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Barrier-Free Predictions of Short-Range Ordering/Clustering

Kinetics in Binary FCC Solid Solutions

Anas Abu-Odeha, Blas Pedro Uberuagab, Mark Astaa,c

aDepartment of Materials Science and Engineering, University of California, Berkeley, 94720, CA, USA
bMaterials Science and Technology Division, Los Alamos National Laboratory, Los

Alamos, 87545, NM, USA
cMaterials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, 94720, CA, USA

Abstract

We present comparisons of kinetic Monte Carlo (kMC) simulations of isothermal short-
range ordering (SRO) and clustering (SRC) kinetics in binary FCC alloys with a mean-field
concentration wave (CW) model. We find that the CW model is able to give order-of-
magnitude agreement with kMC simulations for ordering/clustering relaxation times over a
wide range of temperatures and compositions. The advantage of the CWmodel is that it does
not require parameterization of vacancy hopping energy barriers, which, for a concentrated
alloy, becomes prohibitive. We assess limits in the accuracy of the model, and discuss the
effect of cooling rates as well as the extension to multi-component systems. Ultimately, the
simplicity and performance of the CW model compared to kMC simulations suggests that
it is a useful tool to connect with models of properties dependent on SRO/SRC as well as
for designing thermal treatments to control formation of SRO/SRC.

1. Introduction

Short-range ordering (SRO) or clustering (SRC) represent the thermodynamically ex-
pected non-random correlations between different chemical species in disordered solid so-
lution alloys. SRO occurs when unlike species attract each other, while SRC occurs when
like species attract each other. SRO and SRC have been shown to impact the mechani-
cal properties of solid solution alloys [1–16] as well as their passivation behavior [17, 18].
Models that depend on Warren-Cowley (WC) parameters [19] (αn), which describe the non-
random pair correlations between different chemical species in different neighbor shells (n),
are available to calculate the effect of SRO/SRC on diffuse-anti-phase boundary energies
[20, 21], stacking fault energies [22], and solute-dislocation interactions [12, 13]. WC param-
eters at equilibrium are typically calculated from Monte Carlo simulations using energetics
based on density-functional theory (DFT) combined with cluster expansions [23], coherent-
potential-approximation methods [24], or interatomic potentials [25]. Alternatively, they
can be calculated from DFT-based concentration-wave methods [26]. They can also be ob-
tained from experimental diffuse SRO/SRC intensities, although such measurements have
been primarily limited to binary alloys.

While it is relatively straightforward to predict equilibrium SRO and SRC states, pre-
dicting the kinetics of SRO or SRC formation from some arbitrary starting configuration of
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disorder is more difficult. Experimental measurements of relaxation times of the resistivities
of disordered binary solid solutions during annealing show a variation of at least four orders
of magnitude depending on the system, temperature, and concentration [27–29]. Assuming
other microstructural features (e.g., vacancy concentration, dislocation density, grain bound-
ary density, etc.) to remain constant during the annealing process, this change in resistivity
is interpreted as a change in SRO or SRC. Such variation in the expected relaxation time of
SRO/SRC means that, for an arbitrary solid solution alloy, an isothermal annealing proce-
dure may require a few minutes to a few days before an equilibrium SRO/SRC distribution
of solutes is established. Models that can predict the correct timescale for the required an-
nealing to establish a desired SRO/SRC state would be valuable for experimental design as
well as for connecting to models that predict SRO/SRC dependent properties.

A brute-force approach to modeling SRO/SRC kinetics would be to run molecular dynam-
ics (MD) simulations using an accurate interatomic potential. An issue with this approach
is that a vacancy hop, the dominant diffusion mechanism for metallic alloys not under irra-
diation, is a rare event on the MD timescale except at high homologous temperatures that
may represent a relatively low level of equilibrium SRO/SRC. Thus, the timescale of MD
is typically incommensurate with that of ordering/clustering induced by vacancy migration.
Additionally, interatomic potential models for alloys that produce the correct equilibrium
SRO or SRC distributions and vacancy kinetics are limited in their availability.

An approach alternative to MD is kinetic Monte Carlo (kMC) [30], where the position
of a vacancy is evolved stochastically using hop rates that are typically parameterized by
harmonic transition state theory (HTST) [31]. kMC simulations allow access to timescales
that are orders of magnitude larger than can be accessed from MD, and can use on-lattice
models parameterized by DFT calculations [32–34]. However, there are typically on the order
of ten to one hundred DFT-calculated transition state energies for vacancy hops used for
parameterization in such models due to their limiting computational cost. Neural network
models that predict a local configuration dependent energy barrier for a vacancy hop need
to be trained on the order of 103-104 energy barriers to achieve accuracy near 10 meV as
evidenced by studies using interatomic potentials [35, 36]. Such a number of energy barriers
is computationally expensive to obtain from more realistic DFT calculations, as implied by
the comparison of a recently developed neural network interatomic potential for CrCoNi to
only 100 DFT calculated barriers [37]. Thus, the generation of a reliable on-lattice model
for kMC is not trivial. We note that on-the-fly kMC using an interatomic potential can be
used to model SRO/SRC kinetics, but this is likely much more computationally expensive
than an on-lattice model (in addition to being dependent on the quality of the interatomic
potential) and to our knowledge has so far only been attempted for a model Lennard-Jones
system [38].

An alternative approach to modeling SRO/SRC kinetics would be to use mean-field or
rate-theory models. Examples of such models include the path-probability method, which
has been used to study order-disorder transformations [39] and long-range order relaxation
[40], as well as rate theories that consider the effect of the change of pair probabilities on
the vacancy energy barriers [41–44]. The main issue with these approaches is that they
are only tractable when considering a limited range of atom-atom and vacancy-atom in-
teractions. A mean-field model that does not suffer from this issue is the reciprocal-space
concentration-wave (CW) formalism, as described for example by Cook and de Fontaine
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[45–49] and Khachaturyan [50]. In contrast to the previously mentioned models, which focus
on correlations in real space, the CW model focuses on describing the change in the Fourier
transform of the WC SRO parameters (α(k⃗)) over time as a function of the concentration-

wave wavevector (k⃗). Advantages of this model are that it does not require any parame-
terization of vacancy-atom interactions or configuration-dependent energy barriers, and can
handle arbitrarily long range atom-atom interactions, although a kinetic mobility term is
required that can be related to experimentally measured bulk diffusion constants.

The CWmodel has shown qualitative and semi-quantitative agreement with experimental
measurements of SRO or SRC in binary alloys. It predicts a deviation of the SRO relaxation
time from Arrhenius behavior when approaching a critical temperature in agreement with
observations from resistivity measurements [27, 46], yields reasonable relaxation times and
activation energies for the Au-Ag system when compared to those obtained from resistivity
measurements [51], explains why the relaxation of resistivity in a SRC system cannot be
explained by a single relaxation time [28], and reasonably describes the exponential kinetics
of the SRO diffuse intensity obtained from diffuse scattering experiments in the Cu-Au [52],
Cu-Ni [53], and Ni-Fe [54] binary alloys. While these are encouraging results, the previous
studies have involved the fitting of at least one input parameter in order to match with
experiments, so the predictive capability of the CW model remains unclear. Additionally,
the ability for the CW model to describe the kinetics of WC parameter evolution has not
been assessed.

In this paper, we present a parameter-free comparison of the kinetics of SRO and SRC
formation in models for the ordering and clustering Cu-Au and Cu-Ni systems, respectively,
obtained from kMC and the CW model. We find that the relaxation kinetics obtained from
the CW model agree with kMC to within an order-of-magnitude for regions in reciprocal
space where α(k⃗) is representative of dominant concentration waves, as well as for real space
WC parameters provided the system is at temperatures well above any critical temperatures.
This still includes relatively strong SRO and SRC states, as will be discussed below. We also
show how the effect of equilibrium vacancy concentrations affect the predictions, as well as
discuss how the CW model can be applied to multicomponent systems. The performance
of the CW model suggests that it can be used in conjunction with models that use WC
parameters as input [12, 13, 20–22] to inform the timescale required for experiments or
processing techniques to achieve a desired SRO/SRC-dependent material property.

2. Theory

We first review some details that are necessary for discussion of SRO/SRC kinetics and
the CW model. The WC parameter for a neighbor shell n in an AB binary alloy is defined
as:

αn = 1− Pn(B|A)
cB

(1)

where Pn(B|A) is the probability of finding a B atom in the nth shell of an A atom, and cB
is the global concentration of B atoms. This can alternatively be written as:
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αn =
∑
r⃗n

αr⃗n/Zn = 1−
∑
r⃗n

Pr⃗n(B|A)
ZncB

(2)

where the summation runs over all vectors, r⃗n, that connect a central atom to a position
in its nth neighbor shell, Zn is the coordination number for the nth neighbor shell, and αr⃗n

and Pr⃗n(B|A) are defined for the vector r⃗n instead of the shell n as in Eq. 1. For large,
centrosymmetric crystals, the ensemble average of αr⃗n within a shell n should equal αn. The
discrete Fourier transform of all αr⃗, where r⃗ is a position in the lattice (including the origin),

gives α(k⃗) at a point k⃗ in reciprocal space:

α(k⃗) =
∑
r⃗

αr⃗e
−i2πk⃗·r⃗. (3)

An equivalent and computationally convenient way to represent α(k⃗) is [46]:

α(k⃗) =
N |δc(k⃗)|2

cB(1− cB)
(4)

where N is the total number of atoms in the system, and δc(k⃗) is defined as:

δc(k⃗) =
1

N

∑
r⃗

[c(r⃗)− cB]e
−i2πk⃗·r⃗ (5)

where c(r⃗) takes the value 1(0) if the site at position r⃗ is occupied by a B(A) atom. In

this way, α(k⃗) represents the square amplitude of the concentration wave δc(k⃗) at the k⃗
wave-vector.

We will summarize the essential results of the CW model, referring interested readers to
Refs. [45–49] for details. Starting with a discretized version of Cahn’s equation [55] with the

inclusion of the effects of thermal fluctuations [56], a solution to the time evolution of δc(k⃗)
can be obtained. Through the use of Eq. 4 (as well as some assumptions on the nature of

the thermal fluctuations [56]), the kinetics of α(k⃗) are described as:

α(k⃗, t) = [α(k⃗, 0)− α(k⃗,∞)]e−t/τ(k⃗) + α(k⃗,∞) (6)

where t is the current time, α(k⃗, 0) is the initial value of α(k⃗), α(k⃗,∞) is the equilibrium

value, and τ(k⃗) is a k⃗-dependent relaxation time given by:

τ(k⃗) = [2Mβ(k⃗)ψ(k⃗)]−1. (7)

In Eq. 7, M is a mobility factor related to interdiffusion, β(k⃗) is a geometric factor given
by:

β(k⃗) =
∑
r⃗nn

[1− cos(k⃗ · r⃗nn)] (8)

where the sum runs over the unique vectors, r⃗nn, connecting nearest neighbors, and ψ(k⃗) is

a thermodynamic factor. From fluctuation theory, ψ(k⃗) can be obtained from knowledge of

α(k⃗,∞) [57]:
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ψ(k⃗) =
kBT

cB(1− cB)α(k⃗,∞)
(9)

where kB is the Boltzmann constant, and T is the temperature.
For a given cubic crystal structure, temperature, and composition of a binary alloy, one

needs knowledge of M , α(k⃗, 0), and α(k⃗,∞) in order to use Eq. 6. Knowledge of the

time evolution of α(k⃗, t) at every k⃗-point allows for an expression of the kinetics of the WC
parameters through:

αr⃗n(t) =
1

N

BZ∑
k⃗

α(k⃗, t)ei2πk⃗·r⃗n (10)

where the summation runs over allowable k⃗-points in the Brillouin zone (BZ).

3. Methods

3.1. On-Lattice Model

As there are many details to the forms and behavior of our on-lattice kMC model, we
will give only a brief overview here. Further details on parameterization and fit to reference
data can be found in the Supplemental Material (Figures S1-S3).

Interactions between atoms are modeled through a pair-interaction-model (PIM) [58].
The parameters of the PIM are fit to embedded-atom-method (EAM) descriptions of either
the face-centered cubic (FCC) Cu-Au [59] or Cu-Ni [60] system. The zero temperature en-
thalpy of mixing for random alloys at different compositions and the formation energies of
ordered structures in Table III of Ref. [58] (excluding the Z1 structure) were evaluated in
LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) [61]. Fitting the
PIM parameters to this data yielded first and second nearest neighbor interactions that are
dependent on the local concentration of the first two neighbor shells around the bonds. To
model the change in energy of the system when a vacancy is introduced, we first parame-
terized nearest neighbor “ghost” interactions between a vacancy and an A or B atom [62].
To improve on this model, we evaluate an effective vacancy formation energy (as defined in
Ref. [63]) using 0 K EAM reference data obtained from LAMMPS as well as using the PIM
and “ghost” interaction description. The difference between the two energies for a given
configuration is then accounted for with a model that includes the global composition and
nearest neighbor environment of the vacancy.

Activation energy barriers for vacancy hops are modeled using the concept of a kinetically
resolved activation (KRA) barrier [64]. The expression for the energy barrier (∆Eact

1→2) of a
vacancy moving from state 1 to state 2 is:

∆Eact
1→2 = ∆EKRA

1→2 +
E2 − E1

2
(11)

where ∆EKRA
1→2 accounts for the configuration dependent saddle-point contribution to the

energy barrier, E2 is the energy of state 2 and E1 is the energy of state 1. The configura-
tional dependence of ∆EKRA

1→2 is sampled using climbing image nudged elastic band [65, 66]
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calculations of vacancy hop barriers in Cu-Au and Cu-Ni in LAMMPS. A cluster expansion
model for ∆EKRA

1→2 is fit by considering the configuration of the union of the first nearest
neighbor shells of the vacancy and the hopping atom [34] with the model parameters being
dependent on global composition.

Attempt frequency quantities are also necessary in order to use HTST. These can be
obtained through knowledge of the Hessian of the energy at the minimum and saddle point
of a vacancy hop [31]. We have calculated the Hessian of only the diffusing atom in pure Cu,
Au, and Ni in LAMMPS at the stable and saddle point. From this, we used concentration
and configuration independent attempt frequencies of 3.73 THz, 2.00 THz, 3.65 THz, and
5.64 THz for a vacancy exchange with a Cu atom in the Cu-Au system, a Au atom in
the Cu-Au system, a Cu atom in the Cu-Ni system, and a Ni atom in the Cu-Ni system,
respectively. The slightly different value for the Cu atom in the two different systems comes
from different parameterization of the EAM potentials for pure Cu.

It is important to note that the intention of this is study is not to model the true Cu-
Au or Cu-Ni systems, nor is it to accurately replicate the energy landscape of the EAM
potentials. Rather, we intend to use the above on-lattice models to represent a physically
realistic model for ordering and clustering systems, with vacancy interactions and hopping
barriers that are dependent on the local environment (see Supplemental Material).

3.2. Kinetic Monte Carlo Simulations

We start with equilibrium Monte Carlo simulations using a 4,000 atom supercell con-
structed from a 10x10x10 replication of a conventional FCC unit cell with full periodic
boundary conditions. We initially attempt 2x107 Monte Carlo swaps in the canonical en-
semble across a range of temperatures for Cu-25% Au, Cu-50% Au, Cu-75% Au, and Cu-65%
Ni. At low temperature, these compositions are associated with the formation of a (Cu-rich)
L12 ordered phase, a L10 ordered phase, a (Au-rich) L12 ordered phase, and the critical
composition for phase separation, respectively. We take the variance of the energy of the
states obtained from the last 1x107 configurations to measure the temperature dependent
heat capacity (Cv(T )):

Cv(T ) =
V ar[E(T )]

kBT 2
(12)

where V ar[E(T )] is the variance of the energy at temperature T. From the peaks in Cv(T )
versus T plots (given in Figure S4 in the Supplemental Material), we estimate that the
highest ordering temperature for our model Cu-Au system is 425 K for Cu-50% Au, and the
critical temperature for our model Cu-Ni system is between 450-475 K. Thus, in order to
model SRO or SRC kinetics, and not long-range ordering or phase separating kinetics, the
remaining calculations will be done above those temperatures for Cu-Au and Cu-Ni systems.

To generate non-random states from a desired annealing temperature, we attempted
1x106 Monte Carlo swaps in the canonical ensemble starting from a random configuration
in order to reach equilibrium SRO/SRC. From a further 1x106 attempted swaps, we take

1,000 configurations (one per 1,000 attempted swaps) and find the average values of α(k⃗)

(Eq. 4) across those configurations. This quantity is computed for all k⃗-points that are
commensurate with the periodic vectors of the simulation supercell.
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In order to use the CW model, a value for M , the mobility, is required. This can be
obtained from dividing the interdiffusion coefficient by the second derivative of the free
energy with respect to concentration [45]. For a system where vacancies are treated as a
conservative species [67, 68], which will be the case in our kMC simulations, M can be
obtained through:

M =
L̃AAL̃BB − L̃2

AB

L̃AA + L̃BB + 2L̃AB

1

kBT
(13)

where L̃ij are kinetic transport coefficients that are related to atomic displacements through
[68, 69]:

L̃ij =
(
∑i −→R (t)) · (

∑j −→R (t))

6tN
(14)

where
−→
R (t) is a displacement vector of an atom after a time t and

∑i represents a sum
over all i-type atoms. The L̃ij coefficients are obtained through kMC simulations, using the
methods described below. While M in this study is obtained from kMC, this is only done in
order to facilitate a self-consistent comparison of SRO/SRC kinetics from kMC and the CW
model for the model systems used in this study. As will be discussed later, for a practical
application of the CW model, M is a value to be obtained from experimental interdiffusion
data or from mobility databases, circumventing the need to use kMC.

When running kMC, we first replace an atom in the initial state with a vacancy. We
then evolve the system in time using the residence time algorithm [30]. The rate (rq) for
each possible vacancy-atom exchange (q) at a kMC step is calculated using HTST:

rq = vqe
−∆Eact

q /(kBT ) (15)

where vq is an attempt frequency which depends on the type of vacancy-atom exchange.
In order to calculate L̃ij for a given composition and temperature, 1,000 independent kMC
simulations, starting from configurations representative of equilibrium SRO/SRC, are carried
out for 10,000 kMC steps. L̃ij for each simulation is then averaged for a given composition
and temperature. While tracer diffusivities (which can be related to the kinetic transport
coefficients [68]) have been shown to be dependent on the SRO/SRC state [70], we later show
in the Discussion section that the evolving SRO/SRC state of our systems does not have a
significant effect on the determination of M as we are sufficiently above ordering or critical
temperatures.

In order to compare the predictions from the CW model to kMC data, we run 10 inde-
pendent kMC simulations starting from a non-equilibrium state (which is either a random
state or a state annealed at a higher temperature, as discussed below) for 3x106 kMC steps
(except for 600 K in the Cu-Ni system, where we run for 4x106 kMC steps) while monitoring
the first two nearest neighbor WC parameters for a given composition and temperature.
For Cu-50% Au at 500 K and Cu-65% Ni at 600 K, we additionally run 100 independent
simulations starting from random configurations to provide sufficient statistics to monitor
the first eight nearest neighbor WC parameters as well as the change in α(k⃗). These cases
are chosen as they represent the strongest SRO and SRC states, respectively, explored in
this study.
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4. Results

4.1. Equilibrium SRO/SRC

Fig. 1 compares the equilibrium WC parameters obtained from our model Cu-50% Au
and Cu-65% Ni systems at 500 K and 600 K, respectively, to those obtained from diffuse
scattering experiments of the same systems [71, 72]. Even though the experiments were
carried out at higher temperatures, it is clear that our model systems give reasonable WC
parameters compared to experimentally observed SRO/SRC. The oscillation of the first eight
nearest neighbor WC parameters of the model Cu-50% Au system as well as the positive
value of the first four nearest neighbor WC parameters in the Cu-65% Ni system agree
with experimental measurments. The first two nearest neighbor WC parameters for other
temperatures and compositions are given in Figure S5 in the Supplemental Material.

Figure 1: WC parameters measured from the models used in this study compared to those obtained from
experiments. (a) Cu-50% Au WC parameters obtained from the model at 500 K and from X-ray diffuse
scattering at 800 K [71]. (b) Cu-65% Ni WC parameters obtained from the model at 600 K and from neutron
diffuse scattering at 673 K [72]. Error bars for the model values (which are smaller than the thickness of the
curves) represent +/- one standard error of the mean, while error bars for the experimental values represent
a reported error.

Fig. 2 shows the values of α(k⃗) along the [100] k⃗-vector that are expected for random
solid solutions, for solid solutions at their equilibrium state, and the average values from
initial (random) and final states of kMC runs (after a number of kMC steps mentioned in
the previous section for supercells with one vacancy) for Cu-50% Au at 500 K and Cu-65%
Ni at 600 K. As expected of the type of SRO/SRC for the studied systems, the equilibrium

α(k⃗) peaks at the [100] position for Cu-50% Au, which represent the enhancement of short-
wavelength concentration waves compared to the random state, and peaks near the origin
for Cu-65% Ni, which represents the enhancement of long-wavelength concentration waves
compared to the random state. The final values of α(k⃗) from our kMC runs for Cu-50% Au

are close to the expected equilibrium values, while the final values of α(k⃗) from our kMC
runs for Cu-65% Ni have not reached the expected equilibrium values. The observed shift
in k⃗-space of the peak of α(k⃗) in Cu-65% Ni between the final kMC state representing a
transient SRC state, and the equilibrium SRC state is an expected behavior of clustering
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systems [46]. As discussed below, the long relaxation time of this system near the origin of
reciprocal space would require much longer kMC simulations to reach equilibrium.

Figure 2: Values of α(k⃗) along the [100] k⃗-vector for (a) Cu-50% Au at 500 K and (b) Cu-65% Ni at 600

K. Solid blue lines represent expected values of α(k⃗) for a random alloy, and solid orange lines represent the

equilibrium values of α(k⃗) as calculated from Monte Carlo in the canonical ensemble. Blue points represent

α(k⃗) averaged over initial random states from kMC runs and orange points represent α(k⃗) averaged over
final states from the same kMC runs. Error bars represent +/- one standard error of the mean.

4.2. Kinetics with a Random Initial State

In this subsection we compare the results of kMC simulations and the CW model pre-
dictions of SRO/SRC kinetics starting from a random initial state with one vacancy. As
this results in a vacancy concentration that is significantly larger than the equilibrium value,
the timescales shown in Figure 3 will be greatly accelerated compared to a realistic vacancy
concentration. We will present comparisons to experiments in a later section where we scale
the time by an equilibrium vacancy concentration.

Figure 3 shows how the CW model performs in predicting the kinetics of α(k⃗) relative to
kMC. In Figure 3(a) and (b) we compare the inverse relaxation times (or relaxation rates)
as predicted by Eq. 7 to those obtained by fitting kMC data to Eq. 6 (representative plots
are given in Figure S6 in the Supplemental Material) for Cu-50% Au at 500 K and Cu-65%

Ni at 600 K, respectively. For regions where α(k⃗) is expected to grow compared to the
random state (the dominant concentration waves at equilibrium according to Figure 2), the
ratio of relaxation rates predicted by the CW model to that obtained from the kMC fits
falls into a range of 0.7-2.8 for Cu-50% Au and 0.6-6.1 for Cu-65% Ni. For regions where
α(k⃗) decreases the agreement is worse, and the ratio falls within a range of 2.1-6.9 for Cu-
50% Au and 5.5-53.9 for Cu-65% Ni. However, while the ratio of relaxation rates is worse
in these regions (i.e., below 1/7[100] for Cu-50% Au, and above 1/5[100] for Cu-65% Ni),

the absolute differences in α(k⃗) are small as shown in Figure 3(c) and (d). As shown in

Figure 2, the increase in α(k⃗) with respect to the random state in the region of dominant
concentration waves at equilibrium is larger in magnitude than the decrease associated with
the other region in reciprocal space. Interestingly, the CW model tends to predict faster
relaxation kinetics than observed through kMC.
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Figure 3: Comparison of α(k⃗) kinetics as predicted by the CW model to kMC results (with one vacancy in
the supercell). (a) and (b) show the inverse relaxation time as predicted by the CW model and as fit to kMC
data for Cu-50% Au at 500 K and Cu-65% Ni at 600 K, respectively. Error bars represent +/- one standard

error on the fits as obtained from bootstrap resampling [73]. (c) and (d) show the absolute difference in α(k⃗)
as predicted by the CW model and as obtained from kMC for Cu-50% Au at 500 K and Cu-65% Ni at 600
K, respectively.

The largest error bars associated with the kMC derived relaxation rates are present at the
1/7[100] k⃗-vector for Cu-50% Au and the 1/5[100] k⃗-vector for Cu-65% Ni. The difference

in the initial and final values of α(k⃗) at these points is very small, and thus the relaxation
rate fits to kMC data become extremely sensitive to noise. Additionally, the CW model
predicts that the point where α(k⃗) is equal to one does not change over time, while neutron
scattering experiments on Cu-Ni have shown that this is not true [53]. The shifting of this
point over time may also lead to a larger error in the fits. It is also worth pointing out
that the fits of the CW model to experimental data of neutron scattering in Cu-Ni have
significantly better agreement at smaller k⃗-vectors than larger k⃗-vectors [53], similar to our
results. However, how the errors of the CW model in reciprocal space affect prediction of
real-space WC parameters have not, to our knowledge, been explored before this study.

The time dependence of a WC parameter (αr⃗n(t)) is related to the time dependence of

α(k⃗) through Eq. 10. To quantify the deviation between the CW model and the kMC
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results, we have found it useful to introduce a scaling factor Cn defined as:

αkMC
n (t) = αCW

n (Cnt) (16)

where αkMC
n (t) is obtained from Eq. 1. The value of Cn is derived as that which gives the

best agreement between kMC and CW predictions. This quantity then gives the ratio of the
timescales of the CW and kMC models to reach a similar value of the WC parameter. If Cn

is between 0.1 and 10, then the CW model can reproduce the kinetics of SRO/SRC within an
order-of-magnitude of kMC. If Cn equals 1, then the two models have identical timescales for
SRO/SRC evolution. As shown below, the value of Cn will depend on alloy concentration,
temperature, and initial state. The potential sources for discrepancies between the CW
theory predictions and kMC results, as reflected by values of Cn differing from unity, will be
given in the Discussion section.

Figure 4 presents a comparison of the kinetics of the WC parameters as obtained from
kMC to the CW model. Kinetics for the first four nearest neighbor shells are shown, with
plots of the next four nearest neighbor shells given in Figure S7 in the Supplemental Material.
The time as obtained from the CW model is scaled by the factors Cn shown in Figure 4(c) for
Cu-50% Au at 500 K and Figure 4(d) for Cu-65% Ni at 600 K. The range of Cn is between
0.31 and 0.46 for Cu-50% Au and between 0.17 and 0.33 for Cu-65% Ni. These results thus
indicate that the unscaled CW kinetics are within an order-of-magnitude of the kMC results.
Similar to the relaxation kinetics in reciprocal space, the CW model seems to predict faster
relaxation kinetics in real space compared to kMC as all values of Cn are below 1. Thus, the
CW model can be viewed as a lower bound on the true relaxation time scale.

Additionally, the qualitative transient behavior of the WC parameters of the CWmodel is
in excellent agreement with the kMC results. The behavior of the Cu-50% AuWC parameters
as shown in Figure 4(a) seem to either monotonically increase or decrease towards their
equilibrium values. However, the Cu-65% Ni WC parameters, especially for the second
nearest neighbor shell, as shown in Figure 4, show a noticeable non-monotonic behavior,
which is captured by both the CW model and the kMC results. It is clear that a simple
exponential decay model for the WC parameter kinetics for the SRC system (Cu-Ni) would
not satisfactorily capture these effects, consistent with previous findings by Cook [46] and
Royen et al. [28]. However, the former study discussed this in terms of the shift of the

maximum of α(k⃗) over time (which is shown in Figure 2(b)), and the latter study uses
resistivity relaxation as a proxy to describe SRC relaxation. Through visual inspection
of our results, it appears that the WC parameter for the first nearest neighbor shell in a
SRC system may be approximated by single exponential kinetics, but this is not true for
higher order shells. The WC parameters for the Cu-65% Ni system are further away from
their equilibrium values than the Cu-50% Au system, as suggested by the difference in the
equilibrium value of α(k⃗) and the final value obtained from kMC in Figure 2. Compared to
the equilibrium value of approximately 0.18, the value of α1 for the Cu-65% Ni system at the
end of the kMC run is approximately 0.15 and still increasing. Based on the relaxation times
in Figure 3(b), achieving equilibrium values for the WC parameters would require running

1-2 orders of magnitude more kMC steps due to the slow relaxation of α(k⃗) near the origin.
While we have been focusing on Cu-50% Au at 500 K and Cu-65% Ni at 600 K due to

their relatively strong equilibrium SRO and SRC, we will now explore how the effects of
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Figure 4: Comparison of the kinetics of WC parameters as obtained from kMC and the CW model (with
one vacancy in the supercell). (a) and (b) present the time dependence of the WC parameters as given by
bin averaging over 100 independent kMC runs (solid lines, +/- one standard error of the mean is present in
the form of shaded regions, but are too small to be identified in the plots) and as given by the CW model
(dashed lines) for Cu-50% Au at 500 K and Cu-65% Ni at 600 K, respectively. The CW time is scaled by
the values of Cn given in (c) for Cu-50% Au and (d) for Cu-65% Ni. Error bars for Cn represent +/- one
standard error of the mean as obtained from bootstrap resampling, and the dotted black line marks a value
of 0.1.

varied temperature (while maintaining a fixed vacancy concentration) at fixed composition
and the effects of varied composition at fixed temperature affect the predictions of the CW
model. For the sake of simplicity we focus only on the first two WC parameters. Figure 5
shows the effect of temperature on Cn for Cu-50% Au and Cu-65% Ni for the the first two
shells. The general trend shows an increase in Cn with respect to the lowest temperature,
although as clearly shown at 1100 K for Cu-65% Ni, the trend is not monotonic. A possible
reason for this will be given in the Discussion section. These temperatures represent a range
of α1 (α2) from -0.14 (0.20) at 500 K to -0.08 (0.08) at 1000 K for Cu-50% Au, and a range
of α1 (α2) from 0.18 (0.05) at 600 K to 0.08 (-0.01) at 1100 K for Cu-65% Ni. Figure 6
shows the effect on composition on Cn for the Cu-Au system at 500 K and the Cu-Ni system
at 600 K for the first two shells. Cn seem to take a range of values, with no clear trend,
but are all above 0.1. The two largest errors are associated with the first shell for Cu-10%
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Ni and Cu-20% Ni. This is because the values of α1 for these compositions are very small
(-0.004 and 0.01, respectively), so the fit of Cn becomes very sensitive to noise in the data
from kMC. Nevertheless, for all the cases observed here, the CW model is able to reproduce
SRO and SRC kinetics with timescales within an order-of-magnitude of the kMC results.

Figure 5: Values of Cn for the first two WC parameters in (a) Cu-50% Au and (b) Cu-65% Ni as a function
of temperature. Error bars represent +/- one standard error of the mean as obtained from bootstrap
resampling. The black dotted line marks a value of 0.1.

Figure 6: Values of Cn for the first two WC parameters in the (a) Cu-Au system at 500 K and the (b) Cu-Ni
system at 600 K as a function of composition. Error bars represent +/- one standard error of the mean as
obtained from bootstrap resampling. The black dotted line marks a value of 0.1.

4.3. Non-Random Initial States

The previous results correspond to annealing from an initially random state at a given
temperature. In reality, even at very high temperatures, a truly random configuration is not
likely as SRO/SRC is always present to some degree. Thus, we have also tested the ability
of the CW model to predict SRO/SRC kinetics when quenching in an initial SRO/SRC
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state from either 400 K or 100 K above the desired annealing temperature. Plots similar
to Figure 6 are given for these cases in Figure S8 in the Supplemental Material. Based on
the assumptions required in the derivation of the CW model, it would be expected that
the closer the initial state is to the equilibrium state, the better the accuracy of the model
predictions [46].

As the differences in the initial and equilibrium states are smaller compared to the random
case, the fits to Eq. 16 are more sensitive to noise, and thus result in larger error bars for
Cn. Regardless, even with the errors, we find that the values of Cn for Cu-Au at 500 K
when starting from these non-random initial configurations are closer to 1 than in Figure
6(a), especially for intermediate compositions. This suggests that the CW model gives better
predictions for SRO kinetics when the initial state is closer to the equilibrium state.

However, this improvement does not seem to carry over for SRC kinetics for the Cu-Ni
system at 600 K. For a couple of cases the prediction from the CW model has become worse
than the cases with random initial states presented in Figure 6(b), to the point where there
is more than an order-of-magnitude of disagreement with the timescale of the kMC results.
A possible reason for this is given in the Discussion section. Comparisons between the CW
model and kMC results for SRC relaxation kinetics in Cu-30% Ni when quenching to 600
K from an equilibrium state at 1000 K and in Cu-65% Ni when quenching to 600 K from
an equilibrium state at 700 K are given in Figure 7(a) and (b), respectively. The figure
shows that there is noticeable deviation between the unscaled (Cn = 1) CW model results
and the kMC results. To quantify the time-dependent error, we calculate the difference of
the predicted WC parameter obtained from the scaled (αCW

scaled) and unscaled (αCW
unscaled) as

a function of time. We use the scaled CW model instead of the kMC results as it allows
extrapolation to timescales beyond that obtained from kMC. The results are plotted in
Figure 7(c) and (d). While the CW model predictions for the cases presented in Figure 7
result in kinetics that are more than an order-of-magnitude faster than kMC results, the
expected error for a time-dependent WC parameter is less than 0.02 in magnitude.

4.4. Comparisons to Experiments

The comparisons above represent kinetics of a crystal with a fixed vacancy concentration
of 2.5×10−4 (i.e. one vacancy in the 4000-atom supercell used for kMC) in the absence of
sources and sinks. In order to compare with experimental results, we scale our mobility
factors by a calculated equilibrium vacancy concentration, obtained following the procedure
in Ref. [74]. The equilibrium vacancy concentrations are given in Figure S9 in the Sup-
plemental Material. The expression for M that is required for Eq. 7 is different than Eq.
13 when considering a non-conserved treatment of vacancies. If we treat vacancies as being
regulated by a sufficient amount of sources and sinks to maintain an equilibrium vacancy
concentration, the appropriate expression for M is [68]:

M =
[
cB

( L̃AA

1− cB
− L̃AB

cB

)
+ (1− cB)

( L̃BB

cB
− L̃AB

1− cB

)]cB(1− cB)

kBT
. (17)

The expressions for M given in Eqs. 13 and 17 are representative of two different limits of
vacancy interactions with sinks and sources. Ultimately, how the system behaves will depend
heavily on the microstucture, which is sensitive to material preparation and experimental
conditions, as well as the relative difference in transport kinetics of the two species [68].
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Figure 7: Comparison of the kinetics of WC parameters as obtained from kMC and the CW model (scaled
and unscaled) for (a) Cu-30% Ni when quenched to 600 K from 1000 K and (b) Cu-65% Ni when quenched
to 600 K from 700 K. Difference between αCW

scaled and αCW
unscaled as a function of time for (c) Cu-30% Ni when

quenched to 600 K from 1000 K and (d) Cu-65% Ni when quenched to 600 K from 700 K.

The latter point is illustrated in Figure S10 in the Supplemental Material. In the following
comparisons, we will compare experimental results to predictions from the CW model scaled
to equilibrium vacancy concentrations with M calculated using either Eq. 13 or 17.

Figure 8 shows relaxation times calculatd using the CW theory for Cu-50% Au and Cu-
65% Ni as a function of temperature. We estimate the relaxation time, τ , for these cases
starting with an initially random state as that which satisfies the following equation:

αCW
1 (t = τ) = [αCW

1 (0)− αCW
1 (∞)]e−1 + αCW

1 (∞) (18)

where for simplicity αCW
1 (0) is set equal to zero. As mentioned above, even at the high-

est temperatures there is still a notable amount of SRO/SRC at these compositions when
equilibrium is reached.

At these high temperatures, the relaxation time for establishing SRO/SRC is much
smaller than a second. Thus, after homogenizing a solid solution at a high temperature,
the quench rate must be significantly faster than any of the relaxation times at lower tem-
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peratures to avoid any significant development of SRO/SRC. This is probably difficult to
achieve as, even with the slower relaxation times in the Cu-Ni system, a quench rate of
approximately 104 K/s cannot maintain a SRC state representative of a temperature higher
than 973 K for Cu-70% Ni (α1 ≈ 0.08) [53]. It is likely even more difficult to suppress the
development of SRO in the Cu-Au system, considering the extremely fast relaxation times
shown in Figure 8(a).

While there are limited experimental results to compare SRO/SRC kinetics to, Figure
8(b) compares the relaxation times from the CW model to an Arrhenius relation obtained
from experimental resistivity measurements [28]. Given the approximations in our on-lattice
model, the agreement between experiments and the CW model is reasonable. Since the rate
of change of resistivity in the experiments of Cu-Ni cannot be fit to a single exponential, the
reported values are associated with an inflection point in the change in resistivity versus the
logarithm of time curve.

Figure 8: SRO/SRC relaxation times for the first nearest neighbor shell in (a) Cu-50% Au and (b) Cu-65% Ni
as a function of temperature as obtained from the CW theory. The shaded blue and orange regions represent
+/- an order-of-magnitude from the CW predictions. In (b), the dashed black line represent an Arrhenius
relation obtained from experiments [28] near the critical composition and the shaded region represents the
reported error in the activation energy.

Figure 9 shows the calculated relaxation times for Cu-Au at 500 K and Cu-Ni at 600 K as
a function of composition. The effect of composition can change the relaxation time by orders
of magnitude, at least at the temperature considered here. The variation of relaxation time
as a function of composition is due to both the compositional dependence of the mobility
factor as well as the thermodynamic factor used in Eq. 7. We compare the CW predictions
in Figure 9 to relaxation times obtained from resistivity experiments [27, 28, 75]. For Cu-
Au, there only seems to be experimental resistivity relaxation times for a couple of Au-rich
alloys. At 86% Au [27], an Arrhenius relation, which was fit to data including 500 K, was
used to obtain the relaxation time. An Arrhenius relation was not given for 75% Au [75], as
relaxation times near this temperature were showing a diverging behavior from an Arrhenius
relation while approaching the ordering temperature. Both reported relaxation times are in
reasonable agreement (within an order-of-magnitude) with the current predictions.

For Cu-Ni, measurements were made above 600 K and fit to an Arrhenius relation, which
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was extrapolated down to 600 K to compare to the current results. The resulting values
are in reasonable agreement with the current predictions. However, this should not be
taken too literally, as the reported error in the experimental activation energies results in
a range of relaxation times that can span many orders of magnitude. Regardless, the CW
theory with our current parameterization can reproduce reasonable relaxation times when
compared to the limited experimental data. Additionally, while different descriptions of M
lead to different predictions of relaxation times, Figs. 8 and 9 show that, at least for our
model systems, the different descriptions ofM have a secondary effect compared to the effect
of temperature and composition.

Figure 9: SRO/SRC relaxation times for the first nearest neighbor shell in (a) Cu-Au at 500 K and (b) Cu-Ni
at 600 K as a function of composition from the CW theory. The shaded blue and orange regions represent
+/- an order-of-magnitude from the CW predictions. Dots with error bars are obtained from Arrhenius
relations obtained from experiments [27, 28]. The value at 75% Au in (a) was taken as 400 s without any
error bars reported from experiments [75]. As the WC parameter below 20% Ni is very low, relaxation times
at lower percents of Ni are not included in (b).

While it is not the goal of this study to replicate the SRO/SRC formation kinetics for the
real Cu-Au and Cu-Ni systems, we have compared the interdiffusion coefficient as calculated
from our kMC simulations to that obtained from experimentally assessed mobility [76, 77]
and thermodynamic data [78, 79]. The comparisons, which are summarized in Figure S11 in
the Supplemental Material, provide additional insights into the factors related to the level
of agreement between the CW model and experimental relaxation times. For Cu-Au at 500
K, we see in Figure S11(a) that the value of the interdiffusion coefficient agrees well between
the experimental data and kMC results when there is more than 70% Au. This agreement
suggests that the agreement of the CW model with experimentally obtained relaxation times
in Figure 9(a) at 75% and 86% Au is not coincidental. However, with lower concentrations
of Au we do not expect the results from our model to describe the true Cu-Au system as the
interdiffusion coefficient does not agree between experiments and kMC. For Cu-Ni at 600 K,
we see in Figure S11(b) that the interdiffusion coefficient calculated in alloys with less than
approximately 49% Ni agrees well between experiments and kMC. Thus it is plausible that
despite the large error in relaxation time obtained from the extrapolation of experimental
results in Figure 9(b) that the CW model relaxation times could be a reasonable description
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of the real system when the concentration is less than 49% Ni. However, Figure S11(b) also
shows that above 49% Ni the interdiffusion coefficient between experiments and kMC do not
agree well, partly due to the fact that the real Cu-Ni solid solution is expected to be unstable
with respect to phase separation in the composition range of 49%-72% Ni at this temperature
while our model system is still stable. For Cu-65% Ni, we see in Figure S11(d) that the
interdiffusion coefficient determined from experimental data is in good agreement with kMC
at low temperatures, but becomes over an order of magnitude larger at higher temperatures.
This agrees with the trend in Figure 8(b), where the experimental relaxation times are in
good agreement with the CW model at low temperatures, but become over an order of
magnitude faster at high temperatures. Thus, given how the agreement between CW model
and experimental relaxation times correlates with the agreement between the experimental
and kMC interdiffusion coefficient, we believe that the CWmodel should provide a reasonable
description of SRO/SRC formation kinetics in real solid solution systems provided that
accurate kinetic and thermodynamic parameters can be obtained.

5. Discussion

5.1. Use in Modeling and Experimental Design

As we have shown above, the CW model is able to capture the same order-of-magnitude
timescale of binary SRO/SRC kinetics for a wide range of compositions and temperatures
when compared to kMC results. Of course, the temperatures have to be sufficiently larger
than ordering (∼1.2TORD) or critical (∼1.3TCRIT ) temperatures, but they are still represen-
tative of relatively high WC parameters near those reported from experiments (α1 ≈ -0.14
for Cu-50% Au and α1 ≈ 0.18 for Cu-65% Ni). The CW model requires only two input

parameters after defining the initial state: M and α(k⃗,∞). While in this study M was
obtained from kMC simulations to be consistent with our on-lattice model, when study-
ing a realistic system M can be obtained from mobility databases such as those used in
DICTRA [80] or through simple models based on experimental interdiffusion data [81]. A
similar approach is used to parameterize mobility parameters for the Cahn-Hilliard equa-
tion in phase-field models [82, 83]. We would expect that a value of M obtained in this

way would represent an equilibrium vacancy concentration. α(k⃗,∞) is a quantity that can
be obtained from canonical Monte Carlo simulations of the binary system, which does not
require the parameterization of any vacancy-atom interactions or vacancy transition state
energies. Note that when one is preparing kMC simulations, running canonical or semi-grand
canonical Monte Carlo simulations to understand the thermodynamically expected state of
the studied system is a necessary step before carrying out any kinetic based study. These
simple parameterization steps along with the analytical form of the CW model means that
it requires much less effort compared to running kMC simulations.

The time-dependence of the real-space SRO/SRC parameters can be coupled with models
of SRO/SRC-dependent material properties to understand the order-of-magnitude timescale
at which these properties can change during isothermal annealing. An alternative strategy
that may be relevant for design of experiments probing SRO/SRC effects is to look at the
predicted relaxation time of dominant concentration waves in reciprocal space as these seem
to be in slightly better agreement with kMC than the real-space kinetics (Fig. 3). This is
because the real-space kinetics inherits the error of the CW description for all concentration
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waves in the Brillouin zone, not just the dominant ones. For systems that exhibit SRO,
we would expect that the dominant relaxation time would be associated with the point
in reciprocal space that has the maximum value of α(k⃗) at equilibrium [46]. For systems
that exhibit SRC, a dominant relaxation time is difficult to identify as there is a spectrum
of relevant relaxation times that continuously increase while moving towards the origin of
reciprocal space [46]. However, relaxation times within this spectrum can be used to inform
the timescale that long-wavelength compositional fluctuations develop.

5.2. Limitations of the CW Model

While the CW model is a promising tool to predict the timescale for SRO/SRC for-
mation kinetics, there are some limitations. Firstly, the model assumes isothermal kinetics
with a fixed concentration of vacancies. Assuming that an experimentally determined M is
representative of an equilibrium concentration of vacancies, this means that the CW model
can give a lower-bound estimate of the longest waiting time required to reach an SRO/SRC
level after quenching from a higher temperature. The waiting time is likely to be reduced
if one considers that non-equilibrium vacancy concentrations from higher temperatures are
retained for some amount of time and that SRO/SRC formation can occur during the quench
[84].

Secondly, the derivation of the CWmodel begins with the assumption that linear diffusion
is valid, which results in treating each concentration wave in reciprocal space as independent.
Thus the model does not attempt to conserve the total sum of α(k⃗) in reciprocal space

over time [85], which will result in nonphysical values of α(k⃗) between the initial and final
state. This is likely the origin for disagreement between the model and kMC results at low
temperatures where Cn tends to take its lowest values. Additionally, this is likely the source
for the initial state dependence of the agreement between the CW model and the kMC results
for WC parameter as discussed in Sec. 4.3. This may be alleviated by using a model based
on a master equation instead of a linear diffusion equation, although the simplicity of the
CW model will be sacrificed [85].

Thirdly, the derivation of the model also assumes that diffusion occurs based on a direct
exchange mechanism, as opposed to the much more realistic vacancy exchange mechanism.
While this does not seem to pose an issue for ordering systems, for clustering systems at high
temperatures and more dilute concentrations, this can result in predicted kinetics, especially
at short-wavelengths, that are faster than reality [86]. Evidence for this appears to be present
in Fig. 5(b), where the CW model seems to continuously improve its agreement with kMC
when increasing the temperature from 600 K to 1000 K (resulting in Cn approaching a
value of 1), but begins to deteriorate when further increasing the temperature to 1100 K.
We suspect that the better agreement before reaching 1100 K comes from the increased
validity of the linear diffusion approximation at higher temperature, but considerations of
vacancy-mechanism specific behavior, which can result in heterogeneous kinetic correlations
[86], also start to become increasingly important such that the CW prediction at 1100 K
has a worse agreement with kMC than at 1000 K. The heterogeneous kinetic correlation
effect is expected to be dependent on the magnitude of the value of L̃AB [86], which we have
scaled by MkBT and plotted in Figure S12 in the Supplemental Material. Figure S12(d)
shows that for the equilibrium state of Cu-65% Ni this value initially decreases as a function
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of temperature until 900 K, and then increases. It is this increase at higher temperatures
that we suspect contributes to the decrease in Cn at higher temperatures.

Fourthly, M is assumed to be independent of the SRO/SRC state in the CW theory,
although it is expected to be dependent on the local concentration inhomogeneity [87].
Additionally, recent MD simulations have suggested that the effect of SRO/SRC will reduce
the tracer diffusivities of an alloy [70]. In our implementation of the CW model we used
a value of M as obtained at equilibrium. However, for our systems this seems to be a
reasonable assumption as the ratio of M obtained at equilibrium to that obtained from a
random state ranged from 0.75-1.91 at 500 K for the Cu-Au systems and at 600 K for the
Cu-Ni systems (Figure S13 in the Supplemental Material). Interestingly, contrary to the
findings in Ref. [70], for concentrated Cu-Au alloys we find that SRO increases the value of
M as opposed to decreasing it. This highlights the need for further study of the effect of
SRO/SRC on mass transport.

Lastly, the ability to use the CW model for a desired system depends on the availability
of interdiffusion experiments or mobility databases relevant to that system. Otherwise, one
would have to resort to kMC.

5.3. Extension to Multicomponent Systems

Even with the limitations discussed above, the CW model is a promising tool for un-
derstanding SRO/SRC kinetics. The good agreement within the tested compositions and
temperatures for our binary systems suggests that this model could be useful for multi-
component systems. In the multicomponent version of the CW model, a system with m
components has m− 1 kinetic equations with an (m− 1) by (m− 1) matrix of k⃗-dependent
relaxation rates that are related to the product of an (m−1) by (m−1) matrix of mobilities

with an (m − 1) by (m − 1) matrix of k⃗-dependent thermodynamic factors [48]. Through
a diagonalization procedure that obtains the eigenvalues of the relaxation rate matrix and
the thermodynamic matrix, one can obtain m− 1 equations similar to Eq. 6. The mobility
matrix can be obtained from experiments or mobility databases, and the thermodynamic
matrix can be obtained from canonical Monte Carlo simulations, similar to the binary case.
We expect the multicomponent extension of the CW model to be useful for understanding
SRO/SRC formation kinetics in complex concentrated alloys and future work to test this
theory against kMC simulations are suggested.

6. Conclusions

We have presented comparisons of the mean-field CW model describing SRO/SRC ki-
netics to results from kMC simulations for two model binary FCC systems. For a wide
range of compositions and temperatures, the analytical CW model is able to reproduce the
SRO/SRC kinetics from the kMC simulations to within an order-of-magnitude without re-
quiring information of the configurational dependence of vacancy hopping energy barriers nor
any adjustable parameters. We also find good agreement in terms of SRO/SRC relaxation
times for our systems when compared to available experimental information. This model
can be coupled to existing theories that predict SRO/SRC-dependent material properties,
and can be extended to multicomponent systems. We expect the CW model to be a valuable
tool in aiding the design of thermal processing treatments to control of SRO/SRC states.
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