1990), but an imitative strategy in a complex increasing
returns market is unlikely to succeed because consumers will always choose
the more popular of two similar products. Instead, a firm is better off
distinguishing itself in order to capture consumers that do not include more
popular competitors in their feasible set. Even in this simplified setting, an
optimal product positioning strategy is difficult to determine.
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Notes
i. For empirical evidence of the PL market share regularity see Sutton (1997),

Adamic and Huberman (2000), Huberman (2001), Levene et. al. (2001),
Brynjolfsson et. al. (2003), Chevalier and Goolsbee (2003), and Kohli and Sah
(2006). While some of these authors identify what we view as key ingredients
in producing the PL regularity, they stop short of developing a full theory
behind the observation. For example, Brynjolfsson et. al. (2006) point to
variety in consumer preferences along with new Internet channel search
tools, such as recommender systems and online product reviews, as key
drivers of the long tail phenomenon. Similarly, Brynjolfsson et. al. (2011)
find that reduced search costs are associated with a reduction in market
share concentration and a shift towards a long tail. The advantage of our
approach, and model building in general, is that it allows us to determine if
indeed these factors alone can account for the observed PL pattern and,
further, to test the sensitivity of that prediction to our modeling assumptions.

ii. Note that while determining which products do and do not belong in a
consumer’s feasible set requires knowing the attributes of each product,
in many settings this work is accomplished by an automated system. Even
in the absence of an automated screening system, a consumer can often
quickly create a feasible set without examining each product individually.
For example, an individual shopping for a book on C++ programming in a
bricks and mortar bookstore can head to the computer programming sec-
tion of the store and safely assume that the books outside of that section
are outside of her feasible set.
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Appendix: Goodness‐of‐fit statistics

A random variable X has a PL distribution if its probability density function is
of the form

f xð Þ ¼ Cx�k

where C and k are positive constants. Such a random variable is much less
likely to take on large values than small values. When plotted on log–log
scales, the probability density function is a straight line with slope �k and in-
tercept logC. Because the density function f(x) diverges as x approaches 0, any
variable that follows a PL distribution can only do so above some minimum
value strictly greater than zero. The researcher must make a judgment for
the minimum value over which the PL holds (Newman, 2005). Also, for this
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reason, the cumulative distribution function is measured from the right as op-
posed to the left, as is more standard for other distributions. This is sometimes
referred to as the complementary cumulative distribution function.
The cumulative distribution function F(x) is given by

F xð Þ ¼ probability X ≥ xð Þ ¼ ∫
∞

x
f yð Þdy ¼ ∫

∞

x
Cy�kdy ¼ C

k � 1
x� k�1ð Þ

This is the same functional form as the probability density function, and thus
also follows a straight linewhenplotted on log scales, butwith a slope of�(k�1)
and intercept log C

k�1. Many researchers make use of this fact to fit a PL to data
(Goldstein et al., 2004). An unbiased estimator of the cumulative distribution
function is given by S(x)= the fraction of data points greater than or equal to x
(often called the empirical distribution function (Conover, 1980)). Given data
x1…xn, a graph of S(xi), commonly called a rank/frequency plot (Newman,
2005), can be made by simply plotting the rank of xi divided by n (where the
highest value of the xi is ranked one) against xi. If the xi are drawn from a PL dis-
tribution, the rank/frequency plot will follow a straight line on log scales with
the same slope and intercept as the cumulative distribution function (for an
example, see Figure 6). Using a linear regression of S(xi) on xi, one can estimate
the parameters k and C. Although this method is widely used, it is known to be
biased, and consequently the R2 from this regression is not a recommended
measure for goodness of fit (Goldstein et al., 2004; Clauset et al., 2009).
An unbiased estimator of the PL parameters can be obtained using MLE:

k ¼ 1þ n ∑
n

i¼1
ln

xi

xmin


 ��1

;

C ¼ k � 1ð Þxk�1
min

where xi , … ,xn are the data, and xmin is the minimum of the xi (Newman,
2005). The Kolmogorov–Smirnov (KS) test can be used to measure the good-
ness of fit for the estimated PL distribution.
The KS test is used to test the goodness of fit of data x1 , … ,xn to a given dis-

tribution f. The null hypothesis is that the data are drawn from the given distri-
bution. The test statisticD is defined byD ¼ supx F xð Þ � S xð Þj j, where F(x) is the
cumulative distribution function for f andS(x) is the empirical distribution func-
tion of the data. Comparing this statistic to a table of critical values, one can de-
termine the significance level at which to reject the null hypothesis that the data
were drawn from f. Note that for the KS test statistical significance indicates a
lack of fit between the data and a PL. Thus the inability to reject the null hypoth-
esis at a higher significance level corresponds to stronger evidence of fit.
The table for the test differs when parameters of the distribution f are

estimated from the data x1 , … ,xn. We use the KS test table reported in
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Goldstein et al. (2004) for MLE estimates of PL parameters. For further details
see Goldstein et al. (2004), Press et al. (2002), or Conover (1980). In Table A1
we report both the KS statistic of the MLE and the R2 from linear regression of
the empirical distribution function to allow for comparison with empirical
papers in which the latter method is used.

Table A1. Power law fit
under varying parameter
assumptions

Parameter changed Value KS statistic P ≥min R2

Number of products 10 0.146 (0.042) 10 (0.6) 0.912 (0.044)
50 0.060 (0.016) 37 (2.2) 0.984 (0.006)
250 0.066 (0.018) 59 (2.9) 0.992 (0.003)
500 0.078 (0.026) 60 (4.2) 0.990 (0.003)

Characteristics space dimensions 1 0.104 (0.027) 21 (1.1) 0.988 (0.003)
3 0.043 (0.014) 70 (3.8) 0.990 (0.003)
4 0.047 (0.010) 82 (3.8) 0.984 (0.004)

Characteristics space topology Torus 0.061 (0.019) 48 (2.4) 0.993 (0.003)

Product characteristics distribution Normal (5, 1) 0.114 (0.043) 17 (1.3) 0.984 (0.007)
Normal (5, 3) 0.065 (0.025) 44 (3.2) 0.990 (0.003)
Normal (5, 5) 0.050 (0.010) 44 (3.5) 0.991 (0.003)

Agent ideal point distribution Normal (5, 1) 0.112 (0.035) 15 (2.0) 0.961 (0.014)
Normal (5, 3) 0.056 (0.01) 45 (2.6) 0.988 (0.004)
Normal (5, 5) 0.062 (0.021) 49 (2.7) 0.991 (0.003)

Information delay 10 0.059 (0.022) 49 (2.5) 0.992 (0.003)
100 0.051 (0.012) 53 (2.7) 0.992 (0.003)
250 0.048 (0.01) 58 (3.3) 0.992 (0.003)
500 0.042 (0.008) 65 (3.1) 0.993 (0.002)

Feasible set radii distribution Uniform [0, 13] 0.087 (0.032) 38 (2.0) 0.983 (0.005)
Uniform [0, 11] 0.065 (0.025) 41 (3.1) 0.987 (0.005)
Uniform [0, 9] 0.055 (0.012) 44 (2.8) 0.991 (0.003)
Uniform [0, 5] 0.046 (0.012) 57 (2.7) 0.985 (0.004)
Uniform [0, 3] 0.061 (0.006) 69 (2.7) 0.945 (0.008)
Uniform [0, 1] 0.207 (0.007)** 91 (2.3) 0.643 (0.020)
Uniform [1,

ffiffiffiffiffiffi
50

p
] 0.055 (0.016) 32 (1.6) 0.986 (0.005)

Uniform [3,
ffiffiffiffiffiffi
50

p
] 0.207 (0.058)# 15 (2.6) 0.946 (0.022)

Uniform [5,
ffiffiffiffiffiffi
50

p
] 0.290 (0.043)* 12 (2.9) 0.922 (0.023)

Means and standard deviations from 20 repetitions of the simulation with the given parameter
values. All other parameters are as in Table 2. The column P ≥min is the number of products
obtaining a market share greater than or equal to 0.001. Normal distributions for agent ideal points
and product characteristics were truncated to lie in the interval [0, 10]. Distributions are for each
dimension of the characteristics space. The following symbols indicate the level of significance p
at which the null hypothesis (the data are drawn from the MLE PL distribution) can be rejected
using the mean value of the KS statistic:
#p< 0.1;
*p< 0.01;
**p< 0.001.
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