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A KOCHEN-SPECKER THEOREM FOR INTEGER MATRICES

AND NONCOMMUTATIVE SPECTRUM FUNCTORS

MICHAEL BEN-ZVI, ALEXANDER MA, AND MANUEL REYES,
WITH APPENDIX BY ALEXANDRU CHIRVASITU

Abstract. We investigate the possibility of constructing Kochen-Specker uncolorable sets
of idempotent matrices whose entries lie in various rings, including the rational numbers, the
integers, and finite fields. Most notably, we show that there is no Kochen-Specker coloring
of the n×n idempotent integer matrices for n ≥ 3, thereby illustrating that Kochen-Specker
contextuality is an inherent feature of pure matrix algebra. We apply this to generalize recent
no-go results on noncommutative spectrum functors, showing that any contravariant functor
from rings to sets (respectively, topological spaces or locales) that restricts to the Zariski
prime spectrum functor for commutative rings must assign the empty set (respectively,
empty space or locale) to the matrix ring Mn(R) for any integer n ≥ 3 and any ring R.
An appendix by Alexandru Chirvasitu shows that Kochen-Specker colorings of idempotents
in partial subalgebras of M3(F ) for a perfect field F can be extended to partial algebra
morphisms into the algebraic closure of F .

1. Introduction

The Bell-Kochen-Specker Theorem [6, 31] is a no-go theorem that demonstrates the im-
possibility of certain hidden variable theories for quantum mechanics. The usual formulation
of the Heisenberg Uncertainty Principle in terms of matrix mechanics shows that we can only
expect to have precise knowledge of the values of two quantum-mechanical observables P
and Q simultaneously if these observables (represented as operators on some Hilbert space)
commute: PQ = QP . Thus commuting observables are also called commeasurable. The
nature of the algebra of operators on a Hilbert space H (of dimension dim(H) ≥ 2) is such
that one may have an observable P commeasurable with two observables Q and Q′, but such
that Q and Q′ are not commeasurable with one another. Thus one may expect to have pre-
cise simultaneous knowledge of the values of P and Q, or of P and Q′, but not of the triple
{P,Q,Q′}. A hidden variable theory is called non-contextual if the value v(P ) assigned to
an observable P is independent of the choice of pairwise commeasurable set of observables
{P,Q1, Q2, . . . } that also happen to be measured by an experimental setup. This property
was emphasized by Bell in [6, Section V].

Now suppose that one restricts to observables that are projections (i.e., self-adjoint idem-
potent operators) on H . The value of each projection, being an eigenvalue of the operator, is
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either 0 or 1, so that such observables represent “yes-no questions” that may be asked about
the underlying quantum system. Further, if one has an orthogonal set {Pi} of projections
whose sum is the identity (such as the projections onto an orthonormal basis of H), these
classically correspond to mutually exclusive, collectively exhaustive propositions about the
system. If one measures the values of the Pi simultaneously, then compatibility with the
classical logic of Boolean algebras would require that one of these projections is assigned the
value 1 and the rest are assigned value 0. Thus, a non-contextual hidden variable theory
is expected to “color” every projection on H with a value 0 or 1 in such a way that, for
each basis {vi} of H , the projection onto exactly one of the vi is assigned the value 1. But
Kochen and Specker proved such an assignment to be impossible whenever dim(H) ≥ 3, by
providing an explicit set of orthogonal projections (represented by vectors in their ranges)
for which such a {0, 1}-valued function does not exist. Bell [6] provided an alternative proof
using Gleason’s Theorem. (Our own methods follow closely those of Kochen and Specker,
especially considering colorings of finite sets of vectors or idempotents. For this reason, we
will refer to the no-hidden-variables theorem as the Kochen-Specker Theorem.)

By now there are many fine discussions of the role of the Bell-Kochen-Specker theorem in
the logical foundations of quantum mechanics, so we have limited our discussion of this back-
ground to a brief explanation of the physical intuition behind the mathematical result. Aside
from the original papers of Bell and Kochen-Specker, we refer readers to the textbooks [5, 32]
for introductions to the theorem in the broader context of hidden variable theories, to the
article [3] for a discussion of various claimed “loopholes” to the theorem, and to the detailed
survey [24] for further discussion and references to the literature.

There is much recent interest in examining the Kochen-Specker Theorem from new per-
spectives. One of the most notable such programs is the formulation of the theorem in the
context of topos theory [28]. There are also approaches to the general theory of contextuality
through sheaf theory [1] and through graphs and hypergraphs [11, 2]. There has been recent
progress [41] on the problem of determining lower bounds for the size of a Kochen-Specker
uncolorable set of three-dimensional vectors. The theorem has also found recent application
in the well-known “Free Will Theorems” of Conway and Kochen [13, 14].

Our present work seeks to push the study of the Kochen-Specker Theorem in a new direc-
tion by allowing the study of contextuality for vectors and matrices whose entries lie in more
general coefficient rings than the real or complex numbers, and it is motivated by applica-
tions in the setting of noncommutative algebraic geometry. The original analysis of Kochen
and Specker framed the discussion of hidden variables in algebraic terms as an assignment of
values to all observables on a quantum system whose restriction to any commesaurable set of
observables forms a homomorphism. Such an assignment of values will be called a morphism
of partial rings, as discussed in more detail in Section 2 below. From this perspective, one
may view any noncommutative ring R as a purely algebraic analogue of the observables of
a quantum system, with its commutative subrings as “commeasurable” subsets of observ-
ables, so that a morphism of partial rings from R to a commutative ring can be viewed as a
“noncontextual hidden variable theory.”

In this paper we establish that contextuality—in the purely algebraic sense of inadmissi-
bility of such morphisms of partial rings—is a property inherent to any matrix ring of the
form Mn(R) for n ≥ 3, independent of the choice of the ring of scalars R. We consider this
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Table 1. Idempotent colorings and partial spectra of partial rings of matrices

partial ring R prime p Idpt(R) p-Spec(R) result

M3(Fp)sym p = 2, 3 colorable nonempty Theorem 3.4

M3(Z)sym colorable nonempty Corollary 3.5

M3(Fp)sym p ≥ 5 uncolorable empty Theorems 3.2, 3.6

M3(Z[1/30])sym uncolorable empty Theorem 3.2

M3(Q)sym uncolorable empty Theorem 3.2

M3(Z) uncolorable empty Theorem 3.9

problem from the intimately related perspectives of Kochen-Specker colorings of idempotents
and of morphisms of partial rings. Section 2 contains background and fundamental results
on partial rings and partial Boolean algebras in the sense of Kochen and Specker, showing
the precise relationships between colorability of idempotents, morphisms of partial rings,
and the spectrum p-Spec(R) of prime partial ideals of a partial ring R. Most of these rela-
tionships are expressed in the basic language of categories [33], in terms of various functors
and natural transformations. The results in this section are elementary but seem not to have
been carefully considered elsewhere; thus we hope that this will fill a gap in the literature.

Then in Section 3 we prove that algebraic analogues of the Kochen-Specker theorem do or
do not hold in various (partial) rings of matrices. These results are summarized in Table 1.
Given a ring S, we let Idpt(S) denote the set of idempotents of S, which carries the structure
of a partial Boolean algebra. A formal definition of a Kochen-Specker coloring is given in
Definition 2.7. For a commutative ring R, the set of matrices in M3(R) that are symmetric
(equal to their own transpose) is denoted M3(R)sym. We remark that the partial rings S in
Table 1 for which p-Spec(S) = ∅ admit no morphism of partial rings S → C for any (total)
commutative ring C, yielding a direct analogue of the type of obstruction that Kochen and
Specker originally sought.

Our motivation for this study stems from the recent application of the Kochen-Specker
theorem to noncommutative geometry in [37]. There it was shown that any contravariant
functor F from rings to sets (or to topological spaces) whose restriction to commutative rings
is the prime spectrum functor Spec must satisfy F (Mn(C)) = ∅ for n ≥ 3. In Section 4 we
strengthen this result to conclude that such functors F in fact satisfy F (Mn(R)) = ∅ for
every ring R and integer n ≥ 3.

Our results may be of particular interest in the study of models of quantum mechanics
defined over fields other than the real or complex numbers. Quantum physics over p-adic
fields has been a subject of interest for some time; for versions of p-adic quantum theory
in which the amplitudes of wavefunctions are p-adic (as surveyed, for instance, in [16, Sec-
tion 9]), the “matrix entries” of observable operators will also have p-adic values. Quantum
physics over finite fields has also become a topic of recent interest, including investigations
involving modal quantum theory [40], quantum computing [21, 22], and even quantum field
theory [39, 4]. Our results show that some form of contextuality persists in either these
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settings, where observables on finite-dimensional systems form matrices with entries over
exotic commutative rings.

We wish to thank Alexandru Chirvasitu for several discussions and suggestions throughout
the writing of this paper, as well as Benno van den Berg and Chris Heunen for useful
comments on a draft of the paper. We also thank the referee for several helpful suggestions.

2. Partial algebraic structures and Kochen-Specker colorings

We will largely follow the basic definitions of [31], as adapted to the ring-theoretic setting
in [37]. We follow the convention that every ring is associative and contains a multiplicative
identity, and every ring homomorphisms preserves multiplicative identity elements.

The physical intuition for the terminology below is that a partial k-algebra A consists of
“observables of a quantum system,” with x, y ∈ A commeasurable if and only if the values
of x and y can be simultaneously measured with arbitrarily high precision.

Definitions 2.1. Let k be a commutative ring. A partial algebra A over k is a set equipped
with:

• a reflexive and symmetric binary relation ⊙ ⊆ A×A, called commeasurability,
• “partial” addition and multiplication operations + and · that are functions ⊙ → A,
• a scalar multiplication operation k × A→ A, and
• zero and unity elements 0, 1 ∈ A,

satisfying the following axioms:

(1) 0 and 1 are commeasurable with all elements of A,
(2) the partial binary operations preserve commeasurability,
(3) for every pairwise commeasurable subset S ⊆ A, there exists a pairwise commeasur-

able subset T ⊆ A containing S such that the restriction of the partial operations of
A make T into a (unital, associative) commutative k-algebra.

If A and B are partial k-algebras, then a function f : A→ B is called a morphism of partial
k-algebras if f(0) = 0, f(1) = 1, f(λx) = λf(x) for all λ ∈ k and x ∈ A, and whenever
x, y ∈ A are such that x⊙ y, it follows that

• f(x)⊙ f(y) in B,
• f(x+ y) = f(x) + f(y), and
• f(xy) = f(x)f(y).

A partial algebra over the ring k = Z is called a partial ring. A morphism of partial
Z-algebras is also called a morphism of partial rings. The category of partial rings with
morphisms of partial rings is denoted pRing.

We will use the terms total k-algebra and total ring to distinguish the usual notions of
k-algebra and ring from their partial counterparts. Every total k-algebra R carries a natural
partial k-algebra structure, with the commeasurability relation given by x ⊙ y if and only
if xy = yx, and with the restricted operations from the k-algebra structure of R. In this
way we obtain a functor Ring → pRing, which allows us to view the category of rings as a
subcategory of that of partial rings. Even though this partial algebra structure on a ring
is not necessarily unique, we always view rings and algebras as partial rings and partial
algebras with this canonical structure, trusting that this will not lead to serious confusion.
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We define a partial k-subalgebra of a partial k-algebra R to be a subset S ⊆ R that
is a partial k-algebra under the restricted commeasurability relation and partial operations
inherited fromR, or equivalently, such that such that S is closed under k-scalar multiplication
as well as sums and products of commeasurable elements. If all elements of S are pairwise
commeasurable, we say that S is a commeasurable subalgebra; it is clear that S becomes a
total subalgebra under the induced operations. In case k = Z, we use the term partial subring
for a partial Z-subalgebra. (We note without further discussion that there is a subtlety in
this terminology: it is possible to have a partial ring S, whose underlying set is a subset of a
second partial ring R, such that the commeasurability relation on S is strictly coarser than
that of R. Then the inclusion function i : S → R is a morphism of partial rings, but S is not
a partial subring of R in the sense above.)

In the algebraic formulation of quantum mechanics, one views commutative algebras as
corresponding to classical systems. Then commeasurable subalgebras of a partial algebra
can be seen as “classical contexts” in which a measurement may be performed on the corre-
sponding quantum system [26, p. 48]. For more detail on this perspective, we refer readers
to the recent survey [25].

The (Zariski) spectrum of a commutative ring R, denoted Spec(R), is the set of prime ideals
of R. As discussed in Section 4 below, the spectrum is a spatial invariant of a commutative
ring; but for the time being, we will view it merely as a set. We recall the extension of the
spectrum to an invariant of partial rings as in [37].

Definition 2.2. A subset p of a partial ring R is a prime partial ideal if, for every commea-
surable subring C ⊆ R, the intersection C ∩ p is a prime ideal of C; this is equivalent to the
conditions that 1 /∈ p and if a, b ∈ R are commeasurable with ab ∈ p, then either a ∈ p or
b ∈ P . The set of all prime partial ideals of R is denoted p-Spec(R).

Given a morphism of partial rings f : R → S and p ∈ p-Spec(S), one may verify that
f−1(p) ∈ p-Spec(R); see [37, Lemma 2.10]. Using this assignment on morphisms, way we
consider p-Spec : pRingop → Set as a functor to the category of sets. In particular, if we con-
sider the category of rings as a subcategory of pRing via the functor Ring→ pRing mentioned
above, the partial spectrum restricts to the usual prime spectrum functor Spec : Ringop →
Set.

The remark and lemma below illustrate that the partial spectrum of a partial ring may be
viewed as an invariant to detect obstructions of morphisms in pRing to total commutative
rings, reminiscent of Kochen and Specker’s treatment of hidden variable theories.

Remark 2.3. It is well-known that every nonzero commutative ring has a (maximal, hence)
prime ideal and consequently has a nonempty spectrum; for instance, see [34, Theorem 1.1].
On the other hand, the results of [37] (to be generalized in Corollary 3.11) show that suffi-
ciently large matrix rings have empty partial spectrum. A useful technique to show that a
particular partial ring R has empty partial spectrum is to produce a ring morphism of partial
rings R0 → R such that p-Spec(R0) = ∅. For then functoriality of the partial spectrum
yields a function p-Spec(R)→ p-Spec(R0) = ∅, and because the only set with a function to
the empty set is the empty set itself, we deduce p-Spec(R) = ∅.

Lemma 2.4. Given a partial ring R, if p-Spec(R) = ∅ then:
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(1) There is no morphism of partial rings R → C for any nonzero (total) commutative
ring C;

(2) The colimit in cRing of the diagram of commutative subrings of R is zero.

Proof. Let f : R → C be a morphism as in (1) where C 6= 0. There exists a prime ideal
p ∈ Spec(C) as in Remark 2.3. Thus f−1(p) ∈ p-Spec(R), contradicting the assumption that
p-Spec(R) = ∅.

For (2), let L = lim−→C be the colimit in cRing of all commeasurable subrings C ⊆ R,
equipped with canonical morphisms fC : C → L. Each x ∈ R is contained in a com-
measurable subring C ⊆ R, and the construction of the colimit is such that the value
f(x) = fC(x) ∈ L is independent of the choice of C. In this way we obtain a well-defined
function f : R→ L that is readily verified to be a morphism of partial rings (since f restricts
on each commeasurable subring to a ring homomorphism). It now follows from (1) that if
p-Spec(R) = ∅, then L = 0. �

Thanks to the above, an important special case for us is the integer matrix ring Mn(Z).
This ring plays a universal role in no-go theorems, due to the fact that each ring R admits a
unique ring homomorphism Z→ R, which induces a ring homomorphism Mn(Z)→ Mn(R)
by when applied to each matrix entry. Thus a Kochen-Specker type of theorem proved for
Mn(Z) typically extends to Mn(R) for any ring R.

Kochen and Specker also considered “partial logical structures” in the following way. (We
follow the terse, but efficient, alternative definition given in [7].) Recall that a Boolean algebra
(B,∨,∧,¬, 0, 1) is a structure such that (B,∨,∧, 0, 1) is a distributive lattice with bottom
element 0 and top element 1, and a unary orthocomplement operation ¬ : B → B (i.e., ¬
is an order-reversing involution that maps each element to a lattice-theoretic complement).
The category Bool of Boolean algebras has as its morphisms the lattice homomorphisms
that preserve top and bottom elements along with the orthocomplement operation. We refer
readers to [20, 18] for the basic theory of Boolean algebras.

Definition 2.5. A partial Boolean algebra is a set B equipped with:

• a reflexive and symmetric commeasurability relation ⊙ ⊆ B ×B,
• a unary operation of negation ¬ : B → B,
• partially defined binary operations of meet and join ∧,∨ : ⊙ → B,
• elements 0, 1 ∈ B,

such that every set S ⊆ B of pairwise commeasurable elements is contained in a pairwise
commeasurable set T ⊆ B containing 0 and 1 for which the restriction of the operations
makes T into a Boolean algebra.

As in the case of partial rings, we say that a subset of a partial Boolean algebra B
is a partial Boolean subalgebra if it forms a partial Boolean algebra under the restricted
commeasurability relation and partial operations fromB. We also use the terms total Boolean
algebra and commeasurable Boolean subalgebra to refer to the obvious Boolean analogues of
the corresponding ring-theoretic notions.

Remark 2.6. There is a classical correspondence [20, §2] between Boolean algebras and
Boolean rings, which are rings in which every element is idempotent. Define a partial Boolean
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ring to be a partial ring in which every element is idempotent, or equivalently, in which every
commeasurable subring is Boolean; these form a full subcategory of pRing which we denote
by pBRing. The manner of defining Boolean algebra operations from a Boolean ring and of
defining Boolean ring operations from a Boolean algebra both extend directly by restricting
to commeasurable subalgebras or subrings. This yields an equivalence (even isomorphism!)
of categories pBool ∼= pBRing.

We say that two elements p and q of a partial Boolean algebra B are orthogonal if they
are commeasurable and p ∧ q = 0. Similarly, we define a partial ordering on B by declaring
p ≤ q if p and q are commeasurable and p ∨ q = q.

Definition 2.7. Let B be a partial Boolean algebra with a subset S ⊆ B. A black-and-
white coloring of S is called a Kochen-Specker coloring if, for every list of pairwise orthogonal
elements p1, . . . , pn ∈ B,

(1) there is at most one index i such that pi is colored white, and
(2) if furthermore p1 ∨ · · · ∨ pn = 1, then there is exactly one index i such that pi is

colored white.

While the definition above is suited to an arbitrary subset of a partial Boolean algebra B,
the algebraic theory of such colorings is best behaved in the case where one takes S = B to
be the entire algebra, as illustrated in the results outlined in the remainder of this section.
On the other hand, to prove that the (possibly infinite) partial Boolean algebra B has no
Kochen-Specker colorings, it clearly suffices to exhibit a smaller (finite) subset S of B that
has no such coloring.

Notice immediately that for any Kochen-Specker coloring of a nontrivial (0 6= 1) partial
Boolean algebra, 0 is black and 1 is white by applying the condition above to the orthogonal
decomposition 1 = 1∨ 0∨ 0. On the other hand, the trivial Boolean algebra has no Kochen-
Specker coloring, as evidenced by condition (2) applied to 0 = 0 ∨ 1 = 1.

Remark 2.8. In the physics literature, Kochen-Specker colorings are usually considered on
sets of vectors in real or complex Hilbert spaces H . Such colorings can be considered as
colorings subsets of the orthomodular lattice of orthogonal projections on H (viewed as a
partial Boolean algebra as in [27, Lemma 3.3], for instance) by identifying a vector v with
the rank-1 orthogonal projection of H onto the line spanned by v.

Next we aim to show that Kochen-Specker colorings on a piecewise Boolean B algebra
are intimately related to the appropriate notion of prime ideals and ultrafilters of B. The
suitable generalizations of these objects are as follows.

Definition 2.9. A subset I of a partial Boolean algebra B is called a partial ideal if it
satisfies the following conditions for commeasurable elements p, q ∈ B:

(i) 0 ∈ I;
(ii) If q ∈ I and p ≤ q, then p ∈ I;
(iii) If p, q ∈ I, then p ∨ q ∈ I.

A partial ideal I of B is called a prime partial ideal if it additionally satisfies the following
condition for all commeasurable p, q ∈ B:
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(iv) 1 /∈ I, and if p ∧ q ∈ I, then p ∈ B or q ∈ B (or equivalently, for all p ∈ B, either p
or ¬p is in B but not both).

The set of prime partial ideals of B will be denoted p-Spec(B).

Definition 2.10. A subset F of a partial Boolean algebra B is called a partial filter if it
satisfies the following conditions for commeasurable elements p, q ∈ F :

(i) 1 ∈ F ;
(ii) p ∈ F and p ≤ q imply q ∈ F ;
(iii) p, q ∈ F implies p ∧ q ∈ F .

A partial filter F is called a partial ultrafilter if it additionally satisfies the following condition
for all commeasurable p, q ∈ B:

(iv) 0 /∈ B and if p ∨ q ∈ F , then p ∈ B or q ∈ B (or equivalently, for all p ∈ B, either p
or ¬p is in F but not both).

The definitions above coincide with the usual definitions of prime ideals and ultrafilters in
case the partial Boolean algebra is in fact a total Boolean algebra. Furthermore, it is clear
that a subset X of a partial Boolean algebra B is a partial ideal (respectively, prime partial
ideal, partial filter, or partial ultrafilter) if and only if X ∩C is an ideal (respectively, prime
ideal, filter, or ultrafilter) of C for every commeasurable Boolean subalgebra C of B. As
in the classical case of total Boolean algebras, one may readily verify that a subset I of a
partial Boolean algebra B is a partial ideal if and only if ¬I = {¬x | x ∈ I} is a partial filter
of B, and that I is a prime partial ideal if and only if ¬I is an ultrafilter, if and only if B \ I
is an ultrafilter (equal to ¬I).

We also note that if B is a partial Boolean algebra and I is a subset of B, then I is a prime
partial ideal of B considered as a partial Boolean algebra if and only if I is a prime partial
ideal of B when considered as a partial Boolean ring. (This is perhaps most easily verified
considering the intersection I ∩ C for all commeasurable Boolean subalgebras C ⊆ B, and
recalling that the two notions coincide in the classical case of total Boolean algebras and
rings.) Thus there is no danger in our use of the notation p-Spec(B) for the spectrum of
prime partial ideals in both senses, as these two spectra in fact coincide. This assignment
forms a functor p-Spec: pBoolop → Set, which acts on a morphism f : A → B by sending
p ∈ p-Spec(B) to Spec(f)(p) = f−1(p) ∈ p-Spec(A).

Proposition 2.11. Let B be a partial Boolean algebra, and fix a black-and-white coloring of
B. The coloring is a Kochen-Specker coloring if and only if the set of white elements forms
a partial ultrafilter of B, if and only if the set of black elements forms a prime partial ideal
of B.

Proof. First suppose that the coloring is Kochen-Specker; we verify the four conditions of
Definition 2.10 for the set of white elements. Condition (i) follows by applying the Kochen-
Specker condition to the orthogonal decomposition 1 = 1∨0∨0. Condition (iv) follows easily
by applying the Kochen-Specker condition to the orthogonal decomposition 1 = p ∨ (¬p).
For condition (ii), suppose that p ≤ q in B with p white. In the orthogonal decomposition
1 = p∨ (q ∧¬p) ∨¬q, because p is white the third term ¬q must be black, so that it follows
from (iv) that q is white. For (iii), suppose that p, q ∈ B are commeasurable and white. In
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the decomposition

1 = (p ∧ q) ∨ (p ∧ ¬q) ∨ (q ∧ ¬p) ∨ ¬(p ∨ q),
exactly one of the four joined terms on the right is white. If any of the second, third, or
fourth terms is white, then its complement is black by (iv); as each of these elements x has
either p ≤ x or q ≤ x, we would deduce from condition (ii) the contradiction that either p
or q is black. Thus we must have p ∧ q white as desired.

Conversely, suppose that the set of white elements of the coloring satisfies conditions
(i)–(iv) of Definition 2.10. To verify the Kochen-Specker condition, suppose

(2.12) 1 = p1 ∨ · · · ∨ pn
for pairwise orthogonal elements pi ∈ B; we prove inductively that exactly one of the pi is
white. The trivial case n = 1 follows from (i). In case n = 2, the fact that exactly one of p1
or p2 = ¬p1 is white follows from (iv). Proceeding inductively, suppose the Kochen-Specker
condition holds for all orthogonal decompositions of the unit into n − 1 ≥ 2 elements. We
may rewrite (2.12) as

1 = (p1 ∨ p2) ∨ p3 ∨ · · · ∨ pn
and deduce by the inductive hypothesis that exactly one of q = (p1 ∨ p2), p3, . . . , pn is white.
If one of p3, . . . , pn is white then q is black. Applying (ii) to p1, p2 ≤ q we obtain that
p1 and p2 are both black, as desired. Now in case p3, . . . , pn are black and q is white, we
only need to verify that exactly one of p1 or p2 is white. In the orthogonal decomposition
1 = q ∨ ¬q = p1 ∨ p2 ∨ (¬q), condition (iv) implies that ¬q is black. If p1 and p2 are both
black, then ¬(p1 ∨ p2) = (¬p1) ∧ (¬p2) is a join of white elements and therefore is white
by (iii), implying the contradiction that p1 ∨ p2 = q is black. Thus at least one of p1 or p2 is
white. Because p1 ∧ p2 = 0 = ¬1 is black, condition (iii) now shows that only one of p1 or p2
can be white, as desired.

The set of white elements of the coloring is an ultrafilter if and only if its complement,
the set of black elements, is a prime partial ideal. This completes the proof. �

Let KS(B) denote the set of Kochen-Specker colorings of a partial Boolean algebra B.
Given a morphism f : B1 → B2 in pBool and a Kochen-Specker coloring of B2, one may
readily verify using Proposition 2.11 that the coloring of B1 given by declaring b ∈ B1 white
if and only if f(b) ∈ B2 is white yields a Kochen-Specker coloring of B1. Thus we obtain a
functor KS: pBoolop → Set.

In the following, we let 2 = {0, 1} denote the two-element Boolean algebra, which is the
initial object of both the category of Boolean algebras and pBool.

Theorem 2.13. Let B be a partial Boolean algebra. Then the following three sets are in
bijection:

(1) The set pBool(B, 2) of morphisms of partial Boolean algebras B → 2;
(2) The set KS(B) of Kochen-Specker colorings of B;
(3) The set p-Spec(B) of prime partial ideals of B.

These bijections are natural in B and thus form natural isomorphisms pBool(−, 2) ∼= KS ∼=
p-Spec as functors pBoolop → Set.



10 MICHAEL BEN-ZVI, ALEXANDER MA, AND MANUEL REYES

Proof. We will define functions

(2.14) p-Spec(B)

&&▼
▼▼

▼▼
▼▼

▼▼
▼

pBool(B, 2)

77♦♦♦♦♦♦♦♦♦♦♦

KS(B)oo

as follows. Given φ ∈ pBool(B, 2), set pφ = φ−1(0) ⊆ B. Because φ can equivalently be
viewed as a morphism of partial Boolean rings B → 2, we find that pφ = p-Spec(φ)(0) ∈
p-Spec(B).

Next, given p ∈ p-Spec(B), it follows from Proposition 2.11 that the coloring of B assigning
black to all elements of p and white to all elements of B \ p is a Kochen-Specker coloring.
This yields our function p-Spec(B)→ KS(B).

Finally, given a Kochen-Specker coloring of B, define a function φ : B → 2 by φ(b) = 0 if
b ∈ B is colored black and φ(b) = 1 if b is colored white. Then φ−1(0) is a prime partial ideal
of B by Proposition 2.11. Now the restriction of φ to any commeasurable subalgebra C of B
is such that φ|−1

C (0) = φ−1(0)∩C is a prime ideal, and it is well-known [18, Lemma 22.1] that
this implies that φ|C is a homomorphism of Boolean algebras. So φ restricts to a Boolean
algebra homomorphism on all commeasurable subalgebras, from which we conclude that it
is a morphism in pBool(B, 2).

The composite of the three functions in the cycle (2.14) beginning at any of the three sets
yields is readily seen to be the identity. Thus each of the functions is bijective. Finally, it is
straightforward to see from the construction of these bijections that they are natural in B,
yielding natural isomorphisms between the three functors pBoolop → Set as claimed. �

Given a partial ring R, let Idpt(R) = {e ∈ R | e = e2} denote the set of idempotents
elements of R. Given commeasurable elements e, f ∈ Idpt(R), it is straightforward to verify
that e∨ f = e+ f − ef and e∧ f = ef are both idempotents. Clearly 0, 1 ∈ Idpt(R) as well.
It is straightforward to verify that the above operations endow Idpt(R) with the structure of
a partial Boolean algebra. Furthermore, any morphism of partial rings f : R → S restricts
to a morphism of partial Boolean algebras Idpt(R) → Idpt(S). In this way we may view
this assignment as a functor

Idpt : pRing→ pBool .

In particular, if we again consider the category of rings to be a subcategory of pRing, then
this restricts to a functor Idpt : Ring→ pBool.

It is straightforward to verify that with the above definitions in place, if p ∈ p-Spec(R)
for a partial ring R, then p ∩ Idpt(R) is a prime partial ideal of the partial Boolean algebra
of idempotents. In this way one obtains a natural transformation of functors pRingop → Set

(2.15) p-Spec→ p-Spec ◦ Idpt ∼= KS ◦ Idpt .
This allows us to deduce information about the partial spectrum of a ring from the (un)colorability
of its idempotents.

Corollary 2.16. If R is a partial ring such that the partial Boolean algebra Idpt(R) has no
Kochen-Specker colorings, then p-Spec(R) = ∅.
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Proof. The natural transformation (2.15) provides a function p-Spec(R) → KS(Idpt(R)).
Because the latter set is empty, so is the former. �

A square matrix over a commutative ring is said to be symmetric if it is equal to its own
transpose. For a commutative ring R and positive integer n, we let Mn(R)sym denote the
subset of Mn(R) consisting of symmetric matrices, and we let Proj(R) = Idpt(Mn(R)sym)
denote the set of symmetric idempotents, which we call projections. It is clear that Mn(R)sym
is a partial R-subalgebra of Mn(R), and that Proj(Mn(R)) is a partial Boolean subalgebra
of Idpt(Mn(R)). Together, we obtain a diagram of sets

p-Spec(Mn(R)sym)

��

p-Spec(Mn(R))oo

��

p-Spec(Proj(Mn(R)) p-Spec(Idpt(Mn(R))oo

that is easily shown to commute. Thus, to show that p-Spec(Mn(R)) = ∅, it suffices to
show that any one of the other three partial spectra is empty.

The next lemma shows that the nonexistence of either Kochen-Specker colorings or of
prime partial ideals extends from matrix rings of a fixed order to all matrix rings of larger
order. Throughout the following, for a ring R, we let Eij ∈ Mn(R) denote the matrix unit
whose (i, j)-entry is 1 and whose other entries are 0.

Lemma 2.17. Let R be a ring and let m ≥ 1 be an integer.

(1) If Idpt(Mm(R)) has no Kochen-Specker colorings, then also Idpt(Mn(R)) has no
Kochen-Specker colorings for all integers n ≥ m.

(2) If p-Spec(Mm(R)) = ∅, then also p-Spec(Mn(R)) = ∅ for all integers n ≥ m.

Now assume furthermore that R is commutative.

(3) If Proj(Mm(R)) has no Kochen-Specker colorings, then also Proj(Mn(R)) has no
Kochen-Specker colorings for all integers n ≥ m.

(4) If p-Spec(Mm(R)sym) = ∅, then also p-Spec(Mn(R)sym) = ∅ for all integers n ≥ m.

Proof. To prove (1), it suffices by induction assume that Idpt(Mn(R)) has no Kochen-Specker
coloring and deduce that Idpt(M) has no such coloring for M = Mn+1(R). Suppose toward
a contradiction that there Idpt(M) does have a Kochen-Specker coloring. Consider the
diagonal idempotents Eii for i = 1, . . . , n, n + 1. It follows that exactly one of the Eii is
white; assume without loss of generality that this is E11.

For the idempotent E = E11 + · · · + Enn = 1 − En+1,n+1 ∈ M , because E11 ≤ E in
Idpt(M) we have that E is white according to Proposition 2.11. The corner ring EME
has multiplicative identity E, so that the restriction of the coloring to Idpt(EME) satisfies
condition (i) of Proposition 2.11. But conditions (ii)–(iv) of the same lemma are easily
seen to pass to Idpt(EME), from which it follows that this restriction is a Kochen-Specker
coloring. But it is clear from the choice of E that EME ∼= Mn(R). Thus we obtain the
contradiction that Idpt(Mn(R)) ∼= Idpt(EME) has a Kochen-Specker coloring.

The proof of (2) also proceeds inductively, showing that any p ∈ p-Spec(M) for M =
Mn+1(R) induces a prime partial ideal of Mn(R). This is done similarly to the proof of
part (1) above, this time noting that without loss of generality we may assume E11 ∈ p with
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the rest of the Eii /∈ p, so that for E = E11 + · · ·+ Enn the restriction p ∩ EME is a prime
partial ideal of EME ∼= Mn(R).

The proofs of (3) and (4) follow the same arguments as those given above with only
minor modifications: the idempotents Eii and E above are symmetric, so that the transpose
restricts to an involution of the corner ring EME, resulting in isomorphisms EMEsym

∼=
Mn(R)sym. �

Remark 2.18. If S ⊆ Idpt(Mn(R)) is a subset that has no Kochen-Specker coloring, then
one may adapt the proof above to explicitly construct a new set S+ ⊆ Idpt(Mn+1(R))
that also has no Kochen-Specker coloring, by taking the diagonal matrix units Eii for i =
1, . . . , n, n + 1 along with isomorphic copies of S in each of the partial Boolean algebras
Idpt((1− Eii)Mn+1(R)(1− Eii)) ∼= Idpt(Mn(R)).

3. Colorability of idempotent matrices over various rings

In the following, for a field F , we consider the F -vector spaces F n to consist of column
vectors. Given vectors u, v ∈ F n, we denote their usual “dot product” by

u · v = uTv =
∑

uivi.

This defines a bilinear form on F n, but this may be a degenerate pairing depending upon
the ground field F .

Lemma 3.1. Let F be a field, and let v ∈ F n \ {0}. Then the following are equivalent:

(1) There is a symmetric idempotent in Mn(F ) with range Span(v);
(2) The sum of squares vTv ∈ F is nonzero.

In case vTv = λ 6= 0, the symmetric idempotent with range Span(v) is Pv = λ−1vvT . Finally,
given u, v ∈ F n with uTu 6= 0 6= vTv, the projections Pu and Pv are orthogonal if and only if
u · v = 0.

Proof. Assume (1) holds, so that P = P 2 = P T ∈Mn(F ) with range(P ) = Span(v). Because
v 6= 0, we have P 6= 0. Thus some entry of P is nonzero, say the (i, j)-entry. Let vi and vj
denote the ith and jth rows of P respectively. Then the (i, j)-entry of P = P 2 = P TP is
equal to vTi vj 6= 0. But as vi, vj ∈ range(P ) = Span(v), the product vTi vj is a scalar multiple
of vTv. Thus (2) must hold.

Conversely, suppose (2) holds, and set λ = vTv 6= 0. Then P = λ−1vvT satisfies P = P T

and
P 2 = (λ−1vvT )(λ−1vvT ) = λ−2v(vTv)vT = λ−1vvT = P.

Given any w ∈ F n, since Pw = λ−1vvTw = (λ−1v · w)v ∈ Span(v) and Pv = v, we see that
range(P ) = Span(v). Thus (1) holds.

Finally, suppose u, v ∈ F n are as in the last sentence of the lemma. If u · v = 0 then we
have

PuPv = (uTu)−1uuT · (vTv)−1vvT = (uTu · vTv)−1u(uTv)vT = 0,

and PvPu = (PuPv)
T = 0. Conversely, suppose that PuPv = 0. Then

u · v = (Puu) · (Pvv) = (P T
v Puu) · v = (PvPuu) · v = 0

as desired. �
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The lemma above allows us to equate Kochen-Specker colorings of rank-1 symmetric pro-
jections over a field F with Kochen-Specker colorings of vectors v satisfying vTv 6= 0, in a
manner analogous to Remark 2.8.

Our first uncolorability result makes use of one of the few vector configurations in the
literature on Kochen-Specker colorings for which all vectors have integer entries. An account
is given in [9] (also [10, Chapter 3]) of a proof of the Kochen-Specker Theorem due to Kurt
Schütte, making use of a certain classical tautology that does not remain a tautology when
interpreted in the partial Boolean algebra Proj(M3(R)). The orthogonal projections used
to represent this logical proposition happen to be projections onto lines spanned by vectors
with integer entries. Though these vectors do not have unit length, and their normalizations
have irrational entries, we observe in the proof below that the resulting projection matrices
do in fact have rational entries. We recall below that for any rational q ∈ Q, the ring Z[q]
denotes the subring of Q generated by the integers and q, and consists of elements of the
form f(q) where f is any polynomial with integer entries.

Theorem 3.2. The partial Boolean algebra Proj(M3(Z[1/30]) has no Kochen-Specker color-
ing. Consequently, the partial ring M3(Z[1/30])sym has no prime partial ideals.

Proof. Consider the uncolorable set of vectors [9, Section 4] used in Schütte’s proof of
the Kochen-Specker theorem. These are vectors in Z3, and each of the vectors v is such
that ‖v‖2 = vTv divides 30. Thus each of the corresponding orthogonal projections pv =
(vTv)−1vvT lies in Proj(M3(Z[1/30]) by Lemma 3.1. Thus the argument of Schütte and Bub
in fact shows more generally that Proj(M3(Z[1/30])) has no Kochen-Specker coloring.

Because Proj(M3(Z[1/30])) = Idpt(M3(Z[1/30])sym), the claim about prime partial ideals
follows from Corollary 2.16. �

Let F be a field and consider the canonical ring homomorphism Z→ F . If the characteris-
tic of F does not divide 30, then this homomorphism factors uniquely as Z→ Z[1/30]→ F .
This induces a ring homomorphism M3(Z[1/30])→M3(F ), along with a morphism of partial
Boolean algebras Proj(M3(Z[1/30])) → Proj(M3(F )). By functoriality of Kochen-Specker
colorings, the theorem above implies that Proj(M3(F )) has no Kochen-Specker colorings and
therefore that M3(F )sym has no prime partial ideals. In particular, these remarks apply to
the field F = Q of rational numbers.

Remark 3.3. In the literature addressing finite-precision loopholes to the Kochen-Specker
theorem (as in [35, 12] and many further references discussed in [3]) it is well-documented
that the set S = Q3 ∩ S2 of vectors with rational coordinates on the unit sphere has a
Kochen-Specker coloring [19]. The apparent conflict between this fact and the uncolorability
of Proj(M3(Q)) may be resolved as follows. The mapping φ : S → Proj(M3(Q)) given
by φ(v) = Pv = ‖v‖−2vvT = vvT preserves orthogonality by Lemma 3.1 and has image
contained in the rank-1 rational projections. By the same lemma, every rank-1 projection
in Proj(M3(Q)) is of the form P = Pv = ‖v‖−2vvT for any nonzero vector v in the range of
P . The image of φ forms a proper subset of the rank-1 rational projections, as one readily

verifies that for vectors such as v =
(

1 1 1
)T

such that v/‖v‖ has irrational entries, the
projection Pv lies outside of the image of φ. So the rational unit vectors correspond to a
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Kochen-Specker colorable subset of the Kochen-Specker uncolorable set of all rank-1 rational
projections.

On the other hand, if F has characteristic p dividing 30 (i.e., p = 2, 3, 5), then the
ring homomorphism Z → F does not factor through Z[1/30], so we cannot make the same
conclusion about Kochen-Specker colorings of projections or prime partial ideals inM3(F )sym.
In the following we use Fq to denote the finite field with q elements. In case F = Fp we will
show below that such Kochen-Specker colorings and prime partial ideals do in fact exist in
case p = 2, 3 but not in case p = 5.

Theorem 3.4. There exist Kochen-Specker colorings of Proj(M3(Fp)) and prime partial
ideals of the partial rings M3(Fp)sym for p = 2, 3.

Proof. We establish the existence of Kochen-Specker colorings below. Then it will follow
from Lemma A.1 that there exists a morphism of partial F -algebras φ : M3(Fp)sym → K for
a field extension K of Fp, making φ−1(0) a prime partial ideal of M3(Fp)sym for p = 2, 3.
p = 2: There are four vectors v ∈ F3

2 satisfying vTv 6= 0, yielding four rank-1 projections
in M3(F2); three of these projections are the diagonal matrix units Eii = eie

T
i from the

standard basis vectors {ei | i = 1, 2, 3}, and the fourth is

U = uuT =





1 1 1
1 1 1
1 1 1



 for u =





1
1
1



 .

Thus Proj(M3(F2)) has two maximal commeasurable Boolean subalgebras: one is generated
by the Eii (and therefore isomorphic to the power set algebra on a three-element set), and
the other is given by {0, U, I−U, I} (isomorphic to the power set of a two-element set). Now
any independent choice of a Kochen-Specker coloring on each of these maximal commeasur-
able subalgebras (given by any homomorphism into 2) gives a Kochen-Specker coloring of
Proj(M3(F2)).
p = 3: In this case every projection in M3(F3) is a sum of orthogonal rank-1 projections,

of which there are nine. In fact, there are only four orthogonal triples of rank-1 projections
that sum to the identity (the off-diagonal entries that are omitted below are zero):

I =





1
0

0



 +





0
1

0



 +





0
0

1





=





1
0

0



 +





0
2 2
2 2



 +





0
2 1
1 2





=





0
1

0



 +





2 0 2
0 0 0
2 0 2



 +





2 0 1
0 0 0
1 0 2





=





0
0

1



 +





2 2
2 2

0



 +





2 1
1 2

0
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As each of the diagonal matrix units Eii is contained in T = {E11, E22, E33} and exactly one
other orthogonal triple, it is easy to verify that any Kochen-Specker coloring of the triple T
can be extended to a Kochen-Specker coloring of the nine projections above and thereby to
all of Proj(M3(F3)). �

Corollary 3.5. There exist morphisms of partial rings M3(Z)sym → Fp6 for p = 2, 3. Con-
sequently, p-Spec(M3(Z)sym) 6= ∅.

Proof. For p = 2, 3 let M3(Z)sym → M3(Fp)sym be the canonical homomorphism that acts
“modulo p” in each matrix entry. By Theorem 3.4 and Lemma A.1 (see also Remark A.2),
there is a morphism of partial Fp-algebras M3(Fp) → Fp6, since Fp6 is up to isomorphism
the unique degree six extension of Fp. The composite of these morphisms yields the desired
function, and the preimage of the zero ideal of Fp6 is a prime partial ideal of M3(Z)sym. �

Next we will show that the projections in M3(F5) do not have a Kochen-Specker coloring.
To this end, we note that each v ∈ F3

5 satisfying vTv 6= 0 is a scalar multiple of a unique
vector in the list below.

v1 =





1
0
0



 v2 =





0
1
0



 v3 =





0
0
1



 v4 =





1
1
0



 v5 =





1
0
1





v6 =





0
1
1



 v7 =





−1
1
0



 v8 =





−1
0
1



 v9 =





0
−1
1



 v10 =





1
1
1





v11 =





−1
1
1



 v12 =





1
−1
1



 v13 =





1
1
−1



 v14 =





2
1
1



 v15 =





1
2
1





v16 =





1
1
2



 v17 =





−2
1
1



 v18 =





1
−2
1



 v19 =





1
1
−2



 v20 =





−2
2
1





v21 =





−2
1
2



 v22 =





1
−2
2



 v23 =





2
−2
1



 v24 =





2
1
−2



 v25 =





1
2
−2





Thus the 25 rank-1 symmetric projections are exactly those of the form Pi = Pvi for the
vectors vi above.

Suppose that Q ∈ M3(F5) is an invertible matrix with Q−1 = QT . If A ∈ M3(F5)sym
then (QAQ−1)T = (Q−1)TATQT = QAQ−1, so that conjugation by Q restricts from an
automorphism of the F5-algebra M3(F5) to a partial F5-algebra automorphism of M3(F5)

sym

and to an automorphism of the partial Boolean algebra Proj(M3(F5)). This applies in
particular if Q is any permutation matrix.
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Theorem 3.6. There is no Kochen-Specker coloring of Proj(M3(F5)). Thus M3(F5)sym has
no prime partial ideals.

Proof. Assume for contradiction that there is a Kochen-Specker coloring of the rank-1 pro-
jections in M3(F5); this induces a coloring on the vectors {vi | i = 1, . . . , 25} above.

As remarked above, conjugation by any 3×3-permutation matrix restricts to an automor-
phism of the partial Boolean algebra Idpt(M3(F5)). This automorphism clearly preserves
the rank of a projection. So it restricts to a bijection on the set of rank-1 projections
{Pi | i = 1, . . . , 25} defined by the vectors above. These automorphisms permute the di-
agonal matrix units Eii = Pi for i = 1, 2, 3. Thus after conjugating by an appropriate
permutation matrix, we may assume that the coloring of the vectors is such that v1, v2 are
black and v3 is white. By orthogonality of the triple {v3, v4, v7}, we must have v4 and v7
colored black.

Similarly, conjugation by the symmetric matrix Q =
(

1 0 0
0 −1 0
0 0 1

)

restricts to an automor-

phism of Proj(M3(F5)) that preserves rank. This automorphism fixes P1 (as Qv1 = v1) and
permutes P6 with P9 (as Qv6 = v9 and Qv9 = v6). Thus, after conjugating by Q if necessary,
we assume without loss of generality that v6 is colored black and v9 is white. From the
following orthogonality relations, we deduce the colorings below:

{v9, v10, v17} orthogonal =⇒ v10 black,

{v9, v11, v14} orthogonal =⇒ v11 black,

{v4, v11, v20} orthogonal =⇒ v20 white,

{v7, v10, v19} orthogonal =⇒ v19 white,

{v18, v20, v25} orthogonal =⇒ v25 black,

{v19, v21, v22} orthogonal =⇒ v21 black,

{v5, v11, v21} orthogonal =⇒ v5 white,

{v6, v13, v25} orthogonal =⇒ v13 white.

But now orthogonality of the triple {v5, v13, v24} contradicts the coloring of the vectors v5
and v13 above, establishing uncolorability of the set of projections {Pi}25i=1 and consequently
the uncolorability of Proj(M3(F5)).

Because Proj(M3(F5)) = Idpt(M3(F5)sym), the second claim follows from the first by
Corollary 2.16. �

Our results on Kochen-Specker colorings on symmetric idempotents over finite fields has
the following consequence for Kochen-Specker colorings of vectors in R3 whose coordinate
entries happen to be integers (such as those considered in [9]).

Corollary 3.7. Suppose that {vi} is a set of vectors in R3 for which there is no Kochen-
Specker coloring. If all vi have integer coordinates, then the least common multiple of the
integers vi · vi = ‖vi‖2 is divisible by 6.

Proof. Let N = lcm{‖vi‖2} be the least common multiple described in the statement. Given
any prime p, entrywise application of the canonical map Z ։ Fp, denoted x 7→ x, induces a
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linear mapping Z3 → F3
p, which we similarly denote by v 7→ v. Suppose that p ∤ N ; then each

of the images vi·vi = vi · vi ∈ Fp are nonzero. Thus we obtain projections Qi = (vi · vi)−1vivi
T

in Proj(M3(Fp)) for all i, with Qi and Qj orthogonal whenever vi is orthogonal to vj . So if
the set {vi} has no Kochen-Specker coloring, the same must be true of the set {Qi}, making
Proj(M3(Fp)) uncolorable.

But now it follows from Theorem 3.4 that N must be divisible by both p = 2 and p = 3,
yielding the desired result. �

Related to the results presented above, we ask two related questions:

Question 3.8. (A) Can the conclusion of the corollary above be strengthened to state that
30 = 2 · 3 · 5 must divide the least common multiple of the ‖vi‖2?

(B) Does Proj(M3(Z[1/6])) have a Kochen-Specker coloring?

The method of proof used above does not extend to the prime p = 5 because of the uncol-
orability of Proj(M3(F5)), which leads to question (A). Note that every rank-1 projection in
M3(Z[1/6]) is of the form ‖v‖−2vvT for some v ∈ Z3. Choosing v to have the least common
multiple of its entries equal to 1, then we may conclude that ‖v‖2 = v · v divides a power
of 6. So a negative answer to question (B) would imply a negative answer to question (A).

We now turn our attention to partial Boolean algebras of (non-symmetric) idempotents
over various rings, beginning with finite fields. While Theorem 3.9 will be generalized in
Corollary 3.11 below, the uncolorable set of idempotents to be constructed for the proof of
Theorem 3.10 is actually motivated by this preliminary result regarding finite fields.

The following theorem was communicated to us by Alexandru Chirvasitu, whom we thank
for kindly allowing us to include it here. Its proof uses some well-known methods of counting
subspaces in vector spaces over finite fields via Gaussian binomial coefficients; see [36], for
instance. Let q be a prime power, let F = Fq be the field of q elements, and let V be an
F -vector space of dimension n. The number of k-dimensional subspaces of V is given by
the number of ordered linearly independent lists of k vectors in V (each of which spans a
k-dimensional subspace) divided by the number of bases for a k-dimensional vector space:

(

n

k

)

q

=
(qn − 1)(qn − q) · · · (qn − qk−1)

(qk − 1)(qk − q) · · · (qk − qk−1)
.

The dual vector space V ∗ = HomF (V, F ) is also an n-dimensional vector space. Given
a subspace W ⊆ V of dimension k, there is a corresponding subspace W⊥ = {f ∈ V ∗ |
f(W ) = 0} of dimension n− k in V ∗. Note that W1 ⊆ W2 implies W⊥

2 ⊆ W1 for subspaces
Wi of V . Because V ∼= V ∗ as vector spaces, this provides a bijection between the subspaces
of V having dimension k and the subspaces of V having dimension n − k, which reverses
inclusion of subspaces.

For instance, when V = F 3 so that n = 3, the number of 1-dimensional subspaces in V
is
(

3
1

)

q
= (q3 − 1)/(q − 1) = q2 + q + 1 and the number of 2-dimensional subspaces is also

(

3
2

)

q
= q2 + q + 1. Also, the number of 2-dimensional subspaces of V that contain a given

1-dimensional subspace is equal to the number of 1-dimensional subspaces contained in a
given 2-dimensional subspace, and is therefore equal to

(

2
1

)

q
= (q2 − 1)/(q − 1) = q + 1.
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Theorem 3.9. Let p be a prime such that p ≡ 2 (mod 3). Then Idpt(M3(Fp)) has no
Kochen-Specker coloring.

Proof. We prove the contrapositive. Suppose that there exists a Kochen-Specker coloring
of Idpt(M3(Fp)). Consider the set S of unordered orthogonal triples {E1, E2, E3} of rank-1
idempotents in M3(Fp) such that E1 + E2 + E3 = I. Given a rank-1 idempotent E, let
SE = {T ∈ S | E ∈ T}; we claim that these sets have the same cardinality for all E. Indeed,
the general linear group G = GL3(Fp) acts transitively on the rank-1 idempotents in M3(Fp)
via conjugation, and this induces an action on S by

UT = {UEiU
−1 | i = 1, 2, 3} for U ∈ G and T = {E1, E2, E3} ∈ S.

Now given rank-1 idempotents E and F , if we fix U ∈ G with UEU−1 = F , the action of U
on S carries the elements of SE to the elements of SF . Thus these two sets are in bijection,
establishing the claim. We let N = |SE | denote the number of triples in S that contain any
given rank-1 idempotent E, independent of E.

By the Kochen-Specker property of the coloring, each T ∈ S contains exactly one white
idempotent and two black idempotents. Thus the number of white rank-1 idempotents
is equal to |S|/N and the number of black rank-1 idempotents is equal to 2(|S|/N). In
particular, the number of rank-1 idempotents is 3(|S|/N), a multiple of 3.

On the other hand, each rank-1 idempotent is uniquely determined by the choice of its
range, which can be any line in the vector space V = F3

p, along with its kernel, which
can be any plane in V not containing that line. The number of lines in V is equal to
(

3
1

)

p
= p2 + p + 1. The number of planes not containing a given line in V is equal (by

duality) to the number of lines not contained in a given plane, and is therefore equal to
(

3
1

)

p
−
(

2
1

)

p
= (p2 + p + 1)− (p + 1) = p2. Thus we may alternatively calculate the number

of rank-1 idempotents in M3(Fp) to be equal to (p2 + p+ 1)p2.
It follows that 3 divides (p2 + p+1)p2. This is only possible if p 6≡ 2 (mod 3), completing

the proof. �

At this point, we are able to deduce that for any prime p 6= 3, there is no Kochen-Specker
coloring of Idpt(M3(Fp)). Indeed, if p /∈ {2, 3, 5}, then the existence of a (unique) ring homo-
morphism Z[1/30]→ Fp induces morphisms of partial Boolean algebras Proj(M3(Z[1/30])) ⊆
Idpt(M3(Z[1/30])→ Idpt(M3(Fp)). It follows from Theorem 3.2 and functoriality of Kochen-
Specker colorings that Idpt(M3(Fp)) has no Kochen-Specker colorings. On the other hand,
for p ∈ {2, 5} the result follows directly from Theorem 3.9. But as we have already men-
tioned, a far stronger conclusion will be made in Corollary 3.11 below.

We will now define a set S ⊆ Idpt(M3(Z)) that will be shown to have no Kochen-Specker
coloring. For a commutative ring R, given a basis {u, v, w} of the free R-module R3, we use
the notation

[

u v w
]

to denote the the idempotent in M3(R) with range spanned by u
and with kernel spanned by v and w. (This may be explicitly constructed via the invertible
matrix U =

(

u v w
)

as UE11U
−1.) The argument given in the proof of Theorem 3.9 shows

that number of rank-1 idempotents in M3(F2) is equal to 22(22 + 2+ 1) = 28. Below we list
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all 28 idempotent matrices of rank 1 in M3(F2) in terms of the above notation.

P1 =





1 0 0
0 1 0
0 0 1



 P2 =





0 1 0
1 0 0
0 0 1



 P3 =





0 1 0
0 0 1
1 0 0



 P4 =





0 1 0
1 0 1
0 0 1





P5 =





0 1 0
1 0 1
1 0 0



 P6 =





0 1 0
0 0 1
1 0 1



 P7 =





0 1 0
1 0 0
1 0 1



 P8 =





1 0 1
0 1 0
0 0 1





P9 =





1 0 1
0 1 0
1 0 0



 P10 =





0 0 1
0 1 0
1 0 1



 P11 =





1 0 0
0 1 0
1 0 1



 P12 =





1 0 1
0 0 1
0 1 0





P13 =





1 0 1
1 0 0
0 1 0



 P14 =





0 0 1
1 0 1
0 1 0



 P15 =





1 0 0
1 0 1
0 1 0



 P16 =





1 0 1
1 1 0
1 0 0





P17 =





1 0 0
1 1 0
1 0 1



 P18 =





0 0 1
1 1 0
1 0 1



 P19 =





1 0 1
1 1 0
0 1 0



 P20 =





1 1 0
0 1 1
0 0 1





P21 =





0 1 0
1 1 1
0 0 1



 P22 =





0 0 1
1 0 1
1 1 0



 P23 =





1 0 1
1 0 0
1 1 0



 P24 =





1 0 1
0 1 0
1 1 0





P25 =





0 1 0
0 1 1
1 0 1



 P26 =





1 1 0
1 0 1
0 1 0



 P27 =





1 0 1
0 0 1
1 1 0



 P28 =





1 1 0
1 1 1
1 0 1





Considering the column vectors above as elements of Z3, note that each triple of vectors
given above forms a basis of the free Z-module Z3. (This can be easily verified, for instance,
by noting that the matrix U =

(

u v w
)

formed by placing the three vectors from a triple
into its columns has determinant in the group of units {±1} ⊆ Z.) Thus if we interpret the
above notation in M3(Z), the Pi for 1 ≤ i ≤ 28 define distinct rank-1 idempotents in M3(Z).
We let S = {Pi | 1 ≤ i ≤ 28} denote the set of 28 idempotents in M3(Z) given above.

Note that two idempotents P =
[

u v w
]

and Q =
[

x y z
]

presented as above are
orthogonal if and only if the range vector u is contained in the Z-span of the kernel vectors
y and z, and also x is contained in the Z-span of v and w.

Under the canonical ring homomorphism φ : M3(Z)→M3(F2) induced entrywise by Z ։

F2, the set S is constructed in such a way that φ restricts to a bijection S ∼−→ Idpt(M3(F2)).
In this sense, we may think of S as a set of “lifts” of the idempotents of M3(F2) to the integer
3× 3 matrices.
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If the idempotents in S satisfied the same orthogonality relations as their images inM3(F2),
then it would follow directly from Theorem 3.9 that S has no Kochen-Specker coloring. But
as it happens, there are triples of idempotents in S that are not pairwise orthogonal over Z,
but whose image under φ become pairwise orthogonal over F2.

To be precise, the following list displays all triples {i, j, k} such that {Pi, Pj, Pk} ⊆M3(Z)
and {φ(Pi), φ(Pj), φ(Pk)} ⊆M3(F2) are both orthogonal.

O1 = {1, 2, 3} O2 = {1, 4, 5} O3 = {1, 6, 7} O4 = {2, 8, 9}
O5 = {2, 10, 11} O6 = {3, 12, 13} O7 = {3, 14, 15} O8 = {4, 8, 16}
O9 = {4, 17, 18} O10 = {5, 19, 20} O11 = {5, 15, 21} O12 = {6, 17, 22}
O13 = {6, 12, 23} O14 = {8, 23, 24} O15 = {10, 14, 17} O16 = {10, 23, 27}
O17 = {12, 16, 19} O18 = {15, 22, 25} O19 = {14, 16, 26} O20 = {19, 22, 28}

On the other hand, the list below displays the pairs Oa
m = {i, j} and Ob

m = {i, k} of indices
such that {Pi, Pj} and {Pj, Pk} are orthogonal pairs with Pi and Pk not orthogonal over Z,
but {φ(Pi), φ(Pj), φ(Pk)} forms an orthogonal triple over F2.

Oa
21 = {7, 24} Ob

21 = {7, 20} Oa
22 = {7, 11} Ob

22 = {7, 25}
Oa

23 = {9, 26} Ob
23 = {21, 26} Oa

24 = {9, 13} O24 = {13, 20}
Oa

25 = {11, 18} Ob
25 = {18, 21} Oa

26 = {13, 27} Ob
26 = {13, 25}

Oa
27 = {18, 28} Ob

27 = {18, 24} Oa
28 = {26, 28} Ob

28 = {26, 27}

Thus the proof that S is uncolorable requires a different argument. Note that the following
proof only gives a complete argument that a larger set S ′ ⊇ S is uncolorable. But as we
indicate below, with extra work it is possible to prove that S itself is uncolorable.

Theorem 3.10. There is no Kochen-Specker coloring of Idpt(M3(Z)).

Proof. It suffices to show that the set S defined above is uncolorable. This is achieved
through a case-splitting argument which shows that various colorings of the triples Oi for
i = 1, 2, 3 lead to contradictions. Thus, we assume toward a contradiction that S has a
Kochen-Specker coloring.

Case I: P1 black, P2 black, and P3 white in O1. Then in the orthogonal triple O6 we have
that P12 is black. We examine two possible subcases.

Case I.1: P4 is black and P5 is white in O2. We obtain the following sequence of deduc-
tions:

P19 black in triple O10 ⇒ P16 white in triple O17

⇒ P8 white in triple O8

We deduce contradictions in two further subcases of Case I.1 as follows.
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Case I.1.a: P6 black and P7 white in O3. In this case we deduce:

P24 black in pair Oa
21 ⇒ P11 black in pair Oa

22

⇒ P10 black in triple O5

⇒ P23 black in triple O14,

arriving at the contradiction that two idempotents in triple O16 are white.
Case I.1.b: P6 black and P7 white in O3. Now we deduce that P17 and P22 are black in

triple O12, which implies that P18 is white in triple O9 and P28 is white in triple O20. We
obtain a contradictory coloring of the pair Oa

28. This completes the proof that case I.1 leads
to a contradiction.

Case I.2: P4 is white and P5 is black in O2. In this setting we have P14 black in triple
O7, while P8 and P16 are black in triple O8. It follows that P9 is white in triple O4 and P26

is white in triple O19. We obtain a contradictory coloring of the pair Oa
23.

We deduce from these contradictions that there is no Kochen-Specker coloring of S satis-
fying the condition in case I. Let G ⊆ M3(Z) be the group of permutation matrices, acting
on Idpt(M3(Z)) by conjugation. While S is not fixed under the action of G, it is contained
in a smallest set S ′ = GS closed under this action. Now if S ′ had a Kochen-Specker coloring,
conjugation by a suitable element of G would yield a coloring of S ′ ⊇ S for which case I
indeed holds. So we find that S ′ is uncolorable, proving the theorem.

(The interested reader may reason as above to verify similar contradictions in either
case II: P1 black, P2 white, P3 black, or case III: P1 white, P2 black, P3 black. This
proves that S itself has no Kochen-Specker coloring.) �

Corollary 3.11. Let R be a ring, and fix any integer n ≥ 3.

(1) There is no Kochen-Specker coloring of Idpt(Mn(R)).
(2) p-Spec(Mn(R)) = ∅.
(3) There is no morphism of partial rings from Mn(R) to any (total) commutative ring.
(4) The colimit in cRing of the diagram of commutative subrings of Mn(R) is zero.

Proof. (1) It follows from Lemma 2.17 and Theorem 3.10 that Idpt(Mn(Z)) has no Kochen-
Specker coloring. The existence of a ring homomorphism Mn(Z)→ Mn(R) and functoriality
of Idpt yield a morphism of partial Boolean algebras Idpt(Mn(Z)) → Idpt(Mn(R)). Now
by functoriality of Kochen-Specker colorings, we obtain a function KS(Idpt(Mn(R))) →
KS(Idpt(Mn(Z))) = ∅. Now we deduce that Idpt(Mn(R)) has no Kochen-Specker colorings.

Part (2) follows from (1) by Corollary 2.16. Then (3) and (4) are immediate from
Lemma 2.4. �

We close this section with some open questions related to “ring-theoretic contextuality”
as it is discussed in Section 1. To date, the only proofs that a noncommutative ring has
an empty partial spectrum rely upon Kochen-Specker uncolorability of idempotents, as in
Corollary 2.16 above. Thus it would be interesting to find a ring with empty partial spectrum
in the extreme case with only the trivial idempotents 0 and 1.

Question 3.12. Does there exist a nonzero ring R with no nontrivial idempotents such that
p-Spec(R) = ∅?
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By Lemma 2.4, an example of such a ring will have no morphism of partial rings R→ C
for any nonzero commutative ring C, and thus will have no “noncontextual hidden variable
theory.” If R is a domain (that is, a nonzero ring without zero divisors), then the zero ideal
is readily seen to be a prime partial ideal so that p-Spec(R) is nonempty; nevertheless, it
would be interesting to find an example of such R that still has no “noncontextual hidden
variable theory.” Thus we ask the following.

Question 3.13. Does there exist a domain R such that there is no morphism of partial rings
R→ C for any nonzero commutative ring C?

4. Applications to spectrum functors in noncommutative algebraic

geometry

In this final section, we apply the above results on the partial spectrum of integer matrix
rings to strengthen the main result of [37] and certain results from [8].

Modern algebraic geometry provides a way to view every commutative ring as a ring of
“‘globally defined functions” (the global sections of a sheaf of rings) on a geometric object (a
locally ringed space) called an affine scheme. The scheme associated to a commutative ring
is called its spectrum, and the assignment of the spectrum to each ring forms an equivalence
of categories cRingop → AffSch. For a commutative ring R, the Zariski prime spectrum
Spec(R) (the set of prime ideals of R) forms the underlying set of its affine scheme. We refer
readers to [17, I.2] for an introduction to the spectrum of a ring in algebraic geometry.

In the spirit of noncommutative geometry, it is natural to wonder whether every noncom-
mutative ring may be given a similar “spatial realization.” The most obvious way to attempt
to build a “noncommutative affine scheme” would be to use a ringed space for which the
sheaf of rings is not necessarily commutative. Indeed, such constructions have been intensely
pursued in past decades; an outstanding survey of these efforts may be found in [42]. In
order to obtain a true correspondence between algebra and geometry, one would wish for
such a construction to be a contravariant functor. Thus, at the very least, one would require
a functor F from Ringop to the category Top of topological spaces, or even to Set if we forget
about topology, that yields the underlying point set of each ringed space, such that the re-
striction of F to cRingop is (isomorphic to) the usual spectrum functor Spec : cRingop → Set.
Furthermore, in order to obtain a nontrivial construction, one should require that if R is a
nonzero ring then F (R) is nonempty.

However, it was shown in [37] that any functor F as above necessarily assigns F (Mn(R)) =
∅ for any ring R containing C as a subring and any integer n ≥ 3. The proof of this result cru-
cially relied upon the fact that the Kochen-Specker Theorem implies that p-Spec(Mn(R)) =
∅ for any such R. Our algebraic analogues of Kochen-Specker will allow us to extend this
result to any ring R, not only those that contain the complex numbers.

In hindsight, the connection between the connection between this algebro-geometric ob-
struction and the Kochen-Specker Theorem is arguably a natural one. For a ring R, let
C(R) denote the diagram in cRing whose objects are the commutative subrings C ⊆ R and
whose morphisms C1 → C2 are the inclusions of subrings C1 ⊆ C2 ⊆ R. It is shown in [37,
Proposition 2.14] that as sets, the partial spectrum of R is the limit in the category of sets
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of the spectra Spec(C) for C ∈ C(R):
(4.1) p-Spec(R) ∼= lim←−

C∈C(R)

Spec(C).

This bijection allows us to view a point in p-Spec(R) as a “noncontextual choice of points”
in the spectra Spec(C) of all commutative subrings of R. The obstruction of [37] used the
Kochen-Specker Theorem to show that there does not exist any such “noncontextual choice
of points” in the case where R = Mn(C) for n ≥ 3. See also [15, Sec. 3–4] for a related
discussion.

Further, it is interesting to note that Kochen and Specker’s motivating discussion in [31,
Section 1] phrases the problem of hidden variables as the search for a probability space Ω
of “hidden pure states,” with a hidden variable theory being a morphism of partial algebras
from the algebra of observables to the algebra of real-valued measurable functions on Ω. If
one imagines Ω as a kind of spectrum associated to a quantum system, then it seems entirely
natural that the Kochen-Specker theorem should have led to the results of [37].

We now prove the strengthened version of [37, Theorem 1.1], answering the question posed
in [37, Question 4.2]. We use essentially the same argument, relying upon Theorem 3.10 in
place of the Kochen-Specker Theorem.

Theorem 4.2. Let F : Ringop → Set (or F : Ringop → Top) be a functor whose restriction
to the full subcategory cRingop is isomorphic to Spec. Then F (Mn(R)) = ∅ for any ring R
and any integer n ≥ 3.

Proof. By [37, Theorem 2.15], the hypothesis on F ensures that there exists a natural trans-
formation F → p-Spec. For a fixed ring R and integer n ≥ 3, the unique ring homomorphism
Z → R induces a ring homomorphism Mn(Z) → Mn(R). The natural transformation and
functoriality of p-Spec yield a composite function

F (Mn(R))→ p-Spec(Mn(R))→ p-Spec(Mn(Z)) = ∅,

with the last equality following from Corollary 3.11. As the only set with a function to the
empty set is ∅ itself, we conclude that F (Mn(R)) = ∅. �

This obstruction to “noncommutative spectrum functors” has the following immediate
application, which strengthens [37, Corollary 4.3] regarding “abelianization functors” defined
on the category of rings.

Corollary 4.3. Let R be a ring and n ≥ 3 be an integer. If α : Ring→ cRing is any functor
whose restriction to cRing is isomorphic to the identity functor, then α(Mn(R)) = 0.

Proof. The hypothesis on α ensures that the composite functor Spec ◦α : Ringop → Set has
restriction to cRingop isomorphic to Spec. By Theorem 4.2 we have Spec(α(M3(Z)) = ∅.
This implies that the commutative ring α(M3(Z)) is zero. �

It was noted in [37, p. 689] that the statements of both Corollaries 3.11(4) and 4.3 fail in
the case where n = 2.

The study of topological spaces and their sheaves, especially including ringed spaces, can
be conducted without any reference to the underlying point set of the topological space via
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the use of locales and toposes [30]. One might therefore expect that obstructions such as
the one in Theorem 4.2 could be avoided if one considers the Zariski spectrum as a functor
taking values in the category of locales rather than in the category of topological spaces.
(We will describe the localic Zariski spectrum below.) However, it was shown in [8] that the
obstruction of [37] persists for functors taking values in such categories of “pointless spaces.”
We now show that our version of the Kochen-Specker theorem for integer matrices allows
us to extend the obstruction of Theorem 4.2 in the same manner. From this point until the
end of the paper, we now consider the Zariski spectrum Spec(R) of a commutative ring R as
a topological space, with the usual Zariski topology whose open sets are those of the form
D(I) = {p ∈ Spec(R) | I * p} for all ideals I of R. We include the basic definitions of
locales and the localic spectrum below, although we must invoke some results from locale
theory in the proof below without a full survey of this theory, which would take us too far
afield.

A frame (F,
∨

,∧, 0, 1) is a complete lattice which satisfies the “infinite distributive law”
a ∧ (

∨

bi) =
∨

(a ∧ bi) for any family {bi} ⊆ F . The motivating example of a frame is
the collection of open sets in a topological space X . Frames form a category Frm whose
morphisms are the homomorphisms of posets that preserve finite meets and arbitrary joins;
in particular, these maps preserve 0 and 1. The category Loc = Frmop of locales is defined to
be the opposite of the category of frames. If L denotes a locale, we will use Ω(L) to denote
its underlying frame (so that L is “opposite” to Ω(L) in Loc = Frmop); we call the elements
of Ω(L) the opens of L. Given a morphism f : L → S in Loc, we denote the corresponding
morphism of frames as f ∗ : Ω(S)→ Ω(L).

We recall one formulation of the localic Zariski spectrum from [29, V.3] (and especially
Corollary V.3.2(i) of that reference). For a commutative ring R and an ideal I of R, recall

that the radical of I is the ideal
√
I = {x ∈ R | xn ∈ I for some integer n ≥ 1}, and that

I is called a radical ideal if I =
√
I (that is, xn ∈ I for x ∈ R and some integer n ≥ 1

implies x ∈ I). Let RIdl(R) denote the set of radical ideals of R. This forms a lattice with
respect to inclusion, which is complete since the intersection of an arbitrary set of radical
ideals is again radical. The join of an arbitrary family {Ij} ⊆ RIdl(R) and the pairwise meet
of I, J ∈ RIdl(R) are given in terms of the usual ideal sum and product by

∨

Ij =
√

∑

Ij , I ∧ J = I ∩ J =
√
I · J.

With these descriptions, one can verify that the “infinite distributive law”

J ∧
(

∨

Ij

)

=

√

J ·
√

∑

Ij =
√

∑

JIj =
√

∑
√

JIj =
∨

(J ∧ Ij)

holds for all J and {Ij} as above. Thus RIdl(R) is a frame.
We define the localic (Zariski) spectrum of R to be the locale LSpec(R) whose correspond-

ing frame is Ω(LSpec(R)) = RIdl(R). A morphism f : R → S in cRing induces a function

RIdl(f) : RIdl(R) → RIdl(S) via I 7→
√

S · f(I), which one may verify to be a morphism
of frames; we denote the corresponding morphism of locales by LSpec(f) : LSpec(S) →
LSpec(R). In this way, the localic spectrum forms a functor

LSpec : Ringop → Loc .
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Readers familiar with the (“spatial”) Zariski spectrum will recognize that RIdl(R) is iso-
morphic to the lattice of open sets of the Zariski topology on Spec(R) (see [23, Lemma 2.1],
for instance). Indeed, the spatial Zariski spectrum Spec(R) is isomorphic to the space of
points [29, II.1.3] of the locale LSpec(R); see [29, V.3.2]. However, the definition of LSpec
is entirely constructive, while one must invoke the Axiom of Choice (or at least the Boolean
Prime Ideal Theorem) to verify that Spec(R) is nonempty for nonzero rings R. For this
reason, localic spectra are preferred in the setting of constructive mathematics.

We say that a locale is trivial if its frame of opens is a singleton (i.e., satisfies 0 = 1), or
equivalently, if it is an initial object of Loc. Trivial locales play the role of the empty space
in pointless topology. If L is a locale with a morphism to a trivial locale, then the top and
bottom elements of the frame of opens of L are also equal, making L a trivial locale.

Corollary 4.4. Let F : Ringop → Loc be a functor whose restriction to cRingop is isomorphic
to LSpec : cRingop → Loc. Then F (Mn(R)) is the trivial locale for every ring R and every
integer n ≥ 3.

Proof. Let G : Ringop → Loc be the functor that assigns to a ring R the limit of the locales
LSpec(C) where C ranges over the diagram C(R) of commutative subrings of R. It is clear
from the construction of G that for any functor F as in the statement, there is a natural
transformation G → F , as in [37, Theorem 2.15]. The category of coherent locales is the
subcategory of Loc that is opposite to the essential image of the functor that assigns to each
distributive lattice its frame of ideals; see [29, II.3]. It is known that LSpec has image in the
category of coherent locales [29, V.3.1]. Furthermore, it is known [8, Lemma 2.6] that the
subcategory of coherent locales is closed under limits in Loc.

Let ∗ denote the locale corresponding to the one-point space, so that the point-set functor
pt : Loc → Set is pt = Loc(∗,−). Being representable, this functor preserves limits [33,
Theorem V.4.1]. Thus for any ring R we have natural isomorphisms

pt(G(R)) = pt

(

lim←−
C∈C(R)

LSpec(C)

)

∼= lim←−
C∈C(R)

pt(LSpec(C)).

As discussed above, the composite pt ◦ Spec : cRingop → Set is isomorphic to the usual
Zariski prime spectrum functor Spec. It follows from (4.1) that the limit above is naturally
isomorphic to p-Spec(R), so we in fact have a natural isomorphism pt ◦G ∼= p-Spec.

Now for any ring R and any integer n ≥ 3, we have pt(G(Mn(R)) ∼= p-Spec(Mn(R)) = ∅
thanks to Theorem 4.2. Because G(Mn(R)) is coherent, it is a spatial locale [29, II.3.4], so
that its frame of opens is isomorphic to the frame of open subsets of its space of points. Thus
G(Mn(R)) is the trivial locale. Finally, the existence of a morphism of locales G(Mn(R))→
F (Mn(R)) implies that F (Mn(R)) is also trivial. �

We also remark that as in [8], similar obstructions hold if we regard Spec as a functor
from commutative rings into the any one of the categories of toposes, ringed toposes, ringed
locales, or ringed spaces.

Corollary 4.5. Let C be any of the categories of toposes, ringed toposes, ringed locales,
or ringed spaces, and consider Spec as a functor cRingop → C in the usual way. Suppose
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that F : Ringop → C is a functor whose restriction to cRingop is isomorphic to Spec. Then
F (Mn(R)) is the trivial (initial) object of C for any ring R and any integer n ≥ 3.

Proof. The proofs are direct analogues of those given in [8, Corollaries 6.2 and 6.3 ]. �

Remark 4.6. Given the emphasis in the locale theory literature on constructive proofs, we
wish to emphasize that the proof of Corollary 4.4 above invokes the nonconstructive technique
of reducing to spaces of points; by contrast, the proof for the case where R = C given in [8,
Corollary 6.1] is constructive. The proofs of these localic obstructions are complicated by
the fact that the Zariski spectrum (either spatial or localic) generally does not preserve
limits out of Ringop. This was handled in [8] by noting that the Zariski spectrum does
preserve limits when restricted to finite-dimensional algebras over the algebraically closed
field C. Unfortunately, more work is required in our context because our algebras are not
finite-dimensional over a field. There is a proof of Corollary 4.4 that is constructive in
principle. The idea is to consider the localic spectra of the finite diagram of the commutative
subrings of M3(Z) that are generated by orthogonal sets of idempotents from the proof of
Theorem 3.10, to show that LSpec restricted to this diagram (whose limit is trivial) has
image in the subcategory fBoolop opposite to finite Boolean algebras within Loc = Frmop,
and to proceed as in [8, Corollary 6.1] noting that the inclusion fBoolop →֒ Loc preserves
limits. With such techniques in hand, one may also extend the proof of [8, Corollary 5.7] to
show that a similar obstruction holds for extensions of Spec into the opposite of the category
of (unital or strong) quantales. For the sake of brevity, we do not provide further details
here.

In closing, we note that readers seeking further open problems regarding contextuality
in noncommutative algebraic geometry will find some in [38, Question 4.9], while readers
interested in positive results on noncommutative spectrum functors are referred to [27] for
one successful example.

Appendix A. Partial algebra morphisms from Kochen-Specker colorings,

by Alexandru Chirvasitu

We prove here the following result relating idempotent colorings to morphisms of partial
algebras.

Lemma A.1. Let F be a perfect field, K ⊇ F a field extension containing an isomorphic
copy of every degree-two and degree-three extension of F , and A a partial F -subalgebra of
M3 = M3(F ).

If there exists a Kochen-Specker coloring of Idpt(A), then there exists a morphism of
partial F -algebras A→ K. Consequently, p-Spec(R) is nonempty.

Proof. A Kochen-Specker coloring provides a map ϕ from Idpt(A) to {0, 1} compatible with
addition of orthogonal idempotents, and we wish to extend this map to all of A.

Step 1: Reducing to semisimple operators. The fact that F is perfect ensures that
we can decompose every x ∈ A as a sum xs + xn, where xs ∈ A is semisimple, xn ∈ A is
nilpotent, and each is a polynomial in x with no constant term. Because x, y ∈ A commute
if and only if xs and xn both commute with ys and yn, we can simply extend ϕ to the partial
algebra generated by idempotents and nilpotent operators by sending the latter to zero.
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If we had an extension of ϕ to the partial subalgebra Ass ⊂ A consisting of semisimple
elements, then we could set ϕ(x) = ϕ(xn) + ϕ(xs). The above observation that x, y ∈ A
commute if and only if xs and xn commute with ys and yn then ensures that this is well
defined and a partial algebra morphism.

We may now assume that all elements of A are semisimple; this assumption will be in
place throughout the rest of the proof.

The support supp(x) ∈ Idpt(M3) of a semisimple element x ∈ M3 is the idempotent with
the same range and kernel as x. For every x ∈ A consider the element xd (for ‘diagonaliz-
able’) defined as

∑

tipi, where ti are the distinct non-zero eigenvalues of x and pi are the
corresponding spectral idempotents.

The element xd is expressible as a polynomial in x with no constant term (because pi
are so expressible) and hence belongs to A. Moreover, it is the unique element of M3 that
is diagonalizable in M3, a polynomial in x with no constant term, and whose support is
maximal among elements with this property.

It follows from the description of x that x− xd is either zero or purely non-diagonalizable,
in the sense that (x − xd)d vanishes (i.e. x − xd has no non-zero eigenvalues). Denote
xnd = x− xd.

Step 2: Diagonalizable operators. The decomposition x = xd+xnd is similar in spirit
to the Jordan decomposition, and we can put it to similar use.

Any diagonalizable x ∈ A breaks up uniquely as
∑

tipi where ti ∈ F and pi ∈ Idpt(A)
are as above. Now simply set ϕ(x) =

∑

tiϕ(pi). This is easily seen to be a partial algebra
morphism from the partial subalgebra Ad ⊆ A consisting of diagonalizable operators to
F ⊆ K.

Step 3: Purely non-diagonalizable operators. Let x 6= 0 be such an operator and
〈x〉 the (non-unital) subalgebra of A that it generates. It is isomorphic to a field extension
of F generated by any one of the non-zero eigenvalues of x, with unit supp(x). Define an
arbitrary unital algebra morphism

ψ : 〈x〉 → K

and extend ϕ to 〈x〉 via ϕ(x) = ψ(x)ϕ(supp(x)).
Step 4: Putting the ingredients together. For x ∈ A set ϕ(x) = ϕ(xd) + ϕ(xnd).
Step 5: Checking that ϕ is a morphism. We have to check that ϕ as defined above

preserves products and sums of commuting elements x, y, which we fix throughout the rest
of the proof.

Because both xd and xnd can be expressed as polynomials with no constant term in x,
an operator commutes with x if and only if it commutes with xd and xnd. Consequently,
x, y ∈ A commute if and only if xd, xnd, yd and ynd all commute.

If x and y are diagonalizable there is nothing to check, as we already know that ϕ|Ad
is a

morphism of partial algebras. So we may as well suppose xnd 6= 0.
Now y commutes with the idempotent e = supp(xnd), and since ϕ annihilates exactly one

of e and 1− e we may as well restrict our attention to eM3e or (1− e)M3(1− e), depending
on whether ϕ(e) = 1 or ϕ(1− e) = 1 respectively.

There are two possibilities for e: either it has rank two and 〈ex〉 ⊂ eM3e is a field L of
degree two over F , or e = 1 and 〈x〉 is a field of degree three over F . This means that if
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ϕ(1− e) = 1 then (1− e)M3(1− e) is (at most) one-dimensional with (1− e)x and (1− e)y
both scalars therein, so there is nothing to check.

On the other hand, if ϕ(e) = 1 then ey ∈ eM3e commutes with ex and hence acts as
L-linear endomorphisms of L. Putting ex ∈ eM3e in rational normal form will identify eF n

with eL and hence eM3e with EndF (L) in such a manner that 〈ex〉 gets identified with
L ⊂ EndF (L) (acting on itself by multiplication). Since ey ∈ EndF (L) acts on L as L-linear
endomorphisms (because it commutes with 〈ex〉) we must have ey ∈ L = 〈ex〉. We can now
conclude from the fact that ϕ is a morphism when restricted to 〈x〉. �

Remark A.2. In particular, we can take K = F , the algebraic closure of F . On the other
hand, if F is finite then K can be taken to be its unique degree-six extension.
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[15] Andreas Döring. Kochen-Specker theorem for von Neumann algebras. Internat. J. Theoret. Phys.,

44(2):139–160, 2005.
[16] B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, and I. V. Volovich. On p-adic mathematical physics.

p-Adic Numbers Ultrametric Anal. Appl., 1(1):1–17, 2009.
[17] David Eisenbud and Joe Harris. The Geometry of Schemes, volume 197 of Graduate Texts in Mathe-

matics. Springer-Verlag, New York, 2000.
[18] Steven Givant and Paul Halmos. Introduction to Boolean Algebras. Undergraduate Texts in Mathemat-

ics. Springer, New York, 2009.
[19] C. D. Godsil and J. Zaks. Colouring the sphere. arXiv:1201.0486.
[20] Paul R. Halmos. Lectures on Boolean algebras. Van Nostrand Mathematical Studies, No. 1. D. Van

Nostrand Co., Inc., Princeton, N.J., 1963.
[21] Andrew J. Hanson, Gerardo Ortiz, Amr Sabry, and Yu-Tsung Tai. Geometry of discrete quantum

computing. J. Phys. A, 46(18):185301, 21, 2013.

http://arxiv.org/abs/1201.0486


A KOCHEN-SPECKER THEOREM FOR INTEGER MATRICES 29

[22] Andrew J. Hanson, Gerardo Ortiz, Amr Sabry, and Yu-Tsung Tai. Discrete quantum theories. J. Phys.
A, 47(11):115305, 20, 2014.

[23] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in
Mathematics, No. 52.

[24] Carsten Held. The Kochen-Specker Theorem. In Edward N. Zalta, edi-
tor, The Stanford Encyclopedia of Philosophy. Winter 2014 edition, 2014.
http://plato.stanford.edu/archives/win2014/entries/kochen-specker/.

[25] Chris Heunen. The many classical faces of quantum structures. Entropy, 19(4):144, 2017.
[26] Chris Heunen, Nicolaas P. Landsman, Bas Spitters, and Sander Wolters. The Gelfand spectrum of a

noncommutative C∗-algebra: a topos-theoretic approach. J. Aust. Math. Soc., 90(1):39–52, 2011.
[27] Chris Heunen and Manuel L. Reyes. Active lattices determine AW∗-algebras. J. Math. Anal. Appl.,

416(1):289–313, 2014.
[28] C. J. Isham and J. Butterfield. Topos perspective on the Kochen-Specker theorem. I. Quantum states

as generalized valuations. Internat. J. Theoret. Phys., 37(11):2669–2733, 1998.
[29] Peter T. Johnstone. Stone Spaces, volume 3 of Cambridge Studies in Advanced Mathematics. Cambridge

University Press, Cambridge, 1982.
[30] Peter T. Johnstone. The point of pointless topology. Bull. Amer. Math. Soc. (N.S.), 8(1):41–53, 1983.
[31] Simon Kochen and E. P. Specker. The problem of hidden variables in quantum mechanics. J. Math.

Mech., 17:59–87, 1967.
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