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ARTICLE OPEN

Active learning for accelerated design of layered materials
Lindsay Bassman1,2, Pankaj Rajak 1,3, Rajiv K. Kalia1,2,3,4, Aiichiro Nakano 1,2,3,4,5, Fei Sha4,5, Jifeng Sun6, David J. Singh 6,
Muratahan Aykol7, Patrick Huck7, Kristin Persson7 and Priya Vashishta1,2,3,4

Hetero-structures made from vertically stacked monolayers of transition metal dichalcogenides hold great potential for
optoelectronic and thermoelectric devices. Discovery of the optimal layered material for specific applications necessitates the
estimation of key material properties, such as electronic band structure and thermal transport coefficients. However, screening of
material properties via brute force ab initio calculations of the entire material structure space exceeds the limits of current
computing resources. Moreover, the functional dependence of material properties on the structures is often complicated, making
simplistic statistical procedures for prediction difficult to employ without large amounts of data collection. Here, we present a
Gaussian process regression model, which predicts material properties of an input hetero-structure, as well as an active learning
model based on Bayesian optimization, which can efficiently discover the optimal hetero-structure using a minimal number of ab
initio calculations. The electronic band gap, conduction/valence band dispersions, and thermoelectric performance are used as
representative material properties for prediction and optimization. The Materials Project platform is used for electronic structure
computation, while the BoltzTraP code is used to compute thermoelectric properties. Bayesian optimization is shown to
significantly reduce the computational cost of discovering the optimal structure when compared with finding an optimal structure
by building a regression model to predict material properties. The models can be used for predictions with respect to any material
property and our software, including data preparation code based on the Python Materials Genomics (PyMatGen) library as well as
python-based machine learning code, is available open source.

npj Computational Materials            (2018) 4:74 ; https://doi.org/10.1038/s41524-018-0129-0

INTRODUCTION
Since the advent of single-layer graphene, a wide variety of two-
dimensional (2D) materials have been isolated with a suite of
interesting properties and applications.1 In particular, 2D mono-
layers of semiconducting transition metal dichalcogenides
(TMDCs) have proven worthy candidate materials for next-
generation optoelectronic and thermoelectric devices due to their
tunable band gap, transport and other properties, combined with
their mechanical strength and chemical stability.2–5 An important
aspect of these layered materials is the discrete nature of the van
der Waals (vdW) forces that bond the layers. This weak vdW
bonding facilitates synthesis of 2D monolayers from bulk via
mechanical or chemical exfoliation. It also allows for stacking of
lattice-mismatched monolayers from different species of TMDCs,
thereby enabling the formation of unlimited combination of
multilayers. It should be noted, however, that the interlayer
interactions are nonetheless sizable enough to strongly affect
electronic behavior. Therefore, the electronic properties of multi-
layer hetero-structures can vary in a highly nontrivial manner,
depending on the total number of layers, the specific layer
ordering, and each layer’s composition. The possibility to vertically
stack heterogeneous TMDC monolayers opens the door to a
whole new class of hybrid materials where one can, in principle,

engineer electronic, transport, optical, and other properties in
well-defined, controllable material structures.6–10

As a specific example, we consider hetero-structures formed
from monolayers of group VI TMDCs: MoS2,MoSe2,MoTe2,WS2,
WSe2,WTe2. We take this set to be our alphabet Σ = {MoS2,MoSe2,
MoTe2,WS2,WSe2,WTe2}, where each species of TMDC becomes a
distinct symbol. Hetero-structures are then represented by strings,
w= a1a2…aN, where the string length |w| corresponds to the
number of layers N in the stacked hetero-structure. For example, a
three-layer hetero-structure may be written as w=MoSe2WTe2-
MoS2, where |w|= 3. We define the set of all N-layered hetero-
structures as HN= {aN= a1a2…aN|ai∈Σ;i= 1,…,N}. As the number
of layers N increases, the size of HN increases exponentially.
Furthermore, the computation time required to calculate the
electronic properties for each hetero-structure using standard
density functional theory (DFT) calculations increases rapidly as O
(n3), where n is the number of electrons. Thus, performing
exhaustive exploration of HN quickly becomes intractable for large
N.
Recently, machine learning techniques applied to the material

science domain have shown great success in high-throughput
screening and material property prediction.11–13 For property
prediction, material properties are computed for some percentage
of a class of structures and are divided into a training set and a
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test set. A statistical model is built using the training data set and
then used to predict the material properties of the structures in
the remaining test data set. This separation of data into training
and test sets is essential for quantifying how the model will
generalize to new structures. With careful selection of model
parameters and penalization of overfitting of the statistical model,
the model can be used to make high accuracy predictions of
material properties of the remaining materials in the class of
structures, bypassing expensive ab initio computations. Success
has been shown in predicting material properties such as band
gap,14–17 dielectric breakdown strength,18,19 melting point,15 and
defects20 using various machine learning methods, such as
support vector regression,14,15 neural networks,21,22 and kernel
ridge regression.17,23

Here, we use Gaussian process regression (GPR) in the space of
vertically stacked TMDC’s for prediction of two distinct types of
properties derived from electronic structure. The first property
type includes attributes of the band structure, which are critical
parameters for optoelectronic materials. Specifically, we use GPR
to predict the band gap value of structures as well as the
conduction band minimum (CBM) and valence band maximum
(VBM) dispersion curves in momentum space. The second
property type is a simplified proxy for the thermoelectric figure
of merit, which is a complex combination of electrical and thermal
transport properties that is challenging to optimize.24 Good
thermoelectric materials have highly complex band structures,
markedly different from standard isotropic parabolic bands, and
the thermoelectric performance depends critically on them.
Importantly, the concept of reduced dimensionality to achieve
high thermoelectric performance has been very influential in
thermoelectrics,25 but has proven difficult to achieve in practical
materials. The ability to engineer stacks may provide a unique
opportunity to finally realize the benefits of reduced dimension-
ality to achieve high thermoelectric performance. Here, we focus
on the electronic transport component of the thermoelectric
figure of merit and use GPR to predict a recently proposed, band
structure-dependent, electronic fitness function26 (EFF) as a
function of dopant concentration for both n-type- and p-type-
doped hetero-structures. With a very complex structure depen-
dence, this material property provides an excellent test case for
our machine learning algorithms.
In many instances, instead of the ability to predict a structure’s

material properties, we only need to find the structure that has an
optimal value for a given property, defined by the specific
application. Here, optimality does not necessarily refer to the
maximum or minimum value of the property; it can also refer to a
property value that is closest to some desired value. For example,
finding a structure with optimal band gap could refer to the
structure with the maximum band gap, or the structure with a
band gap closest to, say, the Shockley–Queisser limit for efficiency
of solar cells.27 Building a regression model to predict the property
value of a structure, and then using this model to search for the
structure with the optimal property, is neither an efficient nor
scalable process for solving this problem. Instead, a machine
learning model based on active learning is well suited here. In
active learning, each training data point has an associated reward,
and the point with the highest reward is computed and appended
to the training data set in each iteration during training. The
reward is computed using a reward function, which signifies the
decrease in uncertainty associated with the model if a particular
data point is selected. Here, we use a type of active learning called
Bayesian optimization (BO), a method that optimizes black box
functions28–31 with minimal function evaluations, to discover the
structure with an optimal property value.
In this work, we use BO to search for either the structure with

maximum band gap or a band gap closest to 1.1 eV, the
Shockley–Queisser limit for efficiency of solar cells.27 We also
apply BO to find the best thermoelectric hetero-structure. Since

every structure has a convex EFF curve versus dopant concentra-
tion, each structure will have a peak EFF value at some dopant
concentration, which can vary from structure to structure. We use
BO to find the structure that has the maximum peak EFF value.
While we focus on band gap and thermoelectric EFF values as

representative material properties, these methods can be used to
predict or find optimal structures with respect to any other
material property for which data are available. Similarly, while the
proposed methods were validated on the class of three-layered
hetero-structures, they can readily be applied to any class of N-
layered hetero-structures, where exhaustive structure calculation
is prohibitive.

RESULTS AND DISCUSSION
Figure 1 shows the four main steps in our property and optimal-
structure prediction: data preparation, data computation, deter-
mination of numerical feature vectors to represent the structures,
and machine learning algorithm development. Critical aspects of
each step are outlined in the subsections below, while more
technical details can be found in the Methods section.

Data collection and preparation
While the goal of this machine learning pursuit is to reduce the
number of electronic property calculations needed to screen a
class of materials for different applications, here we validate the
method against DFT calculations for the entire class of three-
layered hetero-structures, H3. First, we create structure files for all
unique three-layer hetero-structures and upload them to the
Materials Project32 (MP) database. The MP framework then
performs electronic structure computation with DFT to obtain
band structures for each material and subsequently performs
transport calculations using BoltzTraP code33 to get the thermo-
electric EFF of each structure as a function of carrier-dopant
concentration. This function reflects complex band structures as it
relates to electronic transport functions relevant to thermoelectric
performance. Specifically, the thermoelectric EFF is large for
electronic structures that decouple the normally inverse relation-
ship between electrical conductivity and thermopower. The
electronic band structure and the thermoelectric EFF for a sample
structure are given in Figure S1 in Supplementary Information.

Feature vector
For the machine learning algorithms to learn how the electronic
property data relate to their corresponding structures, a numerical
representation of the structure is required, as opposed to the
character strings we, as humans, use to identify the different
structures (e.g., MoSe2WTe2MoS2). Since our material design space
is limited to TMDCs, many atomic properties often used in feature
vectors are either irrelevant or too similar across our materials to
be useful. Therefore, we chose three of the most relevant atomic
properties for prediction of band gaps found in material
informatics literature:14–16,21,34–36 (i) electronegativity (EN), or the
tendency of the atom to attract an electron based on energy, (ii)
first ionization potential (IP), or the energy required to remove an
electron from the atom, and (iii) atomic radius (AR). Feature
vectors may be composed to represent the hetero-structure by
combining any subset of these atomic properties for each atomic
species in each layer into a vector. Since each hetero-structure has
three layers, and each layer contains two atomic species, a feature
vector using one of these atomic properties, say IP, would be a six-
dimensional vector, while a feature vector using two of these
atomic properties would be a 12-dimensional vector. Values for
the electronegativities, first IPs, and atomic radii for each of the
five atomic species found in the hetero-structures are given in
Table S4 in Supplementary Information.
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We perform an extensive search of various combinations of
these three atomic properties to compose the best feature vector
for a given target property. Upon examining various combina-
tions, we found that “stack-dependent” feature vectors provide
the best prediction accuracy for all target material properties,
where the atomic property used to represent a given layer
depends on that layer’s position in the stack. In the case of three-
layered hetero-structures, layers 1 and 3 (i.e., outermost layers) are
indistinguishable from each other due to mirror symmetry,
whereas layer 2 (inner layer) is distinct from them. Thus, a stack-
dependent feature vector can assign one atomic property to
represent layers 1 and 3, while a different atomic property to
represent layer 2. The best performance was achieved in BO
searches for maximum band gap when layers 1 and 3 are
represented by IP and layer 2 by AR. Good accuracy was also
achieved by models in which each atomic species in each layer is
represented using their IP and AR values. In general, models using
EN to represent chalcogens (S, Se, and Te) tend to have lower
accuracy for band gap.
For thermoelectric EFF in n-type-doped structures, the highest

accuracy was achieved in BO searches when layers 1 and 3 are
represented by AR and layer 2 by EN, whereas for thermoelectric
EFF in p-type-doped structures, the highest accuracy was
observed when layers 1 and 3 are represented by EN and layer
2 by IP. Also, in p-type-doped structures, models using EN to
represent chalcogens tend to have higher accuracy. Prediction
accuracies of various feature vectors for the predictions of
different target properties are found in the section entitled
“Feature Learning and Model Selection” in the Supplementary
Information. The best feature vector for each target property was
used in the corresponding prediction models presented below.

Gaussian process regression
We build GPR models to predict (i) the band gap, (ii) the VBM and
CBM dispersion curves, and (iii) the thermoelectric EFF curve as a
function of carrier-dopant concentration for both n-type- and p-
type-doped hetero-structures. In the case of predicting the band
gap, the target variable Y is a scalar, whereas in the case of
predicting the VBM, CBM, and EFF curves, the target variable ~Y is
made into a vector by discretizing a continuous curve into discrete
points. A different model is trained for each point in order to

create a predicted curve. Training each model involves calculating
a percentage (in our case, ranging from 40% to 70%) of the entire
class of three-layered hetero-structures, which are randomly
selected to serve as each regression model’s training set. The
remaining structures, which the regression model has never
encountered, are used as the test data set. Each model is then
tasked with predicting its respective target variable (band gap,
discrete points in the VBM, CBM, and EFF curves) for all structures
in the test data set. Details of the GPR model may be found in the
Methods section.
We found that training data sets with fewer than 60% of

structures did not produce reliable predictions, while training sets
with more than 60% did not show additional improvement. Since
each GPR model is created by randomly selecting a percentage of
the structures to act as the initial training data set, we created 100
independent GPR models and collected statistics on their
prediction accuracy to average out any effects from the particular
initial training data set chosen. Resulting predicted values versus
their ground truth values are shown in Fig. 2 for one instance of a
GPR model for each target variable, where models were trained
with 60% of the structures in their training data sets. The ground
truth values are results obtained using DFT and BoltzTraP code.
Predictions made with models using smaller and larger percen-
tages for the training data set are shown in Figures S2, S3, and S4
in Supplementary Information. Figure 2a shows predicted and
ground truth band gap values of the three-layered hetero-
structures in the test data set from one instance of the band
gap prediction regression model with a particular, randomly
selected training data set. Figure 2b shows the predicted and
ground truth values for the VBM and CBM dispersion curves in
momentum space for a sample three-layered hetero-structure.
Figure 2c, d shows the predicted and ground truth EFF curves
versus carrier concentration for a sample n(p)-type-doped three-
layered hetero-structures.
As can be seen in Fig. 2, it is possible to build different GPR

models to successfully predict a wide variety of material proper-
ties. One figure of merit for the accuracy of the predictions is the
mean-square error (MSE), which is given by the equation,

MSE ¼ 1
N

PNs

i¼1
Yi; true � Yi; predicted
� �2

, where Ns is the number of

structures for which predictions were made. In the case of band

Fig. 1 Workflow for optimal structure and property prediction. First, structure files for a family of N-layered materials are created and
uploaded to the Materials Project (MP) database. Second, the MP infrastructure performs all DFT calculations, and subsequently, transport
calculations using BoltzTraP code are performed. A snapshot of the material property data computed by MP database is pictured, along with
the thermoelectric parameters computed by BoltzTraP. Third, a numerical feature vector is assigned to uniquely represent each structure.
Fourth, and finally, machine learning techniques are applied to the data to make predictions for either a material property or an optimal
structure
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gap, the target variable Y is a scalar and this form of MSE is
applicable. For predicting CBM and VBM dispersion curves and the
thermoelectric EFF curve, where the target variable ~Y is a vector,
we compute the overall MSE by averaging over the individual
MSE’s for each point in the target vector. MSE’s for the various
models with different-sized training data sets are given in the
sections entitled “BandGap Prediction”, Figures S3 and S4, and
Table S2 in Supplementary Information.

Bayesian optimization
For applications where we need only find the structure with a
desired value of some property (especially in cases where
computation of each structure’s material property is expensive),
BO can be used for efficient (i.e., with minimal structure
calculations) discovery of the optimal structure. In the BO process,
a GPR model is first built using a randomly selected, small
percentage of structures as the training data set (much smaller
than the training data set size in the GPR models presented
above). Since the true functional form of the relationship between
structure and material property is unknown, and since the GPR
model only provides crude predictions due to the small size of the
training set, the procedure optimizes a surrogate function, called

the acquisition function,29 to determine which structure to
evaluate next. The acquisition function selects the next structure
based on a trade-off between exploration (to diversify the search)
and exploitation (to follow the trend found by the current best
estimates). Among the available acquisition functions, such as
probability of improvement, upper confidence bounds, and
expected improvement (EI), we used EI, the most widely used
acquisition function due to its simple analytical expression (see
Table 1 in the Methods section). The EI value for the remaining
uncalculated structures is computed, and the material properties
of the structure with the maximum EI are calculated next. This
completes one iteration of BO. Each newly computed structure is
added to the training data set, and the next iteration begins with a
new GPR model built from the augmented training data set. The
total number of iterations is up to the algorithm designer and
constrained by how expensive it is to calculate new structure data.
Here, we use 30 iterations for each BO run, as this was sufficiently
many to predict the optimal structure with high accuracy, but few
enough to remain computationally feasible. Specifics of the BO
technique can be found in the Methods section.
In this work, BO models were first created to find either the

structure with the maximum band gap or the structure with a
band gap value closest to 1.1 eV (Shockley–Queisser limit for

Fig. 2 a Predicted (blue) and ground truth (red) band gap values of three-layer hetero-structures in the test data set. Yellow shading
represents a 95% confidence interval (CI) of the predicted results. b Predicted (dashed lines) and ground truth (solid lines) values for the VBM
and CBM dispersion curves in momentum space for a sample three-layered hetero-structure. c, d Predicted (dashed lines) and ground truth
(solid lines) thermoelectric EFF curves versus carrier concentration for a sample n(p)-type-doped three-layered hetero-structure. In all models,
60% of the three-layered structures were randomly selected to comprise the training data set
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efficiency of solar cells27). Since each BO run begins by randomly
selecting a small number of structures to compute for the initial
training data set, we performed 500 independent BO runs and
collected statistics on the optimal structure returned by each of
the independent runs to average out any effects from the
particular, randomly selected initial training data set. Figure 3a
shows a scatter plot of the band gap values for the three-layered
hetero-structures, where structures are ordered along the x-axis in
increasing band gap value. Structures that were most frequently
returned as the optimal structure are highlighted in red (for
maximum band gap) and green (for desired band gap). The pie
charts in Figs. 3b, c show the percentages of the 500 independent
BO runs that the most frequently found optimal structures were
returned. For example, in the BO search for the maximum band
gap, Fig. 3b shows that 79% of BO runs correctly found the
structure with the maximum band gap of 1.7 eV. In 15% of runs,
the second-best structure, with a band gap of 1.5 eV was found,
and in 5% of runs, the structure with the third-highest band gap
value of 1.3 eV was returned.
BO was also applied to the class of four-layered hetero-

structures to test the method on a class of layered structures for
which it is difficult to compute materials properties for the full set.
Since the full set of four-layered materials was not computed, we
cannot guarantee that the BO process finds the optimal band gap
structure (in this case, the structure with maximum band gap), but
we did find that the model was consistently able to find a material
with a higher band gap value than the highest band gap value
computed in the initial training data set, as shown in Fig. 4. Here,
the initial training data set was comprised of 30 randomly selected
structures and 30 iterations were performed in each BO run. Since
a stack-dependent feature vector, where atoms in outermost
layers are represented by IP and those in innermost layers by AR,
had the highest accuracy during BO search of maximum band
gap, we have used a similar feature vector to represent four-layer

structures. Here, atomsic species in layers 1 and 4 are represented
by IP and those in layers 2 and 3 by AR.
Finally, BO was used to discover the three-layered hetero-

structure with the highest peak EFF value for both n-type and p-
type doping. Figures 5a, b show the peak EFF values for p-type-
and n-type-doped three-layered hetero-structures, respectively.
Here, the structures are sorted in ascending order of EFF value
along the x-axis, with structures most frequently returned as the
optimal structure in a set of 500 independent BO runs highlighted
in different colors. Corresponding pie charts in Figs. 5c, d show the
percentages of the 500 independent BO runs in which the most
frequently found optimal structures were returned. As shown in
Fig. 5, the two materials found as the best candidates for n-type
(p-type) thermoelectric devices were MoSe2-WS2-WS2 and
WSe2WTe2-WSe2 (WTe2-MoTe2-WTe2 and MoSe2-WSe2-WSe2). A
physical explanation of why these materials emerged as optimal
candidates is found in the “Discussion of Optimal Thermoelectric
Materials” section in Supplementary Information.
Once again, it is seen that BO can successfully find a (nearly)

optimal structure with high probability, in this case for a material
property that has a far more complex relationship with the hetero-
structure’s electronic structure than band gap. In order to show
the effectiveness and generalizability of BO for optimal property
prediction beyond band gap and thermoelectric-EFF values, we
tested the algorithm on a separate data set of adsorbate energies
for a variety of adsorbate/surface material pairs.37 After evaluating
only 20% of the data set, 82% of 500 independent BO runs
successfully identified the adsorbate/surface material pair with the
minimum adsorption energy. Details of the data set, feature vector
used, and model accuracy are found in the section entitled
“Bayesian Optimization for Adsorption Energy” in Supplementary
Information. Thus, the BO method can be successfully used for the
discovery of a maximum, minimum, or desired value of a range of
material properties.

Table 1. Pseudocode for the Bayesian optimization algorithm and outline for computing the acquisition function used in the above algorithm

Bayesian Optimization Algorithm

1. Data set: D1:n = {xi,yi}i = 1 to n

2. Build Gaussian process regression model: y = fn(x)~GP(m(x),k(x,x'))

3. Bayesian optimization () {

for t= 1 to tmax

a. Find next xt by optimizing the acquisition function u over GP

xt = argmaxxu(x|D1:n)

b. Compute the value yt for this new xt
c. Augment (xt,yt) into data set D1:n = {xi,yi}

d. Update the Gaussian Process Regression model

}

Acquisition function u

1. Find x such that Expected Improvement (E) is maximum

X ¼ argmaxxEI xð Þ ¼ argmaxxE max 0; fn xð Þ � fmaxf g D1:njð Þ
where, fn(x) is a Gaussian process regression model made from D1:n and fmax is the maximum value of this function.

2. Equations to compute Expected Improvement (피)

EI xð Þ ¼ μ xð Þ � fmaxð ÞΦ Zð Þ þ σ xð Þϕ zð Þ if σ xð Þ>0
0 0 if σ xð Þ ¼ 0

�

Z ¼ μ xð Þ�fmax

σðxÞ
where μ(x) and σ(x) are predicted mean and standard deviation values for x by Gaussian process regression model fn(x).

φ(Z) and Φ(Z)are probability density function (PDF) and cumulative density function (CDF) of standard normal distribution

3. Return x

L. Bassman et al.
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METHODS
Reference data preparation
Structure files were prepared for all unique three-layered hetero-structures
w∈H3. When preparing configurations for three-layer hetero-structures, in

which each layer can be one of six compounds, one may naively think that
there would be 63= 216 configurations. However, a structure with stacking
sequence ABC (ABB) is the same as the structure with stacking sequence
CBA (BBA), as these two structures are simply 180° rotations of one
another. For all such pairs, we prepared a structure file only for the first one
in lexicographical order but not the other (i.e., MoSe2-WSe2-WS2 was kept
in the data set, while WS2-WSe2-MoSe2 was discarded). This resulted in 126
unique three-layer structures files. In order to construct each three-layered
hetero-structure w, we used a supercell of WTe2 (as determined by
experiment,38 found in the Inorganic Crystal Structure Database39) as a
template for atomic position and substituted atomic species as necessary
to create each specific configuration for all unique three-layered hetero-
structures. WTe2 has the largest unit cell of all the Group VI TMDCs and
thus was chosen as a template to avoid strain on the layered systems. One
unit cell of WTe2 has two layers, so in order to produce a three-layered
structure, 1.5 unit cells of WTe2, containing nine atoms, were merged into
one supercell. Periodic boundary conditions were applied in all directions.
Ten angstrom of vacuum was added in the z-direction (normal to the
structure surface) to prevent multiple images of the structure from
interacting. All structure files were generated automatically and then
uploaded to the MP database32 using the pymatgen40 python library (see
Software Availability section for where to access this code). After
submission, all calculations, job scheduling, parallelization, and workflow

Fig. 3 a Band gap values for all three-layered hetero-structures, where hetero-structures on the x-axis are ordered by increasing band gap
value. A table of structure names and corresponding band gap values is found as Table S5 in Supplementary Information. Highlighted points
denote hetero-structures returned most frequently as the optimal structure by a BO model searching for the maximum band gap (red) and a
desired value of 1.1 eV (green). b Pie chart showing the distribution of optimal band gap values returned in 500 independent BO searches for
the maximum band gap. c Pie chart showing the distribution of optimal band gap found in 500 independent BO searches for a desired band
gap value of 1.1 eV. MoSe2-WSe2-WSe2, with a band gap of 1.05 eV, has the closest band gap value to 1.1 eV and was returned as the optimal
structure in 91% of the 500 independent BO searches. WSe2-WSe2-WSe2 and MoS2-MoS2-WS2, with band gap values of 1.23 and 1.26 eV,
respectively, were returned in 7% of the BO searches, while WSe2-MoSe2-WSe2 and MoSe2-WSe2-MoSe2, with band gap values of 1.01 and
1.04 eV, respectively, were returned in the remaining 2% of BO searches

Fig. 4 Initial and final maximum band gap values for ten different
BO runs on the class of four-layered hetero-structures. Optimal
structures, along with their band gap value are labeled

L. Bassman et al.
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management were handled on supercomputers by MP’s infrastructure.
Electronic structure data were calculated based on DFT,41,42 using a plane-
wave basis set and the projector augmented wave method43 as
implemented in the Vienna Ab initio simulation package.44–47 The
exchange and correlation energies were approximated with the
Perdew–Burke–Ernzerhof functional.48 First, both the unit cell and the
atoms were allowed to relax to the lowest energy configuration. Next, self-
consistent field iterations were performed to obtain the single-electron
wave functions, and the electronic band structure was calculated from the
resulting eigenenergies of the wave functions. The wave functions were
constructed from a sum over a plane wave basis set, which consists of
plane waves with kinetic energies up to 520 eV. Once the electronic
structures were computed, the MP database used the results as input to
BoltzTraP33 to compute transport properties which were used to compute
the thermoelectric EFF.

Gaussian process regression
A Gaussian process (GP) is a collection of random variables, in which any
finite number of these variables has a joint Gaussian distribution. GP’s are
used to describe a distribution over functions and are completely specified
by their mean function, m(x), and covariance function (or kernel) k(x,x′).
Thus, a GP may be written as f(x) ~ GP(m(x),k(x,x′)). GP regression (GPR) is a
non-parametric regression technique, which models a distribution of
functions that are consistent with a given set of N training observations (xN,
yN). In our case, x is the n-dimensional input feature vector for each
structure and y is either the structure’s band gap, CBM or VBM dispersion
curve, or thermoelectric EFF curve. We take an n-dimensional squared
exponential kernel as the covariance kernel, shown in Eq. 1:

k x; x0ð Þ ¼ exp �
Pn

i¼1 xi � x0i
�� ��2
σ2i

( )
i ¼ 1; ¼ ; n (1)

Here, σi are hyper-parameters associated with each dimension of the
feature vector and are estimated using the maximum likelihood estimate.
After training the model, we use the model to make predictions on test
data set. The interested reader should refer to the Data Availability section
for where to access our code used to run GPR.

Bayesian optimization
BO is an optimization technique, which is generally used for hyper-
parameter tuning of deep neural networks and optimization of black box
functions. Pseudocode for the algorithm is shown in Table 1. For band gap
optimizations, a total of 500 independent BO runs were carried out to
gather statistics on how frequently the true optimal structure was found in
each of the cases of searching for the maximum peak EFF value, the
maximum band gap value, and the band gap closest to 1.1 eV. In each BO
run, five structures were chosen at random to act as the initial training data
set. From the initial training data set, a GPR model is built and the
acquisition function is computed for the remaining uncalculated
structures. Details of the acquisition function calculation are shown in
Table 1. In band gap (EFF) optimization, one of the top four (five) optimal
structures is found within 30 BO iterations in over 95% of the 500 runs.
Distributions of how many iterations it took to find one of the top five
optimal structures in each case are shown in Figures S6 and S7 in
Supplementary Information. The interested reader should refer to the Data
Availability section for where to access our code used to run BO.

DATA AVAILABILITY
Electronic structure data is found at https://magics.usc.edu/data/, which contains
data for all layered TMDC hetero-structures used in this study. Further information
about these materials and many more materials are available on the Materials Project
database at https://materialsproject.org/. Machine learning code for GPR and BO

Fig. 5 a, and b Thermoelectric EFF values for all p-type-doped a and n-type-doped b three-layered hetero-structures, where hetero-structures
on the x-axis are ordered by increasing EFF value. Points highlighted in red and green denote hetero-structures returned most frequently as
the optimal structure by a BO model searching for the p-type- and n-type-doped structures, respectively, with maximum EFF value. c, d Pie
chart showing the distribution of optimal thermoelectric structures returned in 500 independent BO searches for the p-type-doped c and n-
type-doped d materials with maximum EFF value
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along with the training data set can be found at https://github.com/rajak7/
Bayesian_Optimization_Material_design, along with codes for automatically generat-
ing structure files for N-layered hetero-structures and uploading them to the
Materials Project database with using pymatgen library functions. Code for
computing the EFF from BoltzTraP output data is found at http://faculty.missouri.
edu/singhdj/transm.shtml.
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